
AD.AlIS 010 H0UyWEL INC SLOOMNTON MN CORPORATE COMPTER SIE-ETC FIG 9/2
CCMMENT SYSTEM DESCRIPTION LANS.AOE. (U)
Foot1 V TWOO H KW SENSHYIJ P30602-60-C-029S

UNCLASSIFIED RAC-R-9-3 NL; EEEEEEEE100EE

1j. 11_2 1.

11111- ll

Ii

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS-1963-A

41t 1

CONCURRENT SYSTEM. DES CRIPTION
LANGUAGE

mhMt Jr. view

Se.H. Tv

~PUVIMON FPBIC RELEASE; DISTRIUTION UNUMITD

DTiC
ROM AIR DEVELOPMEN CENTR SJUNO I1In
Air Force System Commend1

S rlffiss Air Force Bfose, New York 13441

81 080 5

AIDIAND A. VITO
Proje6ct Ingineer

Chief, Co~uwnd and Control Division

FOR TBE COMNIWDR:-0I,.k <ag

,JOHNP. M'S
Actin Cief9 Plans OMU1..

tf loiw address bas chaigs or It You WiSh tO be VOWe 1fromv the 3a=-
main ist, or it tb& mum**" is s longer ~~~ w or.p*
#US"easstial PDC (Ol) GrIffids Anl my141 hswil.sU~I

asitsiu~a £ urrebt SOW".m list

Do not return capiss og this repott vote". eotnte lts SoTsai
om ~.iM4m00"t rem"U" tbot it b.e~auf

1 - ~ -A

i . UNCLAS S IF IED

SECURITY CLASSIFICATION OF THIS PAGE (When Dat Ente,.,
READ INSTRUCTIONSREPORT DCUMENTATION PAGE BEFORE COMPLETING FORM

1. 1EPORT mUMsel it. GOVT ACCESSION NO: . mECIPIENTS CATALOG NUMBS R:,RADC-TR-82-3AP.

.TLE (annd Suie)ca Report

CONCURRENT SYSTEM DESCRIPTION LANGUAGE 11 Sep 80 - 11 Sep 81
6. PERFORMING 01G. REPORT NUNUER

N/A
7. AUrNOR(s) a. CONTRACT OR GRANT NZMNOEI(s)

* William T. Wood William R. Paulsen

Helmut K. Berg F30602-80-C-0295t Stone H. Yu
Ston ITN'I0. PROGRAM ELEMENT. PROJECT. TASK

~ ~ ORGANIZATION NAME ANC ADDRESS ARE W ~NTM ESIAG A A& O U IT NUMBERS
Honeywell Inc. 63728F
Corporate Computer Sciences Center 25290108
10701 Lyndale Ave. S., Bloomington MN 55420.
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE

Rome Air Development Center (COEA) February 1982
Griffiss AFB NY 13441 13. NUMBER OF PAGES

240
14. MONITORING AGENCY NAME & AOORESS(iI different frm Controlllnd ic1le) IS. SECURITY CLASS. (of chi@ repori)

Same UNCLASSIFIED
ISO. OECL ASSI PIC ATI ON/OOWNGRAOINGN/SCHEOUL

-
E

II. OISTRIBUTION STATEMENT (o 0tl Report)

Approved for public release; distribution unlimited.

I. OISTRIBUTION STATEMENT (of the abstract entered in Block 20. It different fro Report)

Same

It. SUPPL ECETARY NOTES

RADC Project Engineer: Armand A. Vito (COEA)

*. ,tit. KEy WORDS (Conimnue an overme sde it neceom, and Identify by block num,)..
Concurrent Processing System Computational Model Communication
Design Performance Data Types
Specification Abstraction Program
Description Refinement Machine
Architecture Decomposition

20. ABSTRACT (Continue an rveeree side I ne* oeeey and identify by block number)

--..-')This report describes an effort to develop a concurrent system description
language (CSDL). The development of the notation is based on studies of
approaches to modeling, designing, decomposing, describing, analyzing, and
deriving simulations of concurrent processing systems. The devised nota-
tion is based on a computational model which represents systems as a col-
lection of communicating concurrent activities. CSDL takes an architec-
tural approach viewing concurrency as a relationship among activities,

DO Io1473 EITION Oi I Nov6 is OSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deve tn

UNCLASSIFIED
,6CU ITY CLASOIVICATION OF THIS PA@C(1yMO Sae Ea.e4

rather than a concurrent progran--ing approach viewing concurrency as a
control construct. The model does not distinguish between hardware and
software realizations. The notation integrates statements about the
performance of concurrent processing systems. The basic principles of
CSDL include data abstraction and refinement, hierarchies of abstract
machines and their decomposition, representation of system requirements
and design solutions for all system.components. •

System definitions in CSDL include both the specification of requirements
on the system and the description of a system design satisfying these
requirements. Definitions in CSDL are given at the system level of
observation; they aid the designer in developing and evaluating concurrent
systems at several levels of abstraction, without being biased by reali-
zation considerations of such systems. When used as a modeling tool,
CSDL accepts definitions of functional, behavioral, and structural re-
quirements as well as performance constraints, and supports the specifi-
cation of system properties, the derivation of design descriptions, the
stepwise refinement and decomposition of system designs, and the verifica-
tion and analysis of system designs. In this report, the use of CSDL is
demonstrated for the design of a simple concurrent system including a
complete communication subsystem, the definition of an operating system
kernel, and the.performance specification for an interactive multi-pro-
grammed computer system. The CSDL syntax is formally defined in the form

of a BNF description and syntax diagrams.

II

It
!t

UNCLASSIFIED
SSCuRITY CLASSIPPCATIOU OP * PAaE(IO h D81 8e0f#e0)

~i ACKNOWLEDGEMENT

The authors wish to express their gratitude to W. Franta for his contriutions to the

development of performance analysis concepts and an experimental framework for
performance analysis of CSDL system definitions, and to A. Pizzarello for his I
contributions to the development of structuring and specification concepts and

techniques. The authors also thank T. Remple for his help with the initial

formalization of the CSDL snytax and S. Bieglari for his help in editing the formal

syntax definition. R. Kain's review of this report was helpful in enhancing its clarity.

The guidance and valuable suggestions provided by the contract monitors A. Vito and

Lt. D. Lopez are greatly appreciated.

Accession For

FTIS GRA&I
DTIC TAB
SUnannounced 0
Justificatio

! BY- --- ---
Distribution/ , -

Availability Codes

Avail and/or
Dist Special

'i-1

ii

TABLE OF CONTENTS

Section Page

I INTRODUCTION I

1.1 Introduction to the Problem 1
1.2 Characteristics of Concurrent Systems 2

1.2.1 Overview 2
1.2.2 Concurrent System Architecture 3
1.2.3 System Properties 5

1.3 Definition and Scope of CSDL 6
1.4 Report Organization 8

2 SYSTEM DESCRIPTION ELEMENTS 10

2.1 Models 10
2.1.1 The Notion and Use of Models 10
2.1.2 Issues an Information Processing Model Must Address 12

2.2 Notation 14
2.2.1 The Design Process 15
2.2.2 The Definition Language 15

2.3 System Analysis 18
2.3.1 Analysis of System Designs 19
2.3.2 Analyzing Properties of System Designs 20

2.4 Summary 23

3 CSDL CONCEPTUAL FOUNDATIONS 24

3.1 General Approach 24
3.1.1 Basis in a Model 24
3.1.2 System Architecture 25

, 3.2 Description and Specification of Architecture 27
3.2.1 Description of Architecture 27

t 3.2.2 Behavior Specification 30
3.3 Description and Specification in CSDL 30

3.3.1 Description of Components 31
3.3.2 Behavior Specification 34

3.4 Organization of CSDL System Definition 35
3.4.1 Specification and Description 38
3.4.2 Hierarchical Presentation of System Definition 39

iii Q

TABLE OF CONTENTS (Continued)

Section Page

4. CSDL DEFINITION 43

4.1 CSDL Computational Model 43
4.1.1 Sequential Programs 43
4.1.2 Concurrent Programs 44
4.1.3 Information Flow 45

4.2 CSDL Notation 47
4.2.1 Component Description 47

4.2.1.1 Value Expressions 47
4.2.1.2 Data 49
4.2.1.3 Programs 55
4.2.1.4 Machines 59

4.2.2 Specification Language 61
4.2.2.1 Assertions 61
4.2.2.2 Declarations 67
4.2.2.3 Mappings 68

4.3 Organization of a CSDL Document 71
4.3.1 Principles of Organization 71

4.3. 1.1 Object Space Decomposition 71
4.3.1.2 Type Refinement 72
4.3.1.3 An Illustration 74

4.3.2 Elements of a System Definition Text 75
4.3.3 Elements of a Machine Definition Text 75

4.3.3.1 Declarations Chapter 77
4.3.3.2 Specifications Chapter 78
4.3.3.3 Partition Chapter 79
4.3.3.4 Programs Chapter 80

4.3.4 Elements of a Program Definition Text go

5. AN ILLUSTRATION OF SYSTEM DEFINITION IN CSDL 82

5.1 Top Level Design 85
5.1.1 Declarations 85
5.1.2 Specifications 8
5.1.3 Partition 91

5.2 Design of Machines in the Partition 95
5.2,.1 Declarations 95
5.2.2 Specifications 98
5.2.3 Programs 102
5.2.4 Remaining Machines 110

5.3 Design of a Communication Subsystem 110
5.3.1 Refining Machine Description 112
5.3.2 Partition Machine Description 116

iv

TABLE OF CONTENTS (Concluded)

Section Page

6. PERFORMANCE SPECIFICATION IN CSDL 119

6.1 Objectives 119
6.1.1 Statements, Questions and Questments 119
6.1.2 Time and Counts 121
6.1.3 Activities and CSDL Definitions 122
6.1.4 An Experimental Framework 123

6.2 Extensions to the CSDL Computational Model 124
6.3 Notation for Performance Specification 125

6.3.1 Time 125
6.3.2 Number of Occurrences of Events 126
6.3.3 Specification of Stochastic Intervals 126
6.3.4 Specification Language Extensions 127
6.3.5 Performance Statement Placement 129
6.3.6 Sample Operational Analysis Term Specifications 129

6.4 An Illustration of Performance Specification in CSDL 133
6.5 An Approach to Performance Analysis 136
6.6 A CSDL Definition with Performance Specification 140

BIBLIOGRAPHY 150

APPENDIX A. CSDL SUMMARY 155

APPENDIX B. CSDL SYNTAX - BNF 168

APPENDIX C. CSDL SYNTAX - DIAGRAMS 192

APPENDIX D. CSDL DEFINITION OF AN OPERATING SYSTEM KERNEL 208

v

r._

SECTION 1

INTRODUCTION

1.1 INTRODUCTION TO THE PROBLEM

In recent years a number of advances in the electronics industry have had an impact on
the design and development of information processing systems. In particular, the

rapidly decreasing cost of hardware has accelerated the trend toward development of

systems consisting of collections of components cooperating to accomplish a single

task. Such systems are referred to as concurrent processing systems. Concurrent

systems promise modularity, expandibility, and reliability, which are some of the most

desirable properties of information processing systems. However, these advantages of

concurrent processing have not been clearly demonstrated. For example, distributed

processing systems are a particular type of concurrent processing system. While most
hardware problems in building distributed processing systems have been overcome,

overhead of 50% and more when compared to centralized systems has been observed in
their application [MARI80]. Among the problems leading to these deficiencies are:

o The geographical dispersion of system components

o The distribution of functions and data within the system

o The interactions of concurrently operating components

The state of the art in concurrent system technology has not kept up with the

advances in the electronics industry. It can be argued that a thorough understanding
of concurrent system concepts is lacking. This lack causes difficulties in designing

concurrent systems, including their modeling, description, and analysis.

Concurrent system design is in its infancy, and technologies are needed which supplant
ad hoc development techniques and integrate precisely defined concepts and theories

into systematic engineering disciplines (BERG81]. To this end, concepts need to.be

discovered which clarify the understanding of concurrent systems. Once such concepts

are identified, they need to be incorporated into methodologies which guide the design

of efficient and well structured concurrent processing systems.

1 ______1 1

Concepts, theories, and languages, together with scientific principles of design, do not

make up a methodology by themselves. These theoretical foundations are hard to

understand, and in addition, there is a need for working procedures which can be

followed in the different phases of the design and development process. Furthermore,

the successful application of working procedures needs to be supported by appropriate

tools, thus evolving the methodology into an engineering discipline.

An integral part of a design methodology is a notational tool for producing system

documentation which is complete, clear and unambiguous. Such a notation constitutes

the basis for a system design methodology. There is a clear need for a concurrent

system description language as a first step towards a concurrent system engineering

discipline. The development of such a language involves the identification and

definition of conceptual foundations for concurrent system design as a basis for a

collection of techniques guiding the design of concurrent systems.

1.2 CHARACTERISTICS OF CONCURRENT SYSTEMS

The problems associated with the design and description of concurrent processing

systems relate to the fundamental characteristics of such systems. In the following

subsections, the general characteristics of concurrent systems are discussed in terms

of concurrent system architectures and properties of concurrent systems.

1.2.1 Overview

Concurrent processing systems consist of multiple activities operating asynchronously
on global information. Concurrent processing concepts have evolved along the distinct
lines of multiprogramming on the one hand and computer networking on the other.

The first category is associated with centralized systems, the second with

decentralized systems. Developments in the area of multiprogramming were

*essentially motivated by performance considerations, whereas the idea of computer

networking was centered around the need for sharing geographically distributed

resources.

One of the most important issues in the design of concurrent systems is the

communication among activities used4 to effect the cooperation required to realize the

2

overall system function. This issue arises at all levels in concurrent systems; an

example is the seven layer communication model for Open System Interconnection

Architecture defined by the International Standards Organization [ISO801. Processor

multiplexing and the use of shared storage provide the means for communication

among activities in centralized systems. Depending on the characteristics of

communication among activities, decentralized systems can be grouped into two broad

categories -- loosely coupled and tightly coupled systems. Loosely coupled systems

are characterized by low bandwidth communication (compared to the rate at which

activities change their internal state), whereas tightly coupled systems exhibit high

bandwidth communication. A corollary to low bandwidth communication in loosely

coupled systems is the lack of quickly accessible shared storage (address space).

Consequently, in such systems the interaction between activities is realized by

message exchange. The development of concurrent systems of this kind has been

based on developments in computer networking, and has led to the evolution of

distributed processing. Figure 1 is an overview of concurrent processing systems.

CONCURRENT PROCESSING SYSTEMS

CENTRALIZED SYSTEMS DECENTRALIZED SYSTEMS

MULTIPROGRAMMING TIGHTLY COUPLED LOOSELY COUPLED
SYSTEMS SYSTEMS SYSTEMS

COMMUNICATION COMMUNICATION COMMUNICATION
THROUGH PROCESSOR THROUGH SHARED THROUGH MESSAGE
MULTIPLEXING AND STORAGE EXCHANGE
SHARED STORAGE

Figure I. Concurrent Processing Systems

1.2.2 Concurrent System Architecture

The definition of a concurrent system involves identification of the concurrent

activities, distribution and sharing of the information which they access, mechanisms

for communication among them, and their computational structure.

3"I'

°a

Concurrent Activities -- Concurrent activities involve sequences of actions which can

mutually overlap in time. An activity may itself be composed of a set of concurrent

actions, thus leading to a hierarchy of concurrent activities.

Organization of Information - The organization of information refers to how

information is made available to activities. Options concerning information organiza-

tion include:

o Shared global data which can be accessed directly by concurrent activities, as in

the case of tightly coupled systems

o Local data which can only be shared through message-based communication among

concurrent activities, as in the case of loosely coupled systems

Communication Mechanisms - Communication in concurrent systems can be

represented by a logical communication network. The topology of such a communica-

tion network can be defined by statically or dynamically established connections

between activities. Information flow among activities can be specified by:

o Activity names [HOAR78], i.e. direct addressing of the sender or receiver

o Port names [SILB8I], [COOKg0], where a port is owned by an activity

o Names of message buffers [AMBL77].

Three fundamental synchronization modes have been identified for concurrent

systems:

o Synchronous - handshaking between the sender and the receiver [HOAR78]

o Asynchronous - sender is not blocked [FELD79]

o Remote Invocation - sender is blocked until it receives some reply message from

the receiver [HONE80]

4

Computational Structure -- The interactions, precedence relationships, and flow of

information among concurrent activities constitute the computational structure of

concurrent systems. The computational structure defines the dynamic behavior of the

system. Dynamic creation or annihilation of activities is a part of the interaction

among activities within the computational structure.

1.2.3 System Properties

System designs must not only meet the functional requirements but also possess

performance properties. Therefore, realistic system specifications must include some

information about performance requirements and how they are distributed among the

system components. The development of tightly coupled systems has in the past been

primarily motivated by high performance requirements for certain compute bound

problems. Loosely coupled systems provide the potential for high performance when

the inherent parallelism of a problem is mapped onto an appropriate organization of

concurrent activities. The definition of an appropriate communication network for a

loosely coupled system is crucial to attaining the goal of high performance.

Reliability and fault tolerance (or graceful degradation) are achieved by detecting

error conditions and invoking certain recovery mechanisms. The recovery procedures

either reconfigure the system and isolate the failed components or roll back the

system to some previous state called a regeneration point. The realization of these

properties is more complex in concurrent systems than in sequential systems because

of the difficulties involved in defining regeneration points for a set of concurrent

activities. Further complications may arise in loosely coupled systems where the

global state may be distributed over the nodes of the network and thus is not readily

available to the individual nodes.

Confidence in the correctness of a design can be established either by the application

of formal proof techniques or by the use of informal and intuitive arguments.

Certifying correctness is more complex for concurrent systems than for sequential

systems because the global state can be altered simultaneously by many activities. In

loosely coupled systems arguments about correctness are generally based on analysis

of the message sequences. Certification of correctness for concurrent system has two

major aspects:

5

o Functional - input-output relationship and job determinacy, i.e., the output of the

system depends only on the state of the input data and is independent of the

communication delays in the system.

o Operational - liveness and freedom from deadlocks, i.e., the system does not enter

a state from which no activity can proceed.

Security and protection are of natural concern in concurrent systems, as in any other

practical system. Some of the protection problems unique to concurrent systems are:

o Protection of information during communication among activities

o Protection of global information from unprivileged concurrent activities

o Protection of information in the local domain of each activity from all other

activities

1.3 DEFINITION AND SCOPE OF CSDL

The Concurrent System Description Language (CSDL) presented in this report is a

notation for describing concurrent processing systems. It is based on a computational

model which represents systems as a collection of communicating concurrent

activities. The underlying model does not distinguish between hardware and software

realizations of activities. The notation integrates statements about the performance

of concurrent processing systems. The development of the notation is based on studies

of approaches to modeling, designing, decomposing, describing, analyzing, and deriving

simulations of concurrent processing systems.

System descriptions in CSDL represent concurrent systems at the system level of

observation. At the same time they aid the designer in developing and evaluating

concurrent systems at several levels of abstraction without being biased by aspects of

realizations of such systems. For example, it is possible

6

=I

o To lay out the topology of a concurrent system and to investigate different

methods of communication among system components without being biased by

realization characteristics of particular communication protocols.

o To specify system performance with respect to particular functional requirements

or system topologies without being bound by realization decisions concerning

hardware, firmware and software components.

The objectives of CSDL imply that its development is primarily concerned with the

following areas:

o Concepts for modeling concurrent systems

o Languages for defining concurrent systems

o Techniques for analyzing concurrent systems

When used as a modeling tool, CSDL accepts definitions of functional, behavioral, and

structural requirements as well as performance constraints to be met by a concurrent

system. These requirements need to be re-expressed in terms of the model of

concurrent systems underlying CSDL. This re-expression of requirements definitions is

necessary in order to apply techniques for:

o The specification of properties

o The derivation of design descriptions

o The verification and analysis of system designs

o The stepwise refinement and decomposition of system designs

Thus, the interest in requirements definition concentrates on the comprehension of the

types of requirements pertinent to concurrent systems, rather than on methods for

deriving and validating requirements definitions.

7

Several concurrent system implementation languages have been proposed in the

literature, such as ADA [HONES0], Modula [WIRT77], Concurrent Pascal [BRIN73],

CSP [HOAR78], etc. These languages are based on specific implementation models

for such systems. In particular, language constructs have been conceived which

accommodate different forms of communication schemes such as message passing or

direct remote invocation. Representative implementation language constructs differ

in terms of:

o The effect on the flow of control they impose on sending and receiving nodes

o The nature of synchronization assumed for the invocation of such constructs

o The structure they impose on programs which use them

It is not clear what implementation language construct forms are the most viable.

However, this is of minor importance to the development of CSDL because it should

express what is to be accomplished, in a fashion which allows a realization to use

whatever constructs are deemed appropriate, in a reasonably unbiased fashion. Thus,

the interest in implementation languages is in the compatibility of the model of

communication through information exchange used in CSDL, with implementation

models for message passing or direct remote invocation, rather than in different

organizations of node software as imposed by these languages.

1.4 REPORT ORGANIZATION

The body of this report is arranged in six sections. This first section has identified the

problem, introduced basic notions of concurrent systems, and defined the scope of the
L iConcurrent System Description Language contract. Section 2, System Description

Elements, addresses the problems relating to modeling, designing and analyzing

concurrent processing systems. In Section 3, CSDL Conceptual Foundations, the

general approach taken in this effort is presented. Section 4, CSDL Definition, defines

the computational model used to exhibit system behavior, the notation for describing

concurrent processing systems in terms of this model, and a set of organizational

concepts which involve notions of system structure and documentation format.

L S

Examples of the application of CSDL to concurrent system design are demonstrated in

Section 5, An Illustration of System Definition in CSDL. An extension of the

computational model for performance, associated language constructs, and examples
of performance specifications in CSDL are presented in Section 6, System

Performance Specification in CSDL.

Four appendices are included. Appendix A summarizes the CSDL notation and

document organization in tabular form. Appendices B and C formally define the CSDL

syntax in Backus-Naur form and syntax diagrams, respectively. Appendix D contains a

CSDL definition of an operating system kernel.

9

fI

SECTION 2

SYSTEM DESCRIPTION ELEMENTS

In this section, problems relating to modeling, designing and analyzing concurrent
processing systems are identified. These problems need to be addressed in the
selection and evaluation of conceptual foundations of CSDL and techniques for using

CSDL. The organization provides a framework for discussing issues of concurrent

system description language research in subsequent sections.

The thrust of the problem statement presented here is that the basic problems

associated with the design and description of concurrent processing systems center

around:

o The concepts which are needed to model all aspects of such systems

o The integration of these concepts into different models

o Notations for expressing the concepts of the different models

o Strategies for analyzing system designs in terms of these concepts and notations

2.1 MODELS

In this section the notion of a model for information processing systems is introduced

and defined, and an argument for the necessity of models in any engineering discipline

is presented. Some issues which must be addressed when developing models for

information processing systems are discussed under the two categories of usage in the

development process and modeling scope.

2.1.1 The Notion and Use of Models

To understand and think about complex systems, people need to develop highly

organized frameworks of concepts concerning various aspects of the systems which are

10

of interest. The "aspects of interest" are rather pragmatically defined to be what one

is currently trying to do to or with the system. If the activity is design, for example,

then one needs to understand the required function, how the system interacts with its

environment, how parts interact to accomplish the function, and how efficiently it

uses resources. If the activity is certification and validation, then one must

understand how to infer functional, operational, and performance information from a

description of the structure and component p..rts of the system as well as how to

extract the information required for usable simulations and emulations. Since a design

is usually expressed in more or less abstract terms, while a realization is made up of

real components, one needs to be able to understand the idealizations behind the

design and how their realization affects the results of analysis and validation.

In the realm of technology, scientists develop frameworks for understanding general

problem areas while engineers use their experience and creativity to design systems

that solve particular problems. The engineer must also understand the relationship

between the "theoretical" assumptions of the scientists and the "practical" realities of

available materials and techniques in order to create feasible designs. It follows, then,

that such frameworks must be developed before the specification, design, analysis, and

realization of concurrent systems can become part of an engineering discipline. Such

a framework will be referred to as a model.

A model is defined to be a conceptual structure consisting of:

o A set of primitive terms and relations among the terni'is

o A set of rules for defining or deriving new terms and relations from existing ones

o A set of axioms concerning the primitive terms and relations

Given these components of a model, statements involving both primitive and derived
terms and relations can be deduced from the axioms by using the accepted rules of

logic. For a model to be usable, there must also exist rules which define the

association between terms in the model and objects in the real world and between

relations in the model and relationships among objects in the real world. In the

established sciences the relations and terms have been chosen both for their relevance

11

to the phenomena being modeled and for their convenient mathematical expression;
this has allowed well-developed mathematics to be used for communication as well as

analysis.

2.1.2. Issues an Information Processing Model Must Address

In the previous paragraphs it was argued that some model of information processing

must be developed to be able to specify and describe any particular concurrent system.
Here the scope of such a model is presented. The issues group naturally into those

associated with the inherent characteristics of information processing systems and
those associated with the use of models in the design process.

Design Process -- The process by which people design systems is a dynamic, iterative
one. Requirements are analyzed, tentative solutions are created, and refinements are

introduced. Models are used both to guide the problem-solving activity and to

facilitate rigorous analysis. Analysis of a refined solution may show the solution is

inadequate and that either further refinements or a totally different solution is

required.

In established engineering disciplines one finds that, in fact, several models are
routinely used during the design process. For example, in electrical engineering one

model encompasses the structure of connections of a circuit and the essential behavior
of its discrete components. This model is based on the physics of time-varying

electromagnetic fields and uses a mixture of mathematics and the graphical languages
of schematic and block diagrams. Descriptions based on such models may be refined

by replacing functional blocks by the diagrams of circuits which realize them.
However, the designer may find it necessary to use a frequency domain model to

- perform some analysis or to use some thermodynamic model to evaluate the physical

feasibility of a design. Since different aspects of the system being designed can be
most easily analyzed in terms of different models, techniques for switching from one

to another must be well defined.

An important observation is that there is a central design model, amounting to an

abstraction of the physical system, in terms of which the growing design is expressed.

Excursions may be made into other models, but the results are always related back to

12

the design model. Therefore, a requirement on a design model is that it contain the

information necessary to define the mappings between it and each of the other models

used (Figure 2). An implication of this is that a central model is never finished; as the

state of the art and knowledge change, it must be changed in response. In this sense,

the design model can be considered the framework of the whole design process.

REQUIREMENTS SIMULATION
MODEL MODEL

RELIABILI TY DESIGN VALIDATION
MODEL MODEL MODEL

PERFORMANCE IMPLEMENTATION

Figure 2. Models for Design, Analysis,
and Realization

Multiple models, then, are required for the process of designing an information

processing system. Indeed, queueing networks for performance analysis, Petri nets for

concurrency description, state transition systems for program validation, initial

algebras for data type specification, denotational semantics for programming language

definition, and simulation models for analysis of operational behavior are all various

models currently in use.

Scope of a Design Model for Concurrent Systems -- Since a design model is a

framework within which people can think about a system, its associated language will

be used by the various people involved with the development of a given system.

Hence, the model must encompass at least the system characteristics outlined in 1.2.

It is apparent that several fundamental notions frequently recur in these system

characteristics:

o Information Structure - There is the notion of data as a repository of information,

along with the notion of operations which affect the information content of data.

13

The information in a datum exhibits some structure, and pieces of information have

certain properties and satisfy certain relationships. The data together with their

associated operations are referred to as the information structure.

o Control Structure - There is also the notion of an activity as the behavior over

time of some agent at a well-defined location within the system. The pattern of

behavior of an activity exhibits some structure, ordering subactivities in time; this

structure is often referred to as the control structure of the activity. Both order

in time and place in time are fundamental notions.

o Topological Structure - There is the notion of communication among activities;

they exchange data values with one another and with the system's environment

over well-defined communication paths. These paths define the communication

topology of the system. The exchanges define the ways activities may interact

with one another. These exchanges may follow some set of rules for orderly

communication. Activities may have to know one another by name in order to

establish communication. The paths, interaction rules and naming rules together

may be referred to as the topological structure of the system.

With these notions in mind we examine system characteristics. The global pattern of

what information exists, where it is, how it is accessed and by what, all concern data,

its operations, what sites contain it, and what activities use it. The requirements on

connections between nodes involve communication paths, data structure and

properties, communication among activities, behavior in time, and relationships

between the activities and the data they use. The individual nodes involve the data

and activity structure of sites and their behavior in time, while node interaction

concerns the properties of communication paths. The operational properties of

robustness, security, fault-tolerance, reliability, performance, correctness, and

viability are all related to the dynamic behavior of activities in response to actions

and changes both from within and from without the system.

2.2 NOTATION

A language for describing concurrent systems must be able to describe systems at the

user requirements level, the detailed design level, and all levels in between. The

14

information presented at any level includes functional, operational, and performance

properties. There are specific requirements on the language which must be satisfied in

order to be able to express these properties. Additionally, there are certain properties

which a language for describing systems must enjoy for it to be usable in the design

process.

2.2.1 The Design Process

During the design process, a complete description of all the component parts of a

product and how they are assembled is prepared. It must be possible to demonstrate

that the product as described satisfies the requirements. For complex systems, this

demonstration must be both more complete and more economical than experimenta-

tion on the finished product.

A design description of a system is an abstraction of that system; it is not the system

being considered. Rather, it contains a complete, consistent, unambiguous system

characterization suitable for a particular purpose. Implicit in this definition is the

assumption that different descriptions of the same system may be appropriate for

different purposes. During synthesis it is necessary to describe the system being

realized without constructing it. During analysis one must be able to describe the

system in such a way that information may be extracted or derived from the

description.

A critical requirement in design activity is the ability to utilize feedback. Feedback

results from the analysis of information derived during various design stages. The

designer uses feedback to determine whether choices made in one design step are

correct or incorrect with respect to the requirements. Correctness arguments provide

assurance that the design step just taken is in fact a correct and desirable one, while

incorrectness demonstrations show that the design step just taken was the wrong one

and, it is hoped, will provide some insight into making a more appropriate choice.

2.2.2 The Definition Language

Characterizations of systems are based on one of the multiple models mentioned in

2.1.2 and are stated in the language associated with the appropriate model. For

15

example, the languages associated with the various models are mathematics and
diagrams for queueing networks; places, transitions, and tokens for Petri nets;

mathematics and symbolic logic for state transition models; mathematics for initial
algebras and denotational semantics; and simulation languages for simulation models.

The language associated with the design model is referred to as the definition

language. The relationship of the definition language to the languages asociated with

the various analysis and realization/implementation models is portrayed in Figure 3.
Obviously, the relationships among the various languages is analogous to the

relationships among the associated models in Figure 2.

PEQROMNEIEMENT IUATION

EIANITIO LEIITO ANGUAGE O

LANGUAGE

ANALYSIS LANGUAGE LANGUAGES

Figure 3. Languages for Design, Analysis,
and Realization

The definition language is the language for expressing a characterization of a system,
i.e., the language for defining a system in terms of the concepts of the design model.

It must provide means for:

o Specifying requirements for a system

o Describing the design of a system

The nature of these two components of a system definition suggests that the defirdtion
language be composed of two constituent languages:

16

o The specification language

o The description language

The CSDL effort is primarily concerned with the development of a description

language associated with a design model for concurrent systems. However, when the

use of CSDL in the design process is considered, both constituent languages of the

definition language are required to generate a complete, consistent, unambiguous

characterization of a concurrent system. Therefore, a discussion of both a description

language and a specification language are included in the presentation of CSDL in this

report. Consequently, issues involved in both specifications and descriptions are

reviewed here.

Specifications -- The software engineering literature abounds with discussions of

specifications. There appears, however, to be no consensus on the definition of the

term. Phrases like "requirements specifications," "design specifications," and

"implementation specifications" only add to the confusion.

The terms "specifications" and "system specifications" will be used to mean "the

precise definition, in some language associated with an appropriate model, of what the

system component under discussion actually does." The component may be at any

level, from the entire system to a single primitive, and it may be function, behavior,

operational properties, or performance which is being specified.

Specifications are used to document the behavior of a system and its components both

for the user of the system and for its designers, builders, and maintainers. They are

also used by those analyzing the system for purposes of comparison with other

systems. Since it is generally necessary to be able to show that a specification

satisfies the given requirements, all aspects of a system subject to requirements must

be specifiable; this means that specifications will in general use the full scope of the

underlying model. Also, since specifications and requirements must often be

compared, the language used for expressing requirements and specifications should be

very similar; for practical purposes, they should be the same language.

If "requirements" are defined to be "what the component is supposed to do," then

design verification could be defined to be the creation of a formal argument that the
17

specifications "satisfy" the requirements; that is, any component which behaves as

described in the specification will behave as described in the requirements. This

relationship is indicated by the "=>" symbol in Figure 4. It also follows that when a

hierarchical development technique is used, the specification of level i becomes a

requirements statement for level i+1 as shown in Figure 4.

SPECIF!CATIONS

LEVEL -

SPECIFICATIONS = > REQUIREMENTS

LEVEL i+1

REQUIREMENTS

Figure 4. Levels of Requirements
and Specif icat ions

Descriptions -- The terms "description" and "system description" will be used to mean

"the precise definition, in some language associated with an appropriate model, of how

the system component under- discussion actually behaves and is structured." The

component may be at any level, from the entire system to a single primitive, and it

may be function, behavior, structure, or performance which is being described.

A description identifies (in a declarative sense) the system components and their

interconnections. Additionally, a system description exhibits (in a procedural sense)

the dynamic behavior of the system components and their interactions. In the design

process, it becomes necessary to provide correctness arguments which establish the

fact that the described system actually behaves as required by the specifications.

Therefore, the description language should lend itself to the evaluation of a system

description against specifications formulated in the specification language.

2.3 SYSTEM ANALYSIS

In this subsection, the activities involved with the analysis of system designs are

discussed, and problems to be addressed by analysis techniques and strategies are

identif ied.

18

2.3.1 Analysis of System Designs

System design produces a definition of a system expressed in terms of abstract

components. This representation constitutes a blueprint for the realization of a

system in terms of real components. System requirements must be met in order for

the system to perform as desired. The system requirements can be met by the

realized system only if the system design, from which the realization is derived, meets
the same requirements.

Two levels of analysis can be identified:

o The analysis of a system desi n involves understanding and evaluating the

functional and operational behavior of a system design, and demonstrating that the

system design satisfies the system requirements.

o The analysis of a system realization involves observing the functional and

operational behavior of a system realization and demonstrating that the syste' .

satisfies the system requirements.

As far as system analysis is concerned, the CSDL effort is primarily concerned with

the definition of a formalism supporting performance analysis of system designs. The

CSDL approach to performance analysis is presented in Section 6.

To incorporate the analysis of system properties into a structured design process,

analysis needs to be carried out in each design step. Therefore, system properties

must be expressed at each level of design so that the original, global system

:' requirements can be related to the appropriate individual system components which
are derived during design. To show that a system design has the desired properties

requires a demonstration that each system component meets its requirements and that

together they satisfy the global system requirements.

For an analysis technique to be applicable, system requirements need to be derived and

expressed in terms of concepts of the model underlying the analysis. The selection of

such a model depends on the level of abstraction used in the associated design step,

the nature of the system property to be demonstrated, and the type of analysis to be

19

performed. Therefore, along with the refinement of the design, the requirements need

to be elaborated and their representation in the design model (see 2.1.2) needs to be

mapped into a model which is attuned to the intended analysis activity.

2.3.2 Analyzing Properties of System Designs

System properties are constrained by the requirements placed on the functional and

operational behavior of a system. Thus, the basic purpose of analysis is to

o Derive statements about the properties of system components

o Demonstrate that these properties satisfy the requirements for the system

components

o Combine properties of system components, and demonstrate that the combined

system properties satisfy higher level system requirements

The definition of the fundamental system behavior is based on the design model.

Nevertheless, alternate models need to be employed in order to carry out particular

analyses. Models other than the design model may be needed to obtain qualitative or

quantitative measures of system behavior. A parameterized set of designs may be

evaluated in this manner; parameter variation then allows alternative candidate

designs to be analyzed.

In each design step, a distinction between requirements and specifications can be made

(see Figure 4):

o Requirements of a system define the characteristics which any design of the

system must possess.

o Specifications of a particular 3ystem design define the characteristics which it in

particular possesses.

Clearly it must be demonstrable that a system's specifications assure that its

requirements are satisfied. Hence, during the design process the requirements are

20

used to aid in the construction of a system design whose specifications satisfy the

requirements; this is the principle of constructiveness. In particular, parameterized

component requirements can be used to describe a class of designs, with analysis used

to determine component parameter values such that the overall design meets the

system requirements. An important implication of this is that both requirement and

specification parameters must represent a particular system characteristic in the

same terms.

Analysis techniques may evaluate the consistency of system designs with given

requirements either statically or dynamically.

Static Analysis -- Static analysis techniques evaluate system properties by examining

the relationships among various system parameters. Consistency of parameters

between levels of system definition is determined without having to consider the

operational behavior of the system. Examples include analyses and inferences from

state transitions defined in terms of the definition language for performance,

reliability, security or program verification.

Figure 5 illustrates several kinds of static analyses that can be performed on the basis

of a system definition. Program, security, reliability, and performance verification of

a system definition can be obtained by direct analysis of all or part of a representation

of that system in terms of the definition language. Topological profile analyses also

directly operate on a system definition. They can be performed by appropriate

definition language interpreters rather than more sophiscated analysis techniques.

a Implementations of these techniques or interpreters accept definition language

representations as input and then derive characterizations of system properties.

Dynamic Analysis -- Dynamic analysis techniques evaluate system properties by

observing the operational behavior of a system. Separate analyses of the operational

behavior at several levels of system definition may provide information required for

the dynamic analysis of consistency between these levels. An example is the

representation of a system in the form of queueing networks or simulation programs

for performance analyses.

Figure 6 illustrates several kinds of dynamic analyses that can be performed on a

CSDL system definition. A representation on the basis of performance, reliability, or

21

-____ PROGRAM
VERIFICATION

PROFILE

Figure 5. Static Analysis

REPRESENTATION OPRAIOA

FORPRRPE

• IREREENATONSYSTEM DEFINITIOo bFO VERIFIAI T

, ' | ~~ RELIABILITY IAAYI

SIMULATION E SIMULATION

Figure 6. Dynamic Analysis

ST

simulation models is first derived by mapping relevant information contained in a

system definition in terms of the definition language onto the appropriate analysis

model. An analysis of the derived representation is performed, and the characteristics

of the corresponding system property is obtained.

2.4 SUMMARY

In conclusion, methodologies and languages for system design must address at least the

following issues concerning the analysis of system properties:

o The derivation and verification of system properties from system definitions

o The expression of system properties at all levels of design

o The mapping of definitions of system properties among levels of design

o The mapping of definitions of system properties among different models

o The application of analysis techniques associated with system representations

based on appropriate analysis models.

23

SECTION 3

CSDL CONCEPTUAL FOUNDATIONS

3.1 GENERAL APPROACH

In this subsection the general viewpoint of the design of CSDL and for the use of CSDL
in concurrent system definition is presented, and the basis for this viewpoint is

established.

3.1.1 Basis in a Model

A major portion of the development of CSDL is the definition of a precise
computational model for concurrent systems. There are several reasons for putting

this emphasis on the theoretical underpinnings of CSDL.

First, the semantics of the various language constructs can be defined in terms of the

model. As a result, any doubts about the meaning of some expression in CSDL may be

resolved by checking the semantic definition and reviewing the definition of the
model. In other words, the availability of a model makes unambiguous communication

possible.

,- Second, basing the semantics of CSDL on an explicit, predefined model makes it
possible to develop a single coherent view of concurrent systems. The essential

concepts of the model are (it is hoped) few in number, and all other notions are defined
in terms of them. The basic notions in the model become the terms in which a user of
CSDL will think when designing a system. Given an understanding of the model, CSDL
becomes an effective tool for expressing one's thoughts since the constructs of the

language correspond to the way one is thinking.

Third, the existence of a defined model aids the language development process by

encouraging careful consideration of meaning when introducing constructs. The
technique for language development used here is to define linguistic constructs which

correspond to basic notions in the model and to establish grammatical rules for

building up more complicated utterances from simpler ones. An additional possible

24

benefit of this technique is that the size of CSDL can be kept under control if the

model can be kept simple.

Finally, the existence of the model aids the language development process by providing

a compendium of assumptions made about concurrent systems. The model embodies an

attempt to define precisely the "essential" properties of concurrent systems while

ignoring the "irrelevant" ones. When attempts to use the language indicate that some

important property of a real system cannot be expressed, the model ii scrutinized to

determine whetlher it supports the required concepts. If it supports them adequately

then the language can be modified to make them more expressible. If it does so poorly

or not at all, extensions to the model can be made to handle the additional

information. This extension process makes it possible to enhance the utility of the

language without having to redefine it.

In summary, the definition of a precise computational model enables the orderly

development of a coherent, unambiguous language for defining concurrent systems.

3.1.2 System Architecture

One very common approach to describing concurrent systems is to consider

concurrency as another control construct, like iteration and selection; this will be

called the concurrent programming approach. A new block delimiter pair indicating

concurrent execution, such as "cobegin...coend", is introduced, and each program

which will run concurrently with another has a special declaration, like "process" or

"task". In addition, a mechanism for enforcing a form of synchronization is also

present. Mutually exclusive access to data may be enforced by means of monitors.

Mutually exclusive execution of procedures can be enforced via critical regions.
Delays may be enforced with semaphores or eventcounts. Finally, synchrony may be

achieved through rendezvous or blocking-send/blocking-receive protocols for

communication.

The approach used in developing CSDL, however, views concurrency as a relationship

among activities; this will be called the architectural approach. A concurrent system

is viewed as a structure made up of a number of components of several different sorts.

The manner in which these components are put together defines the architecture of

the system. The details of the architectural view of CSDL are presented in 3.2.

25

There are several reasons why the architectural approach is to be preferred to the

concurrent programming approach for our purposes. First, CSDL is intended to define

the structure and organization of information processing systems. As such, it will be

used to express the means by which various capabilities are supplied to a concurrent

programming environment. Thus, for example, Concurrent Pascal [BRIN73] provides

monitors simply by declaring them; CSDL would be used for describing how they are

built. Again, Ada [HONE8O] presupposes the rendezvous mechanism, but CSDL would

be used to define the way in which the rendezvous synchronization is to be provided,

along with the specification of the scheduling policies desired. Finally, Hoare's CSP

[HOAR78] presumes a blocking send and receive communication protocol; CSDL would

be used to describe how this would be implemented over, for example, a bus

communication system. The point here is that the intended uses of a concurrent

programming language and CSDL are somewhat complementary -- the programming

language is used to express how an application is built on some synchronization and

communication mechanisms; CSDL is used to describe how these mechanisms are built

from given resources.

Another reason for using the architectural approach is to allow flexibility in choosing

concurrency mechanisms for a particular problem. Each such mechanism is suited for

a certain class of problems but is poor for other problems. The architectural approach

makes it possible to select whichever mechanisms are best suited for a given problem

by allowing the designer to specify, and later build if necessary, the synchronization

and communication properties of any component.

The most important reason for using the architectural approach, however, is that

I CSDL is used to express a system definition during the design process. As such, it

, must allow the expression of a system definition which is not biased towards a

software, firmware, or hardware realization. This re-emphasizes the design issue. In

our opinion a program, be it in Ada or assembly language, constitutes the description

of an implementation. This description is incomplete without a definition of the

system implemented by the program. CSDL is the language for that definition.

26
JJ

3.2 DESCRIPTION AND SPECIFICATION OF ARCHITECTURE

The architecture of a system encompasses both the components that make up the

system and the way those components are connected. The declaration of these

components and their connections comprises a description of the system. Each

component of a system behaves in a certain way and contributes to the behavior of the

entire system. Hence, there is associated with the entire system and with each of its

components a specification of its behavior. The kinds of components and connections

that can make up a concurrent system are introduced and discussed in 3.2.1, and the

sorts of things that must be specified about them are discussed in 3.2.2.

3.2.1 Description of Architecture

In the view taken for CSDL, three kinds of components are recognized -- data,

programs, and modules. These components, together with their interrelationships,

constitute the information structure, the control structure, and the topological

structure of a system architecture (cf. 2.1.2).

Data - Data objects are repositories of information used by a system. Some objects

are permanent in the sense that they last as long as the system does, though their

contents may change over time; an example would be a data base. Other data objects

are transient, coming into existence for some temporary purpose of the system and

then vanishing. An example would be local variables allocated upon entry to a

procedure and de-allocated upon return. The distinction between permanent and

transient data has an important bearing on resource allocation and memory

management strategies.

, Another important characterization of data concerns an object's behavior from the

point of view of the module which contains it. This characterization determines the

scope of information required to understand the module's behavior.

A data object is said to be passive if its state changes only as a result of operations

performed on it by the module which contains it. Typically the variables of

conventional programming languages are understood to be passive. In fact, erroneous

behavior of a "working" or "correct" program is often due to presumably passive data

being altered by an unreliable run-time environment.

A data object is said to be active if it is not passive, that is, if its state can change
without the containing module performing an operation on it. The shared variables and

communication interfaces of some programming languages are examples of active
data. Also, memory-mapped 1/0 locations, program status words, and I/O ports are

hardware data objects which appear active to a particular module.

The importance of the distinction between active and passive data lies in the scope of

information required to understand the behavior of a module. If a module contains

only passive data then its behavior depends only on the initial state of its data and the

programs executed within it. If it contains active data then its behavior depends also
on the behavior of its environment, including any other modules which can cause

changes to its active data. It is clearly crucial that the active data of a module be
known explicitly; in general, if some active object is presumed passive, no under-

standing of the module's behavior is possible.

The information contained in a data object at some instant is referred to as its value.

There is generally a predefined set of things which can be done to a data object; that

is, there is certain information which may be extracted, and there are certain ways

the value may be changed. This is called the set of operations which may be

performed on the data object. The set of all possible values together with the set of

operations is called the object's data type.

An interface object is a collection of active data objects used to mediate communica-

tion among modules. The elements of an interface are divided among several modules,

and no one element may be found in two different modules. Certain of these elements

act as transmitters by having data put into them by the containing modules, and theU others act as receivers by having data extracted from them. The specification of an
interface type determines the connection topology of the transmitter and receiver

elements.

Program -- A program is a sequence of operations applied to members of a set of data

objects. A program is described using some algorithmic notation, for example a

sequential programming language. The effect of a program's execution is defined in
terms of the set of data objects referenced and the objects altered. In addition, a

program may have local data objects which exist only during a particular execution of

28

the program. A program may effect a particular change in value of some of the

permanent data, or compute some function of it; such a program must terminate on

valid inputs.

In concurrent systems there frequently are programs whose functionality is defined not

by a relation between an initi?! state and a terminal state, but rather by behavior

during the period of execution. Such behavior is typically defined by specifying how

the program changes state and sends data to its environment in response to receiving a

stimulus when in a certain state.

Modules -- A module defines a collection of data objects, and no data object is entirely

contained in two different modules. There are two forms of module, one made up of a

set of sequential programs manipulating the data, and one made up of smaller modules

connected by interface objects.

In the first form the programs form a hierarchy with one root. This hierarchy is the

program calling tree. The single root of the hierarchy is a sequential program called

the controller. The controller has the direct responsibility of ensuring that the module

accomplishes what is required of it. The objects consist of the permanent data for the

programs together with elements of interface objects, as described below.

In the second form of module the data objects are divided among several modules.

There exist interfaces connecting the modules over which information is transferred.

The modules, communicating with one another over interfaces, together ensure that

the containing module accomplishes its objectives. Notice that a single program, a set

of programs, and a concurrent system can each be thought of as making up a single
i~i...]module; the dif ferences between them show up in the structure of the module.

In summary, then, a concurrent system is viewed as a collection of modules

communicating with one another over interfaces. Each module is made up of a set of

data objects and programs which manipulate them in response to requests from other

modules or from the environment and which send values out to other modules or the

environment.

29

3.2.2 Behavior Specification

The essential properties of each data object are defined in its type specification. The

type specification defines the set of values the object may assume and what its initial

value may be. For each operation there is a specification of what value it returns, and

of how it changes the value of the object when applied. Active data types, in
particular interface types, will have additional behavioral specifications defining
dynamic behavior and information passing properties. Within a module specification

there may also be specification of relationships among its objects which must be

established or preserved by the programs of the module.

For each program in a module which establishes some final state of the permanent

data, or computes some function of it, there is a specification of its appropriate input

values and of how its final value is related to those input values.

In addition to these static specifications of procedure functionality, there may be

behavioral specifications for a module which define how it is supposed to react to

incoming information, how output information is related to incoming information and

to the values of its permanent data, and what priorities it must follow in determining

what to do. These intramodule behavior specifications must be satisfied by the

controller of the module.

Finally, properties of information flow in an interface object, dependencies in time of

modules among one another, and behavior of the system as a whole are defined as a

collection of intermodule behavior specifications for the system.

In conclusion, there are specifications associated with each kind of system component;

these include properties of data, functionality of programs, and dynamic behavior of

communicating modules.

3.3 DESCRIPTION AND SPECIFICATION IN CSDL

There are mechanisms in CSDL by which the description and specification of a system

and its components may be expressed. In this subsection these mechanisms are

30

introduced, and their association with the architectural terms defined in 3.2 is

presented. This subsection is an informal guide; the model for the architectural view

is presented in 4.1, and the constructs of CSDL, along with their definition in terms of

the model, are presented in 4.2. Table I shows the correspondence between the

system architecture notion of 3.2 and the CSDL mechanisms described here.

3.3.1 Description of Components

Data -- Data objects are described through name-type associations within a module.

Type definitions contain specifications of the set of possible values, the initial state,
and the available operations for the type. An abstract data type is defined by

associating a type name with a declaration of the type. This declaration expresses the

way an instance of the type is to be thought of as a conceptual object space. It is

important to bear in mind that this structure generally does not resemble the way in

which an instance of the type will actually be represented; the representation is

defined in a separate refining machine. This information structure, together with a

specification of a type invarient which restricts the structure in some way, implicitly

defines the set of values which instances of the type may take on. There may also be

a specification of the initial value which an instance will have upon its creation.

Each operation is declared as a name, possibly accompanied by a list of formal value

parameters; if the operation returns a value, then the type of the returned value is

also declared.

It is also possible for a type to be active; in this case the type definition will also

contain behavioral specifications of spontaneous state changes. For example, inlets

and outlets are active to the machine which contains them. The type definition of a

channel includes behavioral definitions of temporal relationships between state

changes at one end and corresponding changes at the other.

The permanent data of a module are declared outside the scope of any program, and

transient objects are declared in the scope of the programs to which they are local.

Interface objects are declared as object names associated with inlet or outlet types as

appropriate; inlet and outlet types are discussed below. Interface type declarations

and object descriptions appear in the module which contains the communicating

elements.

31

L A

Table 1. Architectural View and CSDL Correspondence

Architectural I CSD L

View Mechanisms

Modules Machines

Specification Specification - -
o Activities Temporal and functional
o Information flow among modules assertions
o Cooperation rules
o Ordering Description - -
o Initial state o Partitioned machine: partitioning of

data objects, channels
Description - - o Simple machine: permanent data,

o System, submodules, interconnections programs, controller
o Process, data objects, procedures,

controller

Programs Programs

Specification - - Specification - -
o Behavior over time effected by controller o Behavior: actions, temporal and
o Initial conditions functional assertions
o Final result of terminating sequential o Static: input constraints, input/output

programs relation

Description - - Description - -
Sequential programs Algorithmic design language based on

Dijkstra's guarded commands

Data Objects

Specification - - Specification - -
O Set of values o Types: abstract description of values

r o Operations initial state, type invariant, operations
o Relationships among objects with input constraint, input/output

relation
Description - - o Invariants: relationships among objects

Permanent data and local variable to be established or preserved by
declarations programs

Description - -
Declaration of binding of names to
objects

32

Programs -- Each program is declared as a program name, possibly accompanied by a

list of formal value parameters, with a program body. The body contains the

declaration of all local variables and the program text. The text is made up of

statements in an algorithmic design language based on Dijkstra's guarded commands

[DIJK76]. The design language has constructs for serial concatenation, repetition,

selection, and procedure call.

Machines -- The major unit of definition in CSDL is the machine [BOYD78a]. A

machine in CSDL defines a logical functional unit of a system; it corresponds to the

architectural notion of a module introduced in 3.2.1.

There are two possible structures for a machine, simple and partitioned. A simple

machine contains a hierarchy of programs rooted in a controller. A partitioned

machine is made up of several machines communicating over an interface object. Any

permanent data object will be found in exactly one of the partition machines.

Channels -- A standard interface type is the channel, used to link two modules

together. A channel has two "ends!' -- an object of type inlet and an object of type

outlet; these are similar to the windows of the HXDP executive [BOEB7S]. The outlet

lies in the space of the sending machine, and the inlet lies in the space of the receiving

machine. The data type of the information which goes across the link is specified

along with the declaration of the channel object.

Two operations may be applied to the outlet end of a channel: put a value of the type

associated with the channel, and check to see if the last value sent has gone. The

reason for the chezk is that the put operation does not block, so that there may be a

i delay between the time a new value is posted and the time it is transmitted. If
multiple puts are performed during the delay time, the last value posted by the time

the delay period has elapsed is the one transmitted.

Also, two operations may be applied to the inlet end of a channel: &et a value of the

channel type, and check to see if another value came. There is no buffering, so later

arrivals may overwrite earlier ones. If multiple gets are performed before the next

arrival of a new value, the value gotten is the last one to have arrived.

33

* -.-- I

3.3.2 Behavior Specification

Static Specifications -- Static specifications include initial states, function

specifications, and invarients as described in the following paragi lphs.

Initial States The initial state of the objects of a machine or of a data type's

conceptual object space is specified by an assertion which defines the desired

relationship among the objects. The intended interpretation is that, when the machine

or type instance comes into existence, its objects are guaranteed to satisfy the

assertion.

Function Specifications -- In order to discuss the specification of programs and

type operations, the term objects will be used to refer to either a program's permanent

data or a type's conceptual object space, and function will refer to either a program or

a type operation. The conditions which must be satisfied for a function to be properly

invoked are specified by an assertion which defines the required relationship among

the objects and the function's parameters. The effects of a function are specified by

an assertion which defines the desired relationship between the state of the objects

when the function terminates and the state of the objects and parameters when the

function is invoked. If the function returns a value then the assertion also defines the

desired relationship between the returned value and the state of the objects and

parameters when the function is invoked. Thus, the specification of a function defines

a relationship between input and output states together with the constraints on the

input. The intended interpretation is that invocation of the function when the objects

and parameters satisfy the input constraint is guaranteed to terminate with the

objects in a state correctly related to the input state.

Invariants -- An important kind of static specification which relates data to

computations is the invariant. An invariant is a relation among data objects which,

from a point of view external to some scope of control, is preserved by that scope. A

type invariant is a property of a type's conceptual object space established when an

instance of the type is created. Furthermore, each type operation must have the

property that, if an instance satisfies the invariant and the operation is invoked so that

its input constraint is satisfied, the instance will satisfy the invariant when the

operation terminates.

34

Similarly, a loop invariant is an assertion about the data of a program which is

established before entering a repetitive construct and for which it can be shown that if

the assertion is satisfied by the data prior to execution of the body of the construct

then execution of the body will leave the data in a state which satisfies the assertion.

Finally, a data invariant is an assertion about the permanent data of a machine which

is established by an initialization procedure when the machine comes into existence

and which if it is satisfied when the program is invoked, every terminating program of

the machine will ensure is satisfied upon termination. Notice that a data invariant of

a machine may very well constitute a loop invariant of that machine's controller

(indeed, the controller may have been designed with this in mind) and that the data

invariant of a machine which refines an abstract data type is a translated form of the

type invariant of the type which it refines.

Behavior Specifications -- The behavior of a machine or active data object over time

is specified by restricting the set of all possible behaviors to those which satisfy

prescribed constraints. The basic behavioral concept is that of the event, which is

defined to be the change in value of some data objects. Behavior is specified by

prescribing events which must occur as the result of other events, by restricting

events to occur in certain orders, and by defining properties which are satisfied by

data objects when certain events occur.

An event is specified by an assertion which defines a constraint on the initial state and

the desired relation between the final state and the initial state. This form is similar

to that of program and operation specifications, and for this reason event definitions

are called actions.

3.4 ORGANIZATION OF CSDL SYSTEM DEFINITION

In this subsection the two basic principles which govern the organization of CSDL

documents are presented. Figures 7 and 8 show how the structure of simple and

partitioned machine definitions follow these principles. The two organizational

principles are that:

35

Partitioned Machine

Specification - - Initial state, activities, ordering constraints

Description - -

Objects

Specification - -

o Types: values, operations

o Invariants

Description - - Declarations

Interfaces

Specification - - Information flow paths, cooperation rules

Desiption - - Channels

Partitions

Specification - - Initial state, activities, ordering constraints

I Description - - Subsets of objects, inlets and outlets

Figure 7. Partitioned Machine Structure

36
I-

Simple Machine

Specification - - Initial state, activities, ordering constraints

Description - -

Objects

Specification - -

o Types: values, operations

o Invariants

Description - - Declarations

Controller

[f ification - - Machine behavior specification

[e ription - - Algorithm design language

Programs

specification - - Input constraints, input-output relation

[i J ription - - Algorithm design language

Figure 8. Simple Machine Structure

37

(1) Both the specification and the description of each defined component must be

expressed.

(2) The definition of a system is presented hierarchically.

3.4.1 Specification and Description

The specification and description of each defined component of a system are presented

in CSDL as two distinct statements or linguistic fragments. The reasons for this

redundancy may be found in the role CSDL plays in the system development process.

CSDL is supposed to be a common language by which humans may communicate

concerning the design of an information processing system. From this perspective a

component specification without a description identifies a design task yet to be

accomplished; the only exception is that a component provided by the environment or

otherwise already in existence would not have to be designed again. The specification

for such a "primitive" component would still have to be given, both to identify the

component needed and to enable analysis, validation, and realization of the design.

Similarly, a component description without a corresponding specification amounts to a

problem solution without a statement of the problem. If there is no available

specification of the component, then how is its place in the whole system to be

explained? And if the behavior of the component which contains it depends on the

subcomponent's behavior, how can one show that the containing component has been

*designed properly if the subcomponent's specification is not available? While it may

be possible in principle to verify the design by using the subcomponent's description,

the amount of design detail present in such a description generally makes such

validation infeasible.

The specification of a CSDL machine expresses the initial state, activities, and

ordering constraints among those activities. If the machine is simple then its

description is made up of the definition of its objects, its controller, and its

procedures. If the machine is partitioned then its description is made up of the

definition of its objects, logical paths of information flow, the interface bet~veen

partitions, actual paths of information flow through the interface, and its partitions.

Schemas for machine definitions are shown in Figures 7 and 8.

38

3.4.2 Hierarchical Presentation of System Definition

The number of data objects, interfaces, programs, and machines of any real system is

so large that it is impossible to grasp them and their interrelationships as one unit of

information. Hence, a CSDL definition of a system is organized so that this

information is presented in smaller, more manageable pieces. Each piece is a

component, so its specification and description both appear.

The basic structural scheme of CSDL is the hierarchy, in which a component is defined

in terms of subcomponents which are in turn defined until certain "primitive"

components are specified but not further described. CSDL definitions are based on

three hierarchical schemes corresponding to the three different component types:

machine, program, and data.

Machine Hierarchy -- A partitioned machine is the root of a hierarchy of machines,

the intermediate members of which are themselves partitioned machines and the

terminal members of which are simple machines; such a hierarchy may sometimes be

informally referred to as a system for purposes of discussion. The partitions of a

machine are called components.

The definition of an intermediate member of such a system contains definitions of its

objects, how the objects are divided up into partitions, and the interfaces which

connect the partitions. Each named partition is associated with a machine name; the

decision whether to make a component simple or partitioned is deferred until its

machine is defined. Thus, a number of similar components may be declared which

differ only in the objects which they contain; these components are defined by one

machine. This separation allows the use of a component in a containing machine to be

considered independently of how it is itself defined. The definition of a terminal
machine of a hierarchy contains definitions of its objects, the procedures, and the

controller program. In Figure 9 the machine hierarchy is represented by nested boxes.

The outermost box, representing the top level machine, MO, has data objects al, a2,

bi, b2, cl, dl, d2, and e. They have been partitioned into two machines, M11

containing al, a2, bi, b2, cl, and M12 containing dl, d2, and e. Mll and M12 are

connected by channelsclitrom M12 toMl landcl2from Mll toM12. M l is in turn

partitioned into three simple machines Mill, M112, and MI3, with channels clII

39

MO

Mil

Mll M112 M12

ach a2i Wihi b2In drs om i2 r

C11

c 12t out i ete c12.in b o c11 n t, _ c,,l 2 _ c,,, in,, .

inc13sn iml m13 achinen s.2

Poeraionsarh implemetedn ar eimlted hineentallyure byr a perfimen
*heacy Eahastracttnunpimiise)datatyp specinfadretdayl rp ied in ardr maine fo kted

* oto uhahierarchy. ahn is defie ypoeurld moiined whosgue objtesim mau hes

repesetin data1 strutre and w a hosae programs ctinrhie implentte in so theueb

Cl 00Figur 9. Macin simpl ProramHinescie

TPora Hierarchy -- th eiin asl mahine dthe tproedres frepeene a n rrhia

storctiosure iympeakingaieted a liated sincemenal prceur a y e-einvoked

~hierarchy. is deivdbtac (proedura dmption InFir9te simpfilen machine rsh

M I root oM 11,M13au2ech haeprga hierarch. A mchinei ei e hs indictd mikn the fiueb

repeseting ahdasthe strgtue ronodoe crprons ot the ontrleettoro theie

Notealsotha theinlt an oulet nds olc nesbcoepr nntdaojcs
in sipemahns

type operations. Since the objects of the refining machine may themselves be of some

abstract types, a hierarchy is formed in which the immediate successors of a node are

the machines containing the first refinement step of each abstract data type used in

it.

This refinement hierarchy is based on the data types; conceptually, there is a copy of

the hierarchy for each object of the refined type. However, since these copies are

identical, there, is only one machine document in the system definition hierarchy. In

Figure 10(a) machine MO has a data type "widget" with two objects, "x" and "y", of

type widget. Machines MI and M2 are copies of machine M_widget shown in Figure

10(b); there is a copy for each object. The plane containing machine MO in the figure

is intended to indicate one level of abstraction of data; M I and M2 are at a lower

level. At the level of abstraction of MO the representation and implementation

information defined in MI and M2 are invisible. In Figure 10(b) machine Mwidget

contains the representation and implementation information for the type "widget".

The representing data structure is made up of the objects "a" of type "Ta" and "b" of

type "Tb". M 11, a copy of the refining machine for type "Ta", is associated with

object "a", and M21, a copy of the refining machine for type "Tb", is associated with

object "b". Finally, we see programs 01 and 02 defined on M widget which implement

the operations 01 and 02 declared with the type widget in machine MO.

MCI M-WIDGET

REFINES WIDGET

- I

Tn 0 2 " TbP

Fiur 10. Tp H
OBJET I MlX. ,. y:, WIDGET PO RM

' \ \ 02

20

S(a) (b)

Figure 10. Type Hierarchy

41

L il@

Concurrency and Levels of Abstraction -- It is important to keep in mind that any

machine may be partitioned to introduce concurrency. For example, in Figure 10 the

refining machine Mwidget could have been defined as a partitioned machine. The

result is that, at the levels of abstraction at which widget objects are used, only

sequential state transitions of the objects are visible; there is no visible concurrency.

At the lower level of refinement, however, concurrency shows up as a conscious design

decision. This technique can be used for communication refinement in which channel

types are refined into processes communicating with a lower-level protocol in order to

effect the transmissions used at the upper level.

42

SECTION 4

CDSL DEFINITION

4.1 CSDL COMPUTATIONAL MODEL

In this subsection a computational model of concurrent systems is developed. This

model is based on mathematical set theory, and while simple in content, it provides a

unified view of data, conventional sequential programs, and concurrent systems. The

model is similar to the relational models of DeBakker [DEBA75] for sequential

programs, and Bochmann [BOCH791 for distributed systems. It is also compatible with

the abstract model approach to data abstraction [LISK771, which is the approach taken

in CSDL.

Subsection 4.1.1 introduces the model for sequential computations, 4.1.2 extends this

to concurrent systems, and 4.1.3 is concerned with flow of information in a concurrent

system.

4.1.1 Sequential Programs

A variable or data object x is an entity with a name, "x" in this case, which can take

on any value V(x) of a certain defined set and upon which any of a defined group of

operations may be performed. The set of values together with the group of operations

is called the data type of x. The state of x is its value V(x). Given a set X of n objects

x1, ..., Xn, where each x, is of type Ti, the (current) state q of X is the vector of values

of the objects; that is

q(X) <V(x 1), ...,V(Xn)>

The state space S(X) is the set of all possible such vectors.

A single terminating sequential program B defined over a set of objects X effects a

state transition on X in that it is invoked with the objects in some state q(X) and

terminates with the objects in a state q'(X). Such a program may be modeled as a

binary relation M on S(X); M is a collection of ordered pairs of states. The

43

interpretation of this relation is that the pair <q(X),q'(X)> is an element of M just when

(1) B is guaranteed to halt when invoked from state q(X), and (2) q'(X) is one of the

states in which B can halt when invoked from q(X). From this interpretation it follows

that the domain of M (i.e., the set of states which are first components of pairs in M)

is exactly the set of initial states from which termination of B is guaranteed. B is said

to be deterministic if and only if M is a function, that is, when for each q(X) in the

domain of M there is exactly one q'(X) such that the pair <q(X),q'(X)> is an element of

M.

A particular execution of the program B over X defines a state sequence s(X,B):

s(X,B) = q0 (X), ... , qn(X),

where q0(X) is the state at invocation of B. If q0 (X) is an element of the domain of M

then s(X,B) is finite, and if qn(X) is the last state in s(X,B) then <q 0 (X),qn(X)> is an

element of M. Also, for any q(X) not in the domain of M there exists an infinite

sequence whose first state is q(X).

Given the state sequence s(X,B) there is an associated state transition sequence

h(X,B):

h(X,B) = t I(X) , ... ' t n(X) , ..

-I where the transition ti(X) is the ordered pair of states <qi_1 (X),qi(X)>; these

transitions are referred to as events. Each event (i.e., state transition) sequence is

called a history of the program; the set H(X,B) of all such sequences is the set of

possible histories of program B.

4.1.2 Concurrent Programs

The notion of history is introduced in order to describe the effects of several programs

in simultaneous execution. A concurrent system is modeled as a collection of m sets

of objects X1, ... , Xm, with a program B. defined over each X i. We impose the further

restriction that the X Is are pairwise disjoint; that is, if iWj then the intersection of X

~44

and X. is empty. This is an important part of the model which bears repeating: no

object x is a member of two different sets of objects; there is no shared data.

A collection {h,, ... , hm} of histories, where hi is an element of H(Xi,B), is a system

history; the set H of all such collections compri3es the set of possible system histories.

Up to this point there is no notion of interaction among the programs of a concurrent

system. There is no postulated external or global "clock" history against which to

compare progress among different program histories nor is there any concept of

interleaving of the various program histories to make a single event sequence for the

system history. Even if all the programs terminate, we can say nothing about the time

when they stop; we can only talk about the state of affairs of each program upon its

termination.

4.1.3 Information Flow

Every interaction between concurrent prograns, be it constructive or destructive,

involves the transfer of information from one program to another. Programs may

cooperate by exchanging information to help one another progress. One program may

interfere with another by putting erroneous information, often without the

"knowledge" of the victim, into one of its variables.

The transfer of information from program A over object set X to program B over

object set Y is modeled by an ordered pair flk(A,B) = <pl(X)qk(Y)> of states, where

P1(X) is the l-th state in the history of A and qk(Y) is the k-th state in the history of B;

such pairs are called communication events. The fact that information is transferred

.1 is expressed by the property that for some objects x of X and y of Y, V(x) = V(y).

For any system history involving A and B there is a set F of communication events

F(A,B) = {f1 1 (AB), "." fl k(AB), ... }

p p

for I < 12 < ... , and k < k2 <... . The objects x and y participating in the

communication are called interface objects.

45

There are four events associated with a communication event, two with the source

interface object and two with the sink. Let fjk(A,B) - cpj,qk> be a communication

event with source interface object x in X and sink interface object y in Y respectively.

We define the events puts, leaves, arrives, and gets on f as

puts(f) = <V(x)j_'V(x)I>

leaves(f) <V(x).,V(x) >

arrives(f) = <V(Y)kI'V(Y)k>

gets(f) = <V(Y)k,V(Y)k+l>

Intuitively, the puts event corresponds to loading a mailbox with a message to be sent,

and the leaves event corresponds to extraction of the message by the communications

medium. Similarly, the arrives event may be thought of as the arrival of a message in

a mailbox, and the gets event as its extraction by the recipient.

The histories of each program, together with the events associated with

communication, may be used to define a system-wide strict partial order relation

precedes. The precedes relation models the notion of order in time. This order

relation is defined recursively as follows:

1. Within a history of program B over X, the transition

t tj(X) <qj_(X),qj(X)> precedes the transition

tk(x) = <qk_(X),qk(X)> if and only if j < k.

. 2. If f lk(A,B) = <p1(A),qk(B)9 is a communication event

between programs A ard B then leaves(flk(A,B)) precedes

arrives(f lk(A,B)).

3. If t (Xi), t2 (X2), t3 (X3) are transitions

anywhere in the system such that tI(X1) precedes

t2 (X2) and t2 (X 2) precedes t 3(X 3), then

tI(XI) precedes t 3 (X 3).

The precedes relation is partial rather than total since there may be transitions t (X1)

and t 2 (X2) such th_ neither tI(X) precedes t 2 (X2) nor t2 (X2) precedes tI(XI). For

46

example, suppose A sends data to B, does some other processing, and then receives a

reply from B. The events preceding A's puts event also precede B's gets event and

subsequent processing. Likewise, the events preceding B's puts event for the reply

precede A's activities after getting it. However, nothing can be said about the time

relation of B's activities between receiving the data and sending the reply, with

respect to A's activities between sending the data and receiving the reply.

4.2 CSDL NOTATION

Given a model for concurrent systems, it is now possible to introduce the CSDL
notation and define the meanings of the various constructs. This definition is

necessarily informal; while a formal definition, using denotational techniques for

example, is possible, it is beyond the scope of this effort. Subsection 4.2.1 explains

the description language, and 4.2.2 introduces the specification language fragments

used here for purposes of example.

4.2.1 Component Description

Each sort of system component either manipulates or is made up of data objects;
hence, the language used for describing the components of a system involves data
objects and data values. The syntax for value expressions is first introduced, and then

the syntax for describing the various sorts of system components is defined.

4.2.1.1 Value Expressions -- A value may be obtained by referring to some data object

or by invoking a program or type operation which returns a value. For example, if "x"

is an integer and "coin" is a message array then the form

* com(x)

is used to refer to the value at index position x of com; in addition, "x" itself denotes a

value. Again, if "sqrt" is a function program which returns the positive square root of

a non-negative argument value passed to it, then the form

sqrt(3.5)

47

denotes the value which is the positive square root of the value "3.5".

For numeric (real and integer) and boolean values there is a conventional syntax for

forming expressions with infix and prefix operators.

Numeric constants may be written as literals denoting integer or decimal fraction

values. An integer constant is written as a string of the digits "0" - "9". A fixed point

fraction is written as two-digit strings separated by a single decimal point; at least

one of the two strings must be made up of at least one digit. A floating-point fraction

is written as an integer or fixed point constant immediately followed by the letter "E"

and an integer constant. The form "xEy" evaluates to x * joy. For example

3

4.5

3.0E10

are respectively integer, fixed point fractional and floating point fractional constants.

Numeric value expressions may be formed with the infix operators "+", -", 11*11, "/"1,

div, and "mod", the prefix operators "+" and "-", and grouping operators "(" and ")".

The unary prefix operators "+" and "-" have highest precedence, followed next by the

binary operators 1"* "/", "div"l and "mod", while the binary "+" and " " are lowest.

Sequences c, equal precedence operators associate to the right. The "mod" operator

requires two integer arguments; the form "x mod y" denotes the remainder after

dividing "x" by "y". The "div" operator also requires two integer arguments; the form
"x div y" denotes the integer quotient of its arguments, which may be either real or

integer. Mixed type arguments are allowed for the remaining binary operators; in such

cases the values are viewed to be "real". It is important to keep in mind that the

numeric types "integer" and "real" correspond to the mathematical integers and reals;

they are not finite approximations or machine representations. Thus, every integer

value is also a real value. It also follows that the real result of an operation may turn

out to be an integer; the use of that result as an integer is then legitimate. Hence the

form "4.0 div 2" evaluates to the integer (and hence also real) value 2. For example

166/577.2

48

'(x*(3+x*(5))+ I)
(i+) div 2

are valid numeric value expressions.

Boolean constants are "true" and "false". Boolean expressions may be formed with the

infix operators "and" (also "&"), "or", and "xor", the prefix operator "not" (also ",-"1),

and the grouping operators "(" and ")". The unary refix operator not has higher

precedence than the binary operators. Sequences of infix operators associate to the

right. The operators all have the standard truth-table definitions. For example, in

(i) x or y

(ii) a & b xor c

form (i) evaluates to true if at least one of "x" and "y" evaluate to true, and to false

otherwise, while form (ii) evaluates to true if both "a" and exactly one of "b" and "c"

evaluate to true, and to false otherwise.

Finally, each relational infix operator "=""', ",">", "<", "", and "<" takes two numeric

expressions as arguments; the resulting expression evaluates to true or false according

to whether the left side value is so related to the right side value. The relational

operators are not defined for other than numeric value operands.

, 4.2.1.2 Data -- The syrtax of an object declaration is

ObjectName: TypeExpression

and the meaning is that an object of the type specified by TypeExpression is created,

and it is to be accessed by using ObjectName.

Data declared as machine objects come into existence when the containing machine

does, and cease to exist when that machine does.

Machine objects are known by name by all programs defined in that machine but by no

programs in any other machine.

49

Data declared as variables within a program are local to that program in the sense

that their names are not known to any other program. A program variable comes into

existence when the containing program is invoked and ceases to exist when that

program terminates.

TypeExpression may denote one of the standard or structured types, or it may be a

reference to a declared abstract data type. In the latter case each type parameter

must be instantiated to a constant or expression in terms of constants.

Standard Types -- The boolean, mathematical integer, and mathematical real

data types are types considered standard in CSDL. Another standard type is the

character type "char". The "char" type need not correspond to any particular standard

character set, nor is there any implied machine representation or collating sequence.

The last standard type is the enumeration of a set of literals. For example, the

declaration

workday: (Mon 0 Tue 0 Wed 0 Thu 0 Fri)

describes the object "workday" as able to take on any of the symbolic values "Mon",

"Fri". These values are not names of other types, objects, or values, nor are they

character strings; they name themselves.

Structured Types -- The structured data types of CSDL allow the creation of

object structures out of instances of other types. There are six such structures, three

for communication and three of general application.

(a) Cartesian product structures define fixed size sets of objects of arbitary types;

they correspond to PL/ I structures or Pascal records. The declaration

v: (f1: TI, f2: T2)

defines v to be a set of two objects, namely fI of type TI and f2 of type "T2".

Component objects of a cartesian product are accessed by the qualified name, or "dot"

notation. In our example "v.f I" denotes the object named f I in v.

50

(b) Array structures define variable length sequences of objects of some single type.

The sequences are indexed by a chain of integer values with no gaps. The

declaration

(iii) v: T array

defines v to be a sequence of objects all of type T. Given the array 'v" declared in

(iii), the following attributes are defined:

"v.lob" denotes the smallest index value.
"v.hib" denotes the largest index value.
"v.dom" denotes the length of the sequence; since there are no gaps in the chain

of indices, it is always true that 0 < v.dom = v.hib-v.iob+ 1.
"v.low" denotes the object with the smallest index.
"v.high" denotes the object with the largest index.
"v(i)" denotes the object with index equal to i if v.lob<i<v.hib; otherwise it is
undefined.

Along with these attributes there are a number of operations which may be performed

on an array. Given the array "v":

l"v.lorem" removes the entry at v.lob and increases v.lob by 1.
"v.hirem" removes the entry at v.hib and decreases "v.hib by I.
"v.hiext(a)", where a is of type T, adds an object with value a to the high end of v

and increases v.hib by 1.
l"v.loext(a)", where a is of type T, adds an object with value a to the low end of v

and decreases v.lob by 1.
"v.swap(i,j)"Y, where v.lob < i,j < v.hib, interchanges the values in v(i) and v(j); if
the condition is not satisfied the operation aborts (see 4.2.1.3 for a definition of

abort).

The form "(k,al,a2, ... , an)", where k is an integer and at, ..., an are values of type T,

denotes an array constant value. The value "k" is the low index, and the ai's are the

elements in order ot the sequence; that is, the entry at k is al, th entry at k+l is a2,

etc., until index k+n-l, whose entry is an.

51

(c) Discriminated union structures define objects which may take on values of

several different types. The declaration

v: (t: TI 0 t2: T2)

where TI and T2 are different types, defines "vI to be and object which may be either

of type TI or T2. The identifiers "tI" and t2" are values of the attribute "v.tag". The

tag may be examined to discern what type v currently is; it can only be changed by

assigning a value of one of the types to v.

(d) Inlet structures define objects to which data arrive from other machines in the

system. The declaration

v: T inlet

defines v to be a cartesian product of a boolean flag v.f lag and a window variable

v.window of type T. The function "v.came" returns the value of the flag, and the

operation "v.get" returns the value in the window and sets the flag to false; this is the

only value-changing operation available. An inlet is an active object, since a datum

arriving from outside its containing machine will set the window to the arriving value

and set the flag to true. Only the first get performed after the arrival of a datum will

result in a new value being obtained; all gets subsequent to and prior to the next

arrival will return the same value as the first one. The two operations and the action

of data arrival are indivisible, so data arrival cannot overlap with the invocation of an

operation; this constitutes the only guaranteed synchrony constraint. The initial value

of the flag on an inlet at the time of its creation is "false". Setting the flag to false

by the "v.get" operation corresponds to the communication event "gets(f)", and the

setting of the flag to true when a new datum arrives corresponds to the

communication event "arrives(f)".

(e) Outlet structures define objects from which data depart to other machines in the

system. The declaration

v. T outlet

defines v to be a cartesian product of a boolean flag v.flag and a window variable

v.window of type T. The function "v.went" returns the value of the flag, and the
52

operation "v.put(x)", where x is a value of type T, sets the window to the value of x

and sets the flag to false; this is the only value-changing operation available. An

outlet is an active object, since at some time after invoking "put" the flag will

spontaneously change to true. Data put before this change are lost; only the last value

put before the subsequent change to true will be communicated. The two operations

and the flag change are indivisible, so the flag change cannot overlap the invocation of

an operation; this constitutes the only guaranteed synchrony constraint. The initial

value of the flag of an outlet at the time of its creation is "true". Setting the flag to

false by the "v.put" operation corresponds to the communication event "puts(f)", and

the setting of the flag to true corresponds to the "leaves(f)" communication event.

(f) Channel structures define inlet-outlet pairs. The declaration

v: T channel

defines v to be a cartesian product made up of a T inlet v.in and a T outlet v.out. The

inlet field is in the object space of one machine and the outlet field is in the object

space of another; the channel is a medium of communication between these two

machines. Every value which "leaves" v.out is guaranteed to later "arrive" at v.in, and

values arrive in the same order in which they were sent.

Abstract Types -- An abstract data type definition has the form

TypeName(Params): (f 1:T1, ... , f n:Tn)

let tn: TypeName

init Assertion

invariant Assertion

OpDefs

end TypeName;

The parenthesized list of name:type pairs forms a conceptual, abstract object space.

The name "tn" introduced after let is a name for a generic instance of the type; it is

used as a handle to hang specifications upon. The assertion following init specifies the

allowable initial values of any instance of the type; the presumption is that any

instance of the type will satisfy the assertion when it is created. The assertion

53

following invariant specifies a property which is satisfied when the instance is created

and which is preserved by any valid application of any operation of the type. That is,

it must be demonstrable for each type operation that, if the parameters and the

instance's state satisfy the input constraint of the operation and if the instance

satisfies the type invariant, then the operation will terminate so that the instance

state (and return value if any) satisfies the specification of the operation, and the

instance also satisfies the type invariant.

Params is an optional list of pairs of either the form Value:TypeExpression or the form

Name:typename. The first form specifies a formal value which is instantiated when an
instance is declared. The parameter may appear anywhere that a value may appear,

for example, in an assertion. The second form specifies a formal name which

instantiates to a known type name when an instance of the type is declared. Formal

typename parameters may occur anywhere in the type definition where a type

designator is required, for example, in the conceptual object space declarations and in

the parameter lists or return clauses of operation declarations.

There are two sorts of OpDefs, operations which alter an instance and functions which

return a value without altering an instance.

The OpDef for an operation looks like

of un OpName(Params) returns Value:TypeExpression

pre Assertion

post Assertion

". iParams is an optional list of Value:TypeExpression pairs which declare any formal

parameters to the operation; they all are values, so no object can be altered by using

its name in the actual parameter list of a type operation invocation. The returns

clause is optional; it declares the type of a returned value if it is desired for the

operation to return a value in addition to altering the instance to which it is applied.

The assertion following pre is a precondition which specifies constraints .on the

parameters and the instance; correct operation is presumed if the precondition is

satisfied. The assertion following post is a postcondition which specifies the

relationship between the state of the instance at termination and the parameters and

54

state of the instance at invocation. If there is a return value then the relationship

between it and the parameters and state of the instance at invocation is also specified.

The OpDef for a function looks like

vfun OpName(Params) returns Value:TypeName

pre Assertion

post Assertion

The returns clause is required, and the parameters are again Value:TypeExpression

pairs. The postcondition specifies the relationship between the returned value and the

parameter values and instance state at invocation. It is a semantic error for the

postcondition to specify an alteration of the instance state; the function is pure. This

restriction may be checked syntactically, as discussed in 4.2.2.

4.2.1.3 Programs -- Programs are described using an algorithmic language based on

the guarded command set of E. W. Dijkstra. In this language a program may be

either a basic statement or a collection of smaller programs combined by certain

constructs.

In 4.1.1 a program was said to be modeled by a certain binary relation over an object

4 space. The semantics of the various algorithmic constructs are defined by a semantic

function called the weakest precondition predicate transformer. This function may be

viewed as taking a program construct and a set of desired output states as arguments

and evaluating to the largest set of input states from which termination of the

program in one of the given output states is guaranteed. Thus, the value calculated is

a subset of the domain of the relation corresponding to the program. Specifically, if B

is a program with associated relation M defined over an object space X, and R is a

subset of X, then wp(M,R) is a subset of the domain of M with the property that, for

any pair <q(X),q'(X)> of M, if q(X) is in wp(M,R), then q'(X) is in R.

Basic statements are made up of the type operation invocation, the procedure

invocation, the assignment statement, and the skip statement.

The form of a type operation is

55

ObjectName.OperationName (Parameters);

if there are no parameters the parentheses are omitted. The parameters are

references to values listed in the same order as the formal parameters in the type

operation's specification. The only object which may be affected by OperationName is

the one named "ObjectName".

The form of a procedure invocation is

ProcedureName (Parameters);

if there are no parameters the parentheses are omitted. The parameters may be

references to values or objects as specified in the procedure's specification, and they

are listed in the same order as in the specification. Whereas a type operation may

only reference or access its parameters and associated object, a procedure may

reference or access any object in its containing machine as a global variable in

addition to objects and values in its actual parameter list. It is required that the set

of global variables referenced be disjoint from the set of objects in its actual

parameter list in any invocation. Since there is no notion of procedure nesting, there

is no possibility of referencing some procedure's local variables as a global name in

another procedure.

The specification of either a type operation or a procedure is made up of an input

constraint I and an input/output relation R. The input constraint defines the set of

legal input values, and the input/output relation defines a set of ordered pairs <q,q> of

states such that q' bears the desired relationship to q; it is required that I characterize

a subset of the domain of R. In terms of the model, the relation M corresponding to a

procedure or type operation specified in this way is formed by taking all pairs

characterized by R whose first element satisfies I. More precisely, if procedure or

type operation Q is specified by input constraint I and input/output relation R, then

the relation M corresponding to Q is the set of pairs <q,q'> of states such that both

<qq'> satisfies R and q satisfies I. Given M, the weakest precondition may now be

defined naturally as the set of all states q such that both q satisfies the input

constraint I, and any pair <q,p> which satisfies R also satisfies S.

56

The assignment statement, written

(iv) ObjectName:= Value

expresses the setting of the value in the object ObjectName to equal Value; clearly

this is only defined if the types match. The weakest precondition by which statement

(iv) will terminate in a state satisfying R is that Value satisfies R.

The skip statement is the no-operation command; the weakest precondition for it to

terminate in a state satisfying R is that the initial state already satisfies R.

Constructs for combining programs to make larger programs are concatenation,

selection, and repetition.

In the concatenation of two statements St and S2, written

(v) Sl;S2

";" is an infix combining operator which denotes the execution of SI followed by the

execution of S2. The weakest precondition by which statement (v) will terminate in a
state in a set R is equal to the weakest precondition by which S1 will terminate in an

intermediate state which is itself an element of the weakest precondition by which S2
will terminate in R.

The selection of one of several programs based on some condition is expressed by the

guarded if construct. If BI, ... , Bn are boolean expressions and SI, ..., Sn are

programs, then the statement

(vi) if BI -> S D,.., Bn-> Sn fi

denotes the execution of one of the programs, say Sj, whose associated guard Bj

evaluates to true. If more than one guard is true then any one could be selected, while

if none are true then the construct does not terminate; this situation is referred to as

abort. The weakest precondition by which (vi) will terminate in one of a set of states

R is the set of states q such that (a) some guard Bj applied to q evaluates to true, and

57

(b) for each k such that Bk applied to q evaluates to true, q is in the weakest

precondition by which Sk will terminate in R.

The repetitive selection of one of a set of programs based on some condition is

expressed by the guarded do construct. If Bi, ... , Bn are boolean expressions and SI,

..., Sn are programs, then the statement

(vii) doBl->Sl O...flBn->Snod

denotes the repeated execution of (vi) until all guards evaluate to false, at which point

the statement terminates. The corresponding semantic function is a rather

complicated construction made up of an infinite union of relations; a simpler

precondition which is not the weakest is available by application of the invariance

theorem. We use "DO" to denote (vii), "IF" to denote DO with do and od replaced by if

and f i respectively, and "BB" to denote the set of states q such that some quard Bi, 1 <

i < n, evaluates to true. If P is a set of states and TF an integer function of the state

space which together satisfy the conditions

o Any state q which is in both P and BB is also an element of wp(IF,P)

o Any state q which is in both P and BB also has the property that TF(q) > 0

o Any state q which is in both P and BB, and for which TF(q)=c, is also an

element of wp(IF,DEC(c)), where DEC(c) is the set of states r such that TF(r) < c

then P is a subset of wp(DO,TERM), where TERM is the set of state q such that q is in

P and q is not in BB.

The first condition says that any one repetition maintains P invariant, the second says

that the termination function TF is positive for any state at which is in the invariant

and from which another repetition can be made, and the third says that any repetition

from a state in P strictly decreases the termination function. The conclusion simply

states that under these conditions if the state q at the start of execution of DO is in P

then DO is guaranteed to terminate in a state q" which is also in P but which falsifies

all the guards.

58

The usage of this theorem is simply that, if an invariant P and set of guards Bi can be

found such that TERM (defined above) is a subset of the desired set R, then P is a

subset of wp(DO,R).

4.2.1.4 Machines -- Machines occur in two varieties in CSDL, simple and partitioned.

A simple machine is used to define one member of an asynchronous set of sequential

computations. A partitioned machine is used to define an asynchronous set of

computations. Either variety may be used to define the representation of an abstract

data type; in this case the operations will be implemented by programs in the simple

machines which make up the innermost partitions. The components of a partitioned

machine may themselves be either simple or partitioned. Any machine can be viewed

as a structured system component made up of subcomponents which fall into several

classes; part of the distinction between simple and partitioned machines appears in the

classes of components they each may contain.

Simple machines are made up of a data objects and programs. The data objects and

programs are defined as discussed in 4.2.1.2 and 4.2.1.3, respectively.

The set of data objects defined within a simple machine corresponds to one of the sets

of objects X discussed in 4.1.2. Some of the objects in a simple machine may be inlets

or outlets; these correspond to the interface objects discussed in 4.1.3.

There is always at least one program defined in a simple machine. The program

defined first is a distinquished program referred to as the controller for the machine.

This program is never explicitly invoked; rather, it starts executing when the machine

itself is created. The structure of a controller program is typically a prologue block

which initializes the machine objects to some required state, followed by a loop for

repeated scanning of inlets. In this loop data arrival is responded to by invoking other

programs defined in the machine and sending data out selected outlets. If a controller

ever terminates, the machine dies in the sense that there can be no further response to

data sent to it from other machines; also passive objects in the machine can no longer

change state. In terms of the underlying model, the controller of a machine

corresponds to the program B defined over the set X of objects as discussed in 4.1.2.

Since the purpose of the controller is to satisfy the requirements of the machine, its

specification will generally be expressed in terms of temporal and communication

59

behavior. In contrast, the specifications of the other programs in the machine will be

expressed in terms of the input constraint and input/output relation discussed in

4.2.1.3.

Partitioned machines are made up of data objects and partitions. The objects are

defined as discussed in 4.2.1.2 and 4.2.1.3.

The set of data objects, which may contain inlets and outlets, defines the state of the

machine as visible from an external point of view; note that machine requirements are

generally inherited from the environment and hence are expressed from such a

viewpoint.

The partitions define several disjoint sets of objects; each machine object is allocated

to one of the partitions. In addition, channel objects are introduced which connect

pairs of partitions to one another. Partitions reflect the design decision to satisfy the

machine requirements by parcelling the machine data among the components of a

concurrent system, rather than by a single sequential program. The channels define

the desired logical communication topology. For example, suppose a machine has

declared the objects "dbl" and "db2" of type "file". The partition declaration

partition

interfaces

p1 ,p2:record channel;

components

partl: (dbl, pl.in, p2.out);

part2: (db2, pl.out, p2.in);

describes a two-component system, with each component containing a file. The

communication topology is (trivially) fully connected.

The interfaces section also contains specifications which define how logical

information dependencies specified over the machine objects are mapped onto the

communication topology; they also define the flow of information around the

subsystem. The components section similarly contains specifications of initial and

60

final states for each component where applicable along with the functional and

temporal behavior of each component.

4.2.2 Specification Language

4.2.2.1 Assertions -- Every specification occurs in the form of a predicate, that is, a

statement of a relationship among terms.. Static specifications assert relationships

among data objects, and behavioral specifications assert relationships among event

occurrences and data at event occurrences.

Static Specifications -- In this subsection X will be the set of objects Xl, X2, ... ,

X5. The primitive predicates are the numerical relations "<","<", ">"1, ">" among

numerical values, and identity "=" and its negation "ill. The forms

XI=3

O<X3<X4

respectively characterize the set of state vectors <Xl, ... , X5> such that (1) the value

of Xl equals 3, and (2) the value of X3 is both non-negative and not greater than the

value of X4. It is also possible to introduce named predicates with either definitions

or characterizations; this is discussed in 4.2.2.2. If the predicate "is_prime" has been

defined, then the form

is_prime(X2)

would assert that the value of X2 is prime. This is only meaningful if X2 is of integer

type. These kinds of predicates, which assert a relationship among the objects of an

object space, are used to specify initial states of machines and types, and

preconditions of operations, programs, and actions.

Another form of predicate asserts a relationship between a state and its successor,

that is, a property of a state transition. For example, the form

Xi'=Xl+l

61

characterizes the set of all transitions <qq'> such that the value of element Xl in

state q' is one more than the value of XI in state q. That is, XI has been incremented

by one. The syntactic distinction is the occurrence of "Xl"; the prime indicates value

in the final state, and the unprimed occurrence indicates value in the initial state.

This sort of predicate occurs in the specifications of operation, program, and action

post conditions and event definitions. The complete specification of the square-root

procedure sqrt(X:real, obj S:real) could be

pre X>O

post S'*S'=X

The precondition states that the value X must be non-negative, and the post condition

states that the final value of S is such that its square equals the initial value of X.

Two important conventions are used here: (1) if a variable name X occurs only

unprimed, then it is not altered it is as if the clause "X'=X" had been conjoined to the

predicate, and (2) if a variable name does not occur in a predicate either primed or

unprimed, then it is not altered. With this convention it is possible to check

syntactically that the specification of a vfun (pure function) of a data type is indeed

pure; the only name which may occur primed is that of the value returned.

Among the propositional connectives the grouping operators "[" and "I" have highest

priorities, followed by the unary negation "not" (""). Next come "and" ("&"), "or,"

"xor," and last come "if ... then ..." ("=>") and "iff" ("<=>"). The parenthesized

operators are alternate forms of the operators they follow in this list. The

interpretation of these operators is the familiar one of propositional logic; briefly, the

state q satisfies "not P(q)" if and only if q does not satisfy "P(q)".

o The state q satisfies "P(q) and R(q)" if and only if q satisfies both "P(q)" and "R(q)".

o The state q satisfies "P(q) or R(q)" if and only if q satisfies either "P(q)" or
"IR(qYI.

o The state q satisfies "P(q) xor R(q)" if and only if q both satisfies "P(q) or R(q)"

and does not satisfy "P(q) and R(q)".

62

o The state q satisfies "if P(q) then R(q)" if and only if either q does not satisfy

"P(q)" or q satisfies "R(q)".

" The state q satisfies "P(q) if f R(q)" if and only if q satisfies both "P(q) => R(qY'

and "R(q) -> P(q)."

The terms which are related in a predicate may be object names, literal constants, or

the cardinality operator "#". The term

#yl:TI, ... , yk:Tk[P(yI, ... , yk)]

denotes the cardinality or size of the set of all k-tuples <yl, ... , yk> of values which

satisfy the predicate P. For example, the term

/i:integer[A(i)=0]

denotes the number of different integer values i such that the value of A(i) is zero;

this is just the number of zero elements of A.

If nl, ... , nk are term names in a predicate then

(viii) forall nl:Tl, ... , nk:Tk[P(nl, ... ,nk)]

(ix) forsome ni:TI, ... , nk:Tk[P(nI, ... , nk)]

are respectively, the universal quantification of P and the existential

qualtification of Pi 'IV" is an alternate form for "forall" and "4" is an

alternate form for "forsome". Ni ranges over values of the associated type

Ti. The interpretations are the conventional ones of first-order predicate

calculus [ENDE72]:

o The state q satisfies '"Vni:T}, ... , nk:Tk[P(ni, ... , nk)]" if and only if

q satisfies "P" for every valid assignment of values to ni, ... ,nk.

o The state q satisfies " ni:tl,...,nk:Tk]P(nl,...,nk]" if and only if q

satisfies "P" at least one valid assignment of values to ni,...,nk.
63

For example, the predicate

Vi,j:integer[A.lob<i<j<A.hib=>A(i)<A(j)]

asserts that, f or every pair of index values i and j such that i<j, it is also true that

A(i)<A(j); that is, A is sorted in ascending order of indices.

When one of the ni's of (viii) or (ix) is preceded by the keyword obi, the interpretation

is that ni ranges over the set of objects of type Ti in the machine containing the

specification. Thus, if there were ten integer arrays A, ... , 3, then the assertion that

they were all sorted would be written

V obj Z:integer array, i,j:integer

[Z.lob<i< j<Z.hib=>Z(i)<Z(j)]

An additional quantifier form is

for some unique ni:T L,...,nk:Tk[P(ni,nk)]

which asserts that there exists exactly one k-tuple of values for ni,...,nk which satisfy

P. A! is an alternate for.- for this quantifier.

It is often necessary to introduce a temporary value in an assertion in order to relate

it to other terms; this capability is supplied by the let clause. In the form

4 let pi:Ti:Tk such that P(pl,...,pk,) [S(pi,...Pk))

A it is being asserted (1) that there exist value pi of type Ti which satisfy "P" and (2)

that every such set of values also satisfy "S". If this form occurs within some

predicate, the predicates P and S may also use the terms of the containing predicate.

Again, if Pi:Ti is preceded "obji" then the variable ranges over the set of object of type

Ti in the machine containing the definition.

Behavioral Specifications -- An event is a set of state transitions, and an

occurrence of an event is an element of that set. Given a predicate with primed

64

terms, the set of transitions which satisfy the predicate is the event characterized by

it. Since a given event can occur many times during the history of a system, it is

necessary to be able to indicate which occurrence of the event is being discussed. Let

T be a predicate characterizing a state transition, for example the post condition at a

program the form

effects (P(q,q'))<i>

denotes the i-th occurrence, in the history of the machine containing the specification,

of a state transition satisfying P. For example, "effects(sort)<i>" denotes the i-th

invocation of the program "sort", The integer expression between "<" and ">" is the

event ordinal.

A syntactic variant is the "becoming true" of a predicate. The form

occurs (P(q))<i>

where P characterizes a state, is equivalent to effects(-P(q) and P(q'))<i>; it denotes

the i-th transition from a state q which does not satisy P to state q' which does satisfy

P.

The fundamental predicate relating events is precedes, which relates two events in

time. The form

Eventl<i> precedes Event2<j>

characterizes the set of all system histories in which, for some k and 1, the i-th

:.1_ occurrence of Eventl is the k-th transition, the j-th occurrence of Event2 is the I-th

- transition, and k<l. All system histories in which either there is no order, or in which

the i-th occurrence of Eventi follows the j-th occurrence of Event2, are excluded.

Two related predicates allow for guarantee of the future and guarantee of the past.

The form

Event 1 <i> later Event2<j>

65

"'--p

characterizes the set of all system histories with the property that either there is no i-

th occurrence of Eventl, or there is and it precedes the j-th occurrence of Event2.

Similarly, the form

Eventl<i> before Event2<j>

characterizes the set of all system histories with the property that either there is no j-

th occurrence of Event2, or there is and the i-th occurrence of Event I precedes it.

With propositional combination of these ordering relations, and quantification over the

event ordinals, it is possible to specify constraints on the behavior over time of a

system. For example, the assertion

Vi:integer [if i.O then

effects(read?)<i> later effects (read!)<i>

and effects (read!)<i> before effects (read?)<i+l>

asserts that the transitions "read?" and "read!" occur in the order

read'.o.read...read?...read!...; this could formalize the requirements that "read"

transactions to a data base be mutually exclusive.

There are primitive predicates associated with inlet and outlet data types; they are
"gets" and "arrives" for inlets, and "puts" and "leaves" for outlets. These allow for the

specification of communication properties among machines; for example, the

specifications

A (x) Vi:integer [if i> 0 then

effects (leaves(c.out))<i> later (arrives(c.in))l>

asserts that the i-th departure from the outlet of channel c is always followed, by the

i-th arrival at the inlet end of c. This is not enough by itself to specify reliable, order-

preserving flow of information along the channel; it is necessary to be able to talk

about the values of objects and expressions when particular events occur. The form

66

Value prior Event I

denotes Value at the initial state of Eventl; similarly, the form

Value after Eventl

denotes Value at the terminal state of Eventi. Thus, the value which leaves an outlet

"out" is the contents of the window at the start of the i-th leaves event; this would be

expressed by the term

out.window prior effects (leaves(out))<i>

and the reliability of communications for (x) above would be expressed by

Vi:integer [if i> 0 then

c.out.window prior effects (leaves(c.out))<i>

=c.in.window after effects (arrives(c.in))<i>
]I

4.2.2.2 Declarations - It is convenient to be able to introduce named expressions,

possibly with parameters, for the various kinds of specification forms. In this section

the mechanisms for introducing such named forms are defined.

Predicates -- The form

PredicateName (Params) means PredicateExpression

declares a predicate with formal parameters to mean the expression on the right. This

' expression may be discussed so far which characterizes a state, including terms

' related to events with prior or after. Alternatively, the right hand expression may be

the keyword "abstract." This allows for the introduction of predicates which are used

at one level but defined at a lower level. To allow for predicates whose definitions

would be unwieldy, there is also provision for declaring a set of properties (axioms)

which characterize the predicate. In the form

67

- a - --

PredicateName (Params) characterized by PredicateExpressic

the PredicateExpression is typically a set of predicates joined by "and"; they would be

used in a demonstration of correctness or consistency.

Actions -- The form

PredicateName (Params) means pre Assertion post Assertion

allows a predicate characterizing a set of state transistions, such as a program

precondtion-postcondition pair, to be defined. The rules for the two assertions are the

same as those for program specifications.

Flows -- The form

FlowName:Type from Objectl to Object2

declares FlowName to be the name of a logical flow of information of type Type from

Objectl to Object2. Objectl and Object2 must be the names of objects in the machine

containing the declaration. This allows a textual specification of data dependencies

among members of a set of data objects before that set is partitioned.

4.2.2.3 Mappings -- In 3.4.2 three kinds of hierarchical organizations corresponding to

data, programs, and machines were discussed. The CSDL descriptions of a system uses

all three of these structures. Since a step along the hierarchy indicates a refinement

step in the design process, there is in general a mapping problem, which is to show that

the abstract and refined views of an object, program, or machine are consistent. Thus,

the specification language must support the specification of those mappings.

Data -- The form

let GenericName:Type;

* Representation

defines a mapping function from the lower-level representing machine onto the

conceptual object space of the data type to be represented; hence, the mapping

68

function is defined within the representing machine. The Representation part is a

semicolon-separated list of clauses of one of the two forms

Lower represents Upper, or

if Condition then Lower represents Upper

The Condition may be either a predicate over the representing obiect space, or a

"Lower represents Upper" phrase. The Condition allows the specification of mappings

dependent on the state of the representing data structure, for example the relative

position of pointers in a circular buffer representation of a bounded queue, as well as

structural dependencies, such as the relation between pointer chains in a linked list

and successive indices of a file viewed as an array.

The Upper portion may be either a predicate name with formal parameters, or a

component of the conceptual object space (or an attribute of such a component). In

the first case, the Lower portion is a predicate over the representing object space; the

intent is to define the abstract predicate declared at the upper level in terms of the

representation. For example, the predicate "precedes (x,y: record)" could be

characterized as a partial order relation at the upper level even though the type

"record" is abstract; the predicate would be defined in the machine which refines the

file and record types. If the Upper portion of a representation clause is a component

of the conceptual object space then the Lower portion is a value expression expressed

in terms of the representing data structure.

The mapping function may be used by uniformly substituting Lower portions for Upper

portions which occur in the specifications of the type. The resulting assertions
constitute specifications of initial states, data invariants, and program specifications

which must be satisfied by the representing data structure and the programs which

implement the type operations in order for the refinement to be a consistent

representation of the data abstraction.

Programs - In the CSDL organization of a simple machine, the description of a

given procedure does not appear in a sequence of more refined forms; rather, it

" $appears once as text in the algorithmic design language. Hence, there are no mapping

functions associated with the description of a program.

69

Machines -- After the data of a machine have been partitioned among component

machines, and the interface objects connecting them have been described, the

specifications of behavior defined over the unpartitioned data must be mapped onto

specifications of the components and interfaces. Specifications of initial states and

data invariants become specifications of the components which contain the associated

data objects. Behavioral specifications concerning data objects which are placed in

the same component likewise become specifications of the component machines. All

of these specifications are placed in the descriptions of the component machines.

There remain the specifications which refer to data which are placed in different

machines; these become specifications of the interactions among the component

machines.

The form

FlowName passes through InterfaceNames

specifies that the logical flow of inf ormation named "FlowName" is to be

accomplished by going through the ordered list of interface elements Rlsted in

InterfaceNames. This allows the factoring of a flow between objects in different

components into (1) flows within each component between the "end" objects and

elements of interfaces within each component and (2) flows within the interface

objects.

The form

function Assertion

is used to specify the intermachine, or communication, behavior. This specification is

" !contained in the partitioned machine. It expresses the behavior of the interface

*- objects which connect its components. Here is expressed the requirements on the

communication interface which must be statisfied in order for the several components

to interact, each satisfying its own requirements, so that the required behavior of the

entire partitioned machine is obtained.

70

4.3 ORGANIZATION OF A CSDL DOCUMENT

4.3.1 Principles of Organization

A system in CSDL is made up of a collection of machines. These machines form a

hierarchy based on the principles of object space decomposition and of type

refinement.

4.3.1.1 Object Space Decomposition -- The object space of a machine, consisting of a

collection of data objects together with the logical paths of information flow among

the objects, may be partitioned into disjoint components. For a machine whose object

space is not subdivided, the document includes the definition of a hierarchy of

programs that realize the specified behavior of the machine.

If the state space is partitioned, every object is placed into a unique subspace.

Wherever a logical path of information flow crosses the component boundaries, an

interface object is introduced to provide the necessary interface among distinct

components. The outlet end of a channel is placed in the component containing the

source of an information flow, and its inlet end is placed in the component containing

the destination of the information flow. After a partition has been described, a

machine is defined over each component space, and these component spaces may

themselves be subdivided.

To illustrate, suppose A and B are two objects with a logical path lp of information

flow between them. Figure I shows the decomposition of this object space into two

* components, and the introduction of the channel object C I at the boundary. The

design decision here is that two machines will be defined: one over A and the outlet

end of Cl, and the other over B and the inlet end of Cl. Figure 12 shows the
decomposition of the same object space into three components, with channels Cl and

C2 introduced at the boundaries. The design decision in this case is that an additional

machine will be defined over the middle component, consisting of the inlet end of Cl

and the outlet end of C2, whose sole purpose is to manage the passage of information

between the other two machines.

In CSDL, all the resources making up a system are treated by the concept of data

objects. This practice permits the partitioning activity to take place prior to the

allocation of hardware, firmware, and software resources.
71

A B A I

II I
II

II I

Figure 11. Decomposition into Two Figure 12. Decomposition into Three
Components Components

4.3.1.2 Type Refinement -- The use of type refinement in CSDL permits the
incremental design of a system. First, machines (either partitioned or unpartitioned)

are defined over objects of some high-level type. Then, the data type is refined by
defining a machine whose object space replaces a generic object of the refined type.

All the operations on the refined type are represented by either programs or type

operations at the lower level, and the type specifications at the upper level are re-
expressed in terms of those at the lower level. After the refining machine has been
specified, its object space may also be partitioned, if so desired.

Two kinds of type refinement are identified: data expansion and data representation.

The fundamental idea of data expansion is to invent an abstract data type and then to

refine it by data and programs at a lower level. An example, shown in Figure 13, may

be a data type called "archive"a defined as an array of objects of the type "file", which

in turn is abstract. In the machine where this type is defined programs will be written

using functions of the type "file." The type "file" is then refined in a lower-level

machine where "file" is described as an array of "record". The functions of the type

"file" are now refined in programs which ignore the existence of the type "file",

but are operating on objects of the type "record".

In data representation, a data structure used to define a data type is mapped onto

another data structure, usually because the latter is closer to the one available in

implementation, while the former permits an easier definition of the problem. In the

example shown in Figure 14, a file at the upper level of design is represented as a

sequence of objects whose type is "text". This file is represented at a lower level as a

72

ARCHIVE

A RAC ABSTRACT T

FILE:

RCR:RECORD:RCR
ABSTRACT ABSTRACT ABSTRACT

Figure 13. Example of Data Expansion

'FILE: ...-. TEXT ARRAY

/i\
/ I\

/ I\

/ BLOCK

MEM: BLOCK ARRAY

BLOCK: 8: INTEGER:
F: INTEGER;/\

/1 INFO: TEXT

IB IF I ,NFO

Figure 14. Example of Data Representation

73

linked list of blocks, where the type "text" is supplemented with forward and backward

pointers. Thus, at the upper level, the fact that the file was to be represented as a

Lnked list was transparent and perhaps unknown. Note that it is not necessary for all

of the blocks in the linked list to correspond to elements of the text array.

The data types used to refine a higher-level type may themselves be refined by types

of some yet lower level. The type refinement activity extends down to machines

whose data types are considered primitive either because the hardware (or software)

supplies those data types or because their representation is standardized in some form.

4.3.1.3 An Illustration - Designing a system consists of interleaving the activities of

object space decomposition and type refinement. This creates a hierarchy of machines

(an example of which is shown in Figure 15), and a design is complete if at the bottom

of the hierarchy, programs are designed for every machine, and each machine has in

its object space only objects of primitive types.

TYPE REFINEMENT

- COMPONENT DEFINITION

---- PAR~iTION
-T TYPES

0 OBJECTS AND FLOWS
•P PROGRAMS

M2 M38M

V M5[J M6M7m1 1

Figure 15. Hierarchy of Machines in CSDL

74

In Figure 15 each machine shown consists of up to three parts: data types, data

objects with paths of information flow among them, and programs. The object space

of machine M I is partitioned into three components (this partitioning is indicated in

the figure by the dotted lines), and machines M2, M3, and M4 are specified over the

three components. Likewise, the object space of M4 is subdivided, and machines M7

and MS are specified over the components. These machines constitute a hierarchy for

component definition. Figure 15 also shows the hierarchy for type refinement. Types

Ti and T2 are refined by machines M5 and M6, respectively, in terms of objects of

Type T3 and some primitive types. The object space of M6 is subdivided into two

objects spaces for machines MI0 and M1. Finally, type T3 is refined in terms of the

objects in machine M9, and at this point the design has been completed.

4.3.2 Elements of a System Definition Text

The definition text of a system, as illustrated in Figure 16, is enclosed by the keywordq

system <system id> and end <system id>, where <system id> is the name of the system

being documented. It contains primarily a collection of machine definition texts

arranged in some orderly fashion. Also included is a list of identifiers of all the

machines making up the system. Each machine identifier may, if so desired, be

followed by a description, enclosed in curly braces and in plain English, of the

corresponding machine.

4.3.3 Elements of a Machine Definition Text

A machine definition text consists of the declaration of a state space of data objects

together with the specification and description of the static and dynamic behaviors of

the machine over its objert space. This document is organized into sections enclosed

by the keywords machine <machine id> and end <machine id>, where <machine id> is

the name of the machine being documented. Figure 17 shows the structure of

documentation for a generic machine.

It should be pointed out that the purpose of this subsection is not to advocate a format

for machine documentation but rather to describe a machine document that includes,

in an organized fashion, all the technical information related to the design of a

machine. The particular style of documentation format being presented has the

75

system <system id>

qnachine id>
qnachine id>

oiachine definition text>
<machine definition text>

end <system id>

Figure 16. Format of System
Definition Text

machine -anachine id>
refines <type id>

declarations
predicates

actions

end declarations

specifications
mappings
states
FeFaTor

function
end specifli~ctons

partition
interfaces
paths

cun cation behavior
function

end partitTn

programs
<program definition text>
<program definition text>

end programs

end -iachine id>

Figure 17. Format of Machine
Definition Text

76

property that every aspect of the machine is first declared, then specified, and finally

described. The location of performance specifications in relation to this

documentation format is discussed in 6.3.5.

The declarations and specifications are grouped into the declarations and

specifications chapters, respectively. The descriptions are contained in either the

partitions or programs chapter. The partition chapter is found whenever the object

space of a machine is partitioned, and the programs chapter exists only if the machine

being described is not partitioned.

Comments or informal explanatory notes may appear anywhere within the body of the

machine definition text. These are differentiated from the formal text by enclosing

them in curly braces.

The keyword refines is used to indicate the machine as one whose object space is the

refinement of a higher-level type; <type id> gives the name of the type being refined.

For closely related nonprimitive types, it may be convenient to include the refinement

definition of them within the documentation structure of one machine. This is done by

prefixing the refinement of each type by a new refines <type id> heading in the

manner shown in Figure 18. In this case, the semantics is that wherever an object of

one of the refined types occurs, it is refined by the appropriate object space in this

machine.

Without the keyword refines the machine being defined is one whose object space is

the detailed definition of a component space of another machine, or one whose object

space is the global space of an entire system.

4.3.3.1 Declarations Chapter -- The predicates section contains the declaration of

predicates which are convenient to define once and then use in the specifications. For

each predicate, a name is associated to an assertion that is expressed in terms of the

CSDL specification language. For example, a predicate SORTED can be defined here

in detail for an array and subsequently used by writing only the word SORTED followed

by the appropriate parameters.

77

machine qnachine id>
refines <type id>

<declarations chapter>
<specifications chapter>

refines <type id>

<declarations chapter>
<specifications chapter>

end <machine id>

Figure 18. Format for Refining
Multiple Types

The types section contains the definition of the nonprimitive types needed in this

machine. These types may be refined by lower level machines. The definition of a

type consists of the specifications for the permissible functions on any object of the

type and for all of the invariants that must be preserved on those objects.

The objects section declares the object space to be used in this machine. The

declaration of a object consists of giving it a name and specifying its associated type,

which may be the name of a defined type in the types section.

The actions section contains the declaration for actions that can be used in the

specifications chapter. For each action, a name is associated with a pair of assertions

expressed in terms of the CSDL specification language. Constraints on the initial

states of an action are characterized under the pre heading, and the desired relations

1between its final state and the initial state are characterized under the post heading.

The flows section contains the declaration of the logical paths of information flow

among the objects declared in the objects section.

4.3.3.2 Specifications Chapter -- The mappings section exists only for machines whose

object space is the refinement of higher-level types. Here the relationships between

the objects in this machine and those of the types being refined are established. If

78

predicates on objects of the refined type were defined, their meaning must be restated

in terms of the objects in this machine. All operations on the refined type must also

be re-expressed in terms of the programs or the type operations in this machine. The

basic building block of this section is the representation clause explained in 4.2.2.3.

The states section contains, under the init heading, static assertions which

characterizes the initial state of the machine. This includes both the initial values of

the data objects and the initial relationships among them. Under the final heading are

static assertions that specify the desired relationships between the final and the initial

states. Under the invariant heading are conditions which must be preserved

throughout the existence of the machine. The assertions are expressed in terms of the

CSDL specification language.

The behavior section includes, under the function heading, the temporal assertions on

event sequences which must be maintained throughout the existence of this machine.

It also specifies the relationships among data values at specific instances of time when

events occur. The specifications are expressed in terms of the CSDL specification

language.

4.3.3.3 Partition Chapter -- The interfaces section introduces objects, such as

channels, needed to provide the necessary interface among the components making up

a partition. A name and its associated type are given for each interface object

declared here.

The paths section specifies a set of paths that establishes the location of the interface

objects relative to the other objects. The data type of an interface object must, of

course, be identical to the type of information that passes through it.

The components section contains the declaration of the components making up the

partition. Each declaration gives some component a name, lists the objects that are

found in the component, and gives the name of a machine defined over the component.

The objects, then, comprise the entire object space of that machine. For each object

in the list there is a corresponding object (of the same type) declared in the objects

section of that machine.

79

The communication behavior section contains, under the function heading, the static

and temporal specifications which are not derivable from those in the states and

behavior sections, but must be included as a consequence of the object space
decomposition. It may also include the restatement of the static and temporal
relationships among objects in distinct components in terms of their relationships to

the newly declared interface objects. These specifications, once again, are in terms of

the CSDL specification language.

4.3.3.4 Programs Chapter -- This chapter contains the definition of a hierarchy of
programs which, as a group, realize the specified behavior of the machine. The
program at the top of the hierarchy is, by convention, named "controller" and placed

first in the chapter. All the other programs, if any, can be arranged in some orderly

fashion.

4.3.4 Elements of a Program Definition Text

The format of a generic program definition text is shown in Figure 19 where <program

id> is the name of the program being described.

program <program id> (<input parameters>)
returns <output parameter>

pre
post
invariant
variables
text
end <program id>

Figure 19. Format of Program
Definition Text

The pre section specifies the permissible machine states when invoking this program.

The post section specifies the state of the machine when the program terminates

properly. Also included are the relationships between this final state and the pre

state.

The invariants section specifies the conditions on the objects in the machine that must

be preserved by this program. These specifications are expressed in terms of the

CSDL specification language.

80

J1

The variables section contains the declaration of all the local data of the program.

These data, which may be of a type declared in the types section, exist only f or the

duration of this program.

The text section contains the description of the program using the algorithmic

language presented in 4.2.1.3.

81

SECTION 5

AN ILLUSTRATION OF SYSTEM DEFINITION IN CSDL

In this section, system definition techniques for CSDL are illustrated by stepping

through an example of a concurrent system design. In the description of the example,

formality and completeness are sacrificed for the sake of comprehensibility. The

example used to demonstrate the system definition techniques is the Towers of Hanoi

game.

The Towers of Hanoi is a game in which three spindles are used to host a set of n rings

which are all different in size. Each spindle can host all the rings or a subset of the

rings. As shown in Figure 20, the object of the game is to start with all rings stacked

on one spindle and to build up the same configuration on another spindle. The third

spindle is used to make the move possible. The spindles are called ORIGIN,

INTERMEDIATE, and DESTINATION to indicate their intended use.

The game rules put the following constraints on the possible moves:

o No larger ring can ever be placed on top of a smaller ring.

o Exactly one ring can be moved at a time.

The moves required for a Towers of Hanoi game with four rings, i.e., n=4, are shown in

Figure 21. The rings are represented by integer numbers indicating their size. The
, configurations shown are preconditions for the moves indicated by dashed arrows.

The Towers of Hanoi game is a trivial example for which a simple sequential solution

exists in the form of a recursive algorithm. For the illustration of a system definition

in CSDL, a partitioned and concurrent solution will be derived.

Although the structure of the game suggests a partitioning into three separate towers,

it will be demonstrated how CSDL supports the derivation of such a partition.

Thereby, the example will demonstrate how disjoint state spaces and the

communication among the machines associated with these state spaces are handled in

82

ORIGIN INTERMEDIATE DESTINATION

(a) START POSITION

ORIGIN INTERMEDIATE DESTINATION

Fiue(b) TERMINATION POSITION

Figur 20. Towers of Hanoi

83

ORIGIN INTERMEDIATE DESTINATION ORIGIN INTERMEDIATE DESTINATION

MOVE2 14 MOVE 9

MOVE 2 4 MOVE 10ii

MOVE 3 j MOVE 112

MOVE 4 MOVE 124L

MOVE 4 3 2 M OVE 13iL

MOVE 8

r1 MOVE?7 MOVE 15i'

MOVE 8ii f
Figure 21. Solution of Towers of hanoi for Four Disks

84

CSDL. It will also be demonstrated how to incrementally present a system definition

as a hierarchy of CSDL machines and how to introduce a communication structure for

a partitioned and concurrent system design.

Due to the simplicity of the example, only a flavor of the application of GSDL to real

world systems can be conveyed here. An illustration of the use of CSDL for the

definition of more complex systems is included in Appendix D.

5.1 TOP LEVEL DESIGN

This subsection describes a system definition for the Towers of Hanoi game. The

definition of this system is bracketed as shown in Figure 22.

The top-level definition of a system is a machine which specifies the requirements on

the system design and describes the associated system design. The system design may

be given in the form of a simple or partitioned machine. For the example in this

chapter, we presume a partitioned solution which is documented as shown in Figure 23.

The machine "threetowers" is parameterized by the integer n, which is the number of

rings in the game. That is, the definition of the machine, "three-towers", can be

instantiated for a particular value of n.

5.1.1 Declarations

The structure of the CSDL declarations chapter used in the Towers of Hanoi example

is shown in Figure 24.

The first step in deriving a solution to the Towers of Hanoi garr is to review the game
rules. To express these rules, data objects need to be defined which represent the

three spindles and the rings to be moved. To this end, abstract data types for spindles

and rings need to be defined. Therefore, the first step in the description is the

definition of the data types "ringsize" and "tower" given in Figure 25. Additionally,

an abstract data type "posint" is defined.

85

system towers of hanoi

{definition of the system "towers of hanoi"
including all levels of partitionTng-and
refinement, i.e., this system definition includes
all partitioned and simple machines needed for the
description)

end towers of hanoi

Figure 22. Outer Brackets of a System Definition

machine threetowers(n:integer)
declarations

{dearation of predicates, types, objects and
actions needed to define the machine)

end declarations
specifications

(specification ot " functional and temporal
behavior the machine posses)

end specifications
partition

Idefinition of the partitions of the machine and
their interfaces and interrelations)

end partition
end three towers

Figure 23. Outline of the Top-Level Machine for a Partitioned
Solution of Towers of Hanoi

declarations
predicates {definition of statements to be used in the
system description}
types (definition of the data types
of the data objects of the machine)

fdeclaration of the data objects constituting the state
space of the machine}
actions {specification of
activities to be used to define the machine behavior)

end declarations

Figure 24. Structure of the Declarations Chapter

86

typesposint:integer

let pi:posint
invariant

pi>O

end posint;

ring size:integer
{the rings are represented by their size which is given
by an integer number between 1 and n; note that n is a
parameter of the machine being defined)
let rs:ring size
in variant 1-< rs < n

end ring_size;

tower: ringsize array
(a spindle is represented by an array of rings)
let t:tower
invariant

{the rings on a spindle are ordered by their size
such that no larger ring is on top of a smaller
ring)
forall ij:posint [if INDEX(ti) and INDEX(t,j)

then (if i<j then t(i)>t(j)j-
and t.dom~n

end tower;

Figure 25. Type Declaration

-. 8

87

The predicate INDEX used in the declaration of type "tower" is to be defined in the

predicates section. Its declaration is shown in Figure 26.

Given the type declarations of Figure 25 the state space of the machine, threetowers,

can now be defined by the object declarations shown in Figure 27. In correspondence

with Figure 20, "org" is the spindle containing all the rings at the start of the game,

"dest" contains all rings at the end of the game, and "int" is the intermediate spindle.

With the definition of a global state space in place, the next step in the design is the

identification of actions which need to be carried out. In the case of the Towers of

Hanoi game, two basic actions are suggested by intuition. The first action is the

construction of (sub)towers on either one of the three spindles. The second action is

the movement of a single ring from one spindle to another. The declaration of these

two actions is given in Figure 28. Deviating slightly from the formal syntax definition,

English text is used to describe the input and output assertions.

Given the declaration of predicates, types, objects, and actions developed in this

section, the next step in the description is the specification of the behavior of the

machine "three-towers".

5.1.2 Specifications

The structure of the CSDL specification chapter used in the Towers of Hanoi example

is shown in Figure 29.

The Towers of Hanoi game represents a terminating computation. Thus, the states

specification consists of an initial and final assertion. These assertions can directly be

derived from the game rules. The states specification is shown in Figure 30.

The next step is the specification of the behavior. Here, the game rules and

requirements for computational progress are to be defined in terms of temporal

relationships between instantiations of the declared actions. To guarantee the game

rules, the following properties need to be preserved.

88

AO..AIIS 616 HONEYWELL INC BLOOMNGMTON (SN CONFORM COMPUTER scIE--ErC P/s 9/2
CNCUMN SYSTEN DESCRIPTION LANSUASC. (U)

FueP V T WOC H K BE. S HYU P30"2-60-C-OMS
UNCLASSIFIED RAOC-TR-2-3 NL

L4.5 12.5
IIIII1 11&2J

36

11111 1.4 .

Ip

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS-1963-A

IDX(A:typenip array, i:posint)
means A.Tob i < A.hib;

Figure 26. Predicate Declaration

objects
org: tower;
ift:tower;
dest: tower;

Figure 27. Object Declarations

actions
construct (large:ring size, small:ring size, spindle:tower)means

(constructijn of a subtower o6n "spindle" with ri-g
"large" as the base and ring "small" as the top)

pre ["1spindle is empty] or [the top of "spindle" is larger
than the base of the7 subtower to be built]*1 g ost [the subtower has been constructed on top of

move (ring:rlngjsize, splndlel:tower, spindle2:tower)means
(move a single ring from "spindlel" to "spini~eY"}

pre ["ring" is on top of "spindlel") and
[the ring on top of "spindle2"' islirger than "ring"]

post ("ring" is removed from "spindlel" and placed on top of
"spindle?"];

Figure 28. Action Declaration

89

specifications
states

Tspecification of the initial state, final state,
and invariant conditions)

behavior
{specification of temporal ordering constraints)

end specifications

Figure 29. Structure of the Specifications Chapter

states
tspecification of the initial state of all three spindles)
jait org.dom=n and int.dom=O and dest.dom=O d

-forall i:p- nt [if INDE-forg, i)

then orgU) = org(i-1)-1;

{specification of the state reached after the termination of
the last action) final construct (n,l,dest);

Figure 30. States Specification

I
90 .

o Any move involves a single ring only, i.e., subtowers containing more than one

ring cannot be moved.

o Any ring to be moved must be on top of the tower from which it is moved.

o No larger ring can be placed on top of a smaller ring.

o When a ring is moved, all smaller rings must be on the spindle not involved in the

move.

The properties listed above are ensured by the definition of the action "move" and the
type "tower".

To guarantee computational progress, the following properties need to be preserved.

(1) At any given time, exactly one ring is being moved.

(2) No move must reverse the preceding move.

(3) Except for the construction of the full tower on "dest", the construction of a

subtower with a base of size i must be followed by the move of the ring with size
i+I between the other two towers.

Property (1) can be expressed by stating that any move must be concluded before the

next move starts. Property (2) requires that following a move of a ring, a different

ring must be moved, before the first move can be reversed. Property (3) can be

expressed by stating that the construction of a subtower with base of size i and top of

size 1, must be followed by the move of the ring with size i+1 to the spindle on which

the construction of a subtower with a base larger than i is in progress. The formal

specification of these properties is given in Figure 31.

5.1.3 Partition

The structure of the CSDL partition chapter used in the Towers of Hant" (-;mple is

shown in Figure 32. The following procedure is used to derive the partitio.,

o Identification of objects to be associated with the components

o Definition of the communication interfaces

o Definition of the components with their communication interfaces

o Specification of the communication behavior

91

behavior
function

let tl,t2,t3,t4:obj tower

[(at any time, only one ring is being moved)
forall k,l:poslnt[

forall l,j:rlng size[if i~j
then [if first mioe(i t,t2)4c>precedes first move(j,t3,t4)<l>

- tin last move(1,tl~t2) k>precees last move(j,t3,t4)<cWJ

and
(no move must reverse the preceding move)
forall i,j:ring size(if i~j

then move(it1,t2) later move(j,t3,t4) before move(i,t2,tl)l
and
{eixcept for the construction of the full tower, any construction of a
subtower is nested in the construction of a larger subtower)
if tltt2 and t2jit3 and t1Ot
then foraTf-i,j:rinj::size[if <in-1 and 1lj<2

then last construct (TT,tl)-later move (i+1,t2,t3)
before last construct (iT-t3)I1;

Figure 31. Behavior Specification

inhterf aces
A1 declaration of channel objects for commnication among

the components)
coponnts

dinition of the components in the partition)
communication behavior

(specificationo rules for the communication among
components)

end partition

Figure 32. Structure of the Partition Chapter

92

The action declarations (see. Figure 28) suggest a partition into three components.

Each component contains one of the three spindles. Assuming such a partition, the

action "move" needs to be mapped into communication among two components.

Furthermore, the computations performed in each component can be based only on the

local state, i.e., the contained spindle, and the "messages" received from the other two

components.

A possible scenario for the Towers of Hanoi game with three independent towers is the

following. For the construction of subtowers, each component can sell and buy rings.

When a ring is bought, it is placed on top of the local tower. When a ring is sold it is

removed from the top of the local tower and sent to the component which bought the

ring. That is, the action "move" is transformed into a deal between two towers.

Several precautions must be taken to guarantee an orderly conduct of the game. For

example, the desire of a component to sell a ring must be made known to the other

two components, as they know only the state of their local spindle and the mailboxes

through which they receive messages. If a sale is announced, both components

receiving the announcement may desire to buy the appropriate ring. For the selling

component to decide to which component to sell the ring, it is required that all buyers

send a bid for the deal. After a decision has been made, a deal is closed with one of

the bidders and a negative confirmation is sent to the other bidder. Each component

decides on the basis of its local state as to whether it wants to issue a bid for a ring on

sale. The component containing the spindle 'dest" issues a "stop" command to

terminate the game.

Figure 33 contains a declaration of data types suitable for the definition of a

communication structure for the scenario described above. These data type

declarations are added to the types section shown in Figure 25. The data type

"comstruc" defines the entire interconnection structure for the communication
among components. Therefore, the interface declaration in Figure 34 contains only a

single element. A refinement of the communication structure into a communication

subsystem is described in 5.3.

Having identified the data to be associated with the components in the partition and

given the declarations of the data types for the communication structure, the

93

dealing: (sale[bid [deal [] nodeal [] stop);
(message component used to synchronize deals between
components of the concurrent system)

message: (op:dealing,ring:ring_size);
{message structure used for communication among
components)

com struc:message channel array
Tet cs:com struc
invariant Zs.lob-1 and cs.hib=6 and

-foral i,j:posint-T
TINDEX(cs,l) and J>O
tlen effects (l-ies(cs(i).out))<J>

before efects (puts(cs(i) .out))<j+l>I
(the channels are sufficiently fast that it is
unnecessary to check for departurel

end comstruc;

Figure 33. Data Types for Communication Structure

tnterfaces

- cnet:comstruc;

I Figure 34. Interface Declaration

SJ

components and their communication interfaces can now be defined. The component

declarations are given ;n Figure 35 The resulting system structure is shown in Figure

36.

The next step in the design is to specify the behavior which is relevant to the

information flow in the communication network. Analysis of Figures 30 and 31 reveals

that the following requirement on the communication behavior needs to be expressed.

At any time, exactly one ring can be moved. This requirement maps into the
communication structure as follows. For any two components which close a deal (i.e.,

send a message of the form "deal,i" to another component), the deal of one of the

components must be closed, before the "deal" message of the second component is sent

out. The specification of this requirement is given in Figure 37. The predicate DEALS

(m:message outlet) used in Figure 37 is defined to mean "puts (i) and

m.window.op=deal".

Due to the partitioning and the introduction of the communication structure, an
additional requirement needs to be specified. This requirement states that whenever

the stop command is issued, it is issued by "tower 3". This requirement is also stated

in Figure 37.

5.2 DESIGN OF MACHINES IN THE PARTITION

This subsection illustrates the design of the three machines which define the three

components, "tower I", "tower 2", and "tower 3", declared in Figure 35. The resulting

system structure of the CSDL definition is shown in Figure 38. Obviously, these three

machines are very similar. Therefore, the entire definition is presented for only one
of the three machines, and necessary modifications for the other machines are

discussed. The full definition is given for the machine "tower org".

5.2.1 Declarations

The machine "towerorg" is defined in the outer bracket shown in Figure 39. The
types used in the machine "towerorg" are the same as those declared in the top level

95

components

toweri: (org.
net(1).out,
net(3) .out,
net(4). in,
net(2).in):tower org;

(component containing sp-indle "org" of the global state space)

tower2: (int,
net(4) .out,
net(6) .out,
net(3).in,
net(5).in):tower int;

{component containing spTndle "it of the global state space)

tower3: (dest,
net(2) .out
net(5) .out
net(l).in,
net(6).in):tower dest;

(component containing sp-indle "dest" of the global state
space)

Figure 35. Component Declarations

Figure 36. Partition of the Machine "three-towers"

96

communication behavior

function
l'et Z 2:obj message channel
le-t i,j:posint such that INDEX(net,i) and INDEX(net,j) and i~j
Mt any time oiiTone deal can be in progress)
forall k, l:posint(if effects(DEALS(net(i).out))ck>

prcee eftects (DEALS(net(j) .out) ki>
then effects(gets(net(i).in)k<k>

precedes effects (DEALS(net(j) .out))<l

and
*(ny"tower3" can issue a stop commuand)

forall k.,posintflf net(i).out.window.op
Seffects (puts(net(i) .out))<k>=stop

%re n 1=75 o ri- 12

Figure 37. Communication Behavior

SYSTEM: TOWERS-OF-HANOI

MACHINE CENTRALIZED
THREEJOWERS -o6- SYSTEM

DESIGN

PARTITIONING

MACHINE MACHINE MACHINE CONCURRENT
TOWER-ORG TOWER-INT TOWER-DEST -0 DYSESM

Figure 38. CSDL Structure of the System "towers-of hanoi"

machine tower org(n: integer)
declarations

{declaration of predicates, types, objects
'1 and actions needed to define the component

"tower 1" of the top-level design)
end declarations

end tower-org

Figure 39. Outline of the Machine "tower org"

97

design. As declared in Figure 35, the component "tower " includes a spindle, two

message inlets and two message outlets. Following the component declaration for

"tower " in Figure 35, the object declaration section for the machine "towerorg" has
the structure shown in Figure 40.

The design of the data types for the communication structure in Figure 33 suggests the

action declarations shown in Figure 39. There are actions for offering a ring for sale

(sell) and for closing a sale (closesale) by sending a ring to a successful bidder or

terminating a deal with an unsuccessful bidder. On the other hand, there are actions

for making a bid to buy a ring (buy) and for terminating both successful and

unsuccessful attempts to buy a ring (close-buy). An additional action is needed for

rejecting unwanted bids (reject) received from the other towers.

The two predicates "ORGDUPLEX" and "ORGACCEPT' used in the action declarations

of Figure 41 are defined in Figure 42. The predicate "ORGDUPLEX" expresses the
fact that the two argument objects are an inlet and an outlet of the machine

"tower_org" which are connected to the same machine. The predicate "ORGACCEPT"

expresses the condition for bidding for a ring on sale. For this condition to be true,

the arithmetic difference between the ring on top of "org" and the ring on sale must be

odd, and if there is no ring on the spindle "org", the arithmetic difference between n

and the ring on sale must be even (n is the number of rings in the game).

5.2.2 Specifications

The specifications of the states and behavior of the machine "tower org" are given in

Figures 43 and 44 respectively. The states specification refers to the state of the

spindle "org" as well as the state of the inlet through which the stop command is

received. To demonstrate the derivation of the behavior of specification of the
machine "tower.org', the requirements stated in the top-level design are repeated.

Requirements to ensure the game rules:

(1) Any move involves a single ring only.

(2) Any ring to be moved must be on top of a spindle.

(3) No larger ring can be placed on top of a smaller ring.

(4) When a ring is moved, all smaller rings must be on the spindle not involved in the

move.

98

objects

org:tower; Figure 40. Object Declara ions
to dest:message outlet; for "tower org"
to-int:message outlet;-
from lnt:message inlet;
from_-dest:message inlet;

actions

sell
{offer a ring for sale)
pre [there is at least one ring on the spindle "org"]
post [send a message of the form "sale,org.high" to both

the other two components in the partition];

close-sale (in:message inlet, out: message outlet)
{after receiving a bid through "inO, close the deal
by sending an appropriate message through "out")

pre ORGDUPLEX (inout) and
[(a bid for "org.higiT has been received] or
[a bid for a ring other than "org.high" has been received] or
(there is no ring on spindle "org"]]

post if [a bid for "org.high" has been received]
then [(delete the ring on top of "org"I and [send a

message of the form "deal,org.high" to the bidder])
and if [(a bid for a ring other than "org.high" has

been received] or [there is no ring on spindle "org"1]
then [send a "nodeaIT" message to the bidder];

buy (in:message inlet, out:message outlet)
{after receiving an offer of a ring for sale through "in",
send a bid for this ring through "out"}

pre ORGDUPLEX (in,out) and ORGACCEPT (in.window.ring) and
[an offer of a ring fr sale has

been received]

post [send a message of the form "bid,in.window.ring"l;

close-buy (in:message inlet, out:message outlet)
{after having sent a bid through "out", receive a
positive or negative response through "in")

pre ORGDUPLEX (in,out) and in.window.ring=out.window.ring and
[a bid has been sentthrough "out"] and
[a "deal" message has been received-through "in"] or
(a "nodeal" message has been received]]

post if [in.window.ring=out.window.ring and
[a "deal" message has been received]]

then ladd "in.window.ring" to the top of the spindle "org"];

reject(inl:message inlet, outl:message outlet, in2:message inlet,

out2:message oult)
{after receiving an offer of a ring for sale through "inl"
and sending a bid for that ring through "out1", all
bids coming through "in2" are rejected by sending a "nodeal"
message through "out2", until the original deal is closed)

pre ORGDUPLEX(inl,outl) and ORGDUPLEX (in2,out2) and
[a "sale" message hasieen received through "inT"] and
[a "bid" message has been sent through "out1"] and
[a "bid" message has been received through "1n2"]

post (send a "nodeal" message through "out2"] ;

Figure 41. Action Declarations for "tower org"
99

~~R~oLX (9b in:message inlet, obi out:message outlet)
means in=from int and out=to int

or in=f~om-diest and out-to-dest;

ORGACCEPT(r: ring size)
means; if org.dom>0 then [(org.high-r) mod 2=1

and~ org.high r01
and iTrirg.domn=0 then (n-r) mod 2=0;

Figure 42. Predicate Declarations f or tower org

states

{specification of the initial state of the spindle "org'}
mitj org. donn

and forall i:posint[if INDEX (org,i)
then org(i)=TFg(i-1)-lJ;

{specification of the final state of the spindle "r"
and the communication -interface "from _dest")

fial org.dom = 0
and from dest.window.op=stop

Figure 43. States Specification of "tower org"

behavior
TunctTon

let inl, in2 :obj message inlet,
outi, out2 :obj messagqe outlet

suchthat nl. # in2 and outi # out2
and ORGOUPLEX (mil, outi)
and ORGDUPLEX 00n, out2):

((no move must reverse the preceding move)
last close sale (inl, outi) later close, Sale (in2,out2)

before first buy (inl, ouIT
or
liast close sale (inl, outi) later close buy (in2, out2)

E--efore 'irst buy (inl, ou-tTF -

and
Mlock internal state after sending out a bid)
first buy (inl, outi) later last close-buy (inl, outi)

before first buy (in2, out2F
and
last buy (inl, outi) before reject (inl, outi, Wn, out2)

* T~~ater firs close buy ml oti)

Figure 44. Behavior Specification of "tower org"

100

Requirements to ensure computational progress:

(5) At any time, only one ring is being moved.

(6) No move must reverse the preceding move.

(7) Except f or the construction of the full tower on "dest", the construction of a

subtower with a base of size i must be followed by the move of the ring with size

i+1 between the other two spindles.

In the top-level design, requirements (1) through (4) were satisfied by the definition of

the action "move" and the type "tower". The design of the machine "towerorg" does

not use the action "move". Therefore, these requirements need to be expressed in

terms of the declared actions and types of the machine "tower org".

Requirement (1) is satisfied by the design of the actions of "towerorg". The action
"closesale" moves single rings only (see Figure 41). Requirement (2) is also satisfied

by the actions in Figure 41. The action "sale" offers for sale only the ring on top of

the spindle, and the action "close sale" removes the ring on top of the spindle.

Requirement (3) is satisfied by the definition of the action "buy". This action issues a

bid for a ring on sale only, if the ring on sale is smaller than the ring on top of the

spindle (see the definition of ORGACCEPT in Figure 42). Requirement (4) is discussed

below. Requirement (5) is satisfied by the specification of the communication

behavior (see Figure 37).

To satisfy global requirements, a single machine in a partition can only refer to its

internal state including its local inlets and outlets. Thus, the design of a concurrent

solution to the Towers of Hanoi game must be based on a mechanism which ensures

requirements (4), (6) and (7) on the basis of the local state of an individual machine in

the partition.

One condition for such a mechanism is given by the predicate "ORGACCEPT" in

Figure 42. Note that this predicate refers to the local state only.

A second condition is given by the fact that after a machine sends out a bid for a ring

on sale, it locks its local state. Locking of the local state involves rejecting all bids

which come in from the other machines and ignoring all offers of rings for sale

received from the other machines.

101

Requirement (4) is satisfied by the mechanism described above. A ring can only be

sold, when it is on top of a spindle. A ring can only be acquired, if all rings on the

receiving spindle are larger. If these conditions are satisfied when a deal is initiated,

the locking of the internal state of the bidder guarantees that they remain satisfied

until the deal is closed. Thus, all rings smaller than the ring to be moved reside on the

spindle not involved in the move.

Requirement (6) needs to be restated. To guarantee that the previous move is not

reversed, the following must hold. After moving a ring to another machine, the

machine "tower_org" must either move another ring to the machine not involved in the

first move or accept another ring from that machine, before it can bid on a ring being

offered for sale by the destination of the original move. This requirement is formally

stated in Figure 44.

Requirement (7) is satisfied by the mechanism described above. The condition defined

by "ORGACCEPT" and the locking of the internal state after a bid has been sent out

guarantee that in every situation exactly one move is possible. This move satisfies

requirement (7) as can be observed from the example in Figure 21.

To ensure the locking of the local state, an additional requirement needs to be

specified. This requirement states that, after sending out a bid, no other bid is sent

out, and all bids received from other machines are rejected until the original deal is

closed. This requirement is also stated formally in Figure 44.

5.2.3 Programs

The structure of a CSDL programs chapter is shown in Figure 45.

The data type declarations for both the top-level design and the machine "tower org"

(see Figure 25) do not yet include definitions of type operations. So far, all functional

relationships have been expressed in terms of the declared actions. For the procedural

description of the machine "towerorg" operations are needed for the manipulation of

the internal state including the spindle "org" and the appropriate inlets and outlets.

The operations on inlets and outlets are constructs of CSDL. Thus, the data type

"tower" needs to be extended to provide appropriate type operations for the

102

i

manipulation of the spindle "org". These operations must allow the top of the spindle

to be accessed, the top of the spindle to be deleted, and a ring to be added to the

spindle. The extension of the data type "tower" is shown in Figure 46. This

declaration of "tower" replaces the original type declaration in both the machine
"threetowers" and the machine "tower org".

The controller of the machine "towerorg" shown in Figure 47 includes three major

sections:

o The variable declarations

o The initialization of variables and machine objects

o The actual control algorithm

The outer control loop of "orgcontroller" has four major pieces, identified by the four

guards. When none of the guards is true, i.e., when "terminated" is true, the controller

terminates. The first guard is true if the game is not yet terminated, no new messages

were received from the other two machines, and the spindle is empty. In this case

nothing is to be done, and the controller idles. The second guard is true for the same

condition except that there are some rings on the spindle. Thus, the ring on top of the

spindle can be offered for sale. To this end, the procedure "sell" is called as described

in Figure 48. The third and fourth guards are true if the game is not yet terminated

and a new message was received from either of the machines containing the spindles

"int" and "dest". The controller texts for dealing with the machines containing the

spindles "int" and "dest" are given in Figure 49 and 50, respectively.

These controller texts are similar. In both cases, the messages received may offer a
ring for sale, contain a bid for the ring on top of the spindle "lorg"l, contain a ring in a

successful completion of a deal, or contain a negative acknowledgement for a bid
issued earlier. For the communication with the machine containing spindle "dest", the

"stop" command may be received in addition to these messages. The controller reacts

to these messages as specified in the appropriate action declarations and the behavior

specifications. The actions to be performed in the individual cases are presented as

procedure calls.

The programs called by the controller are described in Figures 48 and 51 through 54.

These programs correspond directly to the actions declared in Figure 41.

103

programs
program controller

(description of "controller")
end controller

program namel
{description of program "namel")

end namel

program name n
{description of program "name n")

end name n

end programs

Figure 45. Structure of the Programs Chapter

tower:ring size array
{a spTndle is represented by an array of rings)
let t:tower
invariant

{the rings on a spindle are ordered by their
size such that no larger ring is on top of a
smaller ring)
forall i,j:posint[if INDEX (t,i) and INDEX (t,j)

then [if i<j then t(i)>tTj)]
and t.dom<n

vfun top returns ring:ringsize
{returns the ring on top of the spindle)
in t. dom>O!:: 1i __ottr ing' =t. hi gh

ofun add (ring:ringsize)

{adds a ring to the top of the spindle)
in t.dom <n and t.high>ring or

t. don=O
out t'.hib=t.hib+l and

t'.high=ring

ofun delete
{deletes the ring on top of the spindle)
in t.dom>O
out t'.hib=t.hib-1

end tower;

Figure 46. Extension of Type "tower"

104

program orgcontroller

variables
i: integer; {count)
locked, terminated:boolean; {boolean state indicators)
int indest in:message; {intermediate storage of messages)
last__ring:rTng_size; {history variable for recording the ring

involved in the last transaction)

text

{initialization of the spindle "org"}
org:=(1);
i:=I;

do i<n -> org(i):=n-i+1;i:=i+l od

{initialization of the controller variables}
terminated:=false;
locked:=false;
last ring:=n;

{control loop of the control algorithm)
do not terminated and org.dom=O and not fromint.came

and not fromdest.came
Snot trmina7ted and no ring for sale and
no message received)

->sk~i

11 not erminated and org.dom>O and not fromInt.came
and not from dest.came
Tnot terminated and no message received,
but ring for sale)

* ->sell {see Figure 481
[not terminated and from int.came

Tnot terminated-and message received from the
machine containing spindle "int"}
{see Figure 49)

(I not terminated and from dest.came
(Tnot terminated -and message received from the
machine containing spindle "dest"

(od {see Figure 50)

end orgcontroller;

Figure 47. Controller of "towerorg"

105

program sell (offer a ring for sale)

pre org.domn>O (at least one ring for sale)

post to dest'.window.opsale {send a message of the form)
and to dest'.window.ringorg.high" ("sale,org.high", to the other)
and to -nt'.window.op~sale {two machines)
and to-int'.window.ringzorg.high; {in the partition)

variables
mess :message;

text

mess.op,mess'r in :=sale,org.top; (generate the message)
to-dest.put(mess);- (send to destination)
to-int.put(mess); (send to intermediate)

end sell

Figure 48. Program "sell"

H1 not terminated and from int.cane
->int in:=fro'Tnnt.get; [save incoming message)
if Tnt in.op-sale (ring for sale?)

->if lockedztrue (machine state locked?)

->!i (ignore the offer for sale)1J lo~ked=false (machine state unlocked?)
->if last rlng-int-in.rlng (was saine ring been involved)

(in previous transaction?)
->skip

1] last ringtint ln.ring
->buy(locked,Tnt-in,to_int) (do "buy")

fi
fi

[1 t ln.opzbld (is a bid comning in?)
->1?' lockedztrue (machine state locked?)

->reject (mnt in,to int) (do "reject")
H1 lockedzfalse Tmachin6e state unlocked?)

->close-sale(last-ring,int-ln,to-int) (do "close-Sale")
fi

in t ln.op=deal (is a ring coming in)
->cTose-buy(locked,last-ring,int in)

* 1 (do "close-buy")
(I lntl- n.op=nodeal (was a bid rejected)

->locked: =false
fi

Figure 49. Dealing with Machine Containing 'lint"

106

U not terminated and from dest.came
->dest in:-fr®' dest.get; [save in:=omin:= message)

if dest in.op7stop ("stop" command received?)
->terminated:=true (set termination indicator)

(U dest in.op-sale {ring for sale?)
->iflocked=true {machine state locked?}

->Ii {ignore offer for sale}
(1 locked=false {machine state unlocked?)

->if last ring=destin.ring (was same ring involved}
{in previous transaction?)

->skip
[I last ring#dest in.ring
->buyTlocked,de tin,todest) {do "buy")

fi
fi

] dest in.op=bid {bid coming in?}
->if locked=true (machine state locked?)

->reject(dest in,todest) (do "reject"}
[locked=false

->close sale(last ring,destin,todest) {do "closesale")
fi

[] dest_in.op=deal {ring coming in?)
->close-buy(locked,last ring,dest in) {do "close buy")

[I dest in.op=nodeal (bid rejected?}
->lo7ked:=false {unlock machine state)

fi

Figure 50. Dealing with Machine Containing "dest"

program buy(locked:boolean,in:message,var out:message outlet)

{bid for ring on sale)

pre ORGACCEPT(in.ring); {the ring must be aceptable}

post out'.window.op=bid {send a message of the)
and out'.window.ring-in.ring {form "bid,in.ring" and)
and locked'=true; (lock the machine state)

variables
mess:message; {message variable)

text

if (org.dom>O and (org.hib-in.rlng)mod2-1) (test acceptance of the}
or (org.dom-Oand (n-in.ring)mod2-O) {ring for sale)
->mess.op,mess.Ttng:-bid,ln.ring; {generate the message)

locked:-true; (lock the machine state)
out.put(mess) (send the message)

11 (org.dom>O and (org.hlb-tn.rtng)mod2-O) {test non-acceptance}
or (org.dom-0-and (n - in.ring)mod2-1) (of the ring for sale)
-i s'! { tgnore-5e offer)

end buy

Figure 51. Program "buy"

107

program reject(in:message,out:message outlet) {reject bids while the
machine state is locked)

pre true;

post out'.window.op-nodeal (send a "nodeal" message)
and out'.window.ring-in.rlng;

variables
mess :message;

text

mess:op,mess.ring:-nodeal,in.ring; (create message)
out.put(mess); (send message)

end reject

Figure 52. Program "reject"

program close-sale(last ring:ring size,in:message,out:message outlet)
(close a deal)

pre in.ringzorg.high (a bid for top ring)
("org" has been received)

or in.rlng=org.high or org.dom=O; (a bid for ring in middle)
(of "org" has been received)

post if in.ring=org.high
then [org'.hibzorg.hib-1 {delete top of "org",}

and out'.window.op-deal (send a message of the)
and out'.window.rlng-org.high (form "deal,org.high")

adlast ring'=org.high] (to the bidder)
and li-in.riig~org.high or org.doi=O]

then Coutl.window.opz;nodeal (send a "nodeal"message}
and out'.window.ring=in.ring]; (to the bidder)

variables
mess :message:

4 text

.4 if ln.ringzorg top and org.dom>O (bid acceptable)
->mess.op,mess.rTg:=deal,org.top; (create message)

last ring:-org.top; (remember top ring)
org.delete; (delete top ring)
out.put(mess) (and send it)

[I ln.rlng~org.top or org.dom-O (bid unacceptable)
->mess.op,mess.ring:znodeal,int in.ring; (create message)
out.put(mess) (and send it)

fl

end close-sale

Figure 53. Program "close-sale"

108

prograin close-buy(locked:boolean,last-ring:ringsize,in:message)
{receive a bid response)

pre true;

post org'.hib=org=org.high+1 (add new ring)
and org'.highzin.ring (to the top of "org"}
an3 locked'=false (unlock machine state)
and last-ring'=in.ring; (record new ring)

variables
mess :message;

texct
org.add(in.ring); {add new ring to top of "org")
locked:-false; (unlock machine state)
last-ring:=in.ring {record new ring)

end close-buy

Figure 54. Program "close-buy"

109

5.2.4 Remaining Machines

To complete the design of the system "towersof_hanoi", the two machines containing

the spindles "int" and "dest", respectively, would have to be defined. These machines

would define the components "tower2" and "tower3' in the partition of the machine

"three towers" (see Figure 35). Given the definition of these two machines, the

document for the definition of the system "towersof hanoi" has the overall structure

shown in Figure 55.

Except for minor differences, the machines in the partition of "threetowers" are

identical. Therefore, the complete design of the machines "towerint" and

"tower dest" is omitted. The definition of these machines follows the principles

illustrated for the definition of the machine "tower_org". The following differences

would have to be observed in the design of these two machines:

tower int: o In the initial state, the spindle "int" is empty.

o The acceptance criteria for rings on sale needs to be defined

such that for int.dom=O, the arithmetical difference

between the size of the ring to be accepted and n is odd.

This is equivalent to assuming an imaginary ring of size n at

the bottom of "int".

tower dest: o In the initial state, the spindle "dest" is empty.

o In the final state, the spindle "dest" contains the full tower.

o The termination of the game has to be determined by

detecting that the full tower has been constructed on "dest".

Upon termination the "stop" command needs to be issued to

the machines "tower org" and "tower int".

5.3 DESIGN OF A COMMUNICATION SUBSYSTEM

The solution to the Towers of Hanoi problem presented above was made up of three

concurrent machines communicating among themselves over six point-to-point

channels. This design separates concern for the required logical communication from

110

system towers of hanoi
(list of miachines contained in the definition)
three towers(n);
tower org(n);
tower l nt(n);
tower-dest(n);

machine three towers(n)
-Tc~e'inition of "three-towers")

end three-towers;

machine tower -org(n)
Ideinition of "towerorgu)

end tower org;

machine tower int(n)
[definitioin of atowerIntl)

end tower-int;

machine tower dest(n)
TadI'inition of "tower dest")

end tower-dest;

end towers-of-hanoi

Figure 55. Overall Structure of "towers of hanoi"

concern with supplying that communication capability. That set of channels will now
be refined into a central communication subsystem. This refinement is accomplished
by means of the CSDL type refinement mechanism. The "corn struc" data type will be
refined into a single communication subnet which satisfies the requirements posed at
the upper level. The refinement is developed in the design of machine network, which
ref ines comstrue.

5.3.1 Refining Machine Description

The major design decisions made at this level are to frame messages with source and
destination addresses and to use a Y-shaped message switch, each arm of which has a
unique id, to replace the delta-shaped set of channels. The complexity of system-wide
serialization of traffic, required for a direct implementation with a bus for example,
will be postponed to another level. Figure 56 shows the logical structure of the
"corn struc" data type and how it will be mapped onto the message switch.

The structure of the refining machine "network," then, is three partitions connected by
the message switch. Each partition is an interface unit which implements the
operations "put", "get", and "came" for its portion of "comstruc". Since the "went"
operation is never used and is in fact superfluous because of the requirement on
cornstruc that the leaves event is never delayed, it is not implemented in any

partition.

The type definitions for port addresses, framed messages, and the message switch are
shown in Figure 57. The invariant specification of the message switch type includes

its port address assignments and the properties of orderly, reliable message routing.
To aid in expressing these properties, the predicates "GOES_OUT' and "UNCHANGED"
are used; their definitions are given in Figure 58.

The specifications for the "network" machine include the mappings between structural

components of the "coin struc" data type and the message switch; these mappings are
shown in Figure 59.

The single interface object of type message switch is named "switch", and the three
interface units are "iuA", "iu_ 1", and "iu_-C"; these declarations are shown In

112

CS(1)

-CS(2)

CS(3) GS(5)

C S\(4) CS(6)

lu-C

Figure 56. Mapping Between

113

types
port id: (A [1 B [1 C);
netframie: (froni,to: port id,body: message);
mail -box: (inl,in2: net fiane inlet, out: net frame outlet,id: port_id);
message _switch: (endA,endB,endC: mail_box) -___

let ins: message switch
Inv (g lobal unique address for each port)

ms.endA.ld=A & ms.endB.id=B & ms.endC.id=C
and {"from" field is always set to portid of sender)
forall i: posint (

[ms.endA.out.window.fromn prior effects (leaves(ms.endA.out))<i>=A
and
Tm-s.endB.out.window.from prior effects (leaves(ms.endB.out))ci>=BI
and
[m-s.endC.out.window.from prior effects (leaves(ms.endC.out))<i>=CI

and {every message gets to its destination unchanged)
orall i: posint [

[effects (GOES OUT(ms.endA,B))<i>
later effets (arrlves(ms.endB.lnl))<i>

and UNCHAKN GEms.endA,B,ms.endB. inl)I
and
TeTfects (GOESOUTms.endA,C))<i>

l-Iater effectfs(arrives(ms.endC.inl))<i>
and UNCHAN~tiY~?.endA,C,ms.endC.inl,i)I
and
[effects (GOES -OUT(msendB,A))<ib

lter effects (arrives(ms.endA.in1))<i>
and -UCNDms.endB,A,ms.endA.inl~i)I

and
[effects (GOES -OUT(ms~endB,C))<i

l7ater effects (arrives(ms.endC.in2))<i>
and -- UCNEDms.endB,Cms.endC.inl,i)I

and CAGT

(effects (GOES -OUT(ms.endC,A))<i
later effects farrives(ms.endA.in2))ci>

and UNCHANGEDm-s.--ndC,A,ms.endA.in2,i)I
and
(efects (GOESOUT(ms.endC,B))<i>

___ater effects(arrives(ms.endB.in2))<i>
Iand UNHAIETsi.endC,B,ms.endB.in2,i)

Figure 57. Required Types "1corn-struc" and
Message Switch

114

predcates
ZWS UT{obU from: mail_box, to: port id) means

leaves Wrom.out) and from.out.windo-w.to=to;

UNCHANGED(b* from: mail box, tid: portid,
o~f to: net framre inlet, i: posint) means

{no messages are aTtered TWntransit)
froen.out.window prior effects (GOES OUT(fromn,tid))<i>

=to.window a ter effe-cts (arrivies(to))<i>;

Figure 58. Predicates

let cs: corn-struc
switch.endA.out represents cs(1) .out;
switch.endA out represent cs(3).out;
switch.endA~inl represents cs(2).in;
switch.endA.in2 represents cs(4).in;

switch.endB.out represents cs(2).out;
switch.endB.out represents cs(6).out;
switch.endB.inl represents cs(1).in;
switch.endB.in2 represents cs(5).in;

switch.endC.out represents cs(4).out;
switch.endC.out represents cs(5).out;
switch.endC.inl represents cs(3).in;
switch.endC.in2 represents cs(6).in;

Figure 59. Mapping Function Between
"switch" and "corn struc"

115

Figure 60. The component declarations indicate that the components are instances of

the machine type "interfaceunit", differing only in the values of cer*.Ain system

parameters. The switch component names appearing in parenthesis immediately

following the individual component names indicate the association between each

component and the message switch. This constitutes a textual method of declaring the

system interconnection topology.

With the declaration of the partition chapter the description of the network machine is

completed. The decision to use a common communication subnet to route messages

tagged with sender and destination addresses has been established. Lt now remains to

describe the components at each end of the net which must supply the functions used

at the level above.

5.3.2 Partition Machine Description

The declaration

machine interfaceunit(T 1,T2: portid)

introduces the machine description for these components. The parameters are values

which particularize various components. These identifier parameters determine the

sources various components will be receiving messages from. This machine has one

object, mbx, of type mailbox. Programs will be defined which implement various

upper level operations; the program - operation associations must be specified. The

mailbox in an interface unit represents two channel outlets and two channel inlets, as

indicated in Figure 59; this information is used to specify the operation mappings in

Figure 61.

The program "send" implements the "put" operation on outlets. The view taken here is

that the upper level requirement that it is never necessary to check the flag before

doing a "put" operation means that the application system need never be faster than

the communications; accordingly, the program "send" waits on the subnet flag before

doing a "put". The result is that the application can be delayed by the "put" operations

which it uses, but such delay is invisible to the application. The "send" program is

described in Figure 62. The programs "receive" ard "check" implement the "get" and

"came' operations respectively. Their descriptions are shown in Figure 63.

116

With the definitions of these programs, the definition of the first level of refinement

of the virtual point-to-point comnmunicat ions system is complete. Plausible subsequent
refinements might be 1) to demultiplex the inlet streams and 2) to map onto a single

bus through queueing and token passing for resolving contention.

p~ri on
interfaces
switc_:message _switch;

ionnswhenA:ntraent(C)
inBA(switch.endB,): interface unit(A,C);
inCB(switch.endC): interface~unit(A,B);

end partition

Figure 60. Partition Definition of
Machine "network"

ltO Eiut1 ,cout2: message outlet, cinl,cin2: message inlet
send(I1) represents coutl.put;
send(12) reresents cout2.put;
if mbxin reresents ci

then receive (11)reeresents cini.get;
if ii~ETin 1 reresents cinV

then check 7Trepresents cini.came;
if iis'xi n2 reresents cin

then receive (12)re resents cin2.get;
ifxi~in2 reresents ce
then checV represents cin2.came;

Figure 61. Operation Mappings

117

program send(id: port id, ms:message)
Li id-I1 or id=12

post let fTnet fraine
such that f.fromnzmbx.id and f.tozid and f.body=ns

1mb7x-juT.-window~f and mbx' .out.flag=false]

variables f: net frame

text
T.Ti-ofn,f.to,f.body :=mbx.id,id,ms;
{wait till readyl do not mbx.out.went ->skip od;
mbx.out.put(f)

end send;

Figure 62. The Program SEND

prg~receive(id: port id) returns ins: message

Piiid 1 or ld=12
pt i i-Il then mslzmbx.inl.window and mbxl.inl.flagufalsel
and [if iTf then msl=inbx.in2.wi-ndow and mbxl.1n2.flag-falsel

text
TTd=I1 -msi:s mbx.inl.get
IT ldz12 ms ms mbx.1n2.get
fi

end receive

pLpg~c check(id: portid) returns b:boolean
ped=1 or id:12
pt i i-I1 then blzmbx.inl.flag)
and [if id"T7 then bl=mbx.in2.flagl

text
*TF-Td=I11- b mbx.in1.came

iTf id*I2 ->b :mbx.1n2.came

fl

end check;

Figure 63. The Programs RECEIVE and CHECK

118

SECTION 6

PERFORMANCE SPECIFICATION IN CSDL

In this section, a formalism is presented which supports performance analysis of
system designs defined in CSDL. This formalism allows performance constraints to be

expressed within CSDL system definition documents and input parameters as well as

measurements to be obtained from a system performance analysis to be extracted

from such a document.

6.1 OBJECTIVES

Performance requirements define some of the most important properties a system

must possess. Failure of a system design to meet given performance requirements

necessitates modification of the design or even redesign of the system. Therefore, it

is essential that system definitions include information about performance

requirements in order to support the designer in analysing system designs and design

decisions. Responding to this need, one of the objectives is to incorporate concepts,

constructs and operations into the CSDL structure to allow the designer to:

o Make statements about system performance

o Ask questions about system performance, during system design

These statements and questions must be applicable and meaningful at all levels of

system definition, i.e., at all levels of refinement.

Minor extensions to the CSDL computational model and the introduction of a small set

of new constructs as discussed in 6.2 and 6.3, are required to achieve these goals.

Before proceeding to those details, however, this subsection presents an overview of

performance constructs.

6.1.1 Statements, Questions and Questments

Many performance questions and statements relate to duration or occurrence of an

epoch for some activity A. Thus a designer may want to
119

state A takes t time units! or

ask if A takes t time units ?

where "I" denotes a statement and "?" denotes a question. The statement conveys

information about properties that A must possess. The question asks about A's

relationship with respect to a certain property. Not all properties relate to time, and

common questions and statements may be classified as logical or numeric:

A precedes B ! (a logical statement i.e., a behavior assertion)

A precedes B ? (a logical question)

A takes a time 0 < t < n! (numeric statement)

A takes a time 0 < t < n ? (logical question)

A takes a time t = ? (a numeric question)

To reiterate, statements convey information about properties that must or will hold

and as such are true assertions. The validity of logical questions is open; i.e., unknown,

as are parameters of numeric questions.

The purpose of questions is to indicate properties about which information is desired or

required. Information can only be acquired by some form of performance analysis.

Analysis can be achieved by:

o Performing static algebraic manipulations on statements [BOOT?91, [WEGB76],

[YAU8I], [FRAN79]

o Mapping the system definition into a dynamic queueing network representation, and

then solving the network [DENN78], [GELE80I, [RAMA8OI, [SAUE79I
o Mapping the system definition into a dynamic simulator and performing

simulations [SANG79], [CAV0811, [FRAN77]

o Realizing the system or a simplified prototype and collecting operational data

from the running system (KAIN79J, [BERG80]

All four approaches are relevant, and linkages between CSDL system definitions and

system performance analysis are discussed in 6.5.

120

Here the concern remains with a qualitative assessment of the descriptive needs of

CSDL in order to address performance issues, assuming for the moment the existence

of any required link to a performance analysis tool. It is necessary to distinguish

between statements that are valid and those that should (must) be valid, but are not

obviously seen to be so. Determination of the validity of statements in this latter

category remains an open question, and here they are referred to as questments.

Questments must be resolved by performahce analysis, and are denoted by the !? pair.

As an illustration consider:

The average throughput of A is X ! (numeric statement)

The mean throughput of A is ? (numeric question)

The mean throughput of A is X !? (a questment)

Determination of the invalidity of a questment constitutes a system performance

violation and necessitates modification of the system definition or even redesign. The

inability to validate or invalidate a questment is not considered.

6.1.2 Time and Counts

Many of the preceding examples relate to time and therefore imply an ability to

record the passage of time. One of the prime attributes of some concurrent systems

(in particular loosely coupled systems) is near autonomy of the system components.

The individual components of such systems adhere to individual clocks. While such

systems may require multiple clocks for operation, one global clock is desirable and

j sufficient for use in performance statements, questions, questments, and finally is

necessary for performance analyses. Moreover, proper use of the single clock for

performance purposes does not invalidate or disturb the inherent multiple clock nature

- Iof certain systems [KAIN79].

The performance approach therefore assumes the presence of a single globally

available clock against which the passage of time can be measured. The basic use of

the clock will be to record intervals and epochs (i.e., time points) at which events

(described in 6.2) occur. Here an event is loosely associated with the occurrence of an

activity or, if the activity consumes time (i.e., is not instantaneous) with its initiation
or completion.

121

The utility of a clock is much enhanced by an ability to count (record) the number of
occurrences of an event or activity and to refer to a given occcurrence, say the i-th,
in the time ordered sequence of occurrences. As shall be seen in 6.3, CSDL already has

sufficient capability to deal with counts.

6.1.3 Activities and CSDL Definitions

CSDL admits four possible hierarchically ordered levels of system description:

o System level (the system is viewed as a black box)

o Action level (individual activities are viewed as black boxes)
o Partitioned level (actions are dispersed among machines and communications is

considered)

o Program level (action specifications are replaced by procedural programs)

Each level in the hierarchy contains more information and detail than preceding levels.
Each level has associated activities and related performance issues:

o The system level has the atomic system activity, with determination of system
throughput as a possible measure.

o The action level has actions and type function invocation activities with action

execution times as possible measures.

o The partitioned level has actions, types and channel activities, and transmission
times as possible measures.

o The program level has actions, types, channel, and program statement activities

and any and all measures related to those entities.

Each activity is a likely candidate for involvement in a performance statement,

question, or questment.

122

6.1.4 An Experimental Framework

For dynamic system analysis related to statements, questions and questments two

experimental frameworks are possible. One is theoretical and implies observation of

system behavior over an infinite time. Such is the assumption employed in most

queueing theoretic results. The other is operational and implies observation of the

system for a finite period of time.

It is believed that most CSDL definitions will require dynamic analysis, which will

require simulation. The tenants of operational analysis seem adequate for most such

analyses, and additionally have a relationship to queueing theory [BUZE76], [DENN78].

Under operational analysis a record is made of:

T - Observation period

A - Number of requests (activations, users arrivals) during

T for a given activity

B - Time (B<T) that the activity is engaged (present) during T

C - Number of occurrences (uses) of the activity completed during T

W - Backlog time integral associated with T, where backlog N = A - C

From these observed operational measures we can derive:

(1) A/T request rate (mean)

(2) C/T service rate (mean)

(3) B/T utilization (fraction of time busy)

(4) B/C the mean service time

In subsequent subsections these notions are made concrete, first by extending the

computational model to allow for a clock, then by introducing CSDL constructs to

allow for performance statements, questions, and questments about system

performance. The number of new constructs required to characterize performance is

minimal. The power to characterize performance already exists within CSDL. The

extensions to CSDL needed to support the experimental framework described above

are the global clock and the ability to characterize random variables which are often

associated with activity times and counts in dynamic systems.

123

6.2 EXTENSION TO THE CSDL COMPUTATIONAL MODEL

To facilitate the specification of system performance in CSDL definitions, a single

extension to the CSDL computational model is necessary. As described in 6.1, there

exists a need for a mechanism to relate the passage of time during execution of the

system to the time spent with the pure information processing. This need can be

satisfied by introducing a single, global clock for performance purposes. This clock can

be used to specify a required passage of time among the many activities in a

concurrent system. However, an implementation of a system may not refer to such a

clock. Rather each autonomous element of the actual system has its own clock, with

respect to which proper adherence to performance specifications must be satisfied.

Thus, use of a global clock isolates the expression of performance specifications from

the means by which the performance specifications are satisfied.

The extension that is added to the CSDL computational model is the ability to specify

an absolute time for any event in a system execution. As discussed in 4.1, an event is a

change in value of an object in the object space of a machine. Individual, sets, or

sequences of events can be referred to by the specification language. A new language

primitive called clock allows statements in the specification language to refer to

absolute times of occurrences of individual events. Multiple uses of this primitive

allow reference to be made to sets or sequences of events. Thus, more than mere

temporal relations among events can be specified. For example, the passage of time

between two events can now be expressed by the difference between the absolute

times, as given by clock, for each event. Subsection 6.3 defines the specification

language primitive clock and gives several examples of performance specifications.

Absolute time is expressed in convenient time units, e.g., seconds. Although not

necessary, an arbitrary event at the beginning of a sequence can be designated as

occurring at time 0. However, for virtually all performance specifications, relative

times, or differences in absolute time, are used.

o Terminating sequences of events can be assumed to start with an initial event at

time 0, and terminate with an event at a future time.

124

o Nonterminating sequences of events are assumed to require a non-zero amount of

time between each event pair, and thus relative time differences can be used to

express performance.

Figure 64 is example of an event history in a machine. The computational model

permits temporal assertions to be made that can specify that certain events occur

before or after certain other events. Tius, the assertion language can be used to

specify that event El occurs before event E2, and event E2 occurs before event E3, as

indicated in Figure 64. The extension to the computational model allows for an

association between events and time. As shown in the figure, event El can be specified

to occur at a particular time (wih respect to a system clock), and likewise for the

other events. Thus, performance information related to delays between occurrences of

events and frequencies of events can now be specified.

System Execution->

El E2 E3

TI T2 T3

Time ->

Figure 64. Events and Times of Events

6.3 NOTATION FOR PERFORMANCE SPECIFICATION

This subsection details new constructs and extensions to CSDL that are necessary to

specify system performance.

6.3.1 Time

The syntactic construct to express time in the specification language is

clock(E)

125

where E is an expression identifying an event (Fee 4.2); "clock(E)" is a real-valued

function and has as its value the time at which the event E occurs. Clock expressions

can be used and intermixed with other assertions, as will be shown in later examples.

It is often desirable to specify that an interval of time or number of occurrences of an

activity are within a range of possible time values for any behavior of the system.

These specifications are expressed as follows: Let El and E2 be two events of

interest. Then t = clock(EI) - clock(E2) defines the time between the occurrence of

the two events, and tI < t < t2 expresses the fact that T is in the range tI to t2.

6.3.2 Number of Occurrences of Events

Suppose E is an event, for example "arrives(a)". Then "E<i>" refers to the i-th

occurrence of the event E. In this example, arrives(a)<i> is the event that

characterises the i-th arrival of a message at the inlet a. Thus, a means exists to

identify and count occurrences of events as is required by operational analysis.

Additionally, the total number of occurrences of an event E during an observation

period is given by the expression

#i:posint[E<i>]

which denotes the cardinality of the number of occurrences of the event E.

6.3.3 Specification of Stochastic Intervals

It is often desirable to express that a time t has a stochastic, or probabilistic, nature,

such that, for example, a time interval between two events will have a clock value

randomly drawn from a particular probabilistic distribution. The CSDL construct dist

is introduced to allow this kind of performance specification. For example

t = dist(negexp,y)

means that values of t are assumed to have a negative exponential distribution that

has a mean of y. Other distributional forms can be specified by replacing negexp and y

126

by the name and descriptive parameters of other desired distributions. Tabular

distributions may be specified by lists of (value, probability) pairs, in a manner

analagous to the tarm definitions for n and t that appear in the next subsection.

6.3.4 Specification Language Extensions

As indicated in 6.1 the specification language is to be extended to account for terms

that are used to form performance statements, questions, and questments. The

construct which is used for the integration of these extensions into the specification

language is the means construct, which provides for the specification, parameter-

ization and naming of predicates. As an example we could have

p(a,b) means a < b

which (as a predicate) has a logical value, i.e., is true or false.

The extension for performance statement purposes provides for terms, i.e., functional

definitions, such as

p(a,b):real means a + b

which has a real numeric value rather than a logical value. Formally, these constructs

specify terms, and the right-hand sides may be arithmetic or temporal terms possibly

embedded in the context of a let clause. As the specification language is tentative

and not fully detailed in this report, syntax diagrams are not provided for the extended

means construct.

As an example of the extension, consider specification of the epochs at which changes

in the number of elements in an array, a, occur, as well as specification of the number

of elements the array contains following the changes. Given the extension these

values are specified by

n(a:.integer array, i:posint):integer means

a.dom af tereffects(a.dom i a.dom)<i>

t(afinteger array, i:posint):real means

clock(eff ects(a'.dom a.dom)<i>)

127

Furthermore the time the array remains in a given state after a change is specified by

a term of the form

t i(a:integer array, i:posint):real means

clock(effects(a'.dom J a.dom)<i>) - clock(effects(a'.dom i a.dom)<i-l>)

These forms may be thought of as defining numeric functions or sequences of numeric

values; either view is consistent with the extension. The extension is sufficient to

allow expression of the performance measures used in operational analysis, including

discrete time integrals and snapshots. Two examples are given to elaborate this point.

Consider first a desire to snapshot the virtual buffer contents of a channel at time t.

The snapshot specification is

size(a:m channel, t:real):integer means

#i:posint[clock(eff ects(leaves(a))<i>) < t] - #i:posint[clock(effects(arrives(a))<i>) < t]

Consider second a discrete time integral which is defined as a sum of products. The

crucial element of a time integral specification is the sum

sum(s:real,x:real array,i:integer) means

x.lob < i and

if i > x.hib then s = 0 and

if i < x.hib then let sl:real such that sum(sl,x,l+i) [s sI + x(i)]

Then, using sum the time integral of an array a becomes:

time integral(a:real array):real means

let max:integer such that

max = #y,x:integer[- i:integer[x=i and y=n(a,i)]],

z:integer array, sl:real such that

sum(sl,z,z.lob) and

Vi:integer (if I < i < max-I then z(i) tl(a,i) * n(a,i)]

Es']

128

Other more elaborate examples follow in 6.3.6.

6.3.5 Performance Statement Placement

Performance assertions (predicates), which are constructed from arithmetic and

temporal terms, may appear in a variety of places in a system description.

Specifically they may appear in:

o Specificafions Chapter - Within the behavior specifications section a new

subsection perf for performance assertions is added,

o Program Definition Text - Performance specifications for sequential programs

appear in a perf assertions section, obviating the need for performance

specification fields within the actual design text,

o Type Declarations - A performance assertions section is added to the specifications

of operations and functions,

o Action Declarations - A performance assertions section is added to the pre and

post assertions of action specifications.

Their form parallels those of other sections, as the example of 6.4 illustrates.

6.3.6 Sample Operational Analysis Term Specifications

Before proceeding to an example containing a variety of performance assertions, some

useful and simple performance specifications are given which define various

performance measures commonly used in assertions.

Departure Rate of Entities from an Outlet -- This term determines the number of

messages of type m that leave an outlet of a machine during an observation period,

and divides this number by the time interval of the observation period to determine

the departure rate, or frequency.

129 [

OutletDeparture Rate(out:m outlet):real means

let last:posint such that

last--/i:integer , leaves(out)<Wi

[last/(clock(leaves(out)dast>)-clock(leaves(out)<>))]

Departure Rate of Entities from a FIFO Queue - This specification describes the rate

at which entities leave a First-In-First-Out queue. It is assumed that the -structure of

the queue data type is defined elsewhere and that an array of type x is used to store

the elements of the queue.

FIFO_QueueDeparture_Rate (A:x array):real means

{A.dom is the size of the array at any point in time. An enqueue into the queue

increments A.dom by one, and a dequeue, or departure, from the queue,

decrements A.dom by one. Therefore, we are interested in the number of times

A.dom is decremented in the observed time interval. Such an event is represented

by effects(A'.dom < A.dom), indicating the new value of A.dom is less than the old

value.}

let last:posint such that

last=#i:integer [effects(A'dom < A.dom)<I>

[last/

(clock(effects(A'dom < A.dom) 4asts>) -

clock(effects(A'dom < A.dom)cl>))]

Average Queue Size for a Queue - Assume for a queue the same type structure that

was described in a previous example. A history of A.dom, giving the number of

elements in the queue, might appear as shown in Figure 65.

A DOM'

t2 t3 14 5 16 17 18

TIME

Figure 65. Observation of Queue Size

130

At time 0 there are no elements in the queue. At time t1 an enqueue is performed, and

A.dom is then equal to 1. Also at times t2, t3, and t6 there are enqueues and A.dom is

incremented. At times t4, t5, t and t& dequeues are done, and A.dom is decremented

each time.

The average queue size is defined to be the area under the curve, which can be

obtained from a time integral of A.dom, divided by the time interval t-tl.

To obtain the average queue size, first define a term to refer to the number of

elements in the queue at the i-th time an enqueue or dequeue was performed.

n(A:integer array,i:posint):integer means

A.dom after effects(A'.dom i A.dom)<i>

Then define a term to refer to the time at which the i-th enqueue or dequeue occurs.

t(A:integer array,i:integer):real means

clock(effects(A'.dom i A.dom)<i>)

Finally, define a term for the average queue size of a FIFO queue, using the two terms

given above.

FIFO_AverageQueueSize(A:integer array):reat means

let max,sl:integer,z:integer arry such that

(max is the number of enqueues and dequeues}

max = #x,y:integer[- i:integerty=i and x=n(A,i)l] and

{sl is the sum of the elements in the array z.}

sum(sl,z,z.lob) and

{Each element in z is the queue size multiplied by the period of time

during which the queue has that size at the i-th enqueue or dequeue.}

Vi:integer(if I < i < max then z(i) = n(A,i) * (t(A,i+l)-T(A,i))]

(The average queue size is the sum sl divided by the observed time.}

[sl / (t(A,max) - t(A,l))]

131

Variance of Queue Size f or a FIFO Q2ueue -- Taking the same approach as in the

average queue size example, the variance of queue size is given as:

FIFOQueue_-Size_-Variance(A: integer array):real means

{The terms n and t given with the FIFO_-Average _Queue_Size

term are used. For the variance each queue size is squared.)
Let max,sl:integer,z:integer array such that

max = #x,y:integer(4 i:integer[y=i and x=n(A,i)1] and

sum(sl,z,z.lob) and

Vi:integer(if I < i < max then

z(i) = (n(A,i) * (t(A,i+ 1) - t(A,i))) * (n(A,i) * (t(A,i+l1) - t(A,i)))]

(sI / (t(A,max) - t(A,l)) - FIFOAverage _Queue_Size(A)*

FIFOAverage _Queue_Size(A)]

Average Waiting Time of Entities in a FIFO Queue -- The average waiting time of

entities in a FIFO queue can be obtained by use of Little's Law:

QueueAverage _Waitingjime (A:integer array):real means

FIFOAverageQueueSize(A) / Queue DepartureRate(A)

Utilization of a FIFO Queue -- Utilization of a queue is defined as the relative

fraction of time the queue contains one or more entities. Therefore, when A.dom>O

the queue is non-empty, otherwise it is empty. Associating a new term nv(A,i)=1 with

the queue being non-empty at the ith time, and nv(A,i)=O with it being empty, the

utilization is a time integral of the term nv.

K nv(A:integer array,i: integer): integer means
if-'1a e ff csA~o ~om<>>0te n

if A.dom after ef fects(A'.dom i A.dom)<i> = 0 then 0 n

FIF O_QueueUtil ization(A: integer array):real means

Let max,sl:integer,z:integer array such that

max = x,y:integer[4 i:integerly=i and x=nv(i)]] and

sum(sl,z,z.lob) and

Vi:integertif I < i < max then z(i) =nv(A,i) *(t(A,i+1) - t(A,i))]

(si / (t(A,max)-t(A,l))
132

Average Queue Size for a Buffered Channel -- Assume a buffered communication

channel, A, for which the average buffer length is desired. To obtain the average

buffer size, the term t_change is first defined.

t_change(A:t channel,i-posint):real means

clock(eff ects(leaves(A.in) or arrives(/.out))<i>)

Then the average buffer length term is specified:

MeanBufferSize(A:t channel):real means

let max:integer,z:real arrays:real such that

max =//y,x:integer[-] i:integerfx=i and y=t_change(Ai)]] and

Vi:posint[if i < max then

z(i) = size(A,t change(A,i)) * (t_change(A,i)-tchange(A,i-l) and

sum(s,z,z.lob)

[s / (tchange(A,max) - t-change(A,l))]

6.4 AN ILLUSTRATION OF PERFORMANCE SPECIFICATION IN CSDL

This subsection illustrates the use of (1) the CSDL performance constructs and (2) the

performance terms described in 6.3. The system design is an example of a. high-level

specification of an interactive multiprogrammed computer system. The specification

follows the CSDL documentation format and syntax, as given in Section 4 and

demonstrates how performance specifications can be integrated into a system

specification document. Attention is given primarily to the system's structure and to

performance specifications. Less emphasis is given to functional specifications, but

comments are used to provide sufficient functional detail.

The interactive computer system we have chosen to illustrate is widely known and has

received considerable attention from a performance modeling and analysis viewpoint

(DENN78]. CSDL, as will be seen, allows for the specification of at least as much

performance information as appears in performance models of such a system.

Therefore, it is expected that sufficient performance information can be extracted

133

from the CSDL description document to build and analyse a performance model.

Furthermore, the CSDL document can be used to unambiguously describe the activities

in the system, so that the model can be precisely defined.

The interactive computer system model is illustrated in Figure 66. An informal

description of the structural, functional, and performance characteristics is given

below.

m TERMINALS

P. CENTRAL
_____SUBSYSTEM BATCH

COMPLETIONS

BATCH
REOUESTSH

Figure 66. Interactive Computer System

The structural characteristics of the system are:

o There is a Central Subsystem for processing jobs.

o There are m interactive terminals in the system and each terminal is associated

with a job.

o Each terminal has a two-way communication path in which jobs flow to and from

the Central Subsystem.

o There is a Batch facility having two subsystems.

o The Batch Requests subsystem has a one-way communication path in which jobs

flow to the Central Subsystem.

o The Batch Completions subsystem has a one-way communication path in which jobs

are received from the Central Subsystem.

The functional characteristics of the system are:

o Each terminal is manned by a user who alternates between thinking and waiting.

o In the thinking state the user is contemplating what job to submit next to the

Central Subsystem.

134

o On submitting a job, the user enters the waiting state, where he remains until the

central subsystem completes the job for him.

o The Batch Requests subsystem comprises jobs submitted by other means, e.g.

remote job entry stations. Batch jobs are submitted asynchronously, without

regard to batch completions.

o The Central Subsystem processes incoming jobs and returns them to the

appropriate terminal or to the Batch completion subsystem. The central

subsystem has a black box behavior at this level, which will be further described

The performance characteristics of the system are as:

o Each terminal has a think time, TerminalThinkTime, having a negative

exponential distribution.

o Batch requests are generated at the rate BatchRequestRate, having a negative

exponential distribution. o Performance requirements on the central subsystem

may include:

- Maximum delay in processing jobs

- Average delay in processing jobs

The next level of description of the Central Subsystem is shown in Figure 67. The

structural characteristics are:

o The Front End Processor (PEP) has communication paths to the terminals, the

Batch subsystems, and the CPU.

o The CPU is connected to the FEP and to n 1/0 Devices.

o Each I/O Device has a communication path to/from the CPU.

The functional characteristics of the Central Subsystem are:

o The FEP is the interface between the various incoming and outgoing jobs and the

single CPU job stream.

o The CPU has a queue in which arriving jobs enter, and from which jobs are selected

to be processed (FIFO ordering is used). A processed job is completed, and is sent

to the FEP, or requires 1/O processing, and is sent to an I/O Device. The particular

135

FROM I
TERMINALS 4- ROTEN TERINL

FROM PROCESSOR TERMINALS

BATCH REOUEST PROCESSOR

BATCH COMPLETIONS

Figure 67. Central Subsystem

(Figure 67)

routing is described by a probability transition table, e.g., p(i) =probability of the

job going to device i.

o Each 1/0 Device has a queue in which incoming 1/0 job requests enter, and from

* which jobs to receive 1/0 processing are removed. Completed jobs are returned to

the CPU.

The performance characteristics of the Central Subsystem are:

*o The FEP is assumed to cause no delay or overhead when handling jobs.

o The CPU processes each job for an amount of time, CPU-Time. The distribution

of the service time is negative exponential. Performance measures that can be

taken include:

- The size of the queue (both average and maximum size).

- The utilization of the CPU.

- The average waiting delay of jobs in the queue and the CPU.

- The arrival rate of jobs to the CPU.

o Each 1/0 Device can process an 10 request in an amount of time, 10 CUTime, which

also has a negative exponential distribution. Performance measures that can be

taken are similar to those of the CPU.

136

The informal description of the multiprogrammed computer system is used to generate

the formal CSDL definition. Figure 68 illustrates the high level structure of the

interactive computer system using CSDL primitives. Abstract machines are used to

represent:

o Four terminals

o Batch Requests and Batch Completion subsystems

o Central Subsystem

CSDL channels are used to represent the communication topology. For example,

TIC(l).out is an outlet at TerminalMachine(l), and TIC(l).in is an inlet at

Central_SubsystemMachine, indicating a flow of information from the terminal to the

Central Subsystem.

Figure 69 shows the CSDL structure of the CentralSubsystem Machine. The CPU

queue is represented by an abstract machine, CPU_QueueMachine, in order to reduce

the complexity of the CPUMachine.

A skeleton CSDL description of the interactive computer system is included at the end

of this section as subsection 6.6.

6.5 AN APPROACH TO PERFORMANCE ANALYSIS

Subsection 6.1 identifies four approaches to performance analysis. In review they are:

o Algebraic manipulation

o Queueing theory
o Dynamic simulation

o Observation of a realized system

The first approach provides results by generation and manipulation of static algebraic

statements. The second approach provides a steady-state dynamic analysis by formal

mathematics. The third approach provides a steady-state or transient dynamic

analysis by logical experimentation, and the fourth approach provides transient or

steady-state dynamic analyses by physical experimentation.

137

TOCIlIIN MACHINEI(1) TIC(IIIIN TOW)lIOUT

-- CENTRAL-SUBSYSTEP& - --

IIN

B OC
(OUT

BATCH-IN. BIC OUT BATCH.OUT
MACHINE BOCI1N MACHINE

Figure 68. Structure of CSDL Definition of the Interactive Computer System

r - -- - - - - - -

TIC() FE MACINETOC(4)

eOC

ICPUIO(4)OU
M----------------------I

Figure~~~~~~~~~~~0 69. Stutr1fC'LDfnto fCetausse

U:0()38I

For all approaches the objective is to validate performance questments and answer

performance questions using a CSDL system definition including performance

statements as input. Conceptually, application of each approach proceeds as indicated

next.

(1) Algebraic manipulation is carried out by algebraically combining and

transforming statements (and perhaps questments) until expressions are obtained

which answer (or contribute to answering) performance questions. The approach

has been succesfully used [FRAN79], although it is tedious when manually

applied. Computer supported application of the approach may be related to

symbol manipulation [NGEW79] or symbolic execution [DARR78], [YAU8I], the

latter approach possessing a somewhat dynamic bent.

(2) Queueing theory, while applicable to all levels of system definition, is most

meaningful when action and partitioned level system definitions exist. At these

levels, network queueing theory [GELES0] becomes useful, with queueing nodes

representing actions and channel transmissions and node-to-node transition

probabilities reflecting the order in which the activities (events) represented by

the nodes occur. While the mapping between actions, channels, etc., and a

network queueing model may be straightforward, the approach may not produce

useful results because of the limitations of network queueing theory such as

limitations in the flow patterns, queueing disciplines and distributions

accommodated. Nevertheless, some significant subset of CSDL definitions could

be analyzed by network queueing theory, and the approach is attractive because

of the extensive number of network queueing theory computer program packages

which exist and which yield state probabilities and node utilization and queueing

delay measures for each network node.

-A

(3) Dynamic simulation (discrete event), like queueing theory, is applicable at all

levels of system definition, but again like queueing theory, it is most applicable

to action and partitioned levels definitions. At these level, actions, channels,

types, and hence multimachine systems are represented by procedural

descriptions that respond to and cause the events that describe the behavior of

the system. If a process-oriented simulation approach is taken (FRAN77], then

each action, type invocation procedure, and channel activity becomes associated

139

with a process, such that the set of processes interact and cooperate to mimic

system behavior. Theoretically any reasonable performance measure can be

estimated by dynamic stimulation, but the cost (in experiment time) may be

large in some cases.

(4) Observation of operational behavior requires an operational system or system

testbed [KAIN79] that can be configured to correspond to the CSDL system

definition. This approach requires attention to more low-level system definition

detail than the others, and thus, while viable, this approach is limiting.

Of the four approaches, queueing theory and simulation seem the most fertile to

pursue. For both cases it is necessary to map CSDL system descriptions to a form

suitable for performance analysis. Ideally statements and descriptions are used to

drive an analysis that provides answers to questions and questments, all governed by a

performance analysis tool that inputs the extended CSDL definition and automatically

produces both a performance model and results relevant to questments and questions.

Such a tool might be used in the manner indicated in Figure 70.

CSDL SYSTEM SYSTEM PARAMETERS

DESCRI PTION

REPEAT ANALYSIS
REVISE EXPERIMENT TO

D, DANALYSIS ABORTED.
BEHAVORIAL THERE IS INSUFFICIENT

EAINFORMATION IN DESCRIPTION
TO PERFORM ANALYSIS

ANALYSIS

YIELDS ACCEPTABLE DECISIONS:
RESULTS D,-IF THE ANALYSIS IS

LOGICAL SIMULATION,
EXPERIMENTS ARE
REPEATED TO ACHIEVE
ACCEPTABLE CONFIDENCE
IN RESULTS.

D2 -CHECK TO DETERMINE IF
MEASURES IN ACCORD
WITH QUESTMENTS.

Figure 70. Performance Analysis During Design

140

Realization of such an ideal tool is as yet a remote prospect. It is not clear how close

the functionality of a realizable tool can come to the ideal, nor is it clear what

implications or restrictions the tool would have on CSDL and CSDL definitions. We do

know that at certain stages of design, CSDL definitions will not contain enough

information to conduct an analysis [LEVI79], and further that even when sufficient

information is given, questions may only be answerable as derived measures of data

obtainable from the analysis. Nevertheless pursuit of an interactive analysis tool

employing queueing theoretic and discrete simulation seems to be a fruitful research

arena.

6.6 A CSOL DEFINITION WITH PERFORMANCE SPECIFICATION

system ICS {Interactive Computer System}

machine Levell

declarations
types
{Job is the entity, or message, that traverses the system. At this
level, the-form of a job is not known.1

Job: abstract
JobA:Job array

let j:JobA
invariant

J.Dom=4
end declarations

partition
interfaces

{Specify two sets of channels of type Job)
TIC,TOC: JobA;
BIC,BOC:Job channel

components
{Associate the channels with the machines)
TI:(TIC(1).out,TOC(1).in):Terminal Machine(I);

T2: TIC(2). out,TOC(2) in):Terminal-Machine(2);
T3:(TIC (3) .outTOC(3) in):Terminal-Machine(3);
T4:(TIC(4).out,TOC(4).in):Terminal-Machine(4);

Bl:(BIC.out):Batch In Machine;
B2:(BOC.in):Batch_.utMachine;

CSM:(TIC.in,TOC.out,BIC.in,BOC.out):CentralSubsystemMachine

141

commnunication behavior
function

-In this section behavior specifications are used to indicate
that jobs are initiated by each terminal machine, enter the
Central Subsystem, and return to the initiating terminal.
Batch jo bs are iniated by Batch_-In_-Machine, and Batch job
completions go to BatchOutMachine.)

LTThe requirement of the interactive user think time is:)
Vi,j:integer[clock(leaves(TIC(j).out)<i>)-

clock(arrives(TOC(j).in)<i> =
1 / dist(negexp,1/TerminalThinkTime)] P? and

{The requirement on the maximum allowable response time
delay for jobs in the Central Subsystem is:)
Vi,j:integer[clock(leaves(TOC(i).out)<j>) -

clock(arrives(TIC(i).in)<j>) < MaximumResponseTime] !? and

{The above assertion can also be used to determine the measured
response time for each job transaction:)
Vi,j:integer[clock(leaves(TOC(i).Out)<j>) -

clock(arrives(TIC(i).in)<i>)J = ? and

{The throughput rate for the i-th terminal is obtained by
using a term defined in Section 6.3:)

OutletDepartureRate(TIC(i).out) = ? and

{The rate of Batch requests can be specified by:)
Outlet_-DepartureRate(BIC.out) =dist(negexp,Batch RequestRate) P?

and

(The maximum batch processing delay is:)
Vi:integerfclock(leaves(BIC.out)<i> -

clock(arrives(BOC.in)<i>) < MaximumBatchDelay !? and

{Specify that all communication connections (e.g. between
each terminal and the Central Subsystem) have zero time delay)
Vi,j:integer[clock(arrives(TI-E(i).in<i>) -

clock(leaves(TIC(i).out)kj>) = 0] ! and
Vi,j:integer[clock(arrivps(TOC(i).in)<j> -

clock(leaves(TOC(i).out)<j>) = 01 and
Vi:integertclock(arrives(BIC.in)<i>)-

clock(leaves(BIC.out)<i>) =01

end partition

end Levell

142

machine Terminal Machine(ID)
(Generic specTfication of each terminal machine)

declarations
types

Job:abstract
objects

TIC:Job Outlet;
TOC:Job Inlet

flows
Fl:Job from TOC to TIC

end declarations

specifications
behavior

function
{Specify that completed jobs, which arrive from the
Central Subsystem, are examined, and a new job request to
the Central Subsystem is issued.}

At this level, the user think time appears as a specification
that satisfies the performance requirement on the think time
in the levell machine. Also, various compomponents of the think
time could be specified.}

Vi:integer[clock(arrives(TOC<i>) - clock(leaves(TIC<i>) =
1 / dist(negexp,1/TerminalThinkTime)]

end specifications

end Terminal Machine

143

machine Batch In Machine
tSpecificaio6i of the machine that generates batch requests.}

declarations
types

rob: abstract
objects

BIC:Job outlet

end declarations

specifications
behavior

Tunction
(Specify the characteristics of the Batch request jobs.)

qSpecify the distribution of the times between Batch
requests.)

Vi:integer[clock(leaves(BIC)<i>) - clock(leaves(BIC)<i>) =
1 / dist(negexp,BatchRequestRate)]

end specifications

end Batch-In Machine

machine Batch Out Machine
(ipecificaTion-of the machine that absorbs the batch requests.)

declarations

:abstract
objects

BOC:Job inlet

end declarations

specifications
behavior

H function
-{Specify any functional constraints on the completed Batch
Requests.)

-TThe performance requirements on batch processing delay that
appeared in the levell machine now appear as specifications-
that satisfy those requirements.)

end specifications

end BatchOutMachine

144

machine Central_Subsystem Machine
{Specification of the Central Subsystem}

declarations
types

Job: abstract
objects

TIC(1),TIC(2),TIC(3),TIC(4),BIC:Job inlet;
TOC(1),TOC(2),TOC(3),TOC(4),BOC:Job outlet

end declarations

specifications
behavior

function
{Describe functional aspects of job processing.}

Perf_Performance requirements on the Central Subsystem were given
in the Levell machine definition. They can also appear here
as requirements on the partitions of this machine.}

end specifications

partition
{Define the internal structure of the Central Subsystem
Machine, as shown in Figure 6-5.}

interfaces
{Specify the channels}
CPUQ,FEPQ,CPU,CPUIOO:Job channel;
CPUIO,IO;JobA channel

, components

(Define the machines in the Central Subsystem.)
FEP:(TIC.in,TOC.out,BIC.in,BOC.out,CPUQ.out,FEPQ.in):FEPMachine;

CQ:(CPUQ.in,FEPQ.out,IO.in,CPUIOO.in,CPU.out):CPU_QueueMachine;

CPU:(CPU.in,CPUIOO.out,CPUIO.out):CPUMachine;

I01:(CPJIO(1).in,I0(1).out):IO Machine(i);
102:(CPUIO(2).iln,IO(2).out):ICMachine(2);
103: (CPUIO(3).in,I0(3).out):IO'Machine(3);
I04:(CPUIO(4).in,I0(4).out):IO0Machine(4)

145

communication behavior
function

{Specify functional requirements on each of the machines in
the Central Subsystem.}

-Specify performance requirements on each of the machines

in the Central Subsystem that might satisfy the performance
requirements specified in the communication behavior section
of CentralSubsystem-Machine. These requirements are to
be satisfied by the individual partititined machines.
Their composite behavior must be ascertained by a system
performance analysis.1

(For correspondence with Central Server queueing networks
of this type of computer system, we assume the FEP
and CPU_Queue machines have zero delay time for jobs.}

forall ij:integer[
Tock(CPUQ.out)<i>) -

clock(arrives(TIC(j)) or arrives(BIC)<i>) = 0] ! and
forall i,j:integer[

Tc--k(leaves(TOC(j) or leaves(BOC))<i>) -
clock(arrives(FEPQ.in)<i>) = 0] ! and

{Specify the rate at which the CPU processes jobs (The queue
for the CPU is in the CPU_Queue Machine. The CPU Machine is
therefore a server for jobs. Jobs leave to any of the
outlets of the CPUMachine.}

Vi,j:integer[
clock(leaves(CPUIOO.out or leaves(CPUIO(j)<i>) -

clock(arrives(CPU.in)7T>) =
1 / dist(negexp,1/CPUTime)] and

{Specify the fraction of jobs proceeding next to each I/O
Device, or back to the terminal after completing processing,
using the set of routing probabilities p(i).}

* let n:integer such that [
{n is the total umber of job arrivals}
n = #i:integer[arrives(CPU.in)<i>] and
{Probability of a completed job)
#i:integertleaves(CPUIOO.out)<i>] / n = dist(negexp,p(O)) I and
{Probability of a job being routed to I/O Device i}
Vi,j:integerrleaves(CPUIO(i).out)<j>] / n =

dist(negexp,p(i))] ! and

(Requirements on the delays at each of the 10 devicesl

Vi,j:integer[clock(Leaves(IO(j).out)<i>) -
clock(arrives(CPUIO(j).in)<i> = 1/dist(negexp,1/IOTime)] 1?

end partition

end CentralSubsystemMachine

146

machine FEP Machine

declarations
types

Job: abstract

:JobA inlet;

TOC:JobA out et;
BIC:Job inlet,
BOC:Job outlet;
CPUQ:Job outlet;
FEPQ:Job inlet

end declarations

specifications
behavior

function
iSpecify that arriving jobs are queued and sent to

CPUQueue Machine in First-In-First-Out order.
Processed-jobs are sent back to their appropriate
Terminal, or to Batch Out.}

Peispecify that it is assumed that enqueueing and dequeueing is

performed with zero time delay.)

end specifications

end FEP Machine

1

147

machine CPU_QueueMachine

declarations
tyes

Job: abstract
objects

CPUQ,CPUIOO:Job inlet;
IO:JobA inlet;
FEPQ,CPU-.-T-outlet

end declarations

specifications
behavior

function
[Specify that jobs arriving from the FEP Machine and the I/O
Devices are queued in FIFO order for the CPU. Jobs arriving
at the CPUIO0 inlet, are completed, and are sent to the
FEPMachine.)

jAs stated earlier, it is assumed that overhead for queueing job
involves zero time delay. However, if we suppose the queue
that is specified in the functional behavior is implemented
by an array, then terms described in Stc.tion 6.3 can be used
to refer to the average queue size, departure rate, and average
waiting time of jobs.)
FIFOAverageQueueSize(Queue) = ? and

FIFOQueue DepartureRate(Queue) = ? and

Queue Average WaitingTime(Queue) =?

end specifications

end CPUQueue Machine

148

machine CPUMachine
{Definition of the System's CPU processor.)

declaration
types

Job: abstract

CPU:Job inlet;
CPUIOO:Jo-boutlet;
CPUIO:JobA outlIet

end declarations

specifications
behavior

function
{Specify that a job is removed from the CPU inlet, is processed,
sent (probabilistically according to higher level job routing
specification) to one of the 10 device outlets or to the job
completion outlet (CPUIOO). After a job is processed, another
job is removed from the CPU inlet; all queueing is done in the
CPU _QueueMachine.)

Derf
'TSpecify the mean service time of jobs.)

Vi,j:i'nteger[clock(leaves(CPUIO(j) o2r CPUIOO)<i>) -
clock(arrives(CPU)<i>) = 1/dist(negexp,1/CPU Time)] ! and

{Specify the CPU utilization - the fraction of Time the CPU
is busy}

let sl:integer,z:integer array such that
TUetermine each idle time between job arrivals at the CPU)
Vi,j:integer[z(i) = clock(arrives(CPU)<i+l>) -

(clock (leaves(CPUIO(j)) or leaves(CPUIOO)<i>))] and
{Add the idle times that are now in the z array)
sum(sl,s,1) and

{Determine utilization)
1 - si / (clock(arrives(CPU)c#i[Arrives(CPU)]>)-

clock(arrives(CPU)<1>) ?

end specifications

end CPUMachine

149

machine 10 Machine(ID)
{Generic Definition of the 1/0 Device Machines.}

declarations
types

Job:abstract
objects

CPUIOLJob inlet;
IO:Job outlet

end declarations

specifications
behavior

function
{Specify that as jobs arrive they are queued in FIFO order,
and depending on the kind of I/O Device being represented,
there are various stages of 10 processing, eg., seek,
latency. Introduce queue Q and action A to assist in the
specification of job queueing and I/O processing. Also,
depending on the level of detail, various 10 scheduling
policies can be specified.)

perf
{The maximum delay for I/O processing was given in a higher
level. Here, the performance delay specification of each
job I/O can be given, using action A.)

let DP:real such that C
DP = Vi:integer[clock(last(A)<i>)-clock(first(A)<i>) =

1 / dist(negexp,1/IO _Time)]] ! and
(Assuming the queue Q is implemented by an array QA, we
can specify the average waiting time of jobs in the queue.)

let DQ:real such that [
DQ = Queue AverageWaiting Time(QA)] ! and

{The queueing-delay pus the T/O processing elay is the I/O
device delay.)

Vi:integer[clock(leaves(IO)<i>) - clock(arrives(CPUIO)<i>)] =
PD + DQ I

{This delay must now be compared with the requirements, given
at a higher level of detail, on the performance of the I/o
Devices.)

end specifications

end 10Machine

end ICS

150

BIBLIOGRAPHY

[AMBL77] A. L. Ambler, "Gypsy: A Language for Specification and Implementation
of Verifiable Programs," ACM SIGPLAN Notices, vol. 12, no. 3, Mar.
1977.

[BELA79] L. A. Belady and M. M. Lehman, "The Characteristics of Software
Systems," in Research Directions in Software Technology, P. Wegner ed.,
MIT Press, 1979.

[BELA80] L. A. Belady and B. Leavenworth, "Program Modifiability," in Software
Engineering, H. Freeman and P. M. Lewis II, eds., Academic Press, 1980.

[BELL77] T. E. Bell, D. C. Bixler, M. E. Dyer, "An Extendable Approach to
Computer-Aided Software Requirements Engineering," IEEE Trans. on
Software Engineering, vol. SE-3, no. 1, Jan. 1977.

[BERG80] H. K. Berg, "DST - A Distributed System Testbed," Proc. Honeywell
International Conf. on Database Management Systems, Oct. 1980.

[BERGS 1] H. K. Berg and W. T. Wood, "The Impact of Distributed Processing on
Software Design," Tech. Report HR8I-256:17-38, Honeywell Corporate
Computer Sciences Center, 1981.

[BOCH79] G. V. Bochmann, "Architecture of Distributed Computer Systems,"
Lecture Notes in Computer Science, vol. 77, Springer-Verlag, 1979.

(BOEB78] W. E. Boebert, W. R. Franta, E. D. Jensen and R. Y. Kain, "Kernel
Primitives of the HXDP Executive," COMPSAC 78, Nov. 1978.

[BOEH79] B. W. Boehm, "Software Engineering As It Is," Proc. 4th International
Conference on Software Engineering, Munich, 1979.

(BOOT79] T. L. Booth, "Performance Optimization of Software Systems Processing
Information Sequences Modeled by Probabilistic Languages," IEEE Trans.
on Software Engineering, vol. SE-5, no. 1, Jan. 1979.

[BOOT80] T. L. Booth and C. A. Wiecek, "Performance of Abstract Data Types as a
Tool in Software Performance Analysis and Design," IEEE Trans. on
Software Engineering, vol. SE-6, no. 2, Mar. 1980.

(BOYD78a] D. L. Boyd, A. Pizzarello and S. C. Vestal, The Rational Design
Methodology - Final Report, RADC Contract No. F30602-77-C0043,
Honeywell Inc., June 1978.

(BOYD78b] D. L. Boyd and A. Pizzarello, "Introduction to the WELLMADE Design
Methodology," IEEE Trans. on Software Engineering, vol. SE-i, no. 4,
July 1978.

[BRIN73] P. Brinch Hanson, Operating System Principles, Prentice-Hall, 1973.

151

[BUZE76] . P. luzen, "Fundamental Operational Laws of Computer System
Perfot 'Rnce," ACTA Informatica, vol. 7, 1976.

ICAVO8] J. C. Cavouras and R. H. Davis, "Simulation Tools in Computer System
Design Methodologies," The Computer Journal, vol. 24, no. 1, Jan. 1981.

[CHAN79] K. M. Chandy and 3. Misra, "Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs," IEEE Trans. on
Software Engineering, vol. SE-5, no. 5, Sep. 1979.

[COOK80] R. P. Cook, "The Starmod Distributed Programming System," Proc.
COMPCON 80 Fall, Sep. 1980.

[DARR78] 3. A. Darringer and 3. C. King, "Application of Symbolic Execution to
Program Testing," Computer, vol. 11, no. 4, 1978.

[DEBA75] 3. W. DeBakker, "The Fixed Point Approach in Semantics: Theory and
Applicaitons," in Foundations of Computer Science, J. W. DeBakker, ed.,
Mathematical Centre Tracts 63, Amsterdam, 1975.

[DENN78] P. J. Denning and 3. P. Buzen, "The Operational Analysis of Queueing
Network Models," Computing Surveys, vol. 10, no. 3, Sept. 1978.

[DENN80] P. 3. Denning, "What is Experimental Computer Science?," Comm. of the
ACM, vol. 23, no. 10, Oct. 1980.

[DIJK76] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

[ENDE72] H. B. Enderton, A Mathematical Introduction to Logic, Academic Press,
New York, 1972.

[FELD79] 3. A. Feldman, "High Level Programming for Distributed Computing,"
Comm. of the ACM, vol. 22, no. 6, June 197).

[FORE79] I. Foreman, "Data Abstraction in the Design of SWISP," Presented at
19th Annual NBS/ACM Technical Symposium, June 1979.

'FRAN77] W. R. Franta, The Process View of Simulation, Elsevier North-Holland,
1977.

[FRAN79] W. R. Franta, W. E. Boebert and H. K. Berg, "An Approach to the
Specification of Distributed Software," in The Use of Formal
Specification of Software, H. K. Berg and W. K. Giloi, eds., Springer-
Verlag, 1979.

[GELE80] E. Gelenbe and I. Mitrani, Analysis and Synthesis of Computer Systems,
Academic Press, 1980.

[GERH76] S. L. Gerhart, L. Yelowitz, "Observations on the Fallibility in
Application of Modern Programming Methodologies," IEEE Trans. on
Software Engineering, vol. SE-2, no. 3, Sept. 1976.

152

[HOAR78] C. A. R. Hoare, "Communicating Sequential Processes," Comm. of the
ACM, vol. 21, no. 8, Aug. 1978.

[HONE80] Honeywell Inc., Reference Manual for the Ada Programming Language,
United States Department of Defense, 1980.

[ISO801 International Standards Organization, "Open Systems Interconnection
Reference Model," ISO/TC97/SCI6N, May 1980.

[KAIN79] R. Y. Kain, W. R. Franta and G. D. Jelatis, "CHIMPNET: A Network
Testbed," Computer Networks, vol. 3, no. 6, Dec. 1979.

[LEVI79] K.-N. Levitt, "A Basis for Simulating Modules Written in Special," SRI
Project 4823 report on Contract N00123-76-C-0195, SRI International,
Aug. 1979.

(LISK771 B. H. Liskov and V. Berzins, "An Appraisal of Program Specifications,"
Computation Structures Group Memo 141-1, MIT Laboratory of
Computer Science, Apr. 1977.

(MARI80] M. P. Mariani and D. F. Palmer, "Distributed System Design," Tutorial
Notes, COMPCON 80 Fall, Sept. 1980.

[NELS78] R. Nelson, "Software Data Collection and Analysis," Draft Partial
Report, RADC, Rome, New York, 1978.

[NG79] E. W. Ng, "Symbolic and Algebraic Computation," Lecture Notes in
Computer Science, vol. 72, Springer-Verlag, 1979.

[RAMA80] C. V. Ramamoorthy and G. S. Ho, "Performance Evaluation of
Asynchronous Concurrent Systems Using Petri Nets," IEEE Trans. on
Software Engineering, vol. SE-6, no. 5, Sept. 1980.

(REED79] D. P. Reed and R. K. Kanodia, "Synchronization with Eventcounts and
Sequencers," Comm. of ACM, vol. 22, no. 2, Feb. 1979.

[SANG79] 3. Sanguinetti, "A Technique for Integrating Simulation and System
Design," Conference on Simulation, Measurement, and Modeling of
Computer Systems, 1979.

[SAUE79] C. H. Sauer and E. A. MacNair, "Queueing Network Software for Systems
Modeling," Software Programming Experience, vol. 9, 1979.

(SILB81I A. Silberschatz, "Port Directed Communication," The Computer Journal,
vol. 24, no. 1, The British Computer Society, Feb. 1981.

[TEIC771 D. Teichroew and E. A. Hershey III, "PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing Systems," IEEE Trans. on Software Engineering, vol. SE-3,
no. 1, Jan. 1977.

153

[VERA79] M. Veran, "QNAP Description Language," Research Report, Antenne
Scientifique Cii Honeywell-Bull, Grenoble, France, 1979.

[WANG8It P. S. Wang, "DST User's Guide," Tech. Report, Honeywell Corporate
Computer Sciences Center, 198 1.

[WEGB76] B. Wegbreit, "Verifying Program Performance," jACM, vol. 23, no. 4,
Oct. 1976.

[WIRT771 N. Wirth, "Molula: A Language for Modular Multiprogramming,"
Software Practice and Experience, vol. 7, 1977. pp. 3-84.

[YAU81] S. S. Yau, C. C. Yang, and S. M. Shatz, "An Approach to Distributed
Computing System Software Design," IEEE Trans. on Software
Engineering, vol. SE-7, no. 4, July, 1981.

4
',

-*

15

APPENDIX A

CSDL SUMMARY

An ilformal description of the syntax and semantics of the concurrent system
description language (CSDL) is presented in this appendix. CSDL includes
notation for design specifications, design descriptions, and document
organization. A formal specification of the syntax is presented using Backus-
Naur notation in Appendix B, and as syntax diagrams in Appendix C.

NOTATION CONVENTIONS

C] information between brackets is optional

< > denotes a syntactic symbol

{ I denotes explanatory information

DOCUMENT ORGANIZATION

Comments can occur anywhere as {<text>}

1. System Definition Text:

system <system id>

<machine id>
qnachine id>

<machine definition text>
qnachine definition text>

end <system id>

155

2. Machine Definition Text:
{a machine definition text may contain either
the definition of one component or the
refinement of one or more related types}

machine anachine id>

[refines <type id>]

<declarations chapter>

<specifications chapter>

<partition chapter>
{only exists for partitioned machines}

<programs chapter>
{only exists for simple machines)

[refines <type id>

refines <type id>

end <nachine id>

3. Declarations Chapter:

declarations

[predicates
<predicate declarations>]

[types
<type dec l arat ions>]

SobJects
S<object declarations>

[actions
<action declarations>]

(flows
[- ow declarations>]

end declarations

156

4. Specifications Chapter:

specifications

[mappings

{only exists for type refinement machines)
<mapping specifications>]

(states
[init <assertions>]
[final <assertions>]
[invariant <assertions>]]

[behavior
[function <temporal assertions>]
(perf <performance assertions>]]

end specifications

5. Partition Chapter:

{only exists for partitioned machines}

partition

interfaces
<interface declarations>

[paths
<path declarations>]

components
<component declarations>

[communication behavior
(function <temporal assertions>]
[perf <performance assertions>]]

end partition

157

,'"

6. Programs Chapter:

(only exists for simple machines}

programs

<program definition text>
<program definition text>

end programs

7. Program Definition Text

program <program id>[(<parameters>)]
[returns <parameter>]

pre
<assertions>

post
<assertions>

[invariant
<assertions>]

<performance assertions>]

[variables
<variable declarations>]

text
<program text>]

end <program id>

158
BMW

DECLARATIONS

1. Predicates

<predicate id>[(<parameters>)] means <assertion>
<predicate id>[(<parameters>)] characterized by <assertion>

e.g. INDEX(A:char array,i:integer) means

A.ob < i < A.hib

2. Types

<type id>[(parameters>)I :<type expression>
[[let <object declarations>]
[init <assertions>]
[T -ri ant <assertions>]
[ofun <function id>[(<parameters>)]

[returns <parameters>]
pre <assertions>
post <assertions>
[perf <performance assertion>]]

[vfun <function id>[(<parameters>)]
returns <parameter>
pre <assertions>
post <assertions>
[perf <performance assertion>]]

end <type id>]

e.g.

stack (n: integer): name array
let n:integer, S:stack(n)
init S.dom=O
invariant S.dom<n
ofun push (X:name) returns S

pre S.dom<n
otS'=S.hiext(X)

vfun returns b:boolean
pre true
post [S.dom=n => b=true] and

[S.dom<n => b=false]
end stack

159

3. Objects (Variables)

<object id>:<type expression>
<object i d>: <type i d>[(4parameters>)]

e.g. X:integer
Y: stack(100)

4. Actions

<action id> [(<parameters>)] means
pre <assertion>
Dost <assertion>
perT <Performance assertion>

e.g.

empty (buffer: char array) means
pre buffer.dom > 0
post bufferldom = 0

5. Flows

<flow id>:<type id> from <object ref> to <object ref>

e.g. F1:integer from A to B

6. Interfaces

<object id>:<type expression>

e.g. C:integer channel

7. Paths

<flow id> passes through <object ref list>

e.g. F1 passes through C

18. Components

<component id> (<object ref list>):nachine id>J(parameters>)J

e.g. coampl(A,C.out):machine-a

160

SPECIFICATIONS

1. Mappings:

let <object declarations>
T ep clause>;]
[if <rep clause> then <rep clause>;]
i7 <assertion> then <rep clause>;]

where <rep clause> is:

<value ref> represents <value ref>
<assertion> represents <predicate id>[(<parameters)]
<function ref> represents <function ref>
<program ref> represents <function ref>

2. Assertions:

a. Primitives

Arithmetic expression on:

object references
value constants
bracketed expressions
function references
program references

b. Relational connectors

< 9< > ><, _, >,I _,_

c. Quantifiers

exististential - ., for some, .!, for some unique
universal - V, for all

d. Logical connectors

or, and, xor, not,
f ... thn, => , iff, <=>

Examples

for some i:integer [pl(i).name=id]

V i:integer [p.i<pg.hib .>
pg'i+l)=pg(i) & ps'(i-1)-pg(i)]

161

3. Temporal Assertions

a. Primitives

(1) gets(<interface object ref>)
arrives(<interface object ref>)
puts(<interface object ref>)
leaves(<interface object ref>)
<value ref>

(2) <value ref> prior <event><<event ordinal>>
<value ref> after <event><<event ordinal>>

where <value ref> is one of the primitives listed

under Assertions

b. Events

occurs(<assertion>)<<event ordinal>>
<event fun>(<function ref>)<<everit ordinal>>
<event fun>(<program ref>)<<event ordinal>>
<event fun>(<action ref>)<<event ordinal>>
<event fun>(<assertion>)<<event ordinal>>

where <event fun> is effects, first, or last;

<assertion> is assertion on primitives in category I

c. Relational connectors (between primitives in category 2)

< < > >

* d. Temporal connectors (between events)

precedes, hefore, later

e. Quantifiers

existential - ", for some, 4!, for some unique
universal - V, fora--aT-

e. Logical connectors

or, and, xor, not,
TV ..- then, => 1ff, <->

Examples

V i:poslnt [occurs(line.dom=O)<i> later
effects (programl)<i>]-

forall t:poslnt
[effects(arrlves (Inlet1) or arrlves(inlet2))<l>
later leaves(outleta)<i>]

162

4. Performance Assertions

a. Primitives

Arithmetic expression on:

clock(<event>)
dlst(<arith expression>)

where <arith expression> is on primitives listed
under Assertions

b. Relational connectors

c. Quantifiers

exististential - for some, j', for some unique
universal - V, for all

d. Logical connectors

or, and, xor, not,
if ... then, =>, iff, <=>

e. Terminators

- statements
? - questions
!? - questments

163

* DATA TYPES

(t is a type expression)

1. Primitive Data Types
and their operations

a. integer

{unary) -,+

(binary})4,- ,~,= i ,< >, >
{assigrnent)

b. real

{unary) -, +
{binary) +, -,* ,= ,< ,>9 >
{assignent) :

*C. bodiean

{constants) T, F
{unary) not
{binary) and, or, xor, =

(conditional) cand, cor
(valid only in guard expressions)

{assigrnent)

d. char

* (~binary) ,

{assignment)

e. MOM]V2] ... fl Vn) {enumerated)

where V1, V2, ... , Vn are the only permissible values
of this data type

e.g. COLOR: (RED[UWHITE[]BLUE)

f. abstract

-1 (a type whose definition is given elsewhere)

164

2. Structured Data Types

and their operations

a. Cartesian Product [Record}

(01:tl, 02:t2, ..., On:tn)

selector operation:

if A is a cartesian product then
A.Oi selects the ith component

b. Discriminated Union

(V1:tl[]V2:t2(I...[]Vn:tn)

tag operation:

if A is a discriminated union then A.tag has the value
Vi if the value of A is of type ti

c. Array

t array

operations:

if A is an array of items of type t then

Mlob - the smallest index value

A.hib - the largest index value

A.dom - the number of elements;
A.dom = A.hib-A.lob+l > 0

A(I) - the value of the I-th item

A.low- the first item

A.high - the last item

A. lorem - remove the first item

A.hirem- remove the last item

A.loext(a) - append a new first item, a

A.hiext(a) - append a new last item, a

A:=(k,al,...,an) - initialize A with A.lob=k, and
A(k)=al, ..., A(k+n-1)=an

A.swap(I,J) - exchange the Ith and Jth item

165

3. Interface Data Types

and their operations

a. Outlet

t outlet:(flag:boolean,window:t)

operations:

if A is an outlet of type t then

A.put(a) - put value a in A.window
set A.flag to F

A.went - check the value of A.flag
{A.flag will be T when it is safe to put a
new value in A.window without overlaying
the previous value}

b. Inlet

t inlet:(flag:boolean,window:t)

operations:

if A is an inlet of type t then

A.get - get value from A.window
set A.flag to F

A.came - check the value of A.flag
{A.flag will be T when a new value is
available in A.window)

c. Channel

t channel:(in:t inlet, out:t outlet)

operations:

(channel operations are operations on its inlet and
outlet)

if A is a channel of type t then the following are
valid operations on A:

A.In.get
A.in.came
A.out.put
A.out.went

166

PROGRAM STATEMENTS {P-NOTATION}

1. Sequential operations

Sl;S2 {Si - statement)

2. Assignment

X1, X2, ..., Xn := El, E2, ... , En

The value of the expression Ei is assigned to be the value
of the variable Xi. All Ei's are first evaluated, then
assignments are made to the corresponding Xi's.

3. Selection

if B2->Sl1]82->S2[] ... []Bn->Sn fi

where B1, B2, ...,Bn are boolean-valued guard expressions,
and S1, S2, ... , Sn are program statements.

A true guard Bi is selected and the corresponding guarded
command Si is executed. At least one guard must be true,
else the program aborts.

4. Iteratibn

do Bl->Sl [1 B2->$2 [1 ... [] Bn->Sn od

where B1,B2, ..., Bn are boolean-valued guard expressions
and S1, S2 , Sn are program statements. A true guard
Bi is selected, the corresponding guarded command is
executed, and the process is repeated. When all guards are
false, a skip occurs.

5. No operation

Skip

7. Functions

Type operations

e.g. A.hiext(I), B.get, C+D*E

Programs

<program id>(<actual parameters>)

167

APPENDIX B

CDSL SYNTAX - BNF

This appendix presents a formal specification of the CSDL syntax in Backus-
Naur notation. Appendix C presents the same syntax in diagram form. The
line numbers are referred to in Sections 8.8 and B.9, which contains the
cross references of the nonterminals and terminals, respectively. A
nonterminal preceded by an * denotes the beginning of a sequence of
production rules corresponding to the diagram defining the same nonterminal
in Appendix C.

B.1 Document Organization

1 *<CSDL text> ::= system <system id>
2 machine id list> machine definition list> end <system id>

3 machine id list> ::= machine id> I machine id>
4 machine id list>

5 machine definition list> ::= machine definition text> I
6 machine definition text> nachine definition list>

7 *machine definition text> ::= machine machine id> <parameters>
8 machine documentation text> end machine id>

9 machine documentation text> ::= <refinement list> I
10 <design documentation text>

11 <refinement list> <refinement> I

12 <refinement> <refinement list>

13 <refinement> ::= refines <type id> <design documentation text>

14 *<design documentation text> ::= <declarations chapter>
15 <specifications chapter> <partition chapter> I
16 <declarations chapter> <specifications chapter>
17 <programs chapter>

18 *<declarations chapter> ::= declarations <predicates section>
19 <types section> <objects section> <actions section>
20 <flows section> end declarations

21 *<specifications chapter> ::= specifications mappings section>
22 <states section> <behavior section> end specifications

23 *<partition chapter> ::= partition <interfaces section>
24 <paths section> <components section>
25 <communication behavior section> end partition

168

26 *<programs chapter> ::= programs <program definition list> end
27 programs

28 <program definition list> ::= <program definition section> I

29 <program definition section> <program definition list>

30 *<system id> <identifier>

31 *<machine id> <identifier>

B.2 Declarations Chapter

32 *<predicates section> ::= <nil> I predicates <predicate list>

33 <predicate list> ::= <predicate def> I
34 <predicate def> ; <predicate list>

35 <predicate def> ::= <predicate id> (<formal parameter list>)
36 means <assertion> I <predicate id>
37 T <formal parameter list>) characterized b <assertion>
38 <predicate id> (<formal parameter list> means abstract I
39 <predicate id> means abstract I <predicate id> means <assertion> I
40 <predicate id> characterized by <assertion>
41 <formal parameter list> ::=<formal parameter> I

42 <formal parameter> , <formal parameter list>

43 *<formal parameter> ::= obj <formal object> I <formal value>

44 *<formal value> <value id list> : <type expression>

45 <value id list> <value id> I <value id> , <value id list>

46 *<types section> <nil> I types <type list>

47 <type list> ::= <type> I <type> ; <type list>

48 <type> ::= <type id> : abstract I
49 <type id> (<type parameter list>) <type expression>
50 <type specification> I
51 <type id> : <type expression> <type specification>

52 <type parameter list>
53 <type parameter> , <type parameter list>

54 <type parameter> <value id> : typename I <formal value>
55 *<type expression> <standard type> I <structured type>

169

56 <standard type> ::= real I integer I boolean I character I
57 (<enumeration>

58 <structured type> (<cartesian product>) I (<union>)
59 <array type> I <interface type>

60 <enumeration> ::= <value id> I <value id> [<enumeration>

61 <cartesian product> ::= <structure head> I
62 <structure head> , <cartesian product>

63 <union> ::= <structure head> I <structure head> [] <union>

64 <array type> ::= <type expression> array

65 <interface type> ::= <type expression> inlet I
66 <type expression> outlet I <type expression> channel

67 *<structure head> ::= <element id> : <type expression>

68 *<type specification> ::= <nil> I let <formal parametcr list>

69 <init spec> <invariant spec> <function list> end <type id>

70 <init spec> ::= <nil> I init <assertion>

71 <invariant spec> <nil> I invariant <assertion>

72 <function list> <nil> I <function> I
73 <function> <function list>

74 <function> ::= ofun <function def> I vfun <function def>

75 *<function def> ::= <function id> <parameters> <output parameter>
76 <static spec> <performance spec>

77 <static spec> pre <assertion> post <assertion>

78 *<parameters> <nil> I (<formal value list>

*" 79 *<output parameter> <nil> I returns <value id> : <type id>

80 <formal value list> <formal value> I
81 <formal value> , <formal value list>

32 *<performance spec> <nil> I perf <performance assertion>

170

83 *<objects section> objects <object list>

84 <object list> ::= <object> I <object> ; <object list>

85 <object> ::= <object id list> : <object decl>

86 <object id list> ::= <object id> I <object id> , <object id list>

87 <object deci> ::= <type id> I <type expression> I
88 <type id> (<object parameter list>)

89 <object parameter list> ::= <object parameter> I
90 <object parameter> , <object parameter list>

91 <object parameter> ::= <type id> I <arith expression> I
92 <bool expression>

93 *<actions section> ::= <nil> I actions <action lisL>

94 <action list> <action decl> I <action decl> ; <action list>

95 <action decl> <action id> (<formal parameter list>) means
96 <action def> I <action id> means <action def>

97 <action def> ::= abstract I <static spec> <performance spec>

98 *<flows section> ::= <nil> I flows <flow list>

99 <flow list> <flow def> I <flow def> ; <flow list>

100 <flow def> <flow id> : <type id> from <object ref> to
101 <object ref>

102 *<predicate id> ::= <identifier>

103 *<value id> <identifier>

104 *<type id> <identifier>

105 *<element id> ::= <identifier>

106 *<function id> ::= <identifier>

107 *<object id> <identifier>

108 *<action id> <identifier>

109 *<flow id> ::= <identifier>

171

B.3 Specifications Chapter

110 *<qappings section> ::= <nil> I mappings <representation list>

111 <representation list> ::= <representation> I

112 <representation> ; <representation list>

113 <representation> let <formal parameter list> <rep term list>

114 <rep term list> <rep term> I <rep term> ; <rep term list>

115 <rep term>
116 if <representation clause> then <representation clause> I
117 i <predicate expression> then <representation clause>

118 *<representation clause> ::= <value ref> represents <value ref> I
119 <predicate expression> represents <predicate id> <parameters>

120 *<states section> ::= states <init spec> <final spec>

121 <invariant spec>

122 <final spec> ::= <nil> I final <assertion>

123 *<behavior section> ::= behavior <performance spec> I
124 behavior function <assertion> <performance spec>

B.4 Partition Chapter

125 *<interfaces section> interfaces <channel list>

126 <channel list> <channel def> I <channel def> ; <channel list>

127 <channel def> <object id list> : <type expression>

128 *<paths section> ::= paths <passes through list>

129 <passes through list> ::= <passes through def> I

130 <passes through def> ; <passes through list>

131 <passes through def> ::= <flow id> passes through
132 <object ref list>

133 <object ref list> ::= <object ref> I <object ref>
134 <object ref list>

172

135 *<components section> components <component list>

136 <component list> ::= <component def> I
137 <component def> ; <component list>

138 <component def> ::= <component id> (<object ref list>)
139 nachine id> I <component id> (<object ref list>)
140 Qnachine id> (-Qachine parameter list>)
141 <machine parameter list> ::= <machine parameter> I

142 Qnachine parameter> , <machine parameter list>

143 qnachine parameter> ::= <arith expression> I <bool expression>

144 *<communication behavior section> ::= communication behavior
145 <performance spec> I function <assertion> <performance spec>

B.5 Programs Chapter

146 *<program definition section> ::= <nil> I <program header>
147 <program spec> <program desc> end <program id>

148 <program header>
149 program <program id> (<formal parameter list>) <output parameter> I
150 program <program id> <output parameter>

151 *<program spec> ::= <static spec> <performance spec>
152 <invariant spec>

* 153 *<program desc> <nil> I variables <formal object list> text
154 <p notation>

155 <formal object> <object id list> : <type expression>

156 <formal object list> ::= <formal object> I
157 <formal object> ; <formal object list>

158 *<program id> ::= <identifier>

159 *<component id> <identifier>

173

B.6 Assertions

160 *<assertion> <nil> I <predicate expression>
161 <predicate expression> ; <assertion>

162 *<performance assertion> ::= <performance expression> I
163 <performance expression> ; <performance assertion>

164 <performance expression> <predicate expression> I
165 <predicate expression> ! I <predicate expression> ? I
166 <predicate expression> !?

167 *<predicate expression> ::= <afactor> I <afactor> <implying op>

168 <afactor> I if <afactor> then <afactor>

169 *<afactor> ::= <clause> I <clause> <combining op> <afactor>

170 <implying op> ::= ='> I iff I '<='>

171 <clause> ::= <predicate> I <negating op> <predicate>

172 <combining op> and I & I xor I or

173 <negating op> not I ~

174 *<predicate> ::= <boolean literal> I <postfix pred> I
175 <relation chain> I <event predicate> I
176 [<predicate expression> I I
177 <quantifier clause> [<predicate expression>]
178 <let clause> [<predicate expression>] I

179 *<boolean literal> ::= true I false

180 *<postfix pred> ::= <predicate id> I
181 <predicate id> (<actual parameter list>) I
182 gets (<object ref>) I arrives (<object ref>) I
183 puts (<object ref>) I leaves (<object ref>)

>4 184 <actual narameter list> ::= <actual parameter> I
185 <actual parameter> , <actual parameter list>

186 *<relation chain> ::= <aterm list> <relation tail>

187 <aterm list> ::= <aterm> I <aterm> , <aterm list>

188 <relation tail> ::= <relational op> <aterm list> I
189 <relational op> <aterm list> <relation tail>

190 <relational op) ::= '> i <I = I $ I '< I >

174

191 *<event predicate> ::= <event term> <event predicate tail>

192 <event predicate tail> ::= <ordering op> <event term> [
193 <ordering op> <event term> <event predicate tail>

194 <ordering op> ::= before I precedes I later

195 *<quantifier clause> ::= <quantifier> <formal parameter list> I
196 <quantifier> <formal parameter list> <quantifier clause>

197 <quantifier> : ! I for some I for some unique I v
198 for all

199 *<let clause> let <let clause tail>

200 <let clause tail> ::= <formal parameter list> I
201 <formal parameter list> such that <predicate expression> i
202 <formal parameter list> and <let clause tail> I
203 <formal parameter list> such that <predicate expression> and
204 <let clause tail>

205 *<aterm> ::= <arith expression> I <temporal term> I <cardinality>

206 *<temporal term> ::=
207 <value ref> prior <event term>
208 <value ref> after <event term>

209 <cardinality> # <formal parameter list> [<predicate expression>]

210 *<event term> <event primary> 1< <arith expression> 1>

211 *<event primary> ::= occurs (<predicate expression>) I
212 effects (<action ref>) I effects (<predicate expression>) I
213 effects (<program activation>) I first (<action ref>) I
214 first (<predicate expression>) I first (<program activation>) I
215 last (<action ref>) I last (<predicate expression>)
216 last (<program activation>)

217 *<action ref> <action id> (<actual parameter list>)

:'1

175

B.7 P Notation

218 *<p notation> <statement> I <statement> ; <p notation>

219 <statement> <simple statement> I <control statement>

220 <simple statement> ::= skip I abort I <assignment statement>
221 <program activation>

222 <control statement> ::= <alternative construct> I <repetitive construct>

223 <assignment statement> <object ref list> := <value ref list>

224 <alternative construct> if <guarded comand set> fi

225 <repetitive construct> do <guarded command set> od

226 <value ref list> ::= <value ref> I <value ref> , <value ref list>

227 *<program activation> ::= <program id> I
228 <program id> (<actual parameter list>) I
229 <object ref> . <function id> I
230 <object ref> <function id> (<value ref list>)

231 *<actual parameter> ::= <object ref> I <value ref>

232 *<object ref> ::= <object ref head> I
233 <object ref head> <object ref tail>

234 <object ref head> ::= <object id> I <value id> I <object id> '

235 <value id>

236 <element id string> . <element id> I (<arith expression>) I
237 . <element id> <object ref tail> I
238 (<arith expression>) <object ref tail>

239 *<value ref> ::= <arith expression> I <bool expression> I
240 -program activation>

241 *<arith expression> ::= <arith term> I <arith term> <adding op>
242 <arith expression>

243 <adding op> + j -

244 *<arith term> <arith factor> I <arith factor> qnultiplying op>
245 <arith term>

246 qnultiplying op> * [/ I mod I I dlv

176

247 *<arith factor> <arith primary> i <unary op> <arith primary>

248 <unary op> + I -

249 *<arith primary> <object ref> I <constant> I
250 <program activation> I (<arith expression>) I
251 clock (<event term>) I dist.(<arith expression>)

252 *<guarded command set> ::= <guarded conand> I
253 <guarded command> [] <guarded connand set>

254 <guarded command> ::= <guard> --> <p notation>

255 *<guard> ::= <bool expression> I <bool expression> <guard op>
256 <guard>

257 <guard op> ::= cand I cor

258 *<bool expression> ::= <bool factor> I
259 <bool factor> <combining op> <bool expression>

260 *<bool factor> <bool primary> I <negating op> <bool primary>

261 *<bool primary> <object ref> I <constant> I
262 <program activation> I (<bool expression>) I
263 <arith expression> <relational op> <arith expression>

264 *<constant> ::= <character literal> I <boolean literal> I
265 <numeric literal> I <array literal>

266 <character literal> "<character list>"

267 <numeric literal> ::= <integer> I <integer> . <number> I
268 <integer> E <integer> I <integer> . <number> E <integer>

269 <array literal> (<number> , <array value list>

270 <character list> <ascii char> I <ascii char> <character list>

271 <ascii char> ::= {any printable character except "{" and "}"}

272 <array value list> ::= <constant> I <constant> , <array value list>

273 *<integer> ::= <sign> <number> I <number>

274 <sign> + I -

177

275 *<number> <digit> I <digit> <number>

276 <digit> {1"0" - 0"gi1l

277 *<identifier> <letter> I<letter> <aiphan list>

278 caiphan list> calphan> I alphan> calphan list>

279 calphan> <letter> I <digit>

280 <letter> {"W" - ", "a" -II Sz 1116

281 <nil> {nothing)

178

B.8 Nonterminal Cross Reference

<CSDL text> 1:

<action decl> 95: 94

<action def> 97: 95, 96

<action id> 108: 95, 96, 217

<action list> 94: 93, 94

<action ref> 217: 212, 213, 215

<actions section> 93: 19

<actual parameter list> 184: 181, 185, 217, 228

<actual parameter> 231: 185

<adding op> 243: 241

<afactor> 169: 167, 168, 169

<alphan list> 278: 277, 278

<alphan> 279: 278

<alternative construct> 224: 222

<arith expression> 241: 91, 143, 205, 210, 237, 238, 239, 241, 250, 251,
262, 263

<arith factor> 247: 244

<arith primary> 249: 247

<arith term> 244: 241, 244

<array literal> 269: 265

<array type> 64: 58

<array value list> 272: 269, 272

<ascii char> 271: 270

<assertion> 160: 36, 37, 39, 40, 70, 71, 77, 122, 123,
145, 161

<assignment statement> 223: 220

179

<aterm list> 187: 186, 187, 188, 189

<aterm> 205: 187

<behavior section> 123: 22

<bool expression> 258: 91, 143, 239, 255, 259, 262

<bool factor> 260: 258, 259

<bool primary> 261: 260

<boolean literal> 179: 174, 264

<cardinality> 208: 205

<cartesian product> 61: 58, 61

<channel def> 127: 126

<channel list> 126: 125, 126

<character list> 270: 266, 270

<character literal> 266: 264

<clause> 171: 169

<combining op> 172: 169, 258

<communication behavior section> 144: 24

<component def> 138: 136, 137

<component id> 159: 138, 139

<component list> 136: 135, 137

<components section> 135: 24

<constant> 264: 249, 261, 272
o,

<control statement> 222: 219

<declarations chapter> 18: 14, 15

<design documentation text> 14: 9, 13

<digit> 276: 275, 275, 279

<element id> 105: 67, 236, 237

180

_I

<enumeration> 60: 56, 60

<event predicate tail> 192: 191, 193

<event predicate> 191: 175

<event primary> 211: 210

<event term> 210: 191, 192, 193, 207, 208, 250

<final spec> 122: 120

<flow def> 100: 99

<flow id> 109: 100, 131

<flow list> 99: 98, 99

<flows section> 98: 19

<formal object list> 156: 153, 157

<formal object> 155: 43, 156, 157

<formal parameter list> 41: 35, 37, 38, 42, 68, 95, 113, 149, 195, 196,
200, 201, 202, 208

<formal parameter> 43: 41

<formal value list> 80: 78, 80

<formal value> 44: 43, 54, 80, 81

<function def> 75: 74

<function id> 106: 75, 229, 230

<function list> 72: 69, 72

<function> 74: 72, 73

<guard op> 257: 255

<guard> 255: 254, 255

<guarded command set> 252: 224, 225, 252

<guarded command> 254: 252, 253

<identifier> 277: 30, 31, 102, 103, 104, 105, 106, 107, 108, 109,
158, 159

181

<implying op> 170: 167

<1nit spec> 70: 68, 120

<integer> 273: 267, 268

<interface type> 65: 59

<interfaces section> 125: 23

<invariant spec> 71: 69, 120, 151

<let clause tail> 200: 199, 202, 203

<let clause> 199: 178

<letter> 280: 277, 277, 279

machine definition list> 5: 2, 6

<machine definition text> 7: 5

machine documentation text> 9: 7

machine id list> 3: 2, 3

nachine id> 31: 3, 7, 8, 138, 139

machine parameter list> 141: 140, 142

machine parameter> 143: 141

mappings section> 110: 21

multiplying op> 246: 244

<negating op> 173: 171, 260

<nil> 281: 32, 46, 68, 70, 71, 72, 78, 79, 82, 93,
98, 110, 122, 146, 153, 160

<number> 275: 267, 268, 269, 273, 275

<numeric literal> 267: 264

<object dec1> 87: 85

<object id list> 86: 85, 86, 127, 155

<object id> 107: 86, 234

<object list> 84: 83, 84

182

<object parameter list> 89: 87, 90

<object parameter> 91: 89

<object ref head> 234: 232, 233

<object ref list> 133: 131, 133, 138, 139, 223

<object ref tail> 236: 233, 237, 238

<object ref> 232: 100, 133, 182, 182, 183, 229, 230, 231, 249, 261

<object> 85: 84

<objects section> 83: 19

<ordering op> 194: 192

<output parameter> 79: 75, 149, 150

<p notation> 218: 153, 218, 254

<parameters> 78: 7, 75, 119

<partition chapter> 23: 15

<passes through def> 131: 129

<passes through list> 129: 128, 130

<paths section> 128: 23

<performance assertion> 162: 82, 163

<performance expression> 164: 162, 162

<performance spec> 82: 76, 97, 123, 124, 144, 145, 151

<postfix pred> 180: 174

<predicate def> 35: 33, 34

<predicate expression> 167: 117, 118, 160, 164, 165, 175, 176, 177,
201, 203, 208, 211, 212, 214, 215

<predicate id> 102: 35, 36, 38, 39, 40, 119, 180, 181

<predicate list> 33: 32, 33

<predicate> 174: 171

<predicates section> 32: 18

183

<program activation> 228: 213, 214, 216, 220, 239, 249, 261

<program definition list> 28: 26, 29

<program definition section> 146: 28

<program desc> 153: 147

<program header> 148: 146

<program id> 158: 147, 149, 150, 227, 228

<program spec> 151: 146

<programs chapter> 26: 16

<quantifier clause> 195: 177, 196

<quantifier> 197: 195

<refinement list> 11: 9, 11

<refinement> 13: 11, 12

<relation chain> 186: 174

<relation tail> 188: 186, 189

<relational op> 190: 188, 263

<rep term list> 114: 113, 114

<rep term> 115: 114

<repetitive construct> 226: 222

<representation clause> 118: 116, 117

<representation list> 111: 110, 112

<representation> 113: 111, 112

<sign> 274: 273

<simple statement> 220: 219

<specifications chapter> 21: 14, 16

<standard type> 56: 55

<statement> 219: 218

184

