
AD-AL14 875 HARVARD UNIV CAMBRIDGE MA AIKEN COMPUTATION LAS F/G 12/1
THE EXPECTED TIME COMPLEXITY OF PARALLEL GRAPH AND DIBRAPH ALBO--ETC(UI
APR 82 J H RE IF , P SPIRAKIS N0OO14-4O-C-0ATR

UNCLASSIFIED TR-11-82 NL

EE- ENOMONhEEE
IIIIIIIIIIIIII
IINIIE

Im

I= 1 1111g.5IIIIII,.o
I -- l IIIII

1.1I IIH IIIII
1111 1.2 1.4 1 2.2___

1IL25 1 .4 111111I.6

M ICROCO PY RISO J T II I(N I , AI ('A RI

NA' L . 1l . A . ,. ' ,,

SECUflITY CL AStIfATIOts Qt THI!. PAGE 01o DIt.. 'Ird

REPORT DOCUMENTATION PAGE REA INSTPLETINs o.~

1. REPORT NUMIIEH Fi. vI ACC ESSIOII NO. 3- L.,MI'$ C. (AT ALOG NUMjiR

4. TITLE (and Subhitle) II. TYPE OF REPORT A PERIOD COVER:O

The Expected Time complexity of Parallel Technical Report
Graph and Digraph Algorithms * ORG. REPORT NUMBER

TR- 11-82
7. AUTHOR(p) S. CONTRACT OR GRANT NUmBER(sJ

* Jon H.ReifN00014-80-C-0674

* Paul Spirakis

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMEN"T. PRO 1ECT T ASK
AREA 6 WORK UNIT NMU9RS

_ Harvard University
N' Cambridge, ,MA 02138

W4 It. CONTROLLING OFFICE NAME AND ADDRESS 02. REPORT DATE

*Office of Naval Research April, 1982

800 North Quincy Street 13. NUMBER OF PAGES
14.MOLP~~~GWCY~4il AORES('i ~ftt,.I ~omCoft~tiuj iIIe) 25

14. 14* 01 6-&- iWS ZORES~itdiferet frm CrifeftetifOffce)IS.SECURITY CLASS. (of Hile rop..j)

same as above

ISO. OECLASSIFICATIONfOOWmGRAING
SCHEDULE

16. DISTRIBUTION ST ATEMENT (of this hopoht)

unlimited

This document has begn app-o-jed
for p-blic relea-r c,-d sale; its
dithibution is uuxited.

17. DISTRIBUTION STATEMENT (of the abeittd eutered in, black 20, It differenit htam Repot)

unlimited .-'sr

I$. KEY WORDS (Continue on fewer& Oc*d. It necessary and 8doofuir by block numb",)

random graph, random digraph, parallel algorithms, connectivity, transitive
closure, minimum cost paths, biconnected components, minimum spanning trees,
graph isomorphism, expected time, parallel algorithms, parallel RAM.

Z0. ABSTRACT (Confinao an....... eside It necessary and Idenify by block nuesbot)

C) see reverse side

LJ
LA.-

DD 1AN47"T 1473 Ell, TION OF I NoV 65ISOU9'OLE TE
S/h i 01fl014'SAIel I______

SECURITY CLAS11rICAION OF THIS PAGE (Neh.. Dots flt~-

.L .4JiTV CLASSIrICAIUN OF Ti41S PAak.'h., 1)n,. IM ,Ie,)

20.

This paper determines upper bounds on the expected time complexity

for a variety of known parallel algorithms for graph problems.

For connectivity of both undirected and directed graphs, transitive

closure and all pairs minimum cost paths, we prove the expected time is

O(loglogn) for a parallel RAN mode;] (RP-RAIM) which allows random resolution

of write conflicts, and expected time O(log n loglogn) for the P-RAM of

NWyl.ie, 71], which allow; no writ, conflicts.

Wv show that the expected parallel time for biconnected components and

minimum spanning trees is O((logloyn) 2) for the RP-RAM and O(log n (logloy n))

for the P-RAM.

Also we show that the problem of random graph isomorphism has expected

parallel time O(loglog n) and O(log n) for the above parallel models,

respectively.

Our results also improve known upper bounds on the expected space

%'"? ,?ej for sequential graph algorithms. For example, we shown ic-SEETi 7

tlk the problems of finding strong components, transitive closure and minimum

cat pat t have expected sequential space O(log.loglog n) with _). time
• .. ., • 'S...

on a Turing Machine given random graphs as inputs.

SECURI"Y CLASSIFI,.ATION OF THIS PAGE(h nfl* I)-,- .lld;

L

THE EXPECTED TIME COMPLEXITY OF PARALLEL

GRAPH AND DIGRAPH ALGORITHMS

John H. Reif

Paul spirakis

TR-11-82

April, 1982

b!b

APProv~d for pubbei mkmw

Dhati- o .nua*"

THE EXPECTED TIME COMPLEXITY OF PARALLEL

GRAPH AND DIGRAPH ALGORITHMS

by

John Reif* and Paul Spirakis
Aiken Computation Laboratory

Division of Applied Sciences
Harvard University, Cambridge, Massachusetts

SUMMARY

This paper determines upper bounds on the expected time complexity

for a variety of known parallel algorithms for graph problems.

For connectivity of both undirected and directed graphs, transitive

closure and all pairs minimum cost paths, we prove the expected time is

O(loglogn) for a parallel RAM model (RP-RAM) which allows random resolution

of write conflicts, and expected time O(log nloglog n) for the P-RAM of

[Wyllie, 79], which allows no write conflicts.

We show that the expected parallel time for biconnected components and

2 2
minimum spanning trees is O((loglog n)) for the RP-RAM and O(log n . (loglog n)

for the P-RAM.

Also we show that the problem of random graph isomorphism has expected

parallel time O(loglog n) and O(log n) for the above parallel models,

respectively.

Our results also improve known upper bounds on the expected space

required for sequential graph algorithms. For example, we shown in Section 7

that the problems of finding strong components, transitive closure and minimum

cost paths have expected sequential space O(log.loglogn) with nO (1) time

on a Turing Machine given random graphs as inputs.

This work was supported by the National Science Foundation Grant NSF-MCS79-
21024 and the Office of Naval Research Contract N00014-80-C-0674.

RAN4DOM INPUT

PROBLEM -R RP-RA

Connctivty =O(lognloglogn) i=O~loglogn)

1=O(n 2/logn-loglogn) it-O(n+pn)

2 20 T=O(1ogn(loglogn)) =O((loglogn))
Biconnected- 3 rOn/o)

Copnnts rt0(n /logn) -=~ /on

02 2Min Cost Spanning T=O(logn(loglogn))T=O((loglogn)
Trees T=O(n 2/loglogn) -=~ 2 ogq)

2 2
All Pairs Shortest t=O(logn(loglogn))T=O((loglogn)

Pats iO(n 3 /logn) i=~O(n 3/logn)

Transitive i=o (lognloglogn) T=O (loglogn)

T=O (n /logn) T=On /logn)

Strongly Connected 2~ 3l~l~oi) = lgon
Components ?t=O(n /logn) -=~ /on

ihO (logn) I T=O (loglogn)
Isomorphism - 2 1 - 2[_______________ 7=O(n /logn) F-=O(n /loglogn)

Table 1. Results of this Paper for Random Graphs

iT=expected number of processors for random input.

T expected parallel time for random input.

3~SGRA&Z'
DUIC ?AS

DTIC unaamow"Cea
COSPYCE Just II iat lo

-R1Stfibution/

Avlail

0 c 0 0 OD0 -4 - ., - N ,

0 0 U 00 U) 0 0)04.- 11 If 11
0cII n 4 0II I 4 0-II 4II I,--

~0 0m
r4 01 0 0 0 c

0

0~ 00 A O1 tp 0N, 0, O
0 0+ . .. 0 4 0 0 rn 0 0 0 0

00

-5 -4

f, 0 - - 0'

ol
0o

U)

0 o 00 0 - 0 -

09 +1 0.) 0" M0t r) 4

0 '0-040 0 0-(0 0-
40 0V 00 0 00 00 00 2

U) II II II II II I II II 4 II II II II II

Id 044.

_
0_

_
U) 0a)_.

t. o 0 M I

04-4 -) 9 0 r
a4) 01

08 Ol tp 0 "oh 00 41 0 ti -

S 0 ON,

0) 0 a) *'U043 0 4-

4 r 4- -4," 0 Q)

N, 'U.- 0) al flN04 4H
0) C4 0 n P) 1 i Q 0m P

z! S) t 0d-o Z - 4 r g -4 C11 C .44

0 0U 0 ; -) Z 6 as)30e

04- -. U)4
UN -'- 4- - 0 4 0
r. .0 4-) - 0 0

.1 41 0 U) 4 U) 44 U

09 0U 414
44 V5 (Dt)4)0 a 04 tz p

'Ul 41 a U) Q) 04 U)u.-
01 EnU 4 -,1 4 01 0 N 04 0' U

04 q) 04 11 -40 C.)ta0 4) 04
040

0'N~ 0~N 'U 0-0 0- 4 0N 'U U". U 04-4or' 0(N oc' ~~~~~ 0C'.4 'U O' OC ') O) P I)
84 0 4 ((N0

0 -0 4 0L'4 - '4 0 4'

1. INTRODUCTION

1.1 The Problems

Considerable work has been done on sequential graph algorithms which are

fast on the average given random input graphs. This includes the work of

[Angluin, Valiant, 79), [Karp, 76], [Karp, Sipser, 81], [Schnorr, 78], [Karp,

Tarjan, 80], [Reif, Spirakis, 80], [Spirakis, 81]. Almost no previous work

examined the average performance of parallel graph and digraph algorithms.

We analyze here the average performance of parallel algorithms for

connectivity, biconnected components, strong connectivity and transitive

closure, minimum cost spanning tree, minimum cost all pair shortest paths

and graph isomorphism.

1.2 The Parallel Machine Models

We consider here some fundamental models of parallel computation, all

of which assume the presence of an unlimited number of processors. In the

first model, P-R4M of [Wyllie, 79], each processor is capable of performing

arithmetic, boolean and certain read and write operations. The processors

have access to a common main memory. In the P-RAM, different processors can

read the same memory location at the same time. They may store information

at different memory locations simultaneously, but no two processors can

attempt to change the contents of the same memory cell at the same time.

(Reif, 81] presented a probabilistic P-RAM model, PP-RAM, where processors

are capable of doing independent probabilistic choices on a fixed input (but,

again, simultaneous writing at the same location is not allowed).

In the second model, the SP-RAM, simultaneous access to the same memory

location is allowed for both read and write operations. In the last case

-2-

exactly one processor succeeds but we make no assumption of which one

succeeds (see [Shiloah, Vishkin, 80]).

In the third model, the RP-RAM, again we allow simultaneous access to

the same memory location for both read and write operations. In the last

case, if k processors attempt to write at the same time, then exactly

one succeeds. The probability that each particular one succeeds is 1/k.

(One could imagine that processors are ordered in some sequential order (all

sequences being equiprobable) and then each subsequent write overwrites

the effect of the previous one and that this sequential execution occurs in

a very fast way, say one step.)

It is clear that any parallel algorithm for the SP-RAM requires the

same expected time on the RP-RAM. It is also clear that any parallel algo-

rithm in the RP-RAM of time T implies a parallel algorithm on the P-RAM

model, of time at most O(T.logm) where m is the maximum number of

processors which could possibly compete for the same memory location (one

could simulate the nondeterministic choice by a tree of pairwise selections

to find a unique winner).

1.3 New Results in the Theory of Random Graphs

The input to most of the algorithms here is assumed to be a random

graph of the model G as defined in (Erdos, Renyi, 60], or a randomn,p

digraph D as defined in [Spirakis, Reif, 81]. For the minimum spanning
n,p

tree and shortest paths algorithms the graph is assumed to be a random graph

G with edge weights selected from a continuous distribution, independently of
n,p
each other. In the G model the probability of existence of an edge p

is)c/n where c is a constant >1. The key to the analysis of the

algorithms of this paper is some new results on random graphs (given in the

Appendix).

-3-

(1) The depth of a random graph of the model G with p c/n (or
nop

G with N >cn) is O(logn) (and decreases as the graph density becomes
n N

larger), with high probability.

(2) The number of connected components of a random graph (or digraph

for strong connectivity) of the model G with p c/n (where c> 2) isnip

O(logn) with probability %> -n -2 and this number decreases as p grows.

(This holds also for k-blocks, k 1 for any constant k.)

(3) A random graph of density p~c/n where c 2 has a large

component (of the appropriate type) of size >n - log n with probability
-2

- n . A previous result of [Karp, Tarjan, 80] showed only that there

is a large component of size at least En, e >0, with high probability.

1.4 Expected Time Results for Known Parallel Graph Algorithms

T1qInQ the abcxvp facts Orl cQme non-lrixviai avwragP - nalqyi, 1.7e

show that one can find the connected components of a random graph G
nrp

and the strong components and transitive closure of a random digraph D
n,p

and also the all-pairs shortest paths of a weighted random graph in average

parallel time O(loglogn) in the RP-RAM and O(logn.loglogn) in the

P-RAM. The average time for biconnected components and minimum spanning

tree is O((loglog n) 2) for RP-RAM and O(log n-(loglog n) 2) for the

P-RAM. The average time for graph isomorphism is O(loglog n) in RP-RAM

and O(log n) in P-RAM. The expected number of processors for undirected
2

connectivity is 0(1 n.(loglog))" For directed connectivity and

transitive closure O(n 3/log n) processors are expected. For biconnected

components we require O(n 3/log n) processors. For minimum spanning tree

and all pairs shortest paths, we require O(n 2/log n) and O(n 3/log n)

processors. For graph isomorphism we need O(n 2/log n) processors.

Table 1 gives our result

-4-

We remark there is generally a considerable drop in time complexity

when one concentrates in the average case of the above problems rather than

worst case input. For sake of comparison we list here previous results and

also provide a table (Table 2). The best known deterministic algorithm for

graph connectivity is O(log 2n) time in P-RAM with O(n 2/log 2n) processors

[Hirschberg, Chandra, Sarwate, 79] and O(log n) time in SP-RAM with

O(n+m) processors [Shiloah, Vishkin, 80]. [JaJa, 78J has an O(log n log d)

time and O(n 3/log n) processors algorithm for the P-RAM where d is the

depth of the graph. For the biconnected components, [Savage, JaJa,81]

give an O(log 2n) time algorithm in deterministic P-RAM with O(n 3/log n)

processors and also a O(log n log d log k) time algorithm with O(mn+n2 log n)

processors where k is the number of components and m =edges of the graph.

For the minimum spanning tree [-Savace,Jaja, 81] given an O(log 2n) time

algorithm with O(n 2) processors. For all the above undirected graph problems,

[Reif, 82] gives an O(log n) probabilistic algorithm for the PP-RAM. This

time is slightly lower than the O(logn loglog n) expected time bound of

this paper for solving undirected graph problems on P-RAM, but [Reif, 82]

3
requires an O(n log n) number of processors whereas our paper requests on

the average considerably less processors, on the P-RAM model. For transitive

closure and strong components the best result ([JaJa, 78]) for the P-RAM is

O(lognlogd) time with O(n 3/log n) processors. For all pairs shortest

2
paths in digraphs, [Dekel, Nassimi, Sahni, 81] give an O(log n) algorithm

3
with O(n) processors. No parallel algorithm for isomorphism was known

up to now. Note also that the results of [Reif, 82] are not applicable to

digraph problems.

LL

2. EXPECTED TIME COMPLEXITY FOR PARALLEL TRANSITIVE CLOSURE AND STRONG

CONNECTIVITY

The following well known algorithm for computing the transitive closure

of an n xn boolean matrix A was shown in [Dekel, Nassimi, Sahni, 811 to

be of O(log 2n) worst case time by using O(n 3) processors, in the P-RAM

model:

Algoritlun TC(A)

B+-A+I

L: B'* B

B4B * B

if B' 3B then go to L

[JaJa, 78] did an efficient implementation of this algorithm showing that it

r-o~i i I he (n n.- in 0 (1 nosnIjn rc $-imp nn ths- P-R?.M mn,1p). Anti bv i,i ndy

O(n 3/log n) processors, where d=depth of G. Note that we can drop the

log 7
number of processors to O(n /log n) by applying Schonage-Strassen

algorithm for matrix multiplication. It is easy to observe that the basic

set operation of [JaJa, 78] (i.e., the union of O(n) sets of O(n)

integers each, from 1 to n) can be done in O(i) time in the SP-RAM, im-

plying an O(log d) algorithm for transitive closure. Using our results

about the average depth of D (see Appendix) we immediately have:
n,p

THEOREM 2.1. The average parallel time for transitive closure of

directed graphs is O(loglog n) for the SP-RAM (and thus also the RP-RAM)

parallel computers and uses O(log n-loglog n) for the P-RAM model using

O(n3 /log n) processors. The probability that the parallel time is more

than this is less than exp(-kn) for k,t >0.

-6-

[JaJa, 78] gave also an algorithm for findinC the strong components of a

digraph in parallel time O(log n log d) in the P-RAM model, by using O(n 3/log n)

processors. Our results about the depth of D then imply:
n,p

THEOREM 2.2. The average parallel time for finding the strong components

of a digraph in the P-RAM model is O(log n loglog n), using O(n3/log n)

processors. In the SP-RAM model (and thus also the RP-RAM) the average time is

O(loglog n) using the same number of processors. The probability that the

parallel time is more than this, is less than exp(-kna) for some k,a >0.

Note that the same closure idea can be applied to undirected graphs to

compute the connected components in O(log nlog d) time in the P-RAM model and

O(log nloglog n) average time, as [JaJa, 78] remarks. However, the number of

processors used is wasteful and we give in the next section an independent

derivation of our result which optimizes over the number of processors.

3. EXPECTED PARALLEL TIME FOR CONNNECTIVITY AND BICONNECTED COMPONENTS IN

UNDIRECTED GRAPHS

3.1 Previous Parallel Algorithms for Undirected Connectivity

(Reif, 82] provided a probabilistic O(log n) time algorithm for the PP-

RAM model, but requiring O(n3 log n) processors. [JaJa, 78] and [Savage,

JaJa, 81] presented algorithms in the P-RAM model for undirected graph

connectivity, with parallel time O(logn logd), where d is the graph depth,

and with O(n 3/log n) processors. For both these algorithms the number of

processors is wasteful and [Hirschberg, Chandra, Sarwate, 79] presented an

2
algorithm which runs in the P-RAM model in parallel time O(log n) and only

using nrn/logn] processors. (Savage, JaJa, 81] remarked that this algorithm

is really of time O(log n'y) where y=min{log n,!!) and d is the graph depth.
'2

.L

*-7-

(Note that thus our result that the expected d is O(log n) does not imply

2.
their algorithm has expected time below O(log n)2.) (Chin, Lam, Chen, 81]

improved the algorithm of Hirschberg et al. to run in O(log 2n) time by using

only O(n 2/log 2n) processors, again in the P-RAM model. [Shiloah, Vishkin, 81]

adopted the Hirschberg et al. algorithm to run on an SP-RAM computer and

provided an O(log n) algorithm by using O(n+m) processors, where m is

the number of edges.

3.2 Graph Connectivity in O(loglog n) Average Parallel Time in the RP-RAM,

Using O(n 2/log n-log log n) Processors

We prove here:

THEOREM 3.1. The average parallel time complexity for connected components

of the random graph G with p,, c>1, is O(loglog n) in the RP-RAM
n,p n

mnlel_. Thp oe-rane nufmber nf rrnl,-)(Pnr ,po O(n+rrnl. TP prnab7j7j*u

that the time complexity exceeds O(loglog n) is o(!).
n

We shall first analyze here the average performance of the (Shiloah,

Vishkin, 81] algorithm, executed in our RP-RAM model. The algorithm uses 2n+m

processors, hence it uses n(2+pn) processors on the average. An improvement

over this will be shown later. During the computation each vertex v has a

pointer field D(v) through which it points on another vertex or to itself.

One can regard v- D(v) as a (directed) edge in an auxiliary graph, called the

pointers-graph. This graph is a collection of sets, each of which is a rooted

tree with a self-loop at the roots. As the algorithm proceeds, the number of

sets decreases while each individual set increases (or disappears). This is

caused by a "hooking" operation in which a tree is hooked on another tree.

The trees are also subject to another transformation of collapsing towards the

root. At the end, each remaining set is a connected component of the graph

and looks like a rooted star in the pointers graph.

3.3 Informal Algorithm Description (for details see [Shiloah, Vishkin, 80])

The notation D (i) i means that vertex i points on vert.x j after
s

the s-th stage. Each stage has four steps, and each step takes constant time

in the RP-RAM model:

Step 1: For all vertices i D (i)- D (D (i)) (collapsing trees).
s s-1 s-1

Step 2: Hook trees on smaller vertices of other trees: All the vertices

that have pointed on a root at the end of the previous stage check whether

their neighbors are pointing on smaller vertices. If one finds such a neighbor

j, it tries to hook its tree on D (j). At this point simultaneous writing at
5

the same location is used by the RP-RAM and one succeeds (with equal probability).

Let us call a tree stagnated in the s-th stage if it has not been changed in the

first two steps of the stage. A root of such a tree is called a stagnated root.

Step 3: Hooking stganated trees: All the vertices that point on a

stagnated root check whether their neighbors point on a vertex of another tree.

If one finds such a vertex j then it tries to hook its tree on D (j). One

of them eventually succeeds.

Step 4: Second collapsing: D (i)- D (D (i)).

We allocate processors to vertices and to edges. Each edge {i,j} is viewed

as two pairs <i,j>, <j,i> and we allocate one processor to each pair. It is

clear that just after Step 1 or after Step 4 the trees are rooted stars.

Stagnated trees are also rooted stars at the beginning of Step 3.

Let us call each rooted tree a "supervertex." It has been remakred in the

literature that the number of supervertices per connected component reduces by

at least two in each stage, thus leading to a total of O(log n) number of

stages and an O(log n) parallel time algorithm in the SP-RAM model.

-9-

3.4 Expected Time Analysis

We assume here that the input to the algorithm is an instance G of the

random graph G with p>c/n and n >1. We shall show that only
n,p

O(loglog n) stages are needed on the average. Let us assume that there are
t t

m supervertices at the end of the t-th stage, of sizes SI,... . S . Since

p >c/n, by results of the Appendix of this paper, the average valence of each

tnode is >2c. In fact, a large fraction (£.St. with C close to 1) of nodes1

of each set i of size S. will each have valence >2 with probability
3

tending to 1 as n tends to - (since c >1). The edges out of each node are

tplaced in a random way. Let us consider a particular set, of size S.. This set

t
has a total of 2cS. edges on the average, originating out of its vertices1

(it has, in fact, ;2c St edges out of its vertices with high probability).

The conditional probability that each of these edges hits a particular other

set of size Sk is obviously St/n. Hence, the total probability that the set

t tis hit is approximately (2cS)(S)/n, conditioned on the assumed sizes
k i k

and valences. (In fact, it is >(2ES t) (S /n) with high probability). Hence,
a kl

et
the average number of the sets to which the set of size S. has edges is

t It

(2cs.) - 2c(S -1) > cS.1n 1 nci _) 2
kpi i . ,x3

if we inductively assume that 2 < S to for every i and any stage beforei

the end of the algorithm. So, we remark that, on the average, each set (i.e.,

supervertex) can (in the next stage) potentially merge with at least as many

supervertices as its size, multiplied by c. Let us now make the inductive

hypothesis that all (but a small fraction) of the sets are of the same average

size (say S t) at time t. For each set of size S then, at least cS

processors propose for it to merge with some other set. A particular processor

-10-

wins with probability q= i/cS. Thus, the average number of proposals a set

accepts will be at least 1/2q =cS/2. (To understand the above argument,

consider an undirected graph whose vertices have degree cS. Each vertex

selects one edge out of it with probability 1/cS. Then, the average indegree

of the resulting directed graph will be at least cS/2.) Hence, at the next

t+l-th stage, the size of that set (and of all but a small fraction of the

remaining sets) will be at least S + S- _ -- S2. So, we have shown that, at2 2

the next stage, the sets will have again equal average sizes (except for a
small fraction) and that St+l c (St Let t be the number of stages

to t
the algorithm does on the average. We have S = max.{S.0 1 < n, implying

1 1

to =O(loglog n), proving our claim about the average number of stages of the

algorithm. Note that the above arguments can be used to prove the giant

component theorem for random graphs (see [Karp, Tarjan, 80], [Reif, Spirakis,811).

For a more detailed analysis, the following statements can be proved by

induction on the number of iterations.

(1) The size of each of the sets at the end of the t-th stage, follows

t 2
approximately a Poisson distribution of mean (c/2) *2

(2) The sizes of all (but a small fraction equal to 1 - , where 0< 1)

sets have small differences with probability going to 1 as n-"-.

Clearly, these two statements again imply that the mean value of number

of stages is O(loglog n) and that the probability that t >loglog n is o(l/n).

3.5 An Improvement Over the Number of Processors

[Chin, Lam, Len, 81] use arrays to represent the supervertices and the

selection of the minimum neighbor in Step 2 is done in P-RAM by using nk

processors in total, where k<n/2.

-11-

It is shown in [Chin, Lam, Len, 813 that the minimum of n elements can

be computed on a P-RAM in time T where

T [n/kl - 1 + log k for k4 .
2

For the total time bound, we shall have (on the average)

logloq n IN

Ttotal i= log k

1 2where N.= (c/2) .2

4 o(+ (loglog n)log k)

The optimal value of the total time is O(log nloglog n) by using an expected

number of nk=n 2/log n.(loglog n) processors. Note that we could get the

same average time complexity for the P-RAM model by just simulating our algo-

rithm for the RP-RAM model but this would require us to use an average of

n(l+pn) processors.

COROLLARY 4.1. The average paraltel time for connected components of the

random graph Gnp with p> c/n is O(log n'loglog n) in the P-RAM model and

2the number of processors needed is O(n /log n-loglog n) on the average.

3.6 Biconnected Components

(JaJa, 78] provided an algorithm which uses the P-RAM model and finds the

biconnected components of a graph in parallel time O(log n-log d-log k) where

d is the depth of the graph and k is the number of biconnected components.

The number of processors needed is O(n 3/log n). Again, this algorithm can be

implemented on the PJ'-RAM model to run in O(log d-log k) parallel time with

3
O(n /log n) processors. Our results of the Appendix about d and kc imply then;

-12-

COROLLARY 3.2. The expected parallel time complexity for finding biconnected

components in the random graph G with p >c/n, c >5, is O((loglog n)2)
nip

for the RP-RAM model and O(log n-(loglog n) 2) for the P-RAM. The number of

3
processors needed is O(n /log n). The probability that the parallel time is

more than this is 0 (2 n-(C-l))

4. EXPECTED PARALLEL TIME FOR MINIMUM WEIGHT SPANNING TREE

4.1 The Algorithm of Sollin

We consider here the problem of finding the minimum weight spanning tree

of instances of the random graph G n,p p> c/n, the edges of which have positive

costs drawn independently from a continuous distribution over a positive domain.

We apply here Sollin's algorithm (see [Papadimitriou, 771). This algorithm

was previously shown in [JaJa, 78] to have worst case parallel time O(log 3n)

on a P-RAM. The algorithm is based on the following observation: Let (V,T)

be the minimum spanning tree (MST) of the graph G =(V,E) under an edge cost

mapping c:EiR + Then, for every vE V, ev E T, where ev is among the shortest

of the edges incident to vertex vEV.

Sollin's algorithm begins by finding all minimum-cost edges incident upon

each node of G. These edges will constitute a forest if the cost function is

one-one. This is so in our case because costs are drawn from a continuous

distribution. We find the connected components of that forest and identify

the vertices of each component. From here on, Sollin's algorithm applies the

same process to the graph whose vertices are the components. The algorithm

proceeds until one vertex remains.

-13-

4.2 Expected Time Analysis

Let us consider the SP-RAM model first. We can find the minimum edge

incident to each vertex in time O(n/p+ loglog p) by using np processors.

For p =n/loglog n we get parallel time O(loglog n) and need n /loglog n

processors for this stage. For any particular vertex pair {u,v}, the probabi-

lity that this edge appears in the forst of the minimum edges is p-prob{{u,v}

has min cost of all edges out of u, given {u,v) appeared} + p-prob{{u,v}

has minimum cost of all edges out of v, given {u,v} appeared}. Since weights

are assigned independently, one can show that prob{{u,v} has minimum cost of

all edges out of u} ; i/c for p>c/n. Hence, probability{{u,v} appears in

the forest} > 2/n. so, the constructed forest has embedded into it the

instances of a random graph G with p' >2/n. By the results of Appendix

of this paper, the forest will have a big component of cardinality >n-log n

2and a small O(log n) number of smaller components, with probability >1- 1/n

The construction of the new graph (of the "nodes" being the components of

the original with respect to minimum edges) will hence take O(loglog n) time

in the SP-RAM (and also RP-RAM) model, with high probability. To determine the

edges of this reduced graph will take O(loglog n) time for each vertex

then O(loglog n) time at most for all pairs of components. The connected

components of the new graph can be found by a deterministic algorithm in

O(loglog n) time. This process will continue giving us an O((loglog n)2

-2
time algorithm with probability 1n- . Hence:

THEOREM 4.1. The parallel expected time to find the MST of a random graph

Gn,p with random, independent weights in the SP-RAM (and so the RP-RAM) model,

is O((loglog n) 2). By simulation, the expected parallel time in the P-RAM is

O(log n. (loglog n) 2). The number of processors needed is o(n 2/loglog n).

Mhe probability that the time is more than stated, is O(n 2).

-14-

5. EXPECTED PARALLEL TIME FOR ALL PAIRS SHORTEST PATHS

Given a weighted n-vertex graph G, the all pairs shortest-path matrix A

is an nxn matrix such that A(i,j) is the length of a shortest path from

i to j in G. Let A k(i,j) denote the length of a shortest path from i

dto j going through at most k-intermediate vertices. Clearly A(i,j) = A (ij)

where d=depth of G. Let A 0(i,j) be the length of the edge {i,jJ if

k.{i,j} is in the graph, and + - else. It is easy to see that A (i,j) =

min {A k/2(i,m) +A k/2(m,j)}. Hence we can compute Ad by computing A2

m

A4 ,...,A 2
... Ad. Ak can be computed from Ak/2 using the.matrix multiplica-

tion algorithm with + substituted for * and min for +. Since matrix

multiplication can be done in time O(log n) in P-RAM using n 3/log n

processors and in time O(loglog n) in SP-RAM (and so RP-RAM) using n 3/log n

processors, we get an O(log n log d) deterministic time for P-RAMs and an

O((iogiog n)'log d) for random graph G with p>c/n and c>l we get
n,p

by our results on the depth of G (See Theorem AI of the Appendix).
n,p

COROLLARY 5.1. The expected parallel time for all pairs shortest paths

in the G model with p~c/n, c>l and arbitrary weights is O((loglog n) 2 r
n,p

for the SP-RAM or RP-RAM and O(log n-(loglog n)) for the P-RAM model. The

probability that the time is more than stated above is O(e), for k,a>0.

3The number of processors needed is On 3/log n).

Note [Dekel, Nassimi, Sahni, 811 gave an O(log 2n) deterministic algorithm

.3
for the P-RAN model which uses n processors.

LI

-15-

6. EXPECTED PARALLEL TIME FOR RANDOM GRAPH ISOMORPHISM

The following algorithm, given by (Babai, Kucera, 79] is essentially a

Breadth-First-Search procedure applied to random graphs of the model G withnip

p= 1/2:

[13 Classify vertex by valences (i.e., each vertex gets its valence as a

label). Let cl,...,c be the classes of the above classification, arrangedI h

by the order induced by this classification.

[2] (First refinement): Let N. (v) be the number of neighbors of v in
1

c. and let N4 (v) = smallest nonnegative integer congruent to N. (v) mod 4.1 1 1

Then, two vertices v,u are ordered now if (a) they were of different label

before or (b) they had same labels but

4 4 4 4..,Nh(v)) < (N (u),...,N (u))(N4 (v),..., h ..

lexicographically.

[3] Let c,,c2 . .. ,Ch, be the classes of [2]. Apply step [2) to these

classes.

THEOREM 6.1. [Babai, Kucera, 79]. Let U be the set of vertices whose

class is not a singleton after step [3]. Then Prob{IU l>1}exp(-cn), c>O.

The valence classification can be done in O(loglog n) time by SP-RAM (and thus

also the RP-RAM) by using a total of n 2/loglog n processors. In P-RAM, it

can be done in time O(log n) by using O(n 2/log n) processors. The partial

orders created by the refinements are best stored as a function, corresponding

to them. Clearly a function computation is not more than O(loglog n) in

SP-RAM (and thus also the RP-RAM) and O(log n) in P-RAM by using O(n 2/loglog n)

and O(n 2/log n) processors, respectively. So:

COROLLARY 6.1. A canonical labelling algorithm on G p=1/2, takes

average parallel time O(loglog n) in SP-RAM (and thus also the RP-RAM) with

O(n 2/loglog n) processors and O(log n) time, in P1-RAM with O(n 2/loq n) pt'ocessor,. .

-16-

7. EXPECTED SEQUENTIAL SPACE COMPLEXITY FOR GRAPH ALGORITHMS

THEOREM 7.1. The upper bound on required sequential space for transitive

closure on digraphs is O(log n log d) where d is the depth of the digraph.

Proof. The proof is similar to the techniques used by [Savitch, 70] for

simulating nondeterministic space by deterministic space.

Input: digraph D = (V,E), IVI = n

The following procedure tests if there is a path from u to v, of length

z > 0.

Algorithm CONNECT(u,v,k)

begin

if (u,v) E E then return TRUE else

begin

for all wEV if

CONNECT (u,v,[/2 1) and CONNECT(w,v,[9/2]

then return TRUE

end

It is clear that we get the transitive closure by repeated applications of

CONNECT. Each time we just remember the recursion depth. Therefore, the

required sequential space is O(lognlogd) where d= depth of D-

COROLLARY. The average sequential space for transitive closure is

O(logn loglog n). The probability that is more than stated is O(exp(-kn).

Note that strong components, minimum cost paths etc. require only

O(log nlog d) sequential space in the worst case, implying an average of

O(lognloglogn) for random graphs Gn,p or digraphs Dn,p

n[i

-17-

Note also that we can do isomorphism in O(log n) average sequential

space. The reason is that we can find the rank of any out of n integers by

using only O(log n) space.

REFERENCES

Angluin, D. and L.G. Valiant, "Fast Probabilistic Algorithms for Hamiltonian
Paths and Matchings," J. Comp. Syot. Sci. 18 (1979), pp. 155-193.

L. Babai and L. Kucera, "Canonical Labelling of Graphs in Linear Average
Time," CH1471-2/79, 1979, IEEE.

F. Chin, J. Lam, and I. Chen, "Optimal Parallel Algorithms for the Connected
Components Problem," Foundations of Computer Science (FOCS), 1981.

E. Dekel, D. Nassimi, S. Sahni, "Parallel Matrix and Graph Algorithms," SIAM'
J. Comp. 10(4), Nov. 1981.

Erdos, P. and A. Renyi, "On the Evolution of Random Graphs," Pub. Math. Inst.
Hung Acad. Sci. 5A, 1960, pp. 17-61.

D. Hirschberg, A. Chandra, D. Sarwate, "Computing Connected Components on
Parallel Computers," Commun. of the ACM 22(8), August 1979.

J. Ja'Ja', "Graph Connectivity Problems on Parallel Computers," TR GS-78-05,
Dept. of Computer Science, Penn. State Univ., PA, 1978.

R. M. Karp, "The Probabilistic Analysis of Combinatorial Search Algorithms,"
AZgorithms and Complexity: New Directions and Recent ResuZlts, J.F. Traub,
Ed. Acad. Press, New York, 1976, pp. 1-19.

R. M. Karp, and M. Sipser, "Maximum Matchings in Sparce Random Graphs,"
Foundations of Computer Science, 1981.

R. M. Karp and R. Tarjan, "Linear Expected Time Algorithms for Connectivity
Problems," Proc. of the 12th ACMI Symp. on Theory of Computing, Los
Angeles, Calif., 1980, pp. 368-377.

C.H. Papadimitriou, "Unpublished Notes," Harvard University, 1977.

J. Reif, "Symmetric Complementation," 14th ACM Symposiwn on Theory of Computing
San Francisco, Calif., May 1982.

J. Reif and P. Spirakis, "Random Matroids," Proc. of the 12th ACM Symp. on
Theory of Computing, Los Angeles, Calif., 1980, pp. 385-347, also rewritten
as "Probabilistic Analysis of Random Extension-Rotation Algorithms,"
TR-28-81, Aiken Comp. Lab., Harvard University, 1981-

J. Reif, and P. Spirakis, "k-Connectivity in Random Undirected Graphs," TR-19-81,
Aiken Comp. Lab., Harvard University, 1981.

C. Savage and J. Ja'Ja', "Fast, Efficient Parallel Algorithms for Some Graph
Problems," SIAM d. Comp. 10(4), Nov. 1981.

B2

W.J. Savitch, "Relationships between Nondeterministic and Deterministic Tape
Complexities," J. Comp. System Sciences 4(2), 1970, pp. 177-192.

C.P. Schnorr, "An Algorithm for Transitive Closure with Linear Expected Time,"
SIAM J. Comp. 7, 1978, pp. 127-133.

Y. Shiloah, and V. Vishkin, "A O(log n) Parallel Connectivity Algorithms," to
appear in J. of Algorithms.

P. Spirakis, "Probabilistic Algorithms, Algorithms with Random Inputs and
Random Combinatorial Structures," Ph.D. Thesis, Harvard University,
December 1981.

P. Spirakis, and J. Reif, "Strong k-Connectivity in Digraphs and Random
Digraphs," TR-25-81, Aiken Comp. Lab., Harvard University, 1981.

J. Wyllie, "The Complexity of Parallel Computation," Ph.D. Thesis, Cornell
University, 1979.

APPENDIX

RESULTS OF THE THEORY OF RANDOM GRAPHS

A.1 The Distribution of the Depth of a Random Graph

Let the depth d(G) of a graph G= (V,E) to be the max u,vv{d(u,v),2}

where d(u,v) is the length of the shortest path between u and v, if they

are connected (-- otherwise). The depth of a random graph G is the random
n,p

variable d(G n,P) whose values are the depths of the instances G of Gn,p .

The above definition generalizes to digraphs in an obvious way. We now give an

average case argument about d and then we discuss d's distribution.

LEMMA 1. The average value of d(G) is O(log n) for G withn,p n,p

p> c/n, and c>l.

Proof. Let G =(V,E) be an instance of G and let u be a particularn,p

node of G. Assume we do Breadth-First-Search out of u in parallel, so thet

nodes at the same distance from u are reached at the same time t. Let Bt

be # nodes at depth t, i.e. reached at time t. Let St be the average size

at time t of the set of visited nodes. Clearly

S t+l= St t+1

and

Bt+1 = pBt (n- St).

k kFrom these two equations one can prove (by induction) that Bk =(p (n-l)
kk

and S k=(l+c+ ... +c) for p>c/n, c> 1. Clearly, S (n for d=the

average depth of G. Hence d= O(log n).

n~is

A2

LEMMA 2. The probability that d(G n P) > log n is bounded above by
_ka

O(e) for k,c positive constants depending on c, for graphs G withnip

p;c/n, c>1. This implies that d=O(log n).

Proof. Consider two specific vertices u,v of V. The probability of

no path of length 1 between u,v is * = 1-p. The probability of no path of

length 2 is C2 = (1-) since, for a path of length 2 to exist, at most
2

o

n-2 possible nodes in V- {u,v) can participate, each such path has probabi-

2
lity p to appear and these paths have no edges in common.

The probability of no path of length j is (for j > 1)

(pJ) (n-2) (n-3)... (n-j)

since each such path has prob= pJ to appear and there are n-2 independent

choices for the first vertex after u, n-3 choices for the second vertex, etc.

The probability that there is no path of length log n for the specific pair

of vertices u,v is

v= 2"" = (-p)(l-p 2)n-2 .. . (ng n) (n-2)... (n-log n)
u'v 1 2 .. log n

For p c/n and p=o(l) we have 1/p- - as n- and hence

k (n-2)... (n-k) -pk(n-2)... (n-k)
(l-p) e

For p=o(l) we also have 1-p-l as n-. So,

S e-P E(n-2)p+... + (n-2)... (n-log n)plog n]

u,v

4 e-P[(n-log n)p+... + (n-log n)log nplog
n

[(n-log n)p]lo g n 1

(n-log n)p-1
]

Aim - " ' .. -' .. . - : t!-- ...-

A3

This expression is bounded above by e-c[n C-I/C-1] for c >1. But

c-i

22-
c -1]

Prob{d(G) >log n} n2 D n e c
U,V

If c >1 then 3k,a depending on c (k> 0,a >0) such that, for large n

2 -n
c- I -kna

ne e

This proves the Lemma. 0

Note that, for pn-i as n 0, one can prove that the d(G) < log n
log(pn)logn,

with probability tending to 1. For p > c n , there is almost always an

path of length < 3 between any two nodes of G . (The reason is that,
n,p

for any pair of vertices u,v of V, if S , (S) are the sets of verticesu v

which are neighbors of u (of v) but not of v (not of u) then Isul

Isv 1s-E°n for some C >0 with probability >I- e , $ > 0. Then, a lemma

of [Erdos, Renyi, 59] (also (Karp, Tarjan, 80]) proves that at least one edge

connects a node of S and a node of S with probability > 1 - e
u v

0<8' <B.)

We will quote here some results about the valence of nodes of G , stated
n p

in [Erdos, Renyi, 59].

REMAPK 1. If p= c/n then the degree of any given vertex of an instance

of G has mean value 2c and the number of vertices having degree r is
n,p

approximately

n(2c) r e-2c

r!
iREMRK 2. If p(n) > log w(n) where w(n) -- a n -- then the

n

probability that the degree of a vertex will be outside the interval

I"
A4

2 log n(l ±C)w(n) is approximately O(/ W(n) Hence the probability

that the degrees of not all n points will be between 2w(n)(l ±C)log n, is

tending to 0.

Note that, by an elementary application of Whitney's theorem, the

connectivity k and depth d of a graph satisfy k(d-l) <n, if the graph is

connected. This implies that with high (conditional on the fact that G
n,p

is connected) probability, the graph G will be highly-connected forn,p

large values of p.

Note that all of the above results can be easily generalized for random

digraphs D , p c/n, c> 2.
n,p

A.2 The Size and Number of Connected Components for p c/n

THEOREM A. 2. For any m = o (n) t ere is a constant c1 > 1 and a function

t(n) >c I log n/m such that, if p>t(n)/n then if x is the cardinatity of

the largest component of Gn, p then

Prob{X<n-m} n -*0 as n 0
t(n)-me

Proof. Assume that in the instance G of G the cardinality X ofn,p

the largest component satisfies the inequality X n- m. Then, we can find

two sets Y, Z such that IYI am, IZI =n-m and no edge between them.

This event is above bounded by the probability l-q where

q = Prob{for every pair of disjoint sets Y,Z of vertices of sizes

m, n-m, there is at least one edge between Y,Z).

Let us enumerate all possible pairs of sets of vertices of the above sizes.

Call them

A5

(Y1 ,Z1),(Y2 1Z2),...,(y g, Zg)

where

(n)() (n)

We have that

q = Prob{E(YI,Z) *A ... AE(Y ,Zg)

where E(Y,Z) = set of edges between Y,Z. So, by Baye's formula,

PrbEYEZ)4 ~ (Y 2 Z 2)i E E(Y h PZ.)

Prob{E(Yi,Zl)WProb)E(YZ)j ... Pro

L=i ... g-1

We need the following enumeration lemma:

LEMMA 3. For every two sets Yi.,Zi having at least one edge e between

them, there are at least (n-2)
91 = (m-i

pairs of sets of sizes m, n-m which also have this edge between them.

This lemma can be easily shown by taking out the two vertices of e and

enumerating.

As a corollary, we conclude that there is a suitable enumeration of the

sets in the q product such that for every term i not equal to 1 the next

g1 or more terms (conditioned on the existence of an edge from Ai to B.)

will be equal to 1. Hence, the value of q is

q > [Prob{E(YI,Zl) 1 g/gl)

But

A6

n n(n-1) < n
g/gl m (n-m) m

Hence

q 1 - (1 -p)m(n
- m)] (n/m)

(1[- (-p)1/p pm(n-m) (n/m)

or

q (1-epm (n-r) (n/rn) -t -*

or
q 1 - e- [t(n)'m-log n] > 1-n(c 1-1)

So, q 4 l if c1 >1. So,

-rbX -m _[t(n)'m-log n] < n-(0 as n * -)G uProb{X <n-m} < eg ~ n 1 * sn*

COROLLARY I. For m= log n and t(n) > c > 3 we get: The graph G
1 n,p

with p >cI/n has a component of size >n-log n with probability

1-n- > 1-n.

COROLLARY II. The graph G with p> c/n and c >3 has less thannip

log n connected components with probability > I -n- (C-l) > • -

The above arguments can easily be generalized to biconnected components

of a graph G and strong components of a random digraph D (and in
n,p n,p

fact to statements about size and number of k-blocks and k-strong blocks for

any constant k>1). See (Reif, Spirakis, 81 and (Spirakis, Reif, 811 for a

proof of that.

