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THE EXPECTED TIME COMPLEXITY OF PARALLEL

GRAPH AND DIGRAPH ALGORITHMS

by

John Reif* and Paul Spirakis
Aiken Computation Laboratory
pivision of Applied Sciences

Harvard University, Cambridge, Massachusetts

: SUMMARY

This paper determines upper bounds on the expected time complexity

for a variety of known parallel algorithms for graph problems.

For connectivity of both undirected and directed graphs, transitive
closure and all pairs minimum cost paths, we prove the expected time is
O(loglogn) for a parallel RAM model (RP-RAM) which allows random resolution
of write conflicts, and expected time O(logxllogloérn for the P-RAM of
[wyllie, 79], which allows no write conflicts. |

We show that the expected parallel time for biconnected components and
minimum spanning trees is 0((loglogn)2) for the RP~RAM and 0(10911-(loglogn)2) £
for the P-RAM.

Also we show that the problem of random graph isomorphism has expected
parallel time O(loglogn) and O(logn) for the above parallel models,
respectively.

Our results also improve known upper bounds on the expected space

required for sequential graph algorithms. For example, we shown in Section 7

that the problems of finding strong components, transitive closure and minimum

. 1 .
! cost paths have expected scquential space Of{log-loglogn) with no( ) time

on a Turing Machine given random graphs as inputs.

|
| °
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1. INTRODUCTION

1.1 The Problems

Considerable work has been done on sequential graph algorithms which are
fast on the average given random input graphs. This includes the work of
[Angluin, Valiant, 79}, [Karp, 76], [Karp, Sipser, 81}, [Schnorr, 78), [Karp,
Tarjan, 80), [Reif, Spirakis, 80], ([Spirakis, 81]. Almost no previous work
examined the average performance of parallel graph and digraph algorithms.

We analyze here the average performance of parallel algorithms for
connectivity, biconnected components, strong connectivity and transitive
closure, minimum cost spanning tree, minimum cost all pair shortest paths

and graph isomorphism.

1.2 The Parallel Machine Models

We consider here some fundamental models of parallel computation, all
of which assume the presence of an unlimited number of processors. In the
first model, P-RAM of [wWyllie, 79], each processor is capable of performing
arithmetic, boolean and certain read and write operations. The processors
have access to a common main memory. In the P-RAM, different processors can
read the same memory location at the same time. They may store information
at different memory locations simultaneously, but no two processors can
attempt to change the contents of the same memory cell at the same time.
[Reif, 81]) présented a probabilistic P-RAM model, PP-RAM, where processors
are capable of doing independent probabilistic choices on a fixed input (but,
again, simultaneous writing at the same location is not allowed).

In the second model, the SP~RAM, simultaneous access to the same memory

location is allowed for both read and write operations. 1In the last case




exactly one processor succeeds but we make no assumption of which one
succeeds (see [Shiloah, Vishkin, 80]).

In the third model, the RP-RAM, again we allow simultaneous access to
the same memory location for both read and write operations. In the last
case, if k processors attempt to write at the same time, then exactly
one succeeds. The probability that each particular one succeeds is 1/k.
(One could imagine that processors are ordered in some sequential order (all
sequences being equiprobable) and then each subsequent write overwrites
the effect of the previous one and that this sequential execution occurs in
a very fast way, say one step.)

It is clear that any parallel algorithm for the SP-RAM requires the
same expected time on the RP-RAM. It is also clear that any parallel algo-
rithm in the RP-RAM of time T implies a parallel algorithm on the P-RAM
model, of time at most O(T.logm) where m is the maximum number of
processors which could possibly compete for the same memory location (one
could simulate the nondeterministic choice by a tree of pairwise selections

to find a unique winner).

1.3 New Results in the Theory of Random Graphs

The input to most of the algorithms here is assumed to be a random

graph of the model Gn p as defined in (Erdos, Rényi, 60], or a random

’

digraph Dn as defined in [Spirakis, Reif, 81)}. For the minimum spanning
’

tree and shortest paths algorithms the graph is assumed to be a random graph

G with edge weights selected from a continuous distribution, independently of
’

each other. 1In the G model the probability of existence of an edge p
n,

is Pc/n where ¢ is a constant >1. The key to the analysis of the

algorithms of this paper is some new results on random graphs ({(given in the

Appendix).

— nmntei oA e o . e




-

(1) The depth of a random graph of the model Gn P with p#c/n (or

Gn,N with N2cn) is O(logn) (and decreases as the graph density becomes
larger), with high probability.

(2) The number of connected components of a random graph (or digraph
for strong connectivity) of the model Gn,p with p2c/n (where c¢>2) is
O(logn) with probability ?l-—n-2 and this number decreases as p grows.
(This holds also for k-blocks, k21 for any constant k.)

(3) A random graph of density p2c/n where ¢22 has a large
component (of the appropriate type) of size 2n-logn with probability
2&-—n-2. A previous result of [Karp, Tarjan, 80] showed only that there

is a large component of size at least ¢€n, €>0, with high probability.

1.4 Expected Time Results for Known Parallel Graph Algorithms

Using the abave facts and =qme non-trivial average ~ace apalysis, we

show that one can find the connected components of a random graph Gn
’

and the strong components and transitive closure of a random digraph Dn,p
and also the all-pairs shortest paths of a weighted random graph in average
parallel time O(loglegn) in the RP-RAM and O(logn-.loglogn) in the
P-RAM. The average time for biconnected components and minimum spanning
tree is O(l(loglog n)2) for RP-RAM and O{(log n*(loglog n)z) for the

P-RAM. The average time for graph isomorphism is O(loglog n) in RP-RAM

and O(log n) in P-RAM. The expected number of processors for undirected

2
n

log n-{loglog n)

connectivity is Of }. For directed connectivity and
transitive closure O(n3/log n) processors are expected. For biccnnected
components we require O(na/log n) processors. For minimum spanning tree

and all pairs shortest paths, we require o(nz/log n) and 0(n3/log n)

processors, For graph isomorphism we need O(nz/log n) processors.

Table 1 gives our result.




We remark there is generally a considerable drop in time complexity
when one concentrates in the average case of the above problems rather than
worst case input. For sake of comparison we list here previous results and
also provide a table (Table 2). The best known deterministic algorithm for
graph connectivity is o(logzn) time in P-RAM with 0(n2/logzn) processors
[Hirschberg, Chandra, Sarwate, 79] and O(log n) time in SP-RAM with
O(n+m) processors [Shiloah, Vishkin, 80]1. [ JaJa, 78] has an 0O(logn log d)
time and O(n3/log n) processors algorithm for the P-RAM where 4 is the
depth of the graph. For the biconnected components, [ Savage, JaJa,8l]
give an 0(logzn) time algorithm in deterministic P-RAM with O(n3/log n)
processors and also a O(lognlogdlogk) time algorithm with 0(mn+n210g n)
processors where k 1is the number of components and m=edges of the graph.
For the minimum spanning tree [.Savace,Jaja, 811 given an 0(1ogzn) time
algorithm with O(nz) processors. For all the above undirected graph problems,
[Reif, 82 ] gives an 0O(log n) probabilistic algorithm for the PP-RAM. This
time is slightly lower than the O(logn loglogn) expected time bound of
this paper for solving undirected graph problems on P-RAM, but [Reif, 2]
requires an O(n3logn) numbe; of processors whereas our paper requests on
the average considerably less processors, on the P-RAM model. For transitive
closure and strong components the best result ([JaJa, 78]) for the P-RAM is
O(logt;logd) time with O(n3/log n) processors. For all pairs shortest
paths in digraphs, [Dekel, Nassimi, Sahni, 81} give an o(logzn) algorithm
with 0(n3) processors. No'parallel algorithm for isomorphism was known
up to now. Note also that the results of [Reif, 82] are not applicable to

digraph problems.




2. EXPECTED TIME COMPLEXITY FOR PARALLEL TRANSITIVE CLOSURE AND STRONG

CONNECTIVITY

The following well known algorithm for computing the transitive closure
of an nXn boolean matrix A was shown in [Dekel, Nassimi, Sahni, 81] to
be of O(logzn) worst case time by using 0(n3) processors, in the P-RAM
model: .

Algorithm TC(A)

B+“A+1I
L: B'<«B

B+*B°*B

if B'#B thengo to L
[JaJda, 78] did an efficient implementation of this algorithm showing that it
conld he done in Ollogn loa d) time on the P-RAM mnde}, and hv nsing
O(n3/log n) processors, where d=depth of G. Note that we can drop the
number of processors to O(nlog'alog n) by applying Schonage-Strassen
algorithm for matrix multiplication. It is easy to observe that the basic
set operation of [JaJa, 78] (i.e., the union of 0(n) sets of 0(n)
integers each, from 1 to n) can be done in O0(l) time in the SP-RAM, im-
plying an 0(log d) algorithm for transitive closure. Using our results

about the average depth of Dn p {(see Appendix) we immediately have:

’

THEOREM 2.1. The averag.e parallel time for transitive closure of
directed graphs ie 0(loglog n) for the SP-RAM (and thus alsc the RP-RAM)
parallel computers and uses 0(1og' n-loglog n) for the P-RAM model using
0(n3/loq n) processors. The probability that the parallel time is more

than this is less than exp(-kn®) for k,a>o0.

v
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[JaJa, 78] gave also an algorithm for findinc the strong components of a
digraph in parallel time O(lognlogd) in the P-RAM model, by using 0(n3/logxn

processors. Our results about the depth of Dn then imply:

r

THEOREM 2.2. The average parallel time for finding the strong components

of a digraph in the P-RAM model is 0©O(logn loglogn), using 0(n3/1og n)
processors. In the SP-RAM model (and thus also the RP-RAM) the average time is
O(loglog n) using the same number of processors. The probability that the

parallel time is more than this, is less than exp(—kna) for some k,0>0.

Note that the same closure idea can be applied to undirgcted graphs to §
compute the connected components in O(lognlogd) time in the P-RAM model and
O{(log n loglogn) average time, as [JaJa, 78) remarks. However, the number of ‘
processors used is wasteful and we give in the next section an independent

derivation of our result which optimizes over the number of processors.

3. EXPECTED PARALLEL TIME FOR CONNNECTIVITY AND BICONNECTED COMPONENTS IN

UNDIRECTED GRAPHS

3.1 Previous Parallel Algorithms for Undirected Connectivity

(Reif, 82) provided a probabilistic O(log n) time algorithm for the PP-

RAM model, but requiring O(n3log n) processors. [JaJa, 78] and [Savage,
JaJa, 81] prescented algorithms in the P-RAM model for undirected graph

connectivity, with parallel time O(lognlogd), where d is the graph depth,

and with O(n3/1og n) processors. For both these algorithms the number of
processors is wasteful and [Hirschberg, Chandra, Sarwate, 79] presented an

. algorithm which runs in the P-RAM model in parallel time 0(log2n) and only
using n[n/logn] processors. [Savage, JaJa, 81] rcmarked that this algorithm

is recally of time O(log n'y) where y==min{log n,%} and d 1is the graph depth.




o

(Note that thus our result that the expected d is 0(log n) does not imply
their algorithm has expected time below O(log n)2.) {Chin, Lam, Chen, 81)
improved the algorithm of Hirschberg et al. to run in o(logzn) time by using
only O(nz/logzn) processors, again in the P-RAM model. [Shiloah, Vishkin, 81}
adopted the Hirschberg et al. algorithm to run on an SP-RAM computer and
provided an O(log n) algorithm by using O(n+m) processors, where m is

the number of edges.

3.2 Graph Connectivity in O(loglog n) Average Parallel Time in the RP-RAM,

Using O(nz/log n+log log n) Processors

We prove here:

THEOREM 3.1. The average parallel time complexity for connected components
of the random graph Gn,p with p?%, c>1, 18 O(loglog n) in the RP-RAM
model.. The average wmimber of proressors uged is  O(n+pn).  The probability

that the time complexity exceeds O(loglog n) <s o(%).

We shall first analyze here the average performance of the [Shiloah,
Vishkin, 81] algorithm, executed in our RP-RAM model. The algorithm uses 2n+m
processors, hence it uses n(2+pn) processors on the average. An improvement
over this will be shown later. During the computation each vertex v has a
pointer field D(v) through which it points on another vertex or to itself.
One can regard v-~+D(v) as a (directed) edge in an auxiliary graph, called the
pointers-graph. This graph is 5 collection of sets, each of which is a rooted
tree with a self-loop at the roots. As the algorithm proceeds, the number of
sets decreases while each individual set increases (or disappears). This is
caused by a "hooking" operation in which a tree is hooked on another tree.

The trees are also subject to another transformation of collapsing towards the
root. At the end, each remaining set is a connected component of the graph

and looks like a rooted star in the pointers grarh.




3.3 1Informal Algorithm Description (for details see [Shiloah, Vishkin, 80])

The notation Ds(i)==j means that vertex i points on vertix j after
the s-th stage. Each stage has four steps, and each step takes constant time
in the RP-RAM model:

Step 1: For all vertices i Ds(i)+-Ds (Ds_l(i)) (collapsing trees).

-1
Step 2: Hook trees on smaller vertices of other trees: All the vertices

that have pointed on a root at the end of the previous stage check whether

their neighbors are pointing on smaller vertices. If one finds such a neighbor

j, it tries to hook its tree on Ds(j). At this point simulFaneous writing at

the same location is used by the RP-RAM and one succeeds (with equal probability).

Let us call a tree stagnated in the s-th stage if it has not been changed in the

first two steps of the stage. A root of such a tree is called a stagnated root.

Step 3: Hooking stganated trees: All the vertices that point on a
stagnated root check whether ;heir neighbors point on a vertex of another tree.

If one finds such a vertex Jj then it tries to hook its tree on Ds(j). One

of them eventually succeeds.
Step 4: Second collapsing: Ds(i)+—Ds(Ds(i)).

We allocate processors to vertices and toedges. Each edge {i,j} 1is viewed
as two pairs <i,j>, <j,i> and we allocate one processor to each pair. It is
clear that just after Step 1 or after Step 4 the trees are rooted stars.
Stagnated trees are also rooted stars at the beginning of Step 3.

Let us call each rooted trée a "supervertex." It has been remakred in the
literature that the number of supervertices per connected component reduces by
at least two in each stage, thus leading to a tétal of O(log n) number of

stages and an O{(log n) parallel time algorithm in the SP-RAM model.

ey




————

3.4 Expected Time Analysis

We assume here tgat the input to the algorithm is an instance G of the
random graph Gn,p with pz2c¢/n and n>1. We shall show that only
O(loglog n) stages are needed on the average. Let us assume that there are
m supervertices at the end of the t-th stage, of sizes S;,...,S;. Since
p#¢/n, by resulFs of the Appendix of this paper, the average valence of each
node is 22c. 1In fact, a larée fraction (>€.s§ with € close to 1) of nodes
of each set i of size SE will each have valence 22 with probability
tending to 1 as n tends to ® (since c¢>1l). The edges out of each node are
placed in a random way. Let us consider a particular set, of size SE. This set
has a total of 2CS§ edges on the average, originating out of its vertices
(it has, in fact, 22¢ SE edges out of its vertices with high probability).
The conditional probability that each of these edges hits a particular other

set of size Si is obviously Sﬁ/n. Hence, the total probability that the set

t
k

and valences. (In fact, it is >(2€S§) (S;/n) with high probability). Hence,

S. is hit is approximately (2cS§)(S;)/n, conditioned on the assumed sizes

the average number of the sets to which the set of size SI has edges is

st n-st
Y (2esh) X - 2cSF( 1 )> 2¢(s¥-1) > st
k#i 1 n 1 n h 8 1

if we inductively assume that 2<s;:~l €Vn for every i and any stage before
the end of the algorithm. So, we remark that, on the average, each set (i.e.,
supervertex) can'(in the next stage) potentially merge with at least as many
supervertices as its size, multiplied by ¢. Let us now make the inductive
hypothesis that all (but a small fraction) of the sets are of the same average
size (say st) at time t. PFor each set of size S then, at least c§

processors propose for it to merge with some other set. A particular processor

e e o b aaa




wins with probability q=1/cS. Thus, the average number of proposals a set
accepts will be at least 1/2q=c¢S5/2. (To understand the above argument,
consider an undirected graph whose vertices have degree c¢S. Each vertex
selects one edge out of it with probability 1/cS. Then, the average indegree
of the resulting directed graph will be at least <¢S/2.) Hence, at the next

t+l-th stage, the size of that set (and of all but a small fraction of the

E§-> % 52. So, we have shown that, at

remaining sets) will be at least S+S-
the next stage, the sets will have again equal average sizes (except for a

122 5% pet ¢

t | S
the algorithm does on the average. We have § 0. maxi{s,o} € n, implying
i

small fraction) and that S be the number of stages

o]

to==0(loglog n), proving our claim about the average number of stages of the
algorithm. Note that the above arguments can be used to prove the giant
component theorem for random graphs (see [Karp, Tarjan, 80), [Reif, Spirakis,81}).
For a more detailed analysis, the following statements can be proved by
induction on the number of iterations.
(1) The size of each of the sets at the end of the t-th stage, follows

t
approximately a Poisson distribution of mean (c/2)t-22 .

t
2
(2) The sizes of all (but a small fraction equal to 1-B" , where B< 1)
sets have small differences with probability going to 1 as n=+®,

Clearly, these two statements again imply that the mean value of number

of stages is O(loglog n) and that the probability that t>loglog n is o{l/n).

3.5 An Improvement Over the Number of Processors

{Chin, Lam, Len, 81] use arrays to represent the supervertices and the
selection of the minimum neighbor in Step 2 is done in P-RAM by using nk

processors in total, where k<n/2.
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It is shown in [Chin, Lam, Len, 8l1] that the minimum of n elements can

be computed on a P-RAM in time T where

T = [n/k]-1+1o0g k for k<% .

For the total time bound, we shall have (on the average)

T

total

loglog n N,
k

2 - 1+1og k)
i=o0

. i
where Ni = (c/2)1'-22

< o(% + (loglog n)log k) .

" The optimal value of the total time is O(logn loglog n) by using an expected
number of nk==n2/log n- (loglog n) processors. Note that we could get the
same average time complexity for the P-RAM model by just simulating our algo-
rithm for the RP-RAM model but this would require us to use an average of

n(l+pn) processors.

COROLLARY 4.1. The average parallel time for connected componente of the
random graph Gn P with p2c¢c/n %8 O(log n*loglog n) in the P-RAM model and

the number of processors needed is O(nz/log n-loglog n) on the average.

3.6 Biconnected Components

(JaJa, 78) provided an algorithm which uses the P-RAM model and finds the
biconnected components of a graph in parallel time O(log n°log d-log k) where
d 1is the depth of the graph and k is the number of biconnected components.
The number of processors needed is 0(n3/log n). Again, this algorithm can be
implemented on the RP-RAM model to run in O(loé d-log k) parallel time with

3
0(n"/log n) processors. Our results of the Appendix about d and k imply then:

s © AWGGTA vy . JO e .

N |
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COROLLARY 3.2. The expected parallel time complexity for finding biconnected
components in the random graph Gn,p with p2Zc/n, ¢c>5, 18 0{(loglog n)2)
for the RP-RAM model and 0(log n- (loglog n)z) for the P-RAM, The number of
processors neceded ts O(na/log n). The probability that the parallel time is

move than this is of(2n” (¢71)).

4. EXPECTED PARALLEL TIME FOR MINIMUM WEIGHT SPANNING TREE

4.1 The Algorithm of Sollin

We consider here the problem of finding the minimum weiéht spanning tree
of instances of the random graph Gn,p' pZc/n, the edges of which have positive
costs drawn independently from a continuous distribution over a positive domain.

We apply here Sollin's algorithm (see [Papadimitriou, 77}). This algorithm
was previously shown in [JaJa, 78) to have worst case parallel time O(log3n)
on a P~RAM. The algorithm is based on the following oBservation: Let (V,T)
be the minimum spanning tree (MST) of the graph G= (V,E) under an edge cost
mapping c:E ->]R+ Then, for every v€v, eVET, where e, is among the shortest
of the edges incident to vertex vEV.

Sollin's algorithm begins by finding all minimum-cost edges incident upon
each node of G. These edges will constitute a forest if the cost function is
one-one. This is so in our case because costs are drawn from a continuous
distribution. We find the connected components of that forest and identify
the vertices of each component.. From here on, Sollin's algorithm applies the
same process to the graph whose vertices are the components. The algorithm

proceeds until onc vertex remains.




4.2 Expected Time Analysis

Let us consider the SP-RAM model first. We can find the minimum edge
incident to each vertex in time O(n/p+loglog p) by using np processors.
For p=n/loglog n we get parallel time O(loglog n) and need nz/loglog n
processors for this stage. For any particular vertex pair {u,v}, the probabi-
lity that this edge appears in the forst of the minimum edges is p-prob{{u,v}
has min cost of all edges out of u, given {u,v} appeared} + p-prob{{u,v}
has minimum cost of all edges out of v, given {u,v} appeared}. Since weights

are assigned independently, one can show that prob{{u,v} has minimum cost of

- all edges out of u} 2 1/c for p2c/n. Hence, probability{{u,v} appears in

the forest} 2 2/n. So, the constructed forest has embedded into it the
instances of a random éraph Gn,p' with p'22/n. By the results of Appeédix
of this paper, the forest will have a big component of cardinality >n-log n
and a small O(log n) number of smaller components, with probability >1-1/n2.
The construction of the new graph (of the "nodes" being the components of
the original with respect to minimum edges) will hence take O(loglog n) time
in the SP-RAM (and also RP-RAM) model, with high probability. To determine the
edges of this reduced graph will take O(loglog n) time for each vertex
then O(loglog n) time at most for all pairs of components. The connected
components of the new graph can be found by a deterministic algorithm in
O(loglog n) time. This process will continue giving us an 0((loglog n)2)

time algorithm with probability # 1-n"2, Hence:

THEOREM 4.1. The parallel expected time to find the MST of a random graph

Gn p with random, independent weights in the SP-RAM (and so the RP-RAM) model,

’

18 0O((loglog n)z). By simulation, the expected parallel time in the P-RAM is

0O(log n- (loglog n)z). The number of processors needed i8 o(n2/1oglog n).

The probability that the time is move than stated, is ©O(n ).
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5. EXPECTED PARALLEL TIME FOR ALL PAIRS SHORTEST PATHS

‘ Given a weighted n-vertex graph G, the all pairs shortest-path matrix A
is an nxXn matrix such that A(i,j) 1is the length of a shortest path from
. . k,. . .
i to j in G. Let A (i,j) denote the length of a shortest path from i

to j going through at most k-intermediate vertices. Clearly A(i,j) = Ad(i.j)

where d=depth of G. Let Ao(i,j) be the length of the edge {i,j} if
{i,j} is in the graph, and +% else. It is easy to see that Ak(i,j) =
minm{Ak/zfi,m)-+A¥/2(m,j)}. Hence we can compute a9 by computing Az,
A4,...,A21...Ad. Ak can be computed from Ak/2 using the matrix multiplica-
tion algorithm with + substituted for * and min for +. 8Since matrix
multiplication can be done in time O(log n) in P-RAM using n3/log n
processors and in time O(loglog n) in SP-RAM (and so RP-RAM) using n3/log11

processors, we get an 0O(log n log 4) deterministic time for P-RAMs and an

0({(loglog n)-log d) for random graph Gn p with pZc/n and c>1 we get
14

14

by our results on the depth of Gn : (See Theorem AI of the Appendix).

COROLLARY 5.1. The expected parallel time for all pairs shortest paths
in the G, model with p2c/n, ¢>1 and arbitrary weights 18 O((loglog n)z)

for the SP-RAM or RP-RAM and O(log n- (loglog n)) for the P-RAM model. The

probability that the time is more than stated above is o(e-kn ys for k,a>O0.

The number of processors needed i8 O(n3/log n).

Note {Dekel, Nassimi, Sahni, 81] gave an 0(log2n) deterministic algorithm

for the P-RAM model which uses n3 processors.

e ——— et e .
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6. EXPECTED PARALLEL TIME FOR RANDOM GRAPH ISOMORPHISM

The following algorithm, given by (Babai, Kucera, 79] is essentially a

Breadth-First-Search procedure applied to random graphs of the model Gn p with
’

p=1/2:
[1] Classify vertex by valences (i.e., each vertex gets its valence as a

1

by the order induced by this classification.

label). Let c¢ ,...,ch be the classes of the above classification, arranged

[2) (First refinement): Let Ni(v) be the number of neighbors of v in

c; and let Ng(v)==smallest nonnegative integer congruent to Ni(v) mod 4.

" Then, two vertices v,u are ordered now if (a) they were of different label

before or (b) they had same labels but
4 4 4 4
(Nl(v) r---pNh(V)) < (Nl(u) '...'Nh(u))
lexicographically.

[3) Let c,,C.¢.--,C

1°S2 be the classes of [2]. Apply step [2] to these

h
classes.

THEOREM 6.1. [Babai, Kucera, 79). Let U be the set of vertices whose
class is not a singleton after step [3]. Then Prob{|u|>1}<exp(-cn), c>o0.
The valence classification can be done in O(loglog n) time by SP-RAM (and thus
also the RP-RAM) by using a total of nzlloglog n processors. In P-RAM, it
can be done in time O(log n) by using O(nz/log n) processors. The partial
orders created by the refinements are best stored as a funetion, corresponding
to them. Clearly a function computation is not more than O(loglog n) 1in

SP-RAM (and thus also the RP-RAM) and 0O(log n) 1in P-RAM by using O(nz/loglog n)

and O(nz/log n) processors, respectively. So:

COROLLARY 6.1. A canontcal labelling algorithm on G, p’ p=1/2, takes
’
average parallel time O(loglog n) in SP-RAM (and thus also the RP-RAM) with

o'(nz/loglog n) procegsors and O(log n) time in P-RAM with 0(n2/loq n) processors.
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7. EXPECTED SEQUENTIAL SPACE COMPLEXITY FOR GRAPH ALGORITHMS

THEOREM 7.1. The upper bound on required sequential space for transitive

closure on digraphs is O(log n log d) where 4 tis the depth of the digraph.

Proof. The proof is similar to the techniques used by {savitch, 70] for

simulating nondeterministic space by deterministic space.
Input: digraph D = (V,E), IVI =n .

The following procedure tests if there is a path from u to v, of length

282 0.

Algorithm CONNECT (u,v,%)

begin
if (u,v) €E then return TRUE else
for all we€V if
CONNECT(u,v,[Q/2]) and CONNECT(w,v,[Z/Z]
then return TRUE

end

It is clear that we get the transitive closure by repeated applications of
CONNECT. - Each time we just remember the recursion depth. Therefore, the

required sequential space is O(lognlogd) where d=depth of p. o

COROLLARY. The average sequential space for transitive closure is

O(logn loglogn). The probability that is more than stated is O(exp(-kna)).

Note that strong components, minimum cost paths etc. require only
O(logn logd) sequential space in the worst casc, implying an average of

O(lognloglogn) for random graphs Gn p or digraphs D p’

’ [4
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Note also that we can do isomorphism in O(log n) average sequential

space. The reason is that we can find the rank of any out of n integers by

using only O(log n) space.

neiilninaintndihn,
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APPENDIX

RESULTS OF THE THEORY OF RANDOM GRAPHS

A.l The Distribution of the Depth of a Random Graph

Let the depth d(G) of a graph G= (V,E) to be the max VEV{d(u,v),Z}

’

where d{u,v) 1is the length of the shortest path between u and v, if they

are connected (- otherwise). The depth of a random graph Gn p is the random
14

variable d(Gn ) whose values are the depths of the instances G of Gn o
’ 14

The above definition generalizes to digraphs in an obvious way. We now give an

average case argument about d and then we discuss d's distribution.

LEMMA 1., The average value of d(Gn p) 8 0O(log n) for G, P with

’ 14

p2c/n, and c> 1.

Proof. Let G= (V,E) be an instance of G and let u be a particular

node of G. BAssume we do Breadth-First-Search out of u in parallel, so that

nodes at the same distance from u are revached at the same time t. Let Bt

be # nodes at depth t, i.e. reached at time t. Let St be the average size

at time t of the set of visited nodes. Clearly

t+l t t+l

and

Beel PB (n=S.).

From these two equations one can prove (by induction) that Bk==6(pk(n-l)k)

and Sk=§2(l+c+---+ck) for p2e¢/n, c>1l. Clearly, S_<n for d=the
: d

average depth of Gn . Hence d=0(log n).
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LEMMA 2. The probability that a(c,

o :
O(e_kn ) for k,o positive constants depending on c, for graphs G, p with

’

p) >log n 18 bounded above by

,

pZc/n, ¢>1. This implies that d=0(log n).

Proof. Consider two specific vertices u,v of V. The probability of

no path of length 1 between u,v is ¢l= 1-p. The probability of no path of

length 2 is ¢2=. (1 —pz)n-:2 since, for a path of length 2 to exist, at most

n-2 possible nodes in V- {u,v} can participate, each such path has probabi-
lity p2 to appear and these paths have no edges in common.

The probability of no path of length j is (for 3j>1)

(1_pJ) (n_z) (n-3) oo (n‘j)

J

since each such path has prob=p to appear and there are n-2 independent

choices for the first vertex after u, n-3 choices for the second vertex, etc.
The probability that there is no path of length log n for the specific pair

of vertices u,v is

(n-2)...(n-log n)

1
°9 % .

_ _ _ _2n-2 _
¢ = ¢ ¢2.-.¢logn = (1-p) (1-p°) “...(1-p

For pZc/n and p=o(l) we have 1/p*® as n-=+® and hence

k
(l-pk) (n-2)...(n-k) _ e P (n-2)...(n-k)

For p=o0(l) we also have 1l-p~*1l as n-=*%®  So,

® > e-—p[(n—2)p+ «es + (n-2)...(n-log n)p:log n]
u,v

1
< ¢ Pl(n-log n)p+... + (n-log nylog njlog n)

log n_

{(n-log n)p] 1

-pl - 1)

€e (n-log n)p-1
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-c [nc-l/c -1]

This expression is bounded above by e for c>1. But

-1]

pProb{d(G) > log n} < n2¢u v < ne ¢ .

If c¢>1 then 3k,a depending on ¢ (k>0,0>0) such that, for large n

This proves the Lemma. o

Note that, for pn~+%® as n=+%, one can prove that the 4(G) € '—j——lcl,;(p:)

with probability tending to 1. For p 2 ¢ l—og—ﬂ, there is almost always a

path of length < 3 between any two nodes of Gn P’ (The reason is that,

[4

for any pair of vertices u,v of V, if Su' (Sv) are the sets of vertices

which are neighbors of u (of v) but not of v (not of u) then Isul =

-Bn

ISVI Z€e'n for some €>0 with probability 21-e , 8>0. Then, a lemma

of [Erdos, Renyi, 59] (also {Karp, Tarijan, 80]) proves that at least one edge

-B'n

connects a node of su and a node of sv with probability 2 l-e
0<B'<B.)

We will quote here some results about the valence of nodes of Gn,p' stated
in (Erdos, Renyi, 59].

REMARK 1. If p=c¢/n then the degree of any given vertex of an instance
of Gn,p has mean value 2c¢ and the number of vertices having degree r is
approximately

n(2e)¥ e %€

r!

REMARK 2. If pi(n) ?lg;u w(n) where w(n)=*+® as n-+%° then the

probability that the degree of a vertex will be outside the interval
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2
2 log n{l *t€)w(n) is approximately O(l/ne w(n)). Hence the probability

that the degrees of not all n points will be between 2w(n)(l*€)log n, is
tending to 0.

Note that, by an elementary application of Whitney's theorem, the
connectivity k and depth 4 of a graph satisfy k(d-1)€n, if the graph is
connected. This implies that with high (conditional on the fact that Gn

’
is connected) pr'obability, the graph Gn p will be highly-connected for
14
large values of p.
Note that all of the above results can be easily generalized for random

digraphs D _, p2c¢c/n, ¢c>2.
n,p

A.2 The Size and Number of Connected Components for p=2c/n

THEOREM A.2. For any m=o(n) there is a constant c,>1 and a function

1
t(n) >c, log n/m such that, tf p>t(n)/n then if X 1is the cardinality of

the largest component of G, p then

’

<n- _n_
Prob{x<n m]‘<et(“).m + 0 as n > o,

Proof. Assume that in the instance G of Gn p the cardinality X of
a— ’
the largest component satisfies the inequality XS<n-m. Then, we can find
two sets Y, Z such that IYI =m, |z| =n-m and no edge between them.

This event is above bounded by the probability 1l-q where
q= prob{for every pair of disjoint sets Y,Z of vertices of sizes

m, n-m, there is at least one edge between Y,Z}.

let us enumerate all possible pairs of sets of vertices of the above sizes.

Call them




i
|
|
!
|
|

AS

(Yllzl) ’ (YZ'ZZ) goeecy (Yg,zg)

where

We have that

q= Prob{E(Yl,zl) # oA... Arxyg,zg) # ¢}

where E(Y,Z) =set of edges between Y,Z. So, by Baye's formula,

{ } (Ecr,.2,%0) B(Y,.,2.)#0
ProbiE(Y.,Z.)#¢}*Prob | —————— ... Prob .
1'“1 ls(yl,zl)#¢’ li=1.?.g-1 E(Y,,2.)7¢

We necd the following enumeration lemma:

LEMMA 3. For every two sets Y.,Z, having at least one edge e between

= (23)

pairs of sets of sizes m, n-m which also have this edge between them.

them, there are at least

This lemma can be easily shown by taking out the two vertices of e and
enumerating.

As a corollary, we conclude that there is a suitable enumeration of the
sets in the g product such that for every term i not equal to 1 the next
g, or more terms (conditioned on the existence of an edge from Ai to Bi)

will be equal to 1. Hence, the value of q is

9/9, .
q [Prob{E(Yl.Zl) # ¢} ]
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n(n-1) «n

99 * pom < m )
Hence
g2 (1- (1-p)"@n™ ) /)
> [l-(l-p)l/p Pm(n-m)](n/m)
or
q2 (1- e PR{N-T), (n/m) » 5 _ (%)e-t(n)'m
or
-(c.~1)
q;;l_e-[t(n)-m-log n} >1-pn 1 .
so, q+*1 if ¢, >1. So,
- cm- -(c,~1)
Prob{X<n-m} < e [£(n)-m-log n) <n 1 + 0 as n-=+® o

COROLLARY I. For m=logn and t(n) ?c1>3 we get: The graph Cn,p

’
with p?cl/n has a component of size >n-log n with probability

(cl-l) -2

>1-n >1l-n “.

COROLLARY 1I. The graph Gn,p with p2c/n and c>3 has less than

’
log n connected components with probability > 1-n (c=1) 5. n-2.

The above arguments can easily be generalized to bicomnected ecmponents
of a graph Gn P and strong components of a random digraph Dn p {(and in
’ ’
fact to statements about size and number of k-blocks and k-strong blocks for

any constant k£1). See [Reif, Spirakis, 81] and [Spirakis, Reif, 81] for a

proof of that.







