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SUMMARY

The flow over a delta wing with leading-edge flaps is considered

within the framework of sletider-body theory. To avoid flow separation at

the leading edges of the flaps a Kutta condition is applied there which

uniquely determines the angle of attack for a given flap configuration.

The lift coefficient and lift-dependent drag factor are then calculated

for this condition and compared with the prediction of slender thin-wing

theory, in which the wing boundary condition is fully linearized.
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I INTRODUCTION

The idea of deflecting downwards the outboard part of a delta wing about a hinge-
1,2line or shoulder-line near the leading edge has been current for a considerable period

It has been studied both as a simple form of built-in conical camber, intended to recover

some part of the axial force which is lost through separation at the leading edge of a

plane slender wing; and as a variable-geometry device, intended to enlarge the range of

lift coefficient over which an acceptable performance can be achieved. Many measurements

have confirmed that lower drag at lifting conditions can be obtained with such a leading-

edge flap.

The benefit arises because the pressure differential across the wing is largest

close to the leading edge, so that a downward deflection of the surface produces a force

in the direction of flight. Since the downward deflection also reduces the size of the

peak in the pressure differential, guidance is needed in the choice of an appropriate

form and amount of deflection for a particular flight condition. Providing this guidance

is not easy because, in general, the flow will separate at the leading edge of the wing

to form a vortex.

However, if the angle of incidence is not too large, it is possible to droop each

element of the leading edge in such a way that it points directly into the local on-

coming flow, so that any tendency of the flow to separate at the leading edge is

suppressed at this condition. In particular, if the flow past a delta wing is conical,

this condition can be brought about by deflecting a leading-edge flap downwards about a

straight hinge-line, the amount of deflection being greater for larger angles of incidence.

For a wing at this 'attachment incidence' the flow can be calculated by the fully-

linearized theory of attached flow, and it emerges that values of the lift-dependent drag

not far above the minimum (corresponding to elliptic loading) are predicted for suitably
3

designed wings. It also emerges in particular cases from both experiment and calcula-

tion4 that it is beneficial to use rather less leading-edge droop than would be required

to achieve the condition of attached flow.

Despite the developments that have taken place in modelling the separated flow,

based on slender-body theory and on panel methods, there is no adequate method for cal-

culating the lift and drag of wings with small leading-edge vortices at subsonic speeds.

It is therefore useful just to know how ouch droop of a particular form is needed to

suppress the leading-edge separation. For the modest amount of built-in camber appro-
3,5priate to a cruising condition, it appears that a fully-linearized theory predicts

this adequately. However, if a leading-edge flap, capable'of deflection through large

angles, is provided to improve performance at the much larger values of the lift

coefficient associated with take-off and manoeuvre, it is not clear that the fully-

linearized theory will be adequate, particularly as calculations6 for a smoothly cambered

wing revealed differences between the predictions of slender-body theory and the (fully-

linearized) slender thin-wing theory. The present calculations were undertaken to dis-

e cover how much deflection of a leading-edge flap is required to suppress leadin-edge
- separation on a flat slender delta wing, and what lift coefficient and lift-dependent

drag factor are predicted at this condition, and to assess how well these are predicted

by the fully-linearized theory.
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In the slender-body approximation the velocity potential satisfies Laplace's equa-
tion in two dimensions in each transverse or 'cross-flow' plane. The solution of this
equation is achieved using complex variable techniques. We regard the cross-flow plane
as being a complex plane and use a conformal transformation to map the region of the
right-hand side of this plane outside the cross-section of the wing into the upper half
of the transformed plane so that the half-wing is mapped onto the real axis of the trans-

formed plane.

The geometrical parameters defining the wing, ie the flap length and deflection
angle, lead to the aerodynamic properties of the configuration. The results are obtained

by prescribing these two parameters and then calculating the required angle of attack to

produce an attachment line on the leading edge: the lift and drag then follow.

2 STATEMENT OF THE PROBLEM

A cartesian coordinate system with origin at the apex of the wing is introduced.
The x-axis lies along the wing centre line with the y-axis running to starboard and z-axis

vertically upwards, so that the set Oxyz is right-handed. The local semi-span is given

by a - Kx , where K - tan y , and 2y is the apex angle of the wing with flap

undeflected. With a flap deflection 0 in the cross-flow plane x - constant , the con-
figuration of Fig I is obtained. The apex angle of the undeflected part of the wing is
2y', with the flap shoulder a distance s from the wing centre line; F is thus a
conical coordinate of the flap hinge-line. The flap length is therefore (I -F)s and

nK = tan y' . The wing is shown in Fig I at incidence a to the undisturbed stream of
velocity U , which is resolved into components U cos a along Ox and U sin a along
Oz . These components are approximated by U and Ua respectively. Hence, we seek a

function * such that the velocity potential 0 is given by

0 - Ux + . (I)

Note that the extra term in the slender-body potential which takes into account the thick-

ness of the configuration vanishes here as we are considering wings with no thickness.

Slender-body theory shows that the function # satisfies the two-dimensional

Laplace equation
2 2a2t + a2 .

3y2 3z2

in each cross-flow plane. We are therefore treating the transverse velocity field as
though the flow ware two-dimensional, the three-dimensional nature of the problem only
entering through the boundary conditions, which are that the velocity normal to the wing

is zero, je

n • V* - 0 (2)

where n is the unit outward normal to the wing, and that



* Uza (3)

at large distances from the wing.

We introduce new variables

a a Us

and note that $ satisfies Laplace's equation in the (, ) plane. We therefore seek a

complex potential

W(z) = $(Z) + i;(Z) (5)

where i is the stream function corresponding to the potential $ , and Z y+iz^ is a
non-dimensional complex coordinate in the cross-flow plane. The solution is obtained by
conformally mapping the right-hand half of the Z-plane exterior to the cross-section of
the wing onto the upper half of the t-plane so that the contour A BCDEFA is mapped

into the real axis of the t-plane (Fig 2). The potential can then be found in the
t-plane as that due to a distribution of sources on the real axis, together with a uniform

flow, and inversion of the transformation will give the potential in the Z-plane.

3 THE TRANSFORMATION

We denote the image of L in the Z-plane by L in the t-plane. We may specify
that t - 0 at 5 and denote the values of t at B,C,E,F by b, c, e, f where

b < c < 0 < e < f •(6)

The required transformation is of the Schwartz-Christoffel type, whose general form
is

Zt - Al(t-ti)

where ti  are the images of the vertices of the polygon in the Z-plane and the ni are
related to changes in direction of the contour at the vertices. Inserting the appropriate

values of n. and t. gives
1 1

dU A = - t c) / AF(t) (7)S AV(t -b) (t -f) (t a--t(

where A is a constant. Then by substituting particular values of t and Z we obtain

the following equalities:

"! c

= A F(t)dt (8)
b

m 0

0i- )e" 8  Af F(t)dt (9)

c4-o
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( -)e - i(BO+ ) - AfF(t)dt (10)

0

f

- - Af F(t) dt . (11)

e

In evaluating the right-hand sides of equations (8) to (11) we must ensure the

appropriate value is taken in the determination of the integrands as they are not single-

valued functions. Writing t Itle i , t-b - It-bleieb  etc, and A tAle , we

define

dZ IdZ e(e+ea-eb-ef + -We - Ve )

Then (8) gives:
A -t c t
.b (t- b)(f-t5 t dt . (12)

As the left-hand side of (12) is real and positive and the integral is real and positive

we must choose A to be imaginary and negative to give the correct rotation between the

Z- and t-planes. It is possible to choose JAI = I , so preserving the boundary condition

at infinity, because there is still some freedom in the transformation.

Hence

A = -i (13)

and therefore

cJ -t (c-tB/
S dt (14)

b/(t -b) (ff )

bI
where real, positive values of the radicals are intended. (9) to (11) give:

0 -t t - dt (15)

b" ( - a t /

t dt -1 (16)

(t -/b) (f - e

t dti" i * (17)V(t - b)(f - t)
te
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We now have in (14) to (17) four equations in four unknowns, b, c, e, f, depending

on the two parameters T and 8 , giving a problem which is apparently determinate and

capable of numerical solution.

However, before numerical treatment is possible the singularities in the integrands

must be removed. To perform this we use the following substitutions:

2
in (14) put t - b r ,

in (16) put e - t rk  , where k = 1/(l - (O/w)),

2
and in (17) first put f - t = r

2 _k e
and then put f -e = r , for r (f-e)

as the interval has to be split.

Equations (14) to (17) can be written in the form:

F(x) 0 , (18)

where F is a vector of four nonlinear functions of the vector x (b,c,e,f) . This

system is solved by a multi-dimensional Newton scheme. The solution of (8) for the

complete range of F and B is most easily obtained by keeping i constant and spanning

the range of 8 . The solution-for a pair (G,B) can then be used as an initial guess at

the solution for a neighbouring pair. The region of the (F,B) parameter space which is

physically and numerically accessible is discussed in section 5.

4 SOLUTION OF THE PROBLEM

4.1 Boundary conditions

The boundary condition on the undeflected part of the wing requires that $. - 0

on that part of the contour. From the geometry in Fig I it can be shown that the unit

outward normal to the flap is

I - cos28 2  sin sin y, sin B cos y', cos a cos Y' (19)

We require that the velocity normal to the flap is zero, so, by (I), (2) and (19), the

velocity normal to the contour in the cross-flow plane is

+ U sin B sin (=n _, (20)
3n A - cos2B sin2 Y'

where the + and - refer to the upper and lower surfaces of the flap, spectively,

and n is the distance normal to the contour.
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Therefore the required non-dimensional normal velocity in the t-plane is

Alt dt U an d ± - ina t (21)

where n' is the non-dimensional distance normal to the contour, and higher-order terms

in K have been neglected in the expansion of the right-hand side of (20), and here the

+ and - refer to the line segments CD and DE , respectively. The normal velocity is

zero elsewhere on the contour.

To realise this normal velocity we introduce a continuous non-dimensional source

distribution in the t-plane with strength per unit length at t' given by

2 K sin 8 , c < t' < 0,

dt -t 2K sin , 0 < t' < e, (22)

0, elsewhere.

We must also satisfy the boundary condition (3).

4.2 Complex potential

As stated in section 2 we shall form a complex potential, W , to satisfy the

boundary conditions of section 4.1.

For the contribution from the source distribution (22) we obtain a complex potential

WI , where

d-- " 2 K sin 3 +t- tL I I dt' (23)

where V is the curve CE in the t-plane, and the + and - refer to the portions of

the curve stated previously.

To satisfy (3) we require

dW ic as IZ . (24)

So (24) and (13) imply that d- -a as itt. 2

dW as It I "

or
dW
dT "a + f(t) (25)

where If(t) I - 0 as Itt - * The combined potential which satisfies (25) and gives

the correct normal velocity as produced by (23) is

- . .. . . , .. .
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dW t'K in dt' , (26)

or( 0

r =- at + ii sin ( dZ tn(t -t')dt' . (27)f" w ts

4.3 Attachment condition

To avoid separation at the leading edge of the flap we impose a Kutta condition to
remove the singularity in velocity and pressure. This will determine the value of a

(aa, say) that gives attached flow for a given flap configuration. For attachment we
require that the velocity be finite at the leading edge, which, since dZ/dt = 0 there,

leads to

-W1 0. (28)

Therefore from (26) and (7) we obtain (writing t' - r)

a sin 8r -r - clo/Iff-f (--) dr (29)aa = /(r -b) (r - f) re -

and simplifying,
e

a sin a I "r-c"o/  dr (30)
c V (r -b) (f - r5)

_k
where again the singularity in the integrand must be removed by substituting e-r = r

before numerical treatment can be applied.

We may also note at this point that a weaker singularity in the velocity and
pressure * xists at the shoulder of the flap and for moderate or large flap deflections

we should expect separation at this point. However, this feature is being ignored in the

present analysis and the potential flow calculated here predicts smooth flow around the

shoulder with infinite velocity.

4.4 Lift

The lift can be obtained conveniently by the use of a distant control surface. If
the non-dimensional complex potential W is expanded for large values of ita non-

dimensional argument Z in a plane of constant x , we obtain an expression of the form:

W - aZ + a 0 + a 1 Z +... . (31)

The lift, L , acting on the portion of a thin wing upstream of the plane of constant x
is then given in term of the aefficie- a- by a particular case of equation (9.7.11)

of Ref 7 as

-L _k h[• 
... . . _
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i.2 2L2 pla j (32)
SL = 2irU 2s~ia~.(2

Expansion of (7) for large t , followed by integration, shows that

Z - -i{t + YO +  .n t + y_l t - I + O(t-? (33)

where + - .+-+ f

By a similar argument to Andrews8 in his Appendix A it can be shown that 
the coeffic'ent

of In t in the expansion of Z (or that of l/t in the expansion of dZ/dt) must

vanish. Hence,

b _ + 20+1 . 0 , (34)

Using (34) we have

Y- = (e-c) (e-c)(e+c-b-f) -1 (b-f)2  (35)
2n

To invert (33) we write

t - i c Z + c0 + c- 1 Z-' + O(Z2 (36)

whence c, = I, co  a iy0  c- = Y- (37)

Expanding (27) for large t gives

t= - + ;K sin /) n t -- + 0(t- 2))dt' (38)W - d-t' t

but from (15) and (16)

s) 'dZ dt' u0s, 
(39)

so introducing (36) and (37) into (38) and using (9) gives

0e



II

Hence

a_ - -- + iK sin8 I-f i tldt' .(41)

and so, at the attachment incidence, a

L 2 -s2Pu2 aaYl +u -sin t'dtj (42)

A lift coefficient, CLa based on the kinetic pressure, JpU 2 , and the planform area

of the wing with flap undeflected, s2/K , is given by

CI
L a 'ay 1 +-isijisit dZ t' (43)

KL t

CC (1:
or simplifying the integral (writing t' = r)

CL e 2
a 4 a-, sin8 f r _ dr (44)K2 4 K (r-b)(f-r) (44)

i c

where y_ is given by (35). Here also the singularity in the integrand must be removed

for numerical purposes, as before.

In the Appendix, equation (44) is expanded for small values of a , and it is

verified that the leading term agrees with the expression obtained from the fully-

linearized slender thin-wing theory, in which the wing and flap boundary condition is

applied in the plane z = 0

4.5 Drag

The drag is obtained by first calculating the normal force on the flap. The overall

drag can then be calculated by resolving the normal forces on the wing and flap as shown

later. The normal force on the flap is evaluated by integrating the pressure jump across

it: the pressure is obtained from the velocity components on the flap. The entire force

comes from the pressure integral as there is no localised suction force on the leading

edge as we are considering the attachment incidence only.

If U and v are the non-dimensional velocity components in the t-plane, then

from (26), (21) and (27):
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is sn ( dZ dt' (45)

i t-H .I dt t T-T 'lt• . (46)

- K sin 0 -t 0 < t < e ;

and - at + -K sin 8 W it f) d 'l nt-t'jdt' + - t (47)

The evaluation of (45) involves calculating a Cauchy Principal Value integral which

is performed by subtracting out the singularity to give

4 K sin (j. \ Jd _ dZI i st Ti nK B jdZI .I t-c)(t-e)l

"- " -dtt --- r dt' + t t .

...... (48)

Although the integrand in (47) is integrable, for numerical purposes a first-order estimate

of the integral in the region of the logarithmic singularity is made separately.

Then

y " -- = dW - d (49)
U - z  = Z U

and as the flow is conical

= (-o~ -ZO,) -KU($-*-z^ (50)Cx -

from Euler's theorem on homogeneous functions.

The pressure coefficient, according to slender-body theory, is given by

P - C 22 2 + 02)
p 2 , - u2

or

7) - 2u x 12U 2 z(51i)
K K U KU

and can be evaluated from the velocity components given in (49) and (50).
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The coefficient of normal force on one flap, C,, , then follows by integrating the

jump in pressure coefficient, AC , over the flap, and non-dimensionalising with the wing

area with flaps undeflected to give

iX

Ci A1f ~d jdx

where E is measured along the flap. Using the fact that pressure is constant along

conical rays and writing - s gives

- AC

From (19) the components of C., in the x and z directions are, taking leading

order terms, - sin B n-KCNF and cos CNF respectively. The coefficient of normal

force on the undeflected part of the wing is then CLa - 2 cos 8 CNF . To obtain the

drag it is necessary to resolve these components of force in the free-stream direction so

that the drag coefficient (based on the area of the wing with undeflected flaps) at the

attachment incidence is given by (for the slender-body approximation of small a )

co SC -C F + 2 cos 0 CNFaa - 2-nK sin 0 CNF

CDa (CLa os CNF)aa

or
CD  CL
a a a CNF3 "_ Y K - 2nsin 0 2(3

K K K

A measure of the lifting performance of the wing is then given by the lift-

dependent drag factor, X , where

wAC D  4wKCD  4irCD CL 2 s

CZ CZL

and where here, A is the aspect ratio of the wing with undeflected flaps.

it is of course possible to obtain the force on the undeflected part of the wing by

integrating the pressure jump over this region in a similar way to that described above:

the main differences are that, in (45) the integral is no longer of the Cauchy Principal

Value type; (46) becomes v - 0 ; and in (47) no logarithmic singularity is involved in

the integrand. This was done for a few cases, firstly to obtain a complete picture of

the pressure distribution on the wing and secondly to provide a check on the method,

since the total force in the z-direction should equal the lift as calculated in

section 4.4.
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5 RESULTS

The geometry of the wing imposes bounds on the physically attainable parameter space

(i,B). For < 0.5 the opposite flap. will meet before B - w . In fact the maxisam

angle of deflection possible for a given n is

max -Cos-(~.- 1 405

- 0.5 ~ 1.0.

The boundary of the parameter space is shown in Fig 3 together with the region

covered numerically. Difficulties arose in the convergence of the Newton scheme for find-

ing the parameters b, c, e, f in the transformation near the (ii,O) boundary for

ij ' 0.5 . This was due to E and F coalescing on the boundary, so that, in the course

of the iteration, e became greater than f , violating (6).

The values of the incidence parameter at the attachment condition, a /K , are

shown in Fig 4 over the range of values of B and 5 for which solutions have been

obtained. As would be expected, the attachment incidence increases as the deflectionI

increases, up to quite large deflection angles. However, if F > 0.5 , so that the flaps

can be deflected right back under the wing, the attachment incidence eventually falls

again as the deflection angle approaches w . In the limit, the wing is again a flat

plate, giving a mathematical check, despite the physical unreality of the flow model.

The condition that the flow attaches at the leading edge of the flap now expresses that

the flap leading edge is an attachment line on the lower surface of the wing. The non-

dimensional coordinate, n A 0 of the attachment line Cie the distance of the attachment

line from the centre line divided by the local semi-span), on the lower surfasce of a

slender flat-plate delta wing is given by

= [- ~)2 ,for 1
AKK

0, for >1

see eg Ref 9.

The semi-span of the new wing, consisting of the undeflected portion of the original

ving, is, of course, is . The flap leading edge is s(O -F) inboard of the new leading
edge (the old hinge line) and so

T1 s -s(I-) 2j I~

rig

Moreover K in the equations above must be replaced by tan y' K Then
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a .- fl ny- - n)(3n 1) fr >05 (5
K AiIr ~ . o 05 (5

or

S 0.6 0.7 0.8 0.9

na /K 0.5657 0.5745 0.5292 0.4123

These values of a /K at B - w , taken with the computed results in Fig 4, imply a very

rapid variation as 8 tends to v , which is a plausible behaviour.

The practically relevant values of a are less than wr/2 , for which the presenta-

tion in Fig 4 is confused. Fig 5 shows the variation of a /OK with 8 for fixed values

of .The values at,8 0 correspond to the fully-linearized theory (Appendix). From

equation (A-1) we find that, for the linear theory, a /OK is a maxim-m for ~j-0.652
taking the value 0.3572. Fig 5 shows that for 8 > 0 , a larger maximum is obtained at a

smaller value of .For 0.8 , the attachme tt incidence grows more rapidly with 8

than the linear theory predicts; for =0.9 it grows less rapidly. If -0 ,so

that only the flaps remain, we have a 'caret wing' configuration. As Ti -1 0, e - f and

in (30) two singularities of the integrand coalesce, the integral remaining finite for

8 < (wr/2) ; the attachment incidence thus tends to zero.

The comparison with linear theory is brought out more clearly in Fig 6, where the

ratio of the 'exact' attachment incidence to its linear estimate is plotted against 8

for fixed values of fi . For inboard positions of the hinge line, large errors appear,

but for the most practical positions at 80% and 90% of the semi-span, the linear theory

prediction is within 5% for deflection angles up to 900. Even for a hinge line at 60%

semi-span, which is probably the furthest inboard that could be contemplated on a real

configuration, the error is within 10% up to a deflection of 50 0 and only exceeds 30% at

deflections above 850. At first sight, the accuracy achieved by the linear theory is

surprising. However, it must be remembered that the linear result is obtained by applying

the boundary conditions on that part of the plane occupied by the wing with the flap

undeflected. This is not the procedure adopted in the application of linear theory to

cambered and twisted wings, in which the boundary condition is applied on the projection

of the wing onto its mean plane. If the conventional procedure were applied, it would

clearly produce a substantial underestimate of the attachment incidence for the larger

deflection angles.

The lift coefficient at the attachment condition, in iits similarity form CLa /K2

is shown in Fig 7, again as a function of 8 for fixed values of . For the larger

values of 8 there is a general resemblance to the curves in Fig 4. In particular the

same rapid variation near 8 - wt arises. The values for 8 v i follow from the

familiar expression for the lift of a flat slender wing,

L wPU~2 82a
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By replacing a by s and introducing S - s 2 / and a a frou (55)

K -a 2ir Q 2/I-j( -)

or

S 0.6 0.7 0.8 0.9

CLa/K2  1.280 1.769 2.128 2.098

For the smaller values of Bthe lift varies more rapidly with than does the attach-

ment incidence.

The variation for the smaller values of 8 is brought out more clearly in Fig 8, *
where CLa/SK is shown for 0 4 ' 1 .5 . The values at 8-0 correspond to the fully-

linearized theory given by equation (A-3). It is easy to see from this equation that, for

a given deflection angle, the linear theory predicts a maximum value of C Lat

W - 0.816 . The present calculations show that a hinge position near 802 of the

semi-span is close to the optimum for deflection angles up to 90 0, though little is lost

by any choice between 70% and 901.

It is apparent from Fig 8 that the linearized approximation, in which the curves are
replaced by horizontal lines, is a very good one, particularly for the three most outboard

positions of the hinge line, which are also those of most practical interest. The points

indicated on the curves show the extent of the range for which the linearized result is

within 5% of the exact value.

The lift-dependent drag factor, X , is shown in Fig 9 for the three most outboard

hinge positions, je =0.7, 0.8 and 0.9, and for flap deflections up to 120 0. It may

be noted here that calculation of the drag caused certain problems, not least being that

a very fine subdivision of the flap was necessary in the numerical evaluation of the

integral of the pressure jump across the flap (equation (52)) to achieve a relatively

low accuracy in the normal force: the problem worsened as deflection and flap length

increased. This difficulty ultimately limited the parameter space that was covered, for

the lift-dependent drag factor, because the computational times increased beyond accept-

able limits. However, the most physically realistic cases fall within the region of the

GO,,) space covered by the calculations.

Again comparison is drawn between the linearized boundary condition results (dasbed

line) given by equation (A-8) and the 'exact' boundary conditions (continuous line), with

the points indicated having the same meaning as stated above for the lift. Here, also,

the linearized approximation is seen to be very good for these cases, with any flap

deflection up to 45 0 being within the 52 error band for all three hinge positions. Moving

the hinge line outboard increases the range for which the error in the approximation is

smlIt must be emphasized that all coefficients have been referred to the area of the

basic wing with undeflected flap, and it is the aspect ratio of this wing which appears in



17

the definition of X. Consequently, the solid line. in Fig 9 show the reduction in lift-

ing efficiency which results from increasing the flap deflection on a given wing so as to

maintain the attachment condition at increasing values of the incidence or lift coeffi-

cient: the broken lines are calculated on the same basis. A very different picture arises

if the flap deflection is regarded as a form of conical camber applied to a wing of a given

planform, ie given projected area in the plane z - 0 . If X is written in terms of the

$ drag, D , the lift, L , and the semi-span, s , the result is

X 2irpU s D

L2

Consequently, if the wing remains the same, with the same forces acting on it, but the

span is defined differently, X change6.. In particular, if the span of the planform is

used in place of the span of the basic wing with the undeflected flap, X is reduced by

a factor 6ii + (0 -Fi) cos 8) 2. For the rather extreme example of -0.7, 8 - (w/2),

this means reducing the value of 1.71 shown in Fig 9 to 0.84. This value is comparable

with those found for large amounts of conical camber of citcular arc form in Ref 6.

Figs 10, 11 and 12 show the pressure distribution over the whole wing (drawn with

the flap undeflected for ease of presentation) for the cases - 0.7, 8 - 0.5 and

Fi - 0.8, $ = 0.5 and 8 - 1 .1 . As stated earlier, the suction at the hinge-line on

the upper surface is infinite although no localised suction force is p'-esent for flap

deflections below w .r For the cases with the same flap deflection the lifts are

similar and the loading can be seen to be of a similar magnitude. For the larger flap

deflection the loading both on the undeflected part of the wing and on the flap itself is

appreciably larger than for the smaller deflection for the sam hinge-line position.

All the results obtained are affected by the limited applicability of slender-body

theory. For Mach numbers greater than unity, the linearized theory of supersonic flow

provides useful guidance. Equation (A-2) shows that the lift of a delta wing with a

slightly deflected leading-edge flap at its attachment condition increases as the Mach

number increases above unity. The close agreement between the present calculations and

the fully-linearized expression (A-3) suggests that (A-2) is likely also to be a useful

approximation for large flap deflections, provided the leading edges are not too close to

the Mach cone from the apex. For subsonic speeds no such simple result is possible; since

the flow over the conical configuration will no longer be conical, there will be no

incidence at which the flow will be attached along the whole leading edge. Practically

this seems to be unimportant. For instance, a wing of aspect ratio 0.75, with a gothic

planform, 8.25% thick on the centre line, with camber and twist designed by slender theory

for attached flow at a lift coefficient of 0.1, was found 10to show no signs of leading-

edge separation at low speeds at lift coefficients of 0.09 and 0.15.

6 CONCLUSIONS

The application of slender-body theory to a delta wing furnished with a conical

leading-edge flap, deflected so as to maintain attached flow at the leading edge, shows

the following:



(1) Increasing the angle of deflection, measured in the cross-flow plane, up to 90 0 an

beyond produces an increasing angle of incidence for attachment and an increasing liftC

coefficient at the attachment condition. At the same time, there is a decrease in the

lifting efficiency, as measured by a lift-dependent drag factor based on the pianform of

the wing with the flap undeflected.

(2) The fully-linearized slender thin-wing theory agrees fairly well with the slender-

body theory for the practical cases of outboard hinge-lines. The lift at attachment is

predicted particularly closely by the linear theory for hinge lines at 70Z, 802 and 90Z of

the semi-span, where the error is less than 5% for deflection angles up to 750. The lift-

dependent drag factor is within the sam tolerance for deflection angles up to 450, for

the same hinge-line positions.

(3) The largest lift coefficients at attachment for a given deflection angle are

produced with the hinge-line near 802 of the semi-span, but the degradation at 701 and 901

is small. For this hinge-line position, the lift coefficient at attachment is about

1.5 BK 2, where K is the tangent of the semi-apex angle and Bis the deflection angle

(in radians), for 8 < (w/2)

IA
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Appendix

LINEARIZED BOUNDARY CONDITIONS

Smith and Mangler calculated the supersonic flow over a delta wing with hinged

flaps at the subsonic leading edges using linearized boundary conditions. Their result

(in closed form) for the attachment incidence is

01 - - 2a21,
a I a 2_2

-aI

where here a = tan y/tan v , where V - cosec M is the Mach angle, H being the Mach

number, and

ii~ na 2i, /I - )

is the complete elliptical integral of the third kind. In this case - -nK$ . The

slender wing corresponds to the limit a = 0 . Taking this limit we find that

ci-I-

a 2cos n (A-1)

The lift coefficient 
is stated to be

CL 4 4 tan y I (A-2)
a

which yields, on taking the same limit

CL

a 4 2/1- "  
. (A-3)

K 2

We nov show that these expressions, (A-I) and (A-3), are obtained from the present

treatment by retaining terms of leading order in 0 only. Equation (30) shows that

a /K is proportional to B when a is small, so the integral in (30) may be evaluateda

for 8 = 0 if only the leading term is needed. By the same argument, in (44) it is

adequate to evaluate the integral and the coefficient y-I for B - 0 . Then by (35)

= - 7(b - )2 (A-4)

where the overbar denotes the quantity evaluated for 8 - 0 . To find b, c, e, f we

C put 8 - 0 in (14) to (17). Adding (16) and (17) and subtracting (14) and (15) gives
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t
/(t -dt -0.

b

With t cos2e6 + si 2 the integral reduces to

wr/ 2 ( o~
2f (b 2 +!sin e)dO eb f

0

and so b-I*Now adding (16) and (17), again with 8-0 ,gives

t/ ~..dt - I

With t =fsin 0 the integral reduces to fso I Equation (17) reduces to

rom which 1/1 . By inspection of (15) and (16)

The integral in (30) becomes

dt sin- sin c - 2 cos 1-

and so

Ki 20n cos n (A-5)

to leading order. The integral in (44) become.

* f ~ 2 dt - cos -

* and so, using (A-3) we have
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a 203 cos i B4j12 //_7 2
- it~ 1 2 i ~ Co~ ~ 1-) - 0 /~2-6) f

Equations (A-5) and (A-6) agree with (A-i) and (A-3), providing a partial check on

the present formulation.

The expression for the drag using the linearized boundary condition is, on taking

the slender-body limit,

CD
a 842 log (A-7)

K

which on combining with (A-6) gives a lift-dependent drag factor

41rKCD -2 log -

X(2 (A-8)

CL

0

-0
0-
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LIST OF SYMBOLS

A constant in transformation, also aspect ratio of wing with undeflected flap

a - tan y/tan v (see Appendix)

a. constants in expansion of W in terms of Z

b,ce,f coordinates of B, C E, F

CL lift coefficient based on total area of wing and flaps

CL lift coefficient at incidence for attachment, aa
a

C normal force coefficient on flap

C Ppressure coefficient

C D  drag coefficient at incidence for attachment
a

c i constants in expansion of t in terms of Z

i

K "tan y

k - 0/( -(0/I0))

L lift
La  lift at attachment incidence, na

M Mach number (see Appendix)

; source strength

n,n distance and non-dimensional distance normal to contour

n unit outward normal to wing

S wing area with flaps undeflected

s semi-span of cross-section with flaps undeflected

t complex coordinate in transformed plane

U free stream velocity

a-iv complex velocity in t-plane (non-dimensional)

WWI  complex potentials

xyz cartesian coordinates

yz - y/s, z/s, non-dimensional coordinates

z - (y + iz)/s, non-dimensional complex coordinate in cross-flow plane
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LIST OF SIMOLS (concluded)

a incidence

a incidence for attachment

B flap deflection in cross-flow plane

y semi-apex angle of wing with flap undeflected

Y semi-apex angle between hinge lines

Yii constants in expansion of Z in terms of t

nk  non-dimensional coordinate of attachment line, equation (55)

conical coordinate of the flap hinge-line

= - cosec -M , the Mach angle (see Appendix)

P density

0 velocity potential

*cross-flow potential

* #/Us , non-dimensional potential

*~ stream function corresponding to

X lift-lependent drag factor, equation (54)

!

U
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