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ABSTRACT

Iteratively Reweighted Least Squares (IRLS) is a computationally

attractive method for providing estimated regression coefficients that are

relatively unaffected by extreme observations. Definitions and statistical

justifications are reviewed, and a numerical example and a multivariate

extension are included. This article is to be an entry in The Encyclopedia of

Statistical Sciences.
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ITERATIVELY REWEIGHTED LEAST SQUARES - ENCYCLOPEDIA ENTRY

Donald B. Rubin

Iteratively reweighted least squares (IRLS) refers to an iterative

procedure for estimating regression coefficients: at each iteration, weighted

least squares computations are performed, where the weights change from

iteration to iteration. Although IRLS has been used to estimate coefficients

in nonlinear and logistic regressions, currently, IRLS tends to be associated

with robust regression.

1. IRLS for Robust Regression

When using IRLS for robust regression, the weights are functions of the

residuals from the previous iteration such that points with larger residuals

receive relatively less weight than points with smaller residuals.

Consequently, unusual points tend to receive less weight than typical

points.

IRLS is a popular technique for obtaining estimated regression

coefficients that are relatively unaffected by extreme observations. One

reason for the popularity of IRLS is that it can be easily implemented using

readily available least squares algorithms. Another reason is that it can be

motivated from sound statistical principles (c.f. [i, [4), 191). A third

reason for its popularity is that some experience suggests it is a useful

practical tool when applied to real data (c.f. [21, [7]). In order to define

precisely IRLS for robust regression, some notation is needed.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



2. Weighted Least Squares Computations

Let Y be an n x 1 data matrix of n observations of a dependent

variable, let X be the associated n x p data matrix of n observations

of p predictor variables, and let W be an n x n diagonal matrix of

nonnegative weights, which for the moment we assume is fixed. Then the

weighted least squares estimate of the regression coefficient of Y on X is

given, as a function of W, by

b(W) = (xTwx)- I (xTwY) , (1)

if (XTWX) has rank p and is not defined otherwise.

Theoretical justification for the estimator b(W) is straightforward.

Suppose that for fixed W, the conditional distribution of Y given X has

mean XO, where 8 is the p x 1 regression coefficient to be estimated,

~2 -1 2and variance a2W , where a is the residual variance, usually also to be

estimated. By noting that, for fixed W, W/2Y has mean W/2X8 and variance

a 21, the standard Gauss-Markov arguments imply that b(W) is the value of

that minimizes the residual sum of squares (Y - XB) T W(Y - XO) as well as

the minimum variance unbiased estimator of 8. If the conditional

distribution of Y given X is normal for fixed W, then b(W) is also the

maximum likelihood estimate of 8, and the associated maximum likelihood

2estimate of a is the weighted sum of squared residuals:

s(W) 2 = [Y - X b(w)] wY - X b(W)]/n (2)

IRLS is used when the weight matrix is not fixed. Specifically, IRLS

applies equation (1) to obtain b (  , the (t+1)st iterate of the

regression coefficient, from the weight matrix of the previous iteration:

b ( W ) = b(W ( ) . (3) P

In order to define a specific version of IRLS, we thus need only to define the

weight matrix W
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3. The Weight Matrix and Iterations for Robust Regression

For Robust regression, the ith diagonal element in thk weight matrix

W( ) () is t function w(", of the i th standardized residual obtained
, W I ,

(9.)
by using b to predict Yi:

W. )  w(z.) = w(-z. ) (4)

where

z = (Y - X b ())/s (5)1. 1 1.

M9 iteesiaeo 0atte 9 thand s is the estimate of a at the Z iteration. A natural form for

s based on likelihood criteria is given by equation (2) with W

substituted for W, and thus, by equation (3), with b substituted for

b(W):

s =S(W(  ) • (6)

The scalar function w(*) in (4) is a nonnegative and nonincreasing monotone

function and thus gives relatively smaller weight to points with larger

residuals, e.g., w(z) = 2/(1 + z2).

(9.)
With a specified form for s and a specified form for the function

w(*), IRLS proceeds by choosing a starting value W (0 ) e.g., the identity

matrix, and then calculating b ( l) from equations (1) and (3), s (i) from

equations such as (2) and (6), and thence W(M) from equations (4) and (5);

from WM I  the next iterates b (2 ), s(2) and 0 2 ) are calculated; the

procedure continues indefinitely unless some s (M = 0 or X TW ()X has rank

less than p. Experience suggests that for many choices of weight functions,

the iterations reliably converge.
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4. Statistical Justifications for IRLS

A general statistical justification for IRLS for robust regression arises

from the fact that it can be viewed as a process of successive substitution

applied to the equations for M-estimates ([11,21,[81,[91, (101). Numerical

behavior of IRLS for robust regression is considered in [31, [61, (10], (111.

A more specialized justification for IRLS, which is consistant with

statistical principles of efficient estimation, arises from the fact that some

M-estimates are maximum likelihood estimates under special distributional

forms for the conditional distribution of Y given x. When M-estimates are

maximum likelihood estimates, the associated IRLS algorithm is an EM-algorithm

([41, especially pp. 19-20), and consequently, general convergence results

about EM algorithms apply to IRLS algorithms; important results are that each

step of IRLS increases the likelihood and, under weak conditions, IRLS

converges to a local maximum of the likelihood function. Details of the

relationship between IRLS and EM, including general results on large and small

sample rates of convergence, are given in [5].

5. IRLS/DE for the t-distribution

A specific example when IRLS is EM occurs when the specification for the

conditional distribution of Yi given Xi  is a scaled t-distribution on r

degrees of freedom. Then the associated weight function for IRLS is

w(z) = (r + 1)/(r + z2 ), and the large sample rate of convergence for IRLS

is 3/(r + 3). More generally, if d(z) is the probability density function

specified for the conditional distribution of Yi given Xi, then the

associated weight function is defined by

w(z) = -d'(z)/zd(z) for z # 0

= lim -d'(z)/zd(z) for z = 0 .

z*O
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A small numerical example is given in [5] and summarized here. Ten

observations were drawn from a t-distribution on 3 degrees of freedom (-0.141,

0.678, -0.036, -0.350, -5.005, 0.886, 0.485, -4.154, 1.415, 1.546). The

results of twenty steps of IRLS starting from W (0 ) = I are given in Table

1. The empirical rate of convergence for both b (i ) and s (1) at the 20 th

iteration is 0.6805 which agrees well with the theoretical small sample rate

of convergence of 0.6806 as calculated in (51; the large sample rate of

convergence is 0.5. Since the rate of convergence of an EM algorithm is

proportional to the fraction of information in the observed data (i.e., in

Y and X in the robust regression context) relative to the information in

the observed and missing data (i.e., in Y, X and W), we see that in this

example the observed data have relatively more information about 0 and a

than is typical for samples of size ten from a t on three degrees of

freedom. Further discussion of these points is given in [5].
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Table 1.

Successive iterations of IRLS for example

Iteration- 
a (X)2

1 -0.467496 1.537750

2 0.103069 1.673303

3 0.240781 1.603189

4 0.277822 1.524210

5 0.292411 1.466860

6 0.300280 1.427958

7 0.305188 1.401828

8 0.308413 1.384252

9 0.310571 1.372393

10 0.312027 1.364371

11 0.313012 1.358934

12 0.313680 1.355244

13 0.314133 1.352738

14 0.314442 1.351035

15 0.314651 1.349876

16 0.314794 1.349088

17 0.314890 1.348552

18 0.314956 1.348188

19 0.315001 1.347939

20 0.315032 1.347771

6. A Multivariate Extension

A potentially quite useful and simple generalization of the use of

IRLS/24 for the t-distribution has apparently not yet appeared in the

literature and illustrates the flexibility of IRLS. Suppose Yi is q-

variate and X i is p-variate as before, where 8 is now p x q, and let the

conditional distribution of Yi - ax given X be a zero-centered linearI x

transformation of a q-variate spherically symmetric t-distribution on r
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degrees of freedom. Then the previous notation and equations apply with the

following simple modifications: b(W) defined by (1) is now p x q, s(W)

defined by (2) is now q x q, the weight function is given by

w(z. ) = (r + q)/(r + z2 )  
(7)1 1

where at the £th iteration

2 (2,) (E)21 (£) Tz = (Y. - X. )[s I (Y. x ) . (8)
i 1 1 1 1

IRLS begins with a starting value, w ( 0 ) , e.g. the identity matrix,

calculates the p x q matrix b ( i ) from equations (1) and (3), the q x q

matrix s(1)2 from equations (2) and (8), and thence the n x n diagonal

matrix WM from equations (4), (7) and (8); W ( I ) leads to the next

b (2) (2)2
iterates s , and so forth.

Under the t-specification, IRLS is EM and so each iteration increases the

likelihood of the p x q location parameter a and the q x q scale

2parameter 0 , and under weak conditions, the iterations will converge to

2maximum likelihood estimates of a and a .  IRLS thus provides a positive

semi-definite estimate of the matrix of partial correlations among the q

components of Yi assuming the conditional distribution of Yi given Xi  is

elliptically symmetric and long tailed (if r is chosen to be small). Some

limited experience with real data suggests that this use of IRLS does yield

estimates of correlation matrices rather unaffected by extreme observations.
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