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Abstract

Sentences are far more ambiguous than one might have thought. 'lliere ma) he huindreds, perhaps

thousands of syntactic parse trees for certain very natural sentences of English. Ibis fact has been a majoAI

problem confronting natural language processing because it indicates that it may require a long time to

construct a list of all the parse trees, and furthermorc, it isn't clear what to do with the list once it has been

constructed. This list may be so numerous that it is probably not the most convenient representation for
comm-unication with the semantic and pragmatic processing modules. In this paper we propose some
methods for dealing with syntactic ambiguity in ways that take advantage of certain regularities among the

alternative parse trees. These regularities will be expressed as ier combinations of ATN networks, and also

as sums and p~roducts of formal power series.

We will suggest some ways that practical processor can take advantage of this modularity in order to

deal more efficiently with combinatoric ambiguity. In particular, we will show how a processor can efficiently

compute the ambiguity of an input sentence (or any portion thereof). Furtherniore, we will show how to

compile certain grammars into a form that can be processed more efficiently. In some cases, including the
"every way ambiguous" grammar (e.g., conjunction, prepositional phrases. noun-noun modification),

processing time will be reduced from 0(n3) to 0(n). Finally, we will show how to uncompile certain hig0y

optimized grammars into a form suitable for linguistic analysis.

Keywords: natural language, parsing, ambiguity
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Most parsers find the set of parse trees by starting with tie empty set and adding to it each time they

find a new possibility. We make tie observation that in certain situations it would he mitih more efficient to

work in the other direction, starting from the universal set (i.e.. the set of all binary trees) and ruling trees out

%hen the parscr decides that they cannot be parses. Ruling-out is easier when the set of parse trcce is closer to

the universal set and ruling-in is easier when the set of parse trees is closer to the empty set. Ruling-out is

particularly suited for "every way aribiguo " constructions such as prepositional phrases which have just as

many parse trees as there are binary trees over the terminal elements. Since every tree is a parse, the parser

doesn't have to rule any of them out.

In some sense, this is a formalization of an idea that has been in the literature for some time. I'liat is, it

has been noticed for a long time that these sorts of vey ambiguous constructions are very difficult for most

parsing algorithms, but (apparently) not for people. 'Ihis observation has led some researchers to hypothesize

additional parsing mechanisms, such as pseudo-attachment [1: pp. 65-71] 1 and permanent predictable

ambiguity [14: pp. 64-651, so that the parser could "attach all ways" in a single step. However, these

mechanisms have always lacked a precise interpretation; we will present a much more formal way of coping

with "every way ambiguous" grammars, defined in terms of Catalan numbers [8: pp. 388-389, pp. 531-5331.

Certain constructions, including the "every way ambiguous" grammar, will be treated as primitive

objects (modules) which can be combined in various ways to produce composite constmctions such as lexical

iambiguity which are also very ambiguous, but not quite "every way ambiguous". Composite constructions

will be analyzed as linear combinations of primitive components, in a sense to be made precise in terms of

formal power series. Equi-alently, in A'rN notadon, composite networks can be analyzed as series and

parallel combinations of primitive networks. This approach has been strongly influenced by lin. systems
theory, a classic engineering notion of modularity.

We will suggest some ways that practical processor can take advantage of this modularity in order to

deal more efficiently with combinatoric ambiguity. In particular, we will show how a processor can efficiently

compute the ambiguity of an input sentence (or any portion thereof). Furthermore, we will show how to

compile certain grammars into a form that can be processed more efficiently. In some cases, including the
.every way ambiguous grammar", processing time will be reduced from O(n 3) to O(n). Finally, we will show

how to uncompile certain highly optimized grammars into a fiomn suitable for linguistic analysis.

1. The idea of pseudo-attachment was first pr.,iosed by Marcus (private cimmunication), though Marcus does n,-t accept the
formulation in Ill.

__~~~~~~- i il. " '
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1. Ambiguity is a Practical Problem

Sentences are far more ambiguous than one might have thought. There may be hundreds. perhaps

thousands of syntactic parse trees for certain very natural sentences of English. For example, consider the

following sentence with two prepositional phrases:

(1) Put the block in the box on the table.

which has two interpretations:

(2a) Put the block [in the box on the table].

(2b) Put [the block in the box] on the table.

'Thcsc syntactic ambiguities grow "combinatorially" with the number of prepositional phrases. For example,

when a third PP is added to the sentence above, there are five interpretations:

(3a) Put the block [in the box on the table] in the kitchen].

(3b) Put the block [in the box [on the table in the kitchen]].

(3c) Put [[the block in tie box] on the tablel in the kitchen.

(3d) Put [the block [in the box on the table]] in the kitchen.

(3e) Put [the block in the box] [on the table in the kitchen].

When a fourth PP is added, there are fourteen trees, and so on. This surt of combinatoric ambiguity has been

a major problem confronting natural language processing because it indicates that it may require a long time

to construct a list of all the parse trees, and furthermore, it isn't clear what to do with the list once it has been

constructed. This list may be so numerous that it is probably not the most convenient representation for

communication with the semanic and pragmatic processing modules. In this paper we propose some

methods for dealing with syntactic ambiguity in ways that take advantage of certain regularities among the

alternative parse trees.

In particular, we observe that enumerating the parse trees as above misses the very important

generalization that prepositional phrases are "every way ambiguous", or more precisely the set of parse trees

over i PPs is the same as the set of binary trees that can be constructed over i terminal elements. Notice, for

example, that there are two possible binary trees over three elements,

(4a) [... block ... [ ... box ... table ...fl

(4b) [ ... block ... box ...j ... table ...]
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c)rresponding to (2a) and (2b) respectively, and that there arc five binary trees over four elements

corresponding to (3a)-(3c) respectively (see figure 1).

These "worst case" scemuios occur very often in practice, as indicated by our e:pericnce with the I:QSP
parser [11] on the Mailhotra Corpus [101.2 Almost 2% of the Malhotra Corpus has 300 or more interpretations

according to I:QSP. The sentences are given below with the number of parse trees. Note that the first sentence

is. almost a thousand ways ambiguous.

958 In as much as allocating costs is a tough job I would like to have the total costs relited to each

product.

692 For each plant give the ratio of 1973 to 1972 figures for each type of production cost and

overhead cost.

654 )o you have a model to maximize contribution to the company subject to production and other

constraints?

556 Give actual and budgeted operating costs for all plants, and actual and budgeted i ianagement

salaries and interest costs.

512 Give me a breakdown of difference between list and average quoted price for each product for
1972 and 1973.

510 'lhe intent of my question is to find out if you know if your accounting methods C fl relate the

changes in sales to changes in your expense structures.

322 Display the difference between list price and actual costs (direct + overhead) divided by list

price for plant 2 for the past four years.

382 What was the number of units of product 2 produced at plant 2 in 1973 times the unit price of

product 2?

These sentences show that syntactic constraints are not always very restrictive. This fact has been a

major problem confronting natural language processing because it indicates that it may require a long time to

construct a list of all the parse trees, and furthermore, it isn't clear what to do with the list once it has been

constructed. The list of parse trees can be so numerous that it is probably not the most efficient repre-

sentation for communication with the semantic and pragmatic processing modules. A list representation fails

to take advantage of certain generalizations among the alternative parse trees, especially the "every way

ambiguous" generalization.

2. Malhotra gathered approximately 500 sentences in an cxpcriment which fholed businessmen into believing that the %ketce iteracting
ith a computer when they were actuall) conmmunicating with a person in an anoiher room,
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Hig. 1. Binary Trees Over Four Tertnintls

Over four terminals, it is possible to construct five binary trees. These Iv- trees arc illustrated below in
solid lines.

the block in the box on the table iii the kitchen

the block in the box on the table in the kitchen

Put

the block in the box on the table in the kitchen

Put
the block in the box on the table in the kitchen

Put
the block in the box on the table in the kitchen
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"lhe "every way ambiguous" generalization is missed by most parsing algorithms currently in practice

including our own FQSP. 'lliesc algorithms all construct the set of possible parse trees by starting from the

empty set and adding to it each time they find a new set of analyses. We make the observation that there are

certain situations where it would be much more efficient to work in the other direction, starting from the

univcrsal set and ruling trees out when the parser decides that they cannot be parses. Ruling-out is easier

when the set of parse trees is closer to the universal set and ruling-in is easier whcn the set of p:irse trees is

closer to tie empty set. Ruling-out is particularly suited for "every way ambiguous" graminars like ipps

because there are no trees to exclude. Similar comments hold for other "every way ambiguous" cOnsIIUCtiOnS

such as adjuncts, conjuncts, noun-noun modification, and stacked relative clauses.

'ihese constructions, which will be treated as primitive objects, can be combined in %arius ways to

produce composite constructions such as lexical ambiguity which may also be very ambiguoas, but not

necessarily "every way ambiguous". Composite constructions can be analyzed as linear combinations of

primitive components. Lexical ambiguity, for example, will be analyzed as the sum of its senses, or in flow

graph terminology [13], as a parallel connection of its senses. Structural ambiguity, on the other hand. will be

analyzed as the product of its components, or in flow graph terminology as a series connection. For example,

the sentence

(5) Was ie block in the box on the table?

is structurally ambiguous. The "box" can be associated with either the "block" or the "table'. We will

analyze this sentence as a product of two polynomials, the first corres; onding to the subject noun phrase and

the second corresponding to the complement noun phrase. The standard definition of polynomial

multiplication correctly accounts for the two possible attachments of "box". We prefer this linear systems

view to heuristic search strategies (e.g. [61), because linear systems can capture generalizations that hold across

alternative interpretations, whereas search strategies tend to probe only a single interpretation (context) at a

time. At the very least, our approach is an improvement over enumerating each tree individually, which

consumes exponential time in the worst case.

2. Formal Power Series

This section will make the linear systems analogy more precise by relating context-free grammars to

formal power series (polynomials). Formal power series are a well-known device in the formal language

literature (e.g. [15]) for developing the algebraic properties of context-free grammars. We intnrduce them

here to establish a fonnal basis for our upcoming discussion of processing issues.
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The power series for grainniar (6a) is (6b).

(6a) NP -+ John NI' and NP

(6b) NP John + John and John + 2 John and John and John

+ 5 John and John and John and John

+ 14 John and John and John and John and John +

lach term consists of a sentence generated by the grammar and an ambiguitV coefficient 3 which counts how

many ways the sentence can be generated. For ex,unple, the sentence "John" has one parse tree

(7a) [John] I tree

because the zero-th coefficient of tie power series is one. Similarly, the sentence "John and John" also has

one tree because its coefficient is also one,

(7b) [John and John] 1 tree

and "John and John and John" has two because its coefficient is two,

(7c) [John and John] and John], [John and [John and John]] 2 trees

and "John and John and John and John" has five,

(7d) [John and [[John and John] and John]], [John and [John and [John and John]]D, 5 trees

[[[John and Johnl and Johnl and John], [[John and [John and Johnll and Johnl,
[[John and John] and [John and John]]

and so on. The reader can verify for himself that "John and John and John and John and John" has fourteen

trees.

Note that the power series encapsulates the ambiguity response of the system (grammar) to all possible

input sentences. In this way, the power series is analogous to the impulse response in electrical engineering,
which encapsulates the response of the system (circuit) to all possible input frequencies. (Ambiguity

coefficients bear a strong resemblance to frequency coefficients in Fourier analysis.) All of these transformed

representation systems (e.g., power series, impulse response, and Fourier series) provide a complete

3. The formal language literature [5, 15] uses the term supoort instead of ambiguity eoefficient.
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desLription of the system with no loss of infinnation4 (and no heuristic approximations (e.g.. search strategies

161)). l'ransforms are often very usefil bee use they provide a different point of view. Certain observations

are more easily seen in the transform space than in the original space, and vice versa.

This paper will discuss several ways to generate the power series. Initially let us consider successive

approximation. Of all the techniques to be presented here, successive approximation most closely resembles

the approach taken by most current chart parsers including PQSP1. The alternative approaches take advantage

of certain regularities in the power series in order to produce the same results more efficiently.

Successive approximation works as follows. First we translate grammar (6a) into the equation

(8) NP = John + NP -and -NP

where "+" connects two ways of generating an NP and "-" concatenates two parts of an NP. In some sense, we

want to "solve" this equation for NP. This can be accomplished by refining successive approximations. An

initial approximation NP, is formed by taking NP to be the empty language.

(9a) NP0 = 0

Then we form the next approximation by substituting the previous approximation into equation (8), and

simplifying according to the usual rules of algebra (e.g. assuming distributivity. associativity,5 identity

clement, and zero element).

(9b) NP1 = John + NP0- and. NP0 = John + 0. and. 0 = John

We continue refining the approximation in this way.

(9c) NP2 = John + NP1 • and- NP1 " John + John and John

4. This needs a qualification. It is true that the power series provides a complete description of the ambiguity response to any input
sentence. llowe~er, the power series representation may be losing somc information that would be useful for parsing. In patticular,
there might be some cases where it is impossible to recover the parse trees exactly as we will see, though this may not be too serious a
problem for many practical applications. That is, it is often possible to recover most (if not all) of the structure, which may be adequate
for many applications.
5 he careful reader may correctly object to this assumption. We include it here for expository convenience, as it greatly simplifies the

derivations though it should be noted that many of the results could be derived without the assumption F:uilicnnore, thi a;suiilption is
salid for counfing ambiguity. Ihat is. IA • HI * ICI = JAI * IB- CI. where A. 3 and C are sets of trees and JAI denotes the number of
members of A. and * is intcger multiplication.
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(9d) NP3 = John + NP2 and NP2
= John + (John + John and John) and (John 4- John and John)
= John + John and John + John and John and John + John and John and John

+ John and John and John and John
= John + John and John + 2 John and John and John

+ John and John and John and John

Eventually, we have NP expressed as an infinitely long polynomial (6b) above, i'his expression can be

simplified by introducing a notation for exponentiation. Let xi be an abbreviation for multiplying x • x •

x, i times.

(10) NP = John + John and John + 2 John (and John) 2

+ 5 John (and John) 3 + 14 John (and John) 4 +

Note that parentheses are interpreted differently in algebraic equations than in context-free rules. In context-

free rules, parentheses denote optionality, whereas in equations they denote precedence relations among

algebraic operations.

3. Catalan Numbers

Ambiguity coefficients take on an important practical significance when we can model them directly

without resorting to successive approximation as above. This can res,.lt in substantial time and space savings

in certain special cases where there are much more efficient ways to compute the coefficients than successive

approximation (chart parsing). Equation (10) is such a special case: the coefficients follow a well-known

combinatoric series called the Catalan Numbers [8: pp. 388-389, pp. 531-533].6 This section will describe

Catalan numbers and their relation to parsing.

The first few Catalan numbers are: 1, 1, 2, 5, 14, 42, 132, 469, 1430, 4862, ... They are generated by the

closed form expression:7

(11) Catn= 2n) 2n- n-l

6. This fact was first pointed out to us by V. Pratt. We suspect that it is a generally well-known result in the formal language
community, though its origin is unclear.

7. (;) is known as a binomial coefficient. It is equivalent to b where a' is equal to the product of all integers between I and a.b'(a - b
Binomial coefficients are very common in combinatorics where they are interpreted as the number of .'a.s to pick b objects out of a set
of a objects.
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'Ibis fonula can be explained in terms of parenthesized expressions, which are equivalent to trcs. CatI is

the number of ways to parenthesize a forulna of length n. There are two conditions on parenthiJ:ition: (a)

there must the same number of open and close parentheses, and (b) they must be properly ncsttd so that an

open parenthesis precedes its matching close parenthesis. The first term counts the number of cquences of

2n parentheses, such that there are the same number of opens and closes. The second term subtracts out cases

violating condition (b). 'is explanation is elaborated in [8: p. 531J.

It is very useful to know that the ambiguity coefficients are Catalan numbers because this observation

enables us to replace equation (10) with (12), where Cat i denotes the ith Catalan number. (All iummations

range from 0 to co unless noted otherwise.)

(12) NP = Cat i John (and John)'

'he ith Catalan number is the number of binary trees that can be constructed over i phrases. 'Ihis model

correctly predicts QSP's behavior with prepositional phrases. That is, the 1?QSP parser [111 found exactly the

Catalan number of parse trees for each sentence in the following sequence:

1 It was the number.

I It was the number of products.

2 It was the number of products of products.

5 It was the number of products of products of products.

14 It was the number of products of products of products of products.

These predictions continue to hold with as many as nine prepositional phrases (4862 parse trees).

4. Table Lookup

We could improve EQSP's performance on Pps if we could find a more efficient way to compute Catalan

numbers than chart parsing, the method currently employed by EQSP. Let us propose two alternatives: table

lookup and evaluating expression (11) directly. Both are very efficient over practical ranges of n, iay no more

than 20 phrases or so.8 In both cases, the ambiguity of a sentence in grammar (6a) can be determined by

counting the number of occurrences of "and John" and then retrieving the Catalan of that number. These

8. The table lookup scheme ought to have a way to handle the theoretical possibility that there are an unlimited number ,of prepositional
phrases. The table lookup routine will employ a more traditional parsing algorithm (e.g., Farlc's Algorithm) when the number of
phrases in the input sentence is not stored in the table.
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appioaches both take linear tinic (over practical rainges of n),9 ,eic.,is chart parsing rclUiics cubic time to

parse sentences in these grammars, a significant improvement.

So far we have shown how to compute in linear time the number of amibiguous interpretations of a

sentences in an "every way ambiguous" grammar. Ilowever, we are really interested in finding parse trees,

not just the number of ambiguous interpretations. We could extend the table lookup algorithm to find trees

rather than ambiguity coefficients, by modifying the table to store trees instead of numbers. For parsing

purposes, Cat, can be thought of as a pointer to the iih entry of the table. So, for a sentence in grammar (6a)

for example, the machine could count the number of occurrences of "and John" and then retrieve the table

entry for that number.

index trees

0 {[John]}
1 {lJohn and Johnil

2 {[[John and John] and John], (John and [John and Johnl}

lie table would be more general if it did not specify the lexical items at the leaves. Let us replace the table

above with

index trees

0 {[xJ}
1 {I[x x}
2 {[[x x] x], [x Ix xfl}

and assume the machine can bind the x's to the appropriate lexical items.

There is a real problem with this table lookup machine. Ilie parse trees may not be exactly correct

because the power series computation assumed that multiplication was associative, which is an appropriate

assumption for counting ambiguity, but inappropriate for constructing trees. For example, we observed that

prepositional phrases and conjunction are both "every way ambiguous" grammars because their ambiguity

coefficients are Catalan numbers. However, it is not the case that they generate exactly the same parse trees.

9. The linear time result depends on the assumpl;,im that table lookup (or closed fomi computation) can be perlormed in constant time.
This may be a fair assumption over practical ranges of n, but it is not Inie in general.
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Nevertheless we present the table lookup pseudo-parser here because it seems to be a speculative new

approach with considerable promise. It is :ftcn more cfficient than a real parser. and thw trees that it finds

may be just as useful as the correct one for many practical purposes. For example, many speech recognition

projects employ a parser to filter out syntactically inappropriate hypotheses. However, a full parser is not

really necessary for this task; a recognizer such this table lookup pseudo-parser may be perfectly adequate for

this task.

Furthermore, it is oftcn possible to recover the correct trees from the output of tie pseudo-parser.. In

particular, the difference betwecn prepositional phrases and conjunction could be accounted for by modifying

the interpretation of the PP category label, so that the trees would be interpreted correctly even though they

are not exactly correct. In short, the table lookup pscudo-parser is worth exploring even though the results

arc not always correct. The results are close enough for many applications (e.g., speech recognition) and the

mistakes can often be corrected.

The table lookup approach works for primitive grammars. The next two sections will show how to

decompose composite grammars into series and parallel combinat'ons of primitive grammars.

(13a) G = G1 • G2  series

(13b) G = G1 + G2  parallel

5. Parallel Decomposition

Parallel decomposition can be very useful for dealing with lexical ambiguity, as in

(14) ... to total with products near profits ...

where "total" can be taken as a noun or as a verb, as in:

(15a) The accountant brought the daily sales to total with products near profits organized according to
the new law. noun

(15b) The daily sales were ready for the accountant to total with products near profits organized

according to the new law. verb

The analysis of these sentences will make use of the additivity property of linear systems. That is, each

case, (15a) and (15b). will be treated separately, and then the results will be added together. Assuming "total"

is a noun, there are three prepositional phrases contributing Cat 3 bracketings, and assuming it is a verb, there

are two prepositional phrases for Cat 2 ambiguities. Combining the two cases produces Cat 3+Cat 2 = 5+2
7 parses. Adding another prepositional phrase yields Cat 4 -ICat 3 = 14+5 = 19 ambiguiics. (-QS,

4i Ca 45=i9abgiic.(. I
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behaved as piedicted in both cases.)

'Ihis behavior is generali/ed by the following power series:

(16) } (Cat1 +1 + Cati) (P N)'

Ahich is the sum of the two cases:

(17a) 7 Cat 1 (P N)' = P N Cat+ (P N)i  noun
;>0i

(17b) to v Cat i (P N) verb

Tiis observation can be incorporated into the table lookup pseudo-parser outlined above. Recall that

Cat is interpreted as the iIb index in a table containing all binary trees dominating i leaves. Similarly, Cat +

Cat i+1 will be interpreted as an instruction to "append" the ith entry and i + 1 t entry of the table.

(18) (ADD-TREES (CAT-TABLE i) (CAr-TABLE (+ i I)))

(This can be implemented efficiently, given an appropriate representation of sets of trees.)

Now suppose there were an oracle that disambiguated the word "total". How could we incorporate this

information once we have already parsed the input sentence and found that it was the sum of two Catalans?

The parser can simply subtract out the inappropriate interpretations. If the oracle says that "total" is a verb,

then (17a) would be subtracted from the combined sum, and if the oracle says that "total" is a noun, then

(17b) would be subtracted.

Furthermore, suppose that we wanted to evaluate the usefulness of a particular oracle. For example,

sunpose that there was a semantic routine that could disambiguate "total", but this semantic routine is very

expensive to execute so that we don't want to run it unless we are very sure that it has a desirable cost/benefit

ratio. We need a way to estimate the usefulness of the semantic routine so that we don't waste time working

on semantic constraints when they won't help very much. This analysis provides a very simple way to

estimate the benefit of disambiguating "total". If it turns out to be a verb, then (17a) trees have been ruled

out, and it it turns out to be a noun, then (17b) trees have been ruled out.
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6. Series Decominposition

Suppose we have a non-terminal S which is a series combination of two other non-terminals. Ni aud VP.

By inspection, ie power series ofs is:

(19) S = NP. VP

'I his result is easily verified when there is an unmistakable dividing point between tile subject and the

predicate. For example, the verb "is" separates the rps in the subject from those in the predicate in (20a), but

not in (20b).

(20a) Ibe number of products over sales of... is near the number of sales under ... clearlb divided

(20b) Is the number of products over sales of... near the number of sales under ...? not clearly, divided

In (20a), the total number of parse trees is the product of the number of ways of parsing the subject times the

number of ways of parsing the predicate. Both the subject and tie predicate produce a Catalan number of

parses, and hence the result is the product of two Catalan numbers, which was verified by i.Qsi' [11: p. 531.

This result can be formalized in terms of the power series:

(21) (N Cati(PN~i)(is Catj(PN)J)
i I

which is formed by taking the product of the two subcases:

(22a) N Cat (P N)' subject

(22b) is X Cats (P N)J predicate

Ihe power series says that the ambiguity of a particular sentence is the product of Cat and Cat where

i is the number of PPs before "is" and j is the number after "is". This could be incorporated in the table

lookup parser as an instruction to "multiply" the ith entry in the table times the jth entry. Multiplication is a

cross-product operation; 1. x R generates the set of binary trees whose left sub-tree I is from L and whose

right sub-tree I is from R.

(23) L X R = 1(i, r) I I E 1. & r E R}
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This is a finrmal definition. For practical prposes, it may be more useflul for the parser Ii' outopw the lit in

the factored form:

(24) (MUr|IPIY-TRI"S (CAT- VAB:. i) (CAT-TAlLI j))

which is much more concise than a list of trees. It is possible, for example, that scmantic processing can take

advantage of factoring, capturing a semantic gencralization that holds across all subjects or all predicates.

Imagine, for example, that there is a semantic agreement constraint between predicates and arguments. For

example, subjects and predicites might have to agree on the feature ±human. Suppose that we were given

sentences where this constraint was violated by all ambiguous interpretations of the sentence. In this case, it

would be more efficient to employ a feature vector scheme (31 which propagates the features in fai.Lorcd form.

That is, it computes a feature vector for the union of all possible subjects, and a vector for the union of all

possible vPs, and then compares (intersects) these vectors to check if there arc any interpretations which meet

the constraint. A system such as this, which keeps the parses in factored form. is much more efficient than

one that multiplies them out. Even if semantics cannot take advantage of the factoring, there is no harm in

keeping the representation in factored form, because it is straightforward to expand (24) into a list of trees

(though it may be somewhat slow).

This example is relatively simple because "is" helps the parser determine the value of i andj. Now let

us return to example (20b) where "is" does not separate the two strings of PPs. Again, we determine the

power series by multiplying the two subcases:

(25) is (N 2 Cat i (P N)') ( , Cat (P NY )=isN j Cat i Cat i (P N)'+j
i j i j

However this form is not so useful for parsing because the parser cannot easily determine i and j, the

number of prepositional phrases in the subject and the number in the predicate. It appears the parser will

have to compute the product of two Catalans for each way of picking i and j, which is somewhat expensive.10

Fortunately the Catalan function has some special properties so that it is possible algebraically to remove the

references to i and j. In the next section we will show how this expression can be reformulated in terms of n,

the total number of pps.

10. Earley's algorithm and most other context-free parsing algorithms actually work this way.
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6.1 Auto-Convolution of Cataula Gramnmars

Some readers may have noticed that expression (25) is in convolulion form. We Nvill make usc of ihis in

the reformulation. Notice that the Catala series is a fixed point under auio-convwation (cxcept for a shift),

that is, multiplying a Catalan power series (i.e., 1 + x + 2x2 + 5x3 + 14x4 + ... Cat i x' ...) with itsclf

produces another polynomial with Catalan cocfficicnts. 'Ilic multiplication is worked out bclok for the first

few terms.

1+ x + 2x2 + 5x3 + 14x 4 +...

X 1+ x + 2x2 + 5x3 + 14x 4 +...

1+ x + 2x2 + 5x3 + 14x 4 +...

x + x2 + 2x3 + 5x4 +...

2x 2 + 2x3 + 4x4 +...
5x3 + 5x4 +...

+ 14x 4 +...

1 + 2x + 5x2 + 14x 3 + 42x 4 +

This property can be summarized as:

(26) Cat i x' CatxJ= Catn+ 1 
xn

i j n

where n equals i + j.

lntuitvvely, this equation says that if we have two "every way ambiguous" (Catalan) constructions, and

we combine them in every possible way (convolution), the result is an "every way ambiguous" (Catalan)

construction. With this observation, equation (25) reduces to:

(27) is ( N Cat i (PN)i ) (E Cat(PN) ) = is N I Catn+1 (P N)n

i J n

Hence the number of parses in the auxiliary-inverted case is the Catalan of one more than in the non-inverted

cases. As predicted, EQSP found the following inverted sentences to be more ambiguous than their non-

inverted counter-parts (previously discussed on page 12) by one Catalan number.

11. The proof immediately rollows from the z-transform of the Catalan series [8: p. 3881: 71(/.), = 11z) - 1.

. roo~owai -
[
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1 Was the number?
2 Was the number of products?
5 Was the number of products of products?

14 Was the number of products of products of products?
42 Was the nimbcr of products of products of products of products?

1 It was the number.
I It was tie number of products.

2 It was te number of products of products.
5 It was the number of products of products of products.

14 It was the number of products of products of products of products.

How could this result be incorporated into the table lookup pseudo-parser? Recall that the pseudo-

parser implements Catalan grammars by returning an index into the Catalan table. For example, if there were

i pps, the parser would return: (CAT-TABLE i). We now extend the indexing scheme so that the parser

implements a series connection of two Catalan grammars by returning one higher index than it would for a

simple Catalan grammar. That is, if there were n Ps, the parser would return: (CAT-TABLIE (+ n 1)).

Series connections of Catalan grammars are very common in every day natural language, as illustrated

by the following two sentences which have received considerable attention in the literature because the parser

cannot separate the direct object from the prepositional complement.

(28a) I saw the man on the hill with a telescope ...

(28b) Put the block in the box on the table in the kitchen ...

Both examples have a Catalan number of ambiguities because the auto-convolution of a Catalan series yields

'another Catalan series. 12 This result can improve parsing performance because it suggests ways to re-organize

(compile) the grammar so that there will be fewer references to quantities that are not readily available. This

re-organization will reap benefits that chart parsers (e.g. Earley's algorithm) do not currently achieve because

the re-organization is taking advantage of a number of combinatoric regularities, especially convolution, that

are not easily encoded into a chart. Section 9 will present an example of the re-organization.

12. There is a difference between these two sentences because "put" subcategorizes for two objects unlike "see". Suppose we analyze
"see" as lexically ambiguous bitween two senses, one which selects for exactly two objects like "put" and one which selects for exactly
one object as in "I saw it." Ihe first sense contributes the same nunber of parses as "put" and the second sense contributes an additional
Catalan factor.
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6.2 {Otort Pa:rsing

Perhaps it is %orthwhile to reformulate chart parsing in our terms in order to show %&hi,.h of the ,ovc

results can be captured by such an approach and which cannot. Traditionally chart parsers maintain a chart

(or matrix) M, whose entrics M.i contain the set of category labels which span from position i to position j in

the input sentence. This is accomplished by finding a position k in between i and j such that ther, is a phrose

from i to k which can combine with another phrase from k to j. An implementation of the inner loop looks

something like:

(29) M := }
loop for k from i to j do

M. :=M UM *Mij

Fssentially, then, a chart parser is maintaining the invariant

(30) M = E Mik Mkj
k

Recall that addition and multiplication were previously defined over polynomials. We can pr.2sere these
definitions if we modify the contents of th," chart. Let us replace the set of category labels in Mi.. with a set of

factored polynomials. That is, let M' denote the polynomial describing the ways to parse a phrasc of category

x from position i to position j. For example, the notation

(31) MS = MNP. MVP + M2. MVP

(3) 04 01' 14 02 24

indicates that there are two ways to combine an NP and a VP to form an S from position 0 to position 4.

This formulation of the chart can be compared with serial and parallel decomposition. Note that

MNP. MV is essentially the same as (MULTIPLY-TRmS M1 P MVP4 ). Similarly, adding matrix elements

corresponds to ADD-TREES. Hence, chart parsing is more similar to serial and parallel combinatic ns than onle

might have suspected. When the grammar is factored appropriately, chart parsers will be able to take

advantage of serial and parallel decompositions discussed above.

Homever, the examples above illustrate cases where chart parsers are inefficient. In part.cular, chart

parsers cannot take advantage of convolution and the "every way ambiguous" generalizatio i. That is,

Earley's algorithm performs convolution the "long way", by picking each possible dividing j:oint k, and

parsing from i to k and from k to j. It is incapable of reducing the convolution of two Catalan as we did

above. Similarly, FEarlcy's algorithm is incapable of using the "every way ambiguo,:s" gencrli/ation, ' 11t is.

it requires 0(n3) time to parse Catalan grammars because there are no constraints on the choice of i, j and k.
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'I he algorithm will eventually enumerate all possible values of i, j and k. We suggest that a proce"or ought to

be able to notice the lack of constraints, and thus avoid enumerating the space a!. Farlcy's algorithm does.

Finally, in passing, we have one constructive suggestion for chart parsers. We observe that it is possible

to count the number of ambiguous interpretations in O(n 3) time. This is an improvement over the obvious

algorithm which nultiplies out all the trees just as if they were being printed. (Such an exponential algorithm

was actually implemented in t'QSP.) We suggest keeping a second matrix A, where A holds the number of

ways of deriving a phrase of category x between i and j. The two matrices, A and M. are almost identical,

except that A holds integers and M holds polynomials. Accordingly, addition and multiplication are dcfined

slightly differently on the two matrices. In A, they map integers into integers in the obvious way: in M. they

map polynot:.ials into polynomials as discussed above. Note that both matrices, A and M, can be computed

with exactly the same sequences of multiplications and additions. Hence, it is possible to compute the

number of ambiguous interpretations in cubic time.

6.3 Auto-Convolution of Unit Step Grammars

L.et us return to the discussion of convolution. This section will illustrate a second practical example of

convolution. Consider the following grammar ("A" denotes the empty string): 13

(32) A-aAJA

We call this grammar a unit step grammar because all of its ambiguity coefficients are 1.

(33) A = 1 + a + a2 + a3 + a4 + a5 +... =IE an
n

In other words, the grammar is unambiguous.14 Embedded sentences are a typical example of(32) in English.

(34) 1 believe you said he thought you were ...

Sunpose for the sake of discussion that we choose to analyze adjuncts with a right branching grammar. (By

convention, terminal symbols appear in lower case.)

(35) ADJS -4 adj ADJS I A

13. Note that the empty language {} is distinct from the language of the empty string {A}. In particular, JAI is the identity element
under series connection and { ) is the identity element under parallel connection. Thus, {A) is modeled as 1 in the power series
representation, whereas I ) is modeled as 0.
14. Unit step grammars are not exactly the same as unambiguous grammars. The ambiguity coefficients of a unit step grammar are all I.

whereas the ambiguity coefficients of an unambiguous grammar are either 1 or 0.
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sq that

(36) Will you go to the store tomorrow in the moining about 10:00 aller ...?

has one parse, independent of the number of adjuncts. A similar analysis of adjuncts is adopted in [7]. This

analysis can also be defcnded on perfoiarce grounds as an efficiency approximation. (This approximation

is in the spirit of pseudo-attachment [11.)

The power series is

(37) ADiS = adji

Now, how many ambiguities will there be if we add a second clause to (36) as in:

(38) 1 will ask if you will go to the store tomorrow in the morning about 10:00 after ...?

Some of the adjuncts will attach to "go" and the rest will attach to "ask". The number of parses is determined

by multiplying the two subgrammars.

(39) ADJS" ADJS adj' ad)- = E adj~
i j i j

This equation has the same problem as equation (25), because there is no clear dividing ine between

the adjuncts that attach to "go" and the ones that attach to "ask", it is not very easy for the parser to determine

i and j. Again, it might appear that the parser will have to try all possible values of i and j, a moderately

expensive process. However, there are some special properties of the step function that enable us to remove

the references to iandjin equation (39). In engineering jargon, the convolution of two steps is a ramp. 'Ihat

is, the product of two polynomials with step coefficients is a polynomial with increasing coefficients [8: pp. 89,

equation 16]. We have multiplied out the first few terms below.

1 + x + x2 + x3 + x4 +...

X 1 + x + x2 + x3 + x4 +...

S1+ X + X2 + x 3 + X4 +

X + x 2 + X3 + x 4 +...

x2 + x3 + X4 +
x3 + x4 +...

+ x4 +...

I + 2x + 3x2 + 4x 3 + 5x4 +
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fhe general result is:

(40) xi xi ()+ 1) X'
i j n

Now equation (39) can be simplified so that the references to i and j are replaced with it, the total number of

adjuncts. 'Ibis is much easier for the parser to deal with because for a given input sentence there is a single

value for n, whereas there are multiple values for i and.

(41) adi E adjJ (n + I)adjn

i j n

Tbis says that a string of it adjuncts induces n + I parse trees, because there are n+ I ways to cut the string into

two substrings. 15 Now suppose there were three matrix clauses instead ofjust two.

(42) T will ask if he will persuade you to go to the store tomorrow in the morning about 10:00 after ...?

The number of parses in this case is the convllution of three steps.

(43) E adji' adji adji

Again this form is ill-suited for parsing because there is no easy way to determine 4 j and k. However, it is

possible to remove the references to the offending variables by taking advantage of some special properties of

the step function. In particular, there is a closed form for the convolution of d+ I step functions 18: p. 90,

equation 20]:

(44) ( Xid+=Xn )n-l -nx

Now we can remove the references to , j and k:

(45 ia t)3 n2 n d n eo (n+ )(n+2)ad n
1 n n

15. The string can be cut between any two words (n- I places) orat cithcr end(2 places).
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These examples show that standard well-known combinatorics can be used to (ltcrinine the number of

ambiguities in many common cases.

7. Computing the Power Series Directly from the Grammar

In fact, the result derived in the previous section can be computed directly from the grammar itself.

First we translate the grammar into an equation in the usual way. That is, ADJS is modeled as a parallel

combination of two subgrammars, adj AtDJS and A. (Recall that A is modeled as I because it is the identity

element under series combination.)

(46a) ADJS - adj AIJS I A

(46b) ADJS = adj ADJS + 1

We can simplify (46b) so the right hand side is expressed in terminal symbols alone, with no references to

non-terminals. This is very useful for processing because it is much easier for the parser to determine the

presence or absence of terminals, than of non-terminals. That is, it is easier for the parser to determine, for

example, whether a word is an adi, than it is to decide whether a substring is an ADJS phrase. The

simplification moves all references to ADJS to the left hand side, by subtracting from both sides,

(46c) ADJS - ad ADJS - 1

factoring the left hand side,

(46d) (I - adi) ADJS - 1

and dividing from both sides.

(46c) ADJS = (1 - adj)- 1

This result is equivalent to the step formulation (37), as can been seen by performing the long division:

(460 --- 1+ " = 1 + adj +  a-'

- adj +- adj2 + adjn

3ll1. :
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Thc purpose of this section was two folded. F'irst, we presented a simplr derivation (if the power series

fir a unit step grammar. Secondly, and morc importantly, we have introduced the notion of division. We

now have four combination rules:

(47a) series combination (multiplication)

(47b) parallel combination (addition)

(47c) inverse of series combination (division)

(47d) inverse of parallel combination (subtraction)

Series and parallel combinations are frequently found in many grammars foinnalisms currently employed in

the literature (e.g. context-free grammars, AUNS), and consequently, they required very little motivation.

Subtraction was introduced as a "ruling-out" operation. The next section will provide an intuition for

division in tenns of ATNS.

8. Computing the Power Series from the ATN

This section will re-derive the power series for the unit step grammar directly from the A'rN

representation by treating the networks as flow graphs [131. 'lhe graph transformations presented here are

directly analogous to the algebraic simplifications employed in the previous section.

First we translate the grammar into an ArN in the usual way 116].

(48) ADJS - adi ADJS J A

(49) ADJS: p Catadj PushADJ POP

Jump

This graph can be simplified by performing a compiler optimization called tail recursion (12) and references

therein). This transformation replaces the final push arc with a jump:

Jump

(50) ADJS:P

JumA
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Tail recursion corresponds directly to the algebraic operations of moving the AIMS ternis to left hand side,

factoring out the ADJS, and dividing from both sides.

Then we remove the top jump arc by series reduction. This step corresponds to multiplying by I since a

jump arc is the ATN representation for the identity element under series combination.

(51) ADJS: Cat adjPo

Jump

Ibe loop can be treated as an infinite series:

(52) 1 + adj + adj2 + adj3 +...

where the zero-th term corresponds to zero iterations around the loop, the first term corresponds to a single

iteration, the second term to two iterations, and so on. Recall that (52) is equivalent to:

(53) _....i.I-adj

With this observation, it is possible to open the loop:

(54) ADIS: 1/(1-adj) Jump

After one final series reduction, the ATN is equivalent to expression (46e) above.

(54e) ADJS: Q 1I(1-adj)

Now we can motivate division in intuitive terms. Division is a loop in an AM.

How can division be implemented? We have two answers. First, division can be implemented as an

ArN loop. Alternatively, we can employ the table lookup scheme discussed above. That is, we formulate

division as an infinite sum:

( 5 5 ) T -- j " : a d j i
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'I hen we construct a table such that tie ith entry contains the ith ambiguity coelficicnt. In othci v. mnds. the ith

location in the table tells the parser how to parse i occurrences of adj. ihe tible lookup scheme is somewhat

more general than the ATN loop, because the table allows the ith coefficient to take on arbitrary values whereas

the ArN loop restricts the coefficients to 1. For example, the Catalan grammar (56a) could be implemented

with a table (56b), but not with an ATN loop.

(56a) A -- A A Ia Catalan Grammar

(56b) Cat, at fable implemenlalion

lowevcr the table has the theoretical problem that it requires an infinite amount of memory. This is not a

problem in practice since the regions of interest are not that large. It is unlikely, for example, that a sentence

would contain more than twenty prepositional phrases.

So far we have discussed five primitive grammars: Catalan, Unit Step. 1, and 0, and terminals, and four

composition rules: addition, subtraction, multiplication and division. Furthermore we have outlined three

implementation strategies: successive approximation (chart parsing), table lookup, and ATNs. We have seen

that it is often possible to employ these tools in order to re-organii.e the grammar so that these

implementations will perform more efficiently. We have identified certain situations where the ambiguity is

combinatoric, and have sketched a few modifications to the grammar that enables processing to proceed in a

more efficient manner. In particular, we have observed it is important for the grammar to avoid referencing

quantities that are not easily determined such as the dividing point between a noun phrase and a prepositional

phrase.

9. An Example

Suppose for example that we were given the following grammar:

(57a) S -- NP VP ADJS

(57b) S -. V NP (PP) ADJS ADJS

(57c) VP - V NP (PIP) ADJS

(57d) PP - P NP

(57e) NP -4 N (PP)

(570 ADJS -- adj ADIS I A

(In this example, we will assume no lexical ambiguity among N, V, P and ad.)

I
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By inspection, we notice that NP and PP are Catalan grammars and that ADIS is a Step grammar.

(58a) PP = Cati(P N)i
i)0

(58b) NP = N Cat i(P N)'

(58c) ADJS - ' adj'

With these observations, the parscr can process PPs, NPS and ADJS by counting the number of occurrences of

terminal symbols and looking up those numbers in the appropriate tables. We now substitute (58a-c) into

(57c)

(59) VP = VNP(I+PP)ADJS = V (N Cat i (PN)') ( i Cat 1(PN)') ( j adij)

and simplify the convolution of the two Catalan functions

(60) VPr= V ( N Cat+ 1 (P NY' j 4 aij
i j

so that the parser can also find vPs by just counting occurrences of terminals symbols. Now we simplify

(57a-b) so that S phrases can also be parsed by just counting occurrences of terminal symbols. First, translate

(57a-b) into the equation:

(61) S = NP VP ADJS + VNP(I+PP)AIJSADJS

and then exand Vp

(62) S = NP(VNP(1+PP)ADJS)ADJS + VNP(I+PP)ADJSADJS

and factor

(63) s = (N' + 1) VNP(I+PP)ADJS 2

This can be simplified consideratily because
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(64) NP (I+ PP) =N Cat (P N) ' Cati (P N)' =N Ca ( ~
i i i

and

(65) ADJS' adi' I dj' + (1)ad?'

so that

(66) S = (N X Cat (P N) +I VN Cat+ I (P N)' 2 (i + 1)adj'

which has the following ATN realization:

N 2 Cat (P N)' V N 2 Cat i~(P N)' (i + 1)adj'
(67) S:QQ(T QQ

Jump

The entire example grammar has now been compiled into a form that is easier for parsing. This formula says

that sentences are all of the form:

(68) S -- (N (P N)°) V N (P N) 4J"

which could be recognized by the following finite state machine:

(69) S: upp

JupJupJm

Furthermore, the number of parse trees for a given input sentence can be found by multiplying three

numbers: (a) the Catalan of the number of P N's before the verb, (b) the Catalan of one more than the number

of P N's after the verb, and (c) the ramp of the number of aj's. For example, the sentence
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(70) The man on the hill saw the boy with a telescope yesterday in the norning.

has Cat 1 Cat 2 * 3 = 6 parses. That is, there is one way to parse "the mail on the hill", two ways to parse
saw the boy with a telescope" (either "telescope" is a complement of "see" as in (71a-c) or it is attached to

"boy" as in (71d-f)), and three ways to parse the adjuncts (they could both attach to the S (71 a,d), or they

could both attach to the VP (71b~c), or they could split (71c,f).

(71a) [The man on the hill [saw the boy with a telescope] [yesterday in the morning.l

(71b) The man on the hill [[saw the boy with a tclescopcJ [yesterday in the norning.]]

(71c) The man on the hill [[saw the boy with a telescope] yesterday] in the morning.

(71d) [hie man on the hill saw [the boy with a telescope] [yesterday in the morning.]]

(71e) 'lThe man on the hill [saw [the boy with a telescope] [yesterday in the morning.]]

(710 The man on the hill [saw [the boy with a telescope] yesterday] in the morning.

All and only these possibilities are permitted by the grammar.

10. Lexical Restrictions

Now suppose there were an oracle (e.g. lexical restrictions) that disambiguated sonic of these

possibilities. How could we incorporate this information once we have already parsed the input sentence as

above? For example, the verb "see" has two lexical forms, a predicate of two arguments as in "I saw it" and a

predicate on three arguments as in "I saw it with a telescope". Now suppose we had an oracle which

disambiguated these two possibilities. How could we take advantage of this information?

Consider the two argument case first. The previously assumed VP grammar (72a) simplifies to (72b)

with the two argument restriction.

(72a) VP - V NP (P) ADJS

(72b) VP - V NP ADJS

If we re-derive the power series for s. we obtain:

(73) s= (N Cati (PN) + I ) VN Z Cati(PN)' '  (i + 1)adj'

hlis equation is the same as (66) except that Cat i+ I in (66) has been replaced with Cat i. The Cat i+1 resulted

from convolving the rrs generated in object position with those generated in complement position. Under

the two argument restriction, it is no longer possible to generate any Pps in complement position, and hence
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all the Pl's must be in objcCt position. There are Cat i ways to pill theim ill ohject posilion ;i- kC have

discussed.

With this formula, we see that three of the six parses given in (71) meet the two argument restriction.

That is, there is still only one way to parse "the man on the hill" and three ways to parse the adjuncts, by the

same the reasoning applied previously. However, there arc now only Cat I ways to parse "saw the boy with a

telescope" whereas there were Cat 2 ways before. 'lhe complement interpretations (71a-c) have been

excluded by the two argument restriction.

Now suppose the oracle had selected the three argument form of "see". flow could we take advantage

of this information? In this case, the power series for S is the difference between (66) and (73).

(74) s= (N Cat i (P N)' +l ) VN (Cat i +- Cat i ) (P N)' (i + 1)adj'
i ii

We hope to generalize this approach to handle selectional restrictions and agreement facts.

11. Inverse Transforms

(Inverse transforms are a fairly self-contained topic which can be left for a second reading of this paper.)

The previous few sections have outlined how it might be possible to use formal power series to compile

a grammar into a form for more efficient processing, This section will discuss the inverse process. That is,

given a compiled representation of the grammar, how can we recover a form suitable for linguistic analysis?

This section will present a partial solution which we found very useful for analyzing EQSP.

Let us consider an anecdotal example based on our experience with the EQSP conjunction mechanism.

Deep inside the code, there was a function called syntactically-parallelp which decided whether or not to

conjoin two constituents. Over the years, this function had acquired so many special case heuristics that it was

no longer understandable. However, we were able to determine the ambiguity coefficients by running £QSP

on the following sequence of conjunction sentences:

I It was.

1 It was actual products.

2 It was actual products and actual products.

3 It was actual products and actual products and actual products.

5 It was actual products and actual products and actual products and actual products.

8 It was actual products and actual products and actual products and actual products and actual

products.
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13 It was actual products and actual products and actual products and actual products and actual

products and actual products.

21 It was actual products and actual products and actual products and actual products and actual
products and actual products and actual products.

To our surprise the ambiguity co-cficients did not follow the Catalan sequence as predicted, but rather they

followed another well-known sequence called the Fibonacci numbers [8]. The first few Fibonacci numbers

are 1, 1, 2, 3, 5, 8, 13, 21, ... The next valuc is formed by taking the sum of the two previous values, or more

precisely:

(75) Fib 1 = Fib0 = 1
Fib n = Fib n 1 + Fib n 2

We can model the sentences above with the following power series (ignoring the word "and" which

complicates the analysis in ways that are irrelevant to the current discussion):

(76) S = It was Fib i(actual products)'

We were then able to recover the grammar from the power series because the Fibonacci series has a well-

known inverse transform. That is, a power series with Fibonacci coefficients obeys the following identity.

(77) 7, Fib i xi= 1

i 1 - x- x2

The reader can verify that this identity is correct by performing the long division. We were fortunate in this

case that the inverse transform for the Fibonacci numbers has a well-known closed form. In general, such

closed forms are very difficult to discover (if they exist at all), and for this reason, it can be very difficult or

even impossible to find a linguistically attractive grammar for an arbitrary processor. Nevertheless, closed

forms do exist for a large number of interesting cases. With some practice and a few educated guesses based

on partial knowledge of what the machine is doing, one can successfully "crack" quite a number of

constructions. At least, this has been our experience with EQSP.

Returning to the conjunction sentences, we now have a closed form of the power series:

(78) S=twas 11 - (actual products) - (actual products) 2
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[his has (he fbllowing ATN reali/alin:

Junip

(79) S: was 0

actual product actual product

We observe that FQSP employs a heuristic which prevents conjuncts from attaching more than two phrases

back. A fill non-heuristic conjunction mechanism would permit conjuncts to "fold back" arbitrarily far. In
which case the conjunction mechanism would be a Catalan grammar.

In this way, we were able to perform the inverse transform on the ambiguity coefficients in order to

recover the underlying behavior of the FQSP conjunction mechanism. We are now in a position to rewrite

syntactically-parallelp to be more comprehendable and more efficient, without disturbing the external

behavior.

12. Conclusion

We began our discussion with the observation that certain grammars are "every way ambiguous" and

suggested that this observation could lead to improved parsing performance. Catalan grammars were then

introduced to remedy the situation so that the processor could delay attachment decisions until it discovers

some more useful constraints. Until such time, the processor can do little more than note that the input

sentence is "every way ambiguous". We suggested that a table lookup scheme might be an effective method

to implement such a processor.

In some sense, this approach is a formalization of a very old idea. That is, it has been noticed for a long

time that it might be advantageous to enrich a processor with the capability to attach certain ambiguous

constituents to several places in a single step. Pseudo-attachment [1: pp. 65-71] and permanent predictable

ambiguity [14: pp. 64-651 are two such proposals. However, these mechanisms have always lacked a precise

interpretation; Catalan grammars provide a much more formal way of coping with "every way ambiguous"

grammars.

We then introduced rules for combining primitive grammars, such as Catalan grammars, into composite

grammars. This linear systems view "bundles up" all the parse trees into a single concise description which is

capable of telling us everything we might want to know about the parses, (including how much it might cost

to ask a particular question). This abstract view of ambiguity enables us to ask questions in the most
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convenient order, and to to delay asking until it is clear that that the pay-off will exceed the cot. This

abstraction was very strongly influenced by the notion of delayed bindin.

We have presented combination rules in three different representation systems: power series, A|NS, and

context-free grammars, each of which contributed its own insights. Power series are convenient for defining

tie algebraic operations, ATNs are most suited for discussing implementation issues, and context-free

grammars enable the shortest derivations. Perhaps the following quotation best summaries our motivation for

alternating among these three representation systems:

(80) "A thing or idea seems meaningful, only when we have several different ways to represent it -
different perspectives and different associations. Ihen you can turn it around in your mind, so to
speak: however it seems at the moment, you can see it another way; you never come to a full

stop." 112: p. 191

In each of these representation schemes, we have introduced five primitive granimars: Catalan, Unit

Step, 1, and 0, and terminals, and four composition rules: addition, subtraction, multiplication and division.

We have seen that it is often possible to employ these analytic tools in order to re-organize (compile) the

grammar into a form more suitable for processing efficiently. We have identified certain situations where the

ambiguity is combinatoric, and have sketched a few modifications to the grammar that enables processing to

proceed in a more efficient manner. In particular, we have observed it is important for the grammar to avoid

referencing quantities that are not easily determined such as the dividing point between a noun phrase and a

prepositional phrase as in

(81) Put the block in the box on the table in the kitchen ...

'We have seen that the desired re-organization can be achieved by taking advantage of the fact that the auto-

convolution of a Catalan series produces another Catalan series. This reduced processing time from O(n 3) to

0(n). Similar analyses have been discussed for a number of lexically and structurally ambiguous

constructions, culminating with the example in section 9 where we transformed a grammar into a form that

could be parsed by a single left-to-right pass over the terminal elements. Currently, these grammar re-
formulations have to be performed by hand. It ought to be possible to automate this process so that the re-

formulations could be performed by a grammar compiler. We leave this project open for future research.
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