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ABSTRACT

The Chebychev (also Minimax and L- Norm) criterion has been widely studied

as a method for curve fitting Published computer codes are available to

obtain the optimal parameter estimates to fit a linear function to a set of

given points under the Chebychev criterion. The purpose of this paper is to

study procedures for obtaining the best subset of k parameters from a given

set of m parameters where k is less-than-or-equal-to m.- -
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Introduction

The classical linear curve fitting problem in the Lp norm can be stated as

follows. Given (yi' Xil xil, "' xim), i 1 1, 2, ... , n, determine 0 to

solve the problem

n m

Minimize ( 1 1y - x 8 1 P) 1/ p

When p=2, the problem is least squares, when p-1, the problem is least abso-

lute values and when lim p+-, the problem is minimize the maximum value which

is also called the Chebychev curve fitting problem. A comparison of these

three criteria can be found in [1, 2]. Least squares (L2 norm) is certainly

the most popular approach in the statistical community, although under certain

conditions least absolute value and Chebychev criteria are preferred. Least

absolute values provides a maximum liklihood estimate when the errors have a

double-exponential distribution and works well enpirically when outliers are

present in the data (see Gentle [10] and Dielman and Pfaffenberger (7]). The

Chebychev estimates are maximum likelihood when errors are uniformly distrib-

uted and work well empirically with most fat-tailed error distributions (see

Appa and Smith [1)) and Rabinowitz [ 13)). This paper will present conputa-

tional procedures to solve a best subset problem under Chebychev criterion.

The problem can be stated as follows.

For q-k, k+1, ... , m, determine values for 8 and J which

Minimize {Maximumly - Z X 8 1, [J]q (1)
i jrcJ ij j

where J C (1, 2, ... , m} and (J] is the cardinality of the index set J. In

other words, consider all possible combinations of exactly q parameters taken
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from the original m parameters, and choose the combination yielding the smal-

lest maxiimum absolute deviation.

The best subset problem arises frequently in statistical analysis where it

is desirable to recognize influential variables and study the effect of reduc-

ing the number of variables. Draper and Smith [8] give an excellent overview

of this modeling technique. Solution algorithms exist for the best subset

problem when the least absolute value [5, 12] and least squares [11] criteria

are used; however, there appear to be no algorithms available in the public

domain when the Chebychev criterion is used.

The algorithm for the best subset problem in the Chebychev norm uses a

branch-and-bound technique. A binary tree is formed and each node of the tree

corresponds to a curve fitting problem with a specified set of parameters

included in the model. Problems are solved using the algorithm of Armstrong

and Kung (3, 4]; however, because of available bounds, not all problems need

be solved to optimality. The framework of the enumeration is similar to that

given by Armstrong and Kung (5] for the best subset least absolute value

problem. This framework is reviewed in the next section and placed in the

Chebychev curve fitting context.

Al gorithimic Framework

At any stage of the enumeration procedure a problem of the form given by

(1) is being considered. Rewriting (1) in a linear programming equivalent

statement yields:

Minimize Z

subject to

-z x B 4 Y + Z, i1l, 2, ... , n (2)

jcJ ii
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where, at optimality, Z will have the value of the maximum absolute residual.

The linear programming dual of (2) is the following.

n n

Maximize W 2. -(3)

subject to

n n

i 1 Xij rI + i__ Xiri =0 jJ

n n
- £1r'1

;0 0, 1i= < 0, i=1, 2, n

It is easily shown that (2) and (3) will always have finite optimal objective

values which are equal. Also, the simplex algorithm for linear programming

problems will readily provide optimal Ir values for (3) once (2) is solved and,

similarly, the optimal 8 values are available once (3) is solved. Thus,

computational considerations alone should determine whether (2) or (3) should

be solved with a primal simplex algorithm.

Special purpose simplex algorithms have been developed for both (2) and

(3). Computational experience [131 has indicated that algorithms that main-

tain a feasible solution to (3) are superior to those that maintain a feasible

solution to (2). The algorithm of Armstrong and Kung [3, 41 will be used to

solve (3). This uses a reduced basis, may pass throuRh more that one extreme

point during an iteration and has a reduced ratio test. The objective value Is
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monotonically nondecreasing from iteration to iteration and this character-

istic is particularly attractive when solving the best subset problem.

An outline of a step-by-step solution procedure for the best subset prob-

lem will now be stated which is independent of the method used to solve (3).
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STEPS OF ALGORITHM

STEP I. Set q=mz. = , i - k, ..., m; k = 0; 1 [1, 2, m.., m, and

STAT. = 0, j = 1, 2, ... , m

)i

STEP 2. Solve (2) to obtain an optimal solution (z, 8), where 0 for

joJ. If z > SAD q, then go to STEP 4; otherwise, go to STEP 3.

STEP 3. A better solution has been found for a subset with q parameters

included in the model. Set z = z and save 8.
q

STEP 4. If q 4 k then go to STEP 6, otherwise, set q + q - 1 and k + k + 1.

STEP 5. Find a parameter 8u with STAT = 0 and form a new subproblem with

ou = 0. Set STATu = -1 and remove u from J. Go to STEP 2.

STEP 6. If PAR., > 0 then go to STEP 7; otherwise, set PAR, + PARZ. j = PARZ,

STAT. = Land q + q +1. Go to STEP 4.

STEP 7. Set J = PAR , STAT. = 0 and Z + k -1. If k > 0 then go to STEP 6;

otherwise, terminate the enumeration process.
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VARIABLE DEFINITIONS

q The number of parameters in the current subproblem.

z i  The current best objective with i parameters.

0 j-th parameter is in the model but has not been forced in, ie.,

a free parameter
STAT . p,

I j-th parameter is forced in the model
-1 j-th parameter is forced out of the model

PAR The parameter restricted at level £ of the predecessor path. If PAR
is negative, the parameter is forced out of the model and if PAR. is

£positive, the parameter is forced in the model.

The current level in the solution tree. The initial problem is at
level zero and a node is one level deeper in the tree than the imme-

diate predecessor.
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One trivial modification to the algorithm is to force a B to be included
r

in every regression. This can be accomplished by setting STATr equal to 1

rather than 0 at STEP 1.

The optimal solution of (1) is not used when z * z ; thus it is not neces-q

sary to solve (1) if it can be ascertained that z > z by another test. This
q

additional test is easily implemented when (3) is solved using a primal sim-

plex algorithm. The algorithm will maintain a feasible solution to (3) and

the objective value (w) will be monotonically nondecreasing from iteration to

iteration. Therefore, the solution process can be terminated whenever the

following holds.

w ) z (4)
q

A key aspect in any branch-and-bound algorithm is the sequence in which

the subproblems are considered. The sequence should be based on the following

guidelines.

A) A good solution for a subproblem at any stage should be easily

obtained to facilitate the solution of the subproblem.

B) A good solution for each subset size should be obtained as soon as

possible to maximize the influence of condition (4).

The next section discusses how to implement the branch-and-bound algorithm

to accommodate guidelines A and B.

PENALTY CALCULATIONS AND AN ADVANCED START

The previously described branch-and-bound algorithm uses a last-in-first-

out (LIFO) branching rule. Viewing the algorithm in a tree format, every node

corresponds to a linear programming problem. Two problems are formed by
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considering the "current" problem, and

a

r forced in 8rtaken out

b c

removing a parameter from the model on one branch and forcing the same param-

eter to be included in the model on the other branch. Once a condition is

specified, it must be satisfied in all descendants of the node.

The branch were 8 is forced in the model gives rise to the same linearr

programming problem in the immediate predecessor node. Thus, the problem at

node b of the diagram need not be solved. The problem of concern arises when

some 8 is removed from the model. tt (3) represent the problem at node a.r

Setting 8 = 0 in (2) is the same as removing the r-th constraint from (3).
r

The problem at node c written by modifying problem at node a is the following.
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n n
Maximize w E yi i + i (5)

subject to

n n
xij iZ1 xij w - 0, jCJ, j~r

n n

i1i i=1 i

n n
x= Xi + w x + S = 0

J-1 ir i 'J=1ir 1 r

7")0, 4' 0, i=1, 2, ... , n
i. 1

The logical linear programming variable Sr is unrestricted in sign and,

hence, has the effect of eliminating the r-th constraint. Also, Sr will

always appear in the basis of an optimal solution to (6). Given a basic

feasible solution to the problem at node a, a basic feasible solution to the

problem at node c can be formed by "conceptually" performing a simplex itera-

tion to bring Sr into the basis. Once Sr is brought into the basis the r-th

constraint is dropped from the problem and the structure is given by (3). The

index set J used at node c is formed by taking the index set J used at node a

and removing the index r.

The objective function change incurred by bringing Sr into the basis

provides a penalty on the restriction r = 0. In other words, this is a lower
r

bound on the total objective change when going from node a to node c.

The penalty can be calculated using a reduced basis from the immediate

predecessor and a modification of the ratio procedures described in [4]. A

formal statement of the penalty procedures will not be given as it requires
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excessive notation and a firm knowledge of the algorithm in (4]. For purposes

of the presentation here it is necessary to realize that the penalty calcula-

tion provides the following two important pieces of information.

1. The objective change during the iteration which brings Sr into the

basis is determined.

2. The dual variable (M) to leave the basis during this iteration is

determined. The feasibility of (3) is maintained after Sr enters the

basis.

(In the computer implementation of the algorithm, Sr is never created

explicitly, rather, the dimension of the basis is decreased by one.)

The information obtained from the penalty calculations can be used to

develop the solution tree. This topic will be discussed in the next section.

Implementation and Computational Testin'g

The algorithm for the best parameter subset using a Chebychev curve fit-

ting criterion was coded in FORTRAN and various implementations were tested.

The initial implementation had the following characteristics.

1. The parameter chosen to restrict at a node was the free parameter

with the smallest index.

2. Each subproblem was solved to optimality without utilizing any infor-

mation from the problems solved at preceding nodes.

The first variation made to the algorithm was to drop the requirement that

each subproblem be solved. If the objective value of the current subproblem

was not less than the best objective value found thus far for the associated

subset size, then the algorithm returned to the branching process. The com-

parison was made immediately before updating the linear programming basis.
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The solution time was cut by more than one half by this simple check. Thus,

all future testing included this feature.

The second variation was to use the last solution from the immediate

predecessor as a starting solution for the current subproblem. The procedure

outlined in the previous section was implemented to determine the variable to

remove from the basis when a constraint is removed from (3). This required

saving the indices of the variables in the final basis of each subproblem so

the LU decomposition [6] of this basis could be reconstructed.

Since the algorithm used a last-in-first-out branching rule, the recon-

struction of the basis was only necessary when backtracking took place. This

advanced start also cut solution times by more than one half and was included

in all future versions.

The final alterations to the algorithm involved the use of the penalties

to guide in the construction of the solution tree. It was hypothesized that

the maximum benefit from comparing the objective value of current subproblem

against the incumbent objective value would be derived by obtaining the best

solutions early in the enumeration process. Thus, assuming the objective

change during the first pivot reflected the overall objective change, the free

parameter with the smallest penalty should be chosen to be restricted.

Table 1 gives a comparison of run times for solving a set of randomly

generated problems with the smallest penalty and first penalty branding rule

implementation. All problems were randomly generated with the errors having a

uniform distribution and solved on the 170/750 Dual Cyber at the University of

Texas at Austin. All times are reported for solution only and do not include

input-output. The iteration count reported gives for iterations within the

algorithm of (3) for solving the subproblems. All variables were single

precision with the Cyber's 60-bit word and the tolerance value for zero was
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set at I.E-8. Choosing to restrict the free parameter with smallest penalty

was, overall, not as good a strategy as choosing the first free parameter.

The superiority of the first free parameter rule became more pronounced as the

problem dimensions increased. It is felt that the poor performance of the

smallest penalty rule came from the extra work required to determine the

parameter to restrict and from the purely local information given by the

penalty. A similar result has been observed in the penalties from integer

programming [9].

The next phase of testing considered the effect of limiting the smallest

subset size and not requiring the verification of optimality. Table 2 shows

the results with the two larger values of m and a solution within 95, 98 or

100 percent of optimality guaranteed. The use of the smallest penalty branch-

ing rule did not seem to provide any better suboptimal solutions than the

first free parameter option for this problem size. However, for the smaller

dimension problems the smallest penalty rule frequently provided the optimal

solutions. Table 3 shows the effect of limiting the number of parameters in

the smallest subset (k) to 5, 10 and 15 rather than 1. The growth of solution

times is approximately exponential with the decrease in the value of k. This

is to be expected because of the tree search strategy.

The final computational results displayed in tabular form compares the

solution times for the Chebychev best subset problem with times for the least

absolute value subset problem. The algorithm of [5], called L1LU, was used

for the least absolute value problems. The code L1LU was consistent in

required close to three times the CPU seconds than the first free parameter

code for the Chebychev norm problem. This time differential is similar to

that observed for solving a single curve fitting problem with the two norms.
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Other branching strategies were tested without any notable results. The

rules attempted were the following.

1. The parameter chosen to restrict was the one yielding the largest

penalty.

2. During the first descent of the tree, the parameter chosen to

restrict yielded the smallest penalty, thereafter, the parameter

yielding the largest penalty was chosen.

3. The pseudo-cost procedure of (9] was modified to the problem at hand

and used to choose the parameter the restrict.

The maximum penalty performed poorly and the other two strategies were at

times better than the smallest penalty; however, the first free parameter

branching rule remained the best.

Conclusions

This paper has presented an algorithm for the best parameter subset using

a Chebychev curve fitting criterion. Computational results with variations of

the fundamental branch-and-bound procedure indicate that the use of penalties

to develop the tree is not worth the additional labor for most problems.

Solution times grow exponentially with the number of parameters but show a

slow linear growth based on the number of observations. The largest problem

solved during the study had 20 parameters, 300 observations and the smallest

subset size considered was 10. It seems, at this time, prohibitive to con-

sider the smallest subset size to be one and determine the best subset for

problems with m greater-than-or-equal-to 20.

One modification that would certainly increase the speed of the algorithm

is to save the complete LU decomposition at each node rather than just the

indices of columns in the basis. For large problems, a significant amount of
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time is spent reconstructing previusly obtained LU decompositions. The addi-

tional storage required to save previous LU decompositions would, however,

limit the size of problems that could be solved. In our implementations it

was felt that the savings of space was more important than the savings in

time.

Curve fitting with a Chebychev criterion is often a desirable alternative

to other curve fitting criteria. The ability to analyze the best parameter

subsets using the Chebychev criterion is provided by the algorithm presented

here. Although this paper has only dealt with algorithmic procedures for the

best subset problem, the foundation for simulation and empirical studies of

curve fitting problems is made available.

The computer code version of the algorithm presented in this paper is

available from the authors.
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TABLE 1

n 200 n = 250 n =300
Smallest First Smallest First Smallest First
Penalty Penalty Penalty Penalty Penalty Penalty

m = 5 .09 .12 .14 .13 .15 .16
(21) (27) (24) (26) (23) (24)

m = 10 2.42 2.23 3.18 2.78 4.12 3.44
(154) (186) (240) (205) (281) (251)

m = 15 104 79 151 136 156 99

(2921) (1504) (5805) (5515) (4718) (2124)

A computational comparison of two implementations of the best subset algorithm

for the Chebychev norm is given. The upper entry in each cell is the mean CPU

time in seconds and the lower entry is mean number of iterations. Three

problems were solved with each combination of m and n when m equals 5 or 10, a

single problem was solved when m equals 15.
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TABLE 2

m = 15 m = 20
k-1 k=10

Smallest First First
Penalty Penalty Penalty

95% 84 74 2195
(1072) (808) (1083)

98% 121 85 2415
(2793) 1299) (6400)

100% 156 99 2678
(4718) (2124) (10244)

A computational comparison of two implementations of the best subset algorithm

for the Chebychev norm with three percentages of optimality guaranteed is

given. The upper entry in each cell is the CPU time in seconds and the lower

entry is the number of iterations. All problems had the value of n set at

300.



-17-

TABLE 3

m =15 m =20

Smallest First Smallest First
Penalty Penalty Penalty Penalty

k = 5 130 90.3 DNR DNR
(5205) (2285)

k = 10 36.1 25 DNR 2678
(1391) (660) (10244)

k = 15 .28 .28 201 174
(35) (35) (96) (452)

DNR = Did Not Run

A computational comparison of two implementations of the best subset algorithm

for the Chebychev norm with three minimum set sizes is given. The upper entry

in each cell is CPU time in seconds and the lower entry is number of itera-

tions. All problems had the value of n set at 300 and 100% of optimality

guaranteed.
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TABLE 4

n = 200 n - 300
Smallest First Smallest First
Penalty Penalty L1LU Penalty Penalty LILU

m = 10 2.42 2.23 7.11 4.12 3.44 10.23
(154) (186) (3410) (218) (251) (3987)

m = 15 104 79 145 156 99 308
(2921) (1504) (13515) (4718) (2124) (69271)

An algorithm for the best subset least absolute value problem is compared

against an algorithm for the best subset Chebychev norm problem. The upper

entry in each cell is mean CPU time and the lower entry is mean number of

iterations. Three problems were solved when m equaled 10 and a in-l.e problem

when m equals 15. All solutions had 100% of optimality was guaranteed.



- 19-

REFERENCES

1. G. Apa and C. Smith, On L1 and Chebychev Estimation, Mathematical Program-
ming 5, 1973, 73-87.

2. Armstrong, R.D., E.L. Frome and M.G. Sklar, "Linear Programming in Explor-
atory Data Analysis," Journal of Educational Statistics, 1980, Vol. 5, No.
4, 293k-307.

3. Armstrong, R.D. and D.S. Kung, "Min-Max Estimates for a Linear Multiple
Regression Problem," Applied Statistics, Vol. 28, No. 1 (1979), pp. 93-
100.

4. R.D. Armstrong and D.S. Kung, A Dual Method for Discrete Chebychev Curve
Fitting, Mathematical ProgramminS 19, 1980, 186-199.

5. Armstrong, R.D. and M.T. Kung, "An Algorithm to Select the Best Subset for

a Least Absolute Value Regression Problem," Center for Cybernetic Studies
Report No. 396, May 1981.

6. R.H. Bartels and G.H. Golub, The Simplex Method of Linear Programming

Using LU Decomposition. Communications of the ACM 12, 1969, 266-268.

7. Dielman, T. and R. Pfaffenberger, "LAY (Least Absolute Value) Estimation

in Linear Regression: A Review," Optimization in Statistics Volume, TIMS
Studies of the Management Sciences to appear.

8. Draper, N.R. and H. Smith, Applied Regression Analysis, (1966) New York,
John Wiley and Sons, Inc.

9. Gauthier, J.M. and G. Ribiere," Experiments in Mixed-Integer Linear Pro-
gramming Using Pseudo-costs," Mathematical Programming, Vol. 12 (1977),
26-47 .

10. Gentle, J.E., "Least Absolute Values Estimation: An Introduction," Com-
munications in Statistics, Simulation and Computation, 1977, B6 (4), 313-
328.

11. Kennedy, W.J. and J.E. Gentle (1980) Statistical Computing, New York,
Marcel Dekker.

12. Narulo, S. and J.F. Wellington, "Selection of Variables in Linear Regres-
sion Using the Minimum Sum of Weighted Absolute Errors Criterion," Techno-
metrics, Vol. 21, (1979), 299-306.

13. P. Rabinowitz, Application of Linear Programming to Numberical Analysis,

SIAM REV 10, 1968, 121-159.

i

~ma*_J



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When, Des Entere)___________________

REPORT DOCUMENTATION4 PAGE BEF SETRMPTINFORM
I REPOR NUM2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4 TILE (nd ubstle)S. TYPE OF REPORT A PERIOD COVERED

Curve Fitting Criterion. 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(@) I. CONTRACT OR GRANT NUMBER(s)

R. Armstrong and P. Beck N00014-75-C-0569

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT NUMBERS

Center for Cybernetic Studies, UT Austin
Austin, Texas 78712

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

September 1981
Office of Naval Research (Code 434) 13. NUMBER OF PAGES

Washington, 0. C. 21
4. MONITORING AGENCY NAME & AOORIESS(It different from, Contraoind Office) Is. SECURITY CLASS. (of tid. report)

Unclassified

1541. OECL ASSI FIC ATION/ OWNGRADING
SCHNED ULE

16. DISTRIBUTION STATEMENT (of tis Report)

This document has been approved for public release and sale; its distri-
bution is unlimited.

17. DISTRIBUTION STATEMENT (of thle abstrt en tered In Block 20, it differt froit Report)

III. SUPPLEMENTARY NOTES

It. KEY WORDS (Contiue an reverse fd.t if neeeeemry and IdonfIl' by block Rmmb er)

Least absolute value, regression, linear programming, best subset.J

20. ABSTRACT (Centile en eoverse old* It necee.e and identify bpr block mniber)

The Chebychev (also Minimax and L-o Norm) criterion has been widely

studied as a method for curve fitting. Published computer codes are '
available to obtain the optimal parameter estimates to fit a linear
function to a set of given points under the Chebychev criterion. The
purpose of this paper is to study procedures for obtaining the best
subset of k parameters from a given set of m parameters where k is less-
than-or-equal-to m.

D0 1 1473 90708O OV 011OR Unclassified
SECURITY CLASSIFICAION OF TNIG PAGE (Wheal Ge IISIP


