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SECTION 1
INTRODUCTION

Coded satellite communication links usually operate under benign
channel conditions, but occasionally transionospheric propagation effects
disturt the received signal significantly, causing a phenomenon called
fading. Links that are jointly optimized for minimum link complexity and
benign channel error correction performance are generally unsuited for
fading channel conditions. To mitigate the effects of fading, diversity
techniques are often added to the benign-channel-optimized receiver. In
particular, temporal diversity is introduced by interleaving coded
symbols. Though frequency and spatial diversity techniques may also be
applicable to the channels of interest, here we shall center attention on
time diversity via interleaving with error correction coding.

Coded satellite communication links utilizing interleaving are
generally non-optimal for all anticipated fading channels and usually
inadequate for some. The key parameters characterizing the fading
channel are mean Ep/Ng, bit energy to noise-spectral-density level,
and 15, the complex electric field decorrelation time. The cost of a
satellite link capable of satisfactory operation over the expected range
of signal fading conditions can be high because of received power require-
ments and complex interleaving and coding implementations.
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The issue of this preliminary work is the feasibility of a few
concatenated coding techniques utilizing temporal diversity that amelio-
rate fading effects. A second consideration is the digital processing
and hardware requirements of these concatenated schemes. A final objec-
tive is to use the results of this work to identify new coding schemes
that merit future consideration.

As with previous analyses in demodulation and coding theory done
by MRC, we rely heavily on detailed computer simulation in this work.
Based upon previous studies in nuclear phenomenology, we characterize a
typical disturbed ionosphere and specify realistic parameters with which
to generate unmodulated sampled-data realizations of baseband received
signals via a multiple phase screen (MPS) simulation program. These
signal realizations completely represent the propagation channel and are
used directly by computer programs that simulate link receivers and post-
demodulator signal processdrs in detail. Our approach here is to imple-
ment several coding schemes into the post-demodulator signal processors
to quantify their impact on link performance.

Section 2 presents an overview of several topics related to
digital communications via satellites. Section 3 documents the verifica-
tion of a concatenated scheme employing soft decision interfacing (SDI) of
the inner and outer codes. Section 4 covers a study of quantization
effects in the context of a concatenated scheme where the inner code is
channel symbol repetition. Section 5 describes an advanced concatenated
scheme that promises satisfactory error correction strength and a rela-
tively simple implementation.
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SECTION 2
BACKGROUND MATERIAL

Figure 1 shows a block diagram of a one-way communication link
that has a provision for correcting transmission errors. The link is
viewed as an error correction encoding/decoding scheme nested about a
discrete channel. Throughout this report, the discrete channel is taken
as the signal path originating at the transmitter terminal modulator and
terminating at the receiver demodulator. Message conditioning and
message estimation functions of Figure 1 are indicative of some error
correction scheme. Two basic schemes of interest here are the non-con-
catenated and concatenated structures shown in Figures 2 and 3, respec-
tively. Sections 3, 4 and 5 of this report document three separate, but
not disjoint, investigations of concatenated codes. To reduce repetition
in these subsequent sections, the discussion of all material common to
these sections is given here. Also a standard nomenclature and notation
is established to further unify the report. The first part of this
section will center on error correction. A discussion contrasting stand-
ard concatenation with SDI concatenation is followed by descriptions of
important 1link components such as quantizers, encoders, soft decision
decoders, interleavers and deinterleavers. Next we detail our approach to
lTink simulation. The section ends with a discussion of the discrete
channel.

The important aspects of this report are found in the three sec-

tions to follow. No one of these sections is dependent upon the whole of
this section. Hence we recommend that the reader briefly glance over this
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section upon first encounter. One may later refer back to this section
for background information as needed.

2.1 STANDARD VERSUS SOFT DECISION INTERFACEN
CONCATENATED CODING

Figure 3 shows a general concatenated coding scheme. Two nested
error correction encoder/decoder pairs are shown, but in principle addi-
tional encoder/decoder pairs could be nested. In practice, however, two
codes are usually used and either or both of the interleaver/deinterieaver
pairs may be eliminated. Concatenated codes are a general solution to the
coding problem. Forney (Reference 1) has shown that for the binary sym-
metric channel of capacity greater than R, there exists a standard
concatenated code of at least rate R that can attain an arbitrarily small
decoded bit error rate. Concatenated codes are often superior to
non-concatenated codes in terms of implementation requirements.

In a standard concatenated scheme, the inner decoder outputs a
binary (i.e., hardlimited) data stream, even though the inner decoder may
use channel reliability information to generate these hardlimited out-
puts. The distinction between hard and soft decision processing will be
discussed in Section 2.5. At this point suffice it to say that a key
ramification of the hardlimited nature of the inner decoder output symbols
is that the outer decoder treats all of its input symbols equally. For
stationary hardlimited input symbol statistics, the outer decoder can be
well characterized by an input/output error rate curve. Given some 1link
error rate specification, the outer decoder input/output rate characteris-
tic provides a well defined specification with which to choose or design
the inner code.
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Soft decision interfacing (SDI) refers to the generation of
reliability measures of the inner decoder outputs for use by the outer
decoder. In effect the outer decoder deemphasizes unreliable input
symbols and generally has a more favorable input/output error rate charac-
teristic than would the outer decoder of a standard concatenated scheme.
Hence the specification of the inner decoder symbol error rate can be
somewhat relaxed provided the inner decoder generates high-fidelity output
symbol reliabilty estimates. We will use the termm "soft symbol" to indi-
cate a multi-bit word representing not only the (binary) value of the
symbol but also the reliability of that value. SDI is then the passing of

soft symbols from an inner decoder to an outer one (perhaps through a

deinterleaver). The potential utility of SDI results from the fact that
the 1mp1ementat1on complexity and cost of a standard concatenated coding
scheme may far exceed that of a comparably performing, but algebraically
weaker, SDI scheme.

2.2 QUANTIZERS

Though not explicitly shown in Figures 2 or 3, quantizers are
important components of modern digital receivers. In a digital communica-
tion receiver, the received analog signal must be sampled in time and
digitized in amplitude prior to digital processing. This conversion
typically occurs at the I and Q (in-phase and quadrature) channels of the
quadricorrelator, but may instead occur at the output of an analog demod-
ulator. This digital conversion may or may not be the quantizer of inter-
est here. If the signal amplitudes are digitized with several bits of
resolution and with proper choice of overload point, then the quantization
error will be negligible when compared to the effects of other sources of
distortion or noise. In the limiting case of one-bit resolution (hence-
forth termed "hardlimiting"), the quantized symbols are just the received
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binary code symbols, If not hardlimited, the additional bits are a mea-
sure of the reliability of each symbol. For SDI concatenation, the relia-
bility outputs of the inner decoder (which will be discussed explicitly in
Section 3) can be viewed as continuous-amplitude bipolar values which must
be digitized prior to deinterleaving. Hence, quantization effects ‘of
interest usually occur just prior to both deinterleavers of Figure 3.b and
just before the one deinterleaver of Figure 2.b.

Figure 4 shows two typical quantizer input/output characteris-
tics which are appropriate for input signals with probability densities
exhibiting even symmetry about the origin. These quantizers are complete-
ly specified by the positive decision boundary values. If there are 8
strictly positive decision boundaries, a midtread quantizer (Figure 4.a)
has 2B decision boundaries and 2B+l possible output values, while a mid-
riser quantizer (Figure 4.b) has 2B+1 decision boundaries and 2B+2 possi-
ble output values. Obviously a midriser quantizer has a zero-valued
decision boundary and a midtread quantizer does not. Figure 5 shows the
quantizer error as a function of input value for the midtread quantizer.

Quantizers decrease signal information content and hence are
properly viewed as noise or error sources. There are two types of quanti-
zation error: "granular" error due to non-zero step sizes and "overload"
error due to limited dynamic range. Unlike thermal noise, the quantiza-
tion error and input signal are not independent. However, for small step
sizes relative to signal dynamic range and at least moderately uncorrelat-
ed successive input samples, the granular quantization error is approxi-
mately uncorrelated with the input symbols and is uniformly distributed if
the decision boundaries are equally spaced. Overload noise is highly
correlated with the input signal and as such has a probability density
function that is related to the input density.
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The choice for the number of quantization levels (or alternately
the number of bits of resolution) is a compromize of two opposing goals.
On the one hand, minimization of g, the number of bits representing each
symbol, is desirable because the interleaver storage increases linearly
with 2d. On the other hand, the number of reliability levels is limited
to 291 since the polarity bit is taken as the decoded symbol. Thus a
large value of q is desirable to adequately distinguish symbols with sig-
nificantly different reliability measurements. With the exception of
Section 5, we restrict our attention to three-bit symmetric midriser quan-
tizers for which seven decision boundaries and eight output symbol values
(henceforth called "weights") must be assigned. Even with complete
knowledge of input statistics, there is no known tractable analytic
procedure by which to simultaneously choose the decision boundaries and
weights to minimize the quantization error for q > 1, and one must resort
to numerical search algorithms. In this work, the input statistics are
generally considered to be non-stationary and even the numerical methods
will not work.

For non-stationary input statistics, either robust (i.e., com-
panding) or adaptive quantization schemes (both discussed by Gersho in
Reference 2) could be utilized. As previously stated, we are primarily
interested in three-bit quantizers, and three bits do not provide suffi-
cient dynamic range and resolution for a practical robust scheme. Adap-
tive schemes must be highly tailored to a particular non-stationary
channel and are outside the scope of this more general study. However,
these two approaches to quantization are potentially very interesting and
may be pursued in future MRC coding studies. In each of the subsequent
sections, quantization is considered from a different perspective. Hencé,
each section will contain a discussion of quantizer-related issues.
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2.3 ERROR CORRECTION CODING

In the following, it shall be assumed that the reader is
acquainted with error correction coding. A nomenclature for consistent
use in subsequent sections of this report shall be established here. For
a detailed introduction to coding theory applied to the digital communica-
tion channel, see References 3 and 4.

There are two classes of error correction codes: block codes and
tree codes. We are only concerned with a small subset of each class.
The block codes of interest are binary, systematic, cyclic codes or simple
modifications thereof (i.e., shortened or parity bit augmented).
Important binary block code parameters are:

k - the information word length (bits)
- the codeword length (bits)
- the code rate = k/n
2k - the number of codewords
dy - the minimum Hamming distance.

The tree codes of interest are binary, time-invariant, convolutional
codes. Important characteristics of these codes are:

the number of input bits per coding iteration
the number of output bits per coding iteration
the code rate = k/n

the constraint length

- the number of contraint lengths of path history stored for
each state

the number of bits of path history stored for each state

2k(K-1) _ the number of nodes (candidate values) for each state;
also the number of paths stored

d¢ - the minimum free distance.

> R ™V 5 Xx
]

=
>~
]
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The commonality in notation is not accidental; in both block and
convolutional codes k is the number of input symbols and n is the number
of output symbols at each encoding iteration. Since block and convolu-
tional codes will both be discussed in this report, when k or n is men-
tioned, the context should indicate whether the reference is to a block or
convolutional code parameter.

Any (n,k;dy) block code can be characterized with a codeword
look-up table which has an entry of n output symbols for each of the 2K
possible sequences of k binary input symbols. Cyclic codes can be much
more concisely represented due to their mathematic structure. Either a
generator polynomial of degree n-k or a parity check polynomial of degree
k completely specifies a systematic cyclic code. Alternately, the
exponents of the generator polynomial roots (usually elements of an exten-
sion field of the polynomial field) may be specified, as in Appendix D of
Reference 3. The minimum Hamming distance, dy, is a figure of merit for
block codes. dy is defined as the smallest bit-wise difference between
any two non-identical codewords.

Any convolutional code can be specified by the parameters n, k
and K and the n modulo-2 adder connection patterns. Unlike block codes,
convolutional codes cannot be straightforwardly constructed. Good codes
are usually found by extensive search procedures on a digital computer.
Short binary convolutional codes that are well suited for the Viterbi de-
coding algorithm are tabulated in Reference 5. The most appropriate
figure of merit for binary convolutional codes used in conjunction with
Viterbi decoding is df, the minimum free distance., df is defined as
the smallest bit-wise difference between any two non-identical, arbitrari-
ly long encoded sequences. The linearity of convolutional codes allows an
equivalent definition: the least possible number of one's in any non-zero
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encoded sequence. df can be used in a general sense to apply to any
coding scheme, such as a "supercode" made up of concatenated codes. The
minimm free distance of a concatenated supercode is not generally equal
to the sum of the minimum free distances of the individual concatenated
codes.

As a last general comment, error correction coding does not
necessarily improve link operation. For high channel symbol error rates,
the decoder often becomes "“confused" and generates more errors than it
corrects. This is a key point for concatenated codes used against fading,
since the inner decoder outputs are always unreliable during a deep fade.
The need for the outer decoder to distinguish between the reliable and un-
reliable code symbols is the basis for interest in SDI concatenation.

2.3.1 Complexity Estimation

Before discussing encoding, decoding, interleaving, and deinter-
leaving implementations, a few words should be said about how the complex-
ity of the different schemes can be estimated. We will only be concerned
with the digital processes of coding and interleaving. Memory and proc-
essing requirements will be considered separately.

The memory requirement will be measured in bits, without regard
to word widths or other architectural features. Only the memory needed
for major arrays of data will be considered; program storage will not be
considered, this being too processor dependent to estimate accurately.

Processing will be estimated in operations-per-second. An
operation will be defined loosely as any process that can be performed by
a single chip microprocessor in one instruction. More specifically: addi-
tion, subtraction, comparison, and conditional branching (binary decision)
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are operations. A fetch or store will be considered an operation only
when it is not associated with an operation mentioned above. An operation
must involve no more than one address; multi-address processes and in-
direct or indexed addressing involve multiple operations. Fortunately
there are no multiplications, divisions, floating-point operations or
other complicated arithmetic to contend with in any of the processes con-
sidered.

The complexity estimates made using these guidelines will pro-
vide a consistent means of comparing the relative costs of implementing

the different schemes to be discussed in later sections.

2.3.2 Encoding

With both block and convolutional codes of interest, encoding is
very straightforward and has little impact on link complexity compared to
decoding, interleaving or deinterleaving. Encoders for short block codes
can be implemented with codeword tables stored in RAM or ROM, while long
block codes are usually implemented with feedback shift registers, parity
bit generators and other Galois field arithmetic circuits. The amount of
storage required for a simple code lookup table is 2K n-bit words. If
codewords are generated with a feedback shift register instead of being
stored in a code table, negligible storage is required; but the required
processing is given by:

S k+m .
Pblock =~ —F— Rg operations/second (1)

where m is the total number of delay line tap connections, and R¢ is the
output symbol rate.

Encoders of convolutional codes are usually implemented with
modulo-2 adders and a tapped delay line without feedback connections. The
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output is the modulo-2 convolution of the binary, possibly semi-infinite,
input sequence with the binary length-K sequence formed by the modulo-2
adder connection pattern of the encoders. A convolutional encoder
similarly requires about

_k+m ;
conv. = —m— Ry operations/second . (2)

p
For detailed information on encoding of cyclic block codes and convolu-
tional codes, see Reference 3.

2.3.3 Soft Decision Decoding

We shall refer to decoders that utilize channel reliability
information as "soft decision" decoders. It is presumed that from the
discrete channel outputs one can generate some measurement of the relia-
bility of each channel symbol. For the ith received symbol, denoted as
rj, one appropriate reliability measurement takes the form of the bit
log likelihood ratio defined as

¢; = log[ Pr(r./0) / Pr(r./1) ] (3)

where Pr(ri/0) is the a posteriori probability of receiving r; when a
"0" is transmitted and Pr(rj/l1) is the same except for transmission of a
"1".  Soft decision decoders utilize not only the polarity of ¢; but
also its suitably quantized magnitude. In contrast, hard decision decod-
ers utilize only the polarity of ¢;. We shall use the convention that
negative values of rj and ¢j correspond to the code symbol 1 and
positive values correspond to 0. Futhermore, r; itself (i.e., the dis-
crete channel output) will be taken as an approximation to ¢j. Hence
the rj contains all information needed by a soft decision decoder and
further, rj is assumed to be in the proper form for direct manipulation
by the soft decision decoder. In subsequent discussions, rj is referred
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to as a "soft symbol" when it is quantized with more than one bit. In the
two subsections to follow, soft decision decoders for block and convolu-
tional codes will be discussed.

2.3.3.1 A soft Decision Decoder for Linear Binary Block Codes

An (n,k) block code has 2k possible codewords and each code-
word is a binary sequence of length n. Let Cjj denote the ith element
of the jth codeword, where i and j are integers ranging from 1 to n and
from 0 to 2K-1, respectively. Let the transmission of some codeword
result in a length n received code vector of discrete channel outputs, the
ith element of which is rj. A brute-force soft decision decoder
correlates each binary sequence with the received code vector. Define
C*ji as -1 when Cjj is 1 and as 1 when Cjj is 0.  Then the
correlation of the jth codeword with the received code vector is

')“ *
A = ) C.s ¢, (4)
J =1 Jr

The output of this soft decision decoder is simply the k bit value of j
for which 1j is a maximum. Amax can then be used as a reliability
metric for the entire block. When Apax is suitably combined with the k
decoded bits from the block, soft symbols are formed which can be used as
inputs to the outer decoder of a nested scheme.

The following operations must be performed in soft decision
block decoding:

1. Input the n soft symbols of the codeword from the demodula-
tor.
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2. Compute the 2k different aj values by summing the
products as indicated in Equation 4. Note that the product

does not really involve a multiply opgration but only a sign
manipu]ation, since the values of C i; are limited to -1
pe

and +1. n2X conditional sign changing rations and
(n-1)2K adds are used.

3. Compare Aj's using 2k-1 operations to find Amax -

4. Select and output the decoded k bits associated with Apax.

The equations below give the total number of operations per
output bit required. Each term in Equation 5 represents one of the
nunbered steps above, while Equation 6 is a simplified approximation.

p _n+ [n2k + (n-1)2k] + (Zk-l) tk g (5)
Block k s
operations/second
or
k+1 _
P =02 "R operations/second |, (6)
Block k 3

where Rg is the output symbol rate.

The code lookup table is the only substantial memory requirement
for the block decoder scheme described above. It requires 2K n-bit
words (Equation 7) just as for the encoder; and, just as for the encoder,
it can be replaced by a feedback shift register if a suitable code is
used,

k .
Matock = M2 bits . (7)
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2.3.3.2 A Soft Decision Decoder for Convolutional Codes,

The Viterbi Algorithm

The Viterbi algorithm is an efficient means of soft decision
decoding convolutional codes. It is assumed the reader is already
familiar with the algorithm, which is well documented (References 6 and
7);, only a brief description is given here to refresh the readers memory
and to indicate the processing operations required.

The processing for a Viterbi decoder must encompass the follow-
ing steps:

1. Shift the n received soft symbols into the decoder.

2. Compute those branch metrics which will be used in forming
path metrics by correlating the soft symbol sequence with
the n-bit reference sequence for each branch. The number of
branch metrics computed is the smaller of 2P or 2kK,
where 2" is the number of different branch codes and 2kK
is the number of branches.

The actual calculation of the branch metrics can be done by
summing the soft symbols if Cji= 0 or their negatives if
Cji= 1. nB operations are required to decide whether to
negate each soft symbol and to do the negation if required,
and (n-1)B operations are used to accumulate them, where
B = min(2",2¢¢) . (8)

3. Compute the 2KK path metrics by adding the appropriate

branch metric to each of the 2k{(K-1) surviving old path

metrics.
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select the most likely of the 2K paths entering each of
the 2k(K~1) nodes by comparing their metrics.

Finally, output the oldest decoded k bits in the path
history memory from a suitable path. The path may be
selected arbitrarily if sufficient path history is provided
since all paths tend to converge, or equal performance may
be obtained with somewhat less path history storage if the
path with the largest metric is selected (Reference 8). For
the present links an arbitrary path was used.

One final step may be necessary. The accumulated path
metrics will increase without bound as time goes by if
something does not prevent them. In some systems, messages
are broken into packets, with path metrics being reinitiali-
zed every packet. With a large enough accumulator there can
never be an overflow. In systems where reinitialization
does not occur frequently, overflow must be prevented by
periodically subtracting the same quantity from all
metrics. This quantity must be smaller than the smallest
metric to avoid negative metrics, yet as large as possible
to avoid having to do metric reduction too often,

In practice all metrics tend to be tightly clustered, so
these objectives are easily met. The frequency of metric
reduction is minimized if the largest metric is located and
checked at each iteration. Then when overflow is imminent,
the smallest metric is located and subtracted from all
metrics. This procedure requires 3x2k(K-1) operations
since there are 2k(K-1) path metrics. A simpler proce-
dure is to check an arbitrary metric each iteration. When
this metric is within &+e of overflow, subtract a constant
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which is less than A-6-¢ from all metrics, where & is the
maximum possible spread between path metrics, e is the
largest possible branch metric, and A is the largest value
the path metric accumulator can store without overflow.
This procedure requires only one third as many operations,
since there are no searches for the largest and smallest
metrics. In either case metric reduction is normally done
so infrequently that its effect on average processing load
is small., Step 6 will be neglected on the assumption that
messages are packetized and the accumulator is large.

From the above description it is easy to obtain an algorithm for
the number of operations per output bit. It is

b _nt Cos(n-1)38 + 2K 4 Koy D 4 9)
Viterbi k S
operations/second,

where Rg is the output symbol rate and B is defined in Equation 8. For
n > kK this can be closely approximated by

n ,1+kK .
P x_. 2 R operations/second, 10
Viterbi &k S P / (10)
or for n2" <« ZkK,
(2 - L2
=2 R operations/second. (11)

P
Viterbi k S

The memory required for Viterbi decoding is the number of nodes
per state, 2K(K-1)  times the number of states of path history, hK,
times the base 2 log of the number of branches per node, logz(zk) = k,
plus the path metric storage, 2k(K-1) words of, say, 16 bits each:

- k(K-1) k(K-1)
Myiterbs = MkK2 + (16)2 bits . (12)
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2.4 INTERLEAVING AND DEINTERLEAVING

Interleaving, in conjunction with coding, is the most cost
effective mitigation against slow fading, wherein try is much longer than
the channel symbol period. Block or convolutional coding without inter-
leaving is effective for moderate error rates if the errors are randomly
distributed in time, i.e., the channel is memoryless. However, bursts of
errors may overwhelm a decoder. Interleaving introduces time diversity
whereby each 1link output symbol is decoded from channel symbols greatly
separated in time. An input to an interleaver appears exactly once as an
outbut. Interleavers and deinterleavers can be characterized by para-
meters n, and n,. An interleaver reorders the data stream so that no
contiguous sequence of n, output symbols contains two symbols separated by
fewer than n, symbols in the input sequence. A deinterleaver unscrambles
the interleaved data stream to produce the original sequence ordering.
The value of n, is determined by the maximum expected fade duration. For
a given value of «t,, n, ideally should exceed toRc, where R. is
the symbol rate. (In practice n, can be somewhat 1less than toR
without greatly affecting decoded error rates.)

The effect of using combined interleaving and coding can be seen
in Figure 6, which plots Ey/N,, the average received energy per infor-
mation bit to noise spectral density ratio required to achieve some
average decoded symbol error rate, versus 1. On the left end of the
curve 1o is so small that received signal coherence over the minimum
modulator signaling interval is lost, resulting in very high channel
symbol error rates. In the central region, where 1o is moderate, the
interleaving/coding combination is effective in correcting errors. As
19 becomes larger a point is reached where t,R. equals n,. As this
point is approached, the symbols are no longer independent and the value
of Ep/N, required to achieve a given error rate increases until the
slow fade 1imit is reached. The resulting smoothed stairstep on the right
half of Figure 6 can be moved right by increasing n2/R..
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The combination of high modulation rates and slow fading rates
sometimes results in impractically large interleaver storage require-
ments. The latter sections of this report focus on a few alternative
coding and interleaving formats that may offer attractive trades of
implementation complexity (particularly interleaver storage) for per-

formance.

The following discussion on the implementation and complexity
will be restricted to synchronous interleavers and deinterleavers (those
in which a symbol is read out each time a symbol is read in). When the
symbol rate is constant and the interleaver and deinterleaver are both
synchronous, the delay due to interleaving and deinterleaving is constant
and will be at least

D > (n;-1) (nz-1) symbols . (13)

This sets a lower bound on the sum of the interleaver memory plus dein-
terleaver memory, and D/2 symbols is the minimum storage required for
either the interleaver or deinterleaver alone.

Ramsey, in Reference 9, discusses four types of synchronous
interleavers and deinter’eavers which are used throughout this report.
Type II1 is shown in Figure 7; the other types differ only in the rotation
direction of the rotary tap-selector switch and the orientation of the
rotary switch to the shift register. Each type has a different range of
relative values of n, and n, over which it is optimal in the sense of
using least memory (e.g., a Type III (n,,n;) is optimal for 2n, < n;).
However, the penalty for using a nonoptimal interleaver is small - for
example: (n;+1)(n,-1) quantized symbols of storage are required for Type
IT1 versus ny(n,-1) for Type I. There are relative values of n; and n, for
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which a given type cannot be used: all types have relative primeness
requirements between n; and n,, and ny must be less than n; for Type I and
n; less than n, for Type II. Each of the four interleavers is identical
to a deinterleaver of a different type with the values of n; and n,
reversed. For example, a Type III (7,4) interleaver is identical to a
Type IV (4,7) deinterleaver. All these details are given in Tables 1 and
2. Interleaver and deinterleaver must match in ny, n, and type for proper
operation.

The equal subregister synchronous interleaver shown in Figure 7
requires one-half the memory of the classical write-rows-read-columns
block interleaver, which must be configured as a ping-pong double buffer
to achieve synchronous operation. It is possible to modify the syn-
chronous interleaver of Figure 7 to reduce the memory size by an addi-
tional factor of two. In Figure 7, all subregisters are right shifted one
position and the rotary switch is advanced one tap on each clock pulse.
Note that after a symbol 1is read out, it is unnecessarily retained in
memory. On the average, the symbols are stored twice as long as neces-
sary.

Figure 8 shows an implementation of a Type III interleaver that
does not retain symbols in memory longer than necessary and, hence,
requires half as much memory. Only the subregisters preceding the tap
currently selected are shifted on any given clock pulse, and the length of
the subregisters decreases toward the right. A similar scheme is used for
the interleaver types which have the rotary switch on their input, but the
shorter subregisters are on the left, and only subregisters following the
selected tap are shifted. This reduced storage implementation is dis-
cussed in Reference 9 and is henceforth termed the "tapered subregister"
implementation. Its storage requirements very nearly satisfy the lower
bound of Equation 13.
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Figure 8. Type 111 tapered subregister interleaver (n,=4, ny=7}.
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While interleavers may be built using actual hardware shift
registers, a random access memory (RAM) implementation is generally pref-
erable because RAM's of a given size are cheaper, lighter, more compact,
and use less power than shift registers. In a RAM implementation, point-
ers are used to access the taps. For the equal subregister scheme a
single pointer can be used to access all taps, but when tapered subreg-
isters are used, separate pointers must be maintained and independently
decremented for each tap, which thereby increases the processing

complexity.

The memory requirements for interleavers with equal subregisters
are presented in Table 1, and the deinterleaver requirements are presented
in Table 2. The four types have slightly different RAM storage require-
ments, but each can be approximated by

Mequal = nynyw  bits (14)

where w is the number of bits per quantized (soft) symbol. If the tapered

register implementation is used, half the memory is required:

L nynow .
Mtapered == bits . (15)

The digital processing requirements for a Type III interleaver
with equal subregisters are given in Table 3. The operations shown uti-
lize the optional extra symbol storage shown in broken lines in Figure 7.
Addresses and tap numbers advance from right to left following Ramsey
(Reference 9). The processing complexity for an interleaver or deinter-
Teaver with equal subregisters is

Peq = 8R. operations/second (16)
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where Rg is the interleaver's input/output symbol rate processed by
the interleaver in symbols/second. Note that the processing load is a
function of the symbol rate only, and in particular it is not a function
of ny; or n, when the equal subregister implementation is used.

Such is not the case if the tapered subregister implementation
is used. As previously stated, each subregister must be shifted individu-
ally, implying separate pointers for each subregister and the actual move-
ment of the right-most symbol of one subregister into the left-most
position of the next (right) subregister. Table 4 shows the operations
performed. Note that there is an inner loop (operations 4 thru 12a)
repeated for shifting each subregister, and an outer loop (operations 1
thru 14a) repeated once per symbol output. Operations 14b thru 16b are
performed in the special case where the next symbol for output is the one
that has just been input. The number of operations for outputting this
symbol is only 3, but in general many more operations are required for
each symbol. In the worst case, where the output tap is number zero, all
of the subregisters must be shifted, and the inner loop must be executed
once per subregister shifted. The number of subregisters is approximately
ny for Types 11 and IV, and n, for Types I and III. To minimize process-
ing, then, Type I or IIl should be chosen if n; is greater than n,; other-
wise Type Il or IV should be used. Tables 1 and 2 give the relative
ranges of n; and n, for which Types IIl and IV require least processing of
any type. (Type I will always require a bit more processing than Type
11T, and Type II will always require a bit more than Type IV.)

The algorithm for computing the processing load for a tapered
subregister interleaver or deinterleaver, based on the operations in

Table 4, is
S+l ]

2+ S[5 +(8 + 3)(__-
L2 R  operations/second (17)
s

P =
tapered (avg) S+1
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or approximately

Ptapered (avg) = (5+4S)RS operations/second, (18)

where S is the number of subregisters, L/2 is the average length of
the subregisters and Rg is the symbol rate. For real-time processing
such as this, it is generally the peak processing requirement that drives
the complexity of the processor and

ptapered(peak) = (5+9$)RS operations/second. (19)

It is the peak processing that will be referenced in following sections.
While the algorithms in Tables 3 and 4 apply to Type III interleavers (or
Type IV deinterleavers), the algorithms for the other types differ only in
details; the number of operations remains the same. Only those operations
which must be repeated for every processed symbol are shown; initializa-
tion operations, since they are done only once, are not shown.

2.5 SIMULATION APPROACH

Figure 9 is a diagram of the structure of all link simulations
used in this work. As shown, each satellite link simulation was performed
in three simulation stages: (1) multiple phase screen propagation simula-
tion; (2) receiver simulation; and (3) error correction coding
simulation. Notice that two programs are used to model the discrete
channel and one is used to model the error correction scheme.

Partitioning the link simulation into three distinct programs
very significantly reduces the amount of computer time required to execute
the simulation. For instance, with the partitioned structure, the
sensitivity of link performance to a particular code parameter (i.e., the
quantizer dynamic range) can be studied by executing only the error cor-
rection scheme program for several values of that parameter. To make this
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Figure 9. Block diagram of link simulation structure.




study with a non-partitioned structure would require regeneration of iden-
tical discrete channel data for each parameter value evaluated. The same
reasoning motivates the partitioning of the discrete channel into two pro-
grams. Indeed, only one MPS realization was used to generate all results
in this report, but several transmitter/receiver runs were made with
different values of Vafe and Ep/Ng. Hence the MPS data was only
generated once, but was used several times.

2.6 THE DISCRETE CHANNEL

The discrete channel is the signal flow path from the input of
the modulator in the transmitting terminal to the output of the demodula-
tor in the receiving terminal. The discrete channel of interest here
takes discrete-time binary inputs and generates discrete-time, continuous
amplitude outputs. As discussed above, the discrete channel is simulated
with two distinct models, which are discussed separately below.

2.6.1 Multiple Phase-Screen Propagation Simulation

The MPS propagation model has been used extensively by MRC and
others to simulate electromagnetic propagation through disturbed media
(References 10 through 13). Signal energy transmitted from a satellite to
a ground station in the presence of large, spatially extended regions of
high-altitude, nuclear-burst-produced striations of electron density can
be modeled as propagation through a thick medium composed of random
index-ofrefraction fluctuations. Since no general analytical solution is
available for this type of problem, it must be handled numerically. The
MPS model is an analytical/numerical technique which provides a numerical
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solution for the propagation of a plane wave through a disturbed iono-
sphere. By modeling the ionosphere as a series of random phase screens
with a power-law power spectral density, the MPS model simulates the prop-
agation of electromagnetic waves through statistically chosen realizations
of the random medium.

The MPS propagation model represents the disturbed region by a
number of phase-screens located in the disturbed region between the satel-
lite and the receiver. Random phase fluctuations in each screen are
generated using the statistical properties of the electron-density fluctu-
ations as determined by the electron-density power spectral density. A
wave (initially plane as it enters the disturbed region) is then propa-
gated numerically from one screen to the next by use of the Fresnel-
Kirchhoff integral equation until a solution is obtained for the complex
electric field in the receiver plane. This technique is equivalent to a
solution of the parabolic wave equation and is thus able to account for
multiple scattering. Since the phase-screens are random, the signal prop-
agated to the receiver is random and, if desired, statistics may be
obtained by averaging a number of different simulations, each based on a
different sequence of random numbers.

Parameters specifying the scattering region geometry, the sta-
tistical variation of scattering region jrregularities and various model-
119 options are taken as input by the MPS simulation. Detailed discus-
sions of the MPS simulation parameter set can be found in References 10,
14 and 15. The values of these parameters used here were chosen to model
the earth's ionosphere in a saturated electron density condition and are
tabulated below:
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N » T - -

number of phase screens 10
number of complex samples

per realization 16384
analytic form of Power Spectral Density Power Law
RMS phase fluctuation 300 radians
carrier frequency 7.5 GHz
grid length 30 km
outer scale size 3 km
inner scale size 10 m
scattering region thickness 14000 km
receiver-to-region center distance 8000 km

The MPS simulation results consist of realizations of electric
field amplitude and phase as measured at the receiver input. Plots of the
amplitude and phase fluctuations for the MPS realization used throughout
this work are shown in Figures 10 and 11. Important measured statistics
of this realization are

S4 scintillation index 1.00
skewness 2.04
excess 6.39

These parameters correspond very closely to a Rayleigh fading
condition. A general discussion of the above statistical parameters and
their consequence on the discrete channel can be found in References 16
and 17.

The MPS propagation simulation results consist of realizations
of the electric field amplitude and phase as measured at the receiver
input. The signal scintillation correlation distance, %, is defined as
the e-! point on the spatial autocorrelation function of the complex
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signal in the receiver plane. A theoretical treatment of the spatial |
autocorrelation of the complex signal is found in Reference 18. The MPS ‘
data are co-linear, uniformly spaced samples separated by aX. A conver-
sion to the time domain 1is made through an effective velocity, Veff,
which is a weighted average of the component of the relative velocity
between the propagation path and striated medium in a direction normal to
the path and normal to the field-aligned striation axes. Thus this effec-
tive velocity is a function of many system and environmental parameters.
These include satellite and airborne terminal velocities, plasma veloci-
ties, orientation of the geomagnetic field and propagation path geometry.

The signal scintillation decorrelation time, denoted as 1q,
and the time sample spacing, denoted by AT, are related to %, and aX by

L
1 = —9_ seconds (20)
O Veff
AT = AKX seconds (21)
Verf

i : A reasonable range of effective velocities to consider is from a
few tens of meters per second to around 1000 m/s. When scintillation is
intense, signal correlation distances at UHF range from around 100 to 200
meters down to around 1 meter. Thus the likely range of signal decorrel-
ation times, ty, is from around 1 millisecond to about 10 seconds. The
decorrelation distance, %5, is measured to be 6.4 m. The realization of
Figures 10 and 11 was used to simulate the fading channel at two values of
1o by varying Veff. By Equation 20, 1p's of 0.1 and 1.0 seconds are
attained with values of Vgg¢s Of 6.4 and 64., respectively. These values
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of 1y were chosen to test link performance just inside and just outside
the interleaver's slow fading break pgint.

2.6.2 Modem Simulation

The second part of the discrete channel model }s performed by
the Modem (Modulation/Demodulatien) simulation.  The Modem simulation
incorporates models of direct sequence PNSS code tracking loop, binary
DPSK demodulation, frequency tracking and automatic gain control. A
comprehensive treatment of these models can be found in Reference 19, and
only two additional comments need be added here. First, the simulated
channel has no frequency selectivity, and hence no gain results from the
spread spectrum function. In fact, the error in the simulated code
tracking loop results in a net loss. Second, the data file created by the
Modem simulation for use by the error correction scheme simulations must
be free of modulation, since each scheme must superimpose its own encoded
modulation onto the received signal data. However, to get realistic
frequency tracking performance, random channel symbols need to be
modulated onto the carrier. This dilemma is solved by performing the
Modem simulation with an arbitrary encoded message and then stripping the
modulation off the received signal data just prior to writing it to the
received data file. This is easily done due to the simple correspondence
between the phase of the modulation and the polarity of the demodulator
output. The modulation is stripped from the demodulator outputs by simply
negating all output values associated with the transmission of the encoded
binary symbol "l1." This resuit is equivalent to the transmission of the
all zero message, but with the frequency tracking error of a random
message. Pertinent receiver parameters are listed below:
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Receiver Design Parameters

carrier frequency

pseudo noise code chip rate
channel bit rate

A/D sampling rate

I.F. bandwidth

AGC Paramcters

charging time constant
discharging time constant
maximum voltage gain
minimum voltage gain

loop feedback gain
detector type

PN Code Tracking Loop Parameters

bandwidth
damping factor
order
iteration rate
doppler aiding
configuration

7.5 GHz
40 Mbits/s
600 Hz
600 Hz
600 Hz

10 s

10 s

50

0.02

40
envelope

0.5 Hz
0.707

2

37.5 Hz
none

tau dither

Runs of the receiver stage simulation were made at various

values of Ep/Ng for both values of 4.

utilizing frequency diversity.
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Since the simulated propaga-
tion media do not exhibit frequency selective effects, the de-spreader can
be viewed as a simple loss in Ey/Ny. Table 5 tabulates all utilized
values of Ep/Ny before and after the code tracking loop for both

values of 1o, allowing the results to be generalized to a channel not
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Table 5. Correspondence of Eyp/Ng at input and output eof
code tracking loop for all simulation runs

Before Despreader After Despreader Channel Symbol
T Eb/No ES/No Eb/N0 ES/N0 Error Rate
{s) (dB) (dB) (daB) (dB) (percent)
0.1 7.81 -1.22 6.48 -2.55 32.12
0.1 8.81 -0.22 7.65 -1.38 28.93
0.1 9.01 -0.02 7.86 -1.17 28.17
0.1 9.71 0.68 8.60 -0.43 26.29
0.1 9.80 0.77 8.73 -0.30 25.75
0.1 10.90 1.86 9.86 -0.83 22.52
1.0 12.00 2.97 10.97 1.94 19.19
1.0 14.00 4.97 13.03 4.00 13.72
1.0 16.00 6.97 15.06 6.03 9.37

We hasten to point out that the conventional DPSK modem used
here is designed solely to provide binary output decision information and
not the bit log-likelihood ratios ideally suited to the soft decision
decoders. OQOur use of the conventional DPSK demodulator confuses the issue
somewhat because of the “mismatch" between the demodulator and decoders.
The conventional DPSK modem does have the desirable characteristic that
the more reliable output symbols tend to have a larger magnitude, but it
is quite possible that the performance of the error correction schemes
could be significantly improved if the demodulators could provide actual
bit log-iikelihood ratios. More importantly, the simulation-aided inter-
face between the demodulator and the decoders may bias the comparisons of
coding schemes described and evaluated in this report, due to differing
sensitivities of the various codes to the mismatch. A demodulator that
does provide actual bit log~likelihood ratios has been developed for M-ary
FSK modems operating under fading conditions by Barrett (Reference 20),
and work on a similar DPSK modem is currently being done at MRC. We anti-
cipate that future coding studies involving modem simulations will utilize
these advanced modem designs to eliminate the demodulator-to-decoder
interface issue.
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SECTION 3

SDI CONCATENATION PERFORMANCE
VERIFICATION STUDY

This section documents a viability study of SDI concatenation as
a coding technique against scintillation effects. Estimates of the
implementation complexity of coding and interleaving were given in Section
2. Those estimates indicate that SDI concatenated coding schemes that do
not interleave channel symbols are often simpler to implement than
nonconcatenated schemes that do interleave channel symbols. This is
particularly true for channels where fade durations are orders of
magnitude larger than the channel symbol modulation interval. However,
the error correction strength of such SDI concatenated schemes relative to
non-concatenated schemes had not been quantified. To this end, two
detailed satellite-to-ground link simulations, termed the "baseline link"
and the "concatenated link," were constructed. The propagation path of
these two 1links passes though a simulated region of a highly disturbed
ionosphere. The concatenated 1link uses SDI concatenation with
interleaving between the inner and outer error correction codes. The
baseline 1link uses convolutional encoding, interleaving and Viterbi
soft-decision decoding. Detailed descriptions of the error correction
schemes of the two links will be presented first, followed by a discussion
of the relative impiementation complexity of these functions. Next will
come a discussion of the details concerning the simulation .f the error
correction schemes. Finally, results showing the relative performance of
the two coding schemes shall be presented and interpreted.
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3.1 ERROR CORRECTION SCHEMES FOR THE TWO LINKS

The baseline 1link uses the non-concatenated error correction
coding scheme shown in Figure 12. The quantizer, labeled Q in Figure 12,
operates directly on the discrete channel outputs. This channel symbo!
quantizer uses uniform decision boundary spacings and generates three-bit
outputs. The decision boundaries, like the a priori discrete channel out-
put probability densities, are symmetric about zero. The decision bound-
aries fall at 0%, 25%, 50% and 75% of the discrete channel output that
would occur for noiseless operation under benign channel conditions.

The three-bit quantized channel symbols are next deinterleaved
with a -Type IV (99,61) synchronous deinterleaver. Then reliability
weights are assigned to the deinterleaved symbols. For this scheme, the
integer values of the three-bit output symbols are good choices for the
reliability weights, and hence the W function shown in Figure 12 is
actually very trivial. Finally, decoding is performed. The convolutional
error correction code has constraint length 7, rate 1/8 and minimum free
distance 40. The modulo-2 adder connection pattern is 135 135 147 163 135
135 147 163 (octal). This modulo-2 adder connection pattern is simply two
replications of that of the outer code of the concatenated link. The
associated soft decision Viterbi decoder retains 31 bits of path history
for each state.

As the name suggests, the concatenated 1ink uses a concatenated
error correction scheme as shown in Figure 13. This is similiar to the
general concatenated code shown in Figure 3 of Section 2, except the
innermost interleaver/deinterleaver pair is eliminated to reduce link com-
plexity. The discrete channel output symbols are digitized to several
bits of resolution and, unlike the baseline scheme, the quantization error
of the discrete channel quantizer can be neglected. These highly resolved
digitizea symbols are processed by the inner decoder. The inner code is a
binary (16,8;5) block code formed by shortening the (17,9;5) cyclic code
found in Appendix D of Reference 3. The soft decision inner decoder is
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the brute force correlative implementation described in Section 2 with the
additional capability of generating a reliability measure for each of the
k decoded output bits. These reliabilty measures are formed as follows:
Let Ao be the largest correlation generated by the decoding algorithm of
Section 2 and let m be the index of the codeword associated with );.
For 0 < i < k, let Aj be the largest correlation between the input dis-
crete channel sequence and all codewords with indices that differ from m
in the ith bit. Then the reliability value for the it output bit is
taken to be Ay - Ay.

The reliability values are quantized to three bits prior to
deinterleaving. It was discovered early in this work that the uniform
quantizer decision boundary spacings used by the baseline scheme are
unsuited for three-bit quantization of the inner decoder reliability
values. This unanticipated difficulty was temporarily resolved by using
the following ad hoc rule to choose nonuniformly spaced decision boun-
daries: Select the boundaries to make the occurrence of the four possible
correct quantization levels of the output soft symbols equally likely.
ihen the proper weighting of each quantized symbol is chosen as the bit
'ng-likelihood ratio as discussed in Section 2. This rule works well but
requires knowledge of the inner decoder reliability measure probability
distribution, and hence could not readily be used on an actual 1link
because the quantizer would have to adapt to dynamic channel conditions.
However, the issue at hand is if the concatenated codes are comparable in
performance to non-concatenated codes, and this technique allowed us to
carry on with the validation of the performance strength of the
concatenated scheme. An advanced SDI concatenated scheme with less
sensitivity to quantization threshold spacing will be discussed in Section
5.
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Next the quantized inner decoder outputs are deinterleaved. OQur
intent was to use a Type IV (49,61) interleaver to get a slow fading rate
break point of about 1/6 second, nearly identical to that of the baseline

link. A subtle programming error, not discovered until after this task
was complete, resulted in a Type III (61,49) interleaver actually being
modeled. This interleaver has a slow fading break point at 1/5 second
instead of the desired 1/6 second, and hence the erroneously used Type III
(61,49) interleaver exhibits only slightly different output tatistics
thar those desired. Thus the results are not seriously affected.

The deinterleaved symbols weighted by their bit log-likelihood
ratios are next processed by the outer decoder. This rate 1/4 constraint
length 7 convolutional outer code has a modulo-2 adder connection pattern
of 135 135 147 163 (octal). Like the decoder of the baseline link, the
outer soft decision Viterbi decoder of the concatenated link retains 31
bits of path history per state.

3.2 RELATIVE IMPLEMENTATION COMPLEXITY OF THE TWO LINKS

Hardware of a given complexity in the satellite segment of a
link costs a great deal more than it does in the ground segment due to:
high reliability requirements; extreme environmental conditions; and the
cost of placing hardware in orbit. At least partly offsetting tiiiz i< the
fact that there may be many more ground receivers than there are satel-
lites, and the ground units too may have to be designed for severe envi-
ronmental conditions. For this reason the satellite and ground portions
of the link will be considered separately for complexity (and hence cost)
comparisions.
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Table 6. Satellite segment complexity of the baseline
and concatenated links.

Memory Processing
Parameters Equation  Value Equation Value
(kbits) (k-ops/s)

BASEL INE

Convolutional k=1, m=40, n=3, Rs=600 nil {2) 3.1
Encoder

Interleaver, n =99, n =61, Rg=600 Table 1 6.0 (16) 4.8
Equal Subreg. q=1, Type IV

Interleaver, n,=99, ny=61, Rg=600, S=60,| Table 1 3.0 (19) 327.0
Tapered Subreg. q=1, Type [V
BASELINE TQTALS

Equal Subreg. 6.0 7.9
Tapered Subreg. 3.0 330.1
CONCATENATED

Convolutional k=1, m=20, n=4, Rs=300 nit { 2) 1.6
Encoder

Interleaver, ny=43, n =61, Rg=300 Table 1 3.0 (16) 4.8
Equal Subregq. q*1, Type IV

Interleaver, ny=49, n =61, Rg=300, Table 1 1.5 (19) 163.5
Tapered Subreq. S=60, q=1, Type IV

Block Encoder k=8, m=85, n=lf, Rs=600 niyl (1) 3.5
CONCAT. TOTALS

Equal Subreg. 3.0 9.9
Tapered Subreg. 1.5 168.6
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3.2.1 Satellite Segment

The satellite segment of the baseline link consists of the con-
volutional encoder and the interleaver, while the satellite segment of the
concatenated link consists of an outer convolutional encoder, an inter-
leaver, and an inner block encoder. The memory and processing for each
part of each link are estimated separately in Table 6 and shown graphi-
cally in Figure 14, which plots memory versus processing. The interleaver
complexity has been estimated both for the equal subregister and tapered
subregister implementations. It can be seen that the tapered subregister
implementation cuts the memory required in half but greatly increases the
processing. Totals for the satellite segment of both links are also given
in Table 6 but are not plotted, being virtually the same as the inter-
leaver alone. Clearly the interleaver dominates the cost of the satellite
segment, and the concatenated scheme requires only one-half the memory and
one-half the processing of the baseline scheme. The reduced complexity is
a consequence of the lower symbol rate, Rg, which reduces processing and
which also permits a lower value of n, as explained in Section 2.

3.2.2 Ground Segment

The ground segment complexity estimates are presented in Table 7
and Figure 15. While the deinterleaver processing remains the same as the
corresponding interleavers, the memory is larger due to storage of 3-bit
soft symbols as opposed to the single bits in the interleavers. Decoder
complexity is a significant factor in overall complexity, and in fact the
block decoder is the most complex single item in the concatenated scheme.
This is due to the choice of a powerful (16,8;5) block inner code which
requires a great deal of processing. The concatenated Viterbi decoder
requires almost a factor of seven less processing than the baseline

Viterbi decoder because n has been reduced from 8 to 4 (see Equation 9).




Table 7. Ground segment complexity of the baseline
and concatenated links.

Memory Processing
Farameters Equation Value Equation Value
(kbits) (k-ops/s)

BASELINE

Deinterleaver, [n,=93, n;=61, Rg=600, $=60, | Table 2 18.0 (16) 4.8
Equal Subreg. q=3, Type IV

Deinterleaver, [n,=99, n;=61, Rg=600, S=60, | Table 2 9.0 (19) 327.0
Tapered Subreg. q=3, Type IV

Viterbi Decoder|k=l, K=7, n=8, Rs=75’ hK=31 (12) 3.0 (9N 159.0
BASEL INE TOTALS

Equal Subreg. 20.5 163.8

Tapered Subreg. 11.5 496.0
CONCATENATED

Block Decoder ({nsl16, k=8, RS=300 nil (6) 307.2

Deinterleaver, |n;=49, n;=61, Rg=300, Table 2 9.0 (16) 2.4

Equal Subreg. $=60, q=3, Type IV

Deinterleaver, In,=49, n, =61, Rg=300, Table 2 4.5 (19) 163.5

Tapered Subreg. $260, q=3, Type IV

Viterdi Decoder k=1, K=7, n=4, RS=75, (12) 3.0 (9 23.2

hK=31

CONCAT. TOTALS

Equal Subreg. 11.5 332.3

Tapered Subreg. 7.0 493.9

72
- N
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The total complexity of the ground segment of the baseline and
concatenated links is comparable - the concatenated advantage gained in
the deinterleaver and the Viterbi decoder was offset by the high com-
plexity of the block decoder. The studies of Sections 4 and 5 investigate
the performance of concatenated SDI schemes using less complex (but
weaker) inner codes.

3.3 SIMULATION DESCRIPTION

The descriptions of the simulation in general and the simulation
of the discrete channel in particular are presented in Section 2, Here we
cover the simulation of the error correction coding schemes only. The
error correction schemes of both links are simulated by the method shown
in Figure 16. An arbitrary message is encoded and interleaved ex-
plicitly. The encoded binary message is superimposed upon the received
signal data to form the simulated discrete channel output. As shown in
Figure 16, modulated discrete channel outputs are constructed by multiply-
ing the associated unmodulated discrete channel output from the received
signal data file by -1 or +1, depending upon the transmitted binary en-
coded symbol being a 1 or a 0, respectively.

Since error correction schemes of modern receiving terminals are
implemented with digital processors, the decoding and deinterleaving is
performed in the digital computer simulation as it would be done in hard-
ware. The channel symbol sequences are generated explicitly with the
encoder and interleaver algorithms discussed in subsection 3.1. As shown
in Figure 16, the decoded binary message is compared with the suitably
delayed source binary message to generate an error pattern. The errors
are counted to perform a Monte Carlo estimate of the link error rate.

74




K |

“SyuL| PI}PUDILOUOD PUR BUL[ISE] 3Y] YI0Q 404 UOLIR|MULS UOLIIBUI0D OULS ‘gl a4nbi3

sl
e

SITISIIVIS
LI R ]
HO (S T0NJ3Y

i

— p| WMD) ] AV130 KrJ

75
-

: -+ ‘144D 30908
! ONIAVITHILNII0 < oo ‘ outavawant Lol oo
N NV IN100930 4Y10418 OL AYYNIS ONY SNIQ0ON3 AHVNI8
SI0RAS TINKVHO
91T S0BHAS 1IN
O3LLINSINYL
(a3rynaokNm)
v1va WNSIS
BETYEREY




The simulation could have been simplified by not encoding an
arbitrary message, but rather assuming transmission of the all-zero mes-
sage. Since all codes used in the two links are linear, the all-zero
message is encoded into the all zero channel symbol stream, and hence the
link output itself could be taken as the error pattern. However, it was
feared that use of this simplification might bias the error rate estimate
due to the manner in which the decoders resolve ties in the maximum code-
word likelihood decision (for correlative decoders of block codes) and
maximum branch metric decision (for Viterbi decoders of convolutional
codes). After comparing results using the all-zero message, the all-one
message and several random messages, we have observed that the error cor-
rection strengths of both code types are insensitive to the particular
message transmitted.

3.4 RESULTS

The primary results of this study are in the form of a plot of
information bit error rate versus Ep/Ng for the two values of 1.
These plots are shown in Figure 17.

The error rates of the two links are plotted versus the mean
Ep/Nog level seen at the output of the PNSS code tracking loop. This
generalizes the results to links not using this type of spread spectrum
diversity. However, for the links of interest, Ep/Ny is not precisely
proportional to transmitter power because the code tracking loop loss is
signal-strength dependent. To interpret the plots in terms of mean
Ep/Ng seen at the code tracker input, skew the abscissa of Figure 17
according to Table 5 of Section 2.
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The key point to be seen from Figure 17 1is that the two schemes

are within a dB of each other. Results were not obtained at lower error
rates due to the excessively large sample sizes required to make sta-
tistically significant measurements. Since the simple SDI concatenated
scheme used here is not a candidate for implementation, simulation runs
were not made for the full range of anticipated values of 15. These
results are only intended to be representative of 1link performance to
establish that there is not a great difference between the performance of
the coding schemes, and they are not a comprehensive evaluation of the
communication links.

The error bars in Figure 17 are intended to indicate the
one-sigma confidence intervals of the data. The formula used to calculate
the one-sigma error bars was derived under the assumption of independent
1ink errors. However, all error correction schemes used in this study are
known to produce bursts of errors, and hence the independence assumption
is invalid. As can be seen in Figure 17, the confidence intervals are
optimistically narrow. In spite of this, the error bars are indicative of
the relative reliability of the data in that the variance of the bit error
rate estimates decreases monotonically with the separation of the upper
and lower error bars,

3.5 CONCLUSION

The primary conclusion of this study is that the error correc-
tion strength of SDI concatenated codes is comparable to that of non-
concatenated codes of equal rate in a disturbed channel. The particular
SDI concatenated scheme used here is not recommended because of the need
for an adaptive quantization function. An SDI concatenated coding scheme
without this drawback shail be presented in Section 5. This brief prelim-
inary study gives promise to the error correction encoding/decoding scheme
of Section 5 as a technique to substantially reduce implementation com-
plexity without a correspondingly great reduction in performance.
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The second finding of this work, previously discussed in subsec-
tion 3.1, is that quantization effects are significantly more inportant in
the SDI concatenated link than they are in the baseline link. This is due
to the fact that the rate reduction of the inner code necessitates that
more reliability information be contained in each deinterleaved symbol.
Having identified quantization as a key issue, it will be given greater
attention in our forthcoming studies.

The results of the next section were obtained after the work
documented here was completed. One finding of Section 4 pertains signi-
ficantly to this study and it is appropriate to mention it now. During
the course of that study, the error correction strength of the rate 1/8,
constraint length 7, convolutional code used in the baseline scheme became
suspect. Even though the minimun free distance of this code is the
largest known of any code with 1its rate and constraint length, we found
another code with the same minimun free distance, rate and constraint
length that exhibited superior error correction strength. The difference
amounts to about 1 dB in a fading channel and less than half a dB in a
benign channel. We hasten to point out that this finding widens the per-
formance gap between the baseline and SDI concatenated schemes.

The findings of this preliminary investigation of SDI con-
catenated codes are somewhaf blurred by the use of the suboptimal baseline
code, and ;by the sensitivity of the concatenated scheme to quantizer
parameters. We have verified that SDI concatenation does not pay a great
performance penalty for its reduction in implementation complexity, but as
yet we have not accurately quantified the performance difference between
the baseline code and a concatenated code which can be implemented.
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SECTION 4

SDI CONCATENATION OF CONVOLUTIONAL
CODES WITH CHIP REPEATING

This study addresses several aspects cf concatenated schemes
employing simple chip repetition and accumulation as the inner code. The
use of chip repeating to reduce link complexity was suggested by Bucher
(Reference 21). This scheme has the advantage of requiring only one rela-
tively simple algorithm to perform both the inner decoding (chip combin-
ing) and deinterleaving operations and, unlike the simple concatenated
scheme of Section 3, allows the interleaver function to scramble the
discrete channel symbols.

This scheme appears to be attractive for rate 1/8 codes on the
basis of the effective df of an overall rate 1/8 convolutional code.
Here we shall quantify the relative performance of four overall rate 1/8

coded links using different combinations of chip repeating and convolu-
tionai coding with detailed computer simulation-aided analysis.

As with all schemes addressed in this report, we are principally
concerned with implementation complexity and error correction strength.
In the context of this study, the occasion arose to specifically address
the sensitivity of error correction strength to the decision boundary
spacing of the memoryless, uniform quantizer used to ligitize the discrete
channel outputs. Also in the context of this work, the relative strength
of two rate 1/8, constraint length 7 convolutional codes became an issue,
and this also is discussed.
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First a description of the four coding techniques will be pre-
sented. Then their relative implementation complexities will be dis-
cussed. This will be followed by a discussion of the computer simulation
used to analyze the coded links of interest. Lastly the simulation-gener-
ated results will be presented and interpreted.

4.1 DESCRIPTIONS OF THE FOUR LINKS

The erruy correction scheme used in all four links is shown in
Figure 18, The 75 bit per second information bit stream is encoded with a
constraint length 7 convolutional code of rate 1/8, 1/4, 1/2 or 1 for
Links 1, 2, 3 and 4, respectively. The encoded bits are immediately
repeated with redundancy 1, 2, 4 or 8 to yield an overall code rate of 1/8
and a channel symbol rate of 600 chips per second for each link., The
channel symbols are interleaved and transmitted over a binary symmetric
discrete channel comprised of DPSK modulator/demodulator, direct sequence
pseudonoise spreader/despreader and propagation medium. The discrete
channel outputs are quantized to three bits (eight levels) by a midriser
uniform quantizer and then simultaneously deinterleavered and combined "on
the fly." The combined symbols are decoded with the Viterbi algorithm,
which retains 31 bits of path history per state.

Table 8 summarizes the error correction coding parameters of
each link. The last column gives the modulo-2 adder connection patterns
for each convolutional code. The patterns for Links 2 and 3 were found by
Larson (Reference 5), using an exhaustive search ., computer. Such a
search is infeasible for the rate 1/8 code of Link 4 because required com-
putation time is proportional to 2"kK,  The code used for Link 4 was
found by starting with the four modulo-2 adder connections of Link 3 and
using a computer search to find the best connection pattern for the other
four modulo-2 adders. While this is known to be a very good code, it has
not been proven to be the best possible.
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Table 8. Link characteristics
Link Number Chips Per Bit Convolutional Convolution Code
Code Rate Connection Pattern
com C = (k
(€) R, = () (octal)
] 8 1 (n=1) none
2 4 1/2 (n=2) 133,171
3 2 1/4 (n=4) 135,135,147,163
4 1 1/8 (n=8) 135,135,147,163,
125,177,133,171

For all links:

Information Rate = 75 bits/s
Overall Code Rate= 1/8
Chip Rate 600 chips/s

Convolutional Code with Viterbi Decoding K =7, n=1, hKk = 31

Direct Sequence PNSS
DPSK Modulation

Demodulator Quantjization = 3 bits, uniform
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When a chip combiner is used as an inner code, the free distance
of the overall code (supercode) is simply the free distance of the outer
code times the number of chips combined. The minimum free distances of
the convolutional outer code of Links 2, 3, and 4 are 10, 20, and 40
respectively; so the overall minimum free distance of the supercode is 40
in each case.

4.2 IMPLEMENTATION COMPLEXITY OF THE FOUR LINKS

Again the memory and processing requirements for the deinter-
leavers and decoders for each link will be discussed.

The chips can be combined "on the fly" as they are written into
the deinterleaver memory. The equal subregister synchronous deinter-
leaver algorithms of Type I and III can be readily modified to perform "on
the fly" chip combining, This is done by mapping the addresses for the C
chips to be combined into a single address and accumulating all C chips
into that one address. The number of bits for soft symbol resolution, q,
increases by log,C in the process. This implementation gives the func-
tional time diversity advantage of interleaved chips with the complexity
advantage of reducing storage by almost 1/C in the deinterleaver.

The complexity estimates of the four links are presented in
Table 9 and Figure 19. The link is broken down into its deinter-
leaver/chip combiner and Viterbi decoder functions in the table, while the
figure shows only totals for the four links. The equations for computing
deinterleaver/chip combiner complexity differ slightly from those of Table
2 and Equation 14 due to the chip combining operation:

Mg (n 'l)é"l”) q bits (22)
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Table 9. Ground segment complexity of the four Tlinks.

Memory Processing
Parameters Equation Value Equation Value
(kbits) (k-ops/s)

LINK #1

Deinterleaver/ |n;=100, n;=9, Rgut=75, (22) 0.7 (23) 5.5
Chip Combiner [Rja=630, g=6, Type [l

Viterbi Decoder|None -~ ==
LINK #1 TOTALS 0.7 5.5
LINK #2

Oeinterleaver/ [n,=100, n =61, Rq,t=150, (22) 1.7 (23) 5.7
Chip Combiner Rin-600, q=5, Type IIl

Viterbi Decoder|k=1, K=7, na=2, RS=75, hK=31 | (12) 3.0 (9) 15.5
LINK #2 TOTALS 10.7 21.2
LINK #3

Deinterleaver/ |n;=100, n;=61, Rg,=300, (22) 12.3 (23) 6.0
Chip Combiner Rin=600, q=4, Type III

Viterbi Decoderik=sl, K=7, n=4, Rs=75, hK=31 | (12) 3.0 {9 23.2
LINK #3 TOTALS 15.3 29.2
LINK #4

Deinterleaver/ {n,=100, n;=61, Rg=600, {22} 18.4 (16) 4.8
Chip Combiner q=3, Type III

Viterbi Decoderik=l, Ke7,6 n=8, Rs-75, hk=31 | (12) 3.0 (9) 159.0
LINK #4 TOTALS 21.4 163.8
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COMPLEXITY FOR THE FOUR LINKS
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Figure 19. Total complexity of the four links of interest.
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eq R, * 2Rout operations/second, (23)

where Rj, 1s the deinterleaver input symbol rate and Ryyt is the out-
put symbol rate (Rijp = CRout). As expected, both processing and

memory complexity increase with link number.

4.3 SIMULATION DESCRIPTION

Qur link simulations in general and the simulation of the dis-
crete channel in particular are discussed in Section 2. Here only the
simulation of the error correction coding schemes is covered. The error
correction of all four links is simulated by the method shown in Figure
20. An arbitrary message is encoded and interleaved explicitly. The
encoded binary message is superimposed upon the received signal data to
form the simulated discrete channel outputs. As shown in Figure 20, this
is accomplished by multiplying the associated unmodulated discrete channel
output from the received signal data file by -1 or 1, depending upon the
transmitted binary encoded symbol being a 1 or a 0, respectively.

Since the error correction schemes of modern receiving terminals
are implemented with digital processors, the decoding and deinterleaving
is performed in the digital computer simulation as it would be done in
hardware. The details pertaining to these functions were discussed in
Subsection 4.1, and need not be repeated here. As shown in Figure 20, the
received binary message is compared with the suitably delayed input binary
message to generate an error pattern. The errors are counted to perform a
Monte Carlo estimate of the link error rate.

The discrete channel simulation described in Section 2 models a

disturbed propagation medium with high fidelity by using the MPS data
shown in Figures 11 and 12 of Section 2 to synthesize the received carrier
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complex envelope. In this study the link periormance in benign channel
conditions is also analyzed. This is accomplished in the Modem Simulation
Program by simply making the simulated received carrier complex envelope
amplitude and. phase constant instead of using the MPS data.

A key parameter affecting the coding performance is the decision
boundary spacing of the midriser uniform quantizer that digitizes the de-
modulator outputs to three bits. Each simulation run was repeated for
five valu-s of the quantizer decision boundary spacing to determine the
sensitivity of this parameter in each simulated channel condition. Since
the three-bit quantizer has a fixed output symbol alphabet size of eight,
the choice of decision boundary spacing determines the quantizer's dynamic
range. This is illustrated in the quantizer input/output characteristic
of Figure 21. The inputs can be thought to fall into eight "bins" defined
by *x;, *x, and #x3. As shown in the figure, the saturation points of the
uniform quantizer are defined to be the outer edges of imaginary bins of
width x; that extend past +x; and -x3 away from the origin. The quantizer
dynamic range (QDR) is defined as the separation between the two satura-
tion points. Table 10 shows the values of QDR, saturation points and
decision boundaries for the five sets of quantizer parameters considered
in this study.

Table 10. Quantizer dynamic range, saturation point and decision
boundaries for midriser uniform quantizers.

QDR Saturation Decision Boundaries
Points X X2 X3
1.5 30.75 0.1875 0.3750 0.5625
2.0 +1.00 0.2500 0.5000 0.7500
3.0 +1.50 0.3750 0.7500 1.1250
4.C +2.00 0.5000 1.0000 1.5000
5.0 2.5 0.6500 1.2500 1.8750
89
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Under noiseless benign channel conditions, the simulated dis-
crete channel outputs would be either a +1 or a -1. Because the input to
the quantizer has a nominal unit magnitude, QDR will often be referred to
as "normalized" QDR.

4.4 RESULTS

Figure 22 illustrates the mix of computer runs that generated
the results of this section. The figure has two tree structures of depth
three. The top tree structure corresponds to the generation of the benign
channel results and the bottom corresponds to the fading channel results.
It is instructive to compare each tree with the simulation block diagram
of Figure 9 in Section 2. Each tree originates with the channel descrip-
tion associated with the MPS Simulation Program and an MPS data file.
tach channel condition branches into three noise levels associated with
the Modem Simuylation Program and three received signal data files. Each
modem branches into the four links associated with the Error Correction
Scheme Simulation Program. In addition, results for the four link types L
were accumulated fot each of the five quantizers of Table 10, The major
results generated by the simulations are plotted in three forms: histo-
grams of demodulator output levels; measured probability distributions of
quantizer output symbols; and curves of link error rate versus quantizer
decision boundary spacing and Ep/Ng.

An abundance of quantized symbol and sum probability distribu-
tion plots will be presented to serve three purposes. These will charac-
terize the manner in which, and the degree to which, the first-order sta-
tistics of the demodulator outputs are chenged by quantization. Secondly,
these provide sufficient information to much more efficiently model com-

munication links utilizing an interleaver that decorrelates the channel
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symbols over the duration of the decoder memory. The deinterleaver output
data stream can be directly generated by sampling the probability distri-
bution associated with a particular channel condition instead of explic-
itly modeling the propagation medium, modem, quantizer and deinterleaver.
Lastly, these data might be used to analytically bound the soft decision
decoded bit error rates in a manner similar to that done for hard decision
decoding in Reference 4. These bounds were not derived in this study, but
such analyses may be pursued in the future.

The error bars on all plots of information bit error rate are
intended to indicate the one-sigma confidence intervals of the data. The
formula used to calculate the one-sigma error bars was derived under the
assumption of independent 1link errors. However, all error correction
schemes used in this study are known to produce bursts of errors, and
hence the independence assumption is invalid. As will be seen in subse-
quent figures, the confidence intervals are optimistically narrow. In
spite of this, the error bars are indicative of the relative reliability
of the data in that the variance of the bit error rate estimates increases
monotonically wi%h the separation of the upper and lower error bars.

4.4.1 Mditive White Gaussian Noise (AWGN) Channel Results
Simulation runs were made at three SNR levels. The discrete

channel noise parameters and channel symbol error rates for the three
channel conditions are summarized in Table 11,
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Table 11. EbINo and Es/No before and after the despreader and the channel

symbol error rates for each of the three noise levels in benign
channel conditions.

Before Despreader After Despreader Channel Symbol

Eb/No ES/N° Eb/No Es/No Error Rate
(dB) (dB) (dB) (dB)

60000 -30031 40420 -40609 0-375

7.000 -2.031 5.585 -3.446 0.155

8.000 -1.031 6.740 -2.290 0.013

The histograms of the demodulator outputs and the measured dis-
tributions of the quantizer outputs for the five values of QDR are shown
in Figures 23 through 85. These data were accumulated for the unmodulated
discrete channel outputs and should be interpreted as being conditioned on
transmission of a binary zero. The histograms and probability distribu-
tion functions (PDF) conditioned on transmission of a binary one would be
just the reflection about the vertical axis of those shown in the
figures. The histograms and PDF's for random equally likely channel
symbols would be the average of those histograms conditioned on trans-
mission of a zero and those conditioned on transmission of a one. Notice
that the demodulator output histograms of Figures 23 and 44 and 65 are
roughly centered about zero. Careful examination of these three curves
reveals that the mode is closer to zero for histograms associated with
smaller values of Eg/Ng. In the limiting case of infinite Eg/N,,
each histogram would have the form of an impulse at unity.

Each quantized channel symbol is represented with three bits.
These bits are interpreted as being in standard binary form so that the
outputs range in value from 0 to 7. In the figures, the distributions of
quantized outputs are not plotted with respect to index, but rather with
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respect to the center of the associated "bins" partitioned by the quan-

tizer decision boundaries. This facilitates the comparison of the

quantized symbol PDF's with the demodulator output histograms. However,

the chip combining is performed on the three-bit indices. Hence the

- indices of the 2 chip sums range from 0 to 14. Similarly the indices of

the 4 and 8 chip swns range from 0 to 28 and 0 to 56. In all the PDF's of

this section, the 0 index is associated with the leftmost discrete point,

- and the indices of the cther points increase sequentially to the right in

integer steps. Like the histograms, the PDF's are skewed to the right

b o because of the conditioning of the measurements upon the transmission of

) the all-zero message. The quantizer output indices 3, 2, 1 and 0 corre-

spond to reception of a binary 1, and are listed in order of increasing

] ) reliability. Similarly, the indices 4, 5, 6 and 7 correspond to reception
- of a 0, and again are listed in order of increasing reliability.

Figures 24 through 28 show the PDF of the quantized channel
3 symbols for the five values of QDR with Eg/Ny = -4.609 dB. For a
: small value of QDR of 1 (Figure 24), the quantizer extremal symbols, 0 and
7, have relatively large probabilities. Hence the quantizer output
statistics are nearly equivalent to those of a hardlimiter, and most of
the performance gain of soft decision processing is lost.

Figures 29 through 33, 34 through 38, and 39 through 43 show the
chip combined symbol PDF's for Links 1, 2, 3 and 4, respectively. Due to
the nature of DPSK modulation, channel errors usually occur in pairs. The
deinterleaver randomizes error pairs, so we expect that the PDF of the
combined symbols are related to the PDF of the quantized channel symbols.
Specifically, the C chip sum PDF is the quantized channel symbol PDF con-
volved with itself C times. However, the fading decorrelation time break
point of the interleavers is one-sixth second and the channel fading
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decorrelation time is one tenth second. Hence, an occasional fade will be
sufficiently long to effect some correlation between summands of common
combined symbols, and the convolutional relationships between the various
PDF's are then only approximate. For example, the measured PDF of the 2
chip sums for QDR = 1.5 shown in Figure 29 is seen to be the convolution
of the associated channel symool PDF (Figure 24) with itself. Initially,
the probaBi]ity associated with the combined .symbol of index 7 in Figure
29 may appear anomalous. However, it is predicted by the -cénvolution
relationship because of the large extremal symbol probabilities of Figure
24. The PDF's of the 4 and 8 chip sums of QDR = 1.5 (Figures 34 and 39)
are progressively smoother and more Gaussian in appearance, as required by
the Central Limit Theorem for truly independent summands.

Figure 28 shows the quantized channel symbol distribution for
QDR equal to 5.0. Here the extremal symbol probabilities are small and
the minimal symbols (indices 3 and 4) are starting to dominate. For some-
what larger values of QDR, the nonminimal quantized symbols would have
very small probabilities and, as for very small QDR, most of the perfor-
mance of soft decision processing again would be lost.

Figure 26 shows the quantized channel symbol distribution at the
same value of Eg/Ny for a median value of QDR of 3.0. Here the ex-
tremal quantizer values are not as dominate as before. Hence the cor-
responding combined chip PDF's of Figures 31, 36 and 41 do not have
spurious looking points for smaller QDR. Again these distributions become
progressively more Gaussian as the order of the chip combining increases.

Figures 44 through 64 and 65 through 85 show the demodulator

output histogram and the various channel symbol and combined symbol PDF's
for Eg/Ng = -3.446 dB and Eg/No = -2.290 dB, respectively. Al
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the above remarks pertaining to the data associated with Eg/Ng =
-4.609 apply to these values as well. One further observation is that a
comparison of Figures 23, 44 and 65 indicates that the AGC does a good job
of maintaining the first-order statistics of the demodulator outputs over
the three noise levels.

Figures 86 through 89 show the decoded bit error rate versus QDR
for the three values of Eg/Ng for Links 1, 2, 3 and 4. A1l four links
are insensitive to R for signal-to-noise ratio values associated with
very high error rates, but the sensitivity to QDR increases with signal-
to-noise ratio for Links 2, 3 and 4. It appears that a good choice of QDR
is 3.0.

To confirm the proper operation of the error correction simula-
tion program, the Link 4 simulation runs were repeated with a different
convolutional code that mimics the Link 3 coding scheme. As presented in
Table 7, the connection pattern of the modulo-2 adders for the Link 3 rate
1/4 code is

135 135 147 163 (octal),
and the connection pattern for the normal Link 4, rate 1/8 code is

135 135 147 163 125 177 133 171 (octal).

The modified connection pattern for the rate 1/8 code is a replication of
that of the Link 3 code:

135 135 147 163 135 135 147 163 (octal).
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The error correction capabilities of the two Link 4 codes are
compared in Figure 90. As expected, the modified code is weaker than the
original Link 4 code by about 1/4 dB. Hence these new simulation results
are consistent with those discussed above. A very careful comparison of
Figures 88 and 90 reveals that the modified Link 4 code slfghtly outper-
forms the Link 3 coding scheme. The small difference can be attributed to
the fact that additions of an even number of 3 bit indices occasionally
result in ties, and the two-chip combining operation must arbitrarily
resolve these ties earlier in the Link 3 decoding process than is neces-
sary in the Link 4 Viterbi decoder.

The next four figures repeat the data of Figures 86 through 89
in different formats. Figure 91 is the decoded bit error rate plotted
against Eg/Ng for QDR equal to 3.0, the apparent optimal value of that
parameter. [t can be seen that the error correction capabilities of Links
2, 3 and 4 do not differ drastically. The difference in terms of equiva-
lent signal-to-noise ratio (SNR) is about 0.25 dB between Links 2 and 3
and the same between Links 3 and 4. Figures 92, 93 and 94 show curves of
decoded bit error rate versus QDR for the four links at Eg/Ng equal to
~4.609 dB, -3.446 dB and -2.290 dB, respectively. This presentation of
the data seems to indicate that the differences in link performance tend
to widen as the SNR is increased.

4.4.2 Fading Channel Results

The fading channel results were accumulated using received
signal data files generated in the task associated with Section 3. The
associated SNR parameters and channel symbol error rates are listed in
Table 5 of Section 2. Data for this section was collected for the channel
conditions corresponding to only the first, second and fourth entries of
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the table. For these channel conditions, 1, is 0.1 second and the
values of Eg/N, are -2.55 dB, -1.38 dB and -0.428 dB measured at the
output of the despreader (or code tracking loop).

As shown in Figure 22, the matrix of computer runs that gener-
ated the fading channel results is very similar to that for the benign
channel. Figures 95 through 157 show the demodulator output histograms
and the various combined sum measured PDF's for all three channel condi-
tions. These have the same form and are in the same order as the corre-
sponding results of the benign channel. Hence the discussions of Figures
29 through 85 apply to Figures 95 through 157 as well,

Figures 158 through 161 show decoded bit error rate versus QDR
at each Eg/Ng for Links 1, 2, 3 and 4 respectively. As with the
benign channel results, the sensitivity to QDR increases with decreasing
bit error rate and again 3.0 appears to be a good value of QDR. The Link
4 results (Figure 161) indicating a sharp drop in bit error rate at QDR
equal to 5.0 at the two higher values of Eg/Ny are probably spurious.
As indicated previously, the one-sigma confidence intervals are actually
larger than the error bars shown in the figure.

The modified Link 4 convolutional code that mimics the operation
of Link 3 was exercised for the fading channel. A comparison of the modi-
fied and normal Link 4 code strengths is shown in Figure 162. The differ-
ence between the codes is about the same 1 dB that separates the perform-
ance of Links 3 and 4 above. The modified rate 1/8 code was used in the
baseline decoder of Section 3. The superior code was discovered after
that work was performed. The existence of the superior rate 1/8 code
impacts the findings of Section 3, and is discussed in Subsection 3.5.
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Figure 163 shows the decoded bit error rate plot.ed against
Eg/Ng for QDR equal to 3.0. The bit error rate does not decrease
rapidly as Eg/N, increases, because occasionally fade durations are
too long to be randomized by the deinterleaver. These long fades cause
error bursts that cannot be eliminated with only marginal increases in
SNR. The error correction capabilities of Links 2, 3 and 4 differ
significantly from what was found for benign channel conditions. Here the
equivalent SNR difference between Links 2 and 3 is about 0.75 dB and it is
about 1.0 dB between Link 3 and 4.

Figures 164 through 168 present the data of Figures 158 through
161 in a format that facilitates direct comparison between the four links.

4.5 CONCLUSIONS

The major conclusions of this study pertain to the relative
merits of the "combine on the fly" interleaving/deinterleaving technique
compared with normal interleaving and deinterleaving., Here Link 4 is con-
sidered the baseline coding scheme with which Links 2 and 3 are to be
judged. Link 1 is too weak to be of interest and was included in this
study only to exhaust the range of inner and outer code rates that produce
an overall rate of 1/8.

Relative to Link 4, Links 2 and 3 do provide a significant
reduction in digital processing load, but provide only modest savings in
storage. The estimates of 1link complexity were previously given by
Equations 9, 12, 16, 22 and 23 in general and Table 9 and Figure 19 for
the links studied here. The reductions in complexity have associated
penalties in performance. For fading conditions, the performance of Links
2 and 3 were found to be about 1.75 dB and 1.0 dB lower than that of Link
4 in terms of equivalent SNR. Under benign conditions, Links 2 and 3
suffered only about 0.5 d8 and 0.25 dB of degradation, respectively,




The applicability of the schemes studied here to a particular
communication link can be evaluated in terms of the marginal costs of
digital processing, memory and SNR (i.e., transmittter power, antenna
size, receiver sensitivity, etc.). The use of chip combining to simplify
the coding and interleaving functions is considered attractive if the
associated savings in complexity exceed the cost of the required increase
in SNR. Since limitations on space-based transmitter power levels and
antenna size are usually severe, it is expected that the chip combining
approach to SDI concatenation will generally be unattractive for satellite
links which must operate under fading conditions. However, for links that
are not required to maintain good performance when the propagation medium
is disturbed, this approach may be viable.

The effects of quantization of the demodulator outputs were
given particular attention in the investigation. It was found that 3.0 is
a good choice for normalized quantizer dynamic range for both fading and
benign conditions when the quantizer decision boundaries are uniformly
spaced. However, the demodulator output histograms peak in the region of
minimum symbol reliability, which suggests that significant performance
gain may be attained by using nonuniformly spaced decision boundaries.
We found the histograms to be somewhat invariant over the range of channel
conditions that was studied, and hence an adaptation algorithm to match
the decision boundaries to dynamic channel statistics does not appear
necessary.
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SECTION 5
AN ADVANCED SDI CONCATENATED CODING SCHEME

Sections 3 and 4 document the study of two types of SDI con-
catenated coding scheies. From the results of these studies one can gain
insight into the performance and implementation complexity of SDI con-
catenated coding schemes for digital communication 1inks that must operate
in fading channel conditions. However, neither scheme appears to be an
outstanding candidate for implementation. The simple SDI concatenated
scheme of Section 3 requires an adaptive quantizer on the output data
stream of the inner decoder to achieve good performance with only three
bits of resolution. The chip repeat and combine “on the fly" scheme of
Section 4 does provide & nice reduction in the digital processing load,
but does not dramatically reduce interleaver storage requirements and has
somewhat disappointing fading channel performance. Here we propose an
advanced SDI concatenated coding scheme that promises good performance and
a substantial reduction in both storage and processing.

5.1 THE ADVANCED SDI CONCATENATED CODING SCHEME

The new coding scheme is illustrated in Figure 167. Only the
decoding/deinterleaving segment is shown because that is the only part of
the scheme that differs from the simpler SDI concatenated scheme shown in
Figure 13 and studied in Section 3. The inner block decoder generates two
data streams: one 1is the sequence of decoded bits and the other is the
sequence of codeword reliability symbols. For each received codeword of
an (n,k) block code, the inner decoder injects k decoded bits into one
data path and one q,-bit codeword reliability symbol into the other data
path. The important innovation is the use of different algorithms to
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deinterleave the two data streams. The decoded bit deinterleaver can be
of either the block or synchronous type. For every received codeword,
this deinterleaver accepts k bits as input and generates k bits as
output. The reliability symbol deinterleaver is a modification of the
deinterleaver used in the decoded bit streani. For every received
codeword, only one g,-bit symbol is accepted as input and k identical
symbols are generated as output in synchronization with the decoded bit
deinterleaver. It 1is interesting to note that the reliability
deinterleaver has an implicit "output symbol repeat" characteristic which
is the dual of the "combine on the fly" nature of the deinterleavers
studied in Section 4,

The use of the two deinterleavers in parallel can result in
substantial interleaver storage savings, while allowing the reliability
values to be represented with sufficient dynamic range and resolution to
eliminate the need for an adaptive quantizer for the output stream of the
inner decoder.

5.2 RELATIVE IMPLEMENTATION COMPLEXITY OF THE ADVANCED LINK

Two variations on the Advanced SDI Link termed “"High Perform-
ance" and "Low Complexity" will be appraised for complexity and compared
to the Baseline Link. The Baseline Link discussed here differs from that
of Section 3 in that it uses a larger deinterleaver to cope with the long
fading decorrelation times which are likely in the channels of interest.
Specifically, the parameter n, has been increased from 99 to 1000.

The High Performance version of the Advanced SDI Link uses a

rate 1/2 (n=16, k=8) block inner code and a rate 1/4 convolutional outer
code, while the Low Complexity version has a rate 1/4 (n=16, k=4) block
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inner code and a rate 1/2 convolutional outer code. Both variations have
interleaving parameters commensurate with those of the Baseline. All de-
interleaving and decoding parameters of interest can be found in Table
12. The number of bits per reliability symbol in the deinterleaver has
been increased to q = 4 for both Advanced alternatives, obviating the
need for an adaptive quantizer. (This is effectively 2 bits more than the
baseline value of q = 3 since the decoded data bit is carried in a sepa-
rate deinterleaver in the Advanced Link, while one of the 3 bits in the
Baseline is used to carry decoded data.)

There are a few items concerning the complexity values given in
Table 12 that are noteworthy. The reduced processing requirement of the
Low Compexity link with respect to the High Performance link is due to the
lower inner code rate and high outer rate: lowering k from 8 to 4 in the
block decoder dramatically reduces processing there, the reduced symbol
rate at the deinterleaver cuts deinterleaver processsing by one-half, and
the lower value of n in the convolutional code reduces Viterbi decoder
processing. The only significant memory difference between the two Ad-
vanced variants is in the decoded bit deinterleaver, where the reduced bit
rate makes possible a proportionally reduced value of n,.

Figure 168 illustrates the total complexity of the links. (Note
the scale change relative to previous such figures.) The Low Complexity
link requires much less memory than the Baseline and much less processing
than either the Baseline or the High Performance link. Further simulation
work will show how its performance compares.
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Table 12. Advanced SDI link complexity (ground segment) .
Memory Processing
Parameters Equation Value Equation Value
(kbits) (k-ops/s)
BASELINE
Deinterleaver/ {n,=1000, n;=61, Rg=600, Table 2 90.1 (19) 327.0
Tapered Subreg |S=60, q=3, Type IV
Viterbi Decoder Jk=1, K=7, n=8, Rg=75, hK=31 (12) 3.0 (9) 159.0
BASELINE TOTALS 93.1 486.0
HIGH PERFORM SDI
Block Decoder n=16, k=8, Rs-300 Nil (6) 307.2
Bit Deinterlv., |n;=500, n;=61, Rg=300 Table 2 15.0 (19) 163.5
Tapered Subreg 1S=60, gq=1, Type IV
Reliability De-
interleaver, n»=500, n;=61, Rs=300 Table 2 15.0 (16) 2.4
8:1 Mapped $=60, q=4, Type IV
Viterbi Decoder [k=1, K=7, n=4, Rg=75, hK=3l (12) 3.0 (9) 23.2
HIGH PERF TOTALS 33.0 496.3
LOW COMPLEX SDI
Block Decoder n=16, k=4, Rs-150 Nl ( 6) 19.2
Bit Deinterlv., |n,=250, ny=61, Rg=150, Table 2 7.5 (19} 81.8
Tapered Subreg |S=60, g=1, Type IV
Reliability De-
interlieaver, n,=250, ny=61, Rg=150, Table 2 15.1 (16) 1.2
4:1 Mapped $=60, q=4, Type IV
Viterbi Decoder |k=1, K-7, n=2, Rs-75, hKk=31} (12) 3.0 (9) 15.5
LOW COMP TOTALS 25.6 117.7
mﬁ i&:‘::
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