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I. INTRODUCTION

When a shaped-charge jet is formed, it is, in its early stages, a
acontinuous, constantly stretching jet of liner material. Eventually,

the jet breaks up into particulates with different velocities and with
various distances between particulates. These distances between the
particulates increase with increasing standoff distance of the shaped
charge from the target. Furthermore, as the standoff distance increases,
the time of flight increases, and the particulates can start to tumble.
This tumbling can cause the particulates to deviate from a straight
path1 and thereby reduce the penetration efficiency of the shaped charge.

- The maximum depth of penetration occurs when the particulates are
axially aligned along a straight path. Then the problem is axisymmetric
and can be modeled as a two-dimensional problem. This study deals with
this problem of maximum penetration depth and corresponds to the case of
an ideally fabricated shaped charge fired against a monolithic target.
Although this is the upper limit of penetration, it should provide
insight into the penetration phenomena associated with particulated

"' jetsf .

In addition to standoff effects, some of the factors which affect
the penetration by particulates are liner and target materials and the
diameter and length of each particulate 3 ,4 .

The results of a computer study of the multiple impacts of right
cylindrical penetrators, simulating particulates, on a target are reported
here. Copper and steel were used, respectively, as penetrator and target
materials. Also the diameter and initial velocity of the penetrators
were fixed at 3 ma and 5 km/s, respectively. Two situations, where the
total mass and the total kinetic energy of all the penetrators before
impact were fixed, were examined: (1) the number of penetrators was varied
and (2) the distance between the penetrators was varied to simulate
different standoff distances. Of interest were the penetration histories
of the penetrators and the material flow during penetration.

IR. DiPerajo, J. Si wn, and A. Mevendino, "Penetration of shaped-Charge
Jets into MetaZlic Targete," BaZietic Research Laboratory Report
No. 1296, September 1965. (AD 476717)

2A. Merendino and R. Vita i, "The Penetration of Shaped-Charge Jets into
Steel and AZwinwa Targets of Various Strength ," BaZZi8tic Research
Laboratory Memorandw Report No. 1932, August 1968. (AD 392672)

3 W. P. Waters and J. N. Majerus, "Impaet Node e for Penetration and Hole
Growth," BRL Teohnical Report ARBR-TR-02069, 140 1978. (AD A056294)
4W. P. Watero and J. N. Majerue, "Shaped Charge Penetration ModeZ,

SPart 1: MonoZithic Penetration and Comparison with EzperimentaZ Data,"
BRL TechnicaZ Report ARBRL-TR-02184, Azut 1979. (AD B041747L)
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II. COMPUTER PROGRAM

The DORF computer program5 was used to generate data for this
impact phenomena study. DORF is a two-dimensional, multimaterial,
continuous, Eulerian, hydrodynamic program coupled with an elastic-
plastic strength model. An option of Cartesian (xy) or cylindrical
(r,z) coordinates is available in the program. The later option was
selected for this study because of the cylindrical symmetry associated
with the impacts. Tillotson's equations of state6 for copper and steel
were used by the program. Tracer particles, whose motion depends upon
an average of local cell velocities, were used to provide a Lagrangian
appearance to the plotted output of material deformation. The program
was run on the CDC CYBER 76 located at ARRADCOM Ballistic Research
Laboratory.

III. PENETRATOR-TARGET CONFIGURATIONS

In all the cases that were run on the computer, the impacts were
normal (zero obliquity), thus permitting the problem to be considered as
being axisymmetric. The penetrator material was copper with a yield
stress in shear of 1.3 kbar. Before impact, the velocity of the
penetrators was 5.0 km/s and the diameter, 3 mm. The steel target was
semi-infinite with a yield stress in shear of 6.8 kbar.

Five impact situations were considered: (1) one impact by a 27.0-
m-long penetrator, (2) two impacts by 13.5-mm-long penetrators separated
by 10 mm, (3) two impacts by 13.5-mm-long penetrators separated by 50 mm,
(4) six impacts by 4.5-rn-long penetrators separated by 10 mm, and (5)
six impacts with 4.5-mm-long penetrators separated by 50 mm.

The initial total mass, total kinetic energy, and total momentum of
one 27.0-mm-long penetrator, two 13.5-mm-long penetrators, or six 4.5-mm-
long penetrators were, respectively, the same.

IV. COMPUTATIONAL SETUP

A computational grid was laid out to cover the cross-sectional
region of interest of the penetrator-target configuration with the
penetrator's center line coinciding with the z-axis. A typical
configuration is shown in Figure 1. The penetrator's initial motion was
in the positive z-direction. The computer program permits an option of

5W. E. Johnson, "Devetopment and AppZication of Computer Programs
Related to Hypervelooity Impact," Systana, Science and Software,
.3S-749, July 1971. (AD 889143)

6j. H. TiZloteon, "Metallic Equations of State for HyperoeZociti

Impact," Gulf GeneraZ Atomic, GA-3216, July 1962.
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reflective or transmittive boundaries. The bottom boundary of the grid
was selected to be transmittive, thus allowing penetrator material to be
fed into the grid when the situation so required. The right boundary of
the grid was selected to be transmittive, thereby simulating a semi-
infinite target. To permit material to flow out of the region of interest
and to simulate a semi-infinite target, the top boundary was also
transmittive. DORF automatically selects the proper boundary conditions
for the left boundary when this boundary is an axis of symmetry.

Typical overall physical dimensions of the grid were 25 mm by 95 mm
with a corresponding grid size of 83 by 186 cells. The width, Ar, in
the radial direction of each cell was 0.3 mm, except for the rightmost
cells which were 0.4-mm wide. Thus the radius of the penetrators was
5 cells across7. The length, Az, of each cell was 0.5 mm, except for
the bottom cells which were 2.5-mm long.

If the penetration exceeded the limits of the grid, additional 0.5-
mm-long cells were added to the top of the grid.

The cells, occupying the initial space of the penetrators, were
given the following initial conditions:

1. Density 8.9 Mg/m 3.
2. Pressure = 0.0 Mbar.
3. Radial velocity = 0.0 km/s.
4. Axial velocity = 5.0 km/s.
5. Specific internal energy = 0.0 J/g.

Similar initial conditions were given to the cells occupying the
initial space of the target exce t that the density was that of the
steel target material, 7.86 Mg/m , and the axial velocity was zero.

In all the cases that were run on the computer, the impact surface
of the target was at z = 30 nn on the grid. Tracer particles were
positioned along this surface, and, when their positions were line-
plotted, the deformation of this surface could be pictured.

Tracer particles were also positioned along the free surfaces of
each penetrator. When these positions were line-plotted, the deformation
of the penetrators could also be pictured. In addition, tracer particles
were positioned within the outline of the penetrators. These positions
were point-plotted with different symbols representing different
penetrators.

" 7V. Kucher, "Preliminary Computer Computatione for Slender Rod Impact
Probnem," Ballistic Research Laboratory Report No. 1957, Feb 1977.
(AD A036995)
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V. COMPUTER RESULTS

A. Single Impact

A copper penetrator, 3.0 -m in diameter and 27.0-mm long, impacted
at 5.0 km/s, on a steel target at zero-degrees obliquity. Figure 2
shows the initial penetrator-target configuration, and Figure 3 shows the
penetrator-target deformation at 4.0 us. A corresponding velocity field
is shown in Figure 4. Note that there is a flow of material (ejecta)
opposite to the original direction of the penetrator.

The trajectories of two tracer particles, which were initially
positioned at each end of the penetrator along the axis of symmetry, are
shown in Figure 5. At any instant of time, the measured difference
between the curves is the length of the material remaining at that time.

The maximum penetration of 38.5 mm, as measured from the initial
free surface of the target, occured at 23.9 us after impact. Figure 6
shows the hole profile at 24.0 us.

B. Double Impact at Short Standoff

Two copper penetrators, each being 3.0 mm in diameter and each being
13.5-mm long, impacted a steel target at zero-degrees obliquity. Each
penetrator initially had a veiocity of 5.0 km/s; a distance of 10 num
separated the penetrators.

Figure 7 shows the initial configuration of the target and
penetrators. Note that different plotting symbols were used for each
penetrator. Figure 8, at 3.0 us, shows the deformation of the first
penetrator after penetrating the target for this period of time. Figure
9 shows the velocity field at 3.0 us with some of the flow of material
in opposition to the initial motion of the penetrators. At 6.0 us in
Figure 10, part of the second penetrator has been deformed by this flow.

The trajectories of the four tracer particles, which were initially
positioned at each end of the penetrators along the axis of symmetry,
are shown in Figure 11. At any instant of time, the measured difference
between the front and back curves is the length of the penetrator
remaining at this time. The maximum penetration, 40.8 mm, occurred at
23.0 us. Figure 12 shows the hole profile at 24.0 us.

C. Double Impacts at Long Standoff

The initial conditions here are similar to those for the double
impact, short standoff situation except that the distance between the
penetrators was increased to 50mam (thus a longer standoff was considered
than in the previous case).

In Figure 13, the first penetrator has been consumed, and the flow

10



of the ejecta out of the cavity in the target has caused some deformation
of the front of the second penetrator. The velocity field at 20.0 us
(Figure 14) illustrates the complexity of the material flow. At 22.0 us
(Figure 15), the second penetrator is still acting on the target; an
occlusion of target material at z = 48 mm has formed.

The trajectories of the tracer particles, positioned as described
in the previous case, are shown in Figure 16. At 16 us, the penetration
due to the first penetrator has almost ceased at about 22 -m of
penetration. Now the second penetrator, acting on the target, penetrates
the target to a depth of 55 mm at 37.6 us. A hole profile at 38 us is
shown in Figure 17.

- D. Sextuple Impacts at Short Standoff

Six copp.dr penetrators, 3.0 mm in diameter and each being 4.5--~M
long, impacted a steel target at zero-degrees obliquity. Each
penetrator initially had a velocity of 5 km/s; a distance of 10 mm
initially separated the penetrators.

Figure 18 shows the penetration by the first penetrator after
1.0 vs. The second and third penetrators are also pictured with
distinguishing symbol plots. At 9.0 us (Figure 19) the first and second
penetrators have been consumed and the third penetrator, which has
deformed on the front end, is ready to begin its penetration action.
The remaining three penetrators are also shown at this time. The nature
of the material flow at 10.0 us is illustrated by a velocity field in

Figure 20.

Trajectories of the tracer particles that were located initially
on the front and back surfaces and on the axis of the penetrators are
shown in Figure 21. The maximum penetration of 71.6 mmi occurred at
39.4 us. Figure 22 shows the hole profile at 40.0 us.

E. Sextuple Impacts at Long Standoff

In this case, the initial conditions were similar to those for the
sextuple impacts, short standoff case described in the previous case
except that the distance between penetrators was increased to 50 mm,
thus providing a longer standoff.

Shown in Figure 23 are the trajectories of the tracer particles
that were initially located along the axiLs of symmetry at the front and
back surfaces of the penetrators. The maximum penetration of 101.3 mm
occurred at 87.0 us. The hole profile at 88.0 us is shown in Figure 24.



VI. DISCUSSION

The graphical computer results show that a complex flow of material
in the crater, as it is being formed, is created after the impact of the
first penetrator and by the succeeding penetrators (Figures 4, 9, and 14).
This flow of material in the opposite direction of the motion of the
penetrators causes some deformation or erosion of the succeeding
penetrators (Figures 10, 13, and 19). Also, as a result of multiple
impacts, occlusion of the crater occurs (Figures 15 and 24). However,
these phenomena did not, for the initial impact velocity, the number of
penetrators, and the separation distances that were considered, decrease
the maximum penetration of several penetrators compared to a single
penetrator. Figure 25 shows the effects on the maximum penetration of
the number of penetrators and their separation distance. Tho single
27.0-mm-long penetrator can be considered as two 13.5-n-long pvnetrators
or six 4.5-mm-long penetrators with no separation distance.

Comparing the maximum penetration of two penetrators, we find that
there is a 6.0% increase for a 10-rn separation distance and a 42.9%
increase for a 50-mn separation distance with respect to the case where
there is no separation between the penetrators.

Comparing the maximum penetration of six penetrators with the single
penetrator (six penetrators with no separation distance), we find that
at a separation distance of 10 mm, there is a 86.0% increase in the
maximum penetration and a 163.1% increase in maximum penetration when
the separation distance is increased to 50 rm.

When the separation distance for two penetrators is increased from
10 to 50 mm, the maximum penetration increased by 75.51- . Similarly,
for six penetrators, the maximum penetration increased by 84.2% when
the separation distance was changed from 10 to 50 me.

Figures 6, 12, 17, 23, and 24, which depict the hole profiles in the
target at approximately the time of maximum penetration, show that the
eyeball-average diameter of the hole decreases as the length of the
penetrator decreases. For the single impact case (27.0-mm-long penetrator)
the average hole diameter was 15.0 rn; for the double impact cases
(13.5-mm-long penetrators) the average diameter was 13.2 n; for the
sextuple impact cases (4.5-mm-long penetrators) the average diameter was
9.0 n.

The hole volume table summarizes the volumes calculated from hole
profile measurements. The hole volume, which was measured from the
original free surface of the target, was 5375.5 um 3 for the single impact
case. This volume was decreased by 1.6% and 21.5%, respectively, for
the double and sextuple impact cases at a separation distance of 10 mam.
The single impact volume was increased by 42.5% and 66.8%, respectively,
for the double and sextuple impact cases with a 50-rm separation distance.

12



Hole Volumes Resulting from Multiple Impacts

Hole Volume, mm3

Separation
Distance, mm 0 10 50

Number of

Penetrators

2 5375.5 5291.6 7662.3

6 5375.5 4219.1 8963.8

For the double impact cases, the hole volume increased 44.8% when
the separation distance was changed from 10 to 50 mm. For the sextuple
impact cases, the hole volume was increased 112.5% when the separation
distance was similarly changed.

For a 10-mm separation distance, the hole volume decreased 20.3%
when the number of penetrators was increased from 2 to 6. For a SO-mm
separation distance, the hole volume increased 17.0% when the number of
penetrators was similarly increased.

VII. CONCLUSIONS

The effects of multiple impacts were considered for a single impact
velocity (5 km/s), a fixed total mass of the penetrators, penetrator
separation distances of 0, 10, and 50 m, and single, double, and sextuple
impacts. For these conditions, it was found that increasing the number
of penetrators and increasing the separation distance between penetrators
increased the penetration into a steel target.

Increasing the number of penetrators resulted in the decrease in the
average hole diameter in the target. Compared to the single impact case,
the hole volume, at the time that the maximum penetration occurred,
decreased for the double and sextuple impact cases for 10-mm separation
between penetrators, but increased for the 50-mm separation distance.

Increasing the number of penetrators from 2 to 6 for the 10-mm
separation decreased the hole volume, but, for the 50-mm separation case,
the volume increased.

13



The results obtained from these computer computations might notfollow for other target material or thicknesses, other penetrator velocityranges, or non-aligned penetrators. Further studies are necessary toinvestigate these parameters with relation to multiple impacts.
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