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Stochastic Modeling: Ideas and Techniques

Donald P. Gaver

1 . Introduction

The primary purpose of this chapter is to summarize the

contents of lectures on stochastic modeling presented at the

Universite Libre de Bruxelles (ULB) in the period March-May,

1981. Much of the material selected for presentation was from

the standard menu of probabilistic topics typical of a second

course as given to engineers, operations researchers,

statisticians, or computer scientists. An attempt was made to

emphasize a modeling attitude rather than details of mathematical

rigor, illustrating with problems and techniques that are not

often prominent in such courses. For example, attention was

given to problems of, and models for, redundant system reliability

and availability, queueing with priorities, first-passage times

and areas under path functions of stochastic processes, (total

waiting times), and various other topics. Also included was a

brief account of aspects of modern data analysis, with the

implication that its usefulness is significant at the pre-modeling

and model-assessment stage of an investigation.

A secondary, but gratifying, purpose is to briefly report

on cooperative work initiated with faculty and students at ULB.

I wish to mention the enjoyable collaboration with Dr. Guy Latouche

on development of efficient computational methods for repairman-

like Markov models in random environments, and with Ph. Collard

on the application of sculptured distributions in the simulation



evaluation of certain scheduling algorithms. The interest and

warm hospitality of Prof. Guy Louchard, head of the Dept.Of

Computer Science at ULB, was also much appreciated.



2 . The Total Modeling Process: Brief Overview

It is coming to be recognized that the topic of mathematical

modeling (including stochastic modeling) exists in its own right

as a subject suitable for a formal university course; see

Bender [1978], The modeling step is part of a process of several

stages or steps; these may be expressed as follows (Gaver and

Thompson [1973] ) :

(a) Identify the general problem area or situation; identify

specific questions concerning that area.

(b) Obtain and analyze subject-matter information and data

relating to the problem area. Often an examination

of such information and data will suggest suitably

formulated questions, as in (a),

(c). Construct a preliminary model, or models, representing

the important features of the situation. Deduce some

model implications.

(d) Refer the result of (c) to subject-matter specialists

and decision-makers for qualitative critique; revise

the model accordingly. This likely means re-doing

(a) - (d) .

(e) Assess the empirical validity of the model to the degree

possible. Check the sensitivity of model conclusions

to changes in model assumptions (sub-model inputs)

,

and to data variations. Submit to judgement by

subject-matter experts -- but anticipate differences

of opinion! The modeling, and re-modeling, process

may help to reconcile such differences.



(f) Compute required answers to interesting questions.

Assess the degree of uncertainty in these answers

possibly resulting from model mis-specification, data

bias or other deficiency, computational error, and

sampling error in estimates of basic parameters or

in simulation results used to supply model implications,

(g) Communicate, and aid in implementing, the results of

the model.

(h) Monitor the situation for possible changes in the

environment, and hence for the necessity to change

the model.

Of course the emphasis in these notes (and in the lectures,

was) upon the actual modeling step, (c) . However, some attention

was given to the display of data for pre-model examination

(Tukey's exploratory data analysis), and to model parameter

estimation techniques, particularly those robust methods that

attempt to deal with questions of data deficiencies.



3 . Topics in Outline

In this section we out-line the basic contents of the

lectures. These were in general arranged so as to first present

mathematical definitions and properties, and then to illustrate

in terms of sample models for various situations.

( 1 ) Review of Probabilistic Concepts, Particularly Conditioning .

In this lecture the following basic notions of probability

were defined or reviewed: random experiment or trial, sample

or event space, events and combinations of events, probability as

a function with rules for combination, conditional probability,

independence, and Bayes 1 Theorem, random variables and their

moments or expectations, transforms (characteristic function,

Laplace transform, and generating function) and their moment-

generating, convolution, unicity, and continuity properties, plus

properties of conditional expectations. In addition, certain

classical univariate distributions were reviewed (Normal/Gaussian,

log-Normal, exponential and gamma, etc.)

By way of illustration, a simple problem of equipment (or

possibly software) unrealiability was considered.

Situation: Suppose a system is made up of components that

individually fail after a time because of the action of faults ;

the latter may be the result of component mis-design, or attributable

to bad installation or adjustment ("human error"), or to a mistake

in computer program coding. We wish to relate system failure rate

to initial fault content.

Model: N is a random variable (rv) representing the

number of faults initially installed unwittingly in the system.

Let {T., i = 1,2, ..., N} be the sequence of rv describing



the failure time of each fault, measured from time at which the

system begins use; T. may actually be the time at which the

service of the particular component is first requested. Suppose

the system fails at

X
N

= min {T-, T
2

, ..., T„}. (1.1)

Under very simple conditions, namely that all components have

the same distribution, F(t), of failure time, and all failure

times are independent, simple conditional probability arguments

yield

P(X
N

> t} = E
N
[(l-F(t))

N
] (1.2)

where g is the generating function of the number of faults

originally sown in the system, and F (t) = 1-F (t) is the

survival time distribution, per fault. It is easy to see that

P{X = 00} = p{n = 0}, possibly > , so the derived distribution

of X is quite possibly dishonest. Note that while in general

explicit expressions for expectations cannot be obtained (may

not even exist), such summaries as the median, 90% point, etc.,

may if g (F(t)) can be explicitly inverted, e.g. for

N ~ Poisson and F ~ Exponential. The simplistic assumption

of the model may be relaxed, allowing for different T. distri-

butions, dependence, and so on, and an additional random death

time, D, applying to the total system can be introduced to in-

duce eventual failure (of physical equipment), or biological

death in finite time. There will be less analytical tractability,



but simulation may be used to assess system behavior. Statistical

estimation problems may be addressed as well; a suitable version

of (1.2) will provide a likelihood function.

Another example of the applicability of a simple conditioning

argument is the following.

Situation ; When an individual speaks on a telephone or

telecommunication channel the conversation is an alternating

sequence of talk-spurts and pauses. Similarly, a job being

processed on a computer goes through an alternating sequence of

CPU (compute) times and 10 (input-output) times. Model the

total time of the conversation or job processing time, and

particularly the joint distribution of busy and idle segments.

Model 1 : Let {X., i = 1,2, ..., K} and {Y. , i = 1,2, ..., K)

be the durations of talk spurts and pauses, respectively, and

let K be the number of each. The simplest model assumes

{X.} and {Y.} to be independently and identically distributed

(IID) sequences of rv , and themselves to be conditionally in-

dependent, given K, also a rv. The joint distribution of total

talking (or processing) time, X, and total pause time (10 time),

Y, is thus, by simple conditioning,

? k* k*
P{X < x, Y < y} =

I Fv (x) • Fv (y)
K

P{K=k} (1.3)
k=l

X Y

The joint Laplace transform is (s. , s_, > 0)

— s X — s Y
e

2
j I [F

X ( S;L )F (s
2 )T P(K=k)

1" "2" r r ~
, ,

~
, ,ik

k=l

(1.4)

= %^X (S1^Y (S
2
)] '



where gv is the generating function of K. Put s n
= s„ = s

is. 12
to recover the transform of X+Y = L, the total conversation

length. In case

X. - Expon(A) and Y. Expon(y) and K Geom(a), independent

and

" S
1
X " S

2
Y

e e - I
k=l

A+sV lP+s J

(1-a)

a

k-1

Ay (1-a)
(A+s ) (y+s )

- Aya

(1.5)

E[X] = [A (1-a)]
1

, E[Y] = [y(l-a)]
1

(1.6)

Furthermore (a = 1-a) .'

E[L] = E[X] + e[y] = A+y

Aya
(1.7)

and

Var[L] = (E[Lj)
Aya

(1.8)

Notice also that the mechanism of randomization of a sum , or

mixing (see Feller [1966])which has given (1.3) may be used to

generate families of bivariate (multivariate) exponential

distributions for other modeling purposes.

Model 2 : A plausible alternative to the above model assumes

X. and Y. are not independent, being possibly positively

correlated -- a long talkspurt tending to result in a long

pause (response by conversationalist). Most simply,



Y. = $X . , 3 > 0. Then again transform in the X - Expon(A) case

to get

_<= Y -c v"
A (1-a)

- S
1
X " S 2

Y
e e

s
x

+ 6s
2

+ A (1-a)

or if 3 = A/p which preserves the marginals of Model 1,

A (1-a)

s, + — s„ + A (1-a)
1 y 2

Aya

s,y + s A + Aya
(1.9)

It is now immediate that the marginal distribution of

X ~ Expon(Aa) , Y - Expon(ya) and that now the df of the

Aya
total time, L, is simply Expon

[A+y
-- a much simpler form

than that occurring in Model 1 above, which involves a Bessel

function. The variance of L in Model 2, being (e[l]) , is

also larger than that for Model 1, see (1.8), suggesting that

the former model has a longer tail, hence predicting a greater

proportion of extremely long conversations.

The above illustrates that the same situation can easily

give rise to two — or more — different models, depending

upon the manner in which stochastic assumptions are introduced.

At best, the introduction should be guided by observed data;

at least, sensitivity analyses using different assumptions can

outline the range of specification uncertainty.



(2) Models Involving Repeated Trials

A great many situations may be initially modeled in terms of

repeated independent trials, where this means that on each of a

possibly countably infinite number of occasions a trial (or

experiment, or observation) is performed, with outcome X.

(possibly a vector random variable (rv) ) on the ith trial;

{X., i = 1, 2, ...} are IID rv. Bernoulli trials are a prime

example: flip a biased coin indefinitely; let I. be one if a

Head (Success) results, and zero if a Tail (Failure) otherwise,

and assume that probability of success on any trial is independent

of all previous outcomes. Equally, X. may be the winnings on a

bet at occasion i, with X. in dollars and either positive or

negative. Or X. may even represent the increase or decrease

in a common stock price on the New York Stock exchange, according

to some observers.

It is convenient, but somewhat more questionable, to adopt

the repeated trial model for modeling real operational and

physical phenomena, yet it is often done uncritically.

For instance the lifetimes (times between failure) of

computing equipment are often modeled by IID rv, repair times

likewise, queueing system inter-arrivals and service times as

well, inventory demand sizes, sizes of deposits of resources

(petroleum) as well, ... the list is very long, and observational

support for these assumptions is usually conspicuously lacking. The

Attraction of the repeated trials model is mainly its mathematical

tractability , which leads to elegant and appealing results.

10



Often a brief data analysis in terms of marginal distributions

of observed X. seems to provide justification. The simple

repeated trials model cannot well represent, say, systematic

daily changes in job inter-arrival times, or numbers of jobs

per hour, at a computer center, seasonal effects on such computer

system demand, or the influence of other variables such as the

introduction of a new class of computer users upon a measure of

computer loading. Also, the model does not well describe the

sequence of daily rainfalls in a region, nor many other environ-

mental variables. Some examples follow in which repeated trial

models seem initially plausible, but which doubtless can stand

improvement.

Situation ; A structure is to be designed to withstand (wind-

generated, or seismic or other) shocks. Question: how long will

it survive the environment stresses, given its initial strength Z?

Model: Let the structure have strength Z (suitable units). If

the ith year's maximum shock is X., assume {X.} to be IID with

df F (x) . Then the time T until structure failure exceeds t
x

(t = 1, 2, ...) iff VX
±

< Z, i = 1,2, ..., t, so

P{T > t|z} = [F
x
(Z)]

t
, (2.1)

the geometric distribution,

while if Z itself is regarded as random

P{T > t} = E
z

P{T > t|z) = E
z
([F

x
(Z)]

t
}

(2.2)

^ (E
z
{[F

x
(Z)]})

t
;

11



the unconditional distribution is a convex (probability) combin-

ation of exponentials. It will resemble an exponential, but often

has an extended right tail. It is obviously important that the

condition on equipment stress, Z, be removed at the appropriate

stage -- at the end. Removal of the condition before each

"strength test" would be appropriate only if the structure were

completely repaired or replaced with another having the unchanged

distribution of Z before each trial.

Note that assuming yearly maximum environmental events to

be IID is intuitively plausible, but some statistical evidence

exists for truly long-range correlation in weather data that

may call even this assumption into question.

The Bernoulli counting process is an important special case

of repeated trials, on each of which either Success (probability

p) or Failure (probability q = 1-p) occurs; {N(t), t = 1,2, ...}

is the number of Successes in d,t]). Times (number of trials)

t between successive Successes are IID and geometrically distrib-

k-1
uted (P{t = k} = q p) . The number N(t) of Successes in

fixed time is Binomial (p , t) , and is in turn approxi-

mately Normal (tp, tpq) as t •+ °°. Of course Bernoulli trials

describe the outcomes of many other repeated trial situations:

for instance, the number of jobs submitted to a processing

facility requiring more than x time units of processing may

be modeled as a Bernoulli counting process with p = 1 - F (x)

,

F being the distribution of job processing time.

Generalizations of Bernoulli trial situations may be (a)

to variations of success probability with trial number ("time",
t

or "space"): P{X. = 1} = p.. Here E[N(t)] = I P- and11
i=l

1

t _ ! t
Var[N(t)] = I p.q. £ tp(l-p), where P = 7" I Pi' so variability

i=l i=l

is under-represented if trial-to-trial probabilities change, but

12



a Normal approximation to N(t) may still hold. A second qeneralization

is to (b) independently randomize p in the Binomial distribution,

say according to a Beta distribution, creating the Beta-Binomial dis-

tribution. This has found useful in reliability modeling and

in Bayesian inference. A third and important elaboration, (c) , is to

develop a statistical regression model for success probability p

based conveniently on the logistic function:

a+Bu.

P- = — T5— ; (2.3)
*i a+3u.

1+e
1

here u. (possibly a vector) represents the influence of other

factors upon success probability. Given observations of the

form (I., u.), where I. = 1 indicates success on trial i, one11 l

can estimate a and 3 (vector) by maximum likelihood; see

Cox [1969] • Generalizations to multiple-category situations are

possible, and computational methods for parameter estimation

and model assessment have been devised; see Pregibon [1901J.

The distribution of the number of counts N(t) in t trials

of a Bernoulli trials process can be computed by making use of a

forward equation . Let

P. (t) = P{N(.t) = j |N(0) = 0}.

Then

P.(t) = P. (t-1) • (1-p) + P._
1
(t-1) -p;(0 < j It); (2.4)

on the basis of conditioning on events that have happened up to

t-1. One can generalize to non-stationary success probabilities

easily:

13



P. (t) = P. (t-1)- (1-p ) + P. (t-l)p. . (2.5)
J J T. J X XL

Initial conditions may be

P
Q (0) = 1, P. (0) =0, j = 1,2, ...

A further generalization allows success probability to depend

upon the number of previous successes; then

Pj( t) = Pj( t-l)U-p. <t
) P^U-Up^^ , (2.6)

and the distribution P. (t) can easily be computed recursively

given the success probabilities

p = P{N(t) = j+l|N(t) = j} . (2.7)

This is a preview of ideas of Markov chains, to be treated later.

These expressions are introduced to suggest early that the answers

to interesting and comparatively complex problems can be directly

computed numerically (in this case iteratively, starting from

the initial conditions) . Closed-form expressions such as the

Binomial distribution are handy, and Normal approximations are

even handier, but one need not modify the facts merely for the sake

of convenience.

14



(3) Sums of Repeated Trial (IIP) Random Variables; "Large

Deviations "

Models for total demand for physical inventory or for

facility (computer) time often naturally involve sums of varying

components, modelled as rv. ; thus total demand from n sources,

or over n time periods, is

S = X, + X n + . . . + X .

n 1 2 n
(3.1)

If X^ is the (dollar) profit in the ith year for some enterprise,

then a financial measure of success is

n
S (r) = y X.r 1

n -, i
i=l

(3.2)

where r is a discount rate (0 < r < 1)

Situation . A computer center experiences varying monthly demands,

X. for the ith month. Here are answers to several simple

questions involving sums of X.s.

The expected yearly (n-period) demand is

n
E[S ] = I E[X. ],

n-1

,

L
- l

i = l

(3.3)

the sum of the expected monthly demands, and also

n

Var[S ] = I Var[X.]
n . , i

i=l
(3.4)

provided the X.s are uncorrelated . Importantly, as n

F ,(x)
n

P<

S - E[S ]n L n

/VarLS Jn

< x > % /

1 2
"2 Z

= $ (x) ,

'2n
(3.5)

15



i.e. S becomes approximately Normally distributed no matter

what the distributions of X
.

, by the Central Limit Theorem,

provided the X. components are all of about the same size

(certainly if they all come independently from the same parent

distribution with finite mean and variance). For smallish n or

distinctly non-Normal components the approximation is improved

by an Edaeworth expansion (Feller [1966]), wherein for the eaual

component example

F gI(x) = $(x) +

n

ry 3

3
(x

2
-l) |* + R (3.6)

dx n

where R =
n

1

/n~

densities. Here y = E

6/n

, and the components are assumed to have

3
(X - E[X])

y
3and the term —^ = y

G

is the conventional dimensionless skewness measure for a dis-

tribution, being zero for symmetric distributions (Normal)

,

and being +2 for the Exponential. Additional terms involving

kurtosis (4th moments) improve the approximation, but it is

possible that Edgeworth numerical values can be "infeasible"

:

the approximation can actually decrease with x in certain

ranges. Nevertheless the Edgeworth series has been usefully applied,

even to unequal component situations, for estimating the loss

of capacity of an electric utility; see Levy & Kahn [1981].

A useful alternative is the method of large deviations ,

Feller [1966], Daniels [1954], and others. The ingenious

idea is to tilt (or sculpture) the df. components so as to make

a Normal approximation more effective at predicting the prob-

ability that S > x for large x. For equal components with

16



d.f. F(x) look at the tilted probability measure (assumed to

exist for s > 0, which sometimes restricts the theoretical ap-

plicability) :

v(dx) =
eSXF(dx) n 7>viaxj

, (3.7)
e

/v sX
ip(s) = £n F(s) = in E[e ] being a cumulant generating

function for F, or X. Manipulations show that

'{S
n

> z} = / F
n
*(dz) = e

n^ (s)
J e"

SX
V
n *

(dx) ,

(3.8)

n*and the idea is to approximate V by a Normal centered at z,

a feat that can be accomplished by choice of s. It turns out

that it is necessary to solve (sometimes numerically) for s(z)

the equation

z = nip' (s) (3.9)

in order that the mean of the approximating Normal be at z

;

the variance is nij;"(s). Finally,

P{S
n

> z} % exp n{i|>[s(z)] - s(z)^'[s(z)] + | s
2

(z) ty" [ s (z ) ] } x

1 2
oo -—v

i- / e
2

dv . (3.10)

s(z)/mj/'Ls(z) j

The above technique can also be applied to a compound

Poisson model (n is replaced conditionally by N(t), the

counting process of a Poisson process, and the condition then

removed) . Such models are frequently employed in inventory

studies; apparently the large deviations approximation has not

been applied in that area.

17



( 4 ) Bernoulli Trials and Poisson Process: Rare Events

Bernoulli Trials are a special case of the Repeated Trials

model, with events occurring ("Success") or not permitted to

occur ("Failure") at specific integer time points, often equally

spaced. In practice the fixed intervals between trials may

be largely arbitrary, and it is attractive to think of events

occurring at any (real-valued) time; from this comes the Poisson

process. One approach to the P.P. properties is to consider a

B.T. process to operate over time t with unit time steps, and

then refine the time steps (e.g. let t = 1 day and starting with

possible demands at 15-minute intervals, then down to 7.5 minutes,

then to 3.75 etc. ) to create a sequence of B.T. models. The

limit of the sequence after ultimate refinement describes the

P.P.

Specifically, let T(k) be the generic time between successes

in the (kth) B.T. model with time steps 1/2 (k = 0,1,2, ...).

This means that the actual number of steps in time t for B.T.

model k is 2 t; correspondingly, let the probability of success

per step be p/2 . By conditioning on the first step's outcome

this means that

E[T(k)] = l/2
k

+ (1 - p/2
k

) • E[T(k)] (4.1)

so E[T(k)] = — for every model, as should be true. Furthermore,

as k -> °° so time steps become arbitrarily small,

P{T(k) > t} = (1 - p/2
k

)

t ' 2 * e"
tp (4-2)

inter-event times become exponentially distributed in the (P.P.)

18



limit. Furthermore the number of P.P. events ("Successes")

in time t have the Poisson distribution.

The P.P. is usefully invoked for many modelling purposes.

Situation . Consider a sequence of days on which demands for

computer service (time) are made, and focus on the occurrence

patterns of runs (uninterrupted sequences) of h igh-demand days.

Question: what is the distribution of times between successive

runs, and what is the distribution of the number of such runs

in a fixed time t? It will turn out that if either the run

lengths are long, or if the probability of a high-demand day

is small, that runs tend to occur as a Poisson process if the

time scale is appropriate.

Model . Begin by modelling individual high demand day occurrences

as successes in B.T. Let t, (k) represent the time until the

1st occurrence of a run of length k, and, measured from the end

of such a run, let t, (k). , t-UOi ... t^Oc),.. be the time until

the 2nd, 3rd, ... ith, such run is realized. By the B.T. as-

sumption {t.. (JO, i = 1,2, ...} is an IID sequence of rv.

Then we can represent x (JO by conditioning on the events that

may occur in the first k trials:

with prob. p

x(k)

1 + t' (k) with prob,

j + t
1 (k) with prob. p-1 q

k-1
k + t' (k) with prob. p q

(4.3)

19



where x 1 (k) is an independent replica of any x (k) : the idea is

that the process starts over once a failure occurs to spoil a run.

Alternatively

,

T(k) =
\

k with prob. p

R(k) + t' (k) with prob. l-p
]

where

j-l
P{R(k) = j} = 23^— ,

1-p
3 -Lf '/ •••/ K

,

(4.4)

(4.5)

a truncated geometric distribution. From these come the

generating function of t (k) , and in principle its distribution:

[z
T < k >] .

k k
z p

1 -- qz
r

i-(pz)
k
l

l-pz

Differentiation gives the mean

E[x(k)] = k + ^
P

1_ kp^
1-p , k

1-p
_

Qj

P
K
(1"P)

(4.6)

(4.7)

the approximation holding if either p -> or k * °°. In either

case the run is a rare event.

While explicit inversion of the expression for E[z ]

is possible by use of partial fractions, the result is quite

complicated. On the other hand, look for the distribution of

T*(k) = t (k)/E[x (k)]

when E[x(k)] becomes large. The expectation

(4.8)
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E[e-
ST * (k)

] = E e
-ST (k)/E[T(k) ] (4.9)

can be obtained from the generating function (by putting

z = exp[-sp q]); next let either p-*0 (rare individual events)

or k->-°° (long runs) to find that this transform converges to

(1+s) . Then by the unicity theorem for transforms (Feller [1966])

the normalized rv t* (k) is approximately unit exponentially

distributed, i.e.

P{x(k) < t E[-r(k)]} % 1 - e
_t (4.10)

and furthermore the distribution of the number of k-runs in time t,

N, (t) , is approximately Poisson. Deviation from the Poisson

(indicated by over-variance) may signify that the underlying

demand generating process is inhomogeneous or cluster-prone in

time, and that extra facilities are required to reduce backlogs.

Examination of runs is one way to check the validity of the

basic modeling assumption of Bernoulli trials.

Similar limiting arguments simplify other situations in-

volving rare events that are generated by even more complicated

processes. See work on first-passage times for combinations of

random loads by Gaver, Jacobs and Latonche [1981],
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(5) Markov Models: General Comments

The basic theory of Markov chains and processes, both in

discrete and continuous time, is well introduced in standard

texts such as Feller [1966], Chung [1967], Karlin & Taylor [1975]

Kleinrockf 1976], and needs no systematic coverage, only review

and illustration. By way of review, recollect the ideas of

various possible state space definitions: integers, integer

and real numbers ( "ages" ) , real numbers (e.g. virtual waiting times

in queues) ; times (index sets) either discrete and

equally-spaced or imbedded or continuous time; Markov property

defined by conditional probabilities ("The future is independent

of the past, given the present"). Carry on to matrix represen-

tation of the state probabilities after t (0,1,2,...) time

steps, forward and backward Chapman-Kolmogorov equations,

generalize to discrete state Markov chain in continuous time

with exponential sojourns in states, state classification

emphasizing irreducible chains and transient chains (with at

least one absorbing barrier) , recurrent events and first-passage

times and absorption probabilities, generating functions and

other transforms.

Simple Markovian assumptions, i.e. that a scalar state

rv X(t)f where t is time or space, is Markov, introduce de-

pendence in a plausible and tractable manner. Usually it is

necessary to assume, for example, that the one-step transition

probabilities (discrete state, discrete time):

p±
. = P{X(t) = j |x(t-l) = i}, (5.1)
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are time-homogeneous in order to obtain explicit neat solutions.

Analogous assumptions must be made about discrete-state Markov

processes in continuous time, wherein A. is the rate of de-

parture from state i (exponentially distributed sojourn time

parameter), and p. . is the corresponding probability of move

from i to destination j. Of course a known deterministic

time dependence, involving daily or weekly cycles, and trends

can be dealt with by numerically multiplying the transition

probability matrices.

More irregular changes in process behaviour can be repre-

sented as the effect of randomly changing external events, or

random environments for short. In such models the actual

primary process transition parameters (e.g. p. ., or A.)
-*- J

change in time under the influence of such environmental

factors as seismic vibration, temperature and humidity, ocean

sea state, wind speed or other meteorological ef fects , or

variations in personnel effectiveness and propensity for errors.

Random environment models conveniently postulate that environ-

mental changes induce simple discrete-state Markovian behavior

on the basic or primary process parameters; of most interest are para-

meter changes that occur more slowly than do state changes in the

basic process.

Markov modelling of real situations usually involves simplifi-

cations at certain crucial states. Even then, the answers to

interesting questions may require extensive computing or simu-

lation. Astute choices of sub-models or component models,

e.g. the use of "phase-type" distributions for representing

arrival and departure processes in queues can be of help, as
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can the recognition (or plausible imposition) and exploitation

of special structure; see Neuts [1981],

24



(6 ) Some Markov Process Problems and Models

Here are some illustrative situations and corresponding

Markov chain models.

Situation (Queueing in discrete time). A servicing facility, e.g.

a computer system or a programming (or other) consultant, or

a communication channel, experiences single customer arrivals

in a random fashion; arrivals enter at the discrete times

0,1,2,3, ... only, and service completions occur only at such

times. Discuss the nature of the delays and backlogs that

occur.

Model 1 . Let the probability of a single arrival at time (epoch)

t be a. (t) , where i refers to the number present at that

epoch. Each arrival must wait at least one time period before

discharge, even if it immediately enters service upon arrival.

Let d. (t) be the probability that an arrival that has been

in service at t actually departs at t+1. Now let X (t) denote

the number of arrivals in the system who have not yet completed

service at time t. Model (X(t)} as a Markov chain with the

following one-step transition probabilities:

p. . (t) = P{X(t+l) = i + l|x(t) = i} = [1-d. (t)]a. (t)
1 / 1 ' X i J-

, i > l

p.
i _ 1

(t) = P{X(t+l) = i-l|x(t) = i} = d
i
(t) [l-a

i
(t)

]

(6.1)
p0fl

(t) = a
Q
(t)

P
,0

(t) = ^V^
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Pi±
(t) = 1 - {[l-d

i
(t)]a

i
(t) + d

i
(t)[l-a

i
(t) ]}

p. . (t) = otherwise;

If the number in the system is I , so the state space is finite,

and P i+i
ft) = ° and P

i i-l
(t) = d

i
(t) theD the Probability dis-

tribution of X(t) for any t can be obtained by numerically

multiplying the one-step transition matrices, p_(t) , with elements

aiven above

:

P..(t) = P{X(t) = j|x(0) = i} = element

in ith row, jth column of

t
p(t) = n p(t') (6.2)

t'=0

This can be done especially easily in APL if the process is

time-homogeneous, i.e. a. (t) = a. , d. (t) = d. independent of

elapsed time. Explicit analytical solutions can rarely be

found for non-time-homogeneous cases, let alone for time homo-

geneous cases. If they were availabler the solutions would

generally be very complicated and difficult to interpret.

Model 1-A . Specialize the above to let a. (t) = a>0 and

d. (t) = d>0. If the maximum number in the system is I, there

is a stationary solution; put s = — , a = 1-a, d = 1-d:
ad

(d-a)d
TT„ =

dd-aas

(d-a)s 3
(6.3)7T .

dd-aas

^ _ (d-a)as

dd-aas
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Furthermore, if s<l then the process tends to drift towards

and even if there is no upper bound on system states the process

is irreducible and ergodic so the long-run distribution is

tt. = ^ s j
, j = 1,2, ... (6.4)

J dd

a modified geometric distribution, some form of which so often

appears in queueing problems. The above simple special case is

well-known, but can be useful for checking the accuracy of

computer programs used to compute numerical solutions to the

time-dependent case

•

Model 2. Let a. h (t) be the probability that at time t there

occurs a bunch of arrivals of size b(b = 0,1,2, ...), given that

i are awaiting service and will not make further demands. For

example, suppose there are I total customers, e.g. computer

terminals accessing a central facility, and that each applies

for service independently with probability a(t), provided that

it is not undergoing service. Then

a
±fb

(t) =
(

I

^
1 )[a(t)]

b
[l-a(t)]

I " i "b
,

and for k >_ ,

Pi, i+k
(t » - 5

i
(t)a

i,k
(t) + d

i
(t » a

i, k+ i
(t) -

,6 ' 5)

while

Pi,i-l (t) a
i,0

(t,d
i
(t)
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Again the probability distribution of X (t) can be numerically

computed.

Model 2 -A . Suppose the arrivals are caused by a common event

(a "common-cause" in engineering parlance) . This might be the

occurrence of an earthquake of large magnitude, or other en-

vironmental shock. Let such an event occur at time t with

probability c(t); let the probability that b arrivals

(demands for service) occur as a result be conditionally binomially

distributed with parameter 6. Then

I - i
\fi

bn_ fi 1
I - i -b (6.6)

^i,b
(t) = cttM^e-Ei-ft]

This can again be used to form one-step transition probabilities,

and to calculate state probabilities at any time. The present

model allows for a catastrophic shock situation: if 6=1 then

all outstanding customers simultaneously demand service, i.e.

I-i arrivals occur simultaneously. This differs from Model 2.

Situation (Queueing with breakdown of service or preemptive

priorities). Suppose a single server, e.g. computer facility, or

data transmission channel, is confronted by a random arrival

stream of basic service demands. These demands may be characterized

by their service times, or work request durations such as the

times required to transmit single bodies of data or digitized

messages. In addition, these services may be effectively prolonged

by the occurrence of interruptions, e.g. from internal server

breakdowns resulting in temporary processor unavailability, or
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from environmental noise or even intentional jamming. How is

the queue size and waiting time of demands affected by such

interruptions? What steps can be taken to reduce the interruption

effects?

Model . Nearly all classical queueing theory is most conveniently

developed if the service times of the individual demands are

independent"! v and identically distributed (I ID); see however

Jacobs [1978, 1980] for discussion of a model involving correlation

effects. If service times are to be interrupted and repeated,

or alternatively resumed , an interruption process that preserves

the IID character of the basic service times allows nearly direct

adaptation of conventional theory; such a process is one that

requires exponentially distributed ( "memory less" ) periods

between successive interruptions, and this will be assumed.

Checks of the sensitivity of results to this reasonable

assumption can be made by simulation.

If interruptions of IID duration X (df F (x) ) occur at

IID Expon(A ) intervals, then the time to complete the ith

basic service (low-priority) is, provided service can resume

after each service

C
i

= S
i

+ X
l

+ X
2

+ •'• + X
I(S.) ' (6 ' 7)

where S. is the ith basic or low priority service time
1 —

(df F (x) ) , X. is the duration of the jth interruption, and

I(S.) is the number of interruptions that occur during S..
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Given S., I(S.) is Poisson (A ) , and the Laplace-Stielt jes11 n

transform of C. is, in terms of

F
c
(s) = F

s
[s+A

H
(1-F

x
(s) }] (6.8)

and hence

E[C] = E[S](1+A
H
E[X]}

E[C
2

] = E[S
2
]{1+A UE[X]}

2
+ E[S]A UE[X

2
].

ri n

(6.9)

If, on the other hand/ basic services that are interrupted must

begin again from scratch, i.e. services must repeat , then the

i th completion time becomes

C. = S. + X1+S| + X
2

+ S* + ... + X
I(S _ }

+ SJ.
(Si ,

(6.10

where S '. is the ith interrupted basic service time that must
D

—
be repeated. The L.-S. transform is

F (s) = E<
c

-(A
H
+s)S

A
H
+s

A TT r - (s + A rT )S

1-e H

>, 6.11

and by differentiation of the latter expression,

r AS-
E[C] = ^E H

1 E[X] + \
II

(6.12

t A..S 2-,

E[C
2

] = 2E (e
H

-l) E[X] + i
J I

A
11*

+ 2E Se (E[X] + \-
A
H

+ V 1 2
E(e " )-l) (E[X"] + 2E[x].f- + ^
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In order to assess queueinc delay, look at the process, {N,,d=0,l 2

describing the number of basic demands at the server at the instants

just following departures; {

N

d , d - 1,2, ...} is an embedded Markov

chain provided basic arrivals are (compound) Poisson. The

N,.
1

= H , + A(C,.,) if N , =
d+1 d d+1 d

= N + A(C,,
1
)-l if N, > 1 .

d d+1 d —

(6.13)

Here H is the number of basic (low-priority) demands made at

the beginning of a basic service busy period initiated by the

appearance of a high-priority demand, and A(C,) is the number

of basic demands made during the dth basic completion time.

Express an arbitrary H as follows

A
Lwith probability t—t-t—

H - L H
^
H (6.14)

A(X) with probability t—-^

—

A
L
+A

H

It follows by conditional expectations that the embedded chain

is ergodic if E[A(C)] < 1, and that then the long-run probability

of system emptiness at an embedded time point is

1 - E[A(C)3
p = lim P{N =0} = -

r^ J (6.15)
O j d ELHJ

and the long-run expected occupancy is

E[N] =
2(1-E[A(C)J) {

E[(H + A ( C ))
2
]P + E[(A(C)-1)

2
](1-P )}.

(6, 16)

Delay can then be estimated by use of Little's formula. A version

of the above formulas correct in continuous time may be found using
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results of Gaver [1962],; the difference between embedded and con-

tinuous time becomes comparatively negligible if the basic

traffic intensity E[A(C)] is close to, but below unity ("heavy

traffic"). Since computer system monitoring devices sample

system state at the moment an event occurs (e.g. at a departure

instant) a theoretical account of the queue at such moments

(imbedded times) is of direct interest.

An alternative approach to the long-run distribution of

delay of an arriving basic demand is by way of Wald's identity

or martingales; see Feller [1966] . This will actually handle

waiting-times when the basic service inter-arrival intervals are

IID, but otherwise arbitrarily distributed. Still another ap-

proach is via the Takacs-type integro-dif ferential equation^ see

Kleinrock [1976] for an account.
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The previous situations have been discussed in terms of long-

run probabilities. Frequently questions involving the time until

system failure (or restitution to operational condition) are more

important.

Situation (Redundant repairable systems) . A particular system

function can be performed if at least k out of n system com-

ponents ("machines") function. For example, electric power is

available if at least one generator is working out of two that

are installed. Suppose that the system components are all operative

initially but fail randomly; failures are immediately detected,

but repairs are of random duration, so several machines can be

down, all awaiting repair completion. Question: how long will

it be until I = n-k+1 components are simultaneously in a failed

condition? The time until this occurrence is the time to failure

of a k - out-of - n system.

Model 1 . It is now convenient (but possibly unrealistic!) to assume

that the machines fail independently and after exponentially dis-

tributed times in operation, each with rate A. This simplification

may be relaxed, but at the price of expanding the state space.

Assume too that the repairs occur in a Markovian manner, e.g. (but

not necessarily) at rate y -Min (N (t) ,R (t) ) , where N(t) is the

number of machines failed and down for repair at t, and R(t) is the

number of repairmen on duty. This is the classical machine repairman

problem; see Feller [1966], and Cox and Smith [1962]. Usually R(t)=r,

a constant, although provisions may be made for automatically in-

creasing repair effort when redundancy reserves become dangerously

low. In other words, N(t) is a simple birth-and-death Markov

process, wherein jumps in state, N(t), occur at exponentially dis-

tributed intervals or sojourn times , S^ for the sojourn in state i,
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transitioning always to neighboring states. In the present

situation as A -*

P{N(t+A) = i + l|N(t) = i} = A(n-i)A + o(A)

= A. A + o(A)
1

P{N(t+A) = i-l|N(t) = i} = y min(i,r)A + o(A)

(6.17)

= y . A + o (A),

abbreviating the general transition rates, to A. and p. .

In order for system state to reach i+1 from i for the

first time it must either do so on the first transition out of

state i, or else drop back to i-1, return to i and try again

Thus if U. is the local first passage time from i to i+1:

U. = inf{t: N(t) = i+l|N(t) = i}. (6.18)

write

U. = S. + {
l l

with probability p. . ,

U! , + U! with probability p. . ,
l-l i r J r i f i-l

A .+y .

l l

(6.19)

y
i

A .+y .

l l

where U! has the same distribution as U-. The above repre-

sentation allows immediate derivation of the Laplace-Stielt jes

transform of U. by conditional expectations. The result is

-sU A .

E
^i

(s) =
s+A.+y.[l-ij,. I (s)J '

1 = 1

l i L ^1-1
= 12

(6.20)

^o
(s) =

A-Ti •
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Furthermore, since the first-passage time from N(t) = i to j > i

can, on the basis of Markovian assumptions, be expressed as

T. . =U. + U. , , +
i] 1 i+l

+ U
j-l

(6.21)

where {U. , , k = 0,1, ...} are independent rv, the L.-S

transform of T. . is
ID

-sT. . j-l
n

k=i
n ij>

k
(s) (6.22)

and the cumulants (moment-like quantities; see Cramer [1946])

can be expressed in terms of those of the U- . Here are a

few moments of the U.; recursively expressed and hence easily

computed

:

:[u
± ] = b{ 1 +

^i
E[u

i-i ] }'

K, + UiEEu.^]} + Jr E t ui-i3
AT
l

E[u 3] . 6
(, + p.ECu.^]}

3

+ ^ jl + Mi
E[0..

1
]}E[u2_

1 ]

and

+ £ K[UJ]
1

(6.23)

E[nJ] - % {i + v
± EtUi.^}

4

+^ {l + ^[U.^]}^^]
A . A .

6y 2 8y .

E ^ ui-i ] +
-TT i

1 +
^i

E f ui-i ] E[u
i-i ]

i „r„4
+ ji eCU^]
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From these, standard variance, skewness , and kurtosis measures

can be easily computed. For the repairman model discussed

initially it can be shown that if the expected time to system

failure, E[T
n ] , is "long" then T /E[T „] resembles anL o£ ox/ L ol

Expon(l) rv.

Model 2 . (Catastrophic failures) . Suppose that in addition to

the independent random failures there is a catastrophic event

that "kills all operative machines simultaneously; let it occur

after a time C ^ Expon(v). Then the system failure time T*

has distribution given by

P^T*
£

> tl = p{t
o£

> tl e"
Vt (6.2.)

and from this

E[e
ST
°^ = iz£

- (s+v)

T

s+v
(6.25)

from which moments can be generated; see Chu and Gaver [1977],

It is sobering to note that if v , the mean time to catastrophe

occurrence, becomes small or even comparable to e[t „ ] , then

the mean time to redundant system failure is essentially v ,

and redundancy alone may not improve system reliability.

Model 3 (Simultaneous repair) . If the system is not under con-

stant surveillance, but instead is inspected at random times

(rate y) and then repaired in negligible time, the number of

down machines at t may jump essentially instantaneously, either

to zero (perfect and rapid repair) , or to some lower point

(imperfect repair) . In this case the basic "skip-free up"
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character is retained, but now

with probability p

U. = S. + <

1 l

i,i+l

U! + U! + U! + ... + U! . with probability p.

j = 0,1,2, . . . i. (6.26)

Note that if j = then repair is completely ineffective

Conditional expectations now give the L.-S. transform

-sU.
E[e

1
] = ^.(s) = V S)Pi,i+l

(6.27)

l-n
±
(s) I n i>

=l l r=l
l-r i/i-:

-sS.
where here n. (s) = E[e x

] = a. (a.+s) . To specialize this to a
l i

repair model, introduce a Binomial distribution for successful repairs

a . = X (n-i) + u

pi,i+l
= X(n"i) a ^

-1

i
(6.28)

p . . . = pa

.

l
P
j (1-p)

i-D
j = 0,1,2, . . . , i

where p represents the probability that an individual down

machine is indeed repaired just after inspection (neglect the

duration of repair times) . The Binomial model assumes that

repair success is independent across machines, which may be

inappropriate in case similar causes give rise to the failures.

Differentiation or direct expectations yield moments of U.

and eventually of T
p

.
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(7) Diffusion and Fluid Approximation

While classical discrete state space Markov process ideas

can often be used to model some quite interesting situations,

the analytical results obtained frequently emerge only in terms

of incomprehensible transforms, or in other somewhat obscure

form. Not infrequently the difficulty that induces complexity

can be traced back to the influence of boundaries upon the

process transitions. If one examines a rather heavily loaded

or congested service system, however, it is apparent, first,

that the state changes may appear almost negligibly small relative

to the system state magnitude (e.g. length of queue) itself,

and, second, that annoying boundaries, particularly that at

zero, are visited infrequently although their influence

may still be crucial. These remarks hold true not only for

simple one-dimensional processes, such as those used to describe

congestion at a single servicing facility, but also for much

more complex situations involving the interaction of several

servicing processes.

An attractive approach to problems involving many customer

arrivals occurring rapidly and generating considerable queueing

is, then, to treat them by the method of diffusion process

approximation. For details concerning the rigorous details of

diffusion mathematics see Feller [1966]; in brief summary recall

that a diffusion is a possibly vector-valued Markov process on

the real numbers that typically moves continuously, governed by

a drift (infinitesimal mean) and a diffusion (infinitesimal

variance) parameter.
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This approximation has been employed by Kobayashi [ ] for certain

cyclic networks of queues such as are encountered in multipro-

gramming computer systems. See also Gaver and Shedler [1973],

and the important work of M. Reiman [1982], and particularly

G. Newell [1979] and also McNeil and Schach [ ] . In this section

the use of diffusion will be briefly illustrated, and some ex-

perience with the results will be recounted.

Situation (Waiting time or backlog at one server) . Suppose a

single servicing facility is confronted by random arrivals that

bring with them contributions to work load, expressed as re-

quired processing times. If the facility processes them in

order of arrival, what is the backlog at time t? The facility

is heavily loaded, so that it is seldom idle. It never turns

away customers, i.e. infinite buffering is possible, nor do long

delays discourage those waiting, causing defections or balking.

Model . Assume that arrivals occur in a Poisson (A) process,

and that the generic processing time S has df G (y) ; successive

processing times are IID. This model has been studied by Takacs

] who derived an integro^differential equation for the df

of backlog or virtual waiting time W(t). Although the formal

solution of that equation can be obtained, it is in a somewhat

complicated form, not conducive to immediate insights. It is

tempting to take an alternative, somewhat heuristic approach.

Intuitively, if p = AE[s] (= expected total load increment per

unit time) > 1 (= processing or output rate per unit time) , the

backlog grows at rate p - 1 > 0. Furthermore, the backlog process,
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W(t), "ignores the boundary" at W = after a time, and

eventually w(t) appears approximately Normal/Gaussian over an

interval (t, t+A)
, with mean (p-l)A, and variance Ae[s 2

]A.

Importantly, also, the process seems to grow by accumulating in-

dependent, nearly Gaussian, increments.

If p<l some difficulties occur because W=0 is an im-

permeable reflecting boundary, but the basic scenario is still

the same: if p is close to unity W(t) moves in nearly Gaussian

increments, but occasionally interacts with the boundary at

zero. Question: what is the long-run behavior of the delay

in such a process?

The Takacs (or forward Kolmogorov) equation for the "exact"

process is

- H + H = -AF + A / F(x-y,t)G (dy) (7.1)
o

where F(x,t) is the df of W(t); initial and boundary conditions

are necessary but are suppressed.

If F(x,t) is only appreciable when x is large, and if the

magnitude of a typical S is also small compared to x then

it becomes plausible to Taylor-expand the F (x-y , t) -term to

three terms and integrate; the result is

||
= (1. AE[s]) | + m|!ii!|

which is the well-known forward partial differential equation for

Brownian motion with drift. Impose the boundary condition that

F(x,t) = for x < 0, and the equation for F, an approximation
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to F, the "true" distribution of w (t)
r
emerges ; the latter

equation can be explicitly solved in terms of error functions

and exponentials (see Newell[l97l]) for all t; i.e. the transient

solution is actually readily available. With some further

effort one can impose an upper boundary at x > to repre-

sent a finite buffer size. The approximate steady-state

(t -* °°) distribution turns out to be

F (x) = exp -2(1-P)
x

AE[S
2

]

p < 1 (7.3)

which often is, for large p, usefully close to the behavior of

F (x) , the long-run solution to the Takacs equation.

Note that the parameters of the above differential equation

can be obtained by equatina infinitesimal mean and variance of the

assumed Poisson arrival process to the corresponding quantities

for the diffusion. It is interesting that, when available, a

martingale approach to the problem, of Gaver and Shedler [1973],

produces a different exponent that yields better approximations

for moderate traffic intensities, especially if the service time

distribution is very long tailed (more skewed than the expon-

ential) .

Turn now to a more complex example, involving the interaction

of two traffic dreams.

Situation. At a node of a communication network there are a

total of c+v channels (servers) ; voice messages are exclusively

assigned to the v channels, and data messages are assigned

to the c channels, but may also utilize any unused voice
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channel capacity under the stipulation that voice has preemptive

priority and may displace any data encroaching on its (v-channel)

territory. Question: what is the nature of the delay experi-

enced by the data, which is allowed to queue up in a buffer in-

definitely?

Model (Markov assumptions). Voice traffic is Poisson (A) with

Expon (y) service times; voice is a loss system, so immediately

the steady-state voice loss rate can be calculated using the

Erlang-B formula. The data, however, operates in a

random service environment modified by

voice needs. Data arrives in an independent Poisson (5) process,

with independent Expon (n) service times. Typically 6 >> A,

and n >> y. Data, with state variable X (t) , is an M/M/S

system where S = c+v - V(t), V(t) being the number of voice

messages in service. Clearly (X(t), V(t)} is a bivariate

Markov process, but one difficult to analyze exactly; see

references in Lehoczky and Gaver [1981] for other approaches

to the analysis.

Now typically n/y (.= Data arrival rate per voice service

4
time) is very large, possibly 10 . Furthermore often

p, 5 6/ri > c, so some voice channel usage by data is necessary

in order that all data be handled and there is not an evergrowing

queue. The appropriate traffic intensity parameter for the

system is seen to be

P = [pd
+ Pv

(l-q)](c+v)
_1

(7.4)
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P
V
/v!

vwhere p = A/y, and q = —
v v .

I pVj:
j-0

v

is the probability that the voice system rejects an arriving

voice message. If p becomes large under such circumstances,

Gaver and Lehoczky [1982] show that X (t) behaves like a Wiener

process with reflecting boundary, precisely as was mentioned in

the previous example. Actually Lehoczky and Gaver [19 82]

assumes that data input acts as a fluid , with no variability.

By further, more intricate, methods involving the convergence

of semigroups of operators developed by Burman [1979], it is

shown in Lehoczky and Gaver [19 81] that the long-run distribution

of X (t) is exponential with mean

where

v-1
p J + —
d yp

-
I (Tt/TT )

r i=0
(c+v) (1-p)

(7.5)

and

tt. = pV(i!)/
1 v

r v

I P^/(iD
Li=0

T
k

=
I 7T

i
(i-p

v
(l-q))

i=0

Numerical work indicates that the diffusion approximation is

reasonably accurate if the traffic intensity is quite high, say

if p > 0.95; otherwise, for smaller s, the accuracy is not as high

It would not be surprising if a refined method for fitting drift

and diffusion coefficients would lead to improved results.

Finally, the difference between the refined treatment of

basic data as a Poisson, and the simpler treatment by a

fluid (yielding a model that can be solved exactly) resides
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merely in the addition of the term p , in the numerator of the

expression for the mean.

The diffusion approximation can be utilized to evaluate

another interesting measure of system effectiveness, namely

the expected total waiting time, in job or data-packet hours,

expended during a busy period for data traffic that starts with

x present.

Model . Let A(x) be the expected total waiting time during

a busy period when the initial number of jobs is X(0) = x > 0.

Condition on process change, Z (A) , during the initial short time

period (0,A) to get

e|/ X(f )dt' |X (0) = x, X(A) = x + Z (A)
|

E

(7.6)

A(x;Z (A)) = xA + A(x+Z (A)) + o (A) .

Now Taylor-expand and remove the condition on Z(A):

2

A(x) = xA + A(x) + A (x)y(x)A + A (x) • °—^- A + O (A) (7.7)

or, collecting terms in A and letting A *
,

= x + y(x)A
x

(x) + |a^
x)

A
xx

(x), (7.8)

to be solved subject to A(0) = 0- clearly restrictions on y (x)

are necessary in order that A(x) be finite.

2 ?.

I* y (x) = y < a ' (x) = a , both independent of x, the eauation

can be solved directly to give
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A(x) =h*
2

+ vi * '
<7 - q)

y<0 when traffic intensity p<l. A similar expression

for compound Poisson (A) inputs is

A(x) =
r7f-T +

X E[A2]
, p<l, (7.10)

' u P; 2(l-p)

where A represents the number of items (packets) arising at

a single request; p = Ae[a]. The moral is that variability

(measured by a or E[A ]) can greatly increase expected

total waiting time, particularly when system loading is high

(p close to unity)

.

For application of this "area under a random path" to discussing

total wait during a road traffic jam see Gaver [1969J . See also

McNeil [1970] for generalizations. The same backward argument is

well-adapted also to studying problems of optimum investment

decisions.
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8 . Renewal-Theoretic Modeling

Ideas of renewal theory and recurrent events are extremely

useful for many purposes in stochastic modeling. Recognition

of the occurrence of one or more recurrent events or "renewal

points" in the development of a model process points the way to

writing down simple forward or backward type equations for

probabilities or expectations. Frequently analytical information

can be extracted from such equations, particularly that relevant

to long-time or other asymptotic process behavior. If more in-

formation is desired it can be obtained by use of transform

techniques, by numerical computation, or by Monte Carlo simulation

Mathematical definitions and properties of renewal processes

are well presented by Feller [1966], Karlin and Taylor [1975],

and Cox [1962], among others. There follow a few situations and

suggested models based on renewal theory that illustrate the

basic notions. We also comment on the relevance of the models

and results obtained to real situations.

Situation . A machine, e.g. computer system or component thereof,

or human operator, etc. , operates properly for a period of time,

fails, is restored (or restores itself) to service and operates

properly again for a different time, fails again, and so on.

Questions: how many failures are likely to occur in a given

fixed period of time, say a year? The answer to such a question

will help to guide decisions concerning logistics (necessary

spare parts) and employment of repair personnel. How long

a time will elapse until the k— failure? Suppose the times

to restore failures vary; what is the likelihood that a "chance"
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user of the system will find the machine down for repair when

he or she needs it, and how long will the wait to service

restoration last? These are only a few of the many questions

that might be asked.

Model . The classical renewal theory model for the situation

described portulates that times between successive failures,

{X-, i = 1,2, ...} are IID positive rv with distribution

F (x) . That is X, is the time until the first event (here

• -, st , • th
failure) , and X. is the elapsed time between the l-l— and 1

—

event. X. can be either a discrete random variable, so failures

occur at regular intervals, say hourly, a continuous random

variable, or a mixture. For the moment assume repairs to take

a negligible time.

Mathematical results for this model are simplest and

nicest when the IID assumption is fully exploited. Under that

assumption (and even more generally) the counting process, N(t),

giving the number of renewal events (failures in time t) has

probability distribution

P{N(t) = n) = f£* (t) - F^n+1) *<t) (8.1)

where * refers to convolution. For long time (t -*- °°) and under

suitable mathematical restrictions

M(t) = E[N(t)] ~ ^J (8 ' 2)

Var[N(t>] -
Var[X]

,
t

" (E[X])
3
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and N(t) ^ Normal, with the above parameters. Of course exact

analytical solutions can be obtained if sympathetic distributional

models are assumed: taking X ^ Expon. yields the Poisson

distribution, and X ^ Gamma or Erlang also produces rather neat

closed-form solutions. Any discrete-time distribution for X

can be numerically convolved, conveniently using APL. This

helps to answer questions about the number of events in (0, t)

,

provided the IID assumption is palatable. If finite-time results

are needed resort can be made to numerical summation, using a dis-

crete time model, to approximation by a standard, tractable,

distribution such as the Gamma followed by transform inversion,

or by simulation.

In what follows we illustrate the diverse utility of

backward conditioning arguments, leading to renewal integral

equations.
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Situation . (Incorrect repair possibly due to human error) . Each

time a repair is made there is the chance that it will be incorrect,

and that the subsequent time to failure will be short. Suppose

that incorrect repairs tend to bunch together in runs; describe

the number of failures that occur over a (long) time period.

Notice that a similar situation describes a clustering

scheme of arrivals to a repair facility or a communications center.

Model . Assume that the generic time to failure of the system is

X when repair is made properly, and X' when repair is incorrect;

the intermingled sequence of X and X 1 quantities are condi-

tionally independent. Furthermore, let the probability of a

correct repair at failure n be a, 5 a 5 1, if the repair

at the time of previous failure n - 1 was correct, and 3 = 1-6

< 3 5 1 (a^3) if it was incorrect; the sequence of correct

and incorrect repairs is thus modeled as a stationary

ergodic Markov chain. This, of course, does not represent system-

atic improvements in repair capability, although a transient

chain could serve for that purpose.

Let M(t) (M'(t)) denote the mean or expected number of

repairs in t, given that the first repair was correct (incorrect)

;

think of the first repair (manufacture) as occurring at t = 0.

Argue that

1 if X > t;

M(t) = \l + M(t-X) if X<t and the 2nd repair is correct; (8.3)

1 + M' (t-X) if X<t and the 2nd repair is incorrect.

Likewise

,
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1 if X' > t;

M' (t) ]1 + M(t-X') if X' < t and the 2nd repair is correct; (8.4)

.1 + M* (t-X 1

) if X' < t and the 2nd repair is incorrect.

Now if the various conditions are removed then according to the

model there results the two linked convolution integral equations

t t

M(t) = 1 + a M(t-x)F
x
(dx) + (1-a) M(t-x)F

x ,
(dx)

.

and

(P. 5)

M' (t) =1 + 3 M(t-x)F
x , (dx) + (1-3) M(t-x)F

x , (dx) (8.6)

In turn, these two equations are susceptible to transforming:

multiply by e
-st

and integrate to get

M(s) = - + aM(s)Fv (s) + ctM
1 (s)Fv (s)

S X X

M (s) = ± + 3M(s)F
x ,(s) + 3M(s)F

x
,(s);

matrix notation is natural here, especially if more than two

repair states are used. If one then solves and collects terms

to order (1/s) as s -> , Tauberian theorems, cf. Feller [1966]

show that for large t

M(t) - M 1 (t) ~ a + R

aE[X' ] + 3E[X]
(8.7)

and a little reflection shows that this is entirely sensible.

In similar ways variances can be written down, and an approximate

Normal/Gaussian distribution for total failures may be derived.
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The model can also be extended to account for the existence of

non-zero repair times, and total availability studied.

Here is another, somewhat more complicated, application

of renewal theory ideas, now to an inspected system problem.

Situation . (Standby system availability) . A system, such as an

emergency electric power source, is usually in a quiescent or

cold standby status, but occasionally is called upon to fill a

function (e.g. generate power) . Various systematic plans might

be devised for assuring reasonably high system availability, or

probability of satisfying a demand when one occurs. One such

plan is to inspect infrequently so long as no failure is detected

between inspections, and otherwise inspect more frequently until

evidence of need seems gone. Problem: develop a model to evalu-

ate such an inspection scheme.

Model . Let the inspection plan be to inspect at long intervals,

{L., i=l,2,...} until such time as an inspection reveals a fail-

ure, and then switch to short intervals {S., i=l,2,...}, con-

tinuing until there has been a run of r(10,say) failure-free

short-interval inspections, at which time switch back to long

intervals; continue indefinitely. A measure of effectiveness is

the long-run point availability of the system, i.e. the proba-

bility that the system is failure-free on the occasion of a

demand.

To evaluate such a rule, allow the L. and S. sequences

to be IID and mutually independent, with dfs ft/ x ) and FS

^

x ^

respectively; if desired these latter can be specialized to con-

centrate at fixed values (e.g. 14 days and 1 day, respectively.
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Furthermore, let A be the failure rate of a system failing at

exponentially distributed intervals even when "cold." In order

to analyze the system by renewal theory it is worthwhile to look

at the periods during which inspection are infrequent, called

L-eras , and those alternating with them, during which inspec-

tions occur frequently, called S-eras. Note that a demand can

occur during either type of era, L- , and S-eras constitute

an alternating renewal process.

The analysis involves the following components.

(A) Distribution (density) of L-era duration.

Suppose an inspection has just been completed at t =

and nothing amiss has been detected. Furthermore, suppose that

this inspection marked the end of the previous S-era, so an L-era

is just beginning. Let a (dt) be the probability that the

present L-era will last for time (t,t+dt), or, loosely, until

exactly t. One can now write down a renewal equation for

a
L Cdt) :

a
L
Cdt) = (l-e"

Xt
)F

L
(dt) +

t

e"
At

'F T (dt')a_ (dt-f) ; (8.8)

the first term on the rhs means that the L-era terminates with

the first inspection, meaning that the unit has failed before

L, . The second term represents survival through the first inspec-

tion at which time the process renews itself or starts anew; final

failure occurs at time t-t' thereafter. Failure or no failure

at first inspection are mutually exclusive and exhaustive events,

and so the result is a renewal equation for a (dt) . Introduce

transforms to find
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F (s) -F (A+s)
a (s) = E[e -] = -±! £

. (8.9)
1 -F

L
(A + s)

The mean of the L-era duration, denoted by L, is

E [L] =
E[L]

. (8.10)
1-F

L
(A)

(B) Distribution of S-era duration.

If an inspection has just revealed a failure, an S-era

begins immediately (take inspection and repair to be instantane-

ous for the moment). Let a
q
(dt) be the probability that an

S-era lasts for time t. Then the following renewal equation

may be written:

t

a
g
(dt) =e" At F^*(dt) + h(dt')a

s
(dt-t'); (8.11)

the auxiliary function h represents the probability that an

inspection reveals a failure before the termination of the S-era

in progress; this causes the frequent inspection to start over,

i.e. starts the S-era afresh. In terms of transforms, S denoting

an S-era duration,
_ (F c (s+X))

r

a c (s) b E[e" S
-] = —

2

, (R.12)
b l-h(s)

and
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h(s) = [F
s
(s)-F

s
(X + s) ] •{! +F

s
(s + X) + (F

s
(s+X))

2
+ ... + (F

s
(s+X))

r 1
}

(8.13)

F (s) -F (s+X)
-S 2 [1-(F fs+X))

r
] ;

1-F (s+X)
b

The latter transform expresses the probability that the necessary

run of r successes is interrupted by a failure, and must begin

again. From the transform comes the expected length of an S-era:

(F_(X))"
r
-l

E[S] = E[S]{— } . (8.14)
1-F

S
(X)

(C) Probability that system is available during an L-era.

The probability A (t) that the system is up at time t

after the beginning of an L-era is simply e , the probability

of no failure, and the transform is

e
St

A
L
(t)dt = A

L
(s) = (X+s)"

1
. (8.15)

(D) Probability that system is available during an S-era.

If A (t) is the probability that the system is up after

an S-era has progressed for time t, by renewal

t

A
s
(t) = e

At
F
s

r
*(t) + h(dt')A (t-f) (8.16)

where h has appeared before, under (B) . It follows that
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A
s
(s) =

1 - (F
s
(s+X))

r

(s+X) [l-h(s)

]

(8.17)

(E) Overall availability at t.

Let A(t) denote the availability of the system at t.

Again by backward renewal argument, and starting at the beginning

of an L-era,

A(t) = A
L
(t) + A

s
(t-f)a

L
(df) + A(t-t')a

L
* a

s
(df ) ; (R.18)

transforms then give

A(s) =
A
L
(s) +A

s
(s)a

L
(s)

1 - a
L
(s)a

s
(s)

(8.19)

a Tauberian theorem now shows that

lim A(t) =
A
L
(0) +A

S
(0)

E[L] + E[S]

so long-run point availability is

A(oo) = (A
1

) {

(F
S
(X))

-r

E[L] (1-F
L
(X))

1
+ E[S] ((F

S
(X))

r
-l) (1-F S (X))

1
} . (8.20)

The expression for A(°°) is easily evaluated numerically

if expressions for L-interval and S-interval transforms are

obtainable. It is sometimes useful to interpret
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A (s) • s = A(t)e St
sdt (8.2,1)

as the availability of the system upon demand , the demand now

occurring at a random time D, D having the exponential

distribution with mean s . In this case the initial condi-

tions matter (they do not, in the long run) , and a different

availability figure is obtained depending upon whether the

system is initially in an L-era or an S-era.
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4. Additional Modeling Topics

In this section are outlines of certain modeling topics

that formed the basis for cooperative research at ULB

.
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(1) Distributional Sculpturing or Inverse Modification

Standard distributions such as the Exponential or

Gamma in particular, and also the Normal, log-Normal, and many

others may reasonably and conveniently serve as components of

a stochastic model or be used to summarize data distributions.

For instance, inter-arrival times to service systems may appear

approximately Exponential, service times nearly Gamma or log-

Normal, and so on. On the other hand, a systematic departure

from such a standard may be revealed by an analyzing actual

data. It is then frequently possible to alter conventional

distributions, or, equivalently , transform the random variable

in simple ways in order to represent empirical reality more

closely. Here are two conventional examples; there then follow

some more general procedures.

Example 1 . The Weibull distribution is often utilized to

represent times to failure of components or times between sys-

tem demands. Let T be a random variable (time, for instance)

,

then T is distributed in a Weibull manner if

(

F
T
(t;a,3) = P{T < t} =

1 - e
-at 1

, t>0,a>0, 3>0

t < ;

(1.1)

The Weibull density is

3

f
T
(t;a,3) = e

at "
a 3 t 6 " 1 (1.2)
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Furthermore, the Weibull hazard or failure rate at age t is

~ P{T 6 (dt) |T > t} E k
T (t;a,3)

f (t;a,3)
R ,

= aBt P L
; (1.3)

1 - F
T (t;a,B)

The latter formula and also (1.2) imply that if 3=1 the

Weibull is actually an Exponential; for this case "age" or

"time in service" as measured by t does not influence the

probability of failure in the next short time interval

(t,t+dt) . On the other hand 3 > 1 implies that the rate of

failure having survived to t—the hazard--increases with age,

while, 6 < 1 implies that hazard decreases with age. If

3 < 1 the Weibull right tail is longer than that of the

Exponential (extremely positively skewed) , while if 3 > 1

the positive skewness is less pronounced. The Weibull r.v. , T,

is actually only an Exponential r.v., X, transformed or

disguised, for if

P{T < t} = 1 - e'
at

= P{T 6
< t 6

} ,
(1.4)

then

~ rm 3 i -1 -ax
P{T < x} = 1 - e

Consequently, T = X , an Exponential r.v. , and T = X is

a representation of a Weibull in terms of an Exponential. Sup-

posing that one wishes to simulate a Weibull (a, 3) r.v., then

one merely simulates an Expon (1) r.v. and raises it to the
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(1/3) power, later multiplying by a~ . Since the power

transformation is monotonic increasing, the quantiles of

Weibull and Exponential are related by

t(p) = (x(p)) e (1.5)

Example 2 . The log-Normal distribution is a favorite model

for system repair times (see Kline and Alvooq [l Q nn]« it has r^any other

uses, and even some rational persuasions for its apparent re-

semblance to empirical distributions (see Aitchison and Brown

[1957]). Say that X is log-Normal if in x = Y is Normal

(it doesn't matter what the base of the logs is.'); specifically

2
Y ~ N(\i,o ). Here are some properties:

. ^1.2 2

• m
k

= e = E[XK ]

u+~-a _ 2
9 9

• n^ = E[X] = e , Var[X] = (E[X])
/
(e° -1) = (E[X]) n

Y 1
(X) = skew[X] = n + 3n (1.6)

y 2
(x) =kur[x] = n

8
+ 6n

6
+ I5n

4
+ I6n

2

2

Median[X] = e y , Mode[X] = e y °

Supposing that one wishes to simulate a log-Normal random

2
variable, one simply simulates a W(y,a ) r.v. , Y, and

Yexponentiates X = e
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The above two familiar examples illustrate the for-

mation of new and useful random variables and distributions

by simple transformation. An intuitively appealing way of

looking at certain transformations is in terms of modifica-

tions to familiar random variables or quantiles by convenient

shaping factors . This process will be called

Distributional Sculpturing: Let X be a basic r.v., for

example an Exponential, Normal or log-Normal. Define

Y = Xs(X) (1.7)

where the shaping function s(X) is designed to conveniently

convert the basic r.v. X into a shaped version, Y , having

desired distributional properties. Some examples of the prop-

erties often desired in practice, along with suitable—but not

unique--shaping functions, now follow.

(A) Skewness-Producing Shapers

Example: X is a positive basic r.v., e.g., Exponential.

(i) s(X) = 1 + AX
£

, A > , I > d.8)

(ii) s(X) = e
AX'

Effect:

Y = X s(X) (i)

(ii)

X if X "small"

X + AX
,1

£+1
>> X

Xe
AX'

much greater
than X if X
"large"
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The particular shaping functions (i) and (ii) both leave small

values of X unchanged, but considerably expand large values,

thus transforming the distribution of X , e.g., the Exponen-

tial, to one that is nearly Exponential near the origin, but

having a relatively long right tail. For example, take shap-

ing function (2) with 1 = 1 and apply to X Exponential.

The shaped distribution becomes

F
Y
(y;A) = 1 - exp[- (

/1+4^ ^) ] . (1.9)

Examination shows that for small y (Taylor series) the dis-

tribution of Y is nearly unit Exponential, while for large

Y it resembles a Weibull with shape parameter (3 = 1/2. Shap-

ing function (ii) has an even more pronounced effect on the

right tail. Note that both shaping functions (i) and (ii)

yield monotonic increasing transformations from X * Y , and

that given by (i) is sometimes explicitly algebraically in-

vertible (solve quadratic equation when 1=1, cubic when

1=2, quartic when £ = 3) , while that of (ii) is not. Also

note that useful transformations result when parameter A < 0:

this actually may result in right tail truncation (severe

shortening; such transformations are no longer monotonic.

Moments .

The moments of shaped or sculptured r.v.s. can some-

times be conveniently calculated. For the present represen-

tations:
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(i) Y = X(l + AX^) ;

m (Y) = m
1
(X) + Am

1+Jl
CX)

m
2
(Y) = E[(X(1 + AX

£
))

2
]

= m
2
(X

) + 2Am
1+£ (X) + &

2
™
2+2l

{X) (1.10)

Var[Y] = Var[X] + 2ACov[X,

X

£+1
] + A

2
Var [X

£+1
] .

Also, to indicate the dependence between the stretched r.v.

Y and the basic r.v. X ,

m
k
(Y-X) = A

k
m
1
CX
U+1)k

) = A
km u+1)k (X)

so

and

Var[Y-X] = A
2
Var[X £+1 ] (1.11)

Cov[Y,X] = Var[X] + ACov[X f X
£+1

] . (1.12)

The quantiles are directly and simply related by

y(p) = x(p) (1 + A(x(p))
£

) . < p < 1 (1.13)

I
AX

(ii) Y = Xe ; but for the present consider only

£ = 1 . Then the k moment is expressible in terms of the

derivatives of the Laplace transform of X . Note that the

k moment does not necessarily exist for all basic distributions.
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When it does,

m
k
(Y » - (-D

k ^E[e- sX
]

s = -kA (1.14)

For example, if X ~ Expon (1)

,

m
k
(Y) = k'

(1 - kA)
k+1 if kA < 1; (1.15)

otherwise the moment doesn't exist because the distribution's

right tail is too long.

(B) Symmetric Stretch-Producing Shapers

Example: Z is a r.v. symmetrically distributed around

2,
zero; e.g., N(0,a ) . Here are some useful shapers:

2
(i) s(Z) = 1 + hZ~ , h > ;

hz
2

(ii) s(Z) = e (due to J. W. Tukey)

.

Again (i) and (ii) imply that Y = Zs(Z) resembles Z for

small Z, but lengthens the tails of the distribution for

large Z .

Example 1 . Stretched log-Normal variables may be suggested

for modeling repair or service times if data analysis indicates

that the logarithms of observwd times are symmetric but not

nearly Normal, having symmetrically too-long tails. Then it may

be convenient to use the representation
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Y = e

(1.16)

X = \x + cZs(Z)

where u is the center (corresponds to mean) of the logged

observations, and the sale constant c is the standard devi-

ation (spread parameter) of the variable Zs(Z) , replacing o

in the ordinary log-Normal formula.

Moments .

The moments of the shaped distribution are, for (i),

representable in terms of those for a basic Z .

(i) Y = Z(l + hZ
2

)

m
1
(Y) = m (Z) + hm

3
(Z)

,

= (Z symmetrical around zero)

.

2
m (Y) = m

2
(Z) + 2hm

4
(Z) + h m

g
(Z) .

m
4
(Y) = m

4
(Z) + 4hm

g
(Z) + 6h

2
mg(Z) + 4h

3
m
10

(Z)

4
+ h m,

2
(Z) .

? 2
, ... „ hZ ; consider only Z ~ W(0,a ). Calculate
li Y = Ze

(1.17)

as a preliminary

/> z2 ,T"2/°
2

_1_ - u _ Zha
2 )- 1/ 2

, h < 2a
2 (1.18)

/2ttq
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(1.19)

Then differentiate repeatedly with respect to h to

obtain the even moments (the odd moments equal zero)

:

2

Var[Y] = m
2
(Y) = -

2 3/2 , h < l/4a" ;

(1 - 4ha )
'

m
4
(Y

> = ~ H 2,5/2 <
h < i/ 80 ' •

(1 - 8ha )
'

Hence kurtosis is

m
4
(Y)

3(1 - 4ha
2

)

3

Y ?
= — * = ^ o L 9

- 3 (1.20)
(m

2
(Y))

Z
(1 - 8ha^) *' z

Tails are so extended that the kurtosis becomes very large in

the case of (i) , and actually infinite for rather small values

of h in (ii) ; the variance remains finite for slightly

larger values. Nevertheless, the central part of the Y-

distribution remains remarkably close to the Normal from when

Z is itself Normal.

Both forms (i) and (ii) can be induced to fit the

inverse distribution (percent points) of the Student's t

distribution fairly satisfactorily.

(C) Left Tail Enhancement Shapers

Example: X is a positive r.v., e.g. Exponential.

(i) s(X) = 2£_
, i > o, a > 0;

1 + aX
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(ii) s(X) = 1 - e

Ciii) s(X) = e~
a/X

-aX'

(1.21)

This shaping function tends to concentrate probability near

zero, leaving the distribution's shape unchanged for large X :

Y = Xs(X) ~ <

X

(i)

(ii)

if X large

V aX
£+1

<< X, X small

(1.22)

J

Moments are generally impossible to find in useable form,

although in the case of (ii) , £ = 1 , explicit results can be

found in terms of Laplace transforms: suppose X ~ Expon(l)

,

then under (ii)

E[Y] = E[X(1 - e
aX

) ] = 1 -

(1 + a)
2 ' (1.23)

the mean of Y is influenced very little when a is large,

but small values of X are made even smaller; for the Expon(l)

X the quantiles are related as follows:

i \ r \ n aln(l-p) -,

(p) = x(p) [1 - e ^ J /
(1.24)

so for a fixed p > large a forces y(p)/x(p) to one.

However, for a fixed a and small p
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*44~ ap
x(p) - ^ (1.25)

showing that low quantiles for X transform into even smaller

values for Y . Furthermore, it is easy to show that if X,, »1
( 1 ; n)

is the minimum in a sample of n from X ~ Expon(l) , and

-aX
Y n \

= x ri x [1 - e
(l;n) (l;n) L

(l;n)

then

( 1 ; n) J a

E[X
(l;n)

n + a
as n -> oo (1.26)

All of this reinforces the image of the present shaper as

forcing small X-values to become smaller, leaving large values

unchanged. Note that the result of the shaper (i) , £ = 1,

can be explicitly inverted, giving the distribution

Fy (y) = Fx
"y(l + /1+4/ y) (1.27)

from which the left-tail enhancement property shows itself

explicitly:
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f
Y (y) = f

x
y(l + /1+4/gy

h&
/a /a /y

fx (y)

1 + y + C/a)

y
2

- 4)y

for y small

for y large

•(|)

(1.28)

Note that the hazard associated with the latter transformation

is, when X is an Expon(l) r.v.,

hY (y) = hi + y + v }

/y + (4/a)y

l//ay for y small

for y large

(1.29)

Thus the density of an Exponential X remains, under this

transformation, Exponential-like in the right tail but approaches

infinity near the origin. A distribution with such behavior

may well be useful for modeling failure data exhibiting early

failures ("infant mortality.")

(D) Right-Tail - Shortening Shaper

Example: X is a positive r.v., e.g. an Exponential. To

shorten or truncate the right tail, consider
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(i) s(X) =

1 + 3X
9,

3 > o, a > o

(1.30)

(ii) s(X) = e
aX

, a > 0/ £ >

The shaper (i) with I = 1 is a right tail shortener or trunca-

tor; it provides a monotonic transformation to Y <_ 3 ; small

values of X are left nearly unchanged. The quantiles of Y

are

x(p) for p small

^P> = 1 ^X ( P )
-

• (1.31)

,-1
for p large if x(p) >> 3

-1

Shaper (ii) is non-monotonic: values of Y = Xs(X) increase

to (ai) , decreasing thereafter. The inverse of (i) yields

V^ = Vr^-s^ '
o i y i 3

-i (1.32)

with density

f
v ( ^ }

= fx (
l - Bv }

"
2

;

y XI 3y
(1 _ &y)

^
(1.33)

the latter approaches infinity at a rapid rate as y nears

1/3 •
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Shaper (i) with £ = 1/2 is a tail thinner; it can be

inverted to give

Fv (y) = FY [(By)
2 (^-^HIZE)2

]
. (1>34)

with density

f
Y (Y) = f

x C3y)
2 (il^tiVM) 2 ][ii (1+/1+(4/6

2
y) } (1 +

i+(2/By)
)3

/l+(4/6 2
y

fY (y) for y smallx

-
{

(1.35)

2 2 2
f (3 y )23 y for y large ;

if X is Exponential, then the hazard rate of Y is initially

flat, but eventually increases linearly with age, thus produc-

ing a plausible wearout model for equipment or biological

organisms.

The above examples illustrate a few of the large number

of possible ways in which the sculpturing idea can be used to

extend the descriptive power of standard distributional models.

Problems of fitting such models to actual data are

currently being addressed, as are applications to simulation

and time series modeling. Use of shaped exponentials to evaluate

scheduling procedures has been initiated in collaboration with

P. Collard at ULB.
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(2) Response Times Under Processor Sharing

Consider a simple model of a time-sharing computer sys-

tem in which N terminals access a single computer (server)

.

Let repairman-model conditions prevail, but processor sharing

governs the service order: if j jobs (0 <_ j <_ N) are at the

execution stage each receives one-j— of a time unit of ser-

vice per time unit. In other words, if it is the service rate

(u is the expected service time under Markov-exponential

assumptions) , then the unconditional probability that any des-

ignated single job finishes in (t, t + s) is y(—) + 0(A) .

Under such conditions it is possible to derive backward-

type equations to describe the response of waiting time, R ,

of a newly-initiated "tagged" job arriving from a previously

idle terminal. In particular, consider

m.(t) = E[R|W(R) = t , X(0) = j] , (2.1)

where W(R) is the amount of work or processing time required

of the server, and X(0) represents the number of jobs cur-

rently at the processor when the tagged job first arrives

(including that job). Thus m.(t) is the expected response

time, conditional on need and accompaniment. Additionally,

introduce r(j) as the fraction of a time quantum, D , actu-

ally available for job processing when j jobs are present at

the computer; r(j) represents one component of overhead, and

may decrease as j increases. For short let A. represent

the rate of new arrivals when j are present at the server;
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under stated model conditions A. = A(N-j) . Let y. be the

rate at which jobs accompanying the tagged job depart; under

r
j + 0(A) . These assump-stated conditions y. = y(j-l)

tions, or those for a general birth and death process, lead

by a backward-conditioning to this equation:

m . Ct) = a + m
.[ t - (^)a)[i - <A. + m .)a] + A.Am

j + 1
t ~ r(j) A

j

+ y . Am . , t - r <J> A

j
+ o(A) (2.2)

.tract m. (t - ^4-^-) f:
3 3

let A -» to obtain

Subt m. (t - " N y "
) from each side, divide by A , and

^ dm.(t)—i = 1 - (A. + y ) m ( + ) + A. m..,(t) + y. m. . ( + ) (2.3)
Ul- J J J J J

-1"-1- J j~ j-

r(j)

I 3 J

This is a standard system of linear differential equations with

constant coefficients that may be solved by standard methods.

If r(j) is constant, and the repairman model assump-

tions are fulfilled, then it has been shown by G. Latouche that

e[r|w(r) = t] = c t , (2.4)

i.e. is linear in t , with C depending upon A and y . See

the article by Mitra [1981] for more detail concerning this problem,
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( 3) Repairman Model in Random Environment

Suppose we have m machines (this may mean electric

power generators, or even remote computer terminals) that, when

in use, fail independently (computer terminals: apply for

processing time, or data) at rate A(t) , and, if failed are

repaired at rate u(t) ; all processes are Markovian, given

A(t) and u ( t) , t >_ . Now let A(t) and y(t) themselves

be realizations of a finite-state Markov process that develops

independently of the number N(t) of machines down for repair.

If N(t) is the number down at t , and J(t) is the under-

lying environmental state, then {N(t), J(t)} is a bivariate

Markov process, and N(t) change is governed by the current

level of the environment J(t) . The latter environment may

refer to physical conditions such as heat, seismic shock, or to

variations in repair effectiveness. In the case of computer

terminals or communication nodes the environmental variations

may be the result of changes in message transmissions or data

demands under occasional crisis conditions.

The paper by Gaver, Jacobs, and Latouche [19 81] presents

a systematic mathematical analysis of the general birth-and-

death process in random environments, including the above re-

pairman model as a special case. Numerical illustrations are

provided. Here we present a truncated version of the solution

to the first-passage time problems, utilizing a recursive or

"clawing-up" mode of thinking analogous to developments in

Section ( ) of this account. Restrict discussion to just two
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environmental levels, denoted by j = 1, 2 . Let the transi-

tion rate from environmental state j = 2 -* 1 be a , and from

j = 1 -+• 2 be 3 • Let ^
n (j) be the transition rate from

(n,j) > (n+1, j) , and P n (j) be that from (n,j) * (n-1, j).

Let, as before, U be the first-passage time from

n to n + 1 , and put

G
n
(dx;i,j) = P{U

n
e(dx), J (U

n ) = j|N(0) = n, J(0) = i} , (3.1)

with i, j = 1, 2 ; the L.-S. transform of this measure is

called

-sU
Gn

(i,j;s) = E[e
n

, J(U
n ) = j |N (0) = n, J(0) = i]; (3.2)

this is the transform of the time to pass for the first time

from a state in which n are down, the environment being in

state i at some initial instant Ct = 0) , to n + 1 down,

the environment being in state j . Simple considerations of

cases that may arise during the first transition give, first

for i = 1 ,

A (1) y (1) 2

G
n
(1 '^ s) =

d
i
riT £

j
(1) + dnnr X G

n-i
(1 ' k ' s) G

n
(k ^ ;s)

n n k—

x

(3.3)

+ dTD G
n < 2 '3;s)

where j = 1, 2, the indicator function
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if i =

otherwise
V j) = { (3 - 4 >

and the denominator

d
n
(i) = A

n
(l) + yn

Cl) + 3 + s . (3.5)

Likewise, for i = 2 ,

X (2) u (2) 2

G
n
(2 '^ s) = cTT2TV 2) + ^T2T I Gn-l (2 ' k;s) G

n
(k '^ s)

n J n k=l

(3.6)

+
dT2) G

n (1 ^ ;s)
n

(the equivalent of these equations in Chu and Gaver [ ]

accidentally incorrectly omits the final term on the rhs) . The

above equations can in principle be solved recursively,

beginning with

A (1)
a

G
o
(1 '^ s) dTUT V13 + dTOT G

o
(2 ' j;s)

(3.7)

'0 V" J ~0

where

G (2 '^ s) " dfuT
£
j
(2) + d^2T G (1 '^ s)

3 = 1.2.

d
Q
(l) = A (l) + 3 + s . d

Q
(2) = X

Q
(2) + a + s .

The first-passage time T
R

from N(0) = and J(0) = i (i=l,2)

to n + 1 has transform
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-sT
P (i,j;s) = E[e n

, J(T ) = j|N(0) = , J(0) = i] ;

n - . n -

in matrix notation,

£n - ie % • • • £n

and the L.-S. transform of the first-passage time to n + 1

T
in P £ , where Jl = (.1,1) , a column vector.

Differentiation of expressions (3.2) and (3.5) produces

recursive expressions for means, variances and higher moments.

Programs have been written to evaluate these expressions

numerically.
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