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SUMMARY

In response to a Royal Australian Navy requirement, the
Electronics Research Laboratory has developed and
evaluated an experimental Laser Airborne Depth Sounder.
The system provides discrete soundings, in a rectangular
pattern extending 270 m across track, with a nominal
spacing between soundings of 10 m. This note describes
the experimental system, including the position fixing
elements, with emphasis on depth sounding performance. , :
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FOREWORD

This paper was presented by Dr D. Wyllie at the Lasers 81
Fourth International Conference on Lasers and
Applications, in December 1981, at New Orleans USA.
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1. INTRODUCTION

Australia has 2.3 million sq km of continental shelf and a large proportion of
these waters is inadequately charted. In some instances charts in current use
date back to the days of Matthew Flinders, who explored the coastline

180 years ago. Another feature of the Australian Continental Shelf, shown in
filure 1, is the high percentage of hazardous waters it contains, for example
the 2 000 km long Great Barrier Reef, which covers an area of 200 000 sq km.

It was against this background, in the early 70s that the Hydrographer of the
Royal Australian Navy expressed interest in alternative methods of conducting
hydrographic survey. Early reported American work in the field of laser
hydrography(ref.I,2) was studied and some feasibility exercises conducted.
Fortunately, it was not a cold start for the Electronics Research Laboratory
since valuable experience had been gained in the late 60s and early 70s, in
developing airborne laser terrain profiling systems for Australian military
and civilian land mapping authorities.

Following feasibility exercises, a laser hydrography R & D programme was
commenced in 1975. Initially, the programme called for the development of a
low repetition rate, non-scanning experimental system designated WRELADS I.
This was flight tested in 1977(ref.3,4) and was followed by WRELADS II, a
system designed to meet the requirements of the Navy. This experimental
system is installed in a Royal Australian Air Force C47 aircraft and has
completed a 300 hour programme of test and evaluation trials over
North Queensland and South Australian coastal waters.

At the present time an Australian industry consortium has tendered to build
two improved versions of WRELADS II, which will be designated LADS (Laser
Airborne Depth Sounder). It is intended that LADS be installed in a
Fokker F27 and operated by the Royal Australian Navy for hydrographic survey
over Australian coastal waters.

2. SYSTEM PHILOSOPHY

The system is designed to operate from an airfield in close proximity to the
operating region and, with appropriate ground support equipment, constitute a
self contained operation. The survey task however will be shared between the
airborne LADS system and surface vessels. In practice LADS will survey all
waters within its capability, particularly shallow hazardous waters, with the
ship undertaking survey in water where LADS will not perform, viz deep water
and more turbid shallow water such as river estuaries etc. The ship or its
boats will also assist with placement of transmitting tidal stations.

Limited data processing is undertaken in the air to demonstrate to the system
operators that the survey is proceeding satisfactorily however, all prime data
are recorded and detailed processing is completed on the ground.

3. SYSTEM DESCRIPTION

Figure 2 shows the operating scenario for WRELADS II, highlighting the laser
beam geometry, the position fixing system and the provision of real time tidal
information.

A wavelength of 532 m, as produced by a frequency doubled Nd:YAG laser, has
been found well-matched to Australian coastal waters and a suitable laser has
been developed in house, exclusively for this task. The system generates a
rectangular scanning pattern, 270 m wide with a nominal 10 m spacing between
adjacent soundings. Major sections of the WRELADS II system, shown in
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figures 3, 4 and 5 and in schematic form in figure 6, will now be briefly
described.

Laser

WRELADS II uses a Q-switched frequency doubled Nd:YAG laser generating 5 mJ
pulses at a repetition rate of 168 Hz and a pulse width of 5 ns (FWHI). The
laser developed for the task is designated FP 3/50 (a 3 mm by 50 mm rod in a
short Q-switched Fabry-Perot resonator) and was selected after a detailed
study of alternative configurations(ref.5,6 and 7). The prototype laser has
successfully completed a 1 000 hour lifetest which included 150 hours
operation at an output of 8 mJ. Since April this laser has, without incident,
been installed in the C47 aircraft displacing a combination of two 42 pulses/s
lasers used as an interim solution.

The laser uses a KD*P Q-switch and a CD*A frequency doubler cut to permit
angle tuning over the operating laser temperature range. A high flashlamp
simmer current of five amps is used to obtain reliable jitter free operation
at 168 Hz. The laser life-test results are shown in figure 7; a flashlamp
life in excess of 400 hours has been demonstrated with flashlamp input power
increased at regular intervals to maintain constant output.

Beam Geometry

A laser airborne depth sounder obviously uses a laser beam to interrogate the
sea bottom with an appropriate across-track scanning system. What is not so
obvious is the manner of deriving a reference for the sea depth measurements.
One method is to use the surface reflection generated by the scanned beam.
However, in conditions of low wind speed and compounded by the presence of
swell, the surface reflection can be directed away from the aircraft. In such
circumstances, a diffuse backscatter signal from the water may be adequate for
reference signal purposes. Such a signal, however, is generated by a volume
effect and in clear water, where backscatter is greatly reduced, this
technique could introduce errors in depth estimation.

As a consequence, WRELADS II has been designed with a separate IR beam which
is vertically stabilized to provide a reliable reference signal (refer
figure 8). The IR pulse is a byproduct of the frequency doubling process in
the Nd:YAG laser and is therefore coincident with the green output pulse. A
drawback of this approach is that when the green beam is not vertical an
additional airpath H(sec -I) must be calculated. This is not difficult since
aircraft height (H) is readily obtained from the IR channel, and beam
inclination ( ) is obtained from a good quality vertical gyro. In this
situation a gravity-monitored gyro when tracked along straight flight lines
can yield excellent results.

This dual beam method of operation is very reliable over a wide range of
environmental conditions. The method also ensures that only a small
proportion of wave profile is superimposed on the measured sea bottom profile.

Sounding Pattern

The green beam is reflected from a nodding mirror which is oscillated about
two axes to yield a rectangular scanning pattern. Additionally the scanner,
and hence the pattern of soundings, is maintained normal to the flight path by
correcting for drift angle. This approach uses all laser pulses efficiently,
since the spacing between soundings is uniform.

Signal Processing

Following spectral, spatial and polarised filtering the green subsurface
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signal is amplified in a photomultiplier detector. This detector an
EMI 9813 Gb is operated in a high gain, pulsed condition. Over the time
period when subsurface signals are expected, the gain is automatically
controlled for optimum signal detection. A method of changing the voltage of
individual dynodes has been developed in order to modify the gain of the tube.
This technique, which compresses dynamic range, permits gain to be changed in
a controlled fashion as dictated by backscatter and reflected sunlight
throughout the 500 ns time gate of the system, with no significant change in
rise time or tube transit time. To allow for high current gain operation, the
tube is pulsed on for the required period by a control grid.

The subsurface signal is digitised by a Biomation waveform recorder in real
time and stored at two nanosecond intervals, which corresponds to depth
increments of approximately 0.2 m. The six bit numbers which comprise the
waveform are then clocked out of the waveform recorder at a slower rate and
processed to yield depth information in real time. The waveform data are also
recorded for post-flight evaluation.

Examples of processed subsurface signals are shown in figure 9, which displays
two across-track scans. In all cases the bottom signals are prominent but
towards the edge of the scan pattern, when beam inclinations are at a maximum,
the surface signal is not present. This is of no concern because the overall
timing of the signal is provided by the IR surface reflection.

Postion Fixing

WRELADS uses the Cubic Western Data System ARGO DM54 for position-fixing.
This equipment, now in standard use by the hydrographic ships of the RAN, was
modified by the company for the high speed airborne WRELADS application.
ARGO DM54 operates in the HF band using a shore based chain of transmitting
stations. For WRELADS, the system operates in a dedicated hyperbolic format
with position fixes established at a rate of three per second. By using a
nose to fin antenna, insensitivity to aircraft manoeuvres and a range in
daylight of 250 n miles from an inline transmitting chain have been
demonstrated.

A small om-board computer, a PDPI1-23, is used to convert hyperbolic lane
count information to rectilinear Australian Map Grid Coordinates to simplify
computation and to aid mission planning and monitoring. The computer also
drives a pilot's display for track keeping in straight and level survey runs
and for the display of course corrections in the 1800 turns at the end of each
run. Again all data are recorded for analysis on the ground. The various
elements of the navigation/position-fixine systems are shown in figure 10.

Since ambiguity arises in the determination of position by measurement of

relative phase, the system must be initialised using known fixed points. In
general, this is achieved by fixing the system on the ground before take-off
at some previously surveyed point. Although it is common for a pretake-off
fix to be held throughout a mission, methods of fixing in the air by day and
by night have been developed. Such techniques require the aircraft to be
flown over selected fix points, which are viewed and recorded using a bore-
sighted, downward-looking video system.

4. PERFORMANCE

Depth performance is dictated by the ability of the system to identify a
bottom signal against a noise background. In turbid coastal waters, the
dominating noise arises from backscatter as the laser beam propagates through
the water column. In clear water, hovever, reflected sunlight becomes the
dominating noise. If this is eliminated by operating at night then

simile
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performance is ultimately limited by a shortage of signal photons or system
noise.

The relationship between water turbidity in terms of beam attenuation
coefficient (c) and extinction depth (de), the depth at which the bottom

signal becomes lost in noise for the WRELADS system is shown in figure 11.
This empirical relationship, established for the system operating at 500 m
above the sea, applies to day time conditions.

The data presented in figure 11 were obtained on a 1 200 km mission from
Townsville to the Torres Strait(ref.8). A zig zag track was followed through
the reef waters (see figure 12) which provided many opportunities for the
determination of extinction depth. Figure 13 shows the beam attenuation
coefficient estimated from backscatter observations made on the same flight.
These latter data have most significant implications since if turbidity can be
estimated reliably then extinction depths can be predicted. Thus, with a
knowledge of extinction depth d , and if no bottom is detected, it can be

eeassumed that the water is deeper than de . With appropriate safety margins

this approach will make possible the class of sounding "No bottom at .

The actual range of (c) determined in this sortie covered two orders of
magnitude ie 0.05 m 1 at Ribbon Reef and 5.0 m- 1 in the Torres Strait. It is
of some interest to note that the same region of the Torres Strait was line
profiled in June 1977 with WRELADS I, in that instance, excellent bottom
signals were recorded. The difference between the two results can be
attributed to 35 to 45 kn winds and the rough seas existing at the time of the
recent trial. Such conditions would be expected to produce vertical mixing
and hence, because of the shallow bottom, an increase in water turbidity. In
deeper water this effect is not pronounced as verified by the measured depth
of 50 m off Ribbon Reef.

A survey of a selected reef has been completed and a photograph of a model,
constructed using WRELADS data, is shown in figure 14. This survey, which
took approximately one minute of flying time, covered one square kilometre.
In figure 15 a section of the reef facing the lagoon is shown. The coral
heads were detected by the depth sounder with excellent relative correlation
with the ground truth contained in the photograph.

As a user, the Hydrographer needs statistics which permit coastal zones of
interest to be characterised in terms of water turbidity and depth
combinations that are within the sounding capability of the system. Figure 16
shows all beam attenuation coefficients recorded in the Gulf St Vincent,
South Australia. The curve shows the depth sounding performance objective for
LADS. With other data, this indicates that in excess of 50% or 200 000 sq km
of the South Australian Gulf waters should lie within the capability of the
LADS system.

Turbidity

In North Queensland coastal waters extreme values of turbidity are
encountered. Thus, in order to promote system capability, factors which
introduce change of turbidity must be studied. It has been observed that
sustained wind and the seas which develop tend to increase turbidity in
shallow water but have little effect in deep water. Other likely causes are
coastal rivers which, in the wet season, discharge huge volumes of particulate
matter into the sea.

Studies of water turbidity and the related statistics of the Australian
Continental Shelf, which are essential for the efficient deployment of LADS,
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are reported in references 9 and 10. At the Electronics Research Laboratory,
emphasis has been placed on beam attenuation measurements since the technique
involved is precise, repeatable and readily related to the measurement of
other relevant parameters such as diffuse attenuation coefficient.
Transmissometers have been developed to measure beam attenuation coefficient
as a function of wavelength and a considerable amount of data gathered. As an
example, at the present time, the hydrographic vessel HMAS Moresby, on an
opportunity basis, is gathering data in coastal waters between Perth and
Darwin.

The next phase, the estimation of beam attenuation coefficient from airborne
observations of laser backscatter, is now proving a most useful technique.
Although it offers speed in data gathering, it is still a very slow method of
collecting statistical data. The long term method will be the use of
satellite pictures in combination with limited ground truth information. In
order to meet the Australian requirement, a mixture of the three methods will
be used.

Anomalies

Various anomalies have been briefly studied in the WRELADS programme. They
range from foreign bodies in the sea which reflect the laser beam to bird
strikes which cause false reference signals. Figure 17 shows one example of a
submerged foreign body encountered off Cairns in North Queensland. The bottom
depth was consistently 43 m in this area as denoted by the right hand pulse.
The intermediate pulse, which appeared on several soundings, indicated the
presence of a reflecting body 20 m long and 3 m off the bottom.

Another anomaly studied in North Queensland was submerged plankton and other
living organisms which scatter laser radiation. Figure 18 shows a sequence of
subsurface signals where this type of anomaly was encountered. The bulge in
the backscatter envelope is attributed to some form of marine life, and its
presence at the depth "12 to 18 m was verified by transmissometer readings
obtained from a surface vessel. This type of anomaly occurs infrequently and,
in some 50 hours of flying in reef waters, the case illustrated was the most
severe encountered. Since bulges in the backscatter envelopes can be
eliminated by appropriate filtering, anomalies of this type should not be
recognised as bottom reflections.

In summary, anomalies which do not present a high frequency edge in the
subsurface signal (eg the case described above) can be discriminated against
by signal processing. Large rays, whales or dense fish concentrations
however, will reflect the laser beam and produce signals which may be falsely
identified as the bottom. In these circumstances it may be impossible to
resolve such an ambiguity without reflying the mission.

Depth Accuracy

Depth is calculated from a carefully measured time interval and a knowledge of
the velocity of light in water. It is assumed that the laser energy is
refracted at a flat sea surface (along the path AB in figure 19) and reflected
back to the receiver along the reciprocal path (BA). In practice, due to
waves, ripples, multiple scattering in the water and a relatively large
receiver field of view, the average path length of signal photons is increased
(eg path ADE in figure 19). This effect exaggerates depth and is a major
contribution to bias error. Provided that methods of calibrating the system
can be devised, then such errors can be greatly reduced.

Random errors contributed by the system and the environment remain as the
major problem. If receiver bandwidth, digitising interval and timing
standards are adequate then the major error contribution arises from the need
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to process pulses with a wide signal to noise ratio, a wide dynamic range and
poor risetimes, the latter being inherent in the beam broadening phenomenon
mentioned in the previous paragraph. Solutions to these problems involve the
use of variouf techniques to limit dynamic range and constant fraction
discriminators to minimise timing errors.

Environmental factors which effect accuracy are depth, sea state (which
influences the refraction process), turbidity (which controls the multiple
scatter process) and errors caused by sea bottom vegetation (which prematurely
reflects the laser radiation).

Although operation over fresh water would justify a change of propagation
constant, over the sea (with salinity changes of a few parts per thousand and
a 20'C temperature band) the use of a fixed propagation constant yields
negligible errors. Errors due to tide prediction must also be considered
since hydrographers are concerned with referencing data to a low water datum.

The study of system depth errors has not been completed. However, results
have been obtained from several aircraft/ship exercises conducted in
November 1980 over selected flat bottom areas in water 20 and 30 m deep and
referred to a convenient tidal datum. These exercises yielded the following
information.

Depth Bias Error Random Error (SD)

20 m 0.76 m 0.45 m

30 m 0.87 m 0.55 m

System shortcomings in the calculation of the term H(secQ-l), evident at the
time of these trials, have since been overcome and a reduction in the random
error is expected. Trials currently in progress should verify this.

Tidal Corrections

WRELADS measures water depth referenced to mean sea level existing at the time
of the measurement, but such soundings must be referred to a low water datum.
It is proposed that LADS use telemetered tide gauges which transmit to the
aircraft. With this real time input and the use of co-tidal charts (charts
relating sea height and time in a given area), tidal corrections can be
established over the survey area.

Calibration

The hydrographic comunity require data generated with a high confidence
level. Traditionally, echo sounders are calibrated against a bar suspended
below the vessel and attached by two calibrated wires. This is the ultimate
calibration of the system and is performed at regular intervals.

Despite exhaustive facilities for internally checking the calibration of LADS,
a need for a simple realistic calibration is evident, ie, an equivalent of the
suspended bar. If the transmitting tide gauge can be mounted in a location
where the bottom is level, then the telemetered true depth can be monitored in
the aircraft and compared with the measured value. Although the tide gauge
can be located by the aircraft by using the position fixing system, it is most
desirable to identify the tide buoy using the downward-looking video.
Protection against movement or destruction of such tide gauges either
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del tbtratt' ly by vandals or iiiadveitiaItly by I lsliillg trawlers is ne( essdry.

Accuracy_- Horizontal

Errors in the horizontal coordinates of a particular depth sounding have two

major contributions: errors in the determination of aircraft position and
errors in the prediction of sounding position relative to the aircraft. The

latter is largely determined by errors in pitch, roll and azimuth angles. As
an example, errors of one degree in pitch and roll will each shift the

predicted sounding by 9 m, but the same error in azimuth will cause an error
of 2.5 m and will only be apparent at-the extreme edges of the sounding
pattern. It is estimated that the total error arising from angular
uncertainty will be held to 5 m.

Determination of position of sounding from the aircraft, based on angles and
aircraft height, locates the point on the sea surface irradiated by the laser.
The location of the sounding on the bottom can also be predicted based on
depth and a refraction process assuming a f lat sea. Small perturbations in

sounding position due to swell are negligible.

Errors which arise with }iF phaselocked systems, as used by surface vessels,
are reported in reference 11. The fundamental difference with WRELADS is the
introduction of height as a variable, which it was thought would modify the

propagation non-uniformity observed at sea level. These non-uniformities are
routinely handled on surface vessels by introducing an offset factor known as
the locking constant. The data shown plotted in figure 20 were recorded on a
trial where, at three separate altitudes, ten passes were made over a target,
the Orontes Bank Light, with boresighted downward-looking video to determine

aircraft relative position. This work has not been completed, but the
inference at this stage, based on limited analysis, is that the non-
uniformities in propagation at sea level are not significantly different at
the WRELADS operational altitude of 500 m with the equipment working in
passive hyperbolic mode.

In summary, horizontal positional accuracy, on the base line, with a
calibrated system is estimated at 10 m where 7 m represents ARGO errors and
5 m represents the aircraft to sea pointing errors. The latter error occurs
twice, once in the ARGO calibration process which may be undertaken in the
air, and again in the determination of sounding position.

Navigation

Navigation for hydrographic survey can be divided into three functions: ferry
legs, straight line survey runs and 180' turns between runs. Navigation
programmes have been developed for these functions and utilise a small CRT for

a pilot's display. This display is computer controlled and indicates track
error by lateral displacement of a small diamond and height error by its
vertical displacement. Some indicative runs have been monitored using the C47
with manual pilot control as indicated in the table.

Since the sounding pattern width is 268 m, a survey planned to advance in

200 m increments will require track error to be held to 20 m RNS. This
appears to be attainable. Precision 1800 turns are required with alignment
over the start point with errors of less than 20 m.

Navy operation of LADS will provide for autopilot control of the straight

survey legs and pilot control with a computer controlled display for the 1800

turns.
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TRACK ERROR
TRACK LENGTH (kin)

RMS (m) MAX (m)

8.6 50.1 102.8*

30.0 9.5 33.9

30.0 9.0 27.6

30.0 23.2 69.3

92.7 23.4 84.0

128.7 13.4 55.8

New pilot

5. SAFETY

The system has been designed to be eye safe at sea level for day and night
operations, meeting Australian Standard 2211-1981.

6. CONCLUDING REMARKS

Laser airborne hydrography can be used to provide a significant contribution
in the survey of Australian coastal waters. The airborne system will provide
high density data and share with surface vessels the total survey task. In
shallow, clear or moderately clear water and especially in hazardous waters,
the airborne operation will dominate, but in turbid and deep water, the
surface ship, with its acoustic sounder, will remain unchallenged.

The technology is still very new and brings with it significant changes for
hydrographers. In data processing for example, conventional hydrographic
survey is undertaken with a degree of human monitoring. With laser
hydrography, producing two million soundings per five-hour mission, only
minimal human intervention and monitoring of data are possible.

The WRELADS R & D Programme has permitted investigation of most facets of the
total task. This R & D requirement has biased the design of the experimental
equipment and, in consequence, LADS, the production version, is to be built
expressly for operational use in a F27 aircraft.
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Figure 3

Figure 3. WRELADS II installed in C47
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Figure 4

Figure 4. C47 installation showing position fixing and
navigation rack
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Figure 5

Figure 5. WRELADS under floor optical bay
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Figure 11. Dependence of extinction depth on water turbidity
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Figure 12. Extinction depths in north Queqnsland coastal waters
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Figure 16
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Figure 16. Gulf St Vincent: Scatter diagram beam attenuation
coefficients versus depth
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Figure 17. Anomaly encountered off Cairns
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