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FOREWORD

The work described in this report was sponsored by the Independent Research
(IR) Board of the Naval Surface Weapons Center (NSWC). It was performed during
the period October 1976 to September 1979.

The traditional uses of radar have been to locate a target and to track
its direction and velocity. In recent years, interest in a third use of radar
has evolved: to identify an object from the scattered return. The ultimate
purpose of this work, which is presently continuing, is to devise a method for
identifying a complex object from the return of a radiated impulse or other
suitably shaped short pulse. In order to be able to do this, the impulse re-
sponse radiation of simple objects must be studied to ascertain the relation-
ships between the shape of an object, the material of which it is made, its
aspect angle, etc., and the scattered return.

This report describes the NSWC time-domain range returns from simple ob-
jects and first attempts to process them. Prony's algorithm is described and
efforts to improve it are detailed. The application of Prony's algorithm to
the returns is described and the results are shown. Problems with clutter and
noise are discussed, and directions for future efforts are recommended.

The ultimate outcome could result in a radar target identification system,
which would be of use to all the military services.

The authors wish to gratefully acknowledge the helpful critiques and en-
couragement of Dr. Ronald J. Gripshover, in particular, and of the NSWC IR
Board, in general.

This report has been reviewed by W. S. Orsulak, Head, Special Applications
Branch, and K. C. Baile, Head, Advanced Projects Division.

Released by:

DAVID B. COLBY, Head
Electronics Systems Department
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INTRODUCTION

The objective of this project is to devise a method for the identification
of complex objects, based on the time-domain returns from a radiated short
(subnanosecond) pulse. This report details the present status of the project;
describes the time-domain range and experimental apparatus; describes the pres-
ent status of the apparatus and the needs for refinement and improvement. The
signal processing is discussed, and in particular, the problems with Prony's
algorithm are stated and the improvements to the algorithm for coping with the
problems are given. The results of applying these to synthetic waveforms are
given and the areas of need for further effort pointed out. An attempt to
apply the algorithm to experimental data is described, and the results thereof
are discussed. Finally, directions for further effort are suggested.

BACKGROUND

Baum1 expanded the solution of a free-radiating shape (no forcing func-
tion) in terms of its singularities, or complex resonances, in the Laplace
(complex frequency or "s") domain. His expansion, for finite-size objects,

- takes the form

N A.

s s ZI- si (1)

where the si are the complex resonances or poles of the waveform, and the
Ai are the coefficients or residues. In theory, the number of resonances, N,
is infinity, but, in practice, the high-frequency resonances have negligibly
small residues that render them undetectable. Hence, a finite number of reso-
nances are considered. Baum showed that the poles, si, depend upon the ob-
ject: its size, its shape, and the material of which it is made. He also
shoved that the residues, Ai, depend upon the initial waveform: its shape,
polarization, and coupling to the object. The Ai also depend upon the aspect
angle of the object in relation to the transmitter. Note that the poles, si,
depend only upon the object and are independent of the transmitted waveform.
This theoretically means that we can observe the same set of resonances, inde-
pendent of the direction the observer is from the object.

if we take the inverse Laplace transform of Equation (1), we have

f~t M - Ai esit (2)

This is just the sum of a set of complex exponential terms. The poles, si,
have negative real parts. That is, the free-radiating waveform must dam out
in the absence of new energy supplied to the object. The function, f(t), is
real, since it is a physical observable.
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Prony's algorithm2 is a method for extracting the poles and residues from

a waveform of the form of Equation (2). The aim is to apply this algorithm to
the time-domain radiation from an object to extract its poles.

EXPERIMENTATION

The data gathering operation is performed on a 9.1-m (30-ft) diameter
ground plane shown in Figure 1. The ground plane is constructed of aluminum

plates welded together to form a continuous conducting surface.

Figure 1. Time-Domain Range

The electronic apparatus, located beneath the ground plane, is shown in
Figure 2. The generator is an IKOR R-100 impulse generator, which puts out a

subnanosecond Gaussian pulse with an amplitude of approximately I kV. The
repetition rate is approximately 100 Hz. At the output of the impulse genera-

tor is an FXR feedthrough capacitive pickoff probe, the output of which deliv-

ers a trigger pulse, through appropriate attenuation, to a sampling oscillo-

scope. The signal must go through a delay line in order to allow the sampling
scope time to initiate the trace on receipt of the trigger pulse. This delay

line consists of about 15.2 m (50 ft) of RG-331 cable. After the delay cable,
there is a measuring probe, which was designed and built by IKOR. It is a
capacitive feedthrough probe with an attenuation of 49 ±1 dB and a flat fre-
quency response from 5 MHz to 3 GHz. After this probe, an RG-9 cable, approxi-
mately 0.8-m (2.5-ft) long carries the signal to the base of the transmitter

2
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antenna. With the exception of the output of the impulse generator and the FXR
pickoff probe, which uses Type N connectors, the connectors from the generator
to the base of the transmitter antenna are all of type HN. This type of con-
nector was chosen in anticipation of future higher voltages.

TEM HORN

OBJECT j T GROUND PLANE

..
E WDELAYPAINE)

Figure 2.E Exermetl pprau

is sT 

SAMPLING

:I 

GENERATO

ceived by the receiving antenna. Meanwhile, the radiated pulse strikes theobject, giving a return from the object that arrives at the receiving antenna
a few nanoseconds after the initial pulse.

The receiving antenna is a half TE14 horn, 0.3-n (1-ft) long connected tothe stub of a Type N wall connector mounted in the ground plane. The otherhalf of the TEN horn is imaged by the ground plane. This simulates a TE hornwith an angle of 16", These particular antennas (monopole transmitter and TElhorn receiver) were chosen as a start because the monopole transmits with highfidelity the source waveform, while the TEN horn receives and reproduces withhigh fidelity the waveform of the electric field of the radiation. Reference 3gives the details of various antenna configurations as transmitters and
receivers.
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Figure 3 shows the relative positioning of the transmitter (monopole),
the receiver (TEK horn), and the object. (The paint can shows the position
of the object.) They were positioned in line so as to simulate a monostatic
system; i.e., the object is in the same direction from both transmitter and
receiver. A check revealed that the presence of the transmitter between the
receiver and object does not affect returns within the sensitivity of the in-
strumentation. The distance between the monopole and the TEM horn is 2.3 m
(7.5 ft). The reason for this distance is to protect the receiving equipment
from the amplitude of the transmitted pulse, until appropriate duplexing equip-
ment can be built. The part of the object nearest the transmitter is 0.6 m (2 ft)
from the transmitter. This will assure a delay of about 4 nsec from the time
the radiated pulse is received by the TEM horn until the return from the object
arrives. (Light travels 30 cm in 1 nsec). This 4-nsec delay is necessary to
allow for the trail-off from the transmitted pulse.

Figure 3. Relative Positioning of Transmitter (center), Receiver
(upper left), and Object (lower right)

Upon receipt by the TEM horn, the signal is fed to a sampling oscilloscope
through an RG-9 cable and appropriate attenuators. The sampling oscilloscope
is a Hewlett-Packard Model 181A dual-beam oscilloscope. It has a Model 1811A
sampling time base and vertical amplifier plug-in. The sampling head is a
Model 1430C. All connectors in the receive circuit are of Type N.
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On the back of the sampling scope's main frame are outputs for monitoring
waveforms by external recording equipment. The waveforms that can be monitored
are the two traces displayed on the screen and the horizontal sweep (sawtooth)
waveform. A Hewlett-Packard 3960 analogue tape recorder was used to record the
waveforms: for later data reduction on a PDP 1145 computer. The idea was to
record about 30 traces of the returns from each object and later to have the
computer digitize the returns and compute an average for each return. A major
advantage of using an analogue tape recorder is that the original traces would
be recorded permanently and could be referred to as often as needed. However,
the tape recorder, even within the manufacturer's specification and with the
use of filters, puts out noise at such a level as to render proper digitizing
and averaging of data extremely difficult and uncertain. Therefore, to obtain
results for this report, traces of returns were enlarged to 30.5 cm (12 in.) by
38.1 cm (15 in.) and hand digitized. More will be said about this process
later.

The objects whose returns are being studied are a hemisphere, a cone, and
a cylinder, which are shown in Figure 4. They are each 12.7 cm (5 in.) in
diameter at the base. The cone has a 300 angle, and the cylinder is 25.4 cm
(10 in.) in height. They are all solid aluminum.

Figure 4. Hemisphere, Cone, and Cylinder
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Figure 5 shows sampling oscilloscope traces of the impulse generator pulse.
Figure Sa shows it as monitored by the IKOR probe at the output of the delay
line and just before transmission by the monopole antenna. Figure Sb shows the
pulse as received by the THII horn receiving antenna. The wiggles in the trail-
off s of these traces arise from reflections caused by connectors in the trans-
mission lines to and from the antennas.

Figure 6 shows sampling oscilloscope traces of waveforms in the transmit-
ter (IKOR probe) and receiver (TEM. horn) circuits, with no object on the ground
plane. The lower trace shows the waveforms in the transmitter circuit. The
first pulse in the lower trace is the initial impulse generator pulse as seen
in Figure Sa. The second pulse is the reflection of the initial pulse at the
base of the transmitter monopole. Notice the third pulse that appears about
40 nsec after the initial pulse. It represents a reflection of energy from the
tip of the transmitter monopole, a distance of U.2 m (17 ft) from the base.
The upper trace shows the waveforms in the receiver circuit. The first pulse
is the impulse generator pulse. After its trailoff, except for clutter, there
is a clear time window of about 20 nsec. The first small negative peak, just
after the second vertical grid line to the right from the center, is a ref lec-
tion from the nearest wall of the building. The large oscillations immediately
after that are caused by ringing by the transmitter monopole antenna and re-
flections from the ground plane edges and building walls. Figure 7 shows the
same waveforms as Figure 6 except that the aluminum cylinder is placed in the
object position. No changes are seen in the lower trace (the transmitter cir-
cuit waveform) . The upper trace (the receiver circuit waveform) is the same as
before, except that the return from the cylinder is seen, immediately after the
impulse generator pulse trailoff. The pictures of traces from target returns
will show the 10-nsec-time window from the third (from the left) to the fifth
(center) grid line of Figure 7.

Figure 8 shows expanded traces of returns from the cylinder, the cone, and
the hemisphere. The trace marked "clutter" is what is seen in the same time-
frame when no object is present. These photographs were enlarged to 30.5 cm
(12 in.) by 38.1 cm (15 in.) in such a way as to make the squares of the grids
the exact same size. Xerox copies of the enlargements were made on thin paper
These copies were carefully checked for distortion by measuring the squares on
the grid and comparing with the squares on the photographed enlargements. The
worst distortion was found to occur near the edges, away from the important
parts of the traces, which showed negligible distortion. The curves were then
hand digitized from the thin-paper copies on an Elographics digitizing table,
Every effort was made for even spacing along the time axis. Approximately 201
points were digitized from each curve. A cubic spline routine similar to that
described in Reference 6 was used to smooth each data set and interpolate to
512 points, equally spaced along the time axis. The smoothed data sets were
submitted to our CDC 6700 computer for processing.
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a) BEFORE TRANSMISSION

200 mv/div
'I ns/div

, . . . ... .

b) RECEIVED BY TEM HORN

Figure 5. Impulse Generator Pulse

7

*, il III I H

J ,1 "- J" - l il a Il l ... i - , 'i .2.



Figure 6. Transmitted and Received Waveforms; No Object on Ground Plane
(5 nsec/div; 200 mV/div) (Lower trace--transmitted pulse and its

reflections. Upper trace--as received by TEM Horn)

Figure 7. Transmitted and Received Waveforms; Cylinder on Ground Plane
in Object Position (5 nsec/div; 200 mV/div) (Lower trace--transmitted
pulse and its reflections. Upper trace--as received by the TEM horn)
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PRONY'S ALGORITHM

This section gives the exact method used by Prony's algorithm for deter-
mining the poles and residues of a waveform described by Equation (2). The
procedure is basically that outlined in Reference 5.

Let us sample f(t) at N points, equally spaced in time. Let us set the
sampling times as follows:

tk = (k-I)6, k - 1, 2, ... , N

where 6 is the time interval between samples. Also, let us rewrite Equation (2)

as

M s M(k-1) M

k k)f(tk) Ame m (3)mn rn-i mm

where

s6
Xm em

Form the following set of equations:

A1 + A2  + ... + AM f I

A xI + A2X2 + + AMxM  f 2 (4)

A xi + A 2  + + A - f

A1XiN - 1 + A2 x 2 N
- 1 + + A M,. N- 1 .N

Let xm represent the roots of an Mth order polynomial

M+ - M
E cmxm-1 = (x-xl)(x-x2)...(x-xM) - nI (X-Xm) (5)

where

cM+ 1 a 1

Let us multiply the first equation of (4) by c1 , the second equation of (4) by

c2, etc., for the first M+i equations. Then, using Equation (5), we form the
equation

10



f1cl + f2c2 + "'" + f4+1 = 0

Repeat this operation, beginning with the second equation of (4), thereby forming

f2c1 + f3c 2 + ... + fM+2 = 0.

Repeat this operation until M such equations are formed

f 1c 1 + f2c2 + ".. + fCM = -flo 1

f2ci + f3c2 + + fM+1 c M -"M+2 (6)

fMcl + f M+lC 2 + ... + f24-1 CM -f2M

We may express Equation (6) in matrix form as follows

F C B, (7)

where

f1 f2 f M

f 2 f3 fM+1
F •

f fM+1 ... f

the data sample matrix,

C 
C

c M

the vector of the coefficients, and

-fM+|

f14+2
B-

-f 2M

11



Equation (6) is solved for the c's. Then, we use the c's in Equation (5) to

solve for the x's, from which we can obtain sm using

am ln

The A's can be found via Equation (4).

The foregoing discussion detailed the exact procedure for calculating
the poles and residues using Prony's Algorithm. If M is the number of poles
to be determined, we need 2M sample data points for the exact calculation.
Often, there are more than 2M data points available. When more than 24 points
are used, the problem is overdetermined. The next section will describe new
procedures for handling the overdetermined case.

In activating the algorithm as described, one must know in advance the
number of poles or guess, if the number is not known. If the estimated number
is too low, the results will be nonsense. If the estimate is too high, the
algorithm will give the correct poles, plus some extra (curve-fitting) poles
with low residues. However, to obtain meaningful results, the estimate must
not be too far above the correct number. ANALYSIS TECHNIQUES will describe
what has been done to handle these shortcomings.

ANALYSIS TECHNIQUES

The most critical procedure in Prony's method (in the overdetermined case)

is finding the least-squares solution of

F C = B (9)

for C, the vector of coefficients for the polynomial. The linear least-
squares procedure for solving Equation (9) for C is given in Reference 6.
Once the coefficients are accurately known, finding the roots of the polynomial
is generally straightforward. The residues are less important for most pur-

poses, because they are not necessarily characteristic of the object being
irradiated.

CROUT ROUTINE

The original SEMPEX program used the CROUT7 method for finding the polyno-
mial coefficients. In the CROUT subroutine, Equation (9) is multiplied by FT

to obtain

F F C =FTB (10)

12
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Here, FT is the transpose of F. The vector,

C* a (FTF)-,iFTB 01 1)

which is the unique solution of Equation (10) is the least-squares solution
of Equation (9). The CROUT method uses a modification of the Gauss Reduction7

to find the solution. It does not work well when the columns of F are close to
linear dependence because the determinant of FTF will be small and the prob-A
lea nearly singular.

HFTI A UTINE

We found the HFTI8 routine, available in the Naval Surface Weapons Center
(NSWC) Library of Mathematics Routines, to be more suitable for our purposes.
It is more accurate because most inner products are computed in double preci-
sion. It is able to deal with the problem of rank deficiency when the columns
of F are close to being linearly dependent. The HFTI routine can also be used
to get an indication of the number of poles present in the signal. In the

process of computing the least-squares solution, the HFTI routine transforms
the matrix, F, to upper triangular form with an orthogonal matrix, Q, and an
orthogonal permutation matrix, P, so that QFP a R, and R has zeroes below the
diagonal. The matrix, P, reorders the columns so that the absolute values of
the diagonal elements are monotonically decreasing. The HFTI routine then
calculates a condition number C# for this triangularized data matrix by di-
viding the maximum (upper left) diagonal element, al1 , by the minimum (lower

right) diagonal element, a.. That is, C# -a 1 1/aMM. The rank k of F is the

number of linearly independent columns of F. If the number of columns K is
greater than k, the last M-k diagonal elements of R will be 0. That is, as i
is increased, aii decreases monotomically and goes abruptly to zero when
i>k. In this case, C# = a,1 /aMM - for M>k. In the presence of noise, there
is still an abrupt decrease in aii (and an abrupt increase in C#) as i becomes

greater than k, although aii is no longer equal to zero (and C #a<) for i>k. As
the noise is increased, the decrease in aii (and increase in C) as i becomes

greater than k, is less abrupt.

Assuming no noise in the data, the number of linearly independent columns
(or the rank k) of F is usually equal to the number of poles. This is true for
the following reason. Assume m is the actual number of poles, and K is the
assumed number of poles with M>m. Let N be the number of data points. Now F
is defined to be

fI f2 ... fM

f 2

fN-K fN-M+1 fN-i

13



If there is no noise, then

m
f = (12)
Sk=

where

m
cn xk

n- +x = 0 (13)
n=1

Denote the j 'th column of F by Fj. By Equation (12)

m
E A x]

m +1
=1 Ak Xk

m

E Ak x+N-M-1

By Equation (13)

m
E F + F = 0. (14)

* n=l n-n -m+l -

Thus, the number of linearly independent columns cannot be greater than m.
* It is possible that there could be fewer than m, but this would be very

unusual.

Thus, if the number of linearly independent columns of F is m, the rank
of F is m and the last M-m diagonal elements of R would be 0 in the absence
of noise. We could then conclude that the number of poles is probably m and
restart the algorithm assuming m poles instead of M.

In practical work, we check to see when M becomes greater than m by moni-
toring the condition number C# of matrix R. In successive runs, we note the
value of M when C# undergoes an abrupt increase. The rank m is then M-1, the
value of M just before C# increases suddenly. When C# is large (usually

greater than 100 in practical situations), we say that the data matrix is ill-

conditioned.

If the signal is contaminated by noise, as is usually the case, the situa-
tion is somewhat different. If the noise is random, uncorrelated noise, the
columns of F will be linearly independent because the noise samples are inde-
pendent of one another. Thus, the rank of F will be M and none of the diagonal
elements of R will be 0. However, if the noise level is relatively small, the
last M-m diagonal elements will be much smaller than the other diagonal ele-
ments. How large then must one set the tolerance for the diagonal elements to

14



determine how many poles are actually present? Note that the matrix, Q, be-
cause of its orthogonality, does not alter the norm of the columns of F. The
matrix, P, merely reorders the columns where necessary, so it can be ignored
for this dicussion.

Assume the diagonal element in column j would be 0, if no noise were pres-
ent. Note that Q will be somewhat different when noise is present. Because of
the noise, the k'th element of F. will be fj+k- + Nj+k-1 where Nj+k_ 1 is the

noise. If the noise is random with mean 0 and variance a2, thenN'

E Jki (fj+k-i + Nj+k-1) = E fJ+k-1 + (N-M)o2 (15)k= 'k 1 k=1 k-N

where E denotes expected value. The effect of Q will be to redistribute this
quantity in the column so that all elements below the j'th or diagonal
element will be 0. Let us write the k'th element of Wj as rkj + ekj where rkj

is the value the element would have, if there were no noise. Because of con-
servation of the norm by Q,

2 N-M
E rk= (16)k=l k=1

with rjj 0, and

k=1 (rkj + ekj) = k j+k-1 (N-M)a2 (17)

These two equations somewhat justify the approximation

i .E ejj - (N-M)oN (18)

or
~N-M

V'E~e? = a(e..) - ON (19)

Assuming j = M, then

a(ejj) 2 - ON  
(20)

If the diagonal element of the last column of QFP is smaller than this, the
number of poles is probably less than M.

15



NONLINEAR LEAST SQUARES

Contrary to what one might assume, the normal linear least-squares method
does not give the best fit to the data. Written in terms of the estimated
solution for the polynomial coefficients 8 and the error of the fit d, Prony' s
equation is

A

F C -B +d (21)

The usual linear least-squares solution minimizes the norm of d. This is the
error in B, which does not involve all of the data values. Also, there are
actually '54 parameters of the problem: the M poles and the M residues. The
linear least-squares method optimizes only M parameters simultaneously.

The nonlinear least-squares method of Evans and Fischl4 avoids these draw-
backs at the expense of a great deal of extra computation. It is based on
Equation (21) and on

f F, A+ e

with f

f
nj

X1  X 2  KM

and F=

N-i N-1 N-1
Lx 1  x2  M -(22)

Here, e is the error vector involving the error in fitting all the data to be
minimized by a simultaneous optimization of C and A. Equation (21) can be
rewritten

T A

B (C) f d (23)
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by defining the N x (N-M) matrix

C1 0 0 0

C2  C1 0 0

11

kB(C) =
CM  • . I

1 CM C2

0 1 CM

• 0 1
* • 0 CM

There is a corresponding equation for noise-free data h and the correct values
of C and no error.

BT (c) h =o (24)

It follows then that

BT e BT (f-h) = d (25)

The problem is given d to find e. There is no unique solution to this as it
is an underdetermined-problem because BT has more columns than rows. This
represents a set of N-M equations in N unknowns. Another way to look at this
is that d is a function of the M elements of C, while e is a function of C and
additionally of the M elements of A. The solution can be made unique by
constraining A to be a function of C. The optimal way to do this is, for a
given C, define A*(C) to be that which minimizes the norm of e(C, A*). Then
there will be a matrix W(C) such that

e(C, A*) = W(C) d(C) (26)

Evans and Fischl show that W(C) is given by

W(C) R (C) [BT(C) B(C)] -1(27)

17
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The strategy for the nonlinear least-squares method is to solve iterative-
ly for the value of C that will minimize e(C,A*) in Bluation (26). The algo-
rithm begins by solving the linear least-squares problem of Bquation (21). The
solution of this is

C(0 ) = (FTF)-IFTB (28)

Then, we find

W(O) (CM0 ) =B(C(O))[ST (so)B3(COd (29)

Define C(M ) as the vector that minimizes the norm of e in the equation

e(C) = W(0 )d(C) = W (0 )(F C - B) (30)

The solution will be

C(I) = [FTw(o)Tw(o)F]-1 FTW(O)T W(0 )B (31)

(1)( ) ( )This solution for C can then be used to compute W(I) (C{1)), which can be
used in the least-squares equation

e(C) = W( 1 )(F C - B) (32)

to find an improved estimate C This procedure can be reiterated as many
i times as accuracy requires and funds allow. Evans and Fischl follow this

procedure with a gradient method to further refine the solution. This was
introduced primarily for mathematical completeness and is generally not neces-

*sary in practical applications. It was not included in our application of the

algorithm.

KALMAN FILTER

An alternative to the nonlinear least-squares technique is a sequential

estimation method based on Kalman Filter Theory.9 It has apparently never
been applied to this problem before but shows considerable promise for situa-
tions where multiple independent returns are available. In these situations,

it can exceed the accuracy of the nonlinear least-squares method with computer
memory requirement comparable to linear least squares. It achieves this by
sequentially processing the data in small blocks, in tne end obtaining the

equivalent of one simultaneous solution for all the data sets. The data sets
can involve signals with different residues and different data spacing as long
as the poles are the same.

The way this method works is as follows. Assume we have K s.bsets of
data, each of which satisfies Prony's equation

((Nj-M~xM) (14 N-) (Nj-K) (dimensions of matrices and vectors
below)

FM C B (j ) + d (j  J - 1, 2,..., K (33)
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I
Here, FM is the J'th data matrix of dimension Nj-M by H, C is the vector of

the polynomial coefficients of dimension M, BO ) is the0'th-a vector of

dimension Nj-M and d (j ) is the error vector also of dimension N -M. Now assume

that all the data contain the same set of poles, and, thus, the polynomial
coefficients C should ideally be the same. The object is to obtain, using all
the data sets, the solution for C that will give the smallest value of

k I_
i.e., the overall unweighted (linear) least-square error*

It should be noted here that the theory allows for the minimization of a

weighted sum of squared errors. To obtain the minimum variance solution, what

must be minimized is DTW D where D is a column vector made up of all the dJ's

and W-1 - E(DTD), the expectation value of DTD. In our application, however,

the errors are assumed to be independent and to have equal variance. Therefore,
W becomes a constant times the identity matrix and has no effect on the theory.

The k'th estimate for C, denoted C represents the simultaneous least-

squares solution of the first k subsets of data. To continue the process and

find C(k+1 ) also requires knowing P(k) which is the covariance matrix of the

current estimate C(k). According to the Kalman theory, the solution is

C(k + ) -C (k ) + P(k)F(k+I)T(I+F(k+) P(k)F(k+I)T)-i (ak+l) - F(k+l)C(k)) (34)

p(k+1) M p(k) _ p(k)F(k+1)T(I+F(k+1)p(k)F(k+1)T)-1 P(k+1)p(k) (35)

Note that the inverse is"of dimension (Nk-M)X(Nk-M).

The iteration begins by computing

p(1) . (F (1)TM( 1  (36)

(11) . pllF1 TB(O) (37)

In theory the number of data points Nk could be different for each data sub-
set and could be any number >_2M. In our application, we use Nk - 2M points

for every data set. This simplifies the computation somewhat and reduces the
dimension of the inverse to M x M. In comparison, the nonlinear least-squares
method involves inverses of dimension (N-M) x (N-1). Thus, for example, if
H - 14 and N - 84, the dimension of the nonlinear least squares inverses would
be 70 x 70, involving 4900 elements, whereas the Kalman method would do this in
three steps with each step involving inverses of dimension 14 x 14, or 196
elements per step.
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APPLICATIONS

APPLICATION TO SYNTHETIC DATA

All of the above methods work well, if the noise level is low and if cer-
tain criteria on data spacing are met. We have found by experience that the
data spacing At must be small enough to satisfy the Nyquist criterion that

2At

be greater than or equal to the highest frequency present. Another finding is

that the total data span, T, must be large enough so that is less than or

equal to the lowest frequency present. These criteria both seem reasonable on
theoretical grounds. There have been cases where the method worked without
satisfying one of these criteria but usually it does not. A large condition
number is often an indication of trouble in this area.

The true test of these methods is their performance in the presence of
noise. In order to compare them, we have used a set of six pairs of poles
published by Van Blaricum and Mittra.1 0 In this report, they present a method
that works on synthetic data generated from these poles using residue values of
1.0 in the presence of additive random Gaussian noise with a standard deviation
o as large as c = 0.01. With our methods, we are able to get reasonable
results with ON = 0.1.

The criterion we used to measure the effectiveness of the above described
methods in noise is the root of the sum of the squares (RSS) of the differences
between our calculated and Van Blaricum's poles. That is,

i z 2(38)

where si are Van Blaricum's poles and si are the poles as determined by our

methods. The lower RSS is, the more effective the method.

Table 1 shows results obtained with the three methods on synthetic data
generated from Van Blaricum's poles, using the residues shown in Table 2.
Random uncorrelated Gaussian noise was added with a oN of 0.1. Each synthetic

return had an independent noise sample; thus, cases 1 and 2, which had the same
poles and residues gave different results. Data spacing At was 0.25 nsec.

The Kalman method was used to analyze the data in the following manner%

Iteration Data Sets Used

1 1
2 1 and 2
3 1, 2, and 3
4 1, 2, 3, and 4

5 1, 2, 3, 4, and 5

20



Results improved with each iteration, as more data sets were included. In
these calculations, the Kalman method used 150 points from each return (data
set) while the other methods used only 80 points each.

Table 1. Results from Synthetic Data (Van Slaricum and Mittra)

ON 0.1

RSS I Is.- s 2
i ~ '

Linear-Least Nonlinear-Least
Case No./Method Squares Squares Kalman

1 0.0302 0.0261 0.0543
2 0.0382 0.0279 0.0438
3 0.0116 0.0097 0.0262
4 0.0246 0.0234 0.0155
5 0.0385 0.0391 0.0106

Table 2. Poles and Residues

Residues
Poles/Casemo. 1 2 3 4 5

-0.082 t j 0.926 -0.70 ± J 0.70 -0.70 ± j 0.70 0.70 ± J 1.0 0.70 T J 0.70 -1.0 ± J 0.0

-0.147 t j 2.874 -0.70 ± j 0.70 -0.70 ± J 0.70 0.70 ± j 1.0 -0.70 ± j 0.70 0.70 T j 0.70

-0.188 ± j 4.835 -0.70 ± J 0.70 -0.70 ± j 0.70 0.70 ± j 1.0 0.70 F j 0.70 0.70 ; j 0.70

-0.220 ± j 6.800 0.70 ± j 0.70 0.70 ± j 0.70 0.00 ± J 1.0 -0.70 ± j 0.70 1.0 ± j 0.0

-0.247 t J 8.767 0.70 ± j 0.70 0.70 ± J 0.70 0.00 ± J 1.0 0.70 T j 0.70 0.0 T J 1.0

-0.270 t j 10.733 0.70 ± J 0.70 0.70 ± j 0.70 0.00 ± j 1.0 -0.70 ± j 0.70 -0.70 ± j 0.70

It can be seen that all three methods performed rather well. The non-

linear least squares generally outperformed the linear least squares. The
Kalman method outperformed everything else except the result of the nonlinear
least squares method on data set 3. To some extent though, the results of
the Kalman method were disappointing. Using just the Case 1 data, it should
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have equaled the linear least squares, but it did not. Using just 84 data
points in the Kalman method improved Case 1 results to an RSS error of 0.0407
but d/-graded the other results. We do not understand why this is the case,
but given more time, it would be interesting to investigate this further. The
Kalman method seems to be programmed correctly. We did the runs in reverse
sequence, cases 5, 4, 3, 2, and I and got the same final results. Also, for a
low-noise case, aN = 0.005, the Kalman and linear least-squares methods gave

the same results. Perhaps the Kalman and linear least-squares methods are not
mathematically equivalent in the presence of noise.

We found a curious result involving the data spacing with these computa-
tions. The poles were first extracted using a data spacing of At = 0.2857 nsec
giving a Nyquist frequency of 1.75 GHz, which exceeds the highest frequency
present, namely 1.71 GHz. All the methods consistently underestimated the
magnitudes of the real parts of the last two pole pairs. The Kalman method did
not help with this. Apparently the highest frequency was too close to the
Nyquist frequency. When At was reduced to 0.25 nsec (Nyquist frequency =
2.00 GHz), the results improved greatly, and the errors in the real parts of
the last two poles were random.

APPLICATION TO EXPERIMENTAL DATA

Because of problems with the tape recorder we originally planned to use,
we had to hand digitize the experimental curves we analyzed and punch the

values on cards to feed into the computer. The oscilloscope traces were en-
larged to 30.5 x 38.1 cm (12 x 15 in.). The 201 points were hand digitized
from each enlargement. Each set of data was interpolated and smoothed to 512
points (at equally spaced time intervals), using a cubic spline routine. This
procedure was performed for the returns from the hemisphere, the cylnder, and
no object (clutter).

It can be seen from Figure 8 that the returns - thI o4jects had a lot
of clutter superimposed on them. This clutter irt'oteres wzb the analysis
of the return to find the poles. If the cluttei #ere just additive, it could
be removed by subtracting the object-free return. This was tried but was not
very successful. Any reflections arising in the transmitting circuitry are
convolved with the impulse response and, thus, cannot be subtracted out. This
apparently was the problem here. It might be possible to deconvolve the clut-
ter, if enough information were obtained about its characteristics to allow
distinguishing it in some way from the signal.

Tables 3 and 4 show the results of applying the various methods to the
cylinder and hemisphere data. The total data span for each was 10 nsec, divid-
ed into 511 time steps. This gives a data spacing of 0.01957 nsec. The theory
only applies to the free-ringing response of the object, so the first point to
be used must be received later than the reflection (if any) of the trailing
edge of the pulse from the farthest edge of the object. Since the objects are
each 12.7 cm (5 in.) in diameter and the pulse width is about 1 nsec, the time
from the beginning of the reflection to the first point to be used is about
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+ 2 x 12.7cm . 1.85 nr ec3Ocm/nsec

Table 3. Poles from Cylinder

Linear-Least Squares Nonlinear-Least Squares
Clutter Not Clutter Clutter Not Clutter

Removed Removed Removed Removed
(GHz) (GHz) (GHz) (GIz)

-0.16 ± j 0.037 -0.14 ± j 0.037 -0.29 ± j 0.038 -0.32 ± j 0.038

-0.75 ± j 0.22 -0.24 ± j 0.11 -0.54 ± j 0.19 -1.88 ± j 0.14

-2.03 ± j 0.38 -0.82 ± j 0.21 -1.24 ± j 0.40 -0.74 ± j 0.21

-2.97 ± j 0.65 -1.09 - j 0.31 -3.09 ± j 0.65 -0.69 ± j 0.40

-3.13 ± j 0.82 -0.68 ± j 0.37 -2.33 ± j 0.80 -1.73 ± j 1.04

-4.01 ± j 1.02 -6.11 ± j 0.82 -2.16 ± j 1.06

-2.78 ± j 1.40 -1.56 ± j 1.56 -3.45 - j 1.26

-2.36 ± j 1.41

Table 3 shows the results of applying the linear and nonlinear least-
squares methods to the cylinder data both in its original form and with the
clutter subtracted. Table 4 shows the results from applying all three methods
to the return from the hemisphere with the clutter subtracted. The least-
squares methods used time steps of 0.03914 nsec and 95 data points. The Kalman
method used time steps of 0.01957 nsec and 200 data points.

Table 4. Poles from Hemisphere, Clutter Subtracted

Linear-Least Nonlinear
Squares Least Squares Kalman

-9.59 ± j O.11x1O - 18  -0.29 ± j 0. -0.60 ± j 0.
-1.54 ± j 0.17x10 -14 -8.33 ± j 0.11x10-14 -4.86 ± j 1.23
-1.41 ± j 1.12 -0.80 ± j 1.49 -4.93 ± j 3.32
-1.72± j 2.26 -1.83 ± j 2.19 -1.28 ± j 5.78
-2.07 ± j 3.57 -0.07 ± j 3.05 -2.12 ± j 8.08
-1.81 ± j 4.85 -0.003 ± j 5.03
-0.92 j 6.46 -0.37 ± j 6.37
-2.55 ± j 8.04 -0.08 ± j 7.66
-3.94 ± j 9.37 -1.25 - j 8.56
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It can be seen that the results are not very consistent. Since the meth-
ods worked well on synthetic data with added random noise, the problem here is
apparently due to excessive clutter that is not random and is correlated with
the signal. Besides, the clutter cannot be represented as a sum of damped ex-
ponentials, which Prony's algorithm demands. If one examines the clutter care-
fully (Figure 8) and compares it with the impulse generator pulse (Figure 5), one
sees that the clutter appears to be a series of reflections or miniature repli-
cas of the impulse generator pulse. We tried Prony's algorithm and the various
methods on the impulse generator pulse as received by the TEM horn to check the
tolerance of Prony's algorithm to nonexponential waveforms. The results on the
impulse generator pulse were totally meaningless. Since the clutter appears to
consist of miniature replicas of the impulse generator pulse, we would expect
that Prony's algorithm will not work well on such a waveform.

To obtain meaningful results with the presently available techniques,
the clutter must be reduced. This can probably be achieved by using fewer
and better connectors. Another possible way to deal with the clutter may be
to deconvolve it by homomorphic deconvolution techniques.11 This may work,
but only if the frequencies contained in the clutter are vastly different from
the frequencies in the returns.

We had intended to do runs similar to those described above on the return
from the cone, but in view of the clutter problems, we decided to forgo the
cone runs until after the clutter problems are solved.

CONCLUSIONS

The time-domain range and the method for gathering experimental data were
described. Prony's algorithm was discussed as a means fok processing scattered
returns from objects. Improvements in the algorithm were described that help
it to better process noisy synthetic data. It did not, however, do well on
experimental returns. The main reason was clutter that cannot be represented
as a sum of damped sinusoidal waveforms, which Prony's algorithm demands.

The needs for further effort are as follows:

1. Improve experimental techniques so that the data obtained are in a
form that can be handled by presently available signal processing techniques.
This would include getting rid of clutter and noise as much as possible. Clut-
ter can be reduced by eliminating unnecessary connectors and replacing those
needed with connectors that are good at high frequencies (15 GHx and up) to
reduce reflections. Also, grounds need to be checked to eliminate ground
loops. To reduce noise, we recommend a minicomputer that can control the sweep
of the sampling scope. In this way, many samples of the same point can be
received and averaged.
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2. Improve signal processing techniques so that good results can be ob-
tained from bad (noisy, cluttered) data. This would include intensive param-
eter studies on Prony's algorithm and seeking ways to deconvolve clutter and
noise from the sought for returns. Also, new techniques should be sought and
tried.

REFERENCES

1. C. E. Baum, On the Singularity Expansion Method for the Solution of
Electromagnetic Interaction Problems, Interaction Notes, Note 88, (11
December 1971).

2. R. Prony, "Essai Experimental et Analytique," J. Ecole Polytechnique,
(Paris, 1795), 1 (2), pp. 24-76.

3. V. C. Martins, J. L. Van Meter, J. M. Proud, and D. J. Fitzgerald,
Picosecond Pulse Reflector Antenna Investigation, RADC-TR-73-215
(Griffiss Air Force Base, N.Y., July 1973).

4. A. G. Evans and R. Fischl, "Optimal Least Squares Time-Domain Synthesis
of Recursive Digital Filters," IEEE Transactions on Audio and Electro-
acoustics, AV-21, (February, 1973), pp. 61-65.

5. J. N. Brittingham, E. K. Miller, and J. L. Willows, The Derivation
of Simple Poles in a Transfer Function from Real-Frequency Information,
UCRL-52050, Lawrence Livermore Laboratory, (6 April 1976), pp. 2-4.

6. R. H. Pennington, Introductory Computer Methods and Numerical Analysis,
(New York: Macmillan, 1970).

7. F. B. Hildebrand, Introduction to Numerical Analysis, (New York:
McGraw-Hill, 1974).

8. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems
(Englewood Cliffs, N.J.: Prentice Hall, 1974).

9. J. L. Junkins, Optimal Estimation Theory, NSWC TN-K-45/74 (Dahlgren,

Va., January 1975), pp. 19-27.

10. N. L. Van Blaricum and R. Kittra, "Problems and Solutions Associated

with Prony's Method for Processing Transient Data," IEEE Transactions on
Antennas and Propagation, AP-26, (January, 1978), pp. 174-182.

11. S. N. Riad and N. S. Nahman, "Application of the Homomorphic Deconvolution
for the Separation of TDR Signals Occurring in Overlapping Time Windows,"
IEEE Transactions on Instrumentation and Measurement, IM-25, (Decem-
ber, 1976), pp. 388-391.

25

r77



DISTRIBUTION

Naval Air Systems Command

AIR-310B
ATTN: J. W. Willis (2)
Washington, DC 20361

Commanding Officer
Naval Ordnance Station
Gun Systems Engineering Department
ATTN: Technical Library (Code 50D) (2)
Louisville, KY 40214

R. C. Hansen, Inc.
Box 215
Tarzana, CA 91356

Naval Postgraduate School
ATTN: Michael Morgan

Monterey, CA 93940

The Ohio State University
Electro Science Laboratory
1320 Kinnear Road
ATTN: David Moffatt (4)

Eric Walton
Columbus, OH 43212

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217 (2)

Commander
Rome Air Development Center
ATTN: Paul Van Etten
Griffis Air Force Base, NY 13440

Teledyne Micronetics
7155 Mission Gorge Road
ATTN: Steven Weisbrod
San Diego, CA 92120

Director
Naval Research Laboratory
4555 Overlook Avenue, SW
ATTN: Philip Moser

Arthur K. Jordan
Washington, DC 20375

i



DISTRIBUTION (Continued)

Office of Naval Research
Western Regional Office
1030 East Green Street

Pasadena, CA 91106 (2)

Electronics Engineering Department
University of California

Lawrence Livermore Laboratory
Box 808
ATTN: E. K. Miller (2)

Livermore, CA 94550

Electromagnetics Division
National Bureau of Standards

ATTN: Andy Ondrejka (4)
Norris S. Nahman

Robert A. Lawton

Boulder, CO 80303

General Dynamics

Electronics Division
Box 81127
ATTN: Gus Tricoles
San Diego, CA 92138

Systems Applications
Sperry Corporate Research Center
100 North Road
ATTN: C. Leonard Bennett

Sudbury, MA 01776

Effects Technology, Inc.
Electromagnetics Section
5383 Hollister Avenue

ATTN: Michael L. VanBlarium

Santa Barbara, CA 93111

Picosecond Pulse Labs
8663 Hollyhock Lane
ATTN: James R. Andrews
Lafayette, CO 80026

Department of Electrical Engineering

Texas Tech University
ATTN: Thomas F. Trost
Lubbock, TX 79409

....... . --- -iltlil ..... . . . .. ... . . .. . " .- - -- . --... . - . . ..



DISTRIBUTION (Continued)

Department of Physics
Catholic University of America
ATTN: Herbert Uberall (2)
Washington, DC 20064

Department of Electrical Engineering
University of Illinois at Chicago Circle
Box 4348 SEO-1104
ATTN: Woffgang M. Boerner
Chicago, IL 60680

Department of Electrical Engineering
Rochester Institute of Technology
One Lomb Memorial Drive
ATTN: Tapan K. Sarkar (2)

George Whitman Reed
Rochester, NY 38677

Department of Electrical Engineering
Michigan State University
ATTN: Kun-Mu Chen
East Lansing, MI 48824

Department of Electrical Engineering
Virginia Polytechnic Institute
ATTN: Sedki M. Riad
Blacksburg, VA 24060

Electromagnetic Radiation Analysis Branch
U. S. Environmental Protection Agency
Office of Radiation Programs

Box 18416
ATTN: Richard A. Tell

Las Vegas, NV 89114

Electromagnetic Sciences Laboratory
SRI International
ATTN: David M. Bubenik
Menlo Park, CA 94025

3L



DISTRIBUTION (Continued)

Defense Technical Information Center

Cameron Station
Alexandria, VA 22314 (12)

Library of Congress
ATTN: Gift and Exchange Division (4)

Washington, DC 20540

Local:

E31 (GIDEP)
E41 (Hall)
F
Flo

* F12
F12 (Hollmann) (10)

R

X210 (6)

tI

m =_j---.......... ... .... . ......---........ . ..




