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OVERVIEW

This report presents the development of equations and curves that-

describe the capacity characteristics of the AN/UYK-20 and its

peripherals. These will form the basis for a future Capacity Cal-

culations handbook and will contribute to the subsequent capability

of making capacity assessments under conditions of actual utilization

of the AN/UYK-20 by a large variety of both systems and applications

software.

The means employed to assess capacity in this report are those of

Software Physics. This discipline, developed in Kolence's An Intro-

duction to Software Physics, mathematically derives capacity charac-

teristics of computing equipment from fundamental equipment descrip-

tions and specifications. However, capacity available is not neces-

sarily power actually used by a workload (software) executing on

the equipment. Software Physics theory identifies the parameters

which govern the utilization of capacity and predicts the quantity

of power actually used. This is essential to the improvement of

performance. Further discussion of capacity, power and performance,

as well as other Software Physics terminology can be found in the

Glossary which follows the body of this report.

A predictive theory must be tested; and so the companion report,

"AN/UYK-20 Capacity Equipment Specification" proposes experiments

intended to verify the power equations and curves of this study.

It is anticipated that a future report will contain the full design

of such experiments and that the comprehensive handbook of AN/UYK-20

Capacity Characteristics will be developed concurrent with the

experiment performance.
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SECTION 1

INTRODUCTION

1.0 GENERAL

This is the final report for the study of AN/UYK-20 configuration

capacity performed for the Naval Ocean Systems Center, San Diego,

under Contract N6601-77-C-0252BW. Included in this report are

the exposition of methodology for, and presentation of, theoretical

capacity (power) equations and curves for typical AN/UYK-20 config-

urations, devices and processors.

1.1 OBJECTIVES AND GOALS

The objectives of this study are to produce theoretically derived

capacity (power) characteristics for the AN/UYK-20 computer CP

and peripherals. These will form the basis for a future capacity

calculation handbook and will contribute to the subsequent capa-

bility of making capacity assessments under conditons of actual

utilization by a large variety of both systems and applications

software units. As a consequence, methods of predicting performance

(e.g., throughput, response times, etc.) become capable of realiza-

tion. Additionally, were characterization techniques thoroughly

developed for AN/UYK-20 introduction mixes and IOC command sequences,

the software units could then become subject to control of perform-

ance and capable of optimization at the design stage.

It is a particular feature of this study that, for the goal of

describing actual performance, it considers the effects of conten-

tion for main memory by the CP, IOC and DMA facility on CP capacity.

Thus CP execution power will be described as functions of concurrent

IOC or DMA power used.
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1.2 SCOPE AND APPROACH

The following sections present a series of equipment capacity

equation and curve developments leading to the higher level IOC/

channel configuration power characteristics. Each development of

capacity equations and curves for peripheral devices is pre-

ceded by a brief list of pertinent device specifications.

More complete information is to be found in specifications

provided by the manufacturers.

Three peripheral devices were selected for analysis. These

are the AN/USH-26 Cartridge Magnetic Tape Unit (CMTU), the

AN/USH-23 Disk Controller/Storage System and the AN/USQ-69

Keyboard/Display unit. For the first two, capacity curves

are also developed for multiple units operating with a single

controller; that is, for a control unit configuration. These

curves are shown tabulated and plotted for select cases of

parameterization. The presentation of more extensive tabula-

tion will be the function of an anticipated software physics

handbook for these devices and configurations.

The subsequent sections of this report present a development

of a CP power methodology for the AN/UYK-20. This includes a

vector formulation of CP forces with components determined

by the various containers operated on and by the nature of

the action. From this we will present a methodology developing

CP power for classes of instructions and the workloads of

which they are constituents. The impact of IOC or DMA conten-

tion with the CP for main memory is then analyzed and the

effects on CP execution power are developed for some specific

instruction classes and a typical instruction mix.

These methods and results should be considered the predecessors

of a comprehensive handbook of AN-UYK-20 capacity methodology

and tabulations, offering the potential of the use of software

physics theory and results in effective hardware configuration

design and in the design and implementation of system or

applications software.
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1.3 REFERENCE PUBLICATIONS

This report assumes familiarity with the fundamentals and termin-

ology of Software Physics and some familiarity with the AN/UYK-20

and its peripherals. The following two publications are offered

as containing material adequate to satisfy these prerequisites.

(a) Kolence, Kenneth, "An Introduction to Software Physics",

Institute for Software Engineering, Inc., Palo Alto, 1977.

(b) Sperry Univac Defense Systems, "AN/UYK-20 Technical

Descri ption", Publication number PXl0431C, Sperry Univac

Corporation, St. Paul, Minn.

1.4 ACKNOWLEDGEMENT

The author gratefully acknowledges the contributions to the

development of this report provided by:

William J. Dejka (NOSC)

Robert B. Holland (System Industries, Inc.)

Kenneth W. Kolence (Institute for Software Engineering)

John Westergren (Sperry-Univac)

William Yonkers (Qantex, Inc.)
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SECTION 2

AN/USH-26 CMTU POWER

2.1 GENERAL

The AN/USH-26 Cartridge Magnetic Tape Unit (CMTU) like many other

tape devices operates in the Software Physics Type 1 mode. This

means that the control unit and channel are in execution whenever

an individual drive is performing actions consequent on the issu-

ance of a read or write command.

Thus, when only these read/write related actions are considered,

the a or a configuration power is:

(a) Independent of the number of drives in the a or a configura-

tion.

(b) Identical to the power curve for a single drive using the

average blocksize for the entire a or $ configuration.

2.2 CMTU CHARACTERISTICS

(a) Tape speed - 30 ips

(b) Start-up time - 30 - 1 msec

(c) Interrecord gap (IRG) - 1.2 - 1.8 inches. (1.6 - 1.8 inches

for successive read/write operations)

(d) Recording density - 160e bits/inch (serial)

(e) Data rates - 320 msec between 16 bit words

(nominal)

(f) Overhead bytes - 16 bit preamble

16 bit CRC

16 bit postamble

(g) Record lengths - 2048 bytes max. recommended

(h) Rewind time - 42 sec. for 300 ft. of tape

(i) Configuration(s) - 1-4 drives/controller
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2.3 DEVICE AND CONFIGURATION STATE CHARTS

The STANDARD CYCLE STATE CHART, Figure 2.1, shows the drive/control

unit/channel busy states for read/write actions.

The FULL STATE CHART, Figure 2.2, shows the busy states for all

drive activating comands.

Tx (S, cx) ,

Tx (S,')

Control

Unit

k-- TTX(S,( )

Peripheral Seek Search Action Term
Die(IRG) (BOR) (Read/Write) (EOR)l

STANDARD CYCLE STATE CHART (Type 1)

AN/USH-26 CMTU

Figure 2.1

2-2
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2.4 CMTU DRIVE POWER

As an instance of type 1 (tape) power, we have that:

t w
P (tpCMT) tt

t1 + t2 + t 4 + W - MBTR

where: MBTR = tape speed x byte density = 30 x 200 = 6 x 103 bytes/sec

t I = IRG time = QJIRG)/tape speed

= 1.7/30 = 56.7 moec

t 2 = Record preamble time = # preamble bytes + MBTR
23

= 2/6 x 10 = .333 msec

t 4 = Record CRC + Postwnble time

= (#CRC bytes + #postamble bytes) 1 MBTR

= (2+2) 6 x 10 = 0.667 msec.

So P(t, CMTU) = W3 kw/s
56.7 + 0.333 +0.667 + W/6 x 10 x 10

W
57.7 + 0.167 W kw/s (2.1)

and the block size efficiency

P(tae,CMTU,W.) P(tapeCMTU,W.)
1 , -_ _ _ _ _ _ (2.2)

Pasymptotic 6 x 103

Equations (2.1) and (2.2) are tabulated and plotted in Table 2.1

and Figure 2.3, respectively for a wide range of data blocksizes.

As a consequence of the fact that the channel and control unit are

busy throughout the device standard cycle, the defining character-

istic of type 1 power, and thus as no power-producing overlap is

possible between multiple drives on a control unit or channel,

the power characteristics of the a (channel) or 8 (control unit)

configurations are identical to that of a single drive.

2-4



BLOCKSIZE EXECUTION TIM TAPE POWER %BLOCKSIZE
-3

(Bytes) (10 sec) (KW/sec) EFFICIENCY

80 71.06 1.126 18.77

120 77.74 1.544 25.73

250 99.45 2.514 41.90

500 141.2 3.541 59.02

1,000 224.7 4.450 74.17

2,000 391.7 5.105 85.08

3,000 558.7 5.370 89.50

4,000 725.7 5.512 91.87

5,000 892.7 5.600 93.33

6,000 1060. 5.662 94.39

10,000 1728. 5.788 96.47

20,000 3398. 5.886 98.10

100,000 16760. 5.967 99.45

1,000,000 167057. 5.986 99.77

CONTINUOUS READ/WRITE POWER (Type 1)

AN/USH-26 CARTRIDGE MAGNETIC TAPE UNIT

Table 2.1
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SECTION 3

AN/USH-23 DISK SYSTEM POWER

3.0 GENERAL

The AN/USH-23 disk system (currently the System Industries Model

3500) consists of a control unit and from one to eight drives

with either a fixed or removable disk platter.

The control unit and drives operate in the Software Physics type

2 mode; that is, the initial positioning seek on one drive may

be overlapped with actions on others. Data records are formatted

into fixed length sectors on the disk and the system is capable

of reading or writing records that span sector, track or cylinder

boundaries as effectively one operation.

3.1 AN/USH-23 DISK SYSTEM CHARACTERISTICS

3.1.1 System

(a) System Capacity - 19488 k Bytes

(b) Up to 8 drives may be attached to a single controller.

Drives 5-8 are daisy-chained from 1-4 and share controller

registers.

At least one drive in a daisy-chained pair must be a

removable cartridge type.

(c) Addressing by disk sector (type 2).

(d) Overlap seek permits concurrent seeking on up to 8 drives.

Subsequent data transfer may occur after seek on one drive

while others are still seeking.

(e) Spanning of sectors, tracks and cylinders continues without

IOC action required until the word count is satisfied.
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3.1.2 Drives (DIABLO models 31/33F)

(a) Tracks per surface - 203

(b) Tracks per cylinder - 2

(c) Words/sector - 256 or 128

(d) Sectors/track - 12 or 24

(e) Disk capacity - 2436 k Bytes

(f) Byte transfer rate (MBTR) - 195.2 k Bytes/sec

(g) Average latency - 20 ms

(h) Head movement times:

Cylinder to cylinder - 15 ms

Average - 70 ms

200 cylinders - 135 ms

Ci) Sector format:

i) First preamble - 20 bytes

ii) Sector address word - 2 bytes

iii) Sector status word - 2 bytes

iv) Second preamble - 20 lisec

v) Data - 512/256 bytes

vi) CRC - 2 bytes

(j) Interrecord gap:

12 sector format - 524 Psec

24 sector format - 168 1sec

(k) Maximum transfer - 128 k Bytes

3.2 AN/USH-23 DRIVE POWER

3.2.1 Single Sector Standard Cycle

Figure 3.1 presents a standard cycle for the input/output of

a single sector on the series 30 disk drive. There are certain

irregularities for this drive as compared to the ordinary type

2 drive power. These are:
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r - - - - - - -- - - - - - - - -- - - - - - -- - --- - - - -- - - - -

() (2) (r/w) r

initial t I t
action 10 20 ',t22  3 t 41 't4 2

track boundary 0 0,t 2 2 f t 3  1 t 4 1,t 4 2

cyl boundary t 12  t 2 1 " t 221  t 3  I t 4 1 "t 4 2

where: t stand alone seek time
10
11 cyl to cyl positioning time - 15 ms

t20 = average rotational delay - 20 ms

t22 = sector preamble time - 0.14 ms

t = rot delay after cylinder - 25 ms
to cylinder repositioning

t = read/write action time

12 sector format - 2.611 ms

24 sector format - 1.306 ms

t41 CRC read/write time - .01 ms

t42 overhead (interrecord) time

12 sector - .524 ms

24 sector - .128 ms

Notes: (a) Stand alone seek time, t 1 0 , is for an overlap seek operation.

(b) Initial action search time (t 2 0 +t 2 2 ) includes an unexecuted
seek.

MODEL 31/33F TYPE 2 STANDARD CYCLE

(SINGLE SECTOR)

--- -------------------------------- -iure 3.1
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(a) There are two search substates due to the sector format

and the fact that sector, track and cylinder spanning is

possible for input/output of a single logical record.

The first substate represents the time of expected latency

after an initial seek (t 2 0 ) or of rotational delay after

cylinder repositioning (t2 ). The second substate repre-

sents the time to detect and pass over the first record

preamble (t22). Note that the rotational delay after

cylinder to cylinder repositioning is a fixed value, not

a statistical average as for initial seek expected latency.

We have therefore that:

i) After the initial seek:

t 2 = search time = t20 + t22

where t = average rotational delay = 20 ms.

t = sector preamble time = 0.14 ms.

ii) After a cylinder to cylinder repositioning:

t2 t 21 + t22

where t = rotation time - seek time

= 40 - 15 = 25 ms.

t22 = sector preamble time = 0.14 ms.

iii) Within a cylinder:

t 2 = t22 m 0.14 ms.

(b) There are two termination substates, t 4 1 and t 4 2 due to

the fact that interrecord overhead must be accounted for

in all but the last sector read or written for a logical

record.

3-4
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Thus t = termination time = t + t
4 41 42

for all but the last sector

tn = t 41 for the last sector.

3.2.2 Formulation of Tx(S,6)

As multiple sectors, tracks and cylinders can be spanned during

a single input/output operation on a Model 31/33F drive, and we

will need to formulate an expression for the device execution

time that accounts for the boundary events noted in Figure 3.1.

We let N.. equal the number of occurrences of the events whose time

is t. ; - Ng, is the number of search (1) events.
1) N21

i :t b = bytes/block (sector)

s - sectors/track

= tracks/cylinder

Let a0 = the sector offset of the first block on the conmencing
track (O-s )

Let T, = the track offset of the first track on the commencing
cylinder (0-c)

Now for a given byte count W,

B = block occupancy = W (3.1)

where (a]+ = the first integer > a

B B mod s + O]

T= track occupancy a I +[,- It (3.2)

where [a] = integer portion of a

T Tmrod c + t

C = cylinder occupancy (I] + T c + (3.3)

3-5
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So we have:

N = C - i (first cylinder seek time is t70)

N = C - 1 (we have cylinder to cylinder rotational delay
on all but the first cylinder)

N = B (one preamble for each block)

N3  B (data portion each block)3i
N = B (CRC termination each block)

N = B - 1 (overhead IRG for all blocks but the last)

So for a logical record of W bytes:

TX(S'6) =t10 + N11t11 + t20 + N21t21 + N22t22

+ N3t3 + N41t41 + N42t42

Substituting in terms of blocks and cylinders we have:

Tx(SS) = t10 + (C-1)(t 11+t2 1) + t20 + B(t22+t3+t41)
(3.4)

+ (B-1)t 42

3.2.3 Evaluation of Series 30 Drive Power

The power of a single Series 30 drive, denoted

P(disk,31/33F),is given by:

P(disk,31/33F) = (3.5)Tx (S, 6)(.5

where: W is the work done in a standard cycle (possibly multi-

sector)

TX(S,6) is the execution time of the drive for the

standard cycle as given by Equation (3.4).

3-6

i•



Table 3.1 presents P(disk, 31/33F) tabulated for values of W that

are equivalent to the start, midpoint and endpoint of sectors

to beyond the capacity of a cylinder. It thus shows the dis-

continuous power drops at the ends of sectors and at the end

of boundary. The asymptotic power is, as usual, equivalent

to the maximum byte transfer rate (MBTR), which for this drive

is 195.2 KW/sec. Figure 3.1a is a plot of the initial part of

the power curve showing in detail the sector endpoint discon-

tinuities which give the function a sawtooth shape. The sub-

sequent Figure 3.1b additionally shows the larger discontin-

uity in the power function at the first cylinder boundary.

In both figures, curves are drawn through the sector maximum

or minimum power points defining smooth power envelopes within

the domain of a single cylinder.

3.2.4 Discussion

The discontinuities in the Model 31/33F power function indicate

that the optimization of device power can depend on the sector

and track offsets of the commencing record. Thus the designer

should note that in general these offsets should be chosen so

as to minimize the number of cylinder to cylinder repositions

required to satisfy the request. Record sizes that utilize only

a small fraction of a sector are inefficient as well. It should

be emphasized that the time intervals caused by the spanning of

sectors, tracks or cylinders are not available for other actions

(except previously initiated seeks) by other devices on the

same Input/Output channel.
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3.3 AN/USH-23 CONTROL UNIT AN/UYK-20 CHANNEL POWER

We will develop the maximum theoretical power equations and curves

for an AN/UYK-20 IOC/channel with multiple AN/USH-23 (Model 3500)

controller disk B-configurations each with 1 to 8 Series 30 movable

head disk drives.

3.3.1 Channel/Controller/Device States

Although' the model 3500 disk subsystem is at any time capable of

accepting and initiating seeks to any drive not active, AN/UYK-20

IOC logic considers the controller unavailable when any drive on

that controller is enqaged in any of the following actions:

i) search (t 2 0 , t 2 1 , t22 )

ii) read/write (t3)

iii) termination (t 4 1 , t4 ) except last block t 4 2 time.

iv) cylinder to cylinder reposition during multi-block read/write

(t 1 1 ).

Figure 3.2 shows the channel, control unit and device states

during the first composite standard cycle (i.e., the standard

cycle that includes sector spanning).

The channel device is busy whenever the controller is, so the

Software Physics Type 2 mode characterizes the identical control

unit and channel configuration powers.

Note that when more than 4 drives are attached to a controller,

daisy chaining is implied on one or more ports. This introduces

the possibility of increased latency time when positioning to

the starting sector on a daisy-chained drive, if it is not the

first sector occuring on the track (i.e., sector offset aC # 0).

This is because in this mode, the platter index marker must be

sensed prior to any search operation.

3-12
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3.3.2 Power Equation Development

As a notational convenience, let

t = the composite standard cycle search, action and
termination time

= (C-1)(t 1+t 21) + t20 + B(t 22+t 3+t 41) + B(B-1)t 42

where C = cylinder occupancy

B = block occupancy

for a typical record of length W

To obtain the maximum theoretical power with N drives active,

assume that drive orders are always waiting and that (stand alone)

seeks are issued whenever possible. We then have the following

two cases:

3.3.2.1 Case 1: t 1< (N-1)t

In this case all steady state stand-alone seeks are concurrent

with input/output actions on the other drives. (See Figure 3.3).

We then have the steady state power

P(c ,3500,case 1) = W (3.6)

since in a standard cycle NW bytes are transferred in time

Nt 0. Note that this power is as for a single drive with

initial seek time t = 0.

3.3.2.2 Case 2: t > (N-1)t

In this case (N-i) composite input/output actions can be

overlapped with the stand-alone seek. (See Figure 3.4).

We then have the steady state power:

P(c,3500,case 2) N (3.7)t 10 + t¢
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Note that when t = (N-1)t

P% ,31/33F, case 2) = NW

NV W 
t

..Nt t P(a,3500,case 1)

as expected.

3.3.3 a or a Configuration Power Data (AN/USH-23)

Table 3.2 and Figure 3.5 show the multiple drive powers

obtained from Equations (3.6) and (3.7) for an average byte

count W = 2048. Since these powers are derived from average

logical record lengths, uniform seek times across drives and

an inexhaustible queue of disk orders, these values are to

be considered as the average theoretical maximum powers.

We have for this logical record length:

B =4, C =

t =(C-1)(t +t) + t + B(T+t+t) + (B-1)(t23414

11 21 2 0  2t2 t 3 41 4

= 0 + 20 + 4(0.14+2.611+0.01) + 3(0.524)

= 32.62 msec.

The case 1 equation becomes:

t10 > (N-1)t 0 i.e., t10 < (N-1)(32.62)

2048P(c,3500,case 1) = 32.62 = 62.79 kw/s

And for case 2:

t10 > (N-1)t i.e., t10 < (N-I)(32.62)

P(a,3500,case 2) = N x 2048
t10 + 32.62
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3.3.4 a, Configuration Powers as a Function of Seek Time (AN/USH-23)

For one or more Model 3500 6 configurations we wish to show

absolute a or B configuration power as a function of the initial

seek time, t1  We do this by noting that for any number of

spindles we have:

P(cL,3500) = P(a,3500,case 1) = constant

when tl1 < (N-i) t

and we determine the points on the line

P(c,3500) = P(c,3500,case 1)

intercepted by the functions

P(a,3500) = P(ct3500,case 2) - NWtl + t

NW _by setting t1 + = P(a,3500,case 1)

These functions are shown plotted as a function of the seek time

in Figure 3.6 for a value of W = 2048. The value of P(a,3500)

maintains the case 1 constant value (62.79 kw/s) until the indi-

cated intercepts for each N. Note that for N > 5, the intercept

value of t10 exceed the device maximum of 135 msec, so that the

device powers remain at the case 1 value for all values of t10.
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SECTION 4

AN/USQ-69 (ADD DISPLAY) POWER

4.1 GENERAL

The AN/USQ-69 Alphanumeric Digital Data (ADD) Display is a keyboard/

CRT device capable of data entry to and data display from the

AN/UYK-20 computer. Modes of operation include a block burst mode

for input or display and an input only character mode. It is the

first of these modes which will provide us the basis for a richer

analysis.

4.2 AN/USQ-69 ADD DEVICE CHARACTERISTICS

(a) Input/Output Modes:

i) Burst mode (Input or Display):

Block transfers to or from internal memory

up to 2000 characters (standard)

up to 6000 characters (optional)

ii) Character mode (Input only)

(b) Display:

i) Capacity: 2000 characters (25 lines @ 80 characters)

ii) Refresh: Period - 16.7 msec. Time - 1.36 msec.

(c) Interfaces:

i) Parallel

MIL-STD 1397 (A), (B) or (C) parallel channels in 8 bit mode.

ii) Serial

MIL-STD-188 or EIA-STD-RS232C

Serial asynchronous channels @ 2400 baud

MIL-STD-188 Serial synchronous channels @ 9600 baud

(d) Configuration:

i) Each ADD input/display includes a dedicated controller.

* ii) Up to 8 displays may be daisy-chained on one asynchronous

serial channel.
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4.3 ADD Input (keyboard) Power

4.3.1 Burst Mode

For any of the specified interfaces, transfer times from the

ADD device buffer to the AN/UYK-20 are small compared to execution

times at the ADD device and controller level; that is, the time

required to key a block message. This latter quantity is, of

course, extremely variable and will not be assessed here.

4.3.2 Character Mode

The slowest interface constrains the character transmission

rate to 2400/8 = 300 characters per second so, here too, it is

operator key-in rates and functions that effectively determine

device power.

4.3.3 ADD Output (Display) Power

(a) The output state chart of Figure 4.1 shows a single trans-

mit-display cycle:

- -Tx(S,a)

Channel Tx(Sa) trans-
mit L

I I Tx (S' a)

ADD Tx(S,b) write I
Controller mem.

-4TX (S, 6)

ADD display',
Display ,

4- Settling Scan

AN/USQ-69 DISPLAY STATE CHART

__Figure 4.1
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During a transmit-display cycle, the controller becomes busy for

the time that data is transmitted to ADD memory. The display

execution time, Tx(S,t6), is given as the time required for full

settling of the display from start of memory rewrite. This is

estimated to be the memory rewrite time plus 1.36 msec, this

latter quantity being the time required to scan a single CRT

frame. Subsequent screen refreshes are not considered as part

of device execution.

We thus have the following equation for the theoretical maximum

ADD display output power:

(ADD dispZay) =1.36 KW/S (4.1)
W - MBTR +a

where W is the average block length transmitted

and MBTR is the maximum byte transfer rate of the channel-a

interface device.

4.3.3.1 Parallel Channels (8 bit mode)

(a) For the MIL-STD-1397 type A interface:

P(ADD DisVZay(1397(A) j = W " 41.6 1.36 '/S (4.2)

Table 4.1 and the graph of Figure 4.2 show ADD device

power for block lengths of up to a full screen (2000 bytes.)
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Execution Time % Block
Block Length ADD Display Power Length

(Bytes) (10- sec) KW/S Efficiency

80 3.28 24.4 58.7

160 5.21 30.7 73.8

240 7.13 33.7 81.0

400 11.0 36.4 87.5

800 20.6 38.9 93.5

1200 30.2 39.7 95.4

1600 39.8 40.2 96.6

2000 49.4 40.5 97.4

AN/USQ-69 DISPLAY POWER
MIL-STD-1397 (A) INTERFACE

Table 4.1

(b) For the MIL-STD-1397 B and C interfaces:

P(ADD display) [1397(BC)]) =

W - 190 + 1.36 KW/sec (4.3)

This equation is tabulated in Table 4.2 and plotted in Figure

4.3.

Execution Time % Block
Block Length ADD Display Power Length

(Bytes) (10 sec) KW/S Efficiency

80 1.78 44.9 23.6

120 1.99 60.3 31.7

240 2.62 91.5 48.2

400 3.47 115.4 60.7

800 5.57 143.6 75.6

1200 7.68 156.3 82.3

1600 9.78 163.6 86.1

2000 11.9 168.3 88.6

AN/USQ-69 DISPLAY POWER
MIL-STD-1397 (B), (C) INTERFACES

Table 4.2
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(c) Serial Channels (8 bit mode)

For the EIA-STD-RS232C & MIL-STD 188C

Serial Interfaces in asynchronous mode at their maximum

rate (2400 bits/sec)

P(ADD display [RS232,asynch]) =

W 10V3 + T.67 - 0.3 kw/sec (for range 80-2000 bytes)

and in synchronous mode at their maximum rate of 9600 baud:

P(ADD display [RS232C,synch]) =

W -- 1.2 kw/sec (for range 80-2000 bytes)
W- 1.2 + 1.67

4.3.4 c,a Configuration Powers (AN/USQ-69 ADD DISPLAY)

4.3.4.1 ADD Control Unit Power

Since the ADD control unit is a device dedicated to a single

ADD display it thus exhibits power characteristics identical

to the ADD display itself.

4.3.4.2 ADD Channel Configuration Power

Here we have a single special case to be considered; that is,

the daisy-chaining of two to eight ADD displays from a single

asynchronous channel. we examine a power for a single set of

transmissions to each device. The state chart of Figure 4.4

shows the settling scan of the first N-1 devices coincide with

data transmission to subsequent devices. So, for N ADD

devices daisy-chained on an asynchronous serial channel

(MIL-STD-188/EIA-STD-RS232C), and with each unit to receive

a message of average length W characters, we have for maximum

theoretical channel configuration power:

NW
P(a,ADD dispLay[188/RS232C]) = NW " MBTR + 1.36

NW=_ (4.4)

(NW+300) x 10- + 1.36
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conf iguration. LI .. Tx (S, a)snhrnu
* Serial Channel

ADD - (')

device 1 transmit' settle

h-Tx (S'

* ~~~~ADD ~'xS 3-4

AN/USQ-69 CHANNEL STATE CHART

Figure 4.4

Note that for blocksizes > 80 (one line) we have that

(NW -*300) x 10 3 > 1.36 for all N. We may thus conclude

that in block mode, it is this channel rate (300 characters per

second) that determines the maximum power (0.300 kw/s.)
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SECTION 5

AN/UYK-20 CHANNEL DEVICE AND CONFIGURATION POWERS

5.1 GEERAL

The AN/UYK-20 performs input/output activity through an incorpor-

ated input/output controller (IOC) which operates substantially

independent of the CP.

Each IOC-peripheral parallel mode interface consists of an output

channel to transmit data and control functions to the peripheral

device. Input channels are used to receive data or interrupt

codes from the external device. All parallel mode input/output

activity is asynchronous, with the timing (and hence power)

dependent on the speed of the peripheral device.

Serial I/O channels are also available for communications circuits

which operate in either synchronous or asynchronous modes. The

IOC performs all necessary serial-to-word and word-to-serial

conversions.

5.2 CHANNEL DEVICE CHARACTERISTICS AND POWERS

5.2.1 Parallel I/O Channels

These are supplied in groups of 4 input and 4 output channels

operating in the full duplex mode, permitting concurrent input

and output. Furthermore, these channels may be operated in

byte (8 bit), single (16 bit), or dual (32 bit) modes, the last

requiring the use of a channel n and n + 4, i.e., the use of 2

groups. Maximum transfer rates and powers are given in Table

5.1 for the 16 and 32 bit word modes for input or output.

Rates and powers are also given for concurrent input/output

computed as 1.75 times the unidirectional rate* subject to a

maximum of 1,000,000 16-bit words/sec; i.e., 2000 kw/s.

* ref. SPERRY-UNIVAC PX 11772
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5.2.2 Serial I/O Channels

These are provided in 2 channel groups. Serial-to-word and

word-to-serial conversions are performed by the AN/UYK-20 IOC.

Maximum rates and powers for the various interfaces are as

follows:

(a) NTDS SERIAL CHANNEL:

125,000 32 bit words/sec equivalent to power 500 kw/sec.

(b) EIA-STD-RS232C and MIL-STD-188C

SERIAL CHANNELS:

Asynchronous: 2400, 1200, 600, 300, 150 or 75 bits/sec

equivalent to powers

300, 150, 75, 37.5, 18.75 works/sec.

Synchronous: Up to 9600 baud; i.e., equivalent to

1200 works/sec.

5.3 CHANNEL CONFIGURATION POWER

5.3.1 Discussion

Maximum theoretical channel configuration powers depend on the

kinds of devices attached and for this reason these powers were

developed along with the powers for the devices and their con-

trollers.

In general, however, note that:

(a) Type I (e.g., tape) devices produce channel powers equiva-

lent to those of a single drive.
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(b) Type 2 (e.g., disk) drives produce channel powers which

depend on the number of drives concurrently active up to

a limit value beyond which the addition of drives adds

no more to the maximum theoretical power.

(c) IOC configuration (that is, the total input/output config-

uration power) is obtained by simple algebraic addition of

the individual channel powers developed in those sections

pertaining to attached devices. This sum is, however,

limited to the constraint that total IOC power cannot exceed

2000 KW/sec.

Finally, it must again be noted that the computed IOC configu-

ration power being the sum of maximum theoretical powers is

itself a theoretical maximum and will thus not be achieved in

practice except instantaneously.
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SECTION 6

AN/UYK-20 CP POWER

6.1 INTRODUCTION

In this section, we will develop a methodology and notation for

expressing AN/UYK CP power in terms of the power of individual

instructions or classes of instructions. Work performed for

instruction setup will be considered as well as work done on

operands (data).

The final subsections will consider the effects of concurrent

IOC and DMA facility operation on CP power; that is, we will

express CP capacity when executing certain instructions and

instruction classes in terms of concurrent IOC or DMA power.

The resulting equations for I/O activity degraded CP power will

be shown tabulated and graphed for an instruction mix cons idered

typical by the manufacturer.

6.2 AN/UYK-20 CP ARCHITECTURE AND CHARACTERISTICS

The AN/UYK-20 CP is, in actuality, emulated by a microprogrammed

controller (MPC), a set of registers, and a two-bus data exchange

structure. Thus the execution of AN/UYK-20 instructions res -its

in the execution of microprogrammed code with data and control

bits shuttled to and from the data and program registers and

main memory via the source and destination buses.

Some pertinent CP and memory access characteristics are:

(a) Instruction formats - lengths

RR (Register/Register) - 16 bit

RI (Register/Indirect Memory) - 16 bit

RK (Register/Literal Constant) - 32 bit

RX (Register/Indexed Address) - 32 bit

6-1



(b) 16 general purpose registers provided @ 16 bits.

(c) MPC cycle time - 155 ± 5 nsec.

(d) Direct addressing to 65K words.

(d) Cascaded indirect addressing:

Each level of cascade requires double word fetch.

(f) Overlapped fetch on certain instructions.

(g) Memory access cycle - without DMA - 750 ± 10 nsec.

- with DMA - 790 ± 10 nsec. max.

(h) DMA access through additional ports on each 32K work bank

of memory.

(i) CP has priority over DMA for main memory access.

(j) IOC has priority over CP for main memory access.

6.3 AN/UYK-20 CP POWER DERIVATION

6.3.1 CP Software Work - Force Vectors

For our purposes, CP work for a given workload,L, may be

categorized in terms of the domains and ranges of action by:

(a) W(L,y)A - CP/memory work

(1 unit for every byte transferred between the cpu [or

more specifically a cpu register] and memory.)

(b) W(L,y)R - register/register work

(1 unit for every byte transferred between cpu registers.)

Another distinction of importance is that between the kind of

CP work done when the CP is in states performing:

(a) Setup/termination work - effectively, the work of instruc-

tion fetch.

Denoted: WI(L,y)M , W (L, Y) R
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(b) Control function work - setting of control registers that

can be tested by the running code. This is a type of

register/register work denoted:

WC(L,Y)R

(c) Data transfer work - operand (data) fetches and stores,

operand actions as per instruction definition:

Denoted: W (Ly)M, W (L,y)

We will be concerned, at this time, mainly with CP/memory work,

as register to register work can be thought of as internal work

and generally represents a constant fraction of the CP/memory

work. For simplicity we will denote CP/memory work by W(Ly),

or by Wr(L,y) or WD(L,Y) when the instruction or data states

are to be distinguished. Note that because of the extensive

property of software work:

W(L,y) = WI(L,y) + WD(L,y)

6.3.1.1 Software Containers

The CP instructions and operands are represented and manipu-

lated in portions of storage or registers called containers.

For example, an instruction that alters a 16-bit word

as data is said to perform work on that container. The

quantity of work performed on the container is 2 works, con-

sistent with the software physics definition of 1 work for

each 8 bit byte with changed symbol state.

Tables 6.1a and 6.1b show an assignment of codes to the vari-

ous AN/UYK-20 containers. Note that these are grouped by

classes derived from container functions and location. The

codes have been formulated so that the last digit is the

container length in bytes (8 bit units). Digits t-. the right

of the decimal are read as eighths of a byte, that is, bits.
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These container codes will provide a notational convenience

when we speak of instructions which map operands from a

domain to a range, each being defined by a container type.

Note that instructions fetches as well are interpreted as

work done on a type of container.
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CLASS CONTAINER CODE

NOTE: Container

Storage Bit 0.1 length indicated

Literal 0.4 by final digit

Byte 1 value. Fractions

are eighths of a
Single Word 12 byte (i.e. bits)

Double Word 14

Float Double 24

Triple Word 16

Interrupt Area 38

IOC Command Cells 42

IOC External 49

Interrupt Area

Data Register General 102

General - odd 112

General - even 122

General - pair 134

even-odd

AN/UYK-20 DATA CONTAINERS & CODES

PART I

Table 6.1a
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CLASS CONTAINER CODE

NOTE: Container
Control Program Addr 202

Register length indicated

Status 1: 318G by final digit

DMA 310.1 value. "G" suffix

~indicates group.

Interrupt 1,11,111 
311.1

Fractions are

FP Round 312.1 eighths of a byte

FP Interrupt 313.1 (i.e. bits)

Condition Code 314.1

Overflow 315.1

Carry 316.1

NDRO 317.1

Stack 318.1

Status 2: 328G

Interrupt Code 321

Indirect Control 320.2

Memory Address 902

Instruction Instruction SOOG

Register
m-field 501.4

a-field 502.4

y-field 512

AN/UYKC-20 DATA CONTAINERS & CODES

PART II

Table 6.ib

6-6



6.3.1.2 CP Software Force Vector Diagrams

The vector nature of CP software work can be illustrated for

individual CP instructions or potentially for sequences of

instructions by a graphical device which we will call a Soft-

ware Force Vector Diagram. The basic form for these diagrams

is shown in Figure 6.2. The container types listed on the

left (or bottom) of the diagram are for the domain of the

mapping action of an instruction, while those on the right

(or top) are for the range of the mapping. Directed line

segments of types to be listed below are drawn from domain

containers to range containers. These indicate a directed

software force acting on the domain containers. The couplet

(C1 ,C2 ) composed of the domain and range container codes in-

dicate the direction of the force denoted by:

t, (cl, 2 )

where t = I, D, C depending on the type of work performed:

I- Instruction work (fetches, indirect addressing)

D - Data transfer work (operands)

C- Control function work (program-accessed control registers)

The software force of an instruction can thus be represented

by the vector:

= ft, (c..)1
7,J

where t varies over work types and ci,c.i vary over all con-

tainer codes.

Work is done when the Software Force acts through a distance

(Ci, cj ) whose magnitude is the length of c. in bits 8,

denoted h.. For CP/memory work, we have the scalar quantity,a
work, defined by:
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w "+ fD, ( 11, c 1 2) h12 + fi, (C2 1 c 2 2 ), h + 

+ fcil 2h 1 + fD( 21 42?h2 +

= J[(fI,( C ~i) + fD,"c C )'h i2]D i i2 (ilc )i2 2

= W, (L,y) + WD (LY)

Table 6.2 summarizes the types of W(L,y) corresponding to

the states I, D and C, their notation and graphic symbols.

* 06-8



CPU SOFTWARE FORCE VECTORS

AN/U!z- 20 Rerto ire

Inst uction: Description:

OP:
Mnemonic:

Format:
Tx(jec):

'a

Sttu e: 31 •4 0 31 SMtu i:0MI1 I4I1IC1IIT
W Coe -1. C " 4

NDR 317. V V %07. NDC4a CN ON-

Q4 M~c V T C4 M

CONTROL REGISTERS.*. . . . . . . . . . . CONTROL REGISTERS

Program Addr 202 *202 Program Addr

Status 1: 310 • 310 Status 1:
DMA 310.1 * 310.1 DMA

Interrupt 311.1 • 311.1 Interrupt
Cl 1,11,111 Cl 1,11,111

PP Round 312.1 - 312.1 FP Rounld
FP Interrupt 313.1 - 313.1 EP Interrupt

n ond Code 314.2 • 314.2 Cond Code
Overflow 315.1 - 31S.1 overflow

Car 316.1 - 316.1 Carry
NDRO 317.1 - 317.1 NDRO
Stack 318.1 F 318.1 Stack

Status 2: 320 .320 Status 2:
Interrupt Code 321 *321 Interrupt Code

Indirect CtI 320.2 u320.2 Indirect Ct

P - - P4 N

4J .4 4) 1 100 UCO04 4V

0 U - r.fl

Or. I. a .E9E

CP4 SOTWR FOCE M BAI DIAGA

raa
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The series of Figures 6.3 show examples of completed CP

Software Work Vector diagrams with directed line segments

indicated as follows:

(a) cpu/memory work - instruction (fetch)

(dashed line)

(b) cpu/memory work - instruction (indirect address

t |generation - one doubleword (4 bytes) fetched for

each level)

(starred line)

(c) cpu/memory work - data transfer

(solid line)

(d) register/register work - instruction and data transfer

(alternating dot/dash line)

9 (e) register/register work - control function

(dotted line)

6.3.2 Instruction Class CP Power

6.3.2.1 Decomposition of Power by Class

We caz part-tion the AN/UYK-20 instruction repertoire into

disjoint classes by considering sets of instructions of like

format or like function or by another characteristic useful

for a specific purpose. The occurrence of only one instruction
.th

per class is the degenerate case. Let J. denote the i-
instruction class.

Let L represent some workload in which instructions s E: U.4

are executed. Let S. be the subworkload consisting of all

the executions of a E .. "

6-11

aa



CPU SOFT'ARE FORCE VECTORS

AN/=T7- 20 Reertaoire

Instruction: LOGA Description:

&nemnlc: OL , -
Format: R

ST(asec) C C1

41 $

4.)
-4 -4 E- -4 r4 14-4 1

(P Ron Q1. 0.,\ $4~ , W I V 4 ", •a 1. F o

$4 -4 4 4 C 41WU

W4 4n 4o0e

-,4~ ~ ~ -4>,-42 4
00 *4J' 1zM ;UE

4 -44- M- e-II

COTOLdvrloCd R 15G1S4"S r!. . . .€o, ." . . . .. 5.NTRLvEGISTER

Sttu 1 310. / ,'' 310.1tatusry

M 310.1 , 310.1 DM

ntrup 311.1 -311.1 Iterrup
FPtRu 232.1 i 10. 32.1 St oun

nd- C 314.2 - .. 314.2 1nde C

4 U4

OverflowJ 00. 00 1. Oefo

COTOLPGITN S.. ... 31. .Y CONTRO NREGST

Stc 318. - A, yo 1. tc

Status 2: 310 * 320 Status 1:

DMA 310.1 * 310.1 DMA ,,..4,,-

Inenuterropt 3211. 3111 Interrut Cd

FP Rund 12. SOTAE*RE RX YT LOAD 321 PRon

Condc Cde 314.2 r~sr6314.2 CndiiCd e.

Inn

317.1 4NOMI

NDRO~1 317. 1.4 181Stc

Statu 2: 32 M 1 0 2 tts2

W >A

04 44.) 01.4 04. 1.44 40

4-' 0 C. 4 40

41 .04 0 W W

0- 120 -
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CPU SOFTWARE FORCE VECTORS

Alq/MX- 20 Revertoire

Inst=ction: LoAD DOuSLC Description:

OP : aSI [ -I
Mnemonic: LCX % -

Format: RT-2-;
Tx(psec): Z7!5

41 "

s&

,.,4 - 4 -4 1

2.4 #-4Cz -4 4J - j g$

42 4J ~4.cO,>4 -r- 0=- 4

CONTROL REGISTERS .......... . . . CONT ROL REGISTERS

Program Addr 202 202 Program Add

MA 310.15o.H. 312.1 FP oun

Intrrut 31.1311.1 FPInterupt

FP Interrupt 313. * - 313.1 EP Interrup-
Cond Code 314.2 •  5io0r ' 314.2 Cond Code

Overflow 315.1 / 315.1 Overflow

Carry 316.1 316.1 Carry

NDRO 317.1 •  / 317.1 NDRO
Stack318.1 •.318.1 StackStatus 2:320 / 320 Status 2:

Interrupt Code 321 & / 321 Interrupt Code
Indirect Ctl320.2 • 320.2 Indirect Ct!

, 4 - 4

-40 W 4) 4 4)

>R I j 4 4 W toa
• ,. 4 - 4 qj PC ,.. 1 0 04 PC.

4 •a 1 .W .1 0

CP SOFTWARE FORCES - RI-2 LOAD DOUBLE

Figure 6.3b
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CPU SOFTWA.RE FORCE VECTORS

AN/T.J- 20 Rlevertoire

Instruction: LOAD fluLTItP.L Description:

OP: 013 E lK- RRO.
Mnemonic: 0r) G4~r

Format: R ]-.Tx(Wec)- 1. +J. 1,1 -. +, 1 m- -3 R

H i > at

-4 01• 
040 a 40x c

-4 4j4 W Qa 1 W 04W

U% .I0 . . .. 0 .>n

caS4j a4s C: 00•-4 " W--
>, ~ ~ * -4 -CW a0

CM 0402 4ac -a

CONTROL REGISTERS . . . . . . . . . . . . . CONTROL REGISTERS

Program Addr 202 . 202 Program Addr

Status 1: 310 *. 310 Status 1:

DMA 310.1 - * 310.1 OKA

Interrupt 311.1 - * 311.1 Interrupt
1 02.Cr-O.+) C 1:11,111

FP Round 312.1 - RCESO * 312.1 FP Round

FP Interrupt 313.1 - *jI* 313.1 FP Interrupt

Cond Code 314.2 6 -
Overflow 315.1 - I,,T-uc4bf 6n 650 G 315.1 Overflow

Carry 316.1 - 316.1 Carry

NDRO 317.1 -* 317.1 NDRO

Stack 31a.1 * 318.1 Stack

Status 2: 320 / * 320 Status 2:

Interrupt Code 321 x * 321 Interrupt Ccde

Indirect Ct2. 320.2 A) * 320.2 Indirect Ct2.

.4 .1.1k W 0 -.45 t

01 0 4 4)- ~.1 I q'
1-4 01 W 0 0a

or. 14E %0 z0 0>
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CPU SOFTWARE FORCE VECTORS

AN/,Y-20 Revertoire

Instruction: v'Umnp EQGLV - Description:
OP: 40,.

Mnemoic :'TEKrI
Format: R

Tx(psec): g,

'U

"4~ ~ $ 0 1-4 1 I,.

U200

S . t'l~ls 1:31 • >'30Sats1

-W -W . 0 -441C a 0

4 1 .4 N

DMA 310.1 • "310.1 oMAaInterrupt 311.1 311.1 Interrupt

C 1, 1,1, =1 CC_-= .. C1 ,11,11I
FP Round 312.1 312.1• F Round

FP Interrupt 313.1 •x !o. , 313.1 F-. InterruptCond Code 314.2 •-0 C T ,• 314.2 Cond Code

Overflow 315.1 • M n krjr-A-,o ffo5-C,' • 315.1 Overflow
Carry 316.1 • ' 316.1 CarryNDRO 317.1 * * ,' " 317.1 NDRO

Stack 318.1 - 318.1 StackStatus 2: 320 * " 320 Status 2:
InIerrupt Code 321 * 321 nter.,upt Code

Indirect Cd 320.2 * .,. • 320.2 Indirect Ct

St au 2 :- 30I 320 St 2:

Interrupt Code 321 321 Interrupt-Cod

O04J 44.qq 0.4 1 r

.44143 10. I(V 4 4J 41

4 0 W~4~. we3 41U

41 z

H 1-4 CII

x

CP SOFTWARE FORCES - RR JUMP EQUAL

Figure 6.3d
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CPU SOFTWARE FORC- VECTORS

AN/UTK- 20 Reoertoire

Instruction: FL.OAT mu1?L Description:

OPljec: , 2-'.
Mnemonic: Fn G,m , yl,

P Format: ?

4 1

Prora 'ad 202 'a ',a

u200

Stu IW 31 •n 4^ _4 0 " a 1 tts

4J 4 4J :3 -4

4N -4 0 -4C-4f

$4 41-

DMA 310.1 • Z / i'•310,1 DMA
InterruptIiii 311.1 01 '-' 311.1 Interruptlnerp

Cl ,l 1.111 1 Cl 1111111

FP Round 312.1 31. FP Round
FP Interrupt 313.1 31. 7- Interrup

Cond Code 314.2 • c,, - [ /I 314.2 Cond Codeo 3 4315.1 overflow

Overryo 316.1 0 / / 316.1 Car ry

CrNDRO 317.1 0.."/ 317.1 NDRO

IA

Stack 318.1 • 318.1 Stack
Status 2:320 30 Satrup

S3Code

Cfl 00

Inercut 311.2.1 x //ov ... O& 111Iterp

C.. a,14,W "4 Cl 1 1 -

CP Round 3 -O 312.1 1 UTIPLY

Cn

Figure 6.3e
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CPU SOFTWARE FORC VEC--RS

Alq/Uy-- 20 Rvertoi-e

Instruction: Su T cr BU Description:

1nemonic: LSO D

Format: RL- I..c
TxCisec): 2,36

0C

0 0r04,4 
. , w

-. 4 ~ ~ -4 > -- -$4r

,4U C144 IV*OX PC a -4 C14W a .44 

=4 - ..

CONTROL REGISTERS . CONTROL REGISTERS

Program Addr 202 202 Program Addr
Status 1: 310 310 Status 1:

MA 310.1 - 310.1 DMA
311.1 Interrupt

Interrupt 311.1 - Cl 1111,111
Cl -,11,111 **I

FP Round 312.1 • 312.1 F? Round
FP Interrupt 313.1 - 313. FP Interrupt

Cond Code 314.2 - 314.2 Cond Code

Overflow 315.1 • 315.1 Overflow

Carry 316.1 • / 316.1 Carry

NDRO 317.1 • / 317.1 NDRO

Stack 318.1 ., 318.1 Stack
Status 2: 320 • / 320 Status 2:

Interrupt Code 321 • / 321 Interrupt Code

Indirect Ctl 320.2 / L 320.2 Indirect Ct!

,=4- --4 4 .4 e- 4 P4 -I 'I

. 6 4 W Wf 0 -44) (

$- ',,4 >4 a

41 ~ 00

CP SOFTWARE FORCES - L-2 SUBTRACT DOUBLE

Figure 6.3f

6-17

4 )a 0 )4 JQ 9 4-



Then:
W(03Y) + W(S ) +2",

P(L, y) TLy
Tx (L, y )

W(SIY) W(S2 , *6

+ + (6.1)
Tx (L, y) Tx (L, y)

We now use a representative instruction, si, chosen or

imagined so that:

n. • W(sy) = W(S.,Y)

and (6.2)

ni. Tm(si,y)= Tx(SiY)

where n. is the number of instruction executions of s e 1
in L.

W(S, Y)
For each term T , 6.1)

TX(L,y) in(61

* write

W(S.,y) Tx(S.,y) W(S.,y)

Tx(LTy) Tx(L, y) Tx(Siy)

* W(S.,y) Tx(S.,y)1 = 7 . P(S.,Y) (6.3)
Tx (L, y) Tx (L, y) 7L

where P(Si,y) denotes the absolute power of the subworkload, S..

Noting that from the defining relations, (6.2)

n W(s.,Y) W(s., Y)

P(S.,y) 7, 7, - 7
p ,~, nTx(a.Iy) - Tx(siy) P(siy)

t
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and since,

Tx(L,y) = [ niTx(si,y)

we have from (3):

W(S.iY) Tx (S.,y)

T=Ly) = Tx(L,y) S P(S",5)

n.ITx(sVy)
P(siy)

niTx(si.,y) 

and so

n iTx(s iy)P(L,y) = 1- •- P(si,y)
n .Tx(s i"T )

-[n iTx(si)" P(Si,Y)I
" = (6.5)

n: i nTx(si, )

We have thus derived the power of the cpu in execution on the

workload L in terms of class representative instruction counts,

times and absolute powers.

6.3.2.2 Choice of Instruction Classes

What bears further investigation are the way of partitioning

the AN/UYK-20 instruction repertoire into classes which will

be useful in guiding the software design process.

Among the possibilities for defining the classes, J., are:

(a) s E A. iff P(s,y) = P. t E.

i.e., instructions of approximately like powers.

6-19
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(b) By instruction format RI, RX, RK, RL or more generally:

(c) Supposing that we have chosen an index set of source

containers, {c } and an index set of target containers,
1j

{c .} where the ci. are container codes, and that we

represent the components of software force in the direc-

tion of ci. to c 2j by ft (cc) as previously defined.

Then we define

a ed iff f c1jc 2j) # 0 for some i,j

That is if the instruction s maps a container listed in

{C .} to one listed in {c } it belongs to the class .4.
13 2j

This type of partitioning would prove useful in choosing

instructions for specific types of arithmetic or logical

functions.

6.3.2.3 The Definition of Tx(s,y)

For an individual instruction s E 0i" the time of instruction

Tx(s,y) is the sum of the times:

i) TI(s,y) - The instruction setup/termination time, here

effectively the instruction fetch time. This

is a function of instruction length. Fetches

may be overlapped with execution. In general,

however, the fetch times by format are:

RR
RI Type 2} 1 memory cycle

RL

RK } 2 memory cycles
RX

(where an AN/UYK-20 memory access cycle

requires 750 ± 10 nanoseconds.)
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ii) TD(s,y) - The time period commencing with the instruc-

tion access in the CP register by the macro-

instruction-emulating microprogrammed con-

troller (MPC) to the next instruction fetch.

It includes operand fetches, if they are

required.

When indirect addressing is in effect, the time for additional

accesses should be added to the time TD(sy).

The instruction execution times quoted in the AN/UYK-20

Technical Description - SPERRY-UNIVAC PX 10431C are based on

actual execution and are composed of TD(sy) for the instruc-

tion plus TI(8,y) for the following instruction in the sequence.

We will assume that these times represent a fair value of

Tx(s,y) for all instructions.

As an example, consider the

(RI) 02 LOAD DOUBLE

instruction.

WI (s,y) (instruction fetch) = 2 W

WD (s,y) (data transfer) = 4 W

(no indirect addressing)

W(s8Y) (total) = 6 W

Tx(s,y) = 2.25 mesec.

So absolute instruction power:

P(s,y) = (6/2/25) x 10- 6 = 2.67 KW/S

6-21
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6.4 AN/UYK-20 CP POWER - IOC ACTIVITY INTERACTION

6.4.1 Introduction

We will extend the previously derived instruction class power

equation:

? 1[niTx(8i , - (Ps i -Y)]

P(L,Y) = (6.5)

to include the effects of delays in CP execution due to memory

access demands from IOC input/output activity.

It will be convenient to rewrite (6.5) in terms of instruction

class work thus: W(S.,y)
X (niTx(si, 2) 1

P(L,y) = (6.6)IniTx(s i, )

This is done as the contention for memory access will affect all

the terms Tx(si,Y) by replacing them with the execution time of

a higher level processor, r, which is execution whenever either

the CP or IOC are.

The resultant relative power will be referred to as IOC-Degraded

Workload Power and will be denoted P*(L,y,F).

We shall see that the degradation will depend on the instruction

formats in execution and on the composition of IOC power by

memory access bandwidth.

We will first develop the execution time of the processor r for

the duration of the instruction Si, Tx(sir,),as a function of

the CP instruction execution time Tx(si,y)and the concurrent

IOC input output power P().

6-22



6.4.2 MPC Emulation of CP and IOC activity

AN/UYK-20 execution is driven by a microprogrammed controller

(MPC) and master clock running at 155 t 5 nsec (denoted t ) per

clock cycle. This is the processor r. The micro instruction

code emulates the CP program macro instructions and services IOC

memory access requests. The following model will be used to

describe the augmentation of (macro) instruction execution time,

Tx(s.y), due to memory access requests of the IOC.

i) The microprogram, through the use of the "emulate" instruction,

allows an IOC main memory request before each CP instruction

fetch. The "emulate" executed before CP macro instruction

execution begins will be referred to as an "emulate start."

ii) The sequence of events from start CP instruction fetch to

the fetch of the next instruction is charted as follows:

(a) (b) (c) (d) (e)
i I I

fetch II I
S I I

T D

Tx(si,) )

(a) Start fetch: TI instruction fetch time (cpu/memory

work). Depends on instruction format:

RR, RI, RL - 1 memory cycle

RK, RX - 2 memory cycles

(b) Begin macroinstruction: T is the data (operand) action
D

time.•

(c) Possible operand: Included in TD; not in RR

memory references instructions.

(d) Resume MPC execution

(e) Start next instruction

fetch
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The software physics Tx(si,y) is the total of instruction

fetch time, Ti , and the nominal published execution time, TD.

The effects of indirect addressing or overlap will not be

considered here but can be accounted for by adding increments

to the operand work performed and the time TD for processing

and additional fetches.

iii) Any CP macroinstruction main memory reference is preceded

by an "emulate" macroinstruction to permit IOC access first.

iv) The microcode services all outstanding IOC memory access

requests at any IOC-caused suspension of CP emulation.

v) Let n be the number of microcode instructions required for
C

a single word access. Then the number of microcode instruc-

tions for a byte mode access is also n , while the number

of microcode instructions for a double word is 2n

vi) Additional "emulate" instructions are inserted into CP

emulation sequences to permit IOC memory access service.

Let n be the total number of "emulates" (of any type) that

occur in a single macroinstruction microcode execution over

time Tx(si,y).

vii) A return microcode sequence is required whenever the IOC

channel suspension of CP emulation occurs at an "emulate"

which is not an "emulate start" [see i)]. Let n be the
r

number of microinstructions required in the return sequence.

viii) A memory cycle wait of t w = 800 nsec is required when the

break-in is not on an emulate start.

ix) A memory hold time, th, is required for each access. The

values of t h are

input: th = 360 nsec

output: th = 40 nsec
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6.4.3 Assumptions for a Worst-Case Degradation

We will develop a worst case degradation of CP instruction exe-

cution time under the assumption that the probability of a

return sequence being required for each transfer is the same as

the probability that the "emulate" which allowed it is not an

"emulate start." In actuality, more than one transfer can occur

per "emulate" because if more than one buffer is active, then

there is a non-zero probability that there are concurrent requests

outstanding. We will also not consider the effects of chaining

or of instruction fetch overlaps.

We thus have that the probability of a return sequence and of

a memory cycle wait are:

P =P-=1-P =
r es es n

e

where P is the probability that an "emulate" is an "emulatees
start."

6.4.4 IOC - Augmented MPC Execution Time - TX

Let the number of IOC memory access demands/second be denoted

D08, D 1 6 and D 3, depending on whether the request is for a

byte (8 bit), single word (16 bit), or double word (32 bit) access,

respectively.

Letting Tx stand for Tx(siy) we set:

Tx - Tx(si,F) = Tx

+ Tx(D 8+DO16+0 32 ) n Ct c x109

+Tx(D D (1-1-) n t 10- 9T 8D16+D 32 n r c
1 0-

+ Tx(D,,+D f+D )(1- 1) t X18~6 032 n re
e

+ Tx(D,8+D 16+2D 32) th x 10- 9  (6.7)
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where: Tx represents the augmented time of macroinstruction

execution due to the n t nsec microcode execution

times per single word (or byte) accesses, the n trc
nsec return sequence time and cycle wait time, tw ,

each with probability (1- - ) for any access and the
n

memory hold time, th' e

S

Note that equation (6.7) is valid only when

n
D 8 , DtI 6 and D < - emulates/sec.

8 16 32 -Tx

since accesses are allowed only by virture of the recurring

"emulate" microinstructions.

Denoting the IOC powers for byte, single word and double word

access by P(fl 8 ), P(O1 6) and P( 32), respectively, (each in

KW/sec) we have:
3p( 16) x10

D 8 = 8) x 10 3 
D 16 = 2

and D NO P 3 2 ) x 103

a 32 4

Substitution in (6.7) gives:

P( 16)  ( 3 2) N O32 6

Tx= TX + TX{1 + [P($ 8 ) + -2 + 2 in t x 10-

P(_16 )  P(O32 ) 1 6 -" [P( ) + + 4- 1 [1--]n t 10
8 2 4 n rtc

P ( O 16 ) P ( O 'z2) 1 -6 1 .

" [P(O 8 ) + 2 + 1-- 1  X1

O P(16) + P( 32 06
8) + 2 ]th 1-6
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Collecting terms in P(O8 )  P416 ) and P( 32) we have:

2n t + (1 - ) (nrt +t) thSc C n e  rcW h6

Tx = T{1 + P( 3 2)[ 4 -+ ] x 10 - 8

nctI + 1- ) (ntc+t ) t
C C -6 rCW

+ [2P(P 8) + P(¢1 2 + f 0}

(6.8)

and this is valid only when:

n 2n 4n
P( 8 ) 5 X 0 -T< 10 P4 and P(43 2) -- x 10

or more concisely when:

kn -
P(e X 0 (k =8, 16, 32)

The term in braces in equation (6.8) is equal to:

Tx/Tx - n() E 1/W

where:

n(O) is called the I/O-Degraded CP Execution Time Factor,

and E( ) is called the I/O-Degraded CP Execution Power

Factor for the reason that it will appear as a multiplier

of the instruction power P(si,y) in the expression for CP

execution power when the IOC is concurrently active.

6.4.5 IOC-Degraded Instruction Power

We now have a relative I/O-degraded CP execution power:

W(si .y)
P*(s.,y,r) =

Tx

W(siy) Tx(siy)

Tx(s=y) P(8iy). i() (6.9)
2- Tx
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where ( is the function U(O) evaluated with the quantity

n valid for s..
ez

We will formulate .(O) for input and output (denoted i ( ) and

io), respectively) for two restricted instruction mixes and
1~0

a general mix considered typical by the manufacturer. n andC

n are given as 5 microinstructions each for the access and

return microcode sequences. t, the memory cycle wait time, is

800 nsec and the memory hold time is 360 nsec for input, 40 nsec

for output.

i) Restricted Mix 1 - RI Add and Logical.

Assume that the instructions executed are limited to 22 RI

Add and 31 RI Logical instructions:

We have from the manufacturer's data:

Tx(si,y) = 1.6 lisec at t = 155 nsec

n , the number of "emulates" is 2 (during TD)

+ 1 (during fetch) = 3

Assuming that the double word power P( 3 2) dominates, we

have P(=) N P32 ). Equation (6.8) then becomes:

* th -6
Tx= Tx[1 + (650+-) x 10-] P(¢)

so for input,

1 + (650- 360) x 10- 6 P(O)

1

S6 
(6.10a)

1 + 830 x 10 P(W)
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and for output,

i ('o)mixi 1
0x 10x 1P40

1 + (6501 ) x 10- 6 NO¢

1
6= (6.l0b)

1 + 670 x 10- P(O)

ii) Restricted Mix 2 - RX Add and Logical.

Assume that the instructions executed are limited to 22 RX Adds

and 31 RX Logical instructions.

From the manufacturer's data:

Tx(s.,Y) = 2.3 usec

n is 3 (during TD) + 2 (during fetch) 5

Again assuming that , we have:

* th 6
Tx = Tx[1 + (702.5+-) x 10 P()]

so for input,

i (01)mix 2 61 + 722.5 x 10- NO¢

1=- (6.11la)

1 + 882.5 x 10 6 P(.

and for output,

S26(6.11b)
i(o)ix 2 1 + 722.5 x 10. 6 PW:)

6-29



• ,

iii) General Mix

The manufacturer has provided the following instruction mix

in document PX 11901 and considers it typical:

17% 22 RI Adds (2 emulates in TD Tx = 1.6 isec)

17% 22 RX Add (3 emulates in TD; Tx = 2.3 usec)
17% 31 RI Logical (2 emulates in T T= 1.6 usec)

17% 31 RX Logical (3 emulates in TD; Tx = 2.3 sec)

12% 44 RI Jumps (2 emulates in T Tx = 1.3 psec)

8% Miscellaneous (1 emulate in T D Tx = 0.84 usec)

6% 44 RX Jumps (3 emulates in TD Tx = 2.4 psec)

4% 26 RX Multiplies (3 emulates in TD; Tx = 4.5 sec)

1% 26 RI Multiplies (2 emulates in TD; Tx = 4.3 vsec)

1% 27 RK divides (3 emulates in Ta Tx = 7.6 psec)

We add: 1 emulate in TI for RI and miscellaneous instruc-

tions

or

2 emulates in TI for RX and RK instructions.

We then have that there are 3.8 emulates in Tx(si,y), the

execution time for the mix representative (average) instruc-

tion.

So for this average 8. we have Tx(siy) = 2.00 X 10- 6 sec

and n = 3.8.
e

Now when P( ) P( 32 ) we have from equation (6.8):

t -6
Tx = Tx[1 + (677.7 +r) × 10 PW()]
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From which:

4 1 - (6.12a)
1 + 857.7 x 10 p()

Ei 4 mix G 1 -6 (6.12b)i(o~ixG 1 + 697. 7 x 10- PWG

If P(O) P(4 1 6 ), we have:

Sth -6
Tx = Tx[1 + (967.9+) x 10 P(W)]

From which:

=~. 1 -6(6.12c)
1 + 1148 x 10

- 6 N(.)

?1 1 (6.12d)
,,0mix G 1 + 987.9 x 10- 6 P)

and finally if P( 6 ) =P( = p2(), we have:

Sth -6
Tx = Tx(1 + (967.9+T-) X 10 P(O16 )

S th -6

(677.7+--) X 10 P(p 3 2 )J

th -
= Tx 1[+ (484.0+338.9+ -) x 10 P()]

th -6
= Tx 1[+ (822.9+-.-) x 10 P(,)]

From which:

mi1 =- (6.13a)
i(01) mix G = 1 + 1003 x 10- 6 P(O)

i(odmix G = 1 (6.13b)1 + 842.9 x 10 6 P
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We tabulate and plot the equations (6.13) in Table 6.3 and

Figure 6.4, respectively, giving i ( I) and ri4 0) the I/O-

Degraded Execution Power Factors for the SPERRY-UNIVAC PX

11901 General Instruction Mix with the IOC power composition

P( ) = P( ) = P( We additionally show in the table

and graph, the curve for the anticipated maximum degradation

arising from the case of equation (6.12c) for input power

when P(O) = P( 1 ).
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IOC I/O POWER I/O-Degraded Execution Power Factor -

KW/SEC Input Output Min.

NO= NO2 = N NO P(_ NO P = P( )

(maximum
degradation)

50 0.952 0.960 0.946

100 0.909 0.897

200 0.832 0.856 0.813

300 0.769 0.798 0.744

400 0.713 0.750 0.685

500 0.666 0.704 0.735

600 0.624 0.664 0.592

700 0.588 0.629 0.554

800 0.555 0.597 0.521

900 0.526 0.569 0.492

1000 0.499 0.543 0.466

1200 0.454 0.497 0.421

1400 0.416 0.459 0.384

1600 0.384 0.426 0.353

1800 0.356 0.397 0.326

2000 0.333 0.372 0.303

RELATIVE CP POWER DEGRADATION - IOC ACTIVITY

Execution Power Factor - EiW
, 1

SPERRY-UNIVAC PX 11901 General Mix

Table 6.3
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6.4.6 Relative IOC-Degraded Power for the Full Workload - P*(L,Y F)

As a consequence of the above and equation (6.5) we have for

the full workload:

P*(L, y, ) = ,

n.Tx

n.Tx: (3i, Y)() "P(si.y)

(n iTx(si" Y)/ i ( )

J (n iTx(siy) "P(si ,  ) (6141= * -(6.14)

X (niTx(si, y) "n. ( ))

valid when

n
-x 10-  (k =8, 16, 32)

P( k) _ 8Tx(si, Y)

where:
Tx(siY) is the instruction time including fetch

expressed in seconds.

n is the number of microcode "emulate" instructions in the
e

microcode sequence for a single CP macroinstruction execu-

tion.

and

P(k ) is the k-bit partial power expressed in KW/sec

(k = 8, 16, 32).

Note that in equation (6.14), the effect of IOC activity is ex-

pressed purely in the denominator as augmentations of the instruc-

tion execution times by the multiplicative factors ni( ). This

corresponds to the notion that the CP work done is the same with
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or without IOC activity but the effective execution time has

increased.

The factor n.(k), the reciprocal of (4), is tabulated and

plotted in Table 6.4 and Figure 6.5 for the manufacturer's PX

11901 instruction mix for input and output powers when

P( ) = P( ) - -(. In addition, values for the theoretical
932 16 2*

maximum degradation are shown occurring for input where

P ) = P( 16-
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IOC I/O POWER I/O-Degraded CP Execution Time Factor

Input Output Max.

P( = P(4,32 )= P!) P((I)=P(2) = P(0) PW() = NO

50 1.050 1.042 1.057

100 1.100 1.085 1.115

200 1.202 1.156 1.230

300 1.300 1.253 1.344

400 1.403 1.333 1.460

500 1.501 1.420 1.575

600 1.603 1.506 1.689

700 1.701 1.590 1.805

800 1.802 1.675 1.919

900 1.901 1.758 2.033

1000 2.004 1.842 2.146

1200 2.203 2.012 2.375

1400 2.404 2.179 2.604

1600 2.604 2.347 2.833

1800 2.809 2.519 3.067

2000 3.003 2.688 3.300

RELATIVE CP POWER DEGRADATION - IOC ACTIVITY

CP Execution Time Factor - ni (0)

SPERRY-UNIVAC PX 11901 General Mix

Table 6.4
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6.5 AN/UYK-20 CP POWER - DMA FACILITY EFFECTS

6.5.1 General DMA Characteristics

The AN/UYK-20 design incorporates a direct memory access (DMA)

facility which allows an external device to read from and

write into main memory via a second memory interface.

The incorporation of the DMA facility increases CP instruction

execution times by a small amount, 65 nsec maximum. The actual

increases in instruction execution time have been tabulated by

the manufacturer for each instruction in the SPERRY-UNIVAC

publication PX 11772 and will not be repeated here. We will,

however, subscript the symbols Y or F in denoted execution times

with the letter D to note the fact that the DMA facility is in

the system and that the values of TD or Tx for instructions are

to include the appropriate increment. Thus TX(si.YD) is the

instruction execution time when the DMA facility is in-the

system.

Another DMA feature provides for separate access ports on each

of the 32K memory banks. This allows access by the DMA-attached

device on one bank concurrent with accesses by the CP/IOC on

the other. Should requests for memory access on the same bank

be simultaneous from the DMA-attached device and the CP/IOC,

priority of access is given to the latter units.

6.5.2 Worst-Case CP Degradation Effects - Assumptions

We will first develop a worst case execution time augmentation

factor "D) for.DMA facility activity in a memory bank with

concurrent CP/IOC activity. Our assumptions are as follows:

i) Delays in instruction execution memory accesses caused

by the DMA activity occur only when a DMA memory read or

write is already in progress. However, for a worst case

analysis, any derived coincidence of a DMA and CP access

request will be as if the DMA request preceded that from

the CP.
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ii) For double word CP accesses, we assume that memory becomes

available between each of the two single word accesses.

iii) The average ZMA caused delay to the CP memory access will

be taken to be one half the memory access cycle time (i.e.,

750 + 2 - 375 nsec). Effectively, each DMA access is for

a 16 bit word.

iv) We will not consider the effects of indirect addressing here.

6.5.3 Development of the DMA-CP Degradation Factors

* We first note that the probability of a DMA read/write access

in progress is given by:

tt

memory access time M
PO DMA access period ( _103)-I

t.P(oD) X 10

2

where: t is the memory access cycle time in seconds.m

P(OD) is the DMA power in KW/sec.

Now considering the CP related memory fetches (instructions +

operands) as independent attempts at access, we have that the

most probable or expected number of times that the CP would

encounter a DMA access in the course of a single instruction

execution is:

EyD = nmy" pD

where: n is the number of accesses required in the full

(fetch included) execution of an instruction.
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Letting n be the number of effective single word instruction
OY

operands we have for:

RR, RL. la - 1 instructins, n = 1 (fetch mnly)mY

RI - 2 instructions, nmy = 1 + noy

RK instructions, n = 2 (fetches only)

RX instructions, n = 2 + n

We now can write for a degraded CP instruction execution time,

letting Tx stand for Tx(,r D ) and noting that the average delay

is t - 2:

M

Tx = + 2-t m +

n -t 2 ~ P( ) X 103

= x+MYM4 D(6.15)

The second term in (6.15) is the additive DMA Power-Degraded

Instruction Time Augmentation Factor, Pi () where the i sub-

script is used to indicate that class.ofLinstructions fqr which

the value of n MY is valid.

6.5.4 DMA Power-Degraded Instruction and Workload Power

We may now write for the degradation of CP instruction execu-

tion power, expressed relative to MPC/DMA execution time:

(s i , Y) W(si , Y)
PD(si YO FD) z * T,

TX Tx(a YD + i(OD)

P(8.,y ys)*(616
= ii (D - ) + Tx(ei,y)] (6.16)

And for the full workload:

S(n i T "P (si , YO)

P*(Ly rD' r) = n *

D Dn (D)s i  ID)
+

i  D) ) " ( i  
) ]

J n i( (Tx( 8,YD ) .0. P(6.17)

[n i (Tx(siY D) + Pi 4D) )M



Or in terms of previously derived terms:

PD(L, yD" r D) =

JnfTx(s i YD) "P(si IY ) + JniP(si, YD)"i ()(.
= (6.18)

7n iTx(s .Ym ) + Ini'*i( )

We will compute the additive time factor Vi (%) for the previously

described (Section 6.4.5) SPERRY-UNIVAC PX 11901 instruction mixes.

We will use the nominal t = 750 x 10- 6 sec for the memory accessm
cycle time.

i) Restricted mix 1 - RI add and logical.

Assuming that the instructions executed are limited to 22 RI

add and 31 RI logical instructions, we have:

For both instructions n = 1 (fetch ) + 1 (operand) = 2

memory accesses/execution.

From which:

2 (750 ×10-9 )2.P( D) X 10 3

= 4

= 0.2813 NOXD) X 10- 9 secs/execution

ii) Restricted mix 2 - RX add and logical.

Assuming that the instructions executed are limited to 22 RX

add and 31 RX logical instructions, we have:

For both instructions n. = 2 (fetch) + I (operand) 3 per

memory access/execution.

From which:

3(750x10-9)2.P(OD) X 103

i D 4

= 0.4219 P(xD) X 10- 9 secs/execution
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iii) PX 11901 General mix.

We have the following numbers of instruction main memory

accesses (single word equivalent) per execution:

17% 22 RI Adds (2 accesses/execution)

17% 22 RX Adds (3 accesses/execution)

17% 31 RI Logical (2 accesses/execution)

17% 31 RX Logical (3 accesses/execution)

12% 44 RI Jumps (2 accesses/execution)

8% Miscellaneous (est. 2 accesses/execution)

6% 44 RX Jumps (3 accesses/execution)

4% 26 RX Multiplies (3 accesses/execution)

1% 26 RI Multiplies (2 accesses/execution)

1% 27 RK Divides (2 accesses/execution)

From the above values we obtain the weighted average number

of accesses n = 2.44

From which:

2.44 (750xl0-9)2 "PN 
Y )x 10 3

i = 4

= 0.3431 P( D x 10- 9 secs/execution

We now show ji.( D) tabulated in Table 6.5 and plotted in

Figure 6.6 for nmy = 1, 2, 2.44, 3, 4, 5. These values, it

will be recalled, are increments to be added to the times

Tx(si, D), the DMA-installed instruction or class representa-

tive execution times, for the computation of augmented DMA

Power-degraded instruction execution times and degraded

relative powers.
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COMMON BANK CP INSTRUCTION TIME AUGMENTATION FACTOR -

DMA POWER i(D (xl0-9 eonds)

PO D)
KW/S Instruction Main Memory Accesses:

1 2 2.44* 3 4 5

50 7.03 14.06 17.16 21.09 28.13 35.16

100 14.06 28.13 34.31 42.19 56.25 70.31

200 28.13 56.25 68.63 84.38 112.5 140.6

300 56.25 84.38 102.9 126.6 168.8 210.9

400 84.38 112.5 137.3 168.8 225.0 281.3

500 112.5 140.6 171.6 210.9 281.3 351.6

600 140.6 168.8 205.9 253.1 337.5 421.9

700 168.8 196.9 240.2 295.3 393.8 492.2

800 196.9 225.0 274.5 337.5 450.0 562.5

900 225.0 253.1 308.8 379.7 506.3 632.8

1000 253.1 281.3 343.1 421.9 562.5 703.1

1200 281.3 337.5 411.8 506.3 675.0 843.8

1400 337.5 393.8 480.4 590.6 787.5 984.4

1600 393.8 450.0 549.0 675.0 900.0 1125.

1800 450.0 506.3 617.6 759.4 1012. 1266.

2000 506.3 562.5 686.3 843.8 1125. 1406.

* Average for SPERRY-UNIVAC PX 11901 General Mix

AN/UYK-20 RELATIVE CP POWER DEGRADATION - DMA ACTIVITY

Table 6.5
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As an illustration of the DMA activity CP degradation effect

in terms of instruction power, let us consider the impact on

the RI and RX Add instructions of our previously employed

restricted mixes.

i) 22 RD Add
We have, as before, n = 2.

From the instruction specifications in SPERRY-UNIVAC

PX 11772,

t TX(Si,D) = 1.64 x 10- 6

So we obtain:

W(siY D
P(siVYD) = Tsi, YD )

Wi(siyD) + WD(si,YD)

Tx(si YD)

= 2+22 + = 2439 Kw/s
1.64 x 10 -

Now, when there is DMA activity:

W(s, YD)

PD( i, YD, r D) = Tx(siYD) + Pi(D

4= W/S
1.64 x 106 + 1i(D)
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ii) 22 RX Add

For this instruction,

n =3
mY

Tx(s, )= 2.40 x 10 - 6 sec.

W(s, YD) 4 + 2 = 6 works

From which,

P(si D 2.40 x 0 - 500 KW/S

and

P (s, 6 rD W/S
2.40x 10- 6 + li( D) S

For both of these instructions we tabulate the relative DMA-

Degraded Execution Power Ps ) shortened to P' for

convenience, in the Table 6.t. We also define a multiplicative

DMA-Degraded Instruction Execution Power Factor, i( D -

where P is the instruction power when P(D= 0. This factor,

analogous to the one developed for IOC activity in Section

6.4.4, is also shown in the table and is plotted in Figure 6.7

for the RI ADD instruction.
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DMA POWER COMMON BANK DMA-CP EXECUTION

no-.) 22 RI ADD P 2439 KW/S 22 RX ADD P 2500 KW/S

KcW/S P oDP

(KW/S) (KW/S)

50 2418. 0.9914 2478. 0.9913

100 2398. 0.9832 2457. 0.9827

200 2358. 0.9668 2415. 0.9960

300 2320. 0.9512 2375. 0.9499

400 2282. 0.9356 2336. 0.9343

500 2246. 0.9209 2298. 0.9192

600 2211. 0.9065 2262. 0.9046

700 2178. 0.8930 2226. 0.8904

800 2145. 0.8795 2192. 0.8767

900 2113. 0.8663 2159. 0.8634

1000 2082. 0.8536 2126. 0.8505

1200 2023. 0.8294 2064. 0.8258

1400 1967. 0.8065 2006. 0.8025

1600 1914. 0.7847 1951. 0.7805

1800 1864. 0.7642 1899. 0.7596

2000 1816. 0.7446 1850. 0.7399

CP POWER DEGRADATION-DMA ACTIVITY

22 RI, RX ADD INSTRUCTIONS

Table 6.6

6-48

4



C2

p<

00

o 00

1- F

0 Z

a- c

CON

fA 0
ZL a.

o x

0 Co 0 C

HJ01DVA HMOd NOiflnO3X 030VH93a-vAa -O

6-49



6.6 DISCUSSION - CP / I/O INTERACTIONS

* 6.6.1 Introduction

From models of interaction betewen the IOC and the CP and the

DMA facility and the CP, we have developed execution time aug-

mentation factors r() and JI(D) which lead to the multiplica-

tive power factors &(F) and &( D). All of these are expressed

as functions of the instruction execution time Tx(8 ,y) and the

Input or Output powers P( I ) or P( 0 ) for the IOC and P( D) for

the DMA. We will present a brief amplification of the meaning

of these factors and a discussion of the significance of the

power factor values derived.

6.6.2 The Time Augmentation Factors

The factors n( ) and u( 0) augment the execution time of a

processor, r, which emulates CP and IOC memory access activity.

This processor includes those facilities, which normally emula-

ting the CP, must suspend that function and service I/O memory

access requests.

We have defined the execution time of the processor F to be

identical with that of the CP when there is no IOC or DMA

activity, i.e.,

Tx(L,Fr) = Tx(L,y)
(6.19)

Tx(L, ) = Tx(L, y D

when P( ) = P(OD) = 0

The time augmentation factors n(O) and P(0 D ) increase Tx(L,F)

or Tx(L,F D) over their Y-processor (CP) based execution times;

fl operates by multiplication and 11 by addition because of the

differences in the models from which each factor is derived.
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When there is input/output activity from either the IOC or DMA

we do not increase Tx(Lsy) because the y-processor is defined

to be stopped when:

(a) The MPC is servicing I/O requests for memory access.

(b) CP memory access is blocked because an IOC or DMA

access is in progress.

Thus the absolute power, P(Ly) of the CP has not changed; it

is the CP power relative to the l-processo; P*(L,y,r), which

decreases with I/O activity. This distinction is emphasized

because the instruction or workload power equations (6.9),

(6.14), (6.16), (6.17) and (6.18) express time in terms of

Tx(sY), instruction execution time for the CP.

6.6.3 The Power Degradation Factors

The factors ( ) and E(O D) each are the ratio of a relative

power of an instruction when there is no IOC or DMA activity

to that when there is IOC or DMA power in use. Because of the

relationships (6.19) we have:

P(s,yr) = P(siy)
(6.20)

P(8 ,YYr D) = P(B.,7Y)

when P(OD NO) = 0

Because of the relationships (6.20) we were able to develop

the relative power ratios E by considering only the absolute

CP instruction execution powers and are able to express the

full workload relative powers degraded by I/O activity (equa-

tions (6.14), (6.18) in terms of the absolute CP instruction

execution powers.
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6.6.4 Significance of the Power Factor Values

Inasmuch as the power factors Ej show degradation of relative

instruction and workload power for the CP when there is I/O

activity, they may be thought of as reductions to the instruc-

tion throughput caused by the interactions described by the

models.

The IOC activity, in particular, was theoretically shown to

reduce the instruction relative power P(s.,y,r) to as little

as 30% of its non-I/O active value for maximum IOC power. By

contrast, access through the DMA facility on a common memory
bank with the CP degrades P(s ,vyr, D) to no less than 75% of

its non-DMA active level. These differences can be explained

by the demands that the IOC makes on the microprogrammed con-

troller (MPC) for servicing its memory access requests. The

DMA facility, on the other hand, requires that devices using

it must provide their own memory interface logic through addi-

tional low priority ports to the 32K memory banks. Since

these ports are of lower priority than those for the CP/IOC,

the likelihood of overruns on DMA connected devices is sub-

stantial. In fact, it is doubtful that one could achieve in

practice DMA input/output power levels comparable to those for

the IOC channels without experiencing frequent overruns.

System and program designers must be aware of the consequences

of the CP-IOC, CP-DMA instructions in regard to the effects

they can have on workload throughput and system response times.

These considerations are a substantial portion of the factors

that would determine the performance characteristics of a

workload distributed over AN/UYK-20 configurations. In turn

we could expect that performance requirements, the knowledge

of acceptable trade-offs and the availability of processor

power characteristics would provide the basis for satisfactorily

performing AN/UYK-20 configurations.
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GLOSSARY

ASYMPTOTIC POWER

See the discussion under the entry P(A)

CAPACITY

Two forms of computing system capacity are identified in software

physics: 1) processor capacity, expressed in units of software

power (works/second), and 2) storage capacity, expressed in units

of byte-seconds or their equivalent on non-byte computer systems.

In either case, the quantity determined to be the capacity of the

system must be calculated from theoretical considerations, and

cannot be obtained directly by measurement. Measured values repre-

sent the quantity used, not the available quantity of power or

byte-seconds.

Both processor capacity and storage capacity can be determined as

appropriate for individual devices, subconfigurations, or the full

system configuration. In general, processor capacity is primarily

a function of equipment speeds and configuration connections, and

secondarily a function of workload characteristics. Storage capa-

city is simply the total storage available by equipment class or

subconfiguration over time.

The amount of power actually used is the quantity normally called

perfomance. Thus, processor capacity and performance are directly

relatable quantities: one is the power available, the other is the

power used. The ratio of performance to capacity is called the

efficiency of the workload.

See the power entry for a more detailed discussion of capacity.

CONFIGURATIONS AND SUBCONFIGURATIONS

A configuration is an arbitrary collection of processors and storage

devices, normally connected so that processors cause data to flow to

and from storage devices. In certain applications of software physics,

however, one is not limited to fully connected configurations.
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A subconfiguration is a configuration within a configuration. Often,

the prefix "sub" is not used when dealing with parts of a full con-

figuration. For example, "channel configuration" is the collection

of a channel, control units, and the drives (printers, terminals,

etc.) which can be addressed through the channel. This configuration

is part of the I/O configuration, which is the set of all such channel

subconfigurations. The "full configuration" is a special term which

includes all processors (cpu and I/O) and all storage devices under

consideration.

Greek letters are used in software physics to represent configura-

tions and subconfigurations. See the software physics notation

entry for the symbols used for the standard configurations and sub-

configurations.

CONTAINER (STORAGE)

A container is a portion of a storage medium which can be separ-

ately addressed. Its size is measured in the number of bytes

which are contained in the container, for byte-oriented machines.

An 8-bit container has been arbitrarily designated as the stand-

ard size container in software physics. As a result, non-byte

oriented machine container sizes are determined by dividing the

number of bits by eight. Containers such as cards and print posi-

tions on paper are counted as having a size equal to the number

of bytes (or bits + 8) required to either read or write a character.

DEVICS

Devices are considered as either processors or storage devices.

Generally speaking, a device is the lowest level component of a

configuration or subconfiguration. For example, a tape drive is

considered as a device, as is a tape drive control unit. To-

gether, these devices would make up a tape control unit subcon-

figuration. Extending this, a channel is considered as a device,

but the collection of channel, control unit, and tape drives would

be a channel subconfiguration.
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The lowest level of a configuration or subconfiguration is still a
"configuration." In software physics, configurations and subconfig-

urations are generally denoted by a Greek symbol. In particular,

because devices are the lowest level of a configuration they are

normally symbolized by Greek letters; e.g., 6 is a drive, y is a
cpu. However, to avoid confusion between channel devices and con-

figurations, a lower case a is used to denote the device, Greek a

is used to denote the channel configuration with attached control

unit subconfigurations. Similarly, b is used to denote the control

unit as a device, B is used to symbolize the configuration with

attached drives.

FORCE, SOFTWARE

In general, a force is the agent, "mechanism," or method by which

energy is converted to work. So closely are the concepts of force

and energy linked that nearly two centuries elapsed after Newton

before a distinction was comonly made between them in the classical

physics. In software physics, the means by which software energy

results in software force is through the agency of an instruction,

either cpu or 1/O. As a result, software physics considers an

instruction as formally representing a force. A unit of software

is a collection of instructions and associated operands, where

operands can be considered as being the software physics analogies

of inertial mass. Together, the result is that a software unit is

considered equivalent to the classical physics system of forces

acting on point masses.

Software force is measured in units of workibyte. The direction of

action of a software force is from the container accessed to the

container receiving the symbols transferred. Software force is a

vector quantity when a given instruction transfers symbols from

more than one set of source-target containers.

G-3

-- - I I I II. . . .... .. e, -- i n . . . ' . .. --



ZGTR (MAXIMUM BYTE TRANSFER RATE)

This is the rate at which I/O data is read or written, excluding all

time required to position or otherwise locate data. It is normally

given by equipment manufacturers as either the rated speed (e.g.,

2000 lines per minute) or data transfer rate (e.g., 806,000 bytes

per second for a 3330 disk drive). In practice, this data transfer

rate is never achievable except for burst rate conditions due to

a variety of set-up and positioning time requirements. When

thought of in terms of software work rather than bytes, this value

is also called the asymptotic power of the device.

P(A) (ASYMPTOTIC POWER)

The asymptotic theoretical power or capacity of a configuration

is symbolized as the vector quantity P(A). Its elements are the

asymptotic powers of the ideal configuration, by equipment class,

denoted P Asymptotic power is equivalent to the maximum byte

transfer rate, converted to units of software work and power,

available from the equipment being considered. For subconfigura-

tions including disks and/or tapes, the asymptotic power is cal-

culated using the first level of "bottlenecking."

Asymptotic power calculations for disk, tape, and other variable

block length devices assume an infinite block length. For fixed

block length devices, such as printers, the maximum byte transfer

rate or its equivalent as specified by the manufacturer and con-

verted to units of power is used; e.g., 2000 lines per minute.

For central processors, the asymptotic power is calculated by

dividing the bytes accessed from buffer or main storage by the

smallest corresponding cycle time.

PERFOR

In ccmon usage this term is not associated with any specific

quantitative value. In software physics, the word is fully
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p equivalent to the word software power, and is normally associated

with the power usage of the workload, P(L, ). This is called

throughput power. If the batch workload alone is considered, then

throughput power is completely equivalent to the common measure

9 "throughput"; i.e., "jobs" per hour. More generally, however,

performance may be defined for any level of configuration and/or

subworkload by taking the appropriate power usage measure.

The quantitative definition of performance as the level of software

power usage is fully in accord with the intuitive meaning of the

word, but its use in this sense requires one clarification. When

a portion of the workload is removed, such as may be done by

changes to the operating system or using TSA runs, capacity is

recovered. But capacity is the power available for use by the

workload. As such, the power usage level (performance) may decrease

quantitatively. Generally, a portion of the recovered power will

go into the workload, and a decrease in elapsed time will occur.

However, the reduction in time may not be proportional to the

reduction in software work. Thus, recovering capacity by reducing

the quantity of software work to be performed may result in a

decrease in the level of power usage even though a reduction in

elapsed time is also observed.

Performance is directly related to workload efficiency, as the

latter is equal to P(L,*) - P(C). Thus, for a given value of

P(C), one may quote performance either in units of power or

in percent efficiency.

POWER, SOFTWARE

Software power is the link between the quantity of software work

to be performed and the time required to accomplish it. The term

may be used in either of two senses: 1) the power used, formally

defined as the work performed divided by the time to accomplish it,

or 2) the power available frem a device, configuration, or equip-

ment class, calculated from theoretical considerations. Then used
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in the first sense, power is equivalent among other things to the

concept of performance. In the second sense, power is equivalent

to the concept of capacity.

Power usage is defined as the ratio of work performed to the time

required to perform it. Time, however, can be measured in a

variety of ways. If the execution time of a device, subconfigura-

tion, or equipment class is used, then the power value calculated

is the work performed by these divided by the execution time of

the equipment. The execution time is often less than the externally

observed elapsed time of the full configuration processing the full

quantity of work. This results in two possible ways of calculating

power usage level:

1) The power used by a device, subconfiguration, or equipment

class relative to the full configuration elapsed time.

This is called the relative power.

An example would be the relative cpu power, P(LY, P) =

W(L,y) + Tr(Lq). It represents the work performed by the

cpu during the entire period of time required to process

the workload L, which would normally include some time

when the cpu was not executing any instructions.

2) The power used by a device, a subconfiguration, or equipment

class when and only when the corresponding processors are

in execution. That is, the overall elapsed time of higher

level systems is of no concern in this calculation, only

the absolute time of execution of the processors being

considered. This is called the absolute power. Using the

example of the cpu again, the absolute power of the cpu

is the work performed divided by the seconds of cpu

execution time required to do so. Symbolically, one has

P(Ly) - W(L,y) + Tr(L,y).

Relative power is related to absolute power by the corresponding

percent utilization factor. In the cpu example, the relative
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cpu power equals the product of the quantity percent cpu utiliza-

tion and the absolute cpu power. Since cpu utilization equals

T-('Ljy) " Tx(L,*), one has P(Lyip) = (% cpu utilization) x P(Ly).

The absolute power usage arises from the equipment speeds and basic

workload parameters such as instruction mix and block sizes.

Relative power usage levels reflect absolute power parameters, the

proportions of power between subconfigurations and equipment

classes, and the ratios of work to be performed in these subsystems.

That is, relative power usage levels reflect both basic workload

parameters and the "fit" between the workload and the computing

system.

Since absolute power calculations do not require knowledge of the

overall workload characteristics, the theoretical absolute power

available from a device, subconfiguration or equipment class can

be calculated. The theoretical considerations include the factors

which in general can affect the absolute power levels attainable

from the equipment. As such, they identify the effect of changes

and provide a means of determining the power loss due to the way

the equipment is being used. For a given quantity of work, it is

then possible to calculate the changes in execution time which

will result from a new level of absolute power usage obtained by

altering the manner of equipment use.

Relative power involves the use of elapsed time, and overall

elapsed time can be predicted from a knowledge of the absolute

power usage levels attainable and the quantities of work to be

perforwmd by equipment class and/or subconfiguration. This is

accomplished using a full workload characterization with "offset"

information. Offsets represent the quantity of cpu work to be

performed before a quantity of I/O work can be performed. They

are established empirically for a given workload from execution

time profiles and their equivalent form, work concurrency charts.

For additional information, see the corresponding entries in this

glossary.
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7he cparison of actual power levels to theoretical power levels,

and the determination of the relative importance of the factors

degrading actual power from the maximum attainable power, provides

the knowledge necessary to formulate an installation performance

improvement plan. Inherent in such a plan would be a recognition

of the cost-effectiveness of various possible performance improve-

mnts, and trade-offs between these activities and additional
equipment plans. The same knowledge needed for this plan is

necessary to correctly evaluate and understand the effects of

possible new equipment on performance.

PROCESSORS

A processor is any collection of digital circuitry which is capable

of accepting an instruction and executing it; i.e., generating the

set of logical state changes represented symbolically by the instruc-

tion. Typical processors are cpu's, disk drives, tape drives,

printers, terminals, various control units, channels, etc.

It is not true that processors of interest need to be separately

packaged as a distinct physical entity. For example, disk drives

often come two or more to a package. For this reason, a subconfig-

uration composed of several different device-level processors can

also be considered as a single processor. For example, a channel

device with attached control units and disk drive devices can be

treated as if it were a single processor. Such processors are

called equivalent processors when necessary to distinguish between

processors packaged in a single box and processors whose circuitry

is distributed among several boxes.

Additionally, the ability of a configuration to handle a forecasted

workload needs to be determined. It is much more convenient for

these purposes to use an equivalent form of an execution time pro-

file expressed in terms of software work rather than time. Such
a chart is called a work concurrency chart. It is constructed by

multiplying the execution time components of the profile by the
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corresponding actual absolute power levels. The overall Pert

structure of the profile is reflected into the work concurrency

chart by offsetting Z/0 work by equipment class by an amount equal

to the cpu work corresponding to the time the cpu is in execution

but not the equipment class. These quantities of cpu work are

called "cpu offsets", and one per equipment class is calculated.

Given a work concurrency chart representing the typical offsets

found in an installation workload, changes in the quantitites of

w k by equipment class and/or observed absolute power levels are

easily translated to an execution time profile. More importantly,

workload forecasts can be translated to execution time profiles.

The elapsed time of the new system with the new or forecasted

workload is also easily calculated. The new percent utilizations

are also predicted by the same calculations.

RESPONSE TIME

Response time is normally associated with the elapsed time between

inputing a command or inquiry to an on-line system and receiving a
response. Since the work to be performed is a function of the

nature of the input, two major techniques for determining response

time are used: 1) the time for a standard input or set of inputs

is measured, or 2) a percentile of actual response times is chosen,

e.g., "85% of all response times are equal to or less than 5 seconds."

In software physics, response time is clearly a function of the

work vector corresponding to the input, and the vector power

delivqred into the on-line system on behalf of the input. Conceptu-

ally, given these two quantities, determination of response time is

a straightforward calculation. Zn practice, these quantities are

often difficult if not impossible to obtain due to lack of proper

instrumentation. However, it is interesting to note that queuing

theory parameters needed for response time prediction are generally

adequate for software physics purposes as well.
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'SOFTWARE PHYSICS

Software physics is the study of the quantitative and measurable

properties of executable instructions and their operands, and

their interactions with computing systems equipment and configurations.

SOFTWARE PHYSICS NOTATION

Software physics uses a special form of notation designed to

identify three items of interest:

1) the property to be measured. The properties of general

interest are software work (W), execution time (T),

elapsed time (Te), storage occupancy (R), available store

(Z), Power (P), storage capacity usage (Ca), and Intensity
(i).

2) the unit of software whose executable code and/or operand

properties are to be measured. The symbols used are S

to represent a general software unit and L to represent

that software unit representing the full workload. Sub-

scripts are used to denote constituent software units and/or

subworkloads. For an actual software unit, called say

"Job XYZ", the actual name "XYZ" would be used instead of

S. Similarly, the word "Batch" might be used for the batch

subworkload.

3) the set of equipment over which the value of a desired

property is to be obtained. Either a configuration or

subconfiguration, or an equipment class (but not both

unless they are identical) may be specified. Configurations

are identified by lower case Greek letters, equipment

classes by abbreviations. Typical configuration symbols

used are t for the full configuration, y for the cpu, 0

for I/O, a for a channel subconfiguration, 8 for a control

unit subconfiguration, and 6 for a drive. Equipment class

abbreviations are cpu for control processor, disks for disk

drives, tapes for tape drives, pt' for high speed printers,

etc.
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The structure of the notation pezmits a desired measurement to be

symbolized precisely. The property to be measured is given first,

followed in parentheses by the softdare unit(s) to be measured

and then by the configuration(s) or equipment classes to be

measured. If the property is to be measured for more than one

software unit, both are given, in the order of their occurrence in

the corresponding equation. Similarly for configurations and

equipment classes.

Vector representations are denoted by an arrow over the property

symbol. Examples:

T.(L,): the equation time of the full workload on the full

configuration.

Tx(Ldisks): the execution time of the disk drive equipment

class for the full workload.

W(L, i): the software work of the full workload on the full

configuration (a single number)

(L,%) : a vector representation of the quantity W(L,*).

P %, 0) - W(yy) + Tx%(,): the relative cpu power.

SOFTWARE PHYSICS PROPERTIES

The term "properties" denotes a measurable, quantitative character-

istic of software units and/or computing configurations or devices.

There are three fundamental properties; software work, execution

time, and storage occupancy. These and only these properties (or

their equivalents, energy, time, and available storage) are used

in software physics. Certain important other properties are

derived using the fundamntal properties. These are called

derived properties, and include power, storage capacity usage,

intensity, force, and distance.

To obtain an actual measurement of some property, both a unit of

software and the computing equipment must be specified. These

are called software physics systems, and the property is a

characteristic of the systems being measured.

See the corresponding glossary entries for more discussion.
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SOFTWAR UNITS AND WOMa.OADS

A software unit is a basic system of interest in software physics.

It is formally defined as an arbitrary collection of executable

(object) code and its associated operands. A software unit there-

fore, corresponds to a program with its associated data, an appli-

cation and data, the full workload and data, and even a single

instruction and its operands. since it is defined in such a

general way, software physics theory requires that any statement

made about a general software unit be true for all software units.

Also, since a software unit can be a single executable instruction

and its operands, this requires that only those quantitative

properties displayed by such a software unit can be associated

with all software units.

A workload is a special software unit only in the sense that it

represents the total collection of executable code and data over

some period of time. Because of this however, certain statements

and equations true for the total workload may not be true for all

software units. Mhe reverse of course is true; i.e., any state-

ment about a software unit holds for workloads as well.

TIM

Time is a basic property of software physics. Its unit of measure

is seconds, as measured by a standard clock. Time is a measure of

state change processes, and a standard wall clock is assumed to

be measuring universal state changes. In software physics, the

basic time quantity of interest is called execution time, symbolized

as Tx. For a given software physics system, Mr is increased if

and only if an instruction is being executed by some processor.

If this condition is not true, then even though the wall clock

time may increase, the corresponding execution time increase will

be equal to zero time.

For example, a unit of software S may be in execution on a

configuration * from tI to t 2 Its execution time during this
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period is T ) t At time t2 , the software unit is

capable of being executed (is dispatchable), but is "involuntarily"

caused to wait until tie t. The execution time during this

period t3 - t2 is equal to zero; i.e., Tx 2 (S,*) - 0. From t3 to t4'

S is again in execution; TX(S,) - t4 - t If S is now completed,
the total execution time would be T=I (S, *) + TX2 CS, '4) + TX3 (S, ) =

Ct2-t) + 0+ (t 4 -t 3 ).

A second form of time, called elapsed time and symbolized as Te

is also of interest. Elapsed time is not an independent quantity,

as it is defined in terms of execution time. Formally, the basic

definition is that TeCL, ) 2 Tz(L,V). That is the software

physics elapsed time exaZudes any pure idle time; i.e., TO is a

measure of state change processes which occur within the entire

configuration. If no instruction (cpu or 1/O) is occurring, then

the change in Te is zero even though the wall clock time is being

incremented. The difference between wall clock time and elapsed

time is called idle time.

Elapsed time measures occupancy of storage, execution time

measures instruction execution time within the configuration,

subconfiguration, or equipment class of interest. The elapsed

time of a given unit of software S is measured by the changes in

the quantity Te(L, ) from the point in wall clock time that S

occupies storage and is capable of being executed until it has been

completely executed and no longer occupies storage. This quantity

would be symbolized as Te(S,*). By definition, it will always be

true that Te(S,) > Tx (S,).

Pure idle time is not used directly in software physics equations,

except that it represents power that could have been delivered and

was not. As such, when determining the capacity remaining on a

configuration, pure idle must be considered. Since pure idle

time is equal to wall clock time minus execution time, the

remaining capacity is always a function of "scheduled-on time"

for computing system.
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WOIM, SOFTNHE

Software work is one of the basic properties of software physics.

In general, work is performed when a change in state occurs. In

software physics, a processor executing an instruction will

perform work on a storage device when the processor causes a

symbol state change to occur. The standard symbol size is defined

as an eight bit byte, resulting in the following formal definition:

A processor performs one unit of software work (called
a "work", (symbol w) on a storage device when it changes

the symbol state of one byte of storage.

The instrumentation problem of observing if a transfer of one byte

to storage actually causes a symbol state change results in the

following operational definition of software work:

A processor performs one unit of work on a storage

device when it transfers one byte to that storage device.

Software work is measured in units of "work" or "works", symbolized

by a lower case w. Normal metric prefixes are used for larger

quantities; i.e.,

1,000 works - 1 kilowork - 1 kw
1,000,000 works - 1 megawork - 1 mw

1,000,000,000 works - 1 gigawork - 1 gw

1,000 kw - 1 mw

1,000 mw - 1 gw

Software work has the property that the whole is simply equal to

the sum of its parts. For example, if the cpu work of some

software unit SI is W(S1 cpu) and of some software unit S2 is

W(S pu), then the cpu work performed by both is simply

W(S 2 cpu)+ W(S epu). This is true whether S and S are

executed concurrently or sequentially.

it should be explicitly noted that a software unit is a collection

of executable code and data: the same executable code over
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different data is formally a different unit of software. Therefore,

software physics does not imply that two different runs of the same

program over different data will result in the same quantity of

software work. In fact, since the term "data" in software physics

includes the sequence in which operands are presented, different

sequences of the same operands need not result in the same quanti-

ties of software work.

Software work may be measured directly with a hardware monitor or

software monitor in many instances. However, two standard

approximation equations are generally used. These are:

1) work - (number of instructions executed) x (av. work/instruction)

2) work - (average power) x (seconds of execution time)

The first approximation equation is most often used when the number

of I/O read/write actions or instructions are known, and also the

average block size ro,*d or written. The equation thus becomes:

1/O work - ('/O reads/writes) (average block size)

The quantity "#EXCP'4-" is given by the IBM instrumentation software

known as SMF. 4,ing this as an approximation to the number of I/O

reads and writes, one has

I/O work - (*EXCP's) (average block size)

The second equation is used when cpu seconds (of execution time)

is known. A hardware monitor is used to establish the average

cpu power, and the approximation equation then becomes:

cpu work - (av. cpu power) (no. of cpu seconds)
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