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OVERVIEW

This report presents the development of equations and curves that-
describe the capacity characteristics of the AN/UYK-20 and its
peripherals. These will form the basis for a future Capacity Cal-
culations handbook and will contribute to the subsequent capability

of making capacity assessments under conditions of actual utilization

of the AN/UYK-20 by a large variety of both systems and applications

software.

The means employed to assess capacity in this report are those of
Software Physics. This discipline, developed in Kolence's 4n Intro-
duction to Software Physics, mathematically derives capacity charac-
teristics of computing eéuipment from fundamental equipment descrip-
tions ‘and specifications. However, capacity available is not neces-
sarily power actually used by a workload (software) executing on

the equipment. Software Physics theory identifies the parameters
which govern the utilization of capacity and predicts the quantity
of power actually used. This is essential to the improvement of
performance. Further discussion of capacity, power and performance,
as well as other Software Physics terminology can be found in the

Glossary which follows the body of this report.

A predictive theory must be tested; and so the companion report,
"AN/UYK-20 Capacity Equipment Specification" proposes experiments
intended to verify the power equations and curves of this study.

It is anticipated that a future report will contain the full design
of such experiments and that the comprehensive handbook of AN/UYK-20

Capacity Characteristics will be developed concurrent with the

experiment performance.




1.0

1.1

SECTION 1

INTRODUCTION

GENERAL

This is the final report for the study of AN/UYK-20 configuration
capacity performed for the Naval Ocean Systems Center, San Diego,
under Contract N6601-77-C-0252BW. Included in this report are

the exposition of methodology for, and presentation.of, theoretical
capacity (power) equations and curves for typical AN/UYK-20 config-

urations, devices and processors.

OBJECTIVES AND GOALS

The objectives of this study are to produce theoretically derived
capacity (power) characteristics for the AN/UYK-20 computer CP

and peripherals. These will form the basis for a future capacity
calculation handbook and will contribute to the subsequent capa-
bility of making capacity assessments under conditons of actual
utilization by a large variety of both systems and applications
software units. As a consequence, methods of predicting performance
(e.g., throughput, response times, etc.) become capable of realiza-
tion. Additionally, were characterization techniques thoroughly
developed for AN/UYK-20 introduction mixes and IOC command sequences,
the software units could then become subject to control of perform-

ance and capable of optimization at the design stage.

It is a particular fwature of this study that, for the goal of
describing actual performance, it considers the effects of conten-
tion for main memory by the CP, IOC and DMA facility on CP capacity.

Thus CP execution power will be described as functions of concurrent

IOC or DMA power used.
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SCOPE AND APPROACH

The following sections present a series of equipment capacity
equation and curve developments leading to the higher level IOC/
channel configuration power characteristics. Each development of
capacity equations and curves for peripheral devices is pre-
ceded by a brief list of pertinent device specifications.

More complete information is to be found in specifications

provided by the manufacturers.

Three peripheral devices were selected for analysis. These
are the AN/USH-26 Cartridge Magnetic Tape Unit (CMTU), the
AN/USH-23 Disk Controller/Storage System and the AN/USQ-69
Keyboard/Display unit. For the first two, capacity curves
are also developed for multiple units operating with a single
controller; that is, for a control unit configuration. These
curves are shown tabulated and plotted for select cases of
parameterization. The presentation of more extensive tabula-
tion will be the function of an anticipated software physics

handbook for these devices and configurations.

The subsequent sections of this report present a development
of a CP power methodology for the AN/UYK-20. This includes a
vector formulation of CP forces with components determined

by the various containers operated on and by the nature of

the action. From this we will present a methodology developing
CP power for classes of instructions and the workloads of
which they are constituents. The impact of IOC or DMA conten-
tion with the CP for main memory is ' then analyzed and the
effects on CP execution power are developed for some specific

instruction classes and a typical instruction mix.

These methods and results should be considered the predecessors
of a comprehens’ve handbook of AN-UYK-20 capacity methodology

and tabulations, offering the potential of the use of software
physics theory and results in effective hardware configuration

design and in the design and implementation of system or

applications software.

R X T L




1.3

1.4

REFERENCE PUBLICATIONS

This report assumes familiarity with the fundamentals and termin-
ology of Software Physics and some familiarity with the AN/UYK~20
and its peripherals. The following two publications are offered

as containing material adequate to satisfy these prerequisites.

{(a) Kolence, Kenneth, "4n Introduction to Software Physiecs",
Institute for Software Engineering, Inc., Palo Alto, 1977.

(b) Sperry Univac Defense Systems, "AN/UYK-20 Technical
Description", Publication number PX10431C, Sperry Univac

Corporation, St. Paul, Minn.
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SECTION 2

AN/USH-26 CMTU POWER

2.1 GENERAL

2.2

The AN/USH-26 Cartridge Magnetic Tape Unit (CMTU) like many other

tape

devices operates in the Software Physics Type 1 mode. This

means that the control unit and channel are in execution whenever

an individual drive is performing actions consequent on the issu-~

ance

of a read or write command.

Thus, when only these read/write related actions are considered,

the a or B configuration power is:

(a)

(b)

CMTU
(a)
(b)
(c)

(d)
(e)

()

(9)

(h)
(i)

Independent of the number of drives in the o or B configura-

tion.

Identical to the power curve for a single drive using the

average blocksize for the entire 0 or B configuration.

CHARACTERISTICS
Tape speed - 30 ips
Start-up time - 30 £ 1 msec

Interrecord gap (IRG) 1.2 - 1.8 inches. (1.6 - 1.8 inches

for successive read/write operations)

Recording density - 1600 bits/inch (serial) )
Data rates - 320 msec between 16 bit words
(nominal)
Overhead bytes - 16 bit preamble
16 bit CRC
16 bit postamble
Record lengths - 2048 bytes max. recommended
Rewind time - 42 sec. for 300 ft. of tape

Configuration (s) - 1-4 drives/controller
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2.3 DEVICE AND CONFIGURATION STATE CHARTS
The STANDARD CYCLE STATE CHART, Figure 2.1, shows the drive/control

unit/channel busy states for read/write actions.

The FULL STATE CHART, Figure 2.2, shows the busy states for all

drive activating commands.

F Tz (S,a) %
Channel l

K Tz (5,8) N
Control

Unit

ke T2(5,8) |
Pe;;gﬁ:ral Seek Search Action Texrm
(IRG) (BOR) (Read/Write) (EOR)

STANDARD CYCLE STATE CHART (Type 1)
AN/USH-26 CMTU
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2.4 CMTU DRIVE POWER

As an instance of type 1 (tape) power, we have that:

W

tl + t2 + t4 + W + MBTR

P(tp,CMTU) =

where:

]

MBTR = tape speed X byte demsity = 30 x 200 = 6 X 10° bytes/sec

t, = IRG time = L(IRG)/tape speed

=1.7/30 = 56.7 msec

i t, = Record preamble time = # preamble bytes + MBIR

_ 2
é = 2/6 x 103 = ,333 msec
i t4 = Record CRC + Postamble time
= (#CRC bytes + #postamble bytes) + MBIR
|
p = (2+2) + 6 x 103 = (.667 msec.
SO prep,cvry) = ¥ kw/s

56.7 + 0.333 +0.667 + W/6 x 10% x 1078

_ W
T 57,7 +0.167 W

kw/s (2.1)

and the block size efficiency

[P,

P(tape,CMIU,W.)  P(tape,CMTU,H,)

Pasymptotic 6 x 10° .

(2.2)

Equations (2.1) and (2.2) are tabulated and plotted in Table 2.1

and Figure 2.3, respectively for a wide range of data blocksizes.

As a consequence of the fact that the channel and control unit are
busy throughout the device standard cycle, the defining character-

istic of type 1 power, and thus as no power-producing overlap is

possible between multiple drives on a control unit or channel,

the power characteristics of the a (channel) or B (control unit)

configurations are identical to that of a single drive.




BLOCKSIZE EXECUTION TIME TAPE POWER *BLOCKSIZE
(Bytes) 20”3 sec) (KW/sec) EFFICIENCY
80 71.06 1.126 18.77
120 77.74 1.544 25.73
250 99.45 2.514 41.90
500 141.2 3.541 59.02
1,000 C224.7 4.450 74.17
2,000 391.7 5.105 85.08
3,000 558.7 5.370 89.50
4,000 725.7 5.512 91.87
5,000 892.7 5.600 93.33
6,000 1060. 5.662 94.39
10,000 1728. 5.788 96.47
20,000 3398. 5.886 98.10
100,000 16760. 5.967 99.45
1,000,000 167057. 5.986 99.77

CONTINUOUS READ/WRITE POWER (Type 1)
AN/USH-26 CARTRIDGE MAGNETIC TAPE UNIT

Table 2.1
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SECTION 3

AN/USH-23 DISK SYSTEM POWER

3.0 GENERAL

The AN/USH-23 disk system (currently the System Industries Model

3500) consists of a control unit and from one to eight drives

with either a fixed or removable disk platter.

The control unit and drives operate in the Software Physics type

2 mode; that is, the initial positioning seek on one drive may

be overlapped with actions on others. Data records are formatted

into fixed length sectors on the disk and the system is capable

of reading or writing records that span sector, track or cylinder

boundaries as effectively one operation.

3.1 AN/USH-23 DISK SYSTEM CHARACTERISTICS

3.1.1 System

(a)

(b)

(c)

(@)

(e)

System Capacity - 19488 k Bytes

Up to 8 drives may be attached to a single controller.
Drives 5-8 are daisy-chained from 1-4 and share controller

registers.

At least one drive in a daisy-chained pair must be a
removable cartridge type.

Addressing by disk sector (type 2).

Overlap seek permits concurrent seeking on up to 8 drives.
Subsequent data transfer may occur after seek on one drive

while others are still seeking.

Spanning of sectors, tracks and cylinders continues without

IOC action required until the word count is satisfied.




3.1.2 Drives (DIABLO models 31/33F)

5 (a)
(b)
(<)
()
; (e)
(£
(9)
(h)

T

(1)

(3

(k)

Tracks per surface
Tracks per cylinder
Words/sector
Sectors/track
Disk capacity
Byte transfer rate (MBTR)
Average latency
Head movement times:
Cylinder to cylinder
Average
200 cylinders
Sector format:

i) First preamble

ii) Sector address word

iii) Sector status word
iv) Second preamble
v) Data
vi) CRC
Interrecord gap:
12 sector format
24 sector format

Maximum transfer

3.2 AN/USH-23 DRIVE POWER

3.2.1 single Sector Standard Cycle

203

2

256 or 128
12 or 24

2436 k Bytes
195.2 k Bytes/sec
20 ms

15 ms
70 ms
135 ms

20 bytes
2 bytes
2 bytes
20 usec
512/256 bytes
2 bytes

524 usec
168 Usec
128 k Bytes

Figure 3.1 presents a standard cycle for the input/output of

a single sector on the series 30 disk drive. There are certain

irreqularities for this drive as compared to the ordinary type

2 drive power. These are:

3-2
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t
Seek Search Action e
@ (x/w) r
¥ —_ "
initial . l L | . e
action 10 , 20’ 22l 3 | 41°"42
track boundary 0 | 22[ ts lt41,t42
YL bowndary  fpp | fapta % | ta22%42
where: t10 = stand alone seek time
tll = cyl to cyl positioning time - 15 ms ’
t20 = average rotational delay - 20 ms
t22 = sector preamble time - 0.14 ms
t21 = rot delay after cylinder ~ 25 ms

to cylinder repositioning

t, = read/write action time

’ 12 sector format - 2.611 ms
24 sector format - 1.306 ms
t41 = CRC read/write time - .01 ms
t42 = overhead (interrecord) time
12 sector - .524 ms
24 sector - .128 ms
lotes: (a) Stand alone seek time, t]O’is for an overlap seek operation.
(b) :2:§1a1 action search time (tzo t22) includes an unexecuted

MODEL 31/33F TYPE 2 STANDARD CYCLE
{SINGLE SECTOR)

Figure 3.1




(a)

(b)

There are two search substates due to the sector format
and the fact that sector, track and cylinder spanning is
pessible for input/output of a single logical record.

The first substate represents the time of expected latency
after an initial seek (tgo) or of rotational delay after

cylinder repositioning (t2 ). The second substate repre-

1
sents the time to detect and pass over the first record
preamble (t22). Note that the rotational delay after

cylinder to cylinder repositioning is a fixed value, not

a statistical average as for initial seek expected latency.
We have therefore that:
i) After the initial seek:

t2 = gearch time = t20 + t22

where t20 = querage rotational delay = 20 ms.

ag

ii) After a cylinder to cylinder repositioning:

sector preamble time = 0.14 ms.

tZ = t21 + t22

where t21 = protation time - seek time
=40 - 15 = 25 ms.
t22 = gector preamble time = (.14 ms.

iij) Within a cylinder:

t2 = t22 = 0.14 ms.

There are two termination substates, and t 2 due to

t41 4
the fact that interrecord overhead must be accounted for

in all but the last sector read or written for a logical

record.




3.2.2

Thus t4 = termination time = t41 + t42

for all but the last sector

t4 = t41 for the last sector.

Formulation of Tx(S,8)

As multiple sectors, tracks and cylinders can be spanned during
a single input/output operation‘on a Model 31/33F drive, and we
will need to formulate an expression for the device execution

time that accounts for the boundary events noted in Figure 3.1.

We let Nij equal the number of occurrences of the events whose time

is tiJ’ ¢.9., N is the number of search (l) events.

21

Lat b = bytes/block (sector)
§ = gectors/track
¢+ = tracks/eylinder
Let 0, = the sector offset of the first block on the commencing
track (0-6)
Let T, = the track offset of the first track on the commencing

cylinder (0-c)

Now for a given byte count W,

B = block occupancy = [%’]* (3.1)

where [al, = the first integer > a

Bmod ¢ + G

T = track occupancy = [3] +{ 0]1_ (3.2)
where [al = integer portion of a
T mod e + T,
C = cylinder occupancy = 7+ P———-:;—————ﬂ¢ (3.3)




So we have:

. N11 =(C -1 (first cylinder seek time is tlo)
N21 =C-1 (we have cylinder to cyligder rotational delay
on all but the first cylinder)
N22 =B (one preamble for each block)
' NS =B (data portion each block)
N41 =B (CRC termination each block)
N42 =B-1 (overhead IRG for all blocks but the last)

So for a logical record of ¥ bytes:

T2(S,8) = t10 * N11t11 + t20 + N21t21 + N22t22

+Nt, +N, t  +N t,

33 41741 42742

Substituting in terms of blocks and cylinders we have:

Tz(5,8) = tipt (C—l)(t11+t21) *ty, * B(t22+t3+t41) 4
+ (B—l)t42
3.2.3 Evaluation of éeries 30 Drive Power
The power of a single Series 30 drive, denoted
P(disk, 31/33F), is given by:
P(disk,31/33F) = =t ' (3.5)
Tx(S,8)

where: W is the work done in a standard cycle (possibly multi-

sector)

Tx(S,8) is the execution time of the drive for the

standard cycle as given by Equation (3.4).

3-6
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Table 3.1 presents P(disk, 31/33F) tabulated for values of ¥ that
are equivalent to the start, midpoint and endpoint of sectors
to beyond the capacity of a cylinder. It thus shows the dis-
continuous power drops at the ends of sectors and at the end
of boundary. The asymptotic power is, as usual, equivalent

to the maximum byte transfer rate (MBTR), which for this drive
is 195.2 KW/sec. Figure 3.la is a plot of the initial part of
the power curve showing in detail the sector endpoint discon-
tinuities which give the function a sawtooth shape. The sub-
sequent Figure 3.1b additionally shows the larger discontin-
uity in the power function at the first cylinder boundary.

In both figures, curves are drawn through the sector maximum
or minimum power points defining smooth power envelopes within

the domain of a single cylinder.

3.2.4 Discussion

The discontinuities in the Model 31/33F power function indicate
that the optimization of device power can depend on the sector
and track offsets of the commencing record. Thus the designer
should note that in general these offsets should be chosen so
as to minimize the number of cylinder to cylinder repositions

required to satisfy the request. Record sizes that utilize only

a small fraction of a sector are inefficient as well. It should
be emphasized that the time intervals caused by the spanning of
sectors, tracks or cylinders are not available for other actions

(except previously initiated seeks) by other devices on the

same Input/Output channel.
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3.3

3.3.1

AN/USH-23 CONTROL UNIT AN/UYK-20 CHANNEL POWER

We will develop the maximum theoretical power equations and curves
for an AN/UYK-~20 IOC/channel with multiple AN/USH-23 (Model 3500)
controller disk B-configurations each with 1 to 8 Series 30 movable

head disk drives.

Channel/Controller/Device States

Although the model 3500 disk subsystem is at any time capable of
accepting and initiating seeks to any drive not active, AN/UYK-20
IOC logic considers the controller unavailable when any drive on

that controller is engaged in any of the following actions:

)

i) search (t20,t21’t22

ii) read/write (tS)

iii) termination (t41,t42) except last block t42 time.
iv) cylinder to cylinder reposition during multi-block read/write

(tll).

Figure 3.2 shows the channel, control unit and device states
during the first composite standard cycle (i.e., the standard

cycle that includes sector spanning).

The channel device is busy whenever the controller is, so the
Software Physics Type 2 mode characterizes the identical control

unit and channel configuration powers.

Note that when more than 4 drives are attached to a controller,
daisy chaining is implied on one or more ports. This introduces
the possibility of increased latency time when positioning to
the starting sector on a daisy-chained drive, if it is not the
first sector occuring on the track (i.e., sector offset 00 £ 0.
This is because in this mode, the platter index marker must be

sensed prior to any search operation.
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3.3.2

3.3.2.1

3.3.2.2

Power Equation Development

As a notational convenience, let

t the composite standard cycle search, action and

¢ termination time
= (C-l)(t11+t21) + t20 + B(t22+t3+t41) + B(B-l)t42
where C = cylinder occupancy

]

B
for a typical record of length W

block occupancy

To obtain the maximum theoretical power with N drives active,
assume that drive orders are always waiting and that (stand alone)
seeks are issued whenever possible. We then have the following
two cases:

Case 1: t,, f_(N-l)t¢
In this case all steady state stand-alone seeks are concurrent
with input/output actions on the other drives. (See Figure 3.3).

We then have the steady state power

P(a, 3500,case 1) = (3.6)

fgwltn

since in a standard cycle W bytes are transferred in time

Nt,. Note that this power is as for a single drive with

¢
initial seek time t = 0,
10
Case 2: t,, Z_(Nkl)t¢

In this case (N-1) composite input/output actions can be

overlapped with the stand-alone seek. (See Figure 3.4).

We then have the steady state power:

i
tip * 2y

P(a, 3500,case 2) = (3.7)
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Note that when t_, = (N-1)¢

10 ¢
' _
P(a,31/33F,case 2) = (N-l)zw g
- — o ¢
=MW _¥__ pla,3500,case 1)
Nt¢ t¢

as expected.

3.3.3 o or B Configuration Power Data (AN/USH-23)

Table 3.2 and Figure 3.5 show the multiple drive powers
obtained from Eqﬁations (3.6) and (3.7) for an average byte
count W = 2048. Since these powers are derived from average
logical record lengths, uniform seek times across drives and
an inexhaustible queue of disk orders, these values are to

be considered as the average theoretical maximum powers.
We have for this logical record length:

B=4, C=1

t¢ (C-l)(t11+t21) + t20 + B(T22+t3+t41) + (B-l)(t42)

0+ 20 + 4(0.14+2.6114+0.01) + 3(0.524)

32.62 msec.

The case 1 equation becomes:

> (N~ i -
t10 > (N 1)t¢ i.e., t10 < (N-1)(32.62)
2048
P(a, 3500,case 1) = 3767 = 62.79 kw/s

And for case 2:

trp 2 (-1t i.e., t, < (8-1)(32.62)

0 10

N x 2048
¢

P(a, 3500,case 2) =
0 + 32.62
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3.3.4

a,B Configuration Powers as a Function of Seek Time (AN/USH-23)

For one or more Model 3500 8 configurations we wish to show
absolute a or B configuration power as a function of the initial
seek time, tl(f We do this by noting that for any number of

spindles we have:

P(a, 3500) = P(a,3500,case 1) = constant

when £, < (N-1) ¢t

10 ®
and we determine the points on the line
P(a,3500) = P(a,3500,case 1)

intercepted by the functions

P(a,3500) = P(a,3500,case 2) = I —
t10 + t¢

by setting t—N—W—_’_— = P(a,3500,case 1)

0%t %
These functions are shown plotted as a function of the seek time
in Figure 3.6 for a value of W = 2048. The value of P(a,3500)
maintains the case 1 constant value (62.79 kw/s) until the indi-
cated intercepts for each N. Note that for ¥ > &, the intercept
value of tl 0 exceed the device maximum of 135 msec, so that the

device powers remain at the case 1 value for all values of tl 0°
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SECTION 4

AN/USQ-69 (ADD DISPLAY) POWER

4.1 GENERAL

The AN/USQ-69 Alphanumeric Digital Data (ADD) Display is a keyboard/
CRT device capable of data entry to and data display from the
AN/UYK~20 computer. Modes of operation include a block burst mode
for input or display and an input only character mode. It is the
first of these modes which will provide us the basis for a richer

analysis.

4.2 AN/USQ-69 ADD DEVICE CHARACTERISTICS

(a) Input/Output Modes:

i) Burst mode (Input or Display):
Block transfers to or from internal memory
up to 2000 characters (standard)
up to 6000 characters (optional)

ii) Character mode (Input only)
(b) Display:

i) Capacity: 2000 characters (25 lines @ 80 characters)

ii) Refresh: Period - 16.7 msec. Time - 1l.36 msec.
(c) Interfaces:

i) Parallel
MIL-STD 1397 (A), (B) or (C) parallel channels in 8 bit mode.
ii) Serial
MIL-STD-188 or EIA-STD-RS232C
Serial asynchronous channels @ 2400 baud
MIL-STD-188 Serial synchronous channels @ 9600 baud

(d) Configuration:

i) Each ADD input/display includes a dedicated controller.
ii) Up to 8 displays may be daisy-chained on one asynchronous

serial channel.




4.3 ADD Input (keyboard) Power

4.3.1 Burst Mode

For any of the specified interfaces, transfer times from the

ADD device buffer to the AN/UYK-20 are small compared to execution
times at the ADD device and controller level; that is, the time
required to key a block message. This latter quantity is, of

course, extremely variable and will not be assessed here.

4.3.2 Character Mode

The slowest interface constrains the character transmission
rate to 2400/8 = 300 characters per second so, here too, it is
operator key—-in rates and functions that effectively determine

device power.

4.3.3 ADD Output (Display) Power

(a) The output state chart of Figure 4.1 shows a single trans-

mit-display cycle:

- —— - — - >

A [ «re(s,a)
H
Channel Tx(S,a)T trans-]
mit !
+| | «rz(s,8)
]
ADD Tx(S,b)+] write ]
Controller mem. )
]
1
”| ; | «Tx(5,6)
]
ADD display]
Display | '

L
&— Settling Scan

AN/USQ-69 DISPLAY STATE CHART
Figure 4.1




T v

During a transmit-display cycle, the controller becomes busy for
the time that data is transmitted to ADD memory. The display
execution time, Tx(S,8), is given as the time required for full
settling of the display from start of memory rewrite. This is
estimated to be the memory rewrite time plus 1l.36 msec, this
latter quantity being the time required to scan a single CRT
frame. Subsequent screen refreshes are not considered as part

of device execution.

We thus have the following equation for the theoretical maximum

ADD display output power:

W

W MBTE_+ 1.36 Kw/s (4.1)

P(ADD display) =

where ¥ is the average block length transmitted

and MBTRa is the maximum byte transfer rate of the channel-

interface device.

4.3.3.1 Parallel Channels (8 bit mode)

(a) For the MIL-STD-1397 type A interface:

W

/S
v ae s 138 (4.2)

P(ADD Display(1397(4)1) =

Table 4.1 and the graph of Figure 4.2 show ADD device
power for block lengths of up to a full screen (2000 bytes.)




% Block

Block Length Execution Time ADD Display Power Length
(Bytes) (10-"sec) KW/S Efficiency
80 3.28 24.4 58.7
160 5.21 30.7 73.8
240 7.13 33.7 81.0
400 11.0 36.4 87.5
800 20.6 38.9 93.5
1200 30.2 39.7 95.4
1600 39.8 40.2 96.6
2000 49.4 40.5 97.4

AN/USQ-69 DISPLAY POWER

MIL-STD

-1397 (A) INTERFACE
Table 4.1

(b) For the MIL-STD-1397 B and C interfaces:

D(ADD display)i{1397(B,C)1) =

W

W+ 190 +

736 Kw/sec (4.3)

This equation is tabulated in Table 4.2 and plotted in Figure

4.3.

Execution Time 3 Block
Block Length -3 ADD Display Power Length
(Bytes) (10 “sec) KW/S Efficiency
80 1.78 44.9 23.6
1.99 60.3 31.7
2.62 91.5 48.2
3.47 115.4 60.7
5.57 143.6 75.6
7.68 156.3 82.3
9.78 163.6 86.1
11.9 168.3 88.6
AN/USQ-69 DISPLAY POWER
MIL-STD-1397 (B), (C) INTERFACES
Table 4.2
4-4




45
416 J
40
W
35
«
= 30
L4
|
<
>
® 25
— ®
. |
2
a
3
2 20
o
15 —
P (ADD display [1397{A)]) =
W
TW+41.6+1.36 KW/S
Pa = 41.6 KW/S
10
5
0 400 800 1200 1600 2000
OUTPUT BLOCK LENGTH — W — Bytes
AN/USQ-69 ADD DISPLAY POWER
| , , Figure 4.2 MIL-STD-1397 TYPE A INTERFACE
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(c) Serial Channels (8 bit mode)

For the EIA-STD-RS232C & MIL-STD 188C
Serial Interfaces in asynchronous mode at their maximum

rate (2400 bits/sec)

P(ADD display [(RS232,asynch]l) =

W
W+ 0.3+1.67

= 0.3 kw/sec (for range 80-2000 bytes)

and in synchronous mode at their maximum rate of 9600 baud:

P(ADD display [RS232C,synchl) =

W
W+ 1.2+ 1.67

= 1,2 kw/sec (for range 80-2000 bytes)

4.3.4 o,B Configuration Powers (AN/USQ-69 ADD DISPLAY)

4.3.4.1

4.3.4.2

ADD Control Unit Power

Since the ADD control unit is a device dedicated to a single
ADD display it thus exhibits power characteristics identical
to the ADD display itself.

ADD Channel Configuration Power

Here we have a single special case to be considered; that is,
the daisy-chaining of two to eight ADD displays from a single
asynchronous channel. We examine o power for a single set of

transmissions to each device. The state chart of Figure 4.4

shows the settling scan of the first N-1 devices coincide with

data transmission to subsequent devices. So, for N ADD
devices daisy-chained on an asynchronous serial channel
(MIL-STD-188/EIA~STD-RS232C), and with each unit to receive
a message of average length W characters, we have for maximum
theoretical channel configuration power:

NW
NW + MBTR + 1.36

P(a,ADD display(188/RS232C1)

NW

3

(NW+300) x 10~° + 1.36

(4.4)




; ; Tx(S,a
Conflquratlon’i‘—-— (Sya) Asynchronous

Serial Channel

CHANNEL 5 8 5
. 1 2 3
device
—
R—Tx(S 6)———4
ADD ?
device 1 transmit: settle
1
b1z (s, 5)-—4{
ADD T
device 2 transmit:settle
lﬁ—ﬂ'x(S, 5)——-4
ADD :
device 3 transmig, settleL
i

AN/USQ-69 CHANNEL STATE CHART
Figure 4.4

5
'
v
+
i

Note that for blocksizes > 80 (one line) we have that
(NW +300) x 10'3 >> 1.36 for all N. We may thus conclude
that in block mode, it is this channel rate (300 characters

second) that determines the maximum power (0.300 kw/s.)

per




5.1

SECTION 5

AN/UYK=-20 CHANNEL DEVICE AND CONFIGURATION POWERS

GENERAL

The AN/UYK-20 performs input/output activity through an incorpor-
ated input/output controller (IOC) which operates substantially
independent of the CP.

Each IOC-peripheral parallel mode interface consists of an output
channel to transmit data and control functions to the peripheral
device. Input channels are used to receive data or interrupt
codes from the external device. All parallel mode input/ocutput
activity is asynchronous, with the timing (and hence power)

dependent on the speed of the peripheral device.

Serial I/0 channels are also available for communications circuits
which operate in either synchronous or asynchronous modes. The
IOC performs all necessary serial-to-word and word-to-serial

conversions.

5.2 CHANNEL DEVICE CHARACTERISTICS AND POWERS

5.2.1

Parallel I/0 Channels

These are supplied in groups of 4 input and 4 output channels
operating in the full duplex mode, permitting concurrent input
and output. Furthermore, these channels may be operated in
byte (8 bit), single (16 bit), or dual (32 bit) modes, the last
requiring the use of a channel n and n + 4, i.e., the use of 2
groups. Maximum transfer rates and powers are given in Table
5.1 for the 16 and 32 bit word modes for input or output.

Rates and powers are also given for concurrent input/output
computed as 1.75 times the unidirectional rate* subject to a

maximum of 1,000,000 1l6-bit words/sec; i.e., 2000 kw/s.

* ref. SPERRY-UNIVAC PX 11772
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5.2.2 Serial I/0 Channels
’ These are provided in 2 channel groups. Serial-to-word and

word~to-serial conversions are performed by the AN/UYK-20 IOC.

Maximum rates and powers for the various interfaces are as
follows:
(a) NTDS SERIAL CHANNEL:

125,000 32 bit words/sec equivalent to power 500 kw/sec.

(b) EIA-STD-RS232C and MIL-STD-188C

SERIAL CHANNELS:
Asynchronous: 2400, 1200, 600, 300, 150 or 75 bits/sec
equivalent to powers

300, 150, 75, 37.5, 18.75 works/sec.

Synchronous: Up to 9600 baud; i.e., equivalent to

1200 works/sec.

5.3 CHANNEL CONFIGURATION POWER
5.3.1 Discussion

Maximum theoretical channel configuration powers depend on the
kinds of devices attached and for this reason these powers were
developed along with the powers for the devices and their con-

trollers.

In general, however, note that:

(a) Type 1 (e.g., tape) devices produce channel powers equiva-

lent to those of a single drive.

5-3




(b) Type 2 (e.g., disk) drives produce channel powers which
? depend on the number of drives concurrently active up to
a limit value beyond which the addition of drives adds
no more to the maximum theoretical power.
: (c) 1I0C configuration (that is, the total input/output config-

| uration power) is obtained by simple algebraic addition of
the individual channel powers developed in those sections
pertaining to attached devices. This sum is, however,
limited to the constraint that total IOC power cannot exceed
2000 XW/sec.

Finally, it must again be noted that the computed IOC configu-
ration power being the sum of maximum theoretical powers is
itself a theoretical maximum and will thus not be achieved in

practice except instantaneously.
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SECTION 6

AN/UYK-20 CP POWER

In this section, we will develop a methodology and notation for
expressing AN/UYK CP power in terms of the power of individual
instructions or classes of instructions. Work performed for

instruction setup will be considered as well as work done on

The final subsections will consider the effects of concurrent
IOC and DMA facility operation on CP power; that is, we will
express CP capacity when executing certain instructions and
instruction classes in terms of concurrent IOC or DMA power.

The resulting equations for I/0 activity degraded CP power will
be shown tabulated and graphed for an instruction mix con: idered

typical by the manufacturer.

-r
6.1 INTRODUCTION

operands (data).
6.2

AN/UYK-20 CP ARCHITECTURE AND CHARACTERISTICS

The AN/UYK-20 CP is, in actuality, emulated by a microprogrammed
controller (MPC), a set of registers, and a two-bus data exchange
structure. Thus the execution of AN/UYK-20 instructions res-.lts
in the execution of microprogrammed code with data and control
bits shuttled to and from the data and program registers and

main memory via the source and destination buses.

Some pertinent CP and memory access characteristics are:

(a) Instruction formats ~ lengths

RR (Register/Register) - 16 bit

RI (Register/Indirect Memory) =~ 16 bit

RK (Register/Literal Constant) - 32 bit
RX (Register/Indexed Address) ~ 32 bit




(b) 16 general purpose registers provided @ 16 bits.
(c) MPC cycle time - 155 * 5 nsec.
t (d) Direct addressing to 65K words.
(d) cCascaded indirect addressing:
Each level of cascade requires double word fetch.
(f) Overlapped fetch on certain instructions.

(g) Memory access cycle - without DMA - 750 * 10 nsec.
- with DMA - 790 * 10 nsec. max.

{h) DMA access through additional ports on each 32K work bank

of memory.
(i) CP has priority over DMA for main memory access.

(j) IOC has priority over CP for main memory access.

6.3 AN/UYK-20 CP POWER DERIVATION
6.3.1 CP Software Work - Force Vectors

For our purposes, CP work for a given workload,l, may be

categorized in terms of the domains and ranges of action by:
(a) W(L,Y)M ~ CP/memory work

(1 unit for every byte transferred between the cpu [or

more specifically a cpu register] and memory.)

(b) W(L:Y)R - register/register work

(1 unit for every byte transferred between cpu registers.)
Another distinction of importance is that between the kind of
CP work done when the CP is in states performing:

(a) Setup/termination work - effectively, the work of instruc-
tion fetch.

Denoted: WI(L,Y)M. WI(L,Y)R




6.3.1.1

(b) Control function work - setting of control registers that
can be tested by the running code. This is a type of

register/register work denoted:
Wb(L’Y)R
(c) Data transfer work - operand (data) fetches and stores,
operand actions as per instruction definition:
Denoted: Wb(L,Y).. Wb(L’Y)R'

We will be concerned, at this time, mainly with CP/memory work,

as register to register work can be thought of as internal work

and generally represents a constant fraction of the CP/memory
work. For simplicity we will denote CP/memory work by W(L,Y),
or by Wf(L,Y) or WD(L,Y) when the instruction or data states
are to be distinguished. Note that because of the extensive

property of software work:

W(L,y) = Wi(L,Y) + WD(L,Y)

Software Containers

The CP instructions and operands are represented and manipu-
lated in portions of storage or registers called containers.
For example, an instruction that alters a 16-bit word

as data is said to perform work on that container. The
quantity of work performed on the container is 2 works, con-
sistent with the software physics definition of 1 work for

each 8 bit byte with changed symbol state.

Tables 6.la and 6.1b show an assignment of codes to the vari-
ous AN/UYK-20 containers. Note that these are grouped by
classes derived from container functions and location. The
codes have been formulated so that the last digit is the
container length in bytes (8 bit units). Digits t< the right
of the decimal are read as eighths of a byte, that .s, bits.




These container codes will provide a notational convenience
when we speak of instructions which map operands from a
domain to a range, each being defined by a container type.
Note that instructions fetches as well are interpreted as

work done on a type of container.




CLASS CONTAINER CODE
NOTE: Container
Storage Bit 0.1 length indicated
Literal 0.4 by final digit
Byte 1 value. Fractions
are eighths of a
Single Word 12 byte (i.e. bits)
Double Word 14
Float Double 24
Triple Word 16
Interrupt Area 38
IOC Command Cells 42
I0C External 49

Interrupt Area

Data Register General 102
General - odd 112
General - even 122
General - pair 134
even~-odd

AN/UYK-20 DATA CONTAINERS & CODES
PART I

Table 6.la




CLASS CONTAINER CODE
N : i
Control Program Addr 202 OTE Container
Register length indicated
Status 1l: 318G by final digit
DMA 310.1 value. "G" suffix

indicat .
Interrupt I,II,III  311.1 ndicates group

Fractions are

FP Round 312.1 eighths of a byte
FP Interrupt 313.1 (i.e. bits)
Condition Code 314.1
Overflow 315.1
Carry 316.1
NDRO 317.1
Stack 318.1
Status 2: 328G
Interrupt Code 321
Indirect Control 320.2
Memory Address 902
Instruction Instruction 500G
Register
m~field 501.4
a~field 502.4
y~field 512

AN/UYK-20 DATA CONTAINERS & CODES
PART II

Table 6.1b
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6.3.1.2 CP Software Force Vector Diagrams

The vector nature of CP software work can be illustrated for
individual CP instructions or potentially for sequences of
instructions by a graphical device which we will call a Scft-
ware Force Vector Diagram. The basic form for these diagrams
is shown in Figure 6.2. The container types listed on the
left (or bottom) of the diagram are for the domain of the
mapping action of an instruction, while those on the right
(or top) are for the range of the mapping. Directed line
segments of types to be listed below are drawn from domain
containers to range containers. These indicate a directed
software force acting on the domain containers. The couplet
(cl,cg) composed of the domain and range container codes in-

dicate the direction of the force denoted by:

f
£, (01,02)
where t = I, D, C depending on the type of work performed:

I - Instruction work (fetches, indirect addressing)
D - Data transfer work (operands)

C - Control function work (program-accessed control registers)

The software force of an instruction can thus be represented

by the vector:

F=1f

:(c.c.)]
)
where t varies over work types and ci,cj vary over all con-

tainer codes.

Work is done when the Software Force acts through a distance
Z(ci, c.) whose magnitude is the length of c. in bits 8,

denoted hj' For CP/memory work, we have the scalar quantity,

work, defined by:




h,, +

) 22

W=?'z=fl—,(cl )‘h12+fl’,(

1°%12 ©21°%22

oh + oe0

et I e )12 * I, (e )Pz

11°%12 21°%22

= Juf +f Joh )
1: I, (cil’ciz) D_' (cil,cizj £2

U]

VI(L, Y) + VD(L, Y)

Table 6.2 summarizes the types of W(L,Y) corresponding to

the states I, D and (, their notation and graphic symbols.
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CPU SOFTWARE FORCE VECIORS

AN/U¥X-20 Rapertoire

Instruction:
QP:
¥Mnemonic:
Format:
Tx(usec) :

STORAGE

* 0.1 Bit

CONTROL REGISTERS

202
310 .
310.1 -
311.1 -

Program Addr
Status 1:
DMA
Interrupt

¢l I,II,III

FP Round

FP Interrupt
Cond Code
Overflow
Carxy

NDRO

Stack

Status 2:
Interrupt Code
Indirect Ctl

312.1 -
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317.1 -
318.1 -
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CP SOFTWARE FORCES - BASIC DIAGRAM

Figure 6.2
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* 134 general-pair
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even-odd

even-odd
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202 Program Addr

310 Status 1l:

310.1 DMA

311.1 Interrupt
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314.2

FP Round

FP Interrupt
Cond Code
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316.1 Carrxy

317.1 NDRO

318.1 Stack

320 Status 2:

321 Interrupt Code
320.2 Indirect Ctl
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The series of Figqures 6.3 show examples of completed CP

Software Work Vector diagrams with directed line segments

indicated as follows:

(a) cpu/memory work - instruction (fetch)

(dashed line)

(b) cpu/memory work - instruction (indirect address
generation - one doubleword [4 bytes] fetched for
each level)

(starred line)

(c) cpu/memory work - data transfer

(solid line)

(d) register/register work - instruction and data transfer

(alternating dot/dash line)

(e} register/register work - control function

(dotted line)

6.3.2 Instruction Class CP Power

6.3.2.1 Decrmposition of Power by Class

We can part.tion the AN/UYK-20 instruction repertoire into

disjoint classes by considering sets of instructions of like
format or like function or by another characteristic useful
for a specific purpose. The occurrence of only one instruction
per class is the degenerate case. Let J% denote the izh

instruction ciass.

Let L represent some workload in which instructions s ¢ (J,J%
are executed. Let Si be the subworkload. consisting of all

the executions of g ¢ A&.
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CPU SOFTWARE FORCE VECIORS

AN/UYR~20 Repertoire

Instruction: 6-5\'0, Locd

OP: oy

¥nemonic: 3 9, Ren

Descxription:
&ﬁ(m [-ﬂ - R“’ ')
Y- y+(Ra)/2

Format: Ry
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t
!

Then:
W(Sz,y) + W(Sg,y) F oo

Twe(L,Y)

]

P(L,Y)

~ (6.1)
==y T =iy

We now use a representative instruction, Si' chosen or

imagined so that:

L] i =
n A/(Si, Y) W(S,,Y)

and (6.2)

g TE(s,y) = Tr(S.,Y)

where ni is the number of instruction executions of g € 4&

in L.
W(S.,Y)
For each term T;?f:?y in (6.1)

write

W(Si,y) Tx(Si,Y) W(Si’Y)

Tz(L,Y) _ Tx(L,y) Ta(5,,Y)
i.e.,

W(Si’Y) Tx(Si,Y)
Tx(L,y)  Tx(L,Y)

. P(Si,v) (6.3)
where P(Si,Y) denotes the absolute power of the subworkload, Si'

Noting that from the defining relations, (6.2)

niW(si,Y) W(si,Y)

P(Si’y) = "iTx(si’Y) = Tx(si,y) = P(Si’Y)
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6.3.2.2

and since,

Te(L,y) = § nTx(s,Y)
7

we have from (3):

W(Si,y) Tx(S.,Y)
Te(L,Y) = Te(L,Y)

« P(S,,8)
1

n,Tx(s.,Y)
= —= L + P(s.Y)
i
z n.Tx(s.,y)
gt 7

and so

m,
ni‘"x(siY)

P(L,Y) . P(Si’w
Z nq.Tx(si,Y)

1

Y m.Tz(s.y) Pls.,Y)]
= LA L (6.5)
¥ niTx(si,Y)

We have thus derived the power of the cpu in execution on the
workload [ in terms of class representative instruction counts,

times and absolute powers.

Choice of Instruction Classes

What bears further investigation are the way of partitioning
the AN/UYK-20 instruction repertoire into classes which will

be useful in guiding the software design process.

Among the possibilities for defining the classes, Ji' are:

op -
(a) s € Jt iff P(s,Y) P, t e,

i.e., instructions of approximately like powers.




(b) By instruction format RI, RX, RK, RL or more denerally:

(c) Supposing that we have chosen an index set of source
containers, {clj} and an index set of target containers,
{c2j} where the cij are container codes, and that we
represent the components of software force in the direc-

. b

25 ) as previously defined.

tion of ¢.. to ¢
1 Y ft,(clj,cgj
Then we define

# 0 for some i,J

s ed iff ft,(clj,czj)

That is if the instruction s maps a container listed in

{clj} to one listed in {czj} it belongs to the class 4.

This type of partitioning would prove useful in choosing
instructions for specific types of arithmetic or logical

functions.

6.3.2.3 The Definition of Tx(s,Y)

For an individual instruction s € .&, the time of instruction

Txl(s,Y) 18 the swm of the times:

i) TI(s,Y) ~ The instruction setup/termination time, here
effectively the instruction fetch time. This
is a function of instruction length. Fetches
may be overlapped with execution. In general,

however, the fetch times by format are:

RR
RI Type 2} 1 memory cycle
RL
RK
RX } 2 memory cycles

(where an AN/UYK-20 memory access cycle

requires 750 * 10 nanoseconds.)




ii) TD(S,Y) - The time period commencing with the instruc-
tion access in the CP register by the macro-
' instruction-emulating microprogrammed con-
troller (MPC) to the next instruction fetch.
It includes operand fetches, if they are

required.

When indirect addressing is in effect, the time for additional

accesses should be added to the time TD(s,Y).

The instruction execution times quoted in the AN/UYK-20
Technical Description - SPERRY-UNIVAC PX 10431C are based on
actual execution and are comgosed of TD(S,Y) for the instruc-
tion plus TI(s,Y) for the following instruction in the sequence.
We will assume that these times represent a fair value of

Tx(s,Y) for all instructions.

As an example, consider the
(RI) 02 LOAD DOUBLE

instruction.

VI(s,Y) (instruction feteh) = 2 W
Wb(S,Y) (data transfer) =4 W
(no indirect addressing) i
W(s,Y) (total) =6 W !
Tx(s,Y) = 2.25 msec. |
So absolute instruction power: !
P(s,y) = (6/2/25) x 10°° = 2.67 Kw/s
|
6-21 :




6.4 AN/UYK-20 CP POWER - IOC ACTIVITY INTERACTION

6.4.1 Introduction

In Tz ( 8;5Y)

[ ]
We will extend the previously derived instruction class power
i equation:
Lin;Tx(s,,Y)* (P(s,,Y)]

‘ ' P(L,y) = (6.5)
i

]

:

to include the effects of delays in CP execution due to memory

access demands from IOC input/output activity.

It will be convenient to rewrite (6.5) in terms of instruction

class work thus: W(Si,Y)
Z&(si,y)]
P(L,y) = (6.6)
n.Tx(s.,v)
1 1

Z[niﬂx(si,Y)'

This is done as the contention for memory access will affect all
the terms Tx(si,Y) by replacing them with the execution time of
a higher level processor, I', which is execution whenever either

the CP or IOC are.

The resultant relative power will be referred to as IOC-Degraded

Workload Power and will be denoted P*(L,Y,T).

We shall see that the degradation will depend on the instruction
formats in execution and on the composition of IOC power by

memory access bandwidth.

We will first develop the execution time of the processor T for
the duration of the instruction 850 Tk(si,r),as a function of
the CP instruction execution time Tx(si,y)and the concurrent

IOC input output power P(¢).

6-22
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6.4.2

MPC Emulation of CP and IOC activity

AN/UYK-20 execution is driven by a microprogrammed controller

(MPC) and master clock running at 155 * 5 nsec (denoted tc) per

clock cycle.

This is the processor T.

The micro instruction

code emulates the CP program macro instructions and services IOC

memory access requests.

The following model will be used to

describe the augmentation of (macro) instruction execution time,

Ib(si,y), due to memory access requests of the IOC.

i) The microprogram, through the use of the "emulate" instruction,

allows an IOC main memory request before each CP instruction

fetch.

The "emulate"” executed before CP macro instruction

execution begins will be referred to as an "emulate start."

ii) The sequence of events from start CP instruction fetch to

the fetch of the next instruction is charted as follows:

(a)

(b)

{c)

(a)
(e)

(a) ( {c)

(

(e)

fetch

x~——-<

H— —-da

+—-II

d
|
|
|
|
'

D

— Tx(si,Y)

Start fetch: TI instruction fetch time (cpu/memory

work) .

Depends on instruction format:

RR, RI, RL - 1 memory cycle

RK, RX

Begin macroinstruction:

Possible operand:

memory references

Resume MPC execution

Start next instruction
fetch

T

D

- 2 memory cycles

is the data (operand) action

time.

Included in TD; not in RR

instructions.




iii)

iv)

v)

vi)

vii)

viii)

ix)

The software physics Tx(si,Y) is the total of instruction
fetch time, TI' and the nominal published execution time, TD'
The effects of indirect addressing or overlap will not be
considered here but can be accounted for by adding increments
to the operand work performed and the time TD for processing

and additional fetches.

Any CP macroinstruction main memory reference is preceded

by an "emulate" macroinstruction to permit IOC access first.

The microcode services all outstanding IOC memory access

requests at any IOC-caused suspension of CP emulation.

Let nc be the number of microcode instructions required for
a single word access. Then the number of microcode instruc-
tions for a byte mode access is also nc, while the number

of microcode instructions for a double word is 2nc.

Additional "emulate" instructions are inserted into CP
emulation sequences to permit IOC memory access service.
Let ne be the total number of "emulates" (of any type) that
occur in a single macroinstruction microcode execution over

time Tx(si,y) .

A return microcode sequence is required whenever the IOC
channel suspension of CP emulation occurs at an "emulate"
which is not an "emulate start" [see i)]. Let n, be the

number of microinstructions required in the return sequence.

A memory cycle wait of tw = 800 nsec is.required when the

break-in is not on an emulate start.

A memory hold time, th' is required for each access. The

values of th are

input: ¢ 360 nsec

h
output: th 40 nsec
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6.4.3

6.4.4

Assumptions for a Worst~Case Degradation

We will develop a worst case degradation of CP instruction exe-
cution time under the assumption that the probability of a

return sequence being required for each transfer is the same as
the probability that the "emulate" which allowed it is not an
"emulate start." 1In actuality, more than one transfer can occur
per "emulate" because if more than one buffer is active, then
there is a non-zero probability that there are concurrent requests
ocutstanding. We will also not consider the effects of chaining

or of instruction fetch overlaps.

We thus have that the probability of a return sequence and of

a memory cycle wait are:

Pp=fg=l-Py=1-

BIN

e

where Pés is the probability that an “emulate" is an "emulate

start."

*
IOC - Augmented MPC Execution Time - Tx

Let the number of I0C memory access demands/second be denoted
D , .
68" D¢16 and D¢32 depending on whether the request is for a
byte (8 bit), single word (16 bit), or double word (32 bit) access,

respectively.

Letting Tx stand for Tx(si’Y) we set:

*
Ty = Tr(si,F) = Tx

-9

# mxﬂD¢8+D¢16 ¢32) n,t, * 10

1 -9
+ Tx(D¢8+D¢16 ¢32)(1-§;J npt, x 10

1 -9
+ Tx(D¢8+D¢16 ¢32) Z;) tw x 10

-9
+ Tx(D¢8+D¢16 3 2) £, * 10 (6.7)
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*
where: Tx represents the augmented time of macroinstruction

execution due to the nctc nsec microcode execution
times per single word (or byte) accesses, the nrtc
nsec return sequence time and cycle wait time, tw,
each with probability (1-%—0 for any access and the
memory hold time, th. é
Note that equation (6.7) is valid only when
n

D¢8’ D¢16 and D¢32 S_Ei-emulates/sec.

since accesses are allowed only by virture of the recurring

"emulate" microinstructions.

Denoting the IOC powers for byte, single word and double word
access by P(¢8), P(¢16) and P(¢32), respectively, (each in

KW/sec) we have:

5 P(9,4) x 108
D¢8 = P(¢8) x 10 , D¢16 = 5
P(b.,) x 10°
$32 4
Substitution in (6.7) gives:
P(¢,,) P(d,,)
16 32 -6
Tr = Tx + Tx{1 + [P(cbg) +t—3 +—n t, X 10
P(¢,,) P(d,,)
16 32 1 -6
+ [P(¢8) 3 * 3 ][Z—ne]nrtc x 10
P(d,,) P(d,,)
16 32 1 -6
+ [P(¢8) + 3 + 7 ][l-Z;th x 10
P($,.) P(o,,)
16 32 -6
+ [P(¢8) t— t—3 ]th x 107"}
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Collecting terms in P(¢,), P(¢,,) and P(d,, ) we have:
8 18 32

1
chtc * (l-n )(nptc+tw)

t
* e h -6
Tr = Tx{1 + P(b,z,) 1 7 +37) X 10
i 41l 4t )
ce ne re w th -6
, + [2P(¢g) + P(d,,)1( 5 + 51 x 107}
(6.8)
i ? and this is valid only when:
: "e . -3 e -3 e -3
P(q)g) iﬁ x 10 ° , P(¢16) in— x 10 © and P(¢32) iﬁ x 10
’ or more concisely when:
E kn, _3
P(d’k)iﬁx 10 (7f=8, 16, 32)
¢
: ) The term in braces in equation (6.8) is equal to:

Tz/Tz = n(6) = 1/E(6)

e e e R g

where:

' n(¢) is called the I/O-Degraded CP Execution Time Factor,
and £(¢) is called the I/0-Degraded CP Execution Power

Factor for the reason that it will appear as a multiplier

of the instruction power P(si,Y) in the expression for CP

execution power when the IOC is concurrently active.

6.4.5 IOC-Degraded Instruction Power

We now have a relative I/O-degraded CP execution power:

W(si,Y)

P*(si,y, ) = ——
Tx

W(si,Y) Tx(si,Y)

! TTla) g Lo Y)tE () (6.9)




where Ei(¢) is the function §(¢) evaluated with the quantity

n_valid for s..
e 1

We will formulate Ei(¢) for input and output (denoted Ei(¢I) and
Ei(¢0), respectively) for two restricted instruction mixes and

a general mix considered typical by the manufacturer. nc and
n, are given as 5 microinstructions each for the access and
return microcode sequences. tw, the memory cycle wait time, is
800 nsec and the memory hold time is 360 nsec for input, 40 nsec

for output.

i) Restricted Mix 1 - RI Add and Logical.

Assume that the instructions executed are limited to 22 RI

Add and 31 RI Logical instructions:

We have from the manufacturer's data:
Tx(ai,Y) = 1.6 usec at tc = 155 nsec

ne, the number of "emulates" is 2 (during TD)

+ 1 (during fetch) = 3

Assuming that the double word power P(¢32) dominates, we
have P(¢) = P(¢32). Equation (6.8) then becomes:

* ¢y -6
Tz = Tz(1 + (650+5%) x 107°1 P(¢)

so for input,

1

1+ (650+55%) x 107° P(o)

Ei(¢I)mix 1°

= 1 (6-103)

1+ 830 % 1078 prg)

6-28
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ii)

and for output,

1
14 (650+%QJ x 10°% p(s)

800 miz 1

1
1+ 670 x 10°% pro)

Restricted Mix 2 RX Add and Logical.

(6.10b)

Assume that the instructions executed are limited to 22 RX Adds

and 31 RX Logical instructions.
From the manufacturer's data:

Tx(si,Y) = 2.3 usec

n, is 3 (during TD) + 2 (during fetch) = 5
Again assuming that , we have:

* ty 6

Tx = Tx(l + (702.5+§—) x 10°° P(4)]

so for input,

1
1+ 722.5 x 1075 po)

£ miz 2 =

1
1+ 882.5 x 10°¢ pre)

and for output,

1
mx 2 14 792.5 x 1076 pre)

£;(4,)

(6.11a)

(6.11b)
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iii) General Mix

The manufacturer has provided the following instruction mix

in document PX 11901 and considers it typical:

17% 22 RI Adds (2 emulates in Tpi To = 1.6 usec)
17% 22 RX Add (3 emulates in TD; Ty = 2.3 usec)
17% 31 RI Logical (2 emulates in ng Tx = 1.6 usec)
17% 31 RX Logical (3 emulates in TD; Tx = 2.3 usec)
12% 44 RI Jumps (2 emulates in Tig Tx = 1.3 usea)
8% Miscellaneous (1 emulate in TD; Tx = (.84 usec)
6% 44 RX Jumps (3 emulates in TD; Tx = 2.4 usec)

4% 26 RX Multiplies (3 emulates in TD; Te = 4.5 usec)
1% 26 RI Multiplies (2 emulates in TD; Tr = 4.3 usec)
1% 27 RK divides (3 emulates in TD; Tz = 7.6 usec)

We add: 1 emulate in TI for RI and miscellaneocus instruc-

tions

or

2 emulates in TI for RX and RK instructions.

We then have that there are 3.8 emulates in Tx(si,Y), the
execution time for the mix representative (average) instruc-

tion.

So for this average si we have Tx(si,Y) = 2.00 % 10-6 gec
and n_ = 3.8.
e

Now when P(¢) = P(¢32) we have from equation (6.8):

# th -6
Tz = Tx(1 + (677.745—) x 10 ~ P(¢)]
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From which:

¢ Ei(¢I)mix ¢~

8% miz G =

If P(¢)

2
Tz

Si(¢o

£ iz ¢ =

7
1+ 857.7 x 10°% pro)

(6.12a)

1
1+ 697.7 x 1078 pro)

(6.12b)

P(¢16), we have:

' i -6
Tz(1 + (967.945) x 10°° P(9)]

From which:

1 7 (6.12¢)
1+ 1148 x 10 P(¢)

) o= 1 - (6.124)
m 1+ 987.9 x 107° P(4)

and finally if P(¢15) = P(¢32) = Eﬁﬁlv we have:

Tx

L]

A VP R @ Ty ey ¢ e s o
-

8 miz G

£;(6,)

2

ty, -6
Te(l + (967.9+5%) x 10°° P(4,.)

t

+ (677 7+§;1) x 1076

P(¢32)]

£
Tr 10+ (484.0+338.9+2—h) x 10°¢ peo

y -6
Tz 11+ (822.9+5%) x 107° P(6)]

From which:

7
1+ 2003 x 1076 P(9)

(6.13a)

1 (6.13b)
1+ 842.9 x 107 pro)

mix G
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We tabulate and plot the equations (6.13) in Table 6.3 and
Figure 6.4, respectively, giving Ei(¢I) and Ei(¢o) the 1/0-
Degraded Execution Power Factors for the SPERRY-UNIVAC PX
11901 General Instruction Mix with the IOC power composition
P(¢16) = P(¢32) = 2%91‘ We additionally show in the table
and graph, the curve for the anticipated maximum degradation
arising from the case of equation (6.12c) for input power

when P(¢) = P(¢16).

O

RS B

i
] ' 6-32




0 IOC I/0 POWER I/0-Degraded Execution Power Factor - gi(¢)
:§ KW/SEC Input Output Min.
1 P(o,,) = Plog,) = 28 pro ) = pro,,0 = B pry) = prs )
' (maximum
degradation)
50 0.952 ' 0.960 0.946
, 100 0.909 C.922 0.897
1 200 0.832 0.856 0.813
300 0.769 0.798 0.744
400 0.713 0.750 0.685
500 0.666 0.704 0.735
600 0.624 0.664 0.592
700 0.588 0.629 0.554
800 0.555 0.597 0.521
900 0.526 0.569 0.492
1000 0.499 0.543 0.466
1200 0.454 0.497 0.421
1400 0.416 0.459 0.384
1600 0.384 0.426 0.353
1800 0.356 0.397 0.326
2000 0.333 0.372 0.303

RELATIVE CP POWER DEGRADATION - IOC ACTIVITY

Execution Power Factor - Ei(¢)

SPERRY-UNIVAC PX 11901 General Mix

Table 6.3
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6.4.6 Relative IOC-Degraded Power for the Full Workload - P*(L,Y,T)
As a consequence of the above and equation (6.5) we have for
the full workload:
*
Z(n.Ib~P(s.,Y)'§.(¢))
PA(L,Y,T) = —= —
Zn.f&
7
' )
] niﬂx(si,Y) j
Z[—E—i(—q’)——‘P(Si,Y)'Ei(dﬁ]
8 ) Lin Tz(s.,¥)/E,(3))
3
i
{
! Y(n.Tx(s.y)*P(s.,Y))
, = T L (6.14)
) Z(niTx(si,Y)'ni(¢))
valid when
%o -3
€ ————— X =
, P(¢k) —'BIb(Si:Y) 10 (k 8, 16, 32)
where:
Tx(si,y) is the instruction time including fetch
expressed in seconds.
’
ne is the number of microcode "emulate” instructions in the
microcode sequence for a single CP macroinstruction execu-
tion.
'y and
P(¢k) is the k-bit partial power expressed in KW/sec
(k = 8, 16, 32).
Note that in equation (6.14), the effect of IOC activity is ex-
¢ pressed purely in the denominator as augmentations of the instruc-
é tion execution times by the multiplicative factors ni(¢). This
corresponds to the notion that the CP work done is the same with
¢
6-35
]

R e o . o S B




L g ; o ) ;
R \

or without IOC activity but the effective execution time has

increased.

’
The factor ni(¢), the reciprocal of Ei(¢)' is tabulated and
plotted in Table 6.4 and Figure 6.5 for the manufacturer's PX
11901 instruction mix for input and output powers when

' P(¢32) = P(¢16) = EL%L. In addition, values for the theoretical

maximum degradation are shown occurring for input where

P(¢p) = P(¢16).




IOC I/0 POWER

KW/sS

Input

P(¢16) = P(¢32) =

Output

P(¢)
2

P(¢16)=P(¢32) =

I/0-Degraded CP Execution Time Factor

Max.

P(¢) _
2 P(¢) = P(¢16)

50
100
200
300
400
500
600
700
800
900

1000
1200
1400
1600
1800
2000

>
i
H
H

1.050
1.100
1.202
1.300
1.403
1.501
1.603
1.701
1.802
1.901
2.004
2.203
2.404
2.604°
2.809
3.003

1.042
1.085
1.156
1.253
1.333
1.420
1.506
1.590
1.675
1.758
1.842
2.012
2.179
2.347
2.519
2.688

1.057
1.115
1.230
1.344
1.460
1.575
1.689
1.805
1.919
2.033
2.146
2.375
2.604
2.833
3.067
3.300

RELATIVE CP POWER DEGRADATION -~ IOC ACTIVITY

CP Execution Time Factor - ni(¢)

SPERRY-UNIVAC PX 11901 General Mix

Table 6.4
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6.5 AN/UYK-20 CP POWER -~ DMA FACILITY EFFECTS

.

6.5.1 General DMA Characteristics

6.5.2

The AN/UYK-20 design incorporates a direct memory access (DMA)
facility which allows an external device to read from and

write into main memory via a second memory interface.

The incorporation of the DMA facility increases CP instruction
execution times by a small amount, 65 nsec maximum. The actual
increases in instruction execution time have been tabulated by
the manufacturer for each instruction in the SPERRY-UNIVAC
publication PX 11772 and will not be repeated here. We will,
however, subscript the symbols Y or I in denoted execution times
with the letter D to note the fact that the DMA facility is in
the system and that the values of TD or Tx for instructions are
to include the appropriate increment. Thus Tx(si’YD) is the
instruction execution time when the DMA facility is in_the

system.

Another DMA feature provides for separate access ports on each
of the 32K memory banks. This allows access by the DMA-attached
device on one bank concurrent with accesses by the CP/IOC on

the other. Should requests for memory access on the same bank
be simultaneous from the DMA-attached device and the CP/IOQC,

priority of access is given to the latter units.

Worst-Case CP Degradation Effects - Assumptions

We will first develop a worst case execution time augmentation
factor u(¢D} for DMA facility activity in a memory bank with

concurrent CP/IOC activity. Our assumptions are as follows:

i) Delays in instruction execution memory accesses caused
by the DMA activity occur only when a DMA memory read or
write is already in progress. However, for a worst case
analysis, any derived coincidence of a DMA and CP access

request will be as if the DMA request preceded that from
the CP.

6-39




ii) For double word CP accesses, we assume that memory becomes

available between each of the two single word accesses.

iii) The average JMA caused delay to the CP memory access will

be taken to be one half the memory access cycle time (i.e.,

750 # 2 = 375 nsec). Effectively, each DMA access is for
a 16 bit wozd.

iv) We will not consider the effects of indirect addressing here.

6.5.3 Development of the DMA~-CP Degradation Factors

' ‘ We first note that the probability of a DMA read/write access

in progress is given by:

Pp

E

o<

where:

t

memory access time _ m
DM4 access period (P (¢D ) x 103 )—1
2

3
tm~P(¢D) x 10

2

where: ﬁn is the memory access cycle time in seconds.

P(¢D) is the DMA power in KW/sec.

Now considering the CP related memory fetches {instructions +
operands) as independent attempts at access, we have that the
most probable or expected number of times that the CP would

encounter a DMA access in the course of a single instruction

execution is:

my ED

n__ is the number of accesses required in the full

(fetch included) execution of an instruction.




Letting noY be the number of effective single word instruction

operands we have for:

RR, RL, RI - 1 instructions, 7 ¥ = ] (fetch -only)
m

RTI - 2 instructions =1+n
’ an oY

RK instructions, an = 2 (fetches only)

RX instructions, n =2 +n
my oY

We now can write for a degraded C? instruction execution time,
*
letting Tz stand for Zx(s,FD) and noting that the average delay
is t_ % 2:
m

*
Tx

Tx + EDY-tm 2

2 3
an.tm P(¢D) x 10

=Tz + y  (6.15)

The second term in (6.15) is the additive DMA Power-Degraded
Instruction Time Augmentation Factor, pi(¢D) where the ¢ sub-
script is used to indicate that class.of. instructions for which

the value of n is valid.
° Y

6.5.4 DMA Power-Degraded Instruction and Workload Power

We may now write for the degradation of CP instruction execu-

tion power, expressed relative to MPC/DMA execution time:

Wsi’Y) W(si,Y)
P*(s .Y T.) = - ry =
D' L' D Pl Tx(si’YD) + “i(¢D)
ui(¢D)

= 'P(s'i,YD) .1 - (6.16)

- ]
ui(¢D) + Tx(ai,Y)

And for the full workload:

*
Lin TzP(s,Y})
PB(L,YD,PD) = *
ZniTz

Yn.(Tzl8,,v,) + u.(¢.))P(s,,Y.)]
a—t_ D 2D r D (6.17)

Z[ni(lb(si,yp) * U (o)1




Or in terms of previously derived terms:

#
PD(L,YD,FD) =

) zniTx(si’YD)'P(Si’YD) + Znip(si’YD)'ui(¢D)

(6.18)
IngTx(s ,yp) + In o (¢p)

We will compute the additive time factor ui(¢D) for the previously

described (Section 6.4.5) SPERRY-UNIVAC PX 11901 instruction mixes.

We will use the nominal gﬂ = 750 % 10-6 sec for the memory access

cycle time.

i)

ii)

Restricted mix 1 - RI add and logical.

Assuming that the instructions executed are limited to 22 RI

add and 31 RI logical instructions, we have:

For both instructions oy = 1 (feteh ) + 1 (operand) = 2
memory accesses/execution.
From which:

2-(750x10’9)2-P(¢D) x 10°
oy = 7

0.2813 P(¢,) x 107° sees/execution

Restricted mix 2 - RX add and logical.

Assuming that the instructions executed are limited to 22 RX

add and 31 RX logical instructions, we have:

For both instructions ney = 2 (fetch) + 1 (operand) = 3 per
memory access/execution.
From which:

3o (750%x10"9)%+p(¢.) x 10°
u.(6.) = D
(% 7

= 0.4219 P(¢D) x 1079 gecs/execution
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iii)

PX 11901 General mix.

We have the following numbers of instruction main memory

accesses (single word equivalent) per execution:

17% 22 RI Adds (2 accesses/execution)
17% 22 RX Adds (3 accesses/execution)
17% 31 RI Logical (2 accesses/execution)
17% 31 RX Logical (3 accesses/execution)
12% 44 RI Jumps (2 accesses/execution)
8% Miscellaneous (est. 2 accesses/execution)
6% 44 RX Jumps (3 accesses/execution)
4% 26 RX Multiplies (3 accesses/execution)
1% 26 RI Multiplies (2 accesses/execution) ]
1% 27 RK Divides (2 accesses/execution)

From the above values we obtain the weighted average number

of accesses n = 2.44
my

From which:

2.44-{750x10‘9)2-1=(¢ ) x 10
w.(6,) D
D 4

3

0.3431 P(¢D) x 1077 secs/execution

We now show ui(¢D) tabulated in Table 6.5 and plotted in
Figure 6.6 for an =1, 2, 2.44, 3, 4, 5. These values, it
will be recalled, are increments to be added to the times
Zx(si,YD), the DMA-installed instruction or class representa-
tive execution times, for the computation of augmented DMA
Power-degraded instruction execution times and degraded

relative powers.




COMMON BANK CP INSTRUCTION TIME AUGMENTATION FACTOR - F

DMA POWER W, (¢,) (XIO-Q seconds)
p(d ) v D
D
KW/S Instruction Main Memory Accesses:
1 2 2.44* 3 4 S
50 7.03 14.06 17.16 21.09 28.13 35.16
100 14.06 28.13 34.31 42.19 56.25 70.31
200 28.13 56.25 68.63 84.38 112.5 140.6
300 56.25 84.38 102.9 126.6 168.8 210.9
400 84.38 112.5 137.3 168.8 225.0 281.3
500 112.5 140.6 171.6 210.9 281.3 351.6
- 600 140.6 168.8 205.9 253.1 337.5 421.9
700 168.8 196.9 240.2 295.3 393.8 492.2
800 196.9 225.0 274.5 337.5 450.0 562.5
900 225.0 253.1 308.8 359.7 506.3 632.8 ]
1000 253.1 281.3 343.1 421.9 562.5 703.1
1200 281.3 337.5 411.8 506.3 675.0 843.8
1400 337.5 393.8 -480.4 590.6 787.5 984.4
1600 393.8 450.0 549.0 675.0 900.0 1125.
1800 450.0 506.3 617.6 759.4 1012. 1266.
2000 506.3 562.5 686.3 843.8 1125. 1406.

* Average for SPERRY-UNIVAC PX 11901 General Mix

AN/UYK~20 RELATIVE CP POWER DEGRADATION - DMA ACTIVITY

Table 6.5
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As an illustration of the DMA activity CP degradation effect
in terms of instruction power, let us consider the impact on
the RI and RX Add instructions of our previously employed
restricted mixes.

’ i) 22 RD Add

4 i We have, as before, n = 2,

: my

From the instruction specifications in SPERRY-~UNIVAC
PX 11772,

-6
A § Tx(si’YD) = 1.64 x 10

So we obtain:

Wi(s.,y,)
2>'D
’ P(si’YD)

R T O

Tx(si’YD)

; WI(si’YD) + WD(Si’YD)

Tx(si,yD)
= —22E 2439 wu/s
1.64 x 10

Now, when there is DMA activity:

W(Si’YD)

*
PD(si’YD’FD) = Tx(si,YD) + “i(%)

= 4 W/S

- -6
1.64 x 10 ~ + “i(q’D)
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ii) 22 RX Add

For this instructicn,

-6
Tx(si’YD) = 2.40 x 10 ~ seec.

W(si,yp) =4¢ + 2 = 6 works

From which,

Pls,,Y,) =~ —E—— = 2500 wi/s
2.40 x 10
and
" ) 6 w/s
Pp(siaYpeTp) = -6

2.40x 1077 + ui(¢D)

For both of these instructions we tabulate the relative DMA-
Pegraded Execution Power P;(si’YD’FD)’ shortened to P; for
convenience, in the Table 6.¢. We also define a multiplicative
DMA-Degraded Instruction Execution Power Factor, gi(¢D) = P;/P,
where P is the instruction power when P(¢D) = (. This factor,
analogous to the one developed for IOC activity in Section

6.4.4, is also shown in the table and is plotted in Figure 6.7

for the RI ADD instruction.
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) DMA POWER COMMON BANK DMA-CP EXECUTION
P(¢:) 22 RI ADD P = 2439 XW/S 22 RX ADD P = 2500 KW/S
! ) (KW/S) (KW/S)
50 2418. 0.9914 2478. 0.9913
100 2398. 0.9832 2457. 0.9827 «
200 2358. 0.9668 2415. 0.9960
300 2320. 0.9512 2375. 0.9499
400 2282. 0.9356 2336. '0.9343
500 2246. 0.9209 2298, 0.9192
600 2211. 0.9065 2262. 0.9046
700 2178. 0.8930 2226. 0.8904
800 2145. 0.8795 2192. 0.8767
900 2113. 0.8663 2159. 0.8634
1000 2082. 0.8536 2126. 0.8505
1200 2023. 0.8294 2064. 0.8258

0.8065 2006. 0.8025

0.7847 1951. 0.7805

0.7642 1899. 0.7596

0.7446 1850. 0.7399

POWER DEGRADATION-DMA ACTIVITY
22 RI, RX ADD INSTRUCTIONS

Table 6.6
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6.6 DISCUSSION - CP / I/O INTERACTIONS

6.6.1

6.6.2

Introduction

From models of interaction betewen the IOC and the CP and the
DMA facility and the CP, we have developed execution time aug-
mentation factors n(¢) and u(¢D) which lead to the multiplica-
tive power factors £(¢) and E(¢D). All of these are expressed
as functions of the instruction execution time Tx(si,Y) and the
Input or Output powers P(¢I) or P(¢o) for the IOC and P(¢D) for
the DMA. We will present a brief amplification of the meaning
of these factors and a discussion of the significance of the

power factor values derived.

The Time Augmentation Factors

The factors n(¢) and u(¢0) augment the execution time of a

processor, ', which emulates CP and IOC memory access activity.
This processor includes those facilities, which normally emula-
ting the CP, must suspend that function and service I/O memory

access requests.

We have defined the execution time of the processor I to be
identical with that of the CP when there is no I0C or DMA

activity, i.e.,
Txe(L,T) = Tx(L,vy)
(6.19)
Tx(L,FD) = Tr(L,YD)
when P(¢) = P(¢D) =0

The time augmentation factors n(¢) and u(¢D) increase Tx(L,T)

it i

or Tx(L,FD) over their Y-processor (CP) based execution times;

N operates by multiplication and U by addition because of the

differences in the models from which each factor is derived. 1




6.6.3

When there is input/output activity from either the IOC or DMA
we do not increase Tx(L,Y) because the Y-processor is defined

to be stopped when:

(a) The MPC is servicing I/0 requests for memory access.

(b) CP memory access is blocked because an IOC or DMA

access is in progress.

Thus the absolute power, P(L,Y) of the CP has not changed; it
is the CP power relative to the I'-processor, P*(L,v,T), which
decreases with I/0O activity. This distinction is emphasized
because the instruction or workload power equations (6.9),
(6.14), (6.16), (6.17) and (6.18) express time in terms of

Tx(si,Y), instruction execution time for the CP.

The Power Degradation Factors

The factors E(¢) and E(¢D) each are the ratio of a relative
power of an instruction when there is no IOC or DMA activity
to that when there is IOC or DMA power in use. Because of the

relationships (6.19) we have:

P(8.,Y,TI) = P(s.,Y)
B t (6.20)

P(si’YD”rD) = P(si,yp)
when P(¢D) =P(¢) = 0

Because of the relationships (6.20) we were able to develop
the relative power ratios £ by considering only the absolute
CP instruction execution powers and are able to express the
full workload relative powers degraded by I/O activity (equa-
tions (6.14), (6.18) in terms of the absolute CP instruction

execution powers.




6.6.4 significance of the Power Factor Values

Inasmuch as the power factors Ei show degradation of relative
instruction and workload power for the CP when there is I/0
activity, they may be thought of as reductions to the instruc-
tion throughput caused by the interactions described by the

models.

The IOC activity, in particular, was theoretically shown to
reduce the instruction relative power P(si,Y,F) to as little
as 30% of its non-1/0 active value for maximum IOC power. By
contrast, access through the DMA facility on a common memory
bank Qith the CP degrades P(si’YEPrD) to no less than 75% of
its non-DMA active level. These differences can be explained
by the demands that the IOC makes on the microprogrammed con-
troller (MPC) for servicing its memory access requests. The
DMA facility, on the other hand, requires that devices using
it must provide their own memory interface logic through addi-
tional low priority ports to the 32K memory banks. Since
these ports are of lower priority than those for the CP/IOC,
the likelihood of overruns on DMA connected devices is sub-
stantial. In fact, it is doubtful that one could achieve in
practice DMA input/output power levels comparable to those for

the IOC channels without experiencing fregquent overruns.

System and program designers must be aware of the consegquences
of the CP-IOC, CP-DMA instructions in regard to the effects

they can have on workload throughput and system response times.
These considerations are a substantial portion of the factors
that would determine the performance characteristics of a
workload distributed over AN/UYK-20 configurations. 1In turn

we could expect that performance requirements, the knowledge

of acceptable trade-offs and the availability of processor
power characteristics would provide the basis for satisfactorily

performing AN/UYK-20 configurations.
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ASYMPTOTIC POWER

See the discussion under the entry ?(A)

CAPACITY

Two forms of computing system capacity are identified in software
Physics: 1) processor capacity, expressed in units of software
power (works/second), and 2) storage capacity, expressed in units
of byte-seconds or their equivalent on non-byte computer systems.
In either case, the quantity determined to be the capacity of the
system must be calculated from theoretical considerations, and
cannot be obtained directly by measurement. Measured values repre-
sent the quantity used, not the available quantity of power or
byte-seconds.

Both processor capacity and storage capacity can be determined as
appropriate for individual devices, subconfigurations, or the full
system configuration. In general, processor capacity is primarily
a function of equipment speeds and configuration connections, and
secondarily a function of workload characteristics. Storage capa-
city is simply the total storage available by equipment class or
subconfiguration over time.

The amount of power actually used is the quantity normally called
performance. Thus, processor capacity and performance are directly
relatable quantities: one is the power available, the other is the
power used. The ratio of performance to capacity is called the
efficiency of the workload.

See the power entry for a more detailed discussion of capacity.

CONFIGURATIONS AND SUBCONFIGURATIONS

A configuration is an arbitrary collecticn of processors and storage

devices, normally connected so that processors cause data to flow to

and from storage devices. In cartain applications of software physics,

however, one is not limited to fully connected configurations.




A subconfiguration is a configuration within a configquration. Often,
the prefix "sub” is not used when dealing with parts of a full con-
figuration. For example, "channel configuration” is the collection
of a channel, control units, and the drives (printers, terminals,
etc.) which can be addressed through the channel. This configuration
is part of the I/0 configuration, which is the set of all such channel
subconfigurations. The "full configuration" is a special term which
includes all processors (cpu and I/0) and all storage devices under

consideration.

Greek lettérs are used in software physics to represent configura-
tions and subconfigurations. See the software physics notation
entry for the symbols used for the standard configurations and sub-

configurations.

CONTAINER (STORAGE)
A container is a portion of a storage medium which can be separ-
ately addressed. Its size is measured in the number of bytes
which are contained in the container, for byte-oriented machines.
An B8-bit container has been arbitrarily designated as the stand-
ard size container in software physics. As a result, non-byte
oriented machine container sizes are determined by dividing the
number of bits by eight. Containers such as cards and print posi-
tions on paper are counted as having a size equal to the number
of bytes (or bits ¢ 8) required to either read or write a character.

DEVICES
Devices are considered as either processors or storage devices.
Generally speaking, a device is the lowest level component of a
configuration or subconfiguration. For example, a tape drive is
considered as a device, as is a tape drive control unit. To-
gether, these devices would make up a tape control unit subcon-
figuration. Extending this, a channel is considered as a device,
but the collection of channel, control unit, and tape drives would
be a channel subconfiguration.




The lowest level of a configuration or subconfigquration is still a
"configquration.”" 1In software physics, configurations and subconfig-
urations are generally denoted by a Greek symbol. In particular,
» because devices are the lowest level of a configuration they are
] normally symbolized by Greek letters; e.g., § is a drive, v is a
cpu. However, to avoid confusion between channel devices and con-
figurations, a lower case a is used to denote the device, Greek o
1 is used to denote the channel configuration with attached control
unit subconfigurations. Similarly, b is used to denpte the control
unit as a device, 8 is used to symbolize the configuration with
attached drives.

PORCE, SOFTWARE
In general, a force is the agent, "mechanism," or method by which
enexgy is converted to work. So closely are the concepts of force
and energy linked that nearly two centuries elapsed after Newton
before a distinction was commonly made between them in the classical
physics. In software physics, the means by which software energy
results in software force is through the agency of an instruction,

either cpu or I/0. As a result, software physics considers an

instruction as formally representing a force. A unit of software
is a collection of instructions and associated operands, where
operands can be considered as being the software physics analogies
of inertial mass. Together, the result is that a software unit is
considered equivalent to the classical physics system of forces
acting on point masses.

Software force is measured in units of work/byte. The direction of
action of a software force is from the container accessed to the
container receiving the symbols transferred. Software force is a
vector quantity when a given instruction transfers symbols from
mwore than one set of source-target containers.




MBTR (MAXIMUM BYTE TRANSFER RATE)

This is the rate at whicq I/0 data is read or written, excluding all
time required to position or otherwise locate data. It is normally

given by equipment manufacturers as either the rated speed (e.gq.,
2000 lines per minute) or data transfer rate (e.g., 806,000 bytes

per second for a 3330 disk drive). 1In practice, this data transfer

rate is never achievable except for burst rate conditions due to
a variety of set-up and positioning time requirements. When

thought of in terms of softwafe work rather than bytes, this value
is also called the asymptotic power of the device.

P(A) (ASYMPTOTIC POWER)

The asymptotic theoretical power or capacity of a configuration
is symbolized as the vector quantity Pr4). Its elements are the
asymptotic powers of the ideal configuration, by equipment class,
denoted PA’ Asymptotic power is equivalent to the maximum byte
transfer rate, converted to units of software work and power,
available from the equipment being considered. For subconfigura-
tions including disks and/or tapes, the asymptotic power is cal-
culated using the first level of "bottlenecking."

Asymptotic power calculations for disk, tape, and other variable
block length devices assume an infinite block length. For fixed
block length devices, such as printers, the maximum byte transfer
rate or its equivalent as specified by the manufacturer and con-
verted to units of power is used; e.g., 2000 lines per minute.
For central processors, the asymptotic power is calculated by

dividing the bytes accessed from buffer or main storage by the
spallest corresponding cycle time.

PERFORMANCE

In common usage this term is not associated with any specific

Qquantitative value. In software physics, the word is fully
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equivalent to the word software power, and is normally associated
with the power usage af the workload, §(L,w). This is called
throughput powar. 1If the batch workload alone is considered, then
throughput power is completely equivalent to the common measure
"throughput"; i.e., "jcbs” per hour. More generally, however,
performance may be defined for any level of configuration and/or
subworkload by taking the appropriate power usage measure.

The quantitative definition of performance as the level of software
power usage is fully in accord with the intuitive meaning of the
word, but its use in this sense requires one clarification. When

a2 portion of the workload is removed, such as may be done by
changes to the operating system or using TSA runs, capacity is
recovered. But capacity is the power available for use by the
workload. As such, the power usage level (performance) may decrease
quantitatively. Generally, a portion of the recovered power will
go into the workload, and a decrease in elapsed time will occur.
However, the reductijon in time may not be proportional to the
reduction in software work. Thus, recovering capacity by reducing
the quantity of software work to be performed may result in a
decrease in the level of power usage even though a reduction in

elapsed time is also observed.

Performance is directly related to workload efficiency, as the
latter is equal to ?{L,W) : Becy. Thus, for a given value of
?(C), one may quote performance either in units of power or

in percent efficiency.

POWER, SOFTWARE

Software power is the link between the quantity of software work
to be performed and the time required to accomplish it. The term
may be used in either of two senses: 1) the power used, formally
defined as the work performed divided by the time to accomplish it,
or 2) the power available from a device, configuration, or egquip-
ment class, calculated frcm theoretical considerations. when used




in the first sense, power is equivalent among other things to the
concept of performance. 1In the second sense, power is equivalent

to the concept of capacity.

Power usage is defined as the ratio of work performed to the time
required to perform it. Time, however, can be measured in a
variety of ways. If the execution time of a device, subconfigura-
tion, or equipment class is used, then the power value calculated

is the work performed by these divided by the executicn time of

the equipment. The execution time is often less than the externally
observed elapsed time of the full configquration processing the full
quantity of work. This results in two possible ways.of calculating

power usage level:

1) The power used by a device, subconfigquration, or equipment
class relative to the full configquration elapsed time.

This is called the relative power.

An example would be the relative cpu power, P(L,Y,¥) =
W(L,y) +# Tx(L,Y). It represents the work performed by the
cpu during the entire period of time required to process
the workload L, which would normally include socme time

when the cpu was not executing any instructions.

2) The power used by a device, a subconfiguration, or equipment
class when and only when the corresponding processors are
in execution. That is, the overall elapsed time of higher
level systems is of no concern in this calculation, c<nly
the absolute time of execution of the processors being
considered. This is called the absolute power. Using the
example of the cpu again, the absolute power of the cpu
is the work performed divided by the seconds of cpu
execution time required to do so. Symbolically, one has
P(L,y) = W(L,Y) #+ Tz(L,Y).

Relative power is related to absolute power by the corresponding

percent utilization factor. In the cpu example, the relative
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cpu power equals the product of the quantity percent cpu utiliza-
tion and the absolute cpu power. Since cpu utilization equals
T=(L,Y) + Tx(L,¥), one has P(L,Y,¥) = (% cpu utilization) X P(L,Yv).

The absolute power usage arises from the equipment speeds and basic
workload parameters such as instruction mix and block sizes.
Relative power usage levels reflect absolute power parameters, the
proportions of power between subconfigurations and equipment
classes, and the ratios of work to be performed in these subsystems.
That is, relative power usage levels reflect both basic workload
parameters and the "£fit" between the workload and the computing

system.

Since absolute power calculations do not require knowledge of the
overall workload characteristics, the theoretical absolute power
available from a device, subconfiguration or equipment class can
be calculated. The theoretical considerations include the factors
which in general can affect the absolute power levels attainable

fram the equipment. As such, they identify the effect of changes

"and provide a means of determining the power loss due to the way

the equipment is being used. For a given quantity of work, it is
then possible to calculate the changes in execution time which
will result from a new level of absolute power usage obtained by

altering the manner of equipment use.

Relative power involves the use of elapsed time, and overall
elapsed time can be predicted from a knowledge of the absolute
power usage levels attainable and the quantities of work to be
performed by equipment class and/or subconfiguration. This is
accomplished using a full workload characterization with "offset"
information. Offsets represent the quantity of cpu work to be
pexformed before a quantity of I/0 work can be performed. They
are established empirically for a given workload from execution

time profiles and their equivalent form, work concurrency charts.
For additional information, see the corresponding entries in this
glossary.




The camparison of actual power levels to theoretical power levels, i
and the determination of the relative importance of the factors
degrading actual power from the maximum attainable power, provides

’ the knowledge necessary to formulate an installation performance
improvement plan. Inherent in such a plan would be a recognition
of the cost-effectiveness of various possible performance improve-
ments, and trade-offs between these activities and additional

' equipment plans. The same knowledge needed for this plan is

necessary to correctly evaluate and undexrstand the effacts of

possible new equipment on performance.

PROCESSORS
. A processor is any collection of digital circuitry which is capable
¥ of accepting an instruction and executing it; i.e., generating the
set of logical state changes represented symbolically by the instruc-
tion. Typical processors are cpu's, disk drives, tape drives,
printers, terminals, various control units, channels, etc.

oo

1 It is not true that processors of interest need to be separately
A packaged as a distinct physical entity. For example, disk drives
often come two or more to a package. For this reason, a subconfig-

uration'camposed of several different device~level processors can
also be considered as a single processor. For example, a channel
device with attached control units and disk drive devices can be
treated as if it were a single processor. Such processors are
called equivalent processors when necessary to distinguish between
Processors packaged in a single box and processors whose circuitry

is distributed among several boxes.

Additionally, the ability of a configuration to handle a forecasted
workload needs to be determined. It is much more convenient for
these purposes to use an equivalent form of an execution time pro-
file expressed in terms of software work rather than time. Such

a chart is called a work concurrency chart. It is constructed by
multiplying the execution time components of the profile by the

-
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corresponding actual absolute power levels. The overall Pert
structure of the profile is reflected into the work concurrency
chart by offsetting I/0 work by equipment class by an amount equal
to the cpu work corresponding to the time the cpu is in execution
hut not the equipment clagss. These quantities of cpu work are
called "cpu offsets", and cne per equipment class is calculated.

Given a work concurrency chart representing the typical offsets
found in an ipstallation worklcad, changes in the guantitites of
work by equipment class and/or obhserved absolute power 1ev;ls are
easily translated to an execution time profile. More importantly,
workload forecasts can be translated to execution time profiles.
The elapsed time of the new system with the new or forscasted
workload is also easily calculated. The new percent utilizations

are also predicted by the same calculations.

RESPONSE TIME
Response time is normally associated with the elapsed time between
inputing a command or inquiry to an on~line system and receiving a
response. Since the work to be performed is a function of the
nature of the input, two major techniques for determining response
time are used: 1) the time for a standard input or set of inputs
is measured, or 2) a percentile of actual response times is chosen,

e.g., "85% of all response times are equal to or less than 5 seconds."

In software physics, response time is clearly a function of the
work vector corresponding to the input, and the vector power
delivered into the on-line system on behalf of the input. Conceptu-
ally, given these two quantities, determination of response time is
a straightforward calculation. In practice, these quantities are
often difficult if not impossible to obtain due to lack of proper
instrumentation. However, it is interesting to note that éueuing
theory parameters needed for response time predicticn are generally
adequate for software physics purposes as well.

i,
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2)

3)

- SOPTWARE PHYSICS
Software physics is the study of the quantitative and measurable
properties of executable instructions and their operands, and
their interactions with computing systems equipment and configurations.

~ SOPTWARE PHYSICS NOTATION
Software physics uses a special form of notation designed to
identify three items of interest:

the property to be measured. The properties of general
interest are software work (W), execution time (Tz),
elapsed time (Te), storage occupancy (R}, available store
(Z), Power (P), storage capacity usage ((C0), and Intensity
(I).

the unit of software whose executable code and/or operand
properties are to be measured. The symbols used are S

to represent a general software unit and [ to represent

that software unit representing the £ull workload. Sub-
scripts are used to dencte‘constituent software units and/or
subworkloads. For an actual software unit, called say

"Job XY2", the actual name "XY2" would be used instead of

S. Similarly, the word "Batch" might be used for the batch
subworkload.

the set of equipment over which the value of a desired
property is to be obtained. Either a configuration or
subconfiguration, or an egquipment class {but not both
unless they are identical) may be specified. Configurations
are identified by lower case Greek letters, equipment
classes by abbreviations. Typical configuration symbols
used are Y for the full configquration, Y for the cpu, ¢

for I/0, a for a channel subconfiguration, 8 for a control
unit subconfiguration, and § for a drive. Equipment class
abbreviations are cpu for control processor, disks for disk
drives, tapes for tape drives, ptr for high speed printers,

etc.
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The structure of the notation permits a desired measurement to be
symbolized precisely. The property to be measured is given first,
followed in parentheses by the software unit(s) to be measured
and then by the configuration(s) or equipment classes to be
measured. If the property is to be measured for more than one
software unit, both are given, in the order of their occurrence in
the corresponding equation. Similarly for configurations and
equipment classes.

Vector representations are denoted by an arrow over the property
symkol. Examples:

T=(L,p): the equation time of the full workload on the full
configuration.

Tx(L,disks): the execution time of the disk drive equipment
class for the full workload.

W(L,Y): the software work of the full workload on the full
configuration (a single number)

'ﬁ(L, Y): a vector representation of the quantity W(L,¥).

P(L,Y,¥) = W(L,y) + Tx(L,P): the relative cpu power.

SOFTWARE PHYSICS PROPERTIES
The term "properties” denotes a measurable, gquantitative character-
istic of software units and/or computing configurations or devices.
There are three fundamental properties; software work, execution
time, and storage occupancy. These and only these properties (or
their equivalents, energy, time, and available storage) are used
in software physics. Certain important other properties are
derxived using the fundamental properties. These are called’
derived properties, and include power, storage capacity usage,
intensity, force, and distance.

To obtain an actual measurement of some property, both a unit of
software and the computing equipment must be specified. These
are called software physics systems, and the property is a
characteristic of the systems being measured.

See the corresponding glossary entries for more discussion.




SOFTWARE UNITS AND WORKLOADS

A software unit is a basic system of interest in software pPhysics.
It is formally defined as an arbitrary collection of executable

) (object) code and its associated operands. A software unit there-
fore, corresponds to a Program with its associated data, an appli~
cation and data, the full workload and data, and even a gingle

instruction and its operands. Since it is defined in such a
' general way, software physics theory requires that any statement
made about a general software unit be true for all software units.
Also, since a software unit can be a single executable instruction
and its operands, this requires that only those quantitative
properties displayed by such a software unit can be associated
with all software units.

JERTPRRTErS

A workload is a special software unit only in the sense that it

represents the total collection of executable code and data over
some period of time. Because of this however, certain statements
and equations true for the total workload may not be true for all
software units. The reverse of course is true; i.e., any state-

ment about a software unit holds for workloads as well.

Time is a basic property of software physics. Its unit of measure

is seconds, as measured by a standard clock. Time is a measure of

state change processes, and a standard wall clock is assumed to
be measuring universal state changes. In software physics, the
basic time quantity of interest is called execution time, symbolized
as Tx. For a given software physics system, Iz is increased if

- and only if an instruction is being executed by some processor.
If this condition is not true, then even though the wall clock

' time may increase, the corresponding execution time increase will

be equal to zero time. )

For example, a unit of software S may be in execution on a
configuration ¥ from tz to tz. Its execution time during this




period is ﬁ:ICS,w) = tz - tl. At time tz, the software unit is
capable of being executed (is dispatchable), but is “"involuntarily"
caused to wait until time t3' The execution time during this
period ts - t, is equal to zero; i.e., ﬂ:z(s,w) = ), From t

S is again in execution; Tz

3 to t4,
3(5 y) = t4 - 3. If S is now completed,
the total execution time would be ﬂ. (S,¢) + Tz (S,%) + Tz (S,¢) =

(tz-tl) + 0+ (t -t )

A second form of time, called elapsed time and symbolized as Te
is also of interest. Elapsed time is not an independent guantity,
as it is defined in terms of execution time. Formally, the basic
definition is that T2(L,¥) = Tx(L,¥). That is the software
physics elapsed time excludes any pure idle time; i.e., Te is a
measure of state change processes which occur within the entire
configuration. If no instruction (cpu or I/0) is occurring, then
the change in Te is zero even though the wall clock time is being
incremented. The difference between wall clock time and elapsed
time is called idle time.

Elapsed time measures occupahcy of storage, execution time
measures instruction execution time within the configuration,
subconfiguration, or equipment class of interest. The elapsed
time of a given unit of software S is measured by the changes in
the quantity Te(L,y) from the point in wall clock time that S
occupies storage and is capable of being executed until it has been
completely executed and no longer occupies storage. This quantity
would be symbolized as Te(S,¥). By definition, it will always be
true that Te(S,¥%) > Txz(S,¥).

Pure idle time is not used directly in software physics equations,
except that it represents power that could have been delivered and
was not. As such, when determining the capacity remaining on a
configuration, pure idle must be considered. Since pure idle

time is equal to wall clock time minus execution time, the
remaining capacity is always a function of "scheduled-on time"

for computing system.




WORK, SOPTWARE
Software work is one of the basic properties of software pnysics.
In general, work is performed when a change in state occurs. In

r software physics, a processor executing an instruction will
perform work on a storage device when the processor causes a
symbol state change to occur. The standard symbol size is defined
as an eight bit byte, resulting in the following formal definition:

A processor performs one unit of software work (called
a "work”, (symbol w) on a storage device when it changes
the symbol state of one byte of storage.

L
The instrumentation problem of chserving if a transfer of one byte

to storage actually causes a symbol state change results in the
following operational definition of ;oftware work:

A processor performs one unit of work on a storage ]
device when it transfers one byte to that storage device.

Software work is measured in units of "work" or "works", symbolized

by a lower case w. Normal metric prefixes are used for larger

quantities; i.e.,

1,000 works = 1 kilowork = 1 kw
1,000,000 works 1 megawork = 1 mw
1,000,000,000 works = 1 gigawork = 1 gw
| 1,000 kw
1,000 mw

1l mw

1 gw

Software work has the property that the whole is simply equal to

the sum of its parts. For example, if the cpu work of some

software unit 51 is W(Sz,cpu) and of some software unit 32 is

W(S ,cpu), then the cpu work performed by both is simply

W(S,,cpu) + W(Sz,cpu). This is true whether Sz and 82 are ‘
executed concurrently or segquentially.

It should be explicitly noted that a software unit is a collection

of executable code and data: the same exscutable code over

G~14
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different data is formally a different unit of software. Therefore,
software physics does not imply that two different runs of the same
program over different data will result in the same quantity of
software work. In fact, since the term "data" in software physics
includes the sequence in which operands are presented, different
sequences of the same operands need not rasult in the same quanti-
ties of software work.

Software work may be measured directly with a hardware monitor or
software monitor in many instances. However, two standard
approximation equations are generally used. These are:

l) work = (number of instructions executed) x (av. work/instruction)
2) work = (average power) X (seconds of execution time)

The first approximation equation is most often used when the number
of I/0 read/write actions or instructions are known, and also the

average block size rwead or written. The equation thus becomes:
I/0 work = {31/0 reads/writes) (average block size)

The Mtify "H#EXCP's" is given by the IBM instrumentation software
known as SMF. #sing this as an approximation to the number of I/0

reads and writes, one has
I/0 work = (#EXCP's) (average block size)

The second equation is used when cpu seconds (of execution time)
is known. A hardware monitor is used to establish the average

cpu ;nower, and the approximation equation then becomes:

cpu work = (av. cpu power) (no. of cpu seconds)







