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FOREWORD

This report describes the work performed by Lockheed Palo Alto
Research Laboratory, Palo Alto, California 94304. The work was
sponsored by Air Force Office of Scientific Research, Bolling AFB,
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Dynamics Laboratory, Air Force Wright Aeronautical Laboratories,
Wright-Patterson AFB, Ohio under Contract F33615-76-C-3105.

The work was completed under Task 2307N1, "Basic Research in
Behavior of Metallic and Composite Components of Airframe Struc-
tures.” The work was administered by Lt Col J. D. Morgan (AFOSR)
and Dr N. S. Khot (AFWAL/FIBRA)

The contract work was performed between October 1977 and
December 1980. The technical report was released by the Author
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SECTION 1
DESCRIPTIONS OF TYPES OF INSTABILITY

AND CLASSICAL BUCKLING PROBLEMS

Introduction

To the layman, buckling is a mysterious, perhaps even awe-inspiring phenomenon
that transforms objects originally imbued with symmetrical beauty into junk
(Fig. 1). Occasionally unaware of the possibility of buckling, engineers
have designed structures {Figqg. 2(a)) with inadequate safety margins (Fig.
2(b)). The large cylindrical tower or the left in Fig. 3(a) failed in

1956 [4.1] because of buckling of a torispherical end closure at its lower
end. The 38-meter-tall water tower sketched in Fig. 4(c) collapsed in 1972]
when it was being filled for the first ti~~. The collapse of the entire tower
(Fig. 4.4(a)) was triggered by local instability in the conical section at
the deepest water level (Fig. 4(b)). A larges expensi-e shroud for a pay-
load to be orbited around the earth (Fig. 5(a)) failed during proof test-

ing because of local buckling near a field joint (Fig. 5(b, ¢)) [ 3].

The purpose of this volume is to remove some of the mystery associated with
buckling of thin shells by showing many examples of its cccurrence and ex-
plaining its cause. Perhaps the material presented here will help to prevent

future disasters of the type just illustrated.
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Summary of the Volume

Section 1 contains a trief description of two kinds of buckling, ¢ :1l:¢pse
and bifrucation, followed by a simple mathematical example involving 2
shallow truss, which displays most of the phenomena to be illustrated
later with thin shells. Many examples of classical buckling of uni-
formly loaded cylindrical and spherical shells are then shown, with com-

parisons between test and theory to emphasize imperfectionms.

Section 2 concerns shell structures in which the cause of failure is non-
linear collapse due to either large deflections or to both large deflections
anc noniinear material behavior. 1In certain of the cases the predicted
nonlinear load is compared to a critical load calculated from a linearized
bifurcation buckling model. 1Included in Section 2 are descriptions of
elastic-~plastic collapse of cylindrical shells subjected to uniform axial
compression or external pressure, elastic-plastic collapse of straight and
curved pipes subjected to external pressure and bending, elastic collapse of
shaliow spherical caps under external pressure and elastic cocllapse of
cylindrical panels and shells under combined axial compression and concen-
trated loads. Section 2 closes with descriptions of collapse fai‘ure of
axially compressed cylinders with cutouts, noncircular cylinders, and

cylinders with local axisymmetric load path eccentricity.
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Section 3 gives examples of axisymmetric shells in which failure

is due to bifurcation buckling. In all of the examples nonuniformity or non-
linearity of the prebuckling behavior is important. Several illustrations

are provided of bifurcation bucklin~ due to local edge effects and local

hoop compression. These are followed by numerous examples in which the pre-
buckled state is characterized by meridional tension combined with hoop com-
pression. Bifurcation buckling of intermally pressurized torispherical shells,
both in the elastic and in the plastic range of material behavior, is de-
scribed in detail. The section closes with an example in which bifurcation

buckling and axisymmetric collapse occur almost simultaneously.

Section 4 provides examples that illustrate the effects of bound-

ary conditions and eccentric loading on bifurcation buckling of shells of
revolution. The emphasis is on buckling of monocoque and stiffened cylindri-
cal shells under uniform external pressure and axial compression. Examples

are also given of inextensional buckling modes, which are associated with

very low critical loads; of change in effective "boundary" condition due to
development of a plastic region in the prebuckling phase; and dependence of the

buckling load on small inward and outward axisymmetric imperfections of an

axially compressed stringer-stiffened short cylindrical shell.

Yo e

.

¥

la

L4

Section 5 is devoted to combined loading of cylindrical shells and
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nonsymmetric loading of shells of revolution. Interaction curves are given

)
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for monocoque cylinders under combined axial compression and internal or ex-
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o .
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—- ternal pressure corresponding to various boundary conditions. Post-buckling
configurations are shown for either axial compression or torsion combined

3 with internal pressure. Interaction curves are also presented for ring or

i

L stringer-stiffened cylinders and angle-ply laminated cylinders. Examples of
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nonsymmetrically loaded shells of revolution include buckiing of a payload
shroud such as that shown in Fig. 5(a) due to nonsymmetric pressure,
buckling of a ring-stiffened cylinder under combined bending and nonunifoim
heating, buckling of cylindrical and conical shells heated along narrow axial
strips, and buckling of a steel containment vessel due to compressive
stresses generated by vertical and horizontal components‘pf ground accelera-

tion during an earthquake.

Section 6 is on bifurcation buckling and collapse of ring-stiffeied

shells with emphasis given to cylindrical shells. The section hegins with an
illustration of the effect of discrete rings on the prebuckling state and
general instability bifurcation buckling mode. Comparisons between test and
theory are given for elastic buckling of machined specimens in a study in
which the effect of axial restraint at the boundaries is investigated.
Elastic-plastic buckling of a series of steel specimers is then described,
followed by an example of a titanium shell which is predicted to fail by non-
symmetric bifurcation buckling when creep is neglected and by axisymmetric
collapse when creep is included in the analysis. The effect on predicted
buckling loads of initial imperfections and residual stresses due to weld
shrinkage at stations where discrete rings are attached to a shell is illus-
trated for an ellipsoidal shell subjected to hydrostatic compression. The
combined effects on failure of cold bending an initially flat sheet into

a cylindrical shell and subsequently welding ring stiffeners to it are
described. The section closes with a number of examples show.ing the impor-
tance in certain cases of treating discrete ring webs as flexible shell
branches in analytical models for prediction of axisymmetric collapse and

nonsymmetric bifurcation buckliag.
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Section 7 contains several illustrations of buckling of prismatic

shells and panels, that is, structures that have a cross section that is
conctant in one of the coorcd:nate directions. Included are descriptions of
modal interaction in panels built up of thin sections and demonstrations of
local cross section deformation in the bifurcation buckling modes of ini-
tially perfect panels. Predicted bifurcation buckling modes are shown for
noncircular cylinders under axial compression and comparisons between test
and theory are given for oval cylinders under external pressure. The sec-
tion closes with brief discussions of the effect of transverse shear deforma-
tion on the buckling of composite plates and on the usefulness of the South-

well plot for prediction of instability failure.

Section 8 focuses on the sensitivity of predicted buckling loads

to initial geometrical imperfections. The section opens with a chart of enpiri-
cal knockdown factors for monocogue cylinders subjected to axial compression
and a review of various types of pre- and post-buckling load deflection curves.
The Koiter theory is briefly summarized and imperfection sensitivity factors
for various systems are plotted. A design method for other than monocoque
shells is outlined and illustrated for cylinders with combined axial compres-
sion and internal pressure. Charts are given that show typical measured im-
perfections in small laboratory models and a large industrial ring and
stringer stiffened shell. Buckling interaction curves for a laminated
cylindrical shell are plotted and compared to test results on an imperfect
specimen. The section closes with several examples in which bifurcation
buckling is stable and the structures carry increasing loads far into the

post-buckling regime.
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Section 9 demonstrates axisymmetric collapse and bifurcation buck-

ling of bodies of revolution that consist of combinations of thin shell seg-
ments and solid segments to which shell theory cannot be applied with suf-
ficient accuracy.. An example is given of buckling of a hydrostatically
compressed ring-stiffened cylinder in which the rings and portions of shell
to which the rings are attached are modeled as solid regions wicth use of
isoparametric quadrilaterals of revolution and the rest of the cylinder is
modeled as a series of thin shell segments. Other examples include buckling
of a spherical shell embedded in a softer elastic material and collapse of

a ccmplex cylinder~cone combination containing a frangible joint. The region
in the immediate neighborhoods of notches in the frang‘ble joint are modeled

with use of solid elements.

Purpose

The purpose of the many examples presented here is to give the reader a physi-
cal "feel" for shell buckling. With such knowledge the engineer will have an
enhanced ability to foresee situations in which buckling might occur and to
modify a design to avoid it. He will be able to set up more appropriate
models for tests and analytical predictions, including failure due to buck-
ling. The emphasis in this chapter is not on the development of equations

for prediction of instability. For such material the reader is referred to

the book by Brush and Almroth [ 4] and the material in Ref.[430].

Throughout the text numbers in square brackets [ ] refer to references

listed at the end of the text.
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Why Do Shells Ruckle?

The property of thinness of a shell wall has a consequence that has been
pointed out in Ref. [430]: The membrane stiffness is in general several
orders of magnitude greater than the bending stiffness. A thin shell can
absorb a great deal of membrane strain energy without deforming too much.
It must deform much more in order to absorb an equivalent amount of bending
strain energy. If the shell is loaded in such a way that most of its strain
energy is in the form of membrane compression, and if there is a way that
this stored-up membrane energy can be converted into bending energy, the
shell may fail rather dramatically in a process called "buckling," as it
exchanges its membrane energy for bending energy. Very large deflectionsg
are generally required tc convert a given amount of membrane energy into

bending energy.

The way in which buckling occurs depends on how the shell is loaded and on
its geometrical and material pror :ties. The prebuckling process is often
nonlinear if there is a reasanably large percentage of bending energy being
stored in the shell throughout the loading history. Two types of buckling
exist: nonlinear collapse and bifurcation buckling. Nonlinear collapse is
predicted by means of a nonlinear stress analysis. The stitfress of the
structure, or the slope of the load-deflection curve, decreases with increas-
ing load. At the collapse load the load-deflection curve has zero slope and,

if the load is maintained as the structure defcrms, failure of the structure

. is usually dramatic and almost instantaneous. This type of instability fail-
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' tests and theoretical models of shallow arches and spherical caps under
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. ure is often called "snap-through," a nomenclature derived from the many early
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uniformly distributed loads. These very nonlinear systems initially deform
slowly with increasing load. As the load approaches the maximum value, the
rate cf deformation increases umtil, reaching a status of neutral equilibrium
in which the averayge curvature is almost zero, the shallow arches and caps
subsequently "snap through® to a posc-buckled state which resembles the

original structure in an inverted form.
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The texrm “"bifurcation buckling” refers to a different kind of failure, the

onset of which is predicted by means of an eigenvalue analysis. At the buck-
ling load, or bifurcation point on the load-deflection path, the deformations
begin to grow in a new pattern which is quite different fro>m the prebuckling
pattern. Failure, or unbounded growth of this new deflection mode, occurs
if the postbifurcation load-deflection curve has a negative slope and the

applied load is independent of the deformation amplitude.

what is Buckling?

To most laymen the word "buckling" evokes an image of failure of a structure
which has been compressed in some wvay. Pictures and perhaps sounds come to
mind of sudden, catastrophic collapse involving very large deformations.
From a scientific ané engineering point of view, however, the interesting
phases of buckling phenomena generally ocecur before the deformations are
very large when, to the unaided eye, the structure appears to be undeformed

or only slightly deformed.
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To reiterate and enlarge upon what was written above, in the static ané¢:v-
3is of perfect structures, the two phenomena loosely termed "buckling” ar:
collapse at tne maximum point in a load vs. deflection curve and bifurcation
buckling. These two types of instability failure are illust:iated in Figs.

6 and 7. The axially compressed cylinder shown in Figqg. 6 deforms
approximately axisymmetrically along the equilibrium path OA until a maxi-
mum or limit load XL is reached at point A. If the axial load X 1is not
sufficiently relieved Ly the reduction in axial stiffness, the perfect
cylinder will fail at this limit load, following either the path ABC along
which it continues to defovm axisymmetricallv, or some other path ABD
along which it first deforms axisymmetrically from A to B and then
nonaxisymmetrically from B to D. Limit point buckling, or "snap-through”
occurs at p>int 2 and bifurcation buckling at point B. The equilibrium
path OABC , corresponding to the axisymmetrical mode of deformation, is called the
fundamental or primary or prebuckling path and the postbifurcation equilibrium
path BD, corresponding to the nonaxisymmetrical mode of deformation is called the
secondary or post-buckling path. Buckling of either collapse or bifurcation
type may occur at loads for which some or all of the structural material
nas been stressed beyond its prcportional limit. The example in Fig. 6
is somewnat unusval in that the bifurcation point B is shown to occur
after the collapse point has been reached. 1In this particular case, there-

fore, bifurcation buckling is of less engineering significance than axi-

symmetric collapse.

A commonly oc¢curring situation is illustrated in Fig. 7(a). The
bifurcation point B is between O and A. If the fundamental path OAC
corresponds to axisymmetrical deformation and BD to nonaxisymmetrical

deformation, then initial failure of the structure would generally be charac-
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terized by rapidly growing nonaxisymmetrical deformations. In this case
the collapse load of the perfect structure AL is of less engineering sig-
nificance than the bifurcation point, KC.
In the case cof real structures which contain unavoidable imperfections there
is no such thinygy as true bifurcation buckling. The actual structure will
follow a fundamental path OEF, with the failure correspondinjy to "snap-
through" at peint E at the collapse load AS. If point B in Figq. 7(a)
corresponds to bifurcation into a nonsymmetric buckling mode, the collapse
al E will involve significant nonsymmetric displacerent components. BAl-
though true bifurcation buckling is fictitious, the bifurcction buckling
analytical model is valid in that it is convenient and often leads to a good

approximation of the actual failure load and mode.

Various Types of Bifurcatiun Buckling

In Fig. 7(b) the load is plotted as a function of amplitude of the bifurca-
tion buckling mode. Since the bifurcation buckling mode is orthogonal to
the prebuckling displacement pattern Of the perfect shell, its amplitude
remains zero until the bifurcation point B is reached. The curve BD

in Fig. 7(b) implies that the post-buckling state is unstable: the load

carrying capability ) decreases with increasing amplitude of the bifurcation

.
AN buckling mode.
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then one would obtain the curve OEF in Fig.7(b)if one plotted the amplitude of the
bifurcation modal component vs. load for the imperfect structure. The amp-
litude of the bifurcation modal component would increase at an increasing
rate until instability via nonlinear "snap-through" or collapse woald oc-
cur at the reduced load AS' The difference between the critical bifurca-
tion load AC of the perfect structuce and the collapse load AS of the
imperfect structure depends on the amplitude of the initial imperfection
wbo' A chart of As/kc vs W would characterize the sensitivity of

“he maximum load Xs to initial geometrical imperfections. According to
the jargon that has become accepted over the years, the structure to which
the curves in Fig. 7(b) correspond is called "imperfection sensitive"
because imperfections reduce its maximum load carrying capability. (Of

course, it is not the structure that is sensitive to imperfectioi.., but

the maximum load it can safely support!)

Neither all .tructures nor mathematical models of them behave as shown in
Fig. 7(b). Figure 8 shows various types of post-buckling behavior. A
linearized model of elastic stability, that is an eigenvalue formulation of
the buckling problem, implies load-deflecticn behavior shown in Fig. 8(a):
The amplitude of the eigenvector, the bifurcation buckling mode, is in-
determinate, which implies that the load A remains constant A =Ac with
increasing deflections w, . The equilibrium path for the slightly imper-

b
fect structure follows the rectangular hyperbolic path,

W, = wbo/(kclx—l) ( 1)

shown dotted in Fig. 8(a).
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If nonlinear post-buckling effects are accounted for, equilibrium paths for
most structures have the forms shown in Fig. 8(b, ¢, d). The asymmetric
nature of the curves in Fig. 8(b) indicates that the <tructure continues
to carry loads above the bifurcation load AC if it is forced to buckle one
way, but collapses if allowed to buckle the other. An example of this type
of behavior is a structure with parts that move relative to each other as
buckling proceeds in such a way that these parts come in contact and support
each other for positive deflections but move away from each other forming
gaps for similar negative deflections. Specifically, a built-up panel con-
sisting of a flat sheet riveted to a corrugated sheet is such a structure.
Roorda [ 5] has demonstrated this asymmetric post -buckling behavior for per-
fect and imperfect frames with eccentric loads. His results are presented
in [ 4]. The symmetric stable post-buckling behavior displayed in Fig.8 (<)
is typical of axially compresses isotropic flat plates. The perfect plate
loaded precisely in its neutral surface buckles either way with equal ease
and the post-buckled equilibrium state is stable. The symmetric unstable
sost-buckling behavior shown in Fig. 8(d) is typical of the early post-
bifurcation regimes of axially compressed thin cylindrical shells and exter-

nally pressurized thin spherical shells.

Capsule of Recent Progress in Buckling Analysis

Recent progress in our capability to predict buckling failure can be categor-

ized into three main areas:

12




{1) development of asymptotic post-buckling theories and applications
of these theories to specific classes of structures, such as simple plates,
shells, and panels [ 6 - 8];

(2) devqlopment of general-purpose computer programs for calculation
of static and dynamic behavior of structures including large deflections,
large strains, and nonlinear material effects [ & - 10]);

(3) development of special purpose computer programs for limit point
axisymmetrical buckling and nonaxisymmetrical bifurcation bucklinug of axi-

symmetric structures [ 11 - 14] .

Asymptotic Analysis: The asymptotic post-buckling analyses surveyed in

[ 6 - 8] rest on theoretical foundations established by Koiter {15],
whose general elastic post-bifurcation theory leads to an expansicn foc the
load parameter A in terms of the buckling modal amplitude vy which is
valid in the neighborhood of the critical bifurcation point in (A, wb)
space. The primary aims of the asymptotic analyses are to calculate limit
loads for perfect and imperfect structures. These analyses have contributed

vital physical insights into the buckling process and the effect of strvsz-

tural or loading imperfections on this process.

General Nonlinear Analysis: The general-purpose computer programs in wide-

spread use since the early 1970's and presently being written ar~ based on

principles of continuum mechanics established for the most part by the late
1950's and set forth in several texts [16 - 21]. The structural continuum

is discretized into finite elements as described in the texts [22 - 25] and
various strategies are employed to solve the resulting nonlinear problem

[ 8]. The nonlinearity is due to moderately large or very large Jdeflec-
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tions and nonlinear material behavior. Various plasticity models are described
in texts, conference proceedings, and survey articles identified in Ref. [ 8].
Additional papers on the formulation, discretization, and solution of non-
linear structural probiems appear in many symposia proceedings, also iden-
tified in Ref. [ 8]. The primary aim of this vast body of work, most of
which was done in the 1970's, has been to produce reliable analysis methods
and computer programs for use by engineers and designers. Thus, the empha-
sis in the literature just cited is not primarily on the acquisition of new
physical insight into buckling and post-bifurcation phenomena, but on the
creation of tools that can be used to determine the equilibrium path OEF in
Fig. 7 (a)” for an arbitrary structure and on proof that these tools work

by use of demonstration problems, the solution of which is known. In most
cases, no formal distinction is made between prebifurcation and post-
bifurcation regimes; in fac:, simple structurc 1e modeled with imperfec~
tions s> that potential bifurcation points (such as B in Figqg. 7 (a)) are
converted into limit points such as E. The buckling problem loses its
special qualities as illuminatea so skillfully in the asymptotic treat-

ments and becomes just another nonlinear analysis, requiring perhaps special

1
f

f{fﬁ{ physical insight on the part of the computer program user because of poten-
RS . : :

s tial numerical traps such as bifurcation points and limit points.

T

Figures 7 (@) and (b) illustrate the two very different approaches to the
buckling problem described in the last two paragraphs. In the general non-
linear approach the computations involve essentially a "prebuckling" analysis,
or a determination of the unique equilibrium states along the fundamental

pat: OEF in Fig. 7 (a). 1In the asymptotic approach, Fig. 7{(b), the
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prebuckling state is often kiown a priori. The secondary path BD of the
perfect structure and (in the elastic case) the limit point E on the funda-
mental path of the imperfect structure are detemmined by expansion of the
solution in a power series of the bifurcation modal amplitude which is

asymptotically exact at the bifurcation point B.

Axisymmetric Structures: The third approach to the buckling problem, develop-

ment of special-purpose programs for the analysis of axisymmetric structures,
forms a sort of middle ground between the asymptotic analysis and the
general-purpose nonlinear analysis. The approach is similar to the asymp-
totic treatment because in applications it is restricted to a special class
of structures and the distinction between prebuckling equilibrium and bifur-
cation buckling is retained. It is similar to the general nonlinear approach
in that the continuum is discretized and the nonlinear prebuckling equilib-
rium problem is solved by "brute force." The emphasis is on the calculation
of the prebuckling fundamental path, OB or OA in Figqg. 7(a), and deter-
mination of the bifurcation point B and its associated buckling mode, not
on calculation of pecst-bifurcation behavior BD or of the load-deflection
path OEF of the imperfect structure. The goals of this third approach

are to create an analysis tool for use by engineers and designers and to

use this tool in extensive comparisons with tests both to verify it and to

obtain physical insight intothe buckling process.

15
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Simple Examples to Illustrate Various Types of Buckling
Column Buckling

In order to make the discussion of the basic concepts introduced in connec~
tion with Figs. 7 ard B less abstract, we will relate it to a simple two-
column structure that exhibits the types of behavior displayed in Fig. 8.
This example is from Ref. [4].

The behavior of a column under an axial load is governed by the equation

(see, for instance Ref.[26] ) :

29
BI &2 = - P sin 6 ( 2)
2
3s
where s and © are defined in Fig. 9. For all values of P this equation
has the solution ¢ = 0, corresponding to unbuckled equilibrium. However,
for values of P > PCR = EI(TT/L)2 a solution with 6 # 0 also exists. This
solution corresponds to equilibrium forms with a bent column and is illus-
trated in Fig. 9. In the plot, n represents the part of the column
shortening that is caused by the bending of the column. Hence, the equilib-

rium path corresponding to the first solution (straight column) is repre-

sented by the vertical axis. The Euler load PCR is the value of the axial load

at which the vertical axis is intersected by the post-buckling curve cor-
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responding to the bent equilibrium form.
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Figure 10 shows a structure consisting of two flexible bars or columns
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subjected to a load P. Denoting the length of the deformed column by L'
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we have
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= %-(L—L') =1 - cos B/cos B ( 3)

gl=

where B = arc sin (b/L) and N is the axial load in the columns, i.e.,

N = P/(2 sin B). With

A= EI(1I/L)2, p= I/A(TI/L)Z ( 4)
we introduce

P* = P/A and N* = N/ )

The relation between deformation §/L and load P* is readily obtained

in the parametric representation

§/L = sin B - sin B

sin B (1~cos B/cos B) { 6)

)

%*

1
el LY

Prebuckling Solution or Fundamental Equilibrium Path: Numerical solutions

of Egq. ( 6) are shown in Fig. 11 fcr two different structures, both with
h/L = 0.1, one with p =2 x 10—4 and one with p = 4 x 10—4. With increas-
ing load the stiffness 3pP*/36 decreases and at a deformation corresponding
to 8/L = 0.04 (8/h = 0.4) a maximum occurs in each of the two load displace-
ment curves. We considev the case in which P is a dead weight load. Then
as the maximum is reached and the structure cannot carry additional load,

it snaps into an inverted position su h that the two columns are subje-ted
to tension. The curves in Fig. 11 labeled p = 2 x 10—4 and p = 4 x lO-4

are analogous to the curve OAC in Fig. 7 (a).

Bifurcation Buckling: We notice, however, that if N* > 1, i.e., N > EI(TT/L)2

then the columns will buckle. From the post-buckled load-deflection curve

17
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for the column (Fig. 9) we see that for reasonably small buckling deflec-

tion the column deforms under constant load N* = 1. For all practical pur-

poses, then, we can assume that the axial load for the buckled column is

independent of the shortening and given by N* = 1. A secondary or post-

buckled equilibrium form with slightly bent bars is represented by

P*=tanB—f5/b

( 7)
i1 - (tan B - /)22

This equilibrium form corresponds to N* = 1 and exists only for values of

§ larger than that for which buckling occurs

At the point of intersection between the fundamental equilibrium path

Eg.( 6)and the secondary solution represented by Eq. ( 7), the columns

will begin to buckle. This occurs for the more slender columns,

p=2x 10-4, at P* = 0.155. The load cannot be increased beyord chis

value: The structure fails by bifurcation buckling with the columns tempor-

. . -4
arily bending during the process. For the structure with p =4 x 10 ,
the pocint of intersection (bifurcation) occurs beyond the maximum in the

primary load displacement curve, indicating that the columns are straight

at the inception of snap through. The behavior represented by the curve

OA'B'D in Fig. 11 is analogous to that represented by the curve OABD
in Fig. 6; the behavior represented by the curve OBD in Fig. 11 is

analogous to that represented bv the curve OBD in Figq. 7(a).

In bifurcation buckling analysis it is often assumed that nonlinearities and

v
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geometrical changes in the prebuckling range can be omitted.

.

f o

As the columns

”fi} buckle at N* = 1, the critical load of the structure in such a model is

B l* 2

A%

.9

o P* = 2 sin B = 2h/L (4.8)
e 18

e

GNLANLN AT NN

RO S S e S S SR T




) g e
1.0

LI R TR
‘. -

PO

19 2 e SN A0 o
r ]
A

e

'I’..Y

ale

T T A AL TN LU I R S T T T T AN T USRS T AT e e
Figure 12 shows how the critical load of the two-column structure varies
with the parameter h/L. With h/L less than about 0.075 the structure will
collapse at the maximum in the load displacement curve - the columns are
straight as snap~through begins. With higher values of h/L the critical load
is rezpresented by the curve marked "Bifurcation with Nonlinear Prebuckling."
For comparison, the critical load is also shown corresponding to the simpli-
fied analysis in which precritical deformations are omitted (Eq. ( 8)).

For larger values of u/L this represents a good approximation. At h/L =1

it is a rigorous solution.

Post-Bifurcation Stability: We consider now a structure that has been

slightly modified as shown in Fig. 13 by addition of ¢ linear spring

which carries a part of the load.

Figure 14 shows load displacement curves for two structures with b/L =
0.1 and 0 = 2 x 10-4. One is without a spring (c = 0) and the other includes
a spring with spring constant ¢ = 2.5. The load displacement diagrams with

spring, primary and secondary, are obtained by addition of P* = c(6/1L)

SPRING

to the value of P* corresponding to c = O.

With a spring, buckling occurs, of course, at the same value of §/L. However,
if the spring constant is sufficiently large the slope of the line for the
secondary solution becomes positive. The increase of the load in the spring
is more than sufficient to compensate for the decrease in the load carried

by the columns.
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The two-column structure discussed here illustrates the behavior of struc-
tures of a more general nature. For example, the curve in Fig. 11
labeled OA'B'D is typical of failure of axially compressed cylindrical
shells which buckle plastically and develop nonsymmetric folds after the
load has reached its maximum value, as shown in Fig. 6. The curve in
Fig. 11 labeled OBD is typical of shallow spherical caps under uniform
external pressure in which nonlinear prebuckling effects are important but
failure is by nonsymmetric bifurcation buckling. A rather thick cylindri-
cal shell under axial compression deforms axisymmetrically throughout the
N
collapse process. This would be indicated in Fig. 11 by a primary equilib-
rium path similar in shape to the curve OA'B'C but lying under it and not
intersecting the column bifurcation line at all. A very thin complete
spherical shell under uniform external pressure would have a primary equilib-
rium path that is linear in the prebifurcation range OB. Similarly, very
thin cylindrical shells supported in such a way as to prevent early buckling
at the ends would display essentially linear prebifurcation behavior.
Heavily stiffened shells display behavior similar to that represented by the
curve OBD in Fig. 14. After the skin buckles at B, much of the load
that was originally carried by it is gradually transferred to the stiffeners

as the depths of the buckles grow in the post-bifurcation regime BD.

Loss of Stability and Imperfections: It is important to notice thatin the

passing of a maximum in the primary path the structure loses stability.
Under a load exceeding this maximum there exists no equilibrium configura-
tion in the immediate neighborhood. The structure is set in motion and the

process of buckling is violent.
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On the other hand, the existence of a bifurcation point indicates only that
the equilibrium on the primary path loses its stability. The consequences
of this loss of stability on the prirary path are not immediately clear.

As the equilibrium on the primary path loses its stability at the bifurca-
tion point, the structural behavior is governed by the conditions on thz
secondary path. Thus a bifurcation point signifies only a lcaa level at
which a new deformation pattern begins to develop. It does not necessarily
indicate loss of structural stability. The equilibrium on the secondary
path may be unstable. This is the case in our example of a two-column
structure without the spring. In this case the loss of stability on the
primary path results in the loss of stability of the structure. Buckling
is violent and in additicn the critical load is more or less sensitive to
imperfections. With some initial crookedness the columns begin to bend in
the prebuckling regime. There is no real bifurcation but the primary path
approaches gradually the secondary path for a perfect structure. The be-

havior of imperfect structures is indicated by the broken lines in Fig. 14.

On the other hand, if equilibrium on ths secondary path is stable, as in the
case with ¢= 2.5 in Fig. 14, the structure can take additional load be-
yond the bifurcation point. However, a new deformation pattern, in some
sense orthogonal to the prebuckling configuration, begins to develop and the

stiffness of the structure may be considerably reduced.

Buckling of Plates

In Figure 15 (a) is shown a plate simply supported on all four edges and

subjected to axial compression. It is assumed that the axial load Px is
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applied by means of a rigid block that enforces uniformity in the y-direction
of axial edge displacement u_. Figures 15 (b) and (c) show load-
deflection curves for perfect and imperfect plates. In tests of actual
plates, which of course contain unavoidable imperfections, it is difficulu
to dztact the onset of buckling because it happens gradually, as one might
expect from Fig. 15 (b). The bifurcation point on the load-deflection
curve for the perfect plate does not correspond to failure of the struc-
ture, but indicates a load at which the perfect plate starts to bow later-
ally. With further increase in uniform end shortening above the bifurcation
value, the axial compressive stress resultant Nx begins to redistribute,
becoming more and more concentrated near the edge supports, as depicted

in Fig. 16 (b).

The stress resultant distributions across the width of the plate at a cer-
tain axial station x are shown for four values of axial compression by the
curves 1-1, 2-2, 3-3, and 4-4 in Fig. 16 (b). At bifurcation the stress
resultant is uniform and equal to Ncr' Near the edges the axial fibers are
straighter than they are near the middle. Therefore, the end shortening is
accomplished primarily by membrane compression, resulting in a large Nx'

Near the midwidth the same end shortening is accomplished primarily by
bending, resulting in a small N, The behavior would be qualitatively simi-
lar if the plate were compressed by uniform axial load rather than uniform
end shortening: The regions in the neighborhood of the ends x = 0 and x = a
remain fairly straight because of the restraint against lateral displacement
w there. As the post-bifurcation lateral displacement in the central region
increases the edge regions at x = 0,a act as webs which, through shear,
transfer the load away from the central region of the plate to similar effec-
tive axially oriented beams near the edges at y = t p/2. These effective

axial beams carry most of the compressive load.
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Approximate maximum loads for axially compressed stiffened plates are de-

rived for design purposes from the so-called von Karman effective width

formula [ 27]:

_ 1/2
beff =b (Ncr/Nmax) ¢ 9

in which beff is an effective width shown in Fig. 16 (c) over which one can
assume that the load in the plate is carried, and Nmax is the maximum stress
resultant that can be carried because of yielding or some other stress failure
criterion. In the past the effective width formula (4.9) was used to calcu-

late maximum bending moments carried by airplane fuselages and wings.

Similar design procedures have been developed for plates subjected to in-
plane bending or shear loading. A comprehensive discussion of the ultimate
strength of plates in bending, shear, and combined bending and shear is

given ir. Chapter 5 of Ref. [ 28].

"Classical™ Buckling of Cylindrical and Spherical Shells

Cylindrical Shells Under Axial Compression

8 F ¢
I I [}
s

.‘ "l

The problem of buckling of thin cylindrical shells under axial compression

T

has received far more attention than most problems in structural mechanics

ol

LR

because of the extraordinary discreparcy between test and theory which re-

by T
|
h,

mained unexplained for so many years. Hoff [ 29] gives a meticulous and
very readable survey of work done up to 1966. Brush and Almroth devote a

major portion of a chapter of their book [ 4] to the subject.
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The post-buckled state of an axially compressed cylinder is illustrated in
Fig. 17. During a test of even a very carefully made cylinder an isolated
buckle initially appears at an average stress considsrably below the pre-
dicted bifurcation value of

/2 tnja ® .6Eh/a ( 10

0o = 3091~
This buckle is generally followed by a cluster of buckles in the same neighbor-
hood which very rapidly deepen, change shape, and spread over a considerable
portion of the surface. The post-buckled pattern shown in Fig. 17 was ob-
tained by axial compression of the cylinder with a close fitting mandrel in-
side to prevent excessive growth of the buckles and consequent formation of
plastic hinges at their boundaries. Thus the buckle pattern spread over the
entire surface. Figures 18 and 19 demonstrate the dramatic discrepancy

between test and theory over a wide range of radius-to-thickness and length.

The most significant trend of these data is the increasing discrepancy be-
tween test and theory with increasing radius-to-thickness ratio a/h. It is
this trend that provides the clue that the discrepancy arises from the ex-
treme sensitivity of the critical load to initial imperfections: A reason-
able measure of geometrical quality is the ratio of initial deviation wo(x,e)
from the perfect cylindrical shape to thickness h. It is clear that for a
given fabrication method, this ratio will increase with increasing radius-to-

thickness ratio.
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One of the first studies of the sensitivity of the critical load to initial
geometric imperfections was carried out by Donnell and Wan [ 30]. Figure
20 (a) shows load-deflection curves obtained from their analysis. The Koiter

theory [ 6], to be described later, provides rigorous proof of the extreme

NS * K
MR~

sensitivity of the critical load to initial geometric imperfections.

For many years several researchers attempted to obtain safe design loads for
thin axially compressed cylinders by using numerical methods to calculate

the post-bucklirg load deflection curve from nonlinear theory. It was

thought that the minimum post-buckling load would provide a lower bound to

the load-carrying capability of the shell. These attempts are very carefully
documented by Hoff [ 29], from which Figq. 20(b) is taken. The post-

buckled curves labeled "CASE(1l)",..."CASE(7)" indicate results of calcu-
lations on the digital computer with use of various trigonometric series
expansions to express the post-buckling deflection pattern. A converged
solution for the problem was never found. This approach was dropped because the
extensive experimental evidence in Fig. 18 shows that the predicted post-buckling
minimum load (CASE (7)) is unrealistically low to be useful as a guide to

designers for all but the very thinnest shells. Hence, the current ap-

vy
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proach is to use Koiter theory combined with empirical results to provide

":YY
4
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= a confidence index, as will be described more fully later.
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There was also an attempt to explain the discrepancy between tes* and theory
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by consideration of various boundary conditions. These studies are surveyed
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by Hoff [ 29]. The lowest critical load obtained for any set of edge condi-
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\ tions reported in Ref. [ 29]is Ocr/ocl = ,38. This load requires the tangen-
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tial displacement v to be free at the boundaries. Several sets of edge
conditions yield ocr/ocl = 0.5. However, they all require that either
the normal deflection w or tangential displacement v be free at the
edge. In view of measurements of deflect2ons actually occurring during
tests, it appears that sufficient friction is present to prevent signifi-
cant displacements v and w at the edges. The critical mode for the
cases in which v is free corresponds to 2 circumferential waves, which

does not resemble observed buckling modes.

The cylinder under axial compression is very sensitive to small initial
imperfections because the critical buckling load corresponds to a mode

the axial and circumferential wavelengths of which are quite small com-
pared to the radius. Also the critical load is insensitive to wavelength.
Note that the classical formula, originally derived for axisymmetric
buckling by Lorenz in 1908 [ 31] and for nonsymmetric buckling by Timo-
shenko in 1914 | 32], does not contain any reference to n or m , the
number of waves in the buckling pattern in the circumferential or axial
directions, respectively. Thus, a great variety of small initial imper-
fections occurring anywhere on the entire shell surface would contain
significant components of critical or almost critical bifurcation buckling
mode shapes, modes of deformation that would c¢cvow as the load in increased,
eventually causing snap-through at a load far below that predicted for

bifurcation buckling of the perfect shell, as shown in Fig. 20(a).
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A Caution for Novice Users of Computer Programs for Buckling: It is worth

emphasizing that the problem of the axially compressed cylinder, which appears
superficially to he an excellent, simple test case for a person learning to
use a computer program that he has acquired elsewhere, is really quite demand-
ing. The simplicity of the geometry tempts one to use a discretization with
fewer degrees of freedom than are needed to obtain a converged solution cor-
responding to a buckling pattern with short axial waves. The result obtained
from the computer progrem will probably be compared with the Timoshenko formu-
la, Eq. ( 10), which is based on the assumption of a wmiform membrane pre-
buckling state. Depending on the edge conditions, the nonuniformity and non-
linearity of the prebuckling state near the edges lowers the predicted criti-
cal load from 8% to 20%, as seen from the case described in detail in the
discussion in Ref.[430] associated with Figs. 29 to 32. If nonlinear
prebuckling analysis is used, the p»blem is further complicated by the fact
that the nonsymmetric bifurcction buckling load is fairly close to the axi-~
symmetric collaps~ load. A final difficulty is that several eigenvalues for
the bifurcation lnads are clustered near the critical load, especially in
models for which edge effects in the prebuckling phase are not present or

are ignored by the computer program. All of these difficulties are discussed
in the example of the axially compressed monocoque cylinder presented in
Ref.[430] The reader is urged to study that material before dismissing a
conputer programhecause it "can't even predict the classical buckling load

for an axially compressed monocoque cylindrical shell.”

Stiffened Cylinders Under Axial Compression: The post-buckling state of an

axially stiffened cylinder is shown in Fig. 21. Notice that the buckling
mcde has much longer characteristic wavelengths tLan does that for the moao-
coque cylinder pictured in Fig. 17. Thi. is due to the increased axial
bending stiffness and results in milder sensitivity of the buckling load

27

B T N O T S O T O N T
AANCRAREE R S SRS DL OLITREE RN ) CUNRNLSE
W ARSI . A o

AN TR T T e TN e . R G R S S S L I e e ¢ e I T e e e it _Jiamt e i at I RAIr i i Il e Ba A 4
AN T T T T A AT T A e A e Y L T T T O RO A S




+ e

v
£, %, At

[l

| ¢
o)

[

-

7
AR,

s

to initial imperfections. Figure 22 shows ratios of experimantal to
theoretical buckling loads for a variety of cases, among them stringexr

stiffened shells. Comparison of the ratio P /P

£ ine. :
test/ ol °F strincer stiffened

shells with that for monocoque short cylinders and that for the other mono-
coque cylinders illustrated in Fig. 18 reveals the milder nature of the

imperfection sensitivity of the strxinger stiffened shells.

Cylinders under Uniform External Pressure or Torsion : Figures 23 - 27

show pest-buckling states of cylinders subjected to hydrostatic pressure

or torsion and comparisons between test and theory. As with the stringer
stiffened axially compressed cylinders, the buckling modes are characterized by
long axial wavelengths and relatively few circumf:rential waves which
results in a milder sensitivity of buckling loads to initial geometric im-
perfectinns. The most sensitive systems are short cylinders (10 < Z < 100}
under hydrostatic compression, cases for which the bifu._cation buckling

phenomenon resembles that for cylinders under axial compression. (See Fig. 25.)

Spherical Shells Under Uniform External Pressure: Kaplan [ 37] gives a

thorough survey of buckling of spherical shells subjected to uniform external
pressure. Early tests revealed that buckling initiates at some spot at

which a small dimple forms. To the writer's knowledge the formation of
multiple buckles in a complete spherical shell, as observed in axially
compressed cylindrical shells, has not been observed for shells without an
interior mandrel. Figure 28& shows a post-buckled state in a shell with a
closely fitting interior mandrel. Each buckle subtends a small solid angle,

just as in the case c¢f an axially compressed monocoque cylinder in which
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each buckle covers a very small fraction of the surface. As might be ex-

pected from this behavior, the critical load of a spherical shell subjected
to uniform external hydrostatic pressure is highly sensitive to initial

geometric imperfecticns.

Spherical Caps: The fact that an initial buckle subtends a small solid

angle stimulated those initially interested in complete spherical shells to
model the problem of buckling of a complete spherical shell with use of a
shallow spher.cal cap clamped at its edge. Over the years the shallow cap
configuration evolved into a "classical" problem in its own right, studied
with almost the same intensity and frequency as the axially compressed
cylinder. However, as demnstrated in Fig. 29, the shallow cap problem
has certain characteristics not present in the case of a complete spherical

sr211. These arise from the presence of the edge.

In Fig. 29 load-deflection curves are shown corresponding to linear and
nonlinear theoriess for prebuckling axisymmetric defurmations of caps

clamped at the boundary. The open circles on the linear load-deflection
lines indicate bifurcation bickling at the "classical" pressure for the com-
plete spherical shell with the same radius-to-thickness ratio as the spheri-
cal cap. The classical buckling stress is given by the same formula as that
for the cylindrical shell subjected to axial compression, Eq. ( 10). A is
a cap shallowness parameter given by

4

v o= 2 [30-v3) 1Y% m) /2 ( 11

where H is the rise of the cap above the plane ir which tae edge lies and

h is the thickness.
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For A less than about 7 or 8 the behavior of the shallow cap little resembles

h

that of the complete spherical shell. With A = 0 (flat circular plate) there

s
[ SR

‘p"r ‘e "- h

o L

is no similarity at all: The load-deflection curve exhibits a stiffening
. characteristic which results from the build-up of in-plane tension as the
plate deforms (Fig. 29(a)). With A less than about 3.5 the load-deflection
curve has no horizontal tangent and no bifurcation point so that there is

no loss of stability on the primary equilibrium path(b). For A less than

¥E~ about 6 there is axisymmetric snap-through, but no bifurcation buckling(c). For
‘Eii A > 6 bifurcation buckling into a nonsymmetric mode occurs at a lower load
?;z- than either axisymmetric snap-through of the cap or classical wackling of
’;ég a complete spherical shell(d,e,f). Notice that as A increases above 7 the
;i; prebuckling behavior becomes more and more linear. Figure 29(f) corresponds
:!; to a configuration in which the cap is no longer "shallow" if that word may
-%f:{ be used as a means of classifying struccural behavior: The nonuniformity
;E% of prebuckling behavior occurs in a relatively narrow band or "boundarv
k;;_ layer" near the edge. Any further increase in )\ results in no further

';i% alteration in the curves or locations of the bifurcation points presented

i;? in Fig. 29(f). No matter how high A is, the behavior of the incomplete
:3:' spherical shell clamped at its boundary will never be the same as that of
-i;% the complete spherical chell because the presence of the boundary gives rise
.‘?EE to edge buckling at a pressure from 80% to 90% of the classical value p_, -
o

3332 For actual spherical shells and shallow caps random imperfections play a

ST

.;k} major role in the loss of stability under uniform external pressure. Figure

30 demonstrates that the effect of initial imperfections is just as severe

as in the case of cylindrical shells subjected to axial compression.
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- NONLINEAR COLLAPSE
o
(¢
k-~ Summary
LS

=
LA
A
N
ey As has been emphasized already in the discussion of the two-column shallow
. truss (Figs. 10 - 14), loss of stability of a shell structure may be
Y
:':‘ due to nonlinear collapse ("snap-through") or to bifurcation buckling. The
3 .""- purpose of this section is to present many examples in which the failure mode
is nonlinear collapse. Exampies are given of axisymmetric collapse of elastic-
-.':'\

:" plastic-creeping monocoque cylinders under axial compression and ring-
p \_ stiffened cylinders under extermal hydrostatic pressure, of general collapse
p .“'

T > of curved and straight pipes under uniform bending, of cylindrical shells
=
- and panels with concentrated loads and cutouts, and of noncircular cylinders
}?:', under axial compression. The section closes with an example of axisymmetric
1Y collapse of an axially compressed complex rocket interstage. The collapse
:-'_.\ is caused by a local load path eccentricity that gives rise to concentrated
.'}l

f bending and lucal plastic flow.
-2
\ Elastic-Plastic-Creep Collapse of Axially Compressed Monocoque Cvlinders
e

No Creep:megrs nave been conducted on cylinders by Lee [ 40],Battexrman [ 41},

Sobel and MNewman [ 42], and others referenced in Sewell's survey [ 43] .
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Tests on truncated cylinder-like {steep) conical shells have recently been

’
”

€

)
]

o ) conducted by Ramsey [ 44]. In all the tests, end displacement was controlled.
'::::: Local end effects such as bulging due to Poisson's effect, so obvious in Fig.
;:::: 6, are ignored in early analyses of plastic buckling of axially ccmpressed
g

&‘ cylinders. Batterman [ 41] used flow theory and Gerard [ 45] used deforma-
. q.:
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tion theory. Murphy and Lee [46] were the first to include the effect

of radial and restraint on plastic buckling load predictions. Their pre-
dictions are shown in Figs. 31 and 32 with the results of Batterman fai],
Gerard [45], and Bushnell [47] superposed in Fig 32. End effects are
accounted for in the analyses of Bushnell [47], who used the BQSOR5
computer program, and Sobel and Newman [42], who used STAGSC [48]. All of
the studies in which end effects are included are based on incremental
flow theory and all predict that the collapse load corresponding to axi-
symmetrical deformation occurs before bifurcation, as shown in Fig, 6.
The comparisouns between BOSOR5 predictions and Lee's tests [47] are listed
in Table 1 and between BOSOR5 predictions and Batterman's tests [47) are
listed in Table 2. The far post-buckled collapse mede for cylinders with

R/t less than about 30 is shown Fig. 33.

Two important conclusions can be drawn from the results prese- ed in Figs.
31 and 32 and Tables 1 and 2:

(1) lhe inclusion of ead radial restraint in theoretical models
essentially eliminates the discrepancy between test and theory, and reveals
that in the case of plastic buckling of axially compressed cylinders
tested in the usual way it is not necessary to resort to the use of bifur-
cation buckling analysis with deformation theory or flow theory with a
singularity in the loading surface in order to bring test and theory
into agreement.

(2) Fairly thick metallic cylinders (R/t < 90) are not very sensitive
to initial random imperfcctions if they buckle at stresses above the
raterial proportional limit. The axisymmetric bulge which develops near
an end, so evident in Fig. 6 and in Murphy and Lee's predicticn shown in
Fig., 31, represents a predictable "imperfection" that grows with load and
is much more significant than any unknown imperfections duve to fabrication

or handling errcrs, providing the cylinder is machined.
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Gellin [ 49) shows that collapse loads of axially compressed cylinders
buckling in the plastic range ars not as sensitive to initial axisymmetric
imperfections as are collapse loads of elastic cylinders. Hutchinsen [ 50]
demonstrates the same result for externally pressurized elastic-plastic
spherical shells. This fact, the fact that the tangent modulus of most
metals decreases by more than an order of magnitude within a stress range
of 20% of the .2% yield stress, the fact that high quality cylinders with
the relatively low radius-to-thickness ratios required for plastic buckling
are easier to fabricate than those with high R/t, and the fact that signifi-
cant predictable axisymmetric bulges due to radial end restraints grow as
the load is increased, combin¢ to reduce dramatically the deleterious effect
of random unknown imperfections. We can therefore make fairly accurate
predictions of collapse loads of axially co. zczced cylinders tested in the
usual way. Note that this conclusion may not apply to cylinders in which
the ends are locally tapered and other devices are introduced into a test

to prevent failure due to bulging as shown in Figs. 6 and 31. It also may

not apply to cylinders which have been fabricated by cold bending and welding

rather than by machining.

Creep Included: Figure 34 shows the normal deflection (axisymmetric)naar the

clamped end of an axially compressed cylindrical shell which creeps according

to the power law

€ =adt { 12)
C

in which E; is the effective creep strain. The material is stressed locally
beyond the proportional limit. The BOSORS computer program [ 47] was used
to obtain the res-_.ts, which agree well with those from a test conducted by

Samuelson [ 51]. The small plots inserted within the frame of the large
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plot show peak normal displacement near the edge and applied loading as

functions of time.

Axisymmetric creep collapse is caused by the increasingly rapid growth of tie
edge bulge caused by th= Poisson effect coupled with radial restraint at the
end of the cylindrical shell. 1In addition to creep, local plastic flow

occurs due to bending in the waves near the clamped end.

Creep Collapse of Ring-Stiffened Cylinder Under Exterral Hydrostatic Pressure

e
2

Figures 35(a) and 36(a) show a titnaium ring-stiffened cylinder and axi-

123

symmetric collapse mode due to uniform external hydrostatic pressure ap-

plied in steps as shown in Fig. 35(b). The creep law for the titanium Is

Ec = ag"t" ( 13)

in which m = 13.89 and n = 0.189 and E; is the effective creep strain. The
dots along the middle surface of the cylindrical shell shown in Fig. 35(a)
indicate nodal points in the axisymmetric discretized model | 47]. Sym-
metry conditions were applied at the symmetry plane, as is evident in the
deflected rhapes plotted in Fig. 36(a). Solutions were obtained for each

time indicated by a dot in the loading schedule plotted in Fig. 35(b).

Fig. 36(b) gives load-deflection curves for computer runs in which the
creep is neglected and included. If creep is neglected the predicted
failure mode is nonaxisymmetric bifurcation buckling with 12 circumferen-

tial waves at a pressure of about 1810 psi. The prebuckling deflected shape

34
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{exaggerated) and the bifurcation buckling mode are shown in Fig. 36(c).
With creep included, the predicted failure mode is axisymmetric collapse at
a pressure of about 1700 psi. The presence of creep causes the axisymmetric
inward deflection between the second and third ring (Fig. 36(a))to be
bigger than it would be with creep neglected in the analysis, leading to

a lower axisymmetric collapse load.

Snap-Through of Very Shallow Spherical Caps

From Figure 29 we saw that for small "shallowness" parameter A spherical
caps clamped at the edge collapse axisymmetrically rather than exhibit non-
symmetric bifurcation buckling. Figure 29(c) shows a load-deflection

curve for such a case. In a test in which the pressure is held constant

xR

rather than the displacement, the cap would snap through to its inverted

P
)
A

§ 0

'

state at the pressure rfor wonich the load-deflection curve has a horizontal

AR
s ‘e B
e
s 0
ot

targent. Figure 37 shows instability pressure vs. shallowaess parameter
and comparisons between test and theory for very carefully fabricated
specimens. This figure should be compared to Fig. 30, on which many early

test points corresponding to less well made specimens are included. The

- L : : .
t predicted transiiion at about )= 6 from axisymmetric collapse to nonsymmetric
0

:_‘ bifurcation Yuckling is qualitatively supported by the newer tesi results

o displayed in Figqg. 37.
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Straight and Curved Tubes Under Bending and External Pressure

Introduction

One of the earliest efforts in nonlinear structural analysis was presented
in 1926 by Brazier [ 52]. His paper is concerned with the problem of the
stability of cylindrical shells under bending. If a long tube is subjected
to bending, its cross section flattens. Consequently, its bending stiff-
ness deteriorates with increasing load. The primary path, a graph showing
the bending moment as a function of applied curvature, exhibits a maximum.
Brazier performed a somewhat approximate analysis and found that the limit

of stability is given by

- 2/2 E1Tah2

9 2
-V

M ( 14)
If the maximum stress caused by this moment is computed with use of the undis-

torted cross section properties we find (with v = 0.3)

Of‘

R 0.33 E(h/a) ( 15)

The problem of stability of circular cylindrical shells under bending was
solved as a bifurcation buckling problem by Seide and Weingarten in 1961{ 53].
Assuming that the prebuckling behavior can be defined with sufficient accu-
racy by a linear membrane solution, they found that the critical buckling
stress is only 1.5 percent higher than the critical uniform compression

stress for a shell with a/h = 100. For thinner shells the differsnce is

even smaller. Thus for all practical purposes, the critical stress cor-

responding to the Seide-Weingarten model with v = 0.3 is
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R = 0.605 E(h/a) ( 16)

%

This value is well above the critical stress found by Brazier for
infinitely long cylinders. Boundary conditions usually restrict deforma-
tions so that at the shell edges the cross section remains circular. This
restrains the cross section flattening at all axial stations. Finite

length shells therefore coliapse at load levels that are higher than is pre-
dicted by Brazier's analysis. For sufficiently short shells the prebuck-
ling behavior is well approximated by the linear membrane solution. With
neglect of the effect of initial imperfections Egq. ( 16) represents a

satisfactory solution.

For longer shells there is a coupling between the flattening of the cross
section and the formation of a short axial wavelength or wrinkling buckle
pattern. The flattening of the cross section increases the local radius as
well as the actual bending stress. Consequently, it reduces the load
level at which the wrinkling pattern appears. For the infinitely long
shell we must consider the possibility that the critical load corresponds
to bifurcation from a nonlinear prebuckling state. For a cylinder of
finite length, the wrinkling pattern is not orthogonal to the smooth
prebuckling flattening mode and therefore we do not have a situation of
pure bifurcation. However, the wrinkling mode as a component of the pre-
buckling displacement is extremely small until a load level is reached at
which it begins to grow rapidly. The structural behavior is therefore

approximately the same as if a bifurcation point did exist.
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Long Tubes and Elbows: A Survey of Work Done

The elastic-plastic collapse and bifurcation buckling analysis of

straight and curved tubes subjected to bending is needed for design and
evaluation of nuclear power plant piping components, offshore pipelires,
and other structures involving tubular members. Most of the recent work
on piping has been motivated by a desire to be able to predict stress,
stiffness, and limit moments of piping systems in nuclear reactors. Since
the most flexible and highly stressed piping components are elbows, a sig-
nificant portion of the total effort has been focused on test and analysis
of various elbows under in-plane and out-of-plane moments. In the off-
shore oil industry the laying of underwater oil pipelines involves bending
of rather large diameter straight pipes in the presence of external hydro-
static pressure. The degree of ovalization of the pipe cross section under

bending is very much affected by the external pressure, as will be seen later.

Elastic Models: The bending of elastic piping components is explored in

Refs. [ 52] - [ 62]. Brazier [ 52] was the first to calculate collapse
moments, including in his theory the important effect of increasing ovaliza-
tion (flattening) of the pipe cross section as the bending moment is increased.
Clark and Reissner [ 54]used an asymptotic formulation in which ovalization
of initially curved tubes under bending is assumed to be symmetric about

a tube diameter normal to its plane of curvature. Wood [ 55] expanded
Brazier's treatment to include pressure, and Reissner [ 56] further im-
proved the theory by including higher order nonlinear terms and introducing
the effect of pressure on the bending of slightly curved tubes. Aksel'rad

[ 57] was the first to predict bifurcation buckling of straight pipes

under bending, including the effect of flattening of the cross section in the
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prebuckling analysis. In all of the analyses just cited, end effects are
icnored; the pipes are assymed to be infinitely long. Stephens, et al [ 58]
used the STAGS computer program [ 48] to calculate collapse and bifurcation
buckling of initially straight tubes of finite length. For tubes with
radius-to-thickness R/t = 100 they carried out a parameter study, predicting
limit and bifurcation bending moments for length-to-radius ratios

3.4 < L/R < 20. They included internal and external pressure in their

analysis.

Elastic analyses of piping elbows have been performed by Dodge and Moore

[ 59] who wrote a computer program, ELBOW, based on a model sinilar to
Clark and Reissner's [ 54] and Hibbitt, et al [ 60], who introduced a
curved piping finite element into the MARC computer program [ 63]. This
element, called #17 in the MARC element library, is based on neglect of
elbow end effects. Discretization is in the circumferential coordinate
only. Sobel [ 61] used the MARC #17 element in a convergence study with
mesh size. He referred to Clark and Reissner's asymptotic formulas to
establish optimal finite element nodal point density in the hoop direction
as a function of elbow geometry. Rodabaugh, et al [ 62], performed a study

°, and 180° elbows, determining the stiffening effects of straight

of 45°, 90
pipes attached to the ends of the elbows. They used the EPACA computer pro-
gram [ 64] for their analysis in which end effects are included. Although

EPACA includes the capability to treat structures made of elastic-plastic

material, the work described in Ref. [ 62] is restricted to elastic

behavior.
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Bending Tests on Long Elastic-Plastic Straight Pipes and Elbows: Several

test programs on bending of elastic-plastic straight pipes and elbows have
been carried out in the past decade. Bolt and Greenstreet [ 65] give
load-deflection curves for 14 commercial 6-in. diameter carbon steel el-
bows and one 6-in. diameter strainless steel elbow with and without in-
ternal pressure. Vrillon et al [ 66] compare test and theory for the
in-plane bending of a 180° elbow subjected to both opening and closing
moments. They used the TRICO program | 67] for their analysis. Sherman
[ 68] tested several straight pipes, noting formation of relatively short
axial wavelength buckles just before collapse. A comparison between one
of Sherman's experiments and theoretical results obtained with a modified

version of the BOSORS computer program [ 47] , [ 69] is given later.

.‘. )

e e

Sobel and Newman [ 70] describe a test on a 90° elbow carried out on the

ALY

multiload test facility (MLTF) at the Westinghouse Advanced Reactors Divi-

DA
(]

"
r

sion. Bung, et al [ 71], ran tests at elevated and room temperature on

304 stainless steel elbows.

Elastic-Plastic Piping Bnalysis: There are basicelly three types of elastic-

plastic piping analysis for the prediction of stress, stiffness, and buck-
ling failure of straight and curved tubes and compinations thereof:

1) A "brute force" method in which the tubes are divided into a
two-dimensional field of finite elements;

2) A simplified model in which tube end effects are ignored and

discretization is in the circumferential coordinate only;
3) A further simplified model in which resultant forces and moments
integrated over the tube cross section are related to strains and changes

in curvature of the tube axis (beam model).
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The STAGSC computer program [ 48], the EPACA code [ 64], and the TRICO
code [ 67]have been uscd for the "brute force" analysis of elastic-
plastic elbows attached to straight pipes. Vrillon, et al [ 66], Roche

and Hoffman[ 72] and Skogh and Brogan [ 73], used these general purpose
shell analysis computer programs to calculate moment-deflection curves for
combinations of straight pipes and elbows, including elastic-plastic mate-
rial behavior and moderately large deflections. Remseth et al [ 74], cal-
culated elastic-~plastic collapse of straight tubes subjected to cormtined
bending and external pressure in a two-dimensionally discretized model in
which arbitrarily large rotations are permitted. These nonlinear analy-
ses require large amounts of computer time. The more economical but less
rigorous one-dimensionally discretized model has been employed by Mello

and Griffin [ 75] and Sobel and Newman [ 76] who used the MARC computer
program [ 63] element #17 [ 60}, and by Bushnell [ 69], who modified
BOSORS [ 47] to obtain predictions for the bending and buckling of straight
pipes and elbows. The most economical and more approximate beam-type

models have been used by Roche, et al [ 77], Spence and Findlay [ 78, 79]
and Calladine [ 80]. Popov, et al [ 81], used a beam bending model com-
bined with a rigorous axisymmetric large deflection elastic-plastic analy-
cis to predict axial wrinkling of pipes under combined internal pressure,

axial loading and flexure. However, they neglect the important effect of

ovalization of the pipe cross section during bending.
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. elbow. The theoretical results were obtained with a modified version of BOSORS

e

[ 47, 69]. In[ 69] a uniformly curved pipe is treated as if it were

part of a toroidal shell. The model is similar to that described in
41
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Ref. [ 82]. Bending in the plane of the curvature of the pipe ceuterline
is applied by means of an appropriate temperature distribution over the
pipe cross section, as is described in [ 69] and summarized here. Every
cross section of the uniformly curved pipe is assumed t~ deform identically.
Therefore, the structure can be treated as a shell of revolution, a torus.
Figure 38(a) shows the undeformed curved pipe reference surface with
centerline radius of curvature, b, and meridional radius of curvature, a.
The centerline radius of curvature of the deformed pipe vreference surface
(Fig. 38(b), is R and the cross vection has ovalized such that a gene-
rator that was originally at a radius r=b + a cos ¢ is now at a radius R + z,

where z is given by
z = (atw)cosd ~ u sing ( 17

If we assume that the centerline remains inextensional, the reference sur-

face axial strain is

(R+z)% - (b + a cos$)

€= b + a cosd ¢ 18)
Rearrangement of Eq. ( 18) and use of the relationships
cosd = r/R2; sin¢p = -r' = - dr/ds ( 19)
leads to the expression
1 1
(= - =
b ' aly b) cosod 5
e == (Ww/R, + uc'/r) + ( 2
R 2 a
1+ g-cos¢
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in which R2 is the normal circumferential radius of curvature of the

reference surface of the undeformed torus, = 1is the radius to a point
on the torus reference surface, and r' is the derivative of r with
respgct to meridional arc length s. These quantities are indicated in
Fig. 38(c).

Simulation of the Pipe Bending Problem by Thermal Loading of a Torus: In

order to use BOSOR5 to creat the problem of elastic-plastic bending and
bifurcation buckling of a curved pipe, it is necessary to write the axial
strain given by Eq. { 20) as a stress-producing prebuckling hoop strain

for the shell-of-revolution (torus) analysis. Thic is easily done by defini-

tion of the prebuckling stress-producing hoop strain as

e = e2 - a2 AT ( 21)
in which, from Eq. ( 20) it is seen that
e. = 2w/R. + ur'/r) ( 22)
2 R 2
[
@ AT = —a(: - &y j—28 ( 23)
2 R b a
1+ S-cos¢

In this way, the problem of bending of a curved pipe is simulated by a
problem of a nonuniformly heated torus. Further details of the analysis
are given in [ 69].

Collapse and Bifurcation Buckling Moment of a Long Straight Pipe: Figures

39 and 40 pertain to the elastic-plastic bending, collapse, and bifurca-

tion buckling of a straight pipe tested by Sherman [ 68]. (In Sherman's

tests there was no pressure, however.)
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Figure 39 shows test results and the results of two BOSOR5 runs, one in
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which the pressure is zero and the other in which the pressure is one-half the
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external pressure P, that would cause buckling in the absence of an ap-
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plied bending moment, M. The pipe material is elastic perfectly plastic

g

with a yield strength of 421 N/mm2. The quantity k 1is the curvature

change of the pipe axis (Fig. 38(b)). with zero external pressure,
bifurcation buckling is predicted to occur at an applied moment slightly
below that corresponding to nonlinear collapse due to flattening of the

cross section. Thus, in a test of such a pipe one would expect to see rela-
tively short axial-wavelength wrinkles or a single wrinkle appear just .fore

failure. 1Indeed Sharman observed the formation of such buckles in his tests.

With external pressure, ovalization or flattening of the pipe cross sec-
tion is predicted to occur more precipitously with increasing applied
curvature change k = (1/R - 1/b). Note, however, that the maximum moment-
carrying capability of the pipe is not much less than that of the pipe
without extemrmal pressure. 1In the case trested here “ifurcation buckling
occurs with a somewhat shorter axial wavelength at a value of k slightly
greater than that corresponding to collapse due to flattening of the cross
section. Hence, if the moment M is applied rather than the curvature
change k , axial wrinkles would not appear before failure. Figure 40
shows the predicted deformations of the pipe cross sections with and with-
out external pressure at k = .0432 m—l. The deformations are exaggerated

but plotted to the same scale in Figs. 40(a) and 40 (b).
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Collapse of a 90° Elastic Plastic Elbow: Figure 41 shows a moment-deflec-

tion curve rrom a test on a 304 stainless steel elbow by Sobel and Newman

[ 70] compared with results from the BOSORS analysis just summarized. The
BOSOR5 results underestimate the true strength because straight pipe sec-

tions to which the elbow was attached in the test as well as attachment flanges
prevented the ends of the test elbow from flattening as the moment was in-
creased. In the BOSOR5 analysis the degree of ovalization is assumed to be
constant along the curved axis of the elbow. Unlike the case of the

straight pip chere is no bifurcation involving short axial waves or

wrinkles before the maximum moment is reached. Other results for both

opening and closing moments and 1800 elbows are presented in [ 69].

Collapse and Bifurcation Buckling Due to Bending of Straight Elastic

Pipes of Finite Length: Stephens, et al [ 58], investigated the effect of

length on instability of straight elastic tubes. Figure 42(a) and (b)
demonstrate this effect. The ends of the pipes are constrained to remain
circular. Figure 42(a) gives load-deflection curves (dashed) and

maximum moments (solid) for pipes of various length-to-radius L/r with

radius-to-thickness r/t 100. The normalization factor icr is

0.605 ﬂrt2E { 24)

=
n

cr

which corresponds, for v = 0.3, closely to the critical moment originally

calculated by Seide and Weingarten in 1961 for bending of simply supported
cylindrical shells [ 53]. This formula results when one assumes that the
moment Mcr is generated by an axial resultant Nx that varies around the

circumference as
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so that

M =N er ( 26)
cr cr
For short cylinders under bending, buckling is of tu> bifurcation type

and occurs approximately for Ncr equal to the critical value correspond-

ing to uniform axial compression, that is
2
N = .605Et™/r ( 27
cr

Use of the richt-hana- 9f Eq. ( 27) in Eq. ( 26) yields the result

for Mcr given in Eq. ( 24),

As shown in Fig. 42 (b), straight unpressurized cylinders of any length
subjected to bending become unstable by bifurcation buckling, not by
snap-through at a limit point on the load-deflection curve. However, the
bifurcation point lies just below the limit point throughout the range

of L/r. Furthermore, for long cylinders bifurcation occurs only after
considerable flattening of the cylinder cross section, as can be seen from
Fig. 42(a). The results of the analysis of Stephens, et al [ 58], are
included in this major section on =nonlinear collapse rather than in the next
on bifurcation buckling because they obtained them via a collapse or limit
load analysis with use of the STAGS computer prcgram [ 48,. This they did
by introduction of a very small initial imperfection with a short axial

wavelength




w./t = (10-3) cos (m(L/2-x)/A) cosn® ( 28)
in which A/L = 0.017 and
3 for 6 f_L/r 5_15
n = << ( 29)
2 for L/r = 20

Thus, Stephens et al [ 58] converted a bifurcation point such as Point B
in Fig. 7(a) into a "snap-through" point such as Point E. Because the
initial imperfection given by Eg. ( 28) is so small, this limit point for

all practical purposes, coincides with the bifurcation point.

The nonlinear collapse is defined in [ 58] as that load for which the

curve relating the applied bending moment to t.e growth of an axiel

wrinkle of the foxrm given in Eq. ( 28) has a horizontal tangent. Generally,
this axial wrinkle does not begin to grow until a consicarable amount of
bending moment has been applied. The procedure for determining buckling
loads is illustrated in Figure 43 for a cylinder with geometric proper-
ties of L/r = 10 and r/t = 100, and an external pressure egual to —O.Spcr,

where P, is defined in [ 58] as

5/ 3/2L)

2
Per = .926 Et™/ 7/ (1] ( 30)
Usually, the growth of the wrinkling mode is not easily detected tince its

amplitude is small in comparison to other shell deformations, in particular,

to the Brazier type flattening of the pipe cross section. To detect the
growth of the wrinkling mode it is convenient to take a displacement state at

a load level near where this growth is suspected to initiate and use it as

47




A T . - « M. N - "

SosLonTA T . M N I T I AT '-~ --~.n‘—'n;~\_—.s-r“\‘-~§:..-—'.r‘\. .l),-\".I‘;,_‘.g ‘.5 \3. -‘. .‘,". « v . _‘—‘.“;.“'.“_‘T.".’-;."‘- . -\ T

a datum state. This datum state is subtracted from all subsequent displacement
fields at higher load levels. The difference Ow inf the normal displace-
ments is calculated at the meridian of maximum compression and is plotted as

a function of axial distance in Figqure 43(a), where an axial wave of

amplitude "a" is shown to be developing near the midlength of the cylinder.

The applied bending moment is then plotted as a function of the amplitude

of the wave as shown in Figure 42(b). If this moment versus amplitude

curve approaches a horizontal tangent, then a mode of collapse has occurred

which is called the short-wave axial buckling mode in [ 58].

After wrinkling starts to develop, the wrinkle amplitude increases rapidly
with small increases in load. The rapid growth, although not a true bi-
furcation, may be considexred to indicate that bifurcation based on a non-
linear prebuckling state would have occurred near this load if no imperfections
had been present. In [ 58] collapse is assumed to occur when relatively

large increases in wrinkle amplitude occur for increases of moment of the
order of 0.01%. Buckling and, therefore, collapse for this particular

example occurs at approximately a value of M equal to 0'636Mcr'

Other results, including the effect of internal and external pressure, are

given in [ 58].
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Collapse of Cylindrical Panels and Shells

with Concentrated Loads and Cutouts

.. Introduction
N

Ei Most of the exsmples of nonlinear collapse shown so far can be analyzed with

o~ mathematical mcdcls in which the discretization is one-dimensional. An

ES exception is the collapse of finite length tubes in bending just described.
';E The problems described in this section must also be treated with two-

ij_ dimensional discretization. The distinction between one and two- dimensional
,EE discretization is important because of the great difference in computer

'ﬁi cost for cases with equivalent nodal point density. With one-dimensionally
f!; discretized models, convergence with increasing nodal point density is not
'z: too important because one can generally afford to provide more than enough
-

:; nodes to be on the safe side. With two-dimensionally discretized models,
iu however, limitations of budget for computer runs and limitations of com-

;; puter core and auxiliary mass storage capacity often dictate the use of

LA

‘;: models with rather sparse nodal point distributions. The gquality of the solu-
>n{ tions is questionable because the sparsely discretized models behave dif-

;i ferently from the actual continuum and the size or even the sign of the

:g error is rarely known.
k-

°
'gi Prediction of nonlinear collapse of structures that require two-dimensional
f;_ discretization is expensive because large systems of equations must be set
- up and solved iteratively for many load increments. These systems of equa-

tions have fairly large bandwidths. The great expense of solving s ‘h

systems has been a motivating factor in the search for efficient and accu-

)
ettt
R

rate numerical strategies. Many of these are described in Ref. [ 8].
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One of the strategies is to treat the two-dimensional problem as a linear
bifurcation problem, a modeling technique that is usually more appropriately
applied in cases involving shells of more general geometry. (In the linear
bifurcation model the lowest bifurcation point on the linear prebuckling
load-deflection line is calculated. The point shown in Fig.23 of[430]corres-

ponding to the pressure P,, is an example.) This shortcut is cheaper be-

1b
cause it involves solution of only one linear equilibrium problem plus

one eigenvalue problem, which is usually equivalent to solution at about
two to four load steps of a nonlinear equilibrium analysis. We shall see

several cases in this section, however, for which the linear bifurcation

model is inadequate.

The question arises, of what use would a nonlinear bifurcation model be?
There are two reasons why such a model is not usually advantageous. In
the first place, bifurcation from the nonlinear fundamental state in per-
fect two-dimensional nonlinear shell problems is much more rare than for
axisymmetric shells simply because there is less symmetry in the two-
dimensional case. Therefore, bifurcation modes that are orthogonal to

the prebuckled state determined from nonlinear analysis are less likely to
exist. In the second place, it is generallv just as expensive to calcu-
late the nonlinear prebuckling staie for the perfect system as it is to
calculate the nonlinear precollapsed state for the same system in which a
small general imperfection has been introduced in order to convert any
bifurcation points, such as Point B in Fig. 7(a), into limit points,

such as Point E.
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The only way in which a nonlinear bifurcation model might be used to ad-
vantage would be to provide intermittent estimates of the collapse load such
that the total number of load increments required to find this critical load
is reduced. Also, it mzy turn out that collapse corresponds to rapid develop-
ment of a short wave mode superposed on a smooth precollapsed state, as is
seen in the example of the finite length tube in bending. In such cases

one might set up two discretized models, a fairly crude one to capture

the smooth nonlinear precritical deformation and a locally fine one in oxrdex
to calculate accurately the short wave bifurcation from the smsoth pre-
critical deformed state. The generally expensive prebifurcation noniinear
iterative solution would be carried out with the sparsely diccretized

model and the far less frequently performed eigenvalue analysis »ould be

carried out with the more finely discretized model.

Cylindrical Panels and Shells with Concentrated Normal Loads

Panels: Figure 44 shows a panel simply supported on all four edges.

This panel collapses and snaps through to an inverted position. The
strateqgy used to follow the load-deflection curve over the maximum is
described in [ 84] and summarized in [ 8]. Bergan, et al, calculated
the entire dashed curve with load incrementation and decrementation. A
similar configuration is shown in Fig. 45, 1In this example the cylindri-
cal panel has free longitudinal edges. The simply supported panel col-
lapses because distortion (flattening) of the cylindrical cross section
reduces the axial bending stiffness, an effect similar to the Brazier
flattening of a long complete cylindrical shell due to bending. If the
curves edges are restrained from axial motion (clamped), axial tension develops

as the panel deflects, preventing collapse.
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Note that linear bifurcation buckling predictions for this case bear

little relationship to the true behavior. 1In the simply supported case the
linear bifurcation load greatly overestimates the load at which the panel
collapses because Li.c waluicaticn analysis Jdoes not account for the flatten-
ing of the cross section. In the clamped case bifurcation is predicted
when no collapse occurs because the linear analysis does not account for

the stabilizing awial tension that develops in the panel as it deflects

vertically.

Complete Cylindrical Shells: Okubo, et al [ 86], investigated the instability

of cylindrical shells under combined internal pressure, bending, and inward-
directed concentrated normal loads. For small concentrated loads the
cylinders failed in a general instability mode that resembles the buckling
mode of a cylinder under uniform axial compression: A cluster of buckles,
centered on the site of the concentrated load, develops on the compression
side of the cylinder. 1In these cases the contribution of the concentrated
load is to produce an effective imperfection that triggers general instability.
The shell cannot sustain higher bending moments after buckling. For large
concentrated loads there are two failure modes: Initially the moment-
deflection curve displays a local maximum which corresponds to a local
snapping phenomenon involving development of a single dimple at the site of
the concentrated load. At this maximum the overall compressive stress from
the bending moment is small enough so that the buckle pattern does not
spread to regions remote from the location of the concentrated load. The
shell sustains moments in excess of this local maximum, eventually failing

as before in general instability.

Figure 46 is one of the interaction curves experimentally deterxmined by
Okubo, et al [ 86] for the case of no intvrnal pressure. The solid lines
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represent a curve-fitting of the experimental data. Essentially the same

failure loads were found for the same specimen tested on two different dates.

For concentrated loads Q less than about 0.03 1b, the critical moment is
unaffected: The concentrated load simply produces an imperfection that is
less than or equally severe to those already present in the unloaded shell.
For large concentrated loads, local instability or snapping precedes general
instability. The moment-deflection curve has a local peak analogous to that
shown for the axially compr..ssed oval cylinder in Fig. 4 of Ref. [430]. The
critical moment corresponding to general instability exceeds that corres-
ponding to local snapping and is independent of the value of the concentrated
load Q. 1In this range of Q the imperfection created by the concentrated
ivad acts essentially as a cutout, as shall be seen from results presented
next. For the intermediate range of Q the critical moment depends on Q and
the load deflection curve monotonically increases until failure of the shell

occurs in a general instability mode.
Collapse of Axially Compressed Cylindrical Shells with Cutouts

Rectangular Cutouts: Figures 47 - 53 pertain to this section. Figures 47

and 48 show a buckled cylinder which has two diametrically opposed rectangu-

lar cutouts. A plot of load vs. normal deflection at a point on the edge of

the cutout is given in Fig. 49, along with a prediction of failure -from

r

linear bifurcation buckling theory. In this case the bifurcation analysis

¢

[}
v .'..|.l.ll

underestimates collapse by more than a factor of two. The bifurcation model

! !
ot

predicts the load at which the vertical edge of the cutout buckles. It is

clear why this load does not correspond to failure of the structure: As
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bending occurs near the vertical edges of the cutouts the compressive

stresses are redistributed away from these regions and the
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load is carried by the remaining portions of the shell. Thus, the shell
shown in Figs. 47 and 48 collapses after significant stress redistribu-
tion has taken place. 1In the rost-bifurcation range the deformations in
the neighborhoods of the cutouts have the effect of making these cutouts

appear bigger structurally than they do v. sually.

Note that in this case the relationship of the bifurcation buckling load
estimate to the actual collapse load is opposite to that for the case in
Fig. 45. This is because the consequences of the nonlinearity are differ-
ent for the two situations. The geometry change in the cylindrical panel
with the concentrated load weakens the panel globally and does not result
in any alternative means for the storage of strain energy. Similarly, the
geometry change in the cylinder with the cutout weakens the structure.
However, the weakening, local in this case, has a different result: Strain
energy is transferred from the rapidly deforming regions to other regions
which are capable of accepting more axial compression before becoming

unstable.

In general, one can assume that if the bifurcation buckling mode is fairly
local and if alternate post-bifurcation load paths are available, then a
linear bifurcation buckling model will yield a conservative estimate of the
collapse load. On the other hand, if the bifurcation buckling mode is
global and if precollapse deformation is significant, global, and of an un-
favorable nature (e.g., curvatures decreasing), and if no alternative locad
paths are available in the post-buckled state, then the linear bifurcation
buckling model will generally yield an unconservative estimate of the col-

lapse load.
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Figures 50 - 52 show compariscns between test and theory for buckling
of cvlinders with two diametrically opposed rectangular cutouts [ 87].
The STAGS computer program [ 48] was used for the analysis. Figure 51
shows how the axial stress is redistributed away from the cutout edge as
local bending occurs there. Figures 50 and 52 show that the agreement
between test and theory is very good even though these axially compressed
cylinders are very thin (R/t = 437). The cutout is large enough that it
represents a predictable imperfection that is much more significant than
the unavoidable, random, unmeasured imperfections in middle surface geom-

etry, thickness, material properties, and boundary conditions.

Figure 53 gives load-deflection behavior and a linear bifurcation buckling
load for an axially compressed cylinder of the same geometry as that shown

in Fig. 50 withthe rectangular cutout reinforced. Collapse initiates in the
neighborhood of Point B. The effect of the axial stiffeners is to absorb

the axial load that would otherwise pass through the siiell near the vertical
edge of the cutout, as seen in Fig. 51, and to prevent bending of this

edge. Thus, the bifurcation load is increased substantially. I- fact,

the bifurcation load is no longer a conservative estimate of collapse

because random imperfections begin to play a significznt role. The stiffeners
along the cutout edge drastically reduce the precollapse & formations near
the cutout and thus make the cutout appear to be a smaller imperfection

than formerly. Consequently, because of the relative inci:ase in signifi-
cance of random imperfections, comparisons between test and theory for shells
with reinforced cutouts show less agreement than do those with unreinforced

cutouts.
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Circular Cutouts: The STAGS computer program [ 48] has also been used for collapse

analysis < axially .ompressed cylinders with circular cutouts [ 88]. Figure 54
shows a discretized model. In [ 89] Starnes reports the results from a
large number of tests on cylinders with circular cutouts. He finds from the
experimental results that a parameter a = &/vﬁﬁidetermines the shell behavior
where f is the radius of the circular cutout. For cylinders with relatively
small cutouts, this conclusion is verified by the analysis reported in [ 88].
However, for cylinders with sufficiently large cutouts, the value oi < cannot
alone determine the behavior of the shell. With two cutouts, for example,

the critical load must be zero when #/a = m/2. This will occur for a/h= 100
at o = 5m, and f~r a/h = 490 at o = 10m. Therefore, for cylinders with rela-
tively Jurge cutouts, there must be separate curve branches for different alh
values in the Pbr versus ¢ diagram. This was found to be the case when the
critical loads were compared for two cylinders with: = 6. The cylinder

witn %/z= 0.3 and a/h = 400 carries a significantly larger axial load than

one with #/a= 0.6 and a/h= 100.

Results obtained from the analysis with uniform shortening are shown in Fig.
55, together with a curve fitted to these computed data and the obvious
locat‘ons of the end points of the curves. Test data for a cylinder with
two cutouts were provided by Starnes. These are also plotted in the figure,
and it appears that experimental and theoretical results are in very close

agreement.

It may be noticed also that virtaally the same critical load is obtained
whether the cutout is circular or square. Figure 56 shows the outward
displacement at the cutout edge (midlength) as a function of the applied

axial load fo:; two cylinders with o = 1.5, one with a circular and one with
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a square cutout. Because of the difference in amplitude of the normal
displacement at the edge of the cutout, the result that a cylinder with a

square cutout can carry as high a load as a cylinder with a circular cutout

is somewhat unexpected. The x»ascn seems to be that larger displacements

at the edge of the square cutout allow a more significant stress redistri-

bution to occur.

Collapse of Axially Compressed Noncircular Cylinders

Axially Compressed Elliptical Cylindex

Load vs. end shortening curves for perfect and imperfect elliptical cylinders
are shown in Fig. 57. The cylinder has a length of 1.0 in., a thickness
of 0.0144 in., and semiaxes of lengths 1.75 in. and 1.0 in. Young's modulus
is 107 psi and Poisson's ratio is 0.3. It is submitted to a uwniform end
shortening with the edges free to rotate but restrained from moving in the
radial and circumferential directions. The load-end~shortening curve for

the perfect shell is that indicated by OABC. The other curves correspond

to imperfect chells with the imperfection shape given by

wimp/t = -Zsin(mx/L)cos (66) ( 31)

In a test on this shell, sudden changes in the deflection pattern (buckling)

would be noticed at A, B , and C. Notice that the shell may carry more

load than the initial peak A indicates. While the primary buckling load A

is rather sensitive to imperfections, it appears that the second maximum B

- is relatively insensitive to imperfections. Hence, it may be suitable as

-

a design limit.
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The curves Aw vs. S at the bottom of Fig. 57 are buckling modes cal~
culated by subtraction of displacement vectors obtained in two sequential
steps in end shortening and normalization of the result. Such a subtrac-
tion yields the shape of the fastest growing displacement component, which
might be interpreted as a buckling mode. BAs one traces one's way along

the load-deflection curve OABC, the axial stress in the shell is constantly
being redistributed by the local growth of normal displacement. For
example, early in the load history the most rapid growth of normal displace-
ment occurs at the point labeled S = 2.2, the area of minimum curvature.
This growth relieves the axial stress there and permits loading above the
initial peak A. At point B the most rapid growth of normal displacement

is about halfway between the ends of the minor and major axes. This growth

relieves the axial stress in the corresponding area and thus permits load-
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ing to an even higher peak, C, where the rapid growth of normal displacement
occurs near the end of the major axis in an area of relatively large curvature.
The results shown in Fig. 57 were obtained with use of the STAGS computer

program [ 48].

Axially Compressed "Pear-Shaped" Cylinder

A similar stress redistribution phenomenon occurs in the case of the non-
circular cylinder, hal® of w.: h is depicted in Fig. 58(a) The behavior of
this shell subjected to uniform end short<uing was also investigated with
the STAGS code | 48]. The theoretical results given in Figs 58(b-4)
are based on a two-dimensionally discretized model with 45 circumferen-
tial nodes and 9 axial nodes covering one-half of the circumference and

one-half of the length.
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As seen from Fig. 58(b) the iinear range in this case represents less
than 1/30 of the total load histoxy of the shell. The rapid change in
slope of the load-~deflection curves at about P=100 b corresponds to

rapid growth in normal deflsction (buckling) of the flat portions of the
shell. Associated with this rapid growth in w is a redistribution of
the axial stress so that the curved portions begin to take up a larger
percentage of the +total axial load P. As more and more of the axial

load is borne by the curved portions, the slope of the load-end-shortening
curve increases until just before collarse, at which load the entire
structure fails. Figures 58(c) and 58(d) show the circumferential
distributions of normal outward displacement w and axial compression/length

Nx at the shell midlength for P=1164 1b. At this load both w and Nx

-

are growing very rapidly with P in the curved portions 0 < @ 5_45o

-~
L
“
.--

and 90° < @ < 157.5°.
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The rather complex behavior .n this case indicates the need for a flexible
strategy for calculation of collapse loads of shells. Small load steps
and frequent refactoring of the equation system matcix are required in the

load region between 100 and 200 1b, even though the displacements are rela-

S

tively small in this range. Farther out on the load-end-shortening curve,

LSy

s

\

where the displacements are larger, rather large load steps can be used and

few refactorings are necessary. Just before collapse many small load

LA e g
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steps and frequent refactorings of the stiffness matrix are again required.
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Efficient use of the STAGS code, or any code for predicting nonlinear be-

Py

havior of shells, requires a sophisticated iteration strategy built into
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it and a well-trained user to take advantage of tais strategy.
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Axially Ccmpressed Cylindrical Shell With Local Load Path Eccentricity

Practical shell structuares are often built up of several parts fabricated

at diffcrent places. These parts must be assembled to create the finished
product. The mating of the various parts often gives rise to instability
problems which do not exist for th: separate pieces, the design of which

may not have included consideratior of these "global" problems. Figure 59
represents such an assembled shell structure. It is a missile interstage
with two sections, a forward adaptor made of composite material from mis-
sile station (M.S.) 170.0 to M.S. 175.4, and an equipment section made of
aluminum from M.S. 175.4 to M.S. 182.8. There is an aluminum primacord
backup ring with a cavity for primacord at a notched separation joint at
M.S. 177.0. This ccmplex cyiindrical shell structure must withstand axial
compression during launch. The most severe problem of instability arises
from inward excursion of the axial load path in the region between M.S.
175.4 and M.S. 177.6, shown enlarged in Fig. 60. This axisymmetric inward
excursion causes axisymmetric deflections shown in Fig. 61, which was
obtained with use of the BOSORS computer program | 47]. Failure of the
complex structure is due to elastic-plastic collapse in the short, thin
(t=.07 in.) aluminum section located at M.S. 175.9 and denoted Segment(:)

in Fig. 60. 1In a test of this structure failure occurred at a load within

one percent of that predicted irn the analysis.
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Section 3

BIFURCATION BUCKLING IN WHICH NONUNIFORMITY
OR NONLINEARITY OF THE PREBUCKLING STATE IS

IMPORTANT

Introduction

All ot the examples in this section involve axisymmetric shells. The
feature that unifies these examples, that makes it logical to include

them all in this particular section, is the major influence of certain
nontrivial aspects of the prebuckling solution on predictions of bifurca-
tion buckling loads. Whereas the emphasis in the last major section was

on nonlinear collapse rather than bifur.:ation buckling, the emphasis here

is on bifurcation buckling with nontrivial prebuckling behavior. As was
pointed out before, bifurcation from a nonlinear prebuckling state is of
practical interest only in configurations with a great deal of symmetry.
That is why the applications here all involve axisymmetrically lcaded shells

~f revolution.

There are two principal kinds of influences that the prebuckling t*-ate has
on the bifurcation buckling load: (1) The prebuckled loacded shell has a
different shape from the unloaded shell; given a membrene prestress dis-
tribution this new shape may be more likely or. less likely to lose its
stability than the original undefcrmed shape; (2) The prebuckling membrane
stress distribution is an important factor; given a prebuckled shape of
the shell, the membrane stress distributions calculated from linear or

nonlinear analysis and membrane or bending shell theory may drastically

.

affect the predicted bifurcation buckling load and mode shape.
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In this section many examples will be given in which the combination of these

two influences is present.

Summary

The section opens with several examples of nonsymmetric bifurcation buckling
in the neighborhood of an edge. It is shown that this edge buckling is due
primarily to local circumferential (hoop) compression which is greater near
the edge where local meridional bending is significant than remote from tne
edge where a membrane prebuckled state prevails. Many figures follow
which involve a closely related situation -- nonsymmetric bifurcation
buckling due to localized hoop compression sometimes near an edge and
sometimes not. One of the most important effects demonstrated is the

i-eat influence of prebuckling axisymmetric shape change on predicted bi-
furcation buckling loads. Next, several examples are given of nonsymmetric
bifurcation buckling of shells of revolution in which meridional tension

is combined with circumferential compression. Particular emphasis is given
to elastic-plastic bifurcation buckling of internally pressurized tori-
spherical shells, a complex problem for which both prebuckling shape change
and nonlinear material properties greatly affect the prediction of the

critical load. The chapter closes with an example in which the nonsymmetric

bifurcation buckling load is near the axisymmetric collapse load. The

w.; results of experimental and theoretical investigations of an elastic
G
RN .
Lo idealized model of a water tank are compared with a more complex elastic-
S
L0
) . . . . :
o plastic model in which certain fabrication processes such as cold bending
[~
E}f and welding are included in the simulation of failure of the large steel
:tx\ water tower illustrated in Fig. 3.
e
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f!!1 Bifurcation Buckling due to Edge Effects

and Localized Circumferential Compression

LSEMEAR
.

o

e
"ﬁz( Bifurcation Buckling Due to Edge Effects

o

e

_;;f Cylindrical Shell Under Axial Compression: Figure 62(a) shows the postbuckled
z-i state of an axially compressed cylindrical shell. 1In Fig. 62(b) the predicted axi-
:;:— symmetric prebuckling state and nonsymmetric bifurcation buckling mode
B 4 »
;:v: corresponding to 18 circumferential waves are shown on either side of a dis-
i;‘f cretized generator. The generator of the lower half of the cylinder is divided
;:if into two segments. Nodal points have been concentrated in the relatively
8.

R short edge segment in order to obtain converged solutions for the pre-

LSS

v i buckling state and the bifurcation buckling load and mode. The solution was

-~ " -

f;ﬁ: obtained with the BOSOR4 program { 14]. Further details on thig case are

-

f;f given in Figs.29 to 32 and associated discussion in Ref.[430]. In near-perfect
» \ -
L shells edge buckling occurs before general instability remote from the

-i:: edge and before axisymmetric collapse near the edge because of the narrow

;}Qf band of hoop compression combined with the axial compression thac occurs

“r,

‘ﬁ?; only in the edge "boundary layer." This hoop compression as well as nonlinear
.;{: behavior due to moderately large axisymmetric prebuckling meridional rotation
: jii cause an approximately 20% reduction in the bifurcation buckling load
. - ;. . 2

!. belcw the classical value of Ncr = .605 Et /R.
D"~ W

7

\': -

e Such edge buckling is often not observed in axially compressed very thin
:!!ﬁ elastic cylindrical shells because of the presence of initial random im-

=

Z}}k perfections which act as triggers for buckling at isolated locations any-

e

Q;{ where in the shell. The axial load corresponding to the edge buckling mode

A A
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is not especially sensitive to initial imperfections. However, the axial
load corresponding to the classical buckling formula, Ncr= .6 Et2/R, is
extremely sensitive to initial imperfections. Therefore, a small imperfec-
tion located at some point remote from the edge will trigger buckling at

a lower axial load than will a larger imperfection located within the

bending "boundary layer" near the edge.

Thicker metallic cylindrical shells that buckle in the plastic range exhibit
axisymmetric collapse which initiates at the edges as shown in two of the
photographs inserted in Fig. 6. Bifurcation buckling does not occur before
axisymmetric collapse in these cases because the axisymmetric prebuckling

hoop forces that resist changes in diameter are diminished due to yielding,

;f’, the amplitude of the edge bulge increases faster in the plastic region due
j}f to the increase in Poisson's ratio to 0.5 for incompressible flow; and
e the doubly curved bulge that develops near the edge resists nonsymmetric
o
L buckling.
f;ﬂ The load =t which these thicker shells collapse can be fairly accurately
;jj predicted tecause the shells, being thicker, are easier to make more perfectly;
Jff' because the material softens so drastically within a fairly small range of
[ﬂjn stress; and because the critical mode of failure-axisymmetric collapse near the
LS
y edges~resembles a built-in non-random predictable, prebuckling imperfection:
"jé" local axisymmetric bulges that grow near each end of the cylinder.
e
B :,.-"
g
-
Externally Pressurized Spherical Caps with Edge Rings: Figs, 63—~ 68 and Table 3

o
o

' @
P

i
ey,

pertain to this section. Bifurcation buckling Is due to the narrow band
of circumfereniial compression that develops near the edge. Figure 63 gives

comparisons between ‘“heoretical results obtained with use of the BOSOR4

64
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computer program [ 14] and experiments performed by Wang [ 93]. The
normalizing factor P is the classical buckling pressure of the complete
spherical shell. Figure 64 shows the prebuckling distributions of
circumferential compression for two models of Wang's test specimen, and Fig.
65 gives predicted nonsymmetric bifurcation buckling modes corresponding
to two values of edge moment Mo, which was applied in the tests by hanging

weights from a small projection attached to the edge ring.

There are two factcrs other than external pressure that influence the ampli-
tude of the local a:irisymmetric prebuckling circumferential compression:

the eccentricity (el,ez) of the edge ring and the fixed edge moment Mo.

The influence of ring eccentricity is indicated in Fig. 64. The test,
described in [ 93], most resembled case 1. In case 2, the shell is con-
sidered to penetrate the ring and terminate at the ring centroid. In the
two cases shown, the external pressure is assumed to be reacted by an

axial load acting through the ring centroid. Buckling occurs at the pres-
sures p_ indicated, and the predicted buckling pattern with 18 circumferen-~
tial waves is concentrated in the area near the edge, where the hoop stress
resultants are maximum compressive. In this case, the predicted buckling

pressure is most sensitive to the axial component e, of the stiffener

2

eccentricity. Because of this component, the meridional resultant NlO
produces a clockwise moment about the ring centroid, which acts to reduce
the destabilizing hoop compression near the edge of the cap. Notice that
the local hoop compression distributions corresponding to the two very dif-
ferent values of critical pressure, ;br(Case 1) = 0.619, Phr(Case 2) = 0.357,
arc very similar, providing a clue that it is this quantity that has the

greatest influence on the bifurcation buckling load and not the meridional

compression or the prebuckling shape change of the spherical cap.
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For cases such as this in which bifurcation buckling is due to a localized
effect, the predicted buckling load is often very sensitive to seemingly
insignificant changes in the structure or in the analytical model of it.

The results in Fig. 64 provide an example. If the analyst nerceives that
such a buckling phenomenon may occur, for instance, if he performs a

stress analysis and notices local regions of destabilizing compressive mem-
brane forces, he should take great care with the modeling. ZILocal load path
eccentricities, meridional discontinuities, prebuckling shape change ef-
fects, and prebuckling geometric and material nonlinear behavior should be
faithfully modeled and included in the stability analysis. If a stress
analysis reveals a local band of circumferential compression, then a bifur-
cation buckling analysis should be performed. The minimum buckling load will
generally correspond to a rather high number of circumferential waves, as
shown in Figqg. 65. A reasonably accurate estimate, at least to within an
order of magnitude, of the critical circumferential wave number can be cal-
culated from the assumption that the axial and circumferential wavelenths

of the buckles will be of approximately the same lengths. If the analytical
model of the structure is reasonably good, the predicted buckling load

should be fairly close to test loads. Sensitivity to imperfections is much

less important in such cases because the structure has a built-in local im-
: perfection that is generally large compared to any random manufacturing er-
'- rors. Note that the local stress concentrations implied in this discussion
RS
b may cause some plastic yielding of the material. Bifurcation buckling lcads
S will be overestimated if this material nonlinearity is neglected.
DR
b - -
::?3 Figures 66~ 68 and Table 3 reveal the effect of ring size on predicted bifurca-
TR . . . . .
AN tion buckling pressures of spherical caps of various depths. The theoretical
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results were obtained with an early version of BOSOR. The ring has a
square cross section and its centroid is assumed to coincide with the edge
of the spherical cap. In Fig. 66 the normalized critical pressure is
plotted versus a rather complicated ring area parameter A* = (A/at)(cl/t)l/2
through which the dependence of the normalized buckling pressure pcr/pcl
on radius-to-thickness ratio a/t is almost eliminated for a given value

1/4(a/t)l/2

of shell shallowness parameter A = [12(1—v2)] 0. The dependence

of pcr/pcl on A is weak even though the predicted meridional bifurcation

mode shape and critical circumferential wave number vary a great deal. There
is a strong dependence of the pcr/pCl on the degree of edge fixity, A¥*.

The critical pressures for A*»> agree with those calculated by Weinitschke

[ 94] and Huang [ 95] for clamped caps. The degree of reduction exhibited
by Wang's tests below the theoretical critical pressures for perfect shells

is reasonable for spherical shells with similar shallowness parameter A as

seen in Figs. 30 and 37.

Figure 67, which corresponds to a cap with a/t=100, A =16, shows the pre-
buckling state at the critical pressure ratio p = pcr/pcl for various values
of edge ring parameter A* and bifurcation buckling modes for two extremes,
A*=0 (free) and A*+» (clamped). The mode shapes have peaks that coincide

with the peaks in the circumferential compression.

Buckling of Shallow and Deep Spherical Caps: Figures 63 - 67 apply to

shallow caps in which the edge angle o is less than about one radian. The
most important factors influencing the bifurcation buckling pressure for
such configurations are the prebuckling hoop compression just in from the
edge and the stiffness of the shall wall. The buckling mode is an edge mode

of the type shown in Fig. 65 for a rather high value of A (A=25) and in

67



Fig. 67{d) for a lower value of A (A=16). The buckling modal displace-
ment is small at the edge. For shallow caps supported as shown in Fig. 67
there are two reasons why the buckling displacement almost vanishes at the
edge for o < 0.88 rad: (1! with small edge rings a band of stabilizing
hoop tension develops with increasing pressure as shown in Fig. 67(b); (2)
with large edge rings the area moment of inertia of the ring prevents non-

symmetric buckling.

A different kind of buckling occurs if the edge ring is reasonably small and
if o is greater than about 1.2 radians. With o > 1.2 radians and A* < 16,
the nonsymmetric buckle pattern of a spherical shell is almost inexten~
sional with n = 2 circumferential waves. The maximum buckling displacement
occurs at the edge where the ring ovalizes. The buckling load can be very
small compared to the classical load, a phenomenon that is pointed out bv
Cohen [ 96] in the case of axially compressed cylindrical shells with ring-
supported edges. As seen from the results listed in Table 3, for

p*

6.4 the inextensional mode occurs only for 1.57 < o < 2.26. With

a 2.65 and 2.92, "classical" type buckling occurs and the buckling load
is almost independent of n. For these cases the ring is of such a size
that the prebuckling equilibrium state is almost exactly a uniform mem-—

brane contraction. When A* > 25.6 or when the very deep shell is hinged at

the edge, buckling is again an edge phenomenon.

Figure 68 shows buckling modes of spherical shells with a/t = 100,

o= 2.65 radians, and A* = 0.4, 6.4, and 25.6. The figure illustrates the

different types of buckling reviewed next in connection with Table 3.
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Table 3 lists dimensionless buackling loads pcr and corresponding circum-
ferential wave numbers n for shells with a/t = 100 and 0.22 < o < 2.9 radians.
The shells are supported as shown in Fig. 67 and A* = 0, 0.4, 1.6, 6.4, 25.6,
and », The value A* = ® corresponds to clamping at the edge. Buckling loads

are also shown for shells hinged at the edge.

Inspection of Tabl. 3 reveals that, in the range of rarameters investigated,
four types of buckling occur: axisymmetric collapse, n = 0; edge buckling

n > 2; inextensional buckling, n = 2; and "classical" buckling ( %r almost
independent of n). Table 3 is divided into regions according to the type
of buckling behavior exhibited. When the shell is very shallow (o = 0.22)

it collapses axisymmetrically for all edge conditions. There are values of

o, such as o = 0.33, for which the type of buckling depends on the degree

of edge fixity.

When A* > 1.6 and a = 0.33 the shell buckles into two waves. The buckle pat-
tern, while not confined to a narrow region near the edge, does involve
considerable stretching of the middle surface, and the buckling of these
shallow shells might be classified as an edge phenomenon. The buckling of
shells with a = 0.495 and 0.88 (A = 9 and 16) is an edge phenomenon for all
types of edge conditions. Prebuckling and buckling displacements are shown
for the X = 16 case in Figqg. 67, which was discussed previously. It is
seen that the bucklirg loads associated with edge buckling are not strongly
dependent on the edge angle a. Buckling loads calculated for o = 0.495 and
0 = 0.88 with A* +o agree with the loads for clamped caps calculated by

Huang in Ref. [ 95].
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Buckling Due to Localized Hoop Compression

The examples in this section are similar to those of iLhe last, the differ-
ences being that buckling is not necessarily at an edge and in several of
the cases thec nrebuckling change in shape of the shell has a major influence
on the bifurcation buckling load. Fi-st, thermal buckling of cyvlindrical
shells will be described. The buckling of an internally pressurized ellip-
soidal rocket motor dome will be discussed. In both of these problems pre-
buckling chape change has a significant influence on the predictions of bi-

furcation buckling.

An example will follow which is similar to that shown in Figs. 59-61; the
localized hoop compression is caused by an axisymmetric inward excursion of
the load path. The difference here is that failure is due to nonsymmetric

bifurcation buckling ratner than axisymmetric collapse.

Thermal Buckling of Cylindrical Shells

Introduction: In the problems examined in this section the most important single in-
fluence on bilurcation buckling is the axisymmetric change in shape of the cylinder
in the prebuckling phase. This shape change is most pronounced just where

the localized destabilizing axisymmetric hoop compression is maxin'm and is

a stabilizing influence, since its effect is to transform a developable sur-

face intc a riore stable doubly curved surface, as will be seen. The discus-

sion here cowes from ref. [ 97].

Two problems are treated: an "infin.te" cylinder heated uniformly over half
irs length and a clamped cylinder with an axial thermal gradient near the

edge. In both cases the cylinders are free to expand axially. The cylinder
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heated along half of its length does not buckle at any temperature because
the destabilizing effect of the circumferential band of hoop compression near
the thermal discontinuity is more than counteracted by the stabilizing effect
of the shape change of the cylinder as it is heated. Predicted buckling
temperatures of clamped cylinders are strongly dependent on details of the
thermal gradient very close to the clamped edge. Agreement with test results
is obtained only if prebuckling meridional rotations are included in the

stability analysis.

Thermal disccvtinuities, or rather high thermal gradients, arise

P
o,

0
'

at "hard points" or heat sinks such as ring stiffeners and bulkheads. Junc-

'I .‘ r
WLty

“ =

tures between dissimilar materials or boundaries of an environment, such

I

as the surfacz of a cryogenic fluid, also give rise to thermal stresses

@

which vary rapidly in the axial direction. Several authors [ 28 - 103]

S
Ve
A

have treated problems of this sort. Hoff [ 98] calculated buckling loads
for uniformly heated simply-supported cylinders; Johns [ 99] did the same
for uniformly heated clamped cylinders; and Anderson [ 100]}and Chang and
Card [ 3101] calculated buckling loads for cylinders under combined axial
compression and nonuniform heating. In the work of Hoff and Johns, it is
assumed that the temperature distribution is axisymmetric and that no axial
restraint exists. The predicted buckling is caused by hoop compression near
the simply-supported or clamped edges, which decays rapidly with increasing
distance from the edge. 1In the work by Anderson [ 100] and by others at
Stanford University [ 104 - 106] the temperature either varies around
@ the circumference or the cylinder is assumed to be rigidly fixed at the
bou.daries. Buckling in these cases arises because of axial thermal stresses,

not from hocp stress- -~ This section is not concerned with this latter

‘ class of problems, examples of which will be described later.
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The purpose of this section is to describe the effect of prebuckling deforma-
tions on the predicted buckling temperature of axisymmetrically heated
cylinders which are not axially restrained. Two problems are treated: buckling
of a cylinder with a sudden change in temperature along its length, and
buckling of a cylinder clamped at its edges and heated along its length
with steep gradients near the end supports. In both cases the cylinder

is free to expand in the axial direction.

Buckling of Cylinder Heated Halfway along Length: Figure 69 gives the

geometry, m-terial properties, temperature distribution, and prebuckling

solution. The cylinder is shown to be 2000 in. long and 200 in. in diametexr.

;f: The cylinder length is immaterial, however, provided that it Iis large com-
b
‘ir: pared to twice the axisymmetric boundary-layer length (about 60 in. in

this example) and large compared to the longest buckling wavelength (about

50 in., as seen in Fig. 72(a)). In the computerized anralysis "symmetry"
conditions are applied at the ends of the cylinder in order to simulate
infinite length. The prebuckling solution shown in Fig. 69 is given by
Fiugge [ 107]. 7f the cylinder is to buckle, such behavior would be
caused by the narrow band of hoop compressive stresses occurring adjacent

to the tempecature discontinuity on the hot side. The prebuckling solu-
tion for a uniformly heated cylinder simply-supported at the location of the

temperature discontinuity is similar: the amplitude of the hoop stress is

doubled, no solution exists, of course, for x < 0, and the 1/2 in the
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expression for w in Fig. 69 becomes unity.
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In Ref. [ 102] it is mentioned that the uniformly heated simply-supported

cylinder analyzed by Hoff | 98] apparently does not buckle at any tempera-
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ture. This rather odd prediction results only if the prebuckling deformations
of the shell are accounted for in a consistent manner in the stakility analy-
sis., In Ref. [ 102] it is suggested that perhaps the moderately larxge
rotation limitation used in the shell theory is responsible for the peculiar
result. Because of the investigation described here, it is now felt that

the prediction of no buckling is physically realistic. As the shell is
heated the compressive hoop stresses grow, it is true. However, the gene-
rators become curved in the neighborhood of the compressive stresses and
this curvature "stabilizes" the shell. Apparently, as the temperature in-
creases further, the further increase in curvature more than makes up for
the increase in hoop stress, so that the shell becomes more, nct less,
stable. Mathematically this behavior is reflected in the growth of the
stability determinant with increasing temperature for any circumferential

wave number, n.

The case shown in Fig. 69 behaves in a manner analogous to the simply-
supported uniformly heated cylinder. Figure 70 shows the stability éeter-
minant as a function of increasing temperature rise for n = 14 circumferen-
tial waves. (This is the critical tvvave number if prebuckling rotations Bo
are neglected in the stability analysis.) These results were calculated
with the BOSOR4 computer program [ 14]. The stability determinant is the

determinant of the coefficient matrix of the equation shown in Fig. 70.

This eguation is discussed in Ref. [430] . (See Eq.76 in Ref. [430] )

.
s N
.

VP PPy
e

o . . . .
-~ The stability determinant exhibits the monotonically increasing behavior
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=~ on_y if the prebuckling deformations are accounted for. In order to check
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the correctness of the theory in which the shape change of the shell is
accounted for in the stability analysis, a model was constructed which
treats the prebuckling shape change as independent of the temperature,

a sort of given, fixed imperfection. Buckling analyses of several dis-
torted cylinders were performed, where the prestress hoop compression is
given by the distribution shown in Fig. 69 and the initial distortions
or imperfactions represent the prebuckling shapes corresponding to vari- =s
amplitudes To of temperature rise. Figure 71 shows results for three
"imperfect" cylinders, the properties of which are given in Fig. .69. The
imperfection shape is given by the expression for w in Fig. 69 with

TO = Oo, 25000, and 50000. The eigenvalues were determined from an analy-
sis in which further prebuckling meridional rotations from the initial
imperfect state are neglected. The critical circumferential wave number n
increases as the prebuckling meridional curvature increases, and the curves
never cross, indicating that at any wave number the stability determinant
will never vanish as temperature is increased, provided that the shape
change of the cylinder is included in the equations governing stability.
Note that it has not been proven beyond any doub:t whatsoever that such is
the case. The results obtained herein given a strong indication that
ruckling will nnt occur. Furtlhermore, the physically realistic explanation

given previously supports this hypothesis.

Figure 72 srnws the prebuckled shapes of the shells and the buckling mode
shapes. Both the axial and circumferential wavelengths of the buckle pattern
become shorter as the decree of prebuckling distortion increases. These
results apply to a shell witb radius-to-thickness ratio of 100. Similar
results (with higher wave numbers n and shorter axial wavengths) were
obtained for a/t = 500. It seems probable that no buckling will occur for

any simply supported cylinder heated as shown in Fig. 69. It has not
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been shown that buckling will not occur independent of the axial distribu-

tion of temperature. Such a proof is beyond the scope of this section.

Buckling of Axisymmetrically Heated Clamped Cylinder: Johns [ 99, 108]

performed tests and obtained theoretical results. The effect of prebuckling
deformations is not included in the analysis of Ref. [ 99]. Figure 73
shows a clamped cylinder with the same a/t as that tested by Johns, et al

{ 108]. symmetry conditions are applied at 500 in. from the clamped end,

a distance approximately equal to lO(at)l/z. Nodal points are concentrated
in the edge zone 100 in. in length where prebuckling and buckling displace-
ments vary rapidly. Two buckling modes and critical temperatures are given
in Fig. 73: the one with 140 circumferential waves corresponds to a case
in which the prebuckling rotations Bo are retained in the stability analy-
sis, and the one with 100 circumferential waves corresponds to Bo being set
to zero in the stapility analysis. This latter solution is about half of

that computed by Johns. The solution including prebuckling rotations is

only half of the experimental buckling temperature obtained by Johns.

The large discrepancy between the test and the theoretical results given

in Fig. 73 for uniform heating can be explained by the presence of th~> .l
gradients near the boundaries of the cylinder. Figure 74 shows several
agradients, including the gradient measured by Johns, Houghton, and Webbexr

[ 108] and another measured by Ross, Hoff, and Horton in tests reported

in Ref. [ 104]). These gradients arise because of the relatively large

heat sinks present at the clamping supports. Also shown ir Fig. 74 are

the test configuration, material properties, and circumferential temperature

_
1"

‘eCing;
,. /‘ '.. ‘.

- distribution for the Johns' test [ 108, 109].
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-gure 75 shows buckling temperatures calculated for the Johns' cylinder

(a = 7.0 in., t = 0.00275, E = 27 x 106 psi, v = 0.287, a = 11.5/°C with
the various gradients and with and without the effect of prebuckling rotation
80. The "best"solution shown in Fig. 75, in the sense that the most accu-
rate analytical model is used, is represented by the curve labeled "Johns'
Gradient," 8°¢ 0. The critical temperature, 280°C is still somewhat below
the test result, a disturbing finding since one suspects that although
this edge buckling phenom=non is not very sensitive to initial imperfections,

any imperfections in the hell should cause the oppusite situation to occur.

In order that this discrepancy be explained, a further inquiry into the
~hape of the edge gradient was made [ 109]. It was found that the tempera-
ture at x = 0 was not measured, but was extrapolated from the readings
labeled<:>, (:), (:) in Fig. 74. Furthermore, the two thermocouples

on the bulkhead, labeled (:) and <:) in Figqg. 74, measured temperature

rises of 9, 16, and 8.7OC {(mean va® 23s for 7 tests). Therefore, it was

feit that the temperature at x = 0 might have been somewhat less than 47%

L 4
.
I
Law

x,
S,

- of the maximum, as indicated in Fig. 74. M sensitivity study was performed

ir. which the temperature at the edge was varied from 2(% to 47% of the maxi-
mum value. The trial gradients and analytical results are shown in Fig. 76.
Circumferential waves corresponcding to the critical temperature are shown

in pasentheses. The effect of prebuckling rotations becomes increasingly

;{: significant as the steepness of the gradient increases. The lowest values
Qiuj on the curves are the same as the minima cf the curves labeled Johns'
L Gradient in Fig. 75. Test and theory are brought into agreement by a

snall and physically reasonable adjustment of the edge temperature.
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In Webber's letter [ 109] other reasons were given for possible discrepancy
between text and theory: buckling was measured by dial gages located along
the generator labeled "290°C" in Fig. 74, not along the generator where
the gradient was obtained. The critical temperature was recorded when these
gages indicated large out-of-plane deflections. This happened a short time
after the onset of buckling. Also, the shell thickness varied from 0.0025
to 0.0030 in., vhereas a nominal value of 0.00275 has been used in ihis

analysis.

Pesults corresponding to gradient 1 and gradient 2 are included in Fig. 75
in oxder to provide more data on the sensitivity of thermal buckling loads

to details in the shape of the edge gradient. The Ross edge gradient is

given in Fig. 74 to demonstrate the possibility of rather large nonuniformi-
ties in experimental temperature distributions. In order that good correla-
tion L~tween tests and analytical predictions be obtained, it is clear that
temperature distributions have to be carefully controlled and measured in

tests and variations accounted for in analysis.

Buckling of an Internally Pressurized Rocket Fuel Tank

Figures 77 - 79 pertain to this section. The geometry of the problem
is shown in Figs. 77 and 78. Un.er small internal pressure the portion
of the rocket fuel tank depicted in Fig. 78 is drawn radiallr inward as
shown greatly exaggerated in Fig. 79 (a), resulting in development of a
narrow band of hoop compression that might lead to bifurcation buckling.
Figure 79 (b) shows a bifurcation buckling mode predicted with use of
BOSOR4 [ 14]. The modal normal displacement component wb(s,e) varies
around the circumference as wb(s) cos 908. The prediction sh:m in Fig.
79 (b) corresponds to bifurcation from the linear prebuckled state

with prebuckling meridional rotation BO neglected in che stability analysis.

17
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At * top of Fig. 78 is shcwn a bifurcation buckling mode predicted
with use of linear theory. The modal normal displacement compcnent Wy (s,8)

varies around the circumference as wb(s) cos 90s.

This is a problem for which use of linear theory in the prebuckling phase

of the analysis is inadequate. As the internal pressure is increased the
ellipsoidal dome changes shape. The hoop stresses are redistributed and grow
more slowly than linearly with pressure, as indicated in the bottom part cf
Fig. 78. As the internal pressure p is increased, the hoop resultant

becomes tensile in the region where linear theory predicts bifurcation
buckling to occur, and the peak hoop compression initially increases more slowly
than predicted by linear theory, eventually reacking a maximum value of

about -800N/mm at a pressure of 1.4 N/nmz, after which it decreases with
further increases in internal pressure. Thus, the prediction with non-
lineer prebuckling effects included is that bifurcation buckling will not
occur at all. More will be written in a Tater section on buckling of

internally pressurized torispherical shells, which exhibit similar behavior.
Local Buckling at a Field Joint in a Large Rocket Payload Shroud

In Fig. 5 is illustrated a local failure of a large corrugated payload

shroud which was subjected to axial compression and bending. Most of Fig.

78




5 is repeated in Fig. 80. The nature of the problem is similar to the
complex missile interstage shown in Figs. 59 - 61: The failure is trig-
gered by the axisymmetric inward excursion of the axial load path at Station
468. In this case, however, buckling initiated in the elastic range of
material behavior and the failure was due to nonsymmetric bifurcation rather

than axisymmetric collapse.

Figure 80(d) shows why buckling occurs. Under the axially compressive test
1oad the field joint ring at Station 468 rolled over a small amount because

the doubler above it was slightly thinner than the doubler below it. Figure 81

Eaiis
«, . N

displays the model analyzed with use of the BOSOR4 program [14]. Figure 82 (a) shows

the distribution of axisymmetric prebuckling radial displacement w for 60 inches

on either side of the field joint at Sta. 468. Most of the cylindrical shell
moves radially outward due to the Poisson effect. However, in short regions
on either side of the field joint, where the external corrugations are

cut away, the axial load path is deflected inward from the neutral axis of
the cross section of combined corrugations and skin to the middie surface

of the skin and doubler. This inward deflectinn of the load path creates the
localized hoop compression that causes nonsymmetric bifurcation buckling

in a mode shown in the photograph in Fig. 80 (c) and plotted in Fig. 82 (b).
Because of the short axial length of the circumferentially compressed region,
the critical mode has a rather large number of circumferential waves (n = 35).

Further details on this problem are given in Ref. [3].
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Bifurcation Buckling of Spherical Shells

Under Meridional Tension Combined with Hoop Compression

Axial Load Applied Uniformly Over Latitude with Finite Radius r,
Figure 83 demonstrates the buckling phenomenon. Tension is applied through
the vertical rods which are attached to rigid spherical mandrels inside

the shell. The lower hemisphere is completely supported by an interior
mandrel and a little less than 45° of the top part of the upper hemisphere
is so supported. A single buckle (a) initially forms at some axial load,
which can be further increased until a multi-lobed buckle pattemn (b)
develops around the entire circumference. Bifurcation buckling is due to
the band of hoop compression that develops between the supported regions.
The buckles are elongated in the axial direction because of the meridional
tension. Yao ! 110] studied this phenomenon both experimentally and
analytically and Bushnell [ 111] performed a computerized nonlinear analy-

sis. One of Yao's post-buckled specimens is shown in Fig. 84.

Table 4 shows critical loads rlvcr(l - \)Z)Et2 for 0.05 <a

and R/t = 100, 455, and 1600. (r,, 0y.0,

< 1.
1 2 1.16 rad

, V are identified in rig. 85.)

Values for a, are given in thé footnote. Spherical segments of this geom-

etry buckle near the edge at al when al is less than about 0.9 rad. The

buckling loads are independent of ¢, when it is greater than the values

2
specified in the footnote of the table. The critical loads in the column

headed "linear" are calculated from stability equations in which the pre-

buckling stress resultants, N. and N__ are given by membrane theory values

10 20
NlO = —N20 = rVR/r2 and the prebuckling mericional rotation Bo is set equal
80
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to zero. The critical loads in the column headed "nonlinear" are ob-

tained from the same stability equations, except that N , and Bo

10’ N20

are calculated from the nonlinear equations presented in Chapter 2. The

values of n when al > 0.25 correspond to the minimum r

mum is included in the calculations for al 5_0.20. Columns are also included

V. _(n). The mini-
1l cx

in which ercr is calculated from a "semiempirical" equation to be given.

The following facts emerge from an inspection of Table  4:

increases as r. increases.

1) The critical load P = 27r. V
cr lecr 1

Ei{f 2) The linear theory can be applied over a larger range of Oy for shells
with greater R/t. The values of rl\'cr for the nonlinear theory are always

greater than those for the linear theory.

3) When oy < 0.2, the nonlinear theory predicts buckling into a greater

number of circumferential waves than does the linear theory. This discrepancy
increases with increasing thickness.

4) The value of ercr and t = corresponding value of n approach ap-

rcepriate limits as o, > 0, as shall be seen.
p L 14

1

In addition, the solutions for R/t = 455 and 1600 with al = 1.16 and a2 = 1.57

rad are quite close to the theoretical results of Ref [ 110]. Yao obtained

buckling loads r (1 —'\)2)/Et2 = 0.591 and 0.553, respectively, for these

v
1l cr

cases.

P
.

[

Figure 85 shows the axial prebuckling displacement uvo/t, the normalized stress re-

*
[y
-

2
suitant N2O(l -V )(R/t)/Et, and the modal normal displacemen: w/t plotted
/2

’
€ vt

o,

« v Y
»

Vs s/(Rt)l for o, = 0.7 and R/t = 100 and 1600. The maximum displacement

1

'n.'

£_ 4
ree

in the buckling mode occurs where N, _  is maximum compressive. It is seen

20

P}
l.l
I3

that this maximum compressive hoop stress is Zfairly close to the local value

£ 02 &, 8
.5

predicted by membrane theory; this is also shown *a the figure.
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It is possible to derive simple approximate formulas for the buckling load
rVcr and the corresponding wave number n. These formulas are derived with
the help of physical reasoning and experimental or computer-generated data.
Such a formula for the buckling load is
2
2y ¢

2
r Vcr(l -V )/Et2 = 0.622 sinz[a1 + 3.1/(R/t)1 ]

1 32)

The number of circumferential waves in the buckle pattern can be pr:dicted

accurately by means of the equaticn
n = 1.84(R/t)1/251n[a1 + 4.2/(R/t)1/2] ( 33)

Equa-ion 32 is derived through the following assumptions: (1) Buckling
. . 2 .
occurs when the maximum negative value of N?O(R/t)(l—v )/Et = 0.622, inde-

pendent of shell geometry. (2) The point a* which N,  is maximum compres-

2

20
sive is located a distance 3.1(Rt)1/ from the edge at ayr and its value at

that point can be determined accurately from membrane shell theory.

Equation( 33) is derived through the following assumptions: (1) The maxi-

mum normal displacement w in the buckling pattern occurs where N__ is maxi-

SN 20

;?i: mum compressive. (2} The circumferential wavelength is proportional to
é;;; (rt) /2,

N

p -

:ﬁ‘i‘ There is a current important engineering problem to which this type of buck-
-

:%;E, ling of spherical shells applies. Very large spherical tanks fri cransport-
\.-".-

fif— ing liquid nstural gas (Figs. 86(a) are supported on short cylindrical
P

bl shells as illustratec in Fig. 86(b). when the tank is less than half

T,
.

M4

v,
2"

3

filled the weight of the 1iquid natural nas creates axial tens.on that might

e o Ny
LA
P R
v

."
.
W,

cause buckling of the type shown in rigs. 83 or 84.
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Pedersen and Jensen [ 112] have studied this problem. Fig. 87 chows

results from their analysis.
Axial Ioad Applied at a Point

Figure 88 shows the post-buckled state of a very thin spherical shell
with axial tension applied at a point rather then over a finite radius -
Table 4 lists critical loads for small o and al = 0. As might be ex~
pected, nonlinear prebuckling effects are very important in this case.
From Table 4 it is seen that for al_i 0.05 rad the critical loads in
the column headed "nonlinear" are much higher than those in the column

headed "Linear."

Table 5 gives dimensionless loads PR/Et3 and wave nurber n as func-
tions of R/t. For practical purposes, PR/Et3 is independent of R/t when
R/t is greater than about 500. In the entire range R/t > 50 the buckle

pattern has 8 circumferential waves,

Figure 89(a) shows the dimensionless vertical prebuckling displacements
qu/t and the dimensionless circumferential stress NZO(l —\)2)(R/t)/Et for
the loads at which bifurcation occurs in 8 circumferential waves. The
valuzs of R/t used in the calculations are 50, 100, 455, 160(, and 3040,
Iisplacemer.ts and stresses are plotted vs a dimensionless arc length

s/(Rt)l/z. As might be expected, the maximum displacement occurs at the

@ point of load application. The maximum compressive hoop stress occurs at

o 1/2 . 2 .

‘7:J s/ (R%) = 4.25 and Nzo(l -v17) (R/t)/Et = (1.667. 1ne values of N20 cal-

F?}i culated from memkrane shell thecry are also shown in Fig. 89(a).

A3

e

£

F::,;‘ 83

E .)-'.\_ RS . SO S PN T T T T e e e = - T T T T e T T T T T e S Y. L. "Dt Pl W Yol WO Sod Y




and

Figure 89 (b) shows the modal displacements w/t, (v/t)(R/t)l/z,

1/2
(uH/t)(R/t) / corresponding to bifurcation in an 8-wave pattern. The

raximum displacemen:s occur near the point where the maximum prebuckling

/2

compressive hoop stress N occurs. For R/t Z_SO, w/t,(v/t)(R/t)l

/2

20 » and

1
(uH/t)(R/t)

are almost independent of R/t when these quantities are
1 .
plotted vs s/ (Rt) /2. The displacements are confined to fairly shallow

porticns of the spherical shells.

Buckling of Internally Fressurized Vessel Heads
Introduction
The examples presented here fall into the ¢ .ie cla.s &S5 those of the previous
section: buckling under meridienal tension c.. “.ined with hoop compression.
However, the shells descceibed here are rot sphe. cal. The problem is of
special significance to designers of pressure vesscls, many of which have
torispherical or ellipsoidal heads. BAn example of a typical post-buckled

pattern for an elastic shell is shown in Fig 90.

This class of problems is particularly interesting .~ *use in the range ©of

practical design parameters predicted behavior is found to be sensitive

TR

to prebuckling geometric nonlinearity as well as ma“eria) aonlinearity,

¢

P
[

Po et e

the former effect increasing the critical pressure and .'.z latter decreas-

[y

ing it. Therefore, the problem serves as an excellent demnstration of the

i

:;j kinds of nonlinear phenomena an engineer should be aware of when he under-

.ng takes a stability analysis. The description here applies %o both torispheri-

5%&5 cal and ellipsoidal vessel heads, although most of the applications shown

L in Fig. 90 - 104 and Table 6 are to torispherical hea.’s.

N

‘E:; Interest in internally pressurized torispherical heads was stimul ew dy the
!% failure of a large fluid coker undergoing a hydrostatic proof test -.' Jwvon,
NS 84
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California in 1956. The failed vessel is shown in Fig. 3 Galletly

[ 113, 1] determined from an elastic, small-deflection analysis that the
stresses exceeded the yield point of the material by considerable margins
over substantial portions of the vessel. Galletly's work [ 113] stimu-
lated Drucker and Shield [ 114, 115] to perform limit analyses of .nells
of revolution using simplified yield surfaces for a Tresca material. Other
elastic-plastic analyses of torispherical sbhells were published by Gerdeen
and Hutula [ 116], Crisp and Townley [117], and Simoren and Hunter

{ 118]. calladine [ 119] precented a noval analysis of the limit pres-
sure of torispherical heads which gives results similar to those obtained
by Shield and Drucker [ 115]. Savé [ 120] conducted a series of tests

on torispherical, toriccnical, and flat heads. Several papers on the
elastic-plastic analysis of pressure vessel heads may be found in Ref. [ 121},
including contributions by Gerdeen [ 122], Mescall [ 123], and Marcal

[ 124). oOther references to work in thi: area are given by Esztergar [ 125].

The possibility of nonaxisymmetric buckling of internally pressurized tori-
spherical heads was first predicted by Galletly , 1]. Fino and Schneider

[ 126] reported such buckling in a head designed according to the ASME code,
but at a pressure slightly below the design pressure. It is likely that the
unexpectedly low buckling pressure resulted from nonaxisymmetric imperfeciions
generated when spherical and toroidal gores were welded together to form the
very large head. Mescall | 127] was the first to present a solution of che
nonaxisymmetric stability analysis. He used elastic small deflection tlieory.
Adachi and Benicek [ 128] conducted a series of buckling tests on tori-
spherical heads made of polyvinyl chloride (PVC), chosen primarily because

of the high ratio of yield stress to Young's modulus, which ensures that buck-

ling occurs before large-scale yielding. The correla“ion of elastic analysis
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with these tests wes much improved by inclusion of nonlinear geometric ef-

fects. Thurston and Holston [ 129] were the first o account for moderately
large axisymmetric prebuckling meridional rotations in the stability analysis

of these heads. Since publication of Ref. [ 129] many computer programs

have been written which calculate nonsymmetric buckling loads of arbitrary

elastic shells of revolution including geometric nonlinearity in the pre-

buckling analysis and prebuckling shape changes in the stability analysis

[ 11 - 14].

Recently, several papers have appeared on nonsymmetric buckling of elastic-
plastic pressure vessel heads: Brown and Kraus [ 130  calculated critical
pressures for internally pressuriz=2d ellipsoidal heads with use of small
deflection theory. Bushnell and Calletly [ 131] found buckling loads for
externally pressurized torispherical heads pierxced by nozzles and for
conical heads with use of large deflection theory in the prebuckling analy-
sis, and Bushnell and Galletly [ 132], Lagae and Bushnell [ 133], and
Galletly [ 134, 135] used the BOTORS computer program to compare theoret-
ical predictions trith tests by Kirk and Gill [ 136], Patel and Gill [ 137},
and Galletly [ 134, 135] for buckling of internally pressurized tori-

spherical and ellipsoidal heads.

Cause and Characteristics of Nonsymmetric Bifurcation Buckling

Figure 91(a) shows a discretized model used for the BOSOR5 onalysis of a

oy @

e %5~
PR

torispherical head. Finite difference nndal points are concentrated in the

Y
[d

3

):#: region where buckles are expected to appear. Figure 91(b) is a schematic
Ay
%
f::: of the meridian as deformed axisymmetrically by internal pressure. Circum-
L
Y
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ferential (hoop) compression develops wherever the radius r is dimin-

ished from the undeformed state. It is this hoop compression that c:uses
ronsymmetric bifurcation buckling. The value of the buckling pressure pcr
depends most strongly on the value and meridional distribution of the

hoop stress resultant N 0’ on the curvature of the deformed meridian in the

2

region where N__ is compressive, on the material p-operties, and of course

20

on the thickness of the shell. The circumferential bending rigidity Cqs(Eq. (84)

of Ref. [430] ) is probably the most important component of stiffness in the

calculation of the stability determinant because the critical circumferen-
t:al wave number n_. is usually very high for such a geometry and the
strain energy associated with the buckling mode thus varies approximately
as Cssnci . Figure 94(b) shows typical buckling modes corresponding

to an elastic analytical modl. The buckles are shown outward although of

course they vary as cos508 and cos908 in the circumferential direction.

The development of visible buckles such as shown in Fig. 90 is a process
and not the single event predicted by a bifurcation (eigenvalue) buckling
analysis. As the pressure in a test specimen is increased above some
critical value a very localized isolated incipient buckle forms in the
knuckle region, invisible to the naked ey: but detectable by a sensitive
probe or a strain gage. The buckle grows slowly at first and then more
rapidly, and suddenly becomes visible. This wvisible buckle generally
covers most of the knuckle region in the meridional direction but has a
very short circumferential wavelength. After formation of the first
buckle the pressure can be further increased substantially, causing the
formation of other visible buckles in the knuckle region, each one iso-
lated circumferentially from its neighbors, as shown in Fig. 90. An

isolated bucklergenerated by circumferential compression in the knuckle
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region, apparently causes the relief of this compression within a sector
surrounding the buckle, thereby preventing the formation of the uniform
buckle pattern typical of buckled axially compressed cylindrical or exter-

nally pressurized spherical shells,

The theoretical results shown here are derived from an analysis which is
founded on the assumption that we are especially interested in the pressure
at which the first incipient buckle forms. Thereforxe, buckling is treated
as a single event, predicted by means of the eigenvalue formulation sum-

marized in the previous analysis section,

Difference in Elastic Behavior of Ellipsoidal and Torispherical Heads

Figure 92 shows the hoop stress resultant distribution in an elastic 2:1
ellipsoidal head compared to that in a similar torispherical head with
geometry as shown in the Figure. Dimensions of the ellipsoidal shell are
shown in Fig. 93(a). The buckling mode in the torispherical head has

a maximum at a location nearer to the axis of revolution that does that
in the ellipsoidal head, corresponding to the different locations of the

peak compressive hoop resultant at the critical pressure.

Elastic Bifurcation Buckling

Accurate prediction of bifurcation buckling loads in the elastic range of
material properties requires an accounting for nonlinear geometric effects
in the axisymmetric prebuckling analysis and inclusion in the nonsymmetric
stability (eigenvalue) analysis of the fact that the prebuckled head has

a new axisymmetric shape.
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Figure 93(a) shows a discretized model of an ellipsocidal head analyzed with
BOSORS [ 47]. The axisymmetric prebuckling deflected shape is shown in Fig.
93(b) and a nonsymmetric bifurcation buckling mode with critical pressures

from linear and nonlinear theories are given in Fig. 93(c).

What causes the difference between the buckling pressures calculated for elas-
tic material with small deflection theory and with large deflection theory?
Fig. 93(d) helps to explain. The predicted bifurcstion pressure depends on
the distrikution of the meriiimnal and hoop stress resultancs and on the

wall curvature in the area where the first buckles appear. The values of
these quantities depend on whether or not moderately large deflection effecte

are included in the analysis.

Assuning that the wall material remains elastic, the most significant determinant
of the buckling pressure for a shell of given properties is the hoop stress
resultant N2O in the area of *he knuckle where buckling occurs. Fig. 93(d)
shows that in this region N20 does not grow linearly with pressure but quite

a bit more slowly. The slower-than-linear growth of compressive NZO in the
axisymmetric prebuckling regime is due o two factors: As the pressure is
increased the ellipsoidal shape "tries"™ to become more sgherical. For a

small internal pressures, a given increment in pressure causes a relatively

large snape change because the meridional curvature varies steeply in

the region where N__ is compressive. For higher internal pressures the varia-

20

tion of meridional curvature has become more gradual and the given pressure
?

increment therefore causes less of a further change in shape. The second

and smaller factor causing slower-than-linear growth of N20 is the pressure-

- rotation effect. The nonlinear growth of N20 explains why the buckling

pressures from nonlinear elastic theory are higher than those from linear

«

F ]

theory.
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There is another nonlinear prenomenon which has the orposite effect on the
buckling load: As the rressure is increased, the meridional curvature dimin-

ishes in the region where buckling occurs, as can be seen from Fig. 93(b).

!

his axic¢yrmetric decrease in meridional curvature in the prebuckling regime

has t

oy

e effect of reducing the circumferential stress resultant required to
cause buckling. The midlle curve in Fig. g93(d) gives the critical hoop re-
sultant distribution predicted with use of sma'l deflection theory -- a
theory which neglects the reduction in meridional curvature due to the axi-
symmetric i rebuckling change in chape of the ellipsoidal head. Notice that
this critical hoop resultant distribution is cenerally larger in absolute
value than is the critical distribution of N o predicted with use of large

2

deflection theory.

Figure 93(e) shows the buckling modes from the large and small deflection
analyses. The peaks in the buckling modes follow the same trend as the peaks
in the distribution of compressive N20'
Similar nonlinear geometric effects are present in the case of torispherical
prossure vessel heads Figure 94 (a) shows a discretized model of a tori-

spherical head of the type tested by Adachi and Benicek [ 128]. BAnalytical

and experimental results for elastic torispherical heads of various geometriesare
giver. in Fige. 24(b) and 235. The nonlinear theory always leads to prediction of
higher buckling loads and these predictions are generally in much better

agreement with the tect results than are the predictions obtained with use

of linear theory. The nonlinear results from BOSOR5 are in reasonably good

:

agre=ment with the critical pressures predicted bv Thurston and Holston

129]. Typical buckling modes are shown in Fig. 24 (b) .
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Elastic-Plastic Bifurcation Buckling

Figures 96 (a) and (b) show post-buckled states of a small machined tori-
spherical head made of aluminum and a large torispherical head fabricated
bv forming. Buckling for these heads occurred in tre plastic range of
material behavior. The buckles are isolated from cach other and have short
citcumferential wavelengths, as observed for the elastically buckled model
shown in Fig. 90, but they protrude from rather than indent the shells.
This protruding mode was observed in the post-buckled specimens tested by

Galletly [134, 135], Kirk and Gill [136], and Patel and Giil [137].

The two biggest effects of plastic flow oa the predicted bifurcaticn buck-

ling pressure are the following:

1. The rate of change of the compressive hoop stress resultant with increas-
ing pressure is strongly dependent on the rate at which th: material

strain hardens;

2. The integrated constitutive coefficients {DTOJ (See Eq. 255 of Ref. [430])

aver reduced from their elastic values.

Figures 97 (a) and (b) show the peak hoop resultant as a function of in-
ternal pressure for two values of post-yield hardening modulus ET. A
typical behavicr of mild steel torispherical shells is that they buckle
nonsymmetrically at pressures for which the hoop compression is aiminish-
ing in the knuckle region, as shown in Fig. 97 (¢). (Yielding initiates

in this shell at 106 p/E=1.33) Figure 98 shows the very large differ-

ence between predictions of prebuckling stress from linear and nonlinear

™

analvses. The nonlinear results were obtained
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by application of BosoP5 | 47] to a specimen tested by Adachi [128],

and they agree with the measurements.

Table 6 lists test and predicted incipient buckling pressures for many
of the internally pressurized torispherical machined specimens analyz=d
vith BOSOR5. The nominal dimensions of the specimens are given in Table

6. The quantities, t, R , Rt'
o]

Ps’ and Lc are the nominal thickness,
radius of the cylinder to which the head is attached, radius of the
toroidal knuckle, radius. of the spherical closure, and length of the

cylindrical portion to which the head is attached, respectively.

The thicknesses of the test specimens varied in both the circumfercrtial and
meridional directions. Typical circumferential variations of thickness in
the toroidal knuckle where buckling occurs are shown in Fig. 99. BOSOFR5
runs werz made using the minimum thicknesses measured at each meridional
station. In the BOGOPS5 models as well as in the actual specimens the

thickness varied in the meridional direction by as much as 30%.The differ-

ences in the BOSOR5 predictions for specimens with the same nominal yeometry

arise from different meridionally varying thickness distributions used in the

discretized models.

Plastic flow prior to bifurcation buckling occurs in a fairly broad axi-
symmetric band near the junction between the spherical and toroidal
portions. Stress-strain curves for the specimens and maximum effective
strains at buckling are shown in Fig. 100. There is reasonably good
agreerv 1t between test and theory for the aluminum specimens. Discrepan-

cies may be due to the fact that the actual specimers were nonsymmetric
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because of circumferentially varying thickness and meridian profile,

whereas the BOSCORS models are axisymmetric. Also, the material flow law
(associated with von Mises yield surface) and hardening law (isotropic)

may not be adequate to describe the actual plastic behavior. Figure 101
shows that with a small amount of strain hardening the path followed by a
material point in stress space as the pressure is increased monotonically

is sharply curved. We do not yet understand metal plasticity well enough

to be able to predict with certainty the state of a structure that has under-

gone nonproportional biaxial loading.

In general the BOSOPS computer program [ 47] seems to predict bifurcation
buckling at a location nearer to the sphere-torus junction than observed

in the tests, and tbe critical circumferential wave number obtained from

the theories in which plasticity is included are somewhat lower than the values

observed from the post-buckled states of the specimens.

From Table 6 it is seen that the buckling pressures predicted with use of
deformation theory are somewhat less than those obtained with use of flow
theory. The primary reason for the lower values associated with deformation

theory is that the constitutive law coefficient D (Eg.(225)in 430]) includ-

7550
ing elastic-plastic effects, is considerably smaller in the region where
buckling occurs if deformation theory is used. This coefficient relates the
change in circumferential curvature during buckling to the change in cir~um-
ferential buckling mome. + resultant, and is especially important because the
circunferential wavelength of a buckle is small. Therefore the circumferen-

tial bending energy required to form a buckle is perhaps the most signifi-

cant part of the total strain energy balance associated with buckling.
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The test and theoretical results for the four mild steel specimans are not
in close agreement, as seen in Table 6. A detailed explanation is sug-
gested in Ref. [ 132]. To summarize here, it is possible that the buckling
mode associated with the lowest predicted eigenvalue grows very little in the
post-buciiling regime and so this mode was therefore not observed in the tests.
This explanation seems likely in view of the characteristic shown in Figs.
97(b) and (c¢) that the compressive hoop resultant in the knuckle region
decreases steeply after yielding of the elastic-perfectly plastic material.
Also likely is the fact that because circumferential nonuniformities in
the thickness of test specimens cause relatively large circumferential pre-
bifurcation bending strains to develop asthe pressure is increased, the com-
pressive destabilizing circumferential stress resultant grows move slowly
with increasing pressure than predicted by the axisymmetric BOSORS model.

A more detailed explanation is offered in Ref. [ 132].

From Table 6 it is seen that use of Iinear elastic theory always leads to
a lower prediction of bifurcation buckling pressure than use of nonlinear
elastic theory. The reasons for the different predictions are given in the

discussion associated with Fig. 23.

Figures 102 - 104 pertain to aluminum torispherical specimens tested by
Patel and Gill [ 137). Figure 103 gives comparisons of predicted and

measured incipient buckling pressures for the heads shown in Figs. 102 (a)
and (b). The ranges of pressures over which the buckling patterns were ob-

served to develop are also indicated in Fig. .103. 1In Fig. 103;

EAC“ = pressure at which the first buckle was fully developed,
- . . 1
ECLEAR pressure at which the first buckle could be felt by
rouching the surface of the specimen,
EINCIPIENT = pressure at which the first buckle was detected by a

sensitive probe revolved around the circumference at
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a station in the toroidal knuckle.

Figure 104 shows the growth of a minute incipient buckle pattern in one of
Patel and Gill's specimens over a pressure range 0.402 < p < 0.617 MN/mz.
Again, we see that in actual specimens what we are characterizing as a
sinjle event called "bifurcation buckling" is actually a process that occurs

over a finite range of internal pressure.

Results given by Lagae and Bushnell [ 133] indicate that reasonably accur-

ate predictions of incipient buckling can be obtained with models in which

constant thickness is assumed, the model thickness being taken as the average

TleNalil

Fes

measured thickness along the tor~idal knuckle meridian for which this average

is minimum. The quality of the theoretical predictions of incipient buckling

el

as well as the behavior of the test specimens as the pressure is increased

e«
oo

above the incipient buckling pressure indicate that these types of vessels

[
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are not particularly sensitive to initial imperfections.

Conclusions about Bifurcation Buckling of Iinternally Pressurized Heads

1. The major effect of moderately large axisymmetric prebuckling deforma-

tion is to cause the band of circumferential compression which occurs in the

knuckle to increase more slowly than in proportion to the pressure, as shown in

Figs. 93(d) and 97. Thus, buckling pressures predicted with use of geometrically
nonlinear prebuckling theory are higher than those predicted with use of

linear prebuckling theory (Table 6).

2. A smaller counteracting influence of moderately large deflections is due
to the effect of the increase in meridional radius of curvature of the
knuckle region during prebuckling deformations on the nonaxisymmetric

stability analysis: This curvature change causes a reduction of the pre-
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dicted buckling pressure from a value that would result if terms related to
it were dropped from the equations governing the stability analysis, as demon-

strated by the middle curve in Fig. 93(d).

3. For monotonically increasing pressure above that causing initial yield-
ing, the circumferential and meridional stresses in the knuckle do not in-
crease proportionally. The curvature of a path in stress sgace followed by

a given point depends very strongly on the amount of post-yield strain harden-
ing exhibited by the material from which the vessel head is fabricated:

The less the strain hardening, the more this path is curved, as shown in

Fig. 101.

4. As might be expected, the predicted buckling pre.sure obtained with
elastic-plastic anclysis is less than that obtained with elastic analysis

(Table 6).

5. Use of deformation theory rather than flow theory in the stability

analysis leads to lower predicted bucl ling pressures (Takle 6).

6. The distribution and magnitude of the hoop compression in the knuckle

region depends very strongly on the degree of strain hardening exhibited

by the material. The peak compressive hoop resultant in a vessel head fabri-

cated frow mild steel or other material with negligible strain hardening

increases initially with increasing pressure, but very soon starts to de-

crease as the knuckle is stressed into the plastic range, as seen in Pigs.
97(b) and {(c). 1In contrast, if the material exhibits a moderate amount

of surain hardening, the peak compressive hoop resultant continues to in-
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crease to higher pressures before it reaches a maximum value, as disclosed bty
Fig. 71a). This difference in behavior of the destabilizing hoop resultant
affects the strategy to be used for calculation of hifurcation buckling

eigenvalues, as pointed out in Ref. [ 133].

7. Buckling occurs only for very thin specimens. For example, with 2:1 heads
nonsymmetric buckling cccurs only if the diameter-to-thickness ratio is
greater than about S500. It is not presently within the state of the art to
fabricate by machining specimens of reasonable size for testing in the labora-
tory with thickness variations around the circumference less than five to ten
percent. These small nonaxisymmetric variations cause the growth of circum-
ferential waves in the knuckle at pressures well below the buckling pressure.
It is felt that the circumferential nonuniformity is responsible for rather
large discrepancies between measured and predicted strains in the knuckle
region of torispherical shells for pressures exceeding the proportional

limit of the material.

8. The observed buckling pressure depends on how buckling is defined. 1In
the tests on torispherical shells performed by Galletly [ 134], the first
buckling pressure is defined asthat pressure at which the first buckle be-
comes visible to the unaided eye. 1In the tests by Kirk and Gill [ 136],

the buckling pressure is defined as that pressure at which a short-wavelength
disturbance is first detected by a sensitive displacement transduc2r rotated
around the circumference at the midpoint of the knuckle. In one of Kirk and
Gill's specimens there was more than a 50 percent increase in the pressure
from that at which the transducer detected a small wave to that at which the

wave grew to such a size that it became visible.
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9. Finally 1t is concluded that in order to obtain a fuller unders’ *ncing

of the elastic-plastic behavior of thin vessel heads under interval p:essure,
a better understanding of the biaxial flow of metals subjected -o r7Tuprcpor-
tional loading is needed, as well as the capability to manufac.ure ver- thin
test specimens in which the *tolerance on axisymmetry of thickress .= “wout an

order of magnitude smaller than is possible with state-of-the-art fabrication

techniques.
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Bifurcation Buckling Near the Axisymmetric Collapse Load

A Summary of Examples Already Described

We have already seen many examples in which nonsymmetric bifurcation buckling of
shells of revolution occurs near the axisymmetric collapse load. The classi-
cal equation for buckling of a monocogque cylindrical shell under uniform

axial compression contains nou reference to the number of circumferential

waves. Indeed, it is disclosed in Ref.[430], Fig.29 that for very thin cylinders,
use of nonlinear theory leads to a prediction of axisymmetric elastic collapse
due to bending near the edge at an axial load only 20% higher than that
corresponding to nonsymmetric bifurcation buckling with n, = 18 circumferen-
tial waves. The thicker axially compressed cylinder shown in Fig. 6 fails
initially in an axisymmetric collapse mode, but just after the peak in the load-
deflection curve has teen passed a nonsymmetric deformation pattern begins to

develop, indicating the presence of a bifurcation point near the maximum load.

The two-column shallow truss shown in Fig. 10 displays simultaneous Sym-
metric collapse and bifurcation buckling for a certain value of the shallow-
ness parameter h/L, as demonstrated in Fig. 12. The shallow spherical cap
under uniform external pressure exhibits analogous behavior. Shallow spherical
caps clamped at the edge fail by axisymmetric collapse and bifurcation buckling
at the same pressure for a value of the shallowness parameter A of about 6,

as seen in Fig. 37. Caps with edge rings act in a similar fashion, as

revealed by the predictions listed in Table 3 for small edge angles.
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The axisymmetric collapse and bifurcation buckling loads of fairly thick
ring-stiffened cylinders under external hydrostatic pressure are often close.
Figures 35 and 36 indicate that inclusioa of room temperature creep leads
to a prediction of axisymmetric collapse at a slightly lower load than that
corresponding to nonsymmetric bifvrcation buckling predicted for the same
model with creep neglected. Similar differences in buckling behavior might be
expected to result from application of hydrostatic pressure to two similar
ring-stiffened cylinders, one made of a material that displays less strain
hardening than the other. The specimen made of the milder ma: evial is more
likely to collapse axisymmetrically whereas the other might buckle nonsymmetri-

cally, depending on geometry.

Finally, infinite and finite length long straight pipes under bending fail by
collapse due to smooth flattening of the cross section combined with a short
axial wavelength wrinkle or bifurcation buckling mode that develops just
before the peak moment is reached, as shown in Figs. 39 and 43. With a
high enough external pressure applied in addition to the bending moment,

the wrinkling mode develops just after the maximum in the moment-curvature-
change path has been attained. Figure 42 (L) indicates that collapse and bi-
furcation buckling occur at almost the same critical moment for cylinders

of any length. Certainly this is true for very short cylinders because these

behave, at the circumferential location where axial compression is maximum,

in a way similar to cylinders under uniform axial compression. We have already
seen from Fig.29 of Ref. [430] that axisymmetric collapse and nonsymmetric bi-

furcation buckling for uniformly axially compressed cylindrical shells occur
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Failure of a Water Tank

In 1972 in Belgium a steel water tower of 1500 m3 capacity collapsed as it
was being filled for the first time. This accident and analyses of the struc-
ture are described in [ 2Jland[ 140]. Figure 3 shows the tower after
failure and its overall dimensions. The zollapse occurred when the water was
almost at the maximum level for which the tank was designed. It is felt that
collapse probably initiated in the conical section near the deepest water
level. Figure 3(b) shows a wrinkled meridian at this location which

gives credence to this hypothesis.

As might be expected the catastrophic failure of such a large, expensive, and
fairly complex shell structure motivateda engineers to seek an explanation.
Professor Vandepitte, Dr. Lazae, and their coworkers at the University of

Ghent in Belgium tested models made of mylar | 141]. Figure 105 shows

a specimen before and after collapse which occurred when the model was

filled to a level 38 cm above the clamped base. With linear prebuckling analy-
sis the BOSOR4 computer program [ 14] yields a prediction of a critical load
factor p = 1.12 corresponding to nonsymmetric bifurcation buckling with 14
circumferential waves. In other words, if a prebuckling stress state is cal-
culated from linear theory corresponding to a water level of 38 cm, and a solu-
tion is obtained of an eigenvalue problem of the type in Eq.(123)in Ref.[430], in
which Kl is the stiffness matrix of the unloaded shell and K2 is the load-
geometric matrix corresponding to the membrane stress resultants in the

wall of the tank when it is filled to a level of 38 cm, the lowest eigenvalue

A catresponds to n = 14 circumferential waves and its value is A = p = 1.12.
The predicted buckling mode is shown in Fig. 105(d). Buckling is caused

by meridional compression which is maximum at the clamped base. This com-
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pression is combined with a circumferential stress resultant distributed
as shown in Figq. 106. The phenomenon is analogous to buckling of an

axially compressed cylinder with internal pressure.

Figure 107 shows a plot of maximum prebuckling normal deflection w vs loaa
factor p corresponding to the tank with internal hydrostatic pressure linearly
varying over the constant axial distance of 38 cm above the clamped base. The
problem is solved here in a slightly unrealistic way: The level of the fluid
is held constant at 38 cm, which corresponds to the level at which failure
occurred in the test. The amplitude p of the linearly varying normal pres-
sure is increased in increments, indicated by points on the prebuckling load-
deflection curve shown in Fig. 107. Thus the load paths in stress space

seen by theoretical material points in the BOSOR4 model are different from
those actually experieaced by the corresponding points in the shell wall during
the test. As long as the predicted load multiplier is fairly close to unity
this path difference is immaterial, since no path-dependent plastic flow
occurred in the test specimen. Even if plastic flow does occur before pre-

dicted failure, which as shall be seen is the case for the BOSOR5 model of

the large steel water tower shown in Fig. 3, the path difference is very
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small in the critical region if buckling occurs over a relatively short merid-
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ional distance near the bottom of the tank:as it does in the elastic model

¥

(Fig. 105(c,d)).

In Figure 107 bifurcation buckling points Ppy and Pb corresponding to the

-@ B
Ey:. critical number of circumferential waves, ncr = 14, are shown on the linear
&jif: and nonlinear prebuckling load-deflection paths. The buckling modes in both
S cases are almost identical (Fig. 105(d)).
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i gure 108 shows the axisymmetric prebuckling displacement distributions
predicted from linear bending theory at p = 1.0 and nonlinear theory for two
load levels near axisymmetric collapse. The meridional variation of w at the
load multiplier p = 0.993 corresponding to collapse resembles the nonsymmetric

bifurcation buckling mode displayed in Fig. 105(d).

The theoretical and experimental results are very close, indicating that the test

model was well made and the critical load is not as sensitive to initial imper-
fections as one might expect for a very thin conical shell in which the destabiliz~-
ing prestress component is axial compression. There are two reasons for the
apparent milder sensitivity to initial imperfections displayed by this problem

than that for axially compressed thin cylindrical shells which it resembles:

The highest axial ccmpression occurs in a fairly local region near the clamped
base and, more significant , a stabilizing circumferential tension exists. It

has been found that critical loads for axially compressed cylindrical shells with
internal pressure are less sensitive to initial imperfections than are those
without internal pressure [ 34 ] One reason for this decreased sensitivity is that
the internal pressure increases the amplitude of the local axisymmetric bulges

near the edges, creating a rather large predictable imperfection that grows as

the axial load is applied. Without the intearnal pressure, a sim:lar bulge of much

smaller amplitude is created only by the Poisson effect.

o

.-,

&

n:1 The num=rical solution of this problem has many pitfalls. These arise from:
b

e

", (1) The close proximity of loads corresponding to axisymmetric collapse
.

tf and nonsymmetric bifurcation buckling;
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(2) The sensitivity of the results to nodal point distribution in
the critical area where buckling occurs;

(3) The numerical difficulty caused by the fact that the shell can
buclle under external pressure as well as internal pressure, leading
to the possibility that the smallest eigenvalue A of the system

represented by Eq.(123) of Ref.[439] might correspond to solution of the

wrong physical problem.

An Attempt to Predict Elastic-Plastic Buckling of the Large Steel Water Tower

Including Fabrication Effects

In this section an attempt is made to explain the unexpected collapse of the
steel water tower shown in Fig. 3 by accounting separately for residual
stresses and deformations caused by axisymmetric ©€01d bending or welding oxr mis-
match between structural segments. The analysis shows that axisymmetric models
of these effects do not explain the discrepancy between the predicted collapse
under hydrostatic pressure and the actual collapse in 1972 of the 1500 cubic-
meter tower. However, the modeling techniques and results are included here

to denonstrate how such effects might be accounted for in an approximate man-
ner and the influence they have on predicted collapse lonads. More is written

on this subject in the section on ring-stiffened cylinders. The results

described here were obtained with use of the BOSORS computer program [ 47].

Tank Configuration and Discretized Model: Figures 109(a) and (b) depict

the water tank geometry and discretized, segmented mndel for use with BOSORS.
Material properties, locations of discrete rings, and locations of circumfer-

ential welds are indicated in Fig. 109 (c) .
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Welding: Girth welds are located as indicated in Fig. 109(c¢) . These loca-
tions correspond to the junctions between Segments (9) and (10), Segments

(10) and (11), and Segments (11) and (12) ( 109(b)}. The water tower had
other girth welds, of course, but they were in locations which were less
critical for stability and therefore not included irn the BOSOR5 model. ILongitu-
dinal welds could not be included in the model because they produce a non-

symmetric residual stress and dinplacement pattern.

The welding process introduces destabilizing stresses and deformations because
of shrinkage of the weld material during cooling. The effects of weld shrink-
age are simulated in [ 8] and [ 142] by introduction of an initial thermal
loading phase in which it is assumed that a certain amount of material in the
local neighborhoods of each girth weld is cooled belcw ambient temperature to
a difference approximately equal to the annealing temperature. The amount of
cooling is also determined such that weld shrinkage amplitudes typical of
those observed in tests are generated. Faulkner [ 143] has observed radi.l
girth weld shrinkages of approximately 10% of the shell wall thickness. The
residual stress distribution thus generated is characterized by local tensile
cir~umferential yielding in the immediate neighborhoods of the girth welds and
elastic circumferential compression over broader bands of width proportional
to the "boundary layer" (Rt)l/z. in which R is the normal circumferential cur-

vature and t is the shell wall thickness. 1In addition to this residual stress

pattern, the girth welds introduce axisymmetric geometrical imperfections--

1 4

[ 1

local shrinlages that are amplified by the meridional compression generated

,l'l‘l./“l‘

LI
'
.

when the tower is filled with water.

A 4".

Figure 110(a) shows the assumed temperature distribution along the conical portion

of the water tower in which three girth welds are being simulated. 1In the BOSOR5

h
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analysis this thermal loading is applied first and the shell thus pre-
stressed is subsequently further loaded by the hydrostatic pressure. Figure

111 shows the weld shrinkages gererated by welding. The deformed meridians near
collapse, neglecting and including initial effects due to girth welding, are
shown in Figures 112(a) and (b), respectively. The guantity A is a load
factor s.ch that a factor Acr = 1.0 would indicate perfect agreement between

the numerical prediction and the actual collapse condition.

Mismatch: When the water tower is assembled, the middle surfaces of the various
sections are imperfectly aligned. 1In the BOSOR5 model it is necassary to re-
strict the mismatch to be axisymmetric. The two mismatch -onditicns investi-

gated here are shown in Fig. 110(b) .

Cold Bending: The tower was fabricated from steel sheet which was initially
flat. The various sactions were cold formed to the appropriate radii of curva-
ture. This cold forming operation is simulated by initial thermal loading cycles

in the develcpable Segments (1), (2), (4), and (7) through (12).

The procedure is described in detail in [ 142]. 1In each segment the ampli-
tude of the temperature, which varies linearly through the thickness as shown
in Figure 113, is initially increased in time to simulate cold bending to
a die radius, Ro' Subsequently, the temperature amplitude is decreased to
simulate springback to the final design radius of curvature, R. The maximum
temperature amplitude To is assumed tc be constant along the meridian in each

segment and is derived for each segment from the formula

a, T, o= t/(ZRb) ( 34)
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in which t 4is the shell wall thickness and Rb’ the average normal circumferen-

tial radius of curvature to which the segment is bent before springback, is
given by

l/RO

M| 12 (-v%) /ety + /R ( 35)
with

=
I

2 _ 2.1/2
- oyt /[4(1 Vo Vg ) ]

( 36)

for elastic-perfectly plastic material. In Eq. ( 34) a2 is the coefficient
of thermal expansion in the circumferential direction.

The coefficient of
thermal expansion in the meridional direction is assumed to be zero.

In Eq.
( 35) M is the maximum cold bending moment and R is the average normal

circumferential curvature in the segment after springback (given by the water
tower geometry). 1In Eq. { 36)

0& is the material yield stress (236 N/mmz).
Eq. ( 34) is derived from Eq.(35) of Ref.[142] and Eq. (35) is derived from

Eq. (17) of Ref. [142] . Eq.(36) appears as Eq.(17a) in Ref.[142].

The
quantity ve is the effective Poisson's ratio, taken as 0.5 here.

The time to complete relaxation of the cold bending moment is given by

= 2 3 B
toelax = (14 M| 12 (1-V%) R /BTt ; (£ = 1.0) ( 37)
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which appears as Eq.(15) in [ 2142}. Rather than using Eq. ( 36) for M in
calculating trelax' we use BOSORS to calculate the circumferential moment
M2(BOSOR5) corresponding to time t = 1.0 in Figure 113 and then set

M= MZ(BOSORS) in Eq. ( 37). This is done because the residual stresses are quite
sensitiv2 to trelax and M, as given by Eq.( 36)with v, = 0.5, is only an
approximation. The temperature amplitudes To and the relaxation times for

the various segments are given in Figure 113. After the thermal loading

cycle is completed at time t = 2.0, the hvdrostatic pressure loading is begqun.

Figure 114 shows the deformed meridian at time t = 1.0 (before springback),

t

2.0 (after springback), and at four hydrostatic pressurz amplitudes,

A

0.5, 1.0, 1.4, and 1.7. A = 1.0 corresponds to the hydrostatic pressure
amplitude at which the tower actually failed. The BOSORS computer program
predicts axisymmetric collapse at lower hydrostatic pressures than non-

axisymmetric bifurcation buckling in all the cases treated here.

Table 7 lists predicted failure factors for all the cases investigated. The
water tower is considered to be filled to the level indicated in Figure 109 (<)
and the factors Acr listed in Table 7 correspond therefore to factors on the
density of water, as was the case in the previous section on the tests of myiar
models. It is seen from the resulta in Table 7 that introduction of residual
stresses and deformations due to cold bending flat sheets into curved parts of
the water tower has the largest effect on the predicted failure load, but that

none of the axisymmetric models studied here explains the discrepancy between

the predicted collapse load and the disastrous failure that occurred as the
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reservoir was being filled in 1972.
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Conclusions: It is concluded from this study that the early failure of the
water tower was not due to the axisymmetric effects included here. Figure 3(b)
shows a meridional wrinkle similar .o those depicted in Figures 112 and

114 occurring in the neighborhood of a meridional weld. Such a weld causes
nonaxisymmetric compressive meridional prestresses that reduce the hydro-
static pressure required to cause yielding in a more direct way than does the
axisymmetric membrane circumferential compression typical of a girth weld or the
complex circumferential residual stress pattern through the thickness gene-
rated by cold hending. Also not included in the present analsis are the effects
of nonaxisymmetric geometrical imperfections and the effect of initial residual
stresses in the flat steel plates from which the tower was subsequently cold bent.
These residual stresses arise from fabrication (rolling) of the sheet and
cutting of it to size. Also, due to certain input limitations in BOSOR5, the
simultaneous offects of welding, cold bending, and mismatch were not studied.
Of all the effects not included in this investigation, the largest are probably
due to nonaxisymmetric geometrical imperfections and residual stresses from

meridional welds.

As a result of the study reportel in Ref. [ 2], however, the tower was re-

designed as shown in Figqg. 115(a). The predicted collapse of the new design

occurs at a much higher load factor, A= 2.65, as indicated in Figq. 115(b).
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Section 4
EFFECT OF BOUNDARY CONDITIONS AND

.ECCENTRIC LOADING

Introduction

This section is devoted mostly to cylindrical shells. Practically all of the
investigations of the effect of boundary conditions on stability have been
specialized to this most important geometry. The study of the effect of eccen~
tric loading is concentrated even more specifically on axially stiffened

cylinders under axial compression.

Practical shell structures are very often built in parts with different organi-
zations of even companies being responsible for the design of "their" part.
Very often buckling loads for each part are ¢~ ‘ated with the sometimes un-
justified assumption of simple support or clamping at the boundaries of that
part. The main purpose of the discussion and examples presented here is to give
the reader a physical feeling for the influence of various boundary conditions
and load eccentricity on buckling loads and thereby to sound a note of warning
not to take these factors for granted, especially in the final analysis stage

of a project.

Figures 116(a) and (b) show a photograph of a specimen tested by Singer,

et al [ 33] and a schematic of a rather complex boundary clamp in the speci-
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e men that might simulate an edge condition between two sections of a rocket.

Figure 21 shows the post-buckled state of one such stiffened cylinder sub-

jected to uniform axial compression. One might analyze this cylinder by
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including all the parts A through G plus the stiffened cylinder, H, itself and
assume that the loading is applied by uniformly moving the end plates "A'" toward
each other. In such a model it would not be necessary to worry about boundary
conditions or eccentricity of load application at the end of the stiffened
cylinder H, These factors would emerge as results of the analysis; they
would nct play the role of the assumptions. Often this is the best approach
to the buckling problem, especially if the structure is axisymmetric and a
one-dimensionally discretized model is sufficient. The general rule here would
be to include in the model all parts of the structure that are defined, or
all parts between stations at which there is no doubt as to what Lksundary

conditions and loading should be assumed.

However, because of limitations in computer budget or lack of definition

of the adjacent structural parts, it may be necessary to establish a boundary

at which there is some doubt as ‘o what the support conditions are and

where the load path is. For example, if one assumes that the end of the cylinder
H coincides with the location of the lowest row of rivets shown in Figq.

116 (b), one must then decide which of the displacement components u, v, W,

B are to be restrained and at what radius is the axial load to be applied.

- The purpose of this section is to reveal the sensitivity of predicted bifurca-
-
e tion buckling loads to these assumptions.
°
}ﬂl It should be emphasized now that boundary conditions and eccentric loading
fj influence the stability, in particular the bifurcation buckling load, in two
‘ -.. ways:
;:; (1) The prebuckling membrane stress resultants at a given load depend
ij on these factrrs; therefore the load-geometric matrix, K2 in Eq.
ii. (123) of Ref.[430] depends on them.
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(2) The prebuckling deformations and the structural stiffness at the
boundary depend on these fa:tors; therefore the stiffness matrix,

Kl in Eq. (123) of Ref.[430] , depends on them.

We have already seen examples in which boundary conditions and edge load eccen-

tricity affect bifurcation buckling loads. Figures29 - 3lof Ref.[ 430] and 62

show how restraint of the radial displacement w at the edge gives rise

to local edge buckling in a monocoque axially compressed cylindrical shell

at a load approx.-mately 20% less than the classical load, Ncr = 0.6 EtZ/R.

Figures 64 and 65 demonstrate, for an externally pressurized spherical cap,

the influence of edge support eccentricity on the destabilizing prebuckling

hoop compression and therefore on the bifurcation buckling pressure. Figure

68 and Table 3 show the effect of the stiffness of thz edge support on

bifurcation buckling. The emphasis in those examples is on the nonuniform

prebuckling behavior and how it influences the bifurcation buckling load

and mode.

Although not strictly true, it might be said for the sake of simplicity that
in general ihe boundary conditions affect the bifurcation buckling load and
mode most strongly through their influence on the stability stiffness matrix Kl'
whereas the load eccentricity affects the bifurcation buckling load and mode most

strongly through Its influence on the prebuckling state and hence on the load-

eometric matrix . This statement is probably more valid wlien applied to
g p pp

;,H cylindrical shells than to shells of other geometries.

-

. .

o . )

o

EOA For example, the prebuckling state of a uniformly axially compressed fairly

Ll
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long monocoque cylindric.l shell loaded at its middle surface depends on the
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Loundary conditions only within a "bowndary layer" or a distance of approxi-

/2

mately two or three times (Rt)1 of the edge. The prebuckling conditions at
the edge have only a mild influence on the predicted bifurcation buckling
load, as seen in Figs.29 - 31 of Ref. @3C].Howev:r,therearcaseveral different sets

of boundary conditions for which the prebuckling behavior and hence the load-

geometric matrix, K

5t is the same but the bifurcation buckling load and mode

shape change radically. For instance, any change in the boundary condition
having to do with the circumferential tangential displacement v, which does not
appear in the prebuckling problem at all, drastically affects the bifurcation

buckling load through changes in the stability stiffness matrix K. only. A

1
dramatic example is an axially compressed cylindrical shell with free edges.

The axisymmetric prebuckling solution is still characterized essentially by the
uniform compressive axial resultant N10 = -P/27MR, but the ** ccation buckling
load Pcr is several orders of magnitude smaller than the classical value because
the possibility of inextensional buckling exists. A specific example of this

type of buckling is shown later, both for an axially compressed cylindrical

shell and an externally pressurized spherical shell.

On the other hand, the major effect of load eccentricity on cylindrical shells
under axial compression is to produce bands of prebuckling hoop compression ox
tension as well as meridional curvature change. The load eccentricity effect
is especially signilicant in cylinders with axial stiffening because the
boundary layers near the supported edges are longer than they are ia the

case of monocoque cylinders. Therefore, the circumferential tension or com-
pression generated in these boundary layers has an important effect on the

load~geometric matrix K, and hence on the buckling load.
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Summary

Buckling pressures for hydrostatically compressed monocoque cylinders will first
be discussed. The results tabulated here are derived from an analysis in which
the prebuckling state is given by membrane theory: axial resultant N10 = pa/2,
circumferential resultant N20 = pa, no prebuckling deformation. Therefore, the
differences in critical pressures P.y and circumferential wave numbers n . are
entirely due to the effect of the various boundary conditions on the stability
stiffness matrrix Kl in Eq. (123) of Ref. [430]. (Note that when we relate boun-

dary conditions to the stability stiffness matrix K, we are tacitly assuming

1
that the Lagrange multiplier method is being used as shown _a Fig. 24 of Ref.
[430] or that certain rows and columns of K1 have been modified to account for

the boundary constraint conditions ).

Following is a discussion of the effect of boundary conditions on the buckling

of monocoque axially compressed cylinders. Most of the results correspond to

a rigorous nonlinear prebuckling analysis including edge effects, although a
comparison is given for one set of boundary conditions in which membrane theory
and exact bending theory are used in the prebuckling analysis. Again, the
differences in the critical loads corresponding to the various boundary conditions
arise primarily from the changes in the stability stiffness matrix Kl and not

from changes in the prebuckling state leading to modification of a load-

geometric matrix KZ'

Examples of inextensional buckling of a stiffened cylindrical shell under axial
compression and part of a monocoque spherical shell under external pressure

are shown next. It is demonstrated that the critical lecads can be several
orders of magnitude less than the classical values because very little strain
energy is required to deform these shells in their near-inextensional buckling

modes.

An example of bifurca.ion buckling of a complex shell in the plastic range is

then given. Because of the local nature of the plastic flow near a stess con-
114
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centration at a structural junction,an elastic model can be set up in which
the development of the plastic hinge is simulated in the stability analysis by
modification of one of the compatibility conditions at the structural junction

where plastic flow occurs.

Some examples are then given of the effect of boundary conditions on the buckling
of stiffened cylindrical shells under axial compression. It is shown that
the effect of the boundary conditions has a significant influence over a larger

range of length-to-radius L/R than is the case for monocogue shells.

e’

, o,
I PR T R

The seztion closes with examples of the effect of load eccentricity on bifurca-

tion buckling of axially stiffened cylindrical shells under uniform axial com -

N

pression. In particular the dependence of the critical load on eccentricity of
the load, length of the shell, use of membrane v. bending prebuckling analysis,
and external or internal location of the stringers are explored for a particu-

lar case.

Effect of Boundary Cecnditions on Buckling of

Monocoque Shells

Much of the early work on the effect of boundary conditions on the buckling of
cylindrical shells is reviewed by Hoff [ 29]. Von Mises { 144}, Nash{ 1457,
Galletly and Bart [ 146}, Singer [ 147] and Soba2l [ 148] studied cylindrical
shells under uniform hydrostatic external pressure. Nachbar and Hoff | 149],

Stein [ 150], Fischer [ 151], and Almroth { 152] and others identified in

L:. [ 29} treated cylindrical shells under uniform axial compression. The most

t
.
.

definitive investigations were carried out by Sobel [ 148] and Almroth [ 152].
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t:;_ They assumed that buckling would be symmetrical about the midlength of the cylin-

L ]

i der generator (not necessarily true in the case of axially compressed cylindri-
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cal shells), and they calculated buckling loads for eight boundary conditions

as listed in Table 8.

Cylinders Subjected to Uniform External Hydrostatic Pressure

Sobel [ 148] assumed a membrane prebuckled state. His results are listed in
Tablz 9 for different values of length-to-radius L/a with radius-to-thickness
a/h fixed at 100 and Poisson's ratio equal to 0.3. The set of boundary con-
ditions represented by Sl(w = Mx = Nx = v = 0) is the same as that used in
von Mises' solution [ 144] for a simply supported cylinder. The results

of Sobel for the set S1 agree with von Migses' results to four significant
figures, the degree of accuracy used in Sobel's analysis. Table 9 also

gives the results obtained by Nash [ 145]and by Galletly and Bart [ 146] for
clamped cylinders. The combination of boundary conditions used in Refs.

[ 145, 146] is here represented by the set C4( w=w =u=v=0).

s X

From a comparison of results for C4 and S4 we see that restraint of meridional

rotation w _ does not significantly increase the critical hydrostatic pressures
14
unless the cylinders are quite short. Moreover, this same result is always
obtained whenever critical pressures for cylinders with w x = 0 are compared
I

with those for cylinders with Mx = 0 (edge moment = 0), all other conditions

beir g equal.

The most significant result of Sobel's analysis is the revelation of the important
effect of axial restraint u = 0 on buckling pressures even for moderately long
cylinders. Table 9 is organized to emphasize this effect, the first four columns
of results corresponding to u free (Nx = Q) at the edge and the next four to

u fixed.
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Cylinders Subjected to Uniform Axial Compression

Almroth [ 152] accounted for prebuc¥ling bendirg in his analysis, which in-
cludes buckiing under combined axial compression and internal or external

lateral pressure. Computed critical values of the axial load for the case of
zero lateral pressure are shown in Table 10. For compa.ison corresponding
results were also obtained by Almroth with use of the membrane prebuckling solutio
With boundary conditions corresponding to cases S3 and S4,(Mx =0, ny,= 0)

these results differ very little from those listed in Table 10. In the

other six cases the critical load withthe membrane prebuckling solution, within

the parameter range considered, is equal to or insignificantly higher than

the classical buckling load for simply supported cylinders (Ncr/Ncl = 1.0).

It appears from Table 10 that, with the exception of very short shells, the
critical load is practically independent of the parameters r/t and L/r in

all of the cases. In contrast to expectations, lower values of the critical

load are in some casec found for the very short shells. Therefore, the influence
of the shell length on the critical load was studied in more detail. The criti-
cal load vs the parameter L/r, for a cylinder with r/t = 100 and with boundary
conditions corresponding to case C2, is shown in Fig. 117(a). Here the num-

ber of circumferential waves is held constant (n = 8). For long shells the criti-

cal load is independent of shell length, and for very short shells the criti-

s
s
1

.
.

cal load is, as expected, monotonically increasing with decreasing shell length.

L9

/3

"‘f’" J'
3

In the intermediate range an oscillatory behavior is displayed.

A similar variation of the critical load with L/r occurs for the cases S3 and
S4. In Fig. 117(b) the critical load is shown vs L/r for case S3. It is

seen in this case that the general behavior does not change when the influence
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of lateral restrcint in the prebuckling analysis is neglected. For rela-

tively long cylinders the curve with the membrane prebuckling solution is slightl

below the rigorous solution. However, for very short cylinders this difrer-

ence increases, as may be expected.

The most significant results obtained by Almroth are those corresponding to
S3 and S4, for which the circumferential tangential displacement v is

free (ny = 0). This result, first calculated by Stein [ 150], is similar
to that obtained by Nachbar and Hoff [ 149] for axisymmetric buckling of

an axially compressed cylinder with a completely free edge. However, neither
type of free-edge buckling is likely to occur in practice because friction at
the ends of the axially compressed cylindrical shell is sufficient to pre-

vent the buckling modes from developing.
Inextensional Buckling

Even lower buckling loads for axially compressed cylindrical shells than
those calculated by Almroth [ 152] are possible if one assumes that the
edges are completely free. Cohen [ 96] was the first to point this out.

The critical buckling mode is antisymmetric about the midlength of the
cylinder and involves no change in curvature of the generators. This mode is
of course prevented if the buckling modal displacement pattern is assumed to
be symmetrical at the symmetry plane at the cylinder midlength. The buck-
ling mode is inextensional; that is, the middle surface undergoes no stretch-
ing. Therefore, the membrane component of buckling modal strain energy is
zero. Again, this mode is unlikely to occur in tests of axially compressed

cylindrical shells because of friction.
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Buckling loads associated with inextensional mode shapes can be very low
indeed, as shown in Figs. 118 and  119. Figure 118 gives buckling loads
of an axially compressed =° cone (almost a cylinder), supported at its edges
by rings of square cross section. The buckling mode with n = 2 circumferen-
tial waves is inextensional if the edges are free and very close to being
inextensional for all ring sizes. Figure 119 shows buckling pressures of
incomplete spherical shells with edge rings of various areas. Again, unless
the ring is fairly large, buckling loads may be many orders of magnitude
smaller than the buckling load for a clamped or simply supported shell of

the same geometry.

A physical appreciation of inext2:nsional behavior can be gained by cutting

a ping-pong ball in half and squeezing one of the halves between your fingers.
Large deflections occur with very small applied force. A coffee cup dis-
pensed from a vending machine is made with a reinforcing ring at the top to
limit the amplitude of inextensional deformations caused by the squeezing pres-
sure of your fingers required to keep the full cup from dropping to the floor.
A conical planetary reentry vehicle, such as the Viking shell (Fiqure 190 ),
is designed on a similar principle: potentially large inextensional deforma-—
tions caused by nonsymmetric reentry pressures are prevented by a large edge

ring.

Because of the small amount of energy required to deform shells inextension-
ally, designers should avoid configurations in which inextensional deforma-
tions of the wall are free to occur in systems subjected to destabilizing
loads. Analysts investigating buckling of shells should avoid the use of
boundary conditions that might permit inextensional buckling unless these
conditions represent the actual support. It is the writer's experience that
users of BOSOR4 [ 14 ]Jhave had difficulty when leaving some branch of the
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structure free at the end because "it's not the part I'm really interested
in." Often the lowest eigenvalue corresponds to large buckling modal dis-
placements atthe end left dangling. The user is not able to obtain buck-

ling in the region of his concern without restraining this troublesome end.
Simulation of Effects of Local Plastic Flow by Appropriate Constraint Conditions

There are two reasons for including this discussion here. The first is stated
in the subtitle: to describe a certain application of constraint conditions
as a modeling technique to simulate a condition in which plastic flow has
occurred without actually accounting for this flow explicitly. The othex
reason is to demonstrate the appropriateness of sometimes using different
constraint conditions in the prebuckling and bifurcation buckling phases of
an analysis. The phrase "constraint conditions" is used rather than "boun-
dary conditions" because the phenomenon described here has to do with con-

ditions at a junction between two srurtural segments rather than at an edge.

Figure 120(a) shows the geometry of three specimens tested by Galletly

[ 154] and analyzed by Bushnell and Galletly [ 131]. These specimens were

subjected to external pressure. One of the buckled specimens is shown in

Fig. 120(b). A discretizea BOSOR5 model [ 47] is shown with the axisymr:tric

prebuckling deformed shape in Fig. 120(c). Plastic flow occurs before bifur-

cation buckling in a very narrow circumferential band surrounding the meridion-

al slope discontinuity between the conical and cylindrical segments. Figure
120(d) shcws predicted bifurcation buckling modes and pressures for models

in which the elastic-plastic flow is explicitly accow.t:2 for and compatibility

of meridional rotation at the junction between segments (2) and (3) is enforced

in both the prebuckling phase and bifurcation buckling phase of the analysis.
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Table 11 lists the test results, the BOSOR5 results with use of elastic-
plastic analysis, and predictions in which plasticity is ignored but an attempt
is made to simulate its effect by modification of the compatibility conditions
at the junction between segments (2) and (3). It is seen that for the configu-
rations investigated a good elastic model is one in which meridional moment
compatibility at the cone~cylinder juncticn is enforced in the prebuckling
analysis but relaxed in the stability analysis (Case 5). That the predicted
buckling loads are close to the test values for this simplified elastic model
apparently is the result of two counteracting errors: The prebuckling model
is too stiff and therefore at a given pressure the stress resultants, which
appear in the stability equations, are too small. Counteracting this effect
is the underestimation of the meridional bending rigidity at the junction

in the stability analysis. Clearly both effects are important, since intro-
duction of the hinge in the prebuckling analysis lowers the predicted buck-
ling pressure considerably, and enforcement of elastic meridional moment com-

patibility in the stability analysis raises it considerably.

A similar result is obtained for the case of externally pressurizec tori-
spherical heads pierced by cylindrical nozzles as shown in Figs. 121(a-3).
Plastic flow occurs in the immediate neighborhood of the nozzle-head junc-
tion. Comparisons of predicted and test buckling loads are shown in Figs.
121 (e)and (d) and listed in Table 12. The same modeling "trick" yields
good results for this geometry. Further details on geometry, material proper-

ties, and discretization are given in Ref. [ 131].
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Effect of Boundary Conditions and Loading
Eccentricity on Buckling of Axially Compressed Stiffened Cylindrical

Shells

Boundary Conditions

We have seen from Table 10 and Figures 117(a) and (b) that the influence
of shell length on the buckling of axially compresscd monocoque cylindrical
shells is very small unless the shell is extremely short. This is not true
for cylinders stiffened in the axial direction, as seen from the example in
Fig. 122 (a). Buckling loads are given there for clamped axially compressed
cylinders of various lengths with a wall construction consisting of a longi-
tudinally corrugated sheet welded to an inside smooth sheet (Fig. 122 (b)).
The internal Z-shaped ring stiffeners are heavy enough to cause local
buckling as shown. The asymptote represents the predicted buckling load of

a simply supported bay 15 inches long. Intuitively, it is surprising that
the clamping condition at the edge significantly affects the critical load
for cylinders with many bays. Since buckling occurs between rings, one might
think that the critical load would approach the asymptote much more rapidly
as the number of bays is increased. However, the theoretical results shown in

Fig. 122 (a) have been confirmeA by tests, as will be described.

ey

Figure 122 (c) helps to explain the slow convergence. The nonsymmetric mo-

ment applied at the simply supported edge simulates the effect of clamping
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.t there during the transition from an axisymmetric prestressed state to a post-
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buckling state with 16 circumf:rential waves. Our intuition of what length
of cylinder is required before the buckling load becomes independent of

. length is based on the more familiar but much shorter axisymmetric boundary
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labeled "n = 0." (teff is the effective thickness of a monocoque wall

with the same axial flexural rigidity as the axially stiffened wall.)

The length effect demonstrated in Fig. 122 (a) has been confirmed by
tests. The panel photographed in Fig. 123(a) failed at 2550 1b/in

axial compression in a mode predicted by the BOSOR4 computer program to
occur at 2800 1b/in with 13 circumferential waves. The theoretical buckling

mode is shown in Fig. 123(b). A much longer panel (116 in. instead of

52 in.) with t=0.02 in, t = 0.C32 in. and with rings on 15-in centers buckled
at 1580 1lb/in compressicr, compared to a predicted buckling load of 1680 1b/in

in a mode with 16 circumferential waves.

Ignorance of the length effect might result in designs which are not optimum
with respect to weight. For example, the dimensions of the corrugated semi-
sandwich wall coustruction shown in Fig. 122 (b) may be arrived at by an
assumption that local crippling, such as illustrated in Fig. 124, is to
occur at the same axial load as inter-ring buckling, such as shown in Fig.
12z(a). 1If the critical load level for inter-ring buckling is calculated
with the assumption that the panel is of length equal to the ring spacing
and is simply supported at its ends, then the local dimensions of the wall
cross section will be established based on a critical load equal to that indi-
cated by the asymptote in Fig. 122(a). However, actual panels used in a
practical structure contain a finite number of bays and may be effectively
clamped at certain bolted connections, as shown in Fig. 125(a}). Because
of the significant length effect displayed in Fig. 122 (a), these structures
will cripple in a mode such as that photographed in Fig. 124 before buckling
in general instability modes involving both skin and corrugations such as those

shown in Figs. 122(a) and 123,
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The fact that the critical load plotted in Fig. 122 (a) approaches the
asymptote rather slowly makes it very difficult to desiqr test specimens
properly. Cost usually dictates the use of rather short specimens. Fig-
ure 125 gives an example of the problem. An actual shroud is pictured
in Fig. 125(a). It was desired to determine experimentally the effect
of the field joint depicted in Fig. 125(b) on the buckling load corres-
ponding to the type of general buckling indicated in Fig. 123. Figure
125(c) shows the sad results: the test panel failed in a crippling mode
at Ncr = 1620 1lb/in., far below the predicted critical load of Ncr = 3450
corresponding to general instability, and well below the predicted load Ncr =
2287 1b/in for a similar specimen without a field joint. Figure 125(4)
shows prebuckling behavior of the specimens with (A) and withont (R} the
field joint. Early crippling near the edge at Ncr = 1620 1lb/in, which
occurred in both tests of pan 1= with and without the field joint, is due to
the lccal biaxially compressive stress field there, as rroven in Ref. [ 3},

where other details are given.

In general, engineers interested in designing a particular segment of a
larger structure should make every effort to determine as accurately as pos-
sible the actual boundary conditions at th' ends of "their" segment. Portions

of the adjoining segments should be included in the model, possibly with a

cruder mesh. If little is known about the adjoining structures, sensitivity

stucies should be performed in which both upper and lower bounds on the

out otk k. S
W S
Atat.
P

degree of boundary constraint are assumed. Before expensive test specimens

;.5 are fabricated analytical simulations of the test should be performed, with
SO
b proper representation of the boundary conditions to be applied and account
ol
53} for the pcssibility of local buckling. The effort in bnilding and testing
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the rather expensive panel shown in Fig. 125(c) was largely wasted be-
cause the question, "What effect does the field joint have on general in-

stability?", was not answered due to early failure in an unexpected mode.

Singer and his coworkers have been contributing for several years to our
knowledge of the buckling and vibration behavior of stiffened cylinders under
axial compression [ 156 - 158]. They have been focusing their efforts on
the effects of boundary conditions and load eccentricity. Tables 13 and

14 show ccmparisons between test and theory for cylinders of the type shown
in Fig. 21 supported at the edges as illustrated in Fig. 116. The theo~
retical resuits were obtained with the BOSOR4 computer program [ 14]. A
typical buckling mode is shown in Fig. 21l. It appears that the actual
support condition pictured in Fig. 116 can most accurately be simulated
by 883 (classical simple support) rather than by the other postulated end
conditions, although as Singer points out [ 158] the picture is complicated

by the presence of load eccentricity.

Figure 126, which is analogous to Fig. 122 (a) , demonstrates the effect

of cylinder length on the critical axial load. The figure shows results from
analyses in which the prekuckled state is predicted from membrane theory
(Labeled linear) and from BOSOR4 [ 14] and a treatment by Block [ 159] in
which the prebuckled state is derived from a rigorous analysis. As with

all of the examples in this section, the axial stiffeners are "smeared out"
over the circumference in the manner described in the classical paper by
Baruch and Singer [ 160]. Two important points might be made with regard

to the results shown in Fig. 126;
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(1) For long shells nonuniform prebuckling effects are unimportant;
and

(2) The effect of constraint of axial displacement u in the bifurca-
tion buckling analysis is rather significant even for long

shells.

This behavior may be contrasted to that of monocoque axially compressed
~ylinders. The columms headed "S1" and "S2" in Table 10 correspond to
what Singer calls "SS4" and "SS3", respectively. In the case of monocoque
cylinders the normalized critical load predicted with a model in which
ronuniform prebuckling effects are included is reduced from 1.0 to approxi-
mately .85 even for infinitely long shells because the buckling modal
displacements occur in and near the "boundary layer" near the edge as shown
in Fig. 62. Buckling with such a short axial wavelength is not possible
for axially stiffened cylinders because of the bending stiffness of the
stiffeners. Therefore, stiffened cylinders buckle as shown in Fig. 21 in
the region where the prebuckling state is pure axial compression. Inclusion
of prebuckling bending is important only if this nonuniformity occurs over
most of the shell length. Comparison of the columns headed "S1" and"s2"

in Table 10 reveals that the axial component of edge restraint has a much
smaller influence on the critical load for the monocoque shell than for the

stiffened shell to which Fig. 126 (b) applies.

< Figure 127 demonstrates the effect of elastic axial restrain. on predicted

buckling for one of Singer's specimens. Further details are given in

1 4 rrevyvvevwy

Ref. [ 33 ].
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Load Eccentricity

One of the first studies of the effect of eccentricity of axial load on the
buckling of axially compressed cylinders is reported in Ref. [ 161].
Singer and his colleagues have published several papers on this topic

[ 156 - 158]. The examples exhibited here are taken from Ref. [ 153].

The definition of axial load eccentricity is somewhat arbitrary. :inger

[ 156] defines any axial load that is not applied at the middle suriace

of the skin as eccentric. Almroth and Bushnell [ 153] use the neutral
surface of the skin and stringer combination as a reference for load
eccentricity. Figure 128 (a-c) shows how load ec.:ntricity mignt be delib-
erately introduced and varied in test specimens and how most axially stif-

fened cylindrical shells are actually tested (4).

The remainder of the discussion in this section is based on axially com-
pressed axially stiffened cylindrical shellg with geometry shown in Fig.

129. (Nore that the stringers may also be external.)

Results for cylindrical shells of length 95 in. are listed in rable  15.
Critical axial loads were computed for the cases in which the shells were
simply supported (S2) at the midsurface of the skin, at the neutral surface of

the cross section, and at the midpoint of the rectangular stiffeners,

respectively. Clamped shells were also considered znd, for each type of
® loading, critical loads were obtained for shells with both external and in-

ternal stiffening.
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For comparison critical loads are shown also as computed by use of the

S

membrane prebuckling analysis. For the buckling analysis classical simple

.

support conditions were assumed (S2 or SS3). Hence, there is nc axial
restraint, and with a membrane prebuckling analysis there is no loading
eccentricity effect. The results from the first three loading cases are

therefore identical.

It may be seen from Table 15 that changes in the loading eccentricity have
drastic effects on the critical load. For the case in which the shell is
loaded through its neutral surface, for example, it is interesting to compare
results obtained with membrane prebuckling analysis with those obtained with
nonlinear prebuckling analysis. The difference is due to the Poisson expan-
sion in connection with radial restraint at the edges. This effect is large
for shells with such a small L/R (I/R =0.5) particularly for s -lls with

outside stiffening.

For shells with end moments it is easy to see that the presence of a moment
which tends to bend the cylinder into a barrel shape greatly increases the
critical load. A moment in the opposite direction, developing prebuckling
compressive hoop stresses, has the opposite effect. 1In Fig. 130 prebuckling
radial displacements (uHo)and buckling modes (w) are shown for cylinders with
inside stiffening. Curves are shown for loading through the neutral surface

as well as for loading through the center of the stiffeners.

For cylindrical shells the effects of load eccentricity were studied also
for the case in which the buckling displacements in the axial direction are
.: - restrained {(u = 0). The results are shown in Fig. 131. It can be seen

that the critical load varies sharply with the position of the point of load
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application. For both large positive and large negative eccentricities

the critical load calculated with membrane prebuckling theory approaches the
critical load with clamped edges. This is because any rotation in the buck-
ling mode about the eccentrically located end points forces the shell wall
to deform in a mode with significant membrane strain energy due to axial

stretching and compression of the neutral surface.

For cylinders with external stiffening and small positive values of
the eccentricity parameter, the buckling mode is antisymmetric about the

midooint of the shell. 1In all other cases it is symmetric.

The cylinders for which results have been given previously are quite

short, the decay-length for the edge momen. ixc.ing about half the shell

length. It appears that the influence of edge moments disappears as the

shell length increases. This effect is demonstrated in Fig. 132, which shows
critical loads as functions of shell length for cylinders loaded through the
neutral surface and for cylinders loaded through the centroids of the stif-

feners.

For very shallow toroidal segments a study was undertaken of the influence on the

critical axial load of the shell rise H (difference between radius at equator

and radius at edge. The analysis includes shells with positive shell rise

(positive Gaussian curvature) as well as shells with negative shell rise,

T [P §
RRRNY ¥

»

and the results are shown in Fig. 133. As expected, the critical load

increases with the value of the Gaussian carvature. At zero shell rise, the

x!.'v'- '

curve f£or shells with outside stiffeners is much steeper than the curve
corresponding to inside stiffeners. This result indicates that shells with

outside stiffeners should be more sensitive to initial imperfections, which

BN A A
A AP

has been shown by Budiansky and Hutchinson [ 162] to be the case.
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Section 5

BN

INSTABILITY OF SHELLS OF REVOLUTION SUBJECTED

a
“ NS

TO COMBINED LOADS AND NONSYMMETRIC LOADS

Summary

The emphasis in this chapter is on monocoque and stiffened cylindrical

shells.

Combined Loading

We have already seen examples of buckling behavior under combined internal
pressure and axial compression. Figures 105 - 108 display the buckling
phenomenon of a conical water tank. Bifurcation buckling behavior of the
conical water tank is similar to that of a cylindrical shell with internal
pressure subjected to axial compression: The buckles are elongated in the
circumferential direction and the critical axial load is less sensitive to
initial geometric imperfections than that for the shell with no internal
pressure. The diminished sensitivity to initial imperfections is revealed
by the results in Fig. 22 for pressurized cylindrical shells, as well as
by the excellent agreement between test and theory for buckling of the mylar

moiel of the water tank shown in Figs. 105 - 108.

This section first gives illustrations of post-buckled states of monocoque
cylindrical shells under combined axial compression and internal pressure.

Next several interaction curves are presented for monocoque cylinders subjected
to axial compression combined with internal or external pressure. These curves
cover a wide range of boundary conditions, radius-to-thickness ratio, xr/t, and

2)1/2

length parameter Z = (1-v (Lz/rt). Post-buckled states of mouccogue

cylinders under combined torsion and internal pressure are then depicted
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with an interaction curve including test points. This is followed by a ~om-

./‘q .

7

.
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parison of theoretical and experimental buckling loads for elastic buckling

P
e
A

‘;hf of stringer-stiffened and ring-stiffened cylindrical shells made of epoxy

k. and subjected to axial compression and external press.re. The section closes
.;Sj} with computed interaction curves for laminated composite cylinders under

?S; axial compression, external pressure, and torsion.

:;j Nonsymmetric Loading

e

&«— Nonsymmetric loading on axisymmetric shells may originate from many sources,
';E commonly occurring ones being wind or water loads, thermal loads, and inertial
.%ﬁ loads arising from ground acceleration during an earthquake. The section opens
_;. with two examples of buckling of shells of revolution under nonsymmetric
_EE: rawwSuic and axial compression caused by launching a rocket and by its pass-
.és age at an angle of zttack through the atmosphere. A closely related problem
-
il‘ is buckling due to nonsymmetric thermal loading from aerocdynamic heating.

2% Comparisons between test and theory are given for a nonsymmetrically heated
SE§ ring-stiffened cylindrical shell with applied bending moments and for a mono-
-;4 coque conical shell heated along a narrow axial strip. The section closes

i%, with prediction of a buckling load factor for a typical steel containment
‘ii vessel for a nuclear reactor under combined vertical and horizontal com-
_;: ponents of ground acceleration experienced during an earthquake.
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Monocoque Cylindrical Shells Under Combined Loading

Axial Compression or Bending and Internal Pressure

Interest in this problem was stimulated primarily by concern for the proper
design of pressurized aircraft fuselages. Lo, et al [ 163] and Harris, et al
[ 164, 36] obtained design curves by testing cylinders and by collecting
experimental data from previous tests and performing statistical analyses

to obtain buckling loads vs. radius-to-thickness ratio r/t for best fit,

90% probability of survival, and 99% probability of survival. Suer, et al

[ 165] did the same for cylinders under combined bending and internal pres-

sure.

Figures 134 (a~e) illustrate post-buckled patterns for cylinders under
axial compression or bending with various amounts of internal pressure. As
the internal pressure is increased the buckles become smaller and more
elongated in the circumferential direction. If the pressure is high enough,
buckling under uniform axial compression occurs in an axisymmetric mode, as

seen in Fig. 134 (e). Recall that in the case of the water tank shown in

Fig. 105 nonsymmetric bifurcation buckling occurs at a load factor only

e e e
LA L S
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B

one percent below axisymmetric collapse (Fig. 107). The water tank prob-

f
1
w ']

lem shares many of the characteristics of the buckling of a uniformly axially
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compressed cylindrical shell with internal pressure.
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® Figures 135 (a-d) show coefficients Cb' cbp' and ACbp from Suer, et al
AN [ 165] for buckling cf cylinders under bending. Figures 135 (a,b) demon-

N strate the scatter of test results plotted vs. radius-to-thickness ratio
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xr/t for unpressurized cylinders, and Figures 135 (c,d) demonstrate the
stabilizing influence of internal pressure. The straight horizontal line

at Cb = .78 in Figs. 135 (a,b) corresponds to the theoretical result for
buckling of cylinders under bending found by Flfigge [ .166]. The straight
inclined lines labeled "ocr = pr/2t" in Figs. 135 (c¢,d) represent the
axially compressive stress required to cancel the tensile stress Ox = pr/2t
caused by itnernal pressure. The shape of the region of comprcssion test data
indicated in Fig. 135 (c) by a dashed closed curve shows in a rough way

that critical axial loads for cylinders with higher internal pressure are

somewhat less sensitive to initial imperfections than are those with lower

internal pressure.

Almroth [ 152] calculated interaction curves for buckling under coumbined
axial compression and external or internal pressure. He accounted for edge
effects in the prebuckled state. Predicted critical load combinations are
shown in Figs. 136 - 139 for the various boundary conditions $1-S4 and
Cl-C4 listed in Table 8. In cases Sl and S2 (Fig. 136) the value of

r/t has practically no influence on critical combinations of the axial stress
and external pressure parameters, within the range of geometrical parameters

under consideration.

The analysis with the membrane prebuckling solution indicates that the dif-
ference in critical loads for cases S3 and S4 is negligible for all values

of the pressure parameter. However, in the presence of internal pressure the use
of a rigorous prebuckling solution leads to different results. This is

shown by the interaction curves in Fig. 138. With S3 or S4 boundary
conditions the number of circumferential waves corresponding to the minimum
critical load generally is two. For higher values of the pressure in case S3

this minimum occasionally occurs at a larger number of waves.
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In case S3 the curves show that for most combinations of geometrical
parameters there exists a range of the pressure parameter within which three
solutions are obtained. Of course, when the axial load on the shell is in
creased under constant intexrnal pressure, only the lowest of these solutions

is meaningful.

For clamped cylinders, it was found again that the parameter r/t has no in-
fluence on critical combinations of the axial stress and pressure parameters.
It was found also that circumferential tangential (v) restraint at the edge
does not affect the critical load. Interaction curves for clamped cylinders

are shown in Fig. 139.

Torsion and Internal Pressure

The effect of internal pressure on the torsional buckling stress was first
considered by Crate, Batdorf, and Baab [ 167], who developed a semi-

empirical interaction formula

R2+R=1 ( 38)

for combined pressure and torsion based on a limited series of tests. 1In

Eq. ( 38) Rs denotes the ratio of critical shear stress with internal pres-

Q? sure to critical shear stress under torsion alone, R /1T and R 1is
L~ S cr ocr’ o

I

t}- the ratio of internal pressure to critical external pressure, Rp = p/pocr'
E.

BN Hopkins and Brown [ 168] derived a small deflection theoretical analysis

. l'

by modifying Donnell's original analysis for unpressurized cylinders. Their

Yy yvYyLnry 1w

~
{}F; theoretical calculations generally agree well with the experimental results
of Ref. [ 167] and substantiate the semi-empirical interaction curve. Harris
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-;}j et al [ 361 performed additional tests in order to extend the data to the
-:é; range of internal pressures and radius to thickness ratios of interest in
Al
-‘ .\- 3 . - o s
o, - missile and aircraft design. They tested a total of 5 unpressurized and
%
S 15 pressurized model circular cylinders in torsion. For the inter..ally

e pressurized specimens, the longitudinal tensile stresses indvced by pres-
o sure were balanced by a compressive load. A photograph of a typical buckle

d pattern for an unpressurized cylinder is shown in Fig. 140 (a) and for a

x’.‘ -
i:‘: pressurized cylinder in Fig. 140 (b). As expected, the angle which the buck-
.:=$; les make with the axis of the cylinder increases as the ratio of the in-

S -

ternal pressure to the torque increases.

P ’
'y Wl
W,

5o
o

nF\w‘

w v

Y

}}; In Fig. 141, the test data are compared to the interaction curve of Ref.
!_, [ 167]. 1In calculation of the values of Rs, the buckling stress Oocr

e for torsion alone was defined in [ 36] as the average of the experimental
};; values. 1In calculation of the values of Rp, the buckling stress for external
(- lateral paressure alone was calculated from Ref. [ 169]. It may be seen

A

:}5 in Fig. 141 that the interaction curve adequately describes the behavior
.5;: of circular cylinders in torsion with internal lateral pressure. Based on their
2 data, Harris, et al [ 36] recommended for design the interaction curve of
-7

"'b“_' .
A Fig. 141.
A
..' It should be noted that the experimental data of Fig. 141 are for cylinders

under lateral pressure only and therefore the data indicate the direct benefit

o 2"

Ve e
[N A

of internal lateral pressure on the torsional buckling stress. If, in addi-

tion, the cylinder is axially pretensioned to a stress of pr/2t by the internal

o
::?. pressure on the cylinder heads, an additional benefit would result. It can
%ié: easily be shown by a Mohr's circle construction that a torsional stress of
}EE: 0.707 pr/t is required before compression is induced in the skin of a hydro-
E;j statically pressurized cylinder. At low values of pr/t, the benefit of the
Ca
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axial tension is relatively small At large values or pr/t the effect

of the axial stress induced by internal pressure can be expected to pre-

dominate.

Stiffened Cylindrical shells Under Combined Loading

Tennyson [ 170]and his coworkers have performed tests on buckling of un-

stiffened and stiffened cylindrical shells made of epoxy plastic by a spin
casting technique that produces specimens of very high quality. In Ref.

[ 170] they give comparisons between test and theory for elastic buckling
of perfect and imperfect clamped shells under combinations of internal or

external hydrostatic pressure and axial compression.

Figures 142 and 143 show Tennyson's results for stiffened cylindrical
shells under axial compression and external pressure. The solid lines in
Figs. 142 (b,c) and 143 (b,c) represent theoretical predictions for per-
fect shells from Ref. [ 170], with labels "outside" and "inside" in >'ig.
142 (b,c) referring to the rings. There is little interaction effect
below pcr/pcro = 0.8 for the ring-stiffened specimens because the critical
buckling mode for pure axial compression (short axial wavelength) does not
at all resemble that for pure external pressure (single half wave along the
cylinder generator). On the other hand, there is a strong interaction effect
for the stringer-stiffered specimens because the critical buckling mode for
pure axial compression has a much longer axial wavelength than that for the
ring-stiffened specimen, this mode resembling that corresponding to buckling

under pure external pressure.
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Inspection of Figures 142 (b,c) and 143 (b,c) reveals that for many

of the specimens the theory of Ref [ 170] underestimates the actual buck-

ling loads. This discrepancy is probably caused by the representation of stiffen-
ers as if they were attached along single lines; that is, in the theoretical
model the stiffness is underestimated because the rings do not contribute

to the axial bending stiffness of the shell wall .nd the stringers do not
contribute to the circumferential bending stiffness. Actually, the ::tiffeners
probably add considerably to the bending rigidity because they are integral

with the skin along finite arc lengths br (Fig. 142a) and bs (Fig. 143a)

2
of the shell wall. Bushnell [ 171] has found this effect to influence pre-
dicted plastic buckling pressures of ring-stiffened cylinders under external
hydrostatic pressure by as much as 13%. A larger effect would be expected

for elastic buckling than for buckling beyond the proportional limit of the

material because the softening nature of a yielding material generally renders

predictions insensitive to minor changes in the model.

Also worthy of note in Figs. 142 and 143 is the differing influence of
initial imperfections in the ring-stiffened as opposed to stringer-stiffened
specimens. In the range Pcr/pcr < 0.8, where short-axial-wavelength buckling
occurs in the case of ring-stiffened cylinders, axisymmetric short-wavelength
imperfections clearly weaken the shells. Similar axisymmetric imperfections
actually strengthen the stringer-stiffened specimens, however. Presumably
this is because the imperfections induce a prebuckling axial waviness, a sort

of circumferential corrugation that stabilizes the shells, much as the axi-

symmetric prebuckling shape change in the heated cylinder shown in Fig, €9

postpones nonsymmetric buckling as dem@nstrated in Figs. 70 - 75.
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Buckling of Composite Cylindrical Shells Under Combined Loading
Definitions
By "composite'" is meant a shell with a wall construction for which the most
general integrated constitutive law is given by Eq. (205) of Ref 430)].
Typically, the shell wall is made up of layers or laminae of orthotropic
material. Each lamina has principal material axes oriented ac some angle
® with respect to the coordinate axes for the shell. An important subclass
of such composite shell walls is that for which the constitutive law is
given by Eq. (84) of Ref. [430]. This class contains shells of revoluticn
with isotropic skin and rings and stringers that follow principal lines
of curvature that are 'smeared out' in the mathematical model as described
by Baruch and Singer in [160]. Laminated shells of revolution, ithe plies of
which are all oriented parallel to meridians (8 = 0°) and normal to meri-
dians (8 =90°) also belong to this class. If the wall censtruction is sym—
metric with respect to a middle surface the "B" terms in Eq. (205) of Ref.
[430] vanish. Such laminates are termed "balanced" and the wall is called
"orthotropic.'" The more general constitu.ive matrices given Eqs. (205) and
'84) of Ref. [430] are associated with wall constructioas that are called

"anisotropic."
Previous Work Done

Tennyson [172] gives a survey of work done up to 1975 on the buckling of
composite cylinders. The earliest analyses were based on orthotropic theory
(B-terms .- %q. (205) of [430] are zero) with membrane prebuckling theory.
The motivation of much of this early work was to calculate buckling loads of
ring and stringer stiffened aircraft fuselages and rocket boosters. One of

the first studies was performed by March, et al in 1945 [173] , who caicuiated
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tersional buckling loads of plywood cylinders. Frequently referenced works,
primarily from the 1960's, on buckling of orthotropic and anisotropic
cylindrical shells include Refs. [ 174 - 190] and [ 101]. During the
late 1960's and early 1970's several computer programs were developed

[ 11 - 14] that can be used to calculate buckling of composite shells

of revolution, including nonuniform prebuckling states predicted with use

of nonlinear theory. Jones and Hennemann [ 191] performed param-:texr studies
to determine the influence of nonuniform prebuckling edge effects on bifurca-
tion loads of composite axially compressed cylinders. They found an effect

similar to that observed for isotropic cylindrical shells [ 152]. (See Fig.

117(b)) .
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Buckling Under Combined Loads
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Recently Booton and Tennyson| 192] cilculated interaction curves for buck-

" ‘l

14
L4

B

ling of anistropic cylindrical shells under axial compression, external
pressure, and torsion. Their results are summarized in Figs. 144 - 147.
Prebuckling edge effects are accounted for in the analysis. BAll results cor -
respond to a laminated shell with three layers (8, 0, -8), which is a very
unbalanced laminate and ordinarily does not represent a realistic design.
The axisymmetric imperfection assvmed for generation of Figs. 144 (b) and
145 (b) has an amplitude of a tenth the wall thickness (Y4 = 0.1)and an axial
waveleng*h corresponding to that of the axisymmetric buckling mode calculated
from classical theory (membrane prebuckling state). Note from Fig. 144 (b)
that, as in the case of the ring stiffened cylindrical shell under combined
axial compression and pressure (Figq. 142(c)), the axisymmetric imperfection
causes a reduction in the capability of the shell to carry the axial component
of the load but little or no reduction ir its capability to carry the circum-

ferential (pressure) component. A similar result is evident in Fig. 145 (b)

for the case of torsior combined with axial compression.
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The curves in Figs. 144(c), 145(c), and 146(c) in which theory and
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test and compared are plotted in coordinate frames with R s Rx’ and Rs'
p Py

*
/P* and T /T
er ’ cr/ er

g
LA Lt

| ) c .
. PG ]
.'I 2
AN

These quantities are respectiwvely the ratios pcr/p:r ’ Pé(
in which all quantiiies refer to the imperfect shell and the starred quan-
tities are predicted buckling loads for an axisymmetrically imperfect

shell wich no other load components acting on it. The amplitude of the
imperfection U is given by p = /E_Srmslt, where Grms is the largest
root-mean-squared value of the imperfection determined from profile measure-
ments along several generators. The axial wavelength of the imperfection

is equal to that of the classical axisymmetric buckling mode. The coriela-
tion with test results is reasonably good, although the actual measured
imperfection was not axisymmetric. Had the nonsymmetric nature of the im-
perfection been accounted for in the analysis, test and theory would doubt-
less have been brought into closer agreement, especially in cases for which
the combined loading involves relatively large components of external pres-

sure.

Figure 147 shows the buckling interaction curve for axial compression and
. - 2

external pressure in the range of small Z = L"/rt. Tennyson, et al [ 193]

earlier demonstrated for isotropic shells the transition from concave to

convex interaction curves (as viewed from the origin) as Z decreases. The

I

convex curves for'z‘i 20 cannot be predicted without use of a rigorous

R A .
1'c'n.b' e "l'-"

prebuckling analysis.
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Buckling of Nonaxisymmetrically Loaded Shells of Revolution

Modeling Considerations

In many practical applications, shells of revolution are submitted to non-
axisymmetric dynamic loads. Computer programs for the nonlinear dynamic

analysis of nonsymmetrically loaded shells of revolution and parts of

shells of revolution subtending less than 360° of circumference have been

written by Stricklin et al [ 194], Klein [ 195], Ball [ 196], Underwood [ 197],
Huffington [ 198], and Hubka { 1i3%). ouiscniiu’s, Riein's, aud baii's pruglams
perform both static and dynamic analyses with expansion of the circumferen-

tial variations in trigonometric series. Underwood's, Huffington's, and

Hubka's perform dynamic analyses with division of the shell into two-

dimensicnal finite difference grids. All of these programs require the

same order of magnitude of computer time as any two—dimensional numerical
analysis of a shell of general shape, such as that performed by STAGSC

[ 48)].

The analyst may wish to embark on a parameter study of buckling of non-

¥

symmetrically loaded shells of revolution but may have a limited budget

LS 5

for computer costs. The following questions arise: When can the problem

a, ¢
‘y o,
Kl

e

be treated as static? When can the nonlinearities be neglected? When

»
»r
I
1
.

can the nonsymmetries be neglected? As with the axisymmetrically loaded

2o Ay,
s,

shells discussed previously, statie stability phenomena fall into two

* ’ '. ‘. 7
Al
A

.
i

i}
[

classes, nonlinear collapse and bifurcation (eigenvalue) buckling. If

~ tiie structure or loading is such that the shell collapses in a manner simi-
'{ﬁ lar to that shown in Fig. %5, for example, then one of the computer

N

;;: programs described in [ 194 - 199] or a general shell analyzer such as
E=
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STAGSC |{ 48] must be used for the analysis. If the shell fails by
bifurcation buckling, more questions must be asked: 1Is the behavior T
to bifurcation linear? Does buckling occur locally in some area where

the stress field is maximum compressive in some biaxial sense? If the be-
havior prior to bifurcation is aonlinear, as is true for bending of long
cylinders diccussed in connection with Figs. 39 cnd 42, can the non-
axisymmetric nature of the problem be neglected? If i1he answer to the
first two or the last question is affirmative, then a one-dimensional numeri-
cal analysis such as performed by any of the computer programs described

in [ 47) or [ 11 - 14] can ve used. If the prebuckling behavior is
linear the nonaxisvmmetrical prestrezs can be de termined by superposition
of stresses cause g Fourier harmonic of the nonaxisymmetric load.
The program user can then select the meridian where he thinks buckling

will start and, assuming that the stress field along that meridian is
axisymmetric, calculate bifurca-ion loads from the same stability equa-
tions used for the treatment of axisymmetrically loaded shells. The pre-
buckling behavior may be nonlinear but rotation of the shell wali abcut

a meridian () in Fig.17of Ref.[ 430} )may be small. If the analyst feels that
this nonlinearity cannot be neglected but that the nonsymmetry can,

then the bifurcation buckling analysis can be performed with a one-dimen-
sional numerical analysis as described in Ref. [430] . This type of modeling
simplification was used to generat: the predictions of local failure of

the rocket payload shroud shown in Fig. 5. The results are discussed

in connection with Figs. 81 and  82.
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Whether or not the prebifurcation behavior is linear depends, of course,
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on the case. As for bifurcation buckling, it is generally true that if the
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tion within one-half of a buckling wave, then the eigenvalue will not be
sensitive to the nonsymmetry of the prebuckling stresses. Bushnell and Smith
[ 200] present a limited study on the sensitivity of predicted thermal buck-
ling loads to the circumferential variation of prebuckling compression.

The critical loads are surprisingly insensitive to this variation in the

cases studied, as wiil be seen.

Examples of Buckling of Nonsymmetrically Loaded Shells of Revolution

Figures 148 and 149 show two examples in which buckling under nonsym—
metric loading can be estimated by a one-dimensional numerical analysis.,

The short cylinder depicted in Fie 148 represents a portion of a rocket
subjected during launch to a nonsymmetric combination of axial compression

V and external pressure p. The buckling load factor of 1.8 and the buckling
mode were predicted from a model in which the one-dimensional discretiza-
tion is around the circumference of the cylinder rather than along its
generator. The short, simply-supported (S2 in Table 8) cylinder is modeled
as a toroidal segment with a very large radius b from its axis of revolu-
tion to its center of meridional curvature. The prebuckled state is cal-
culated from membrane theory. This modeling technique, conversion of a
simply-supported prismatic shell or panel into a toroidal segment, is

described in detail in [ 82] and in a later section here.

Figure 149 shows nonsymmetric pressure loading on the rocket payload
shroud depicted in Fig. 5(a). The pressure distribution, measured in
a wind tunnel, corresponds to a small angle of attack. The payload shroud,
attached te a heavy motor stage at its aft end, bends as a beam and the
side under maximum axial compression, the leeward side, buckles between

discrete rings. (Buckling does not occur at the root of the beam because
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the shell wall is made of thicker gage material there, as indicated in
Fig. 5(a).) Here the one-dimensionality of the model is preserved as
follows: The nonsymmetric prebuckling state, including bending, is cal-
culated from linear theory; the buckling load and mode are then obtained
from an analysis in which it is assumed that the prebuckling stress dis-
tribution along the meridian on the leeward side of the shroud is axisym-

metric.

The two very different models described in connection with Figs. 148 and
149 lead to preservation in the stability analysis of different aspects
of the nonuniform, nonsymmetric loading: the torus model (Fig. 148)
leads to preservation of the effect of the circumterential nonuniformity
of the prebuckling membrane stress in the stability analysis but neglect
of its variation along the meridian; the shroud model (Fig. 149)
leads to preservation of the meridional variation of the prebuckling mem-
brane stress but neglect of its circumferential nonuniformity in the
stability analysis. The torus model is inadequate for the analysis of the
payload shroud because of the axial variation of wall properties, the
discrete rings, and the fact that the critical buckling mode corresponds
to buckling between the rings, rendering invalid the option of smearing
them out. A measure of the error induced by treatment in the stability
phase of the problem of the prebuckling stress state along the leeward
meridian as if it were axisymmetric can be obtained by setting up a torus
model of a short segment between two adjacent rings and comparing critical
loads corresponding to two prebuckling stress states, one in which the pre-

stress varies around the shroud circumference as cos® and the other in which

it is axisymmetric. Because of boundary effects which propagate along the
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shroud meridian as emphasized *. the discussion associated with Fig. 122,
the absolute values of the two buckling load factors may be inaccurate.
However, their relative difference should yield a geod qualitative esti-
mate of the error induced by neglect in the stability phase of the problem

of the circumferential variation of prestress.

Thermal Buckii., <. NinSynwetyically Heated Shells

Introduction: Interest in thermal buckling of thin shells was oxiginally

motivated by design requirements for high-speed aerospace vehicles. More

L
77,

»

recently important aposlications include thermal buckling of nuclear reactor

v s
ALl
[

components and storage tanks for liquid natural gas. Several investigations

v

s.L

in this field were made in the late 1950's and early 1960's. Hoff [ 201]

v
wate)

o
'e .' [

very clearly discussed various aspects of thermal buckling from the points

of view of the effect of temperature on material properties, creep, and

L

the effect of nonuniformity of temperature distribution in a structure.
We have already seen several examples of buckling due to axisymmetric heat-
ing (Figs. 69 - 76). This section is concerned with buckling under

nonaxisymmetric temperature distributions.

The early work on thermal buckling of shells deals with monocogque and ring-
stiffened cylinders. BAnderson [ 100] gives a brief survey of the work done
prior to 1962. He established two classes of problems: buckling of
cylinders due to circumferential stresses that vary in the axial direction
and buckling due to axial stresses that vary in the circumferential direction.
solution of the first class of problems is motivated by supersonic and hyper-

sonic airframe design involving frame-reinforced fuselages in which the
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thin skin heats up rapidly while the more massive frames remain relatively

cold. Radial expansion of the skin is thus prevented in the neighborhood
of the frames, giving rise to hoop compressive stresses that vary rapidly

in the axial direction. These local compressive stresses can cause buckling,
as we have already seen in the case of the uniformly heated clamped cylin-
der (Figs. 73 - 75). Solution of the second class of problems is also
motivated by nighspeed airframe design, with the emphasis in this case on
the fact that because the aircraft is at some angle of attack, the skin
heats up nonuniformly around the circumference. The circumferential gradient

gives rise to axial stresses which if compressive can cause buckling.

A number of papers has been written on the thermal buckling of axisymmetri-
cally heated ring-stiffened cylinders. Hoff [ 98] calculated buckling
loads for cylinders with aoop stresses which vary in the axial direction.
Johns [ 99] obtained buckling loads for cylinders with compressive line
loads, simulating the effect of a cold ring attached to a hot shell. The
analyses of Hoff and Johns include the effect of rings as either clamping
or simple support or as compressive line loads. Anderson { 202] included
the flexibility of the rings in an analysis of buckling of ring-stiffened
cylinders under combined axial compression and heating. Buckling charts

are given in Ref. [ 202}which cover a wide range of cylinder proportions
with boundaries either clamped or simply-supported. Chang and Card [ 101]
calculated buckling loads of ring and stringer-stiffened cylinders under
combined axisymmetric axial compression and heating. The rings are treated
as discrete elastic structures. Bushnell [ 102] used a finite-difference
energy method to calculate stress and buckling of ring-stifiened shells of
revolutiorn subjected to combined axisymmetric pressure, axial load, and non-

uniform heating.
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There also exists a rather large body of work on buckling of cylinders
heated nonuniformly around the circumference. abir and Nardo [ 203] con-
cluded that the axial buckling stress under circumferentially variable ther-
mal stress conditions is close to the critical stress of the uniformly
compressed cylinder if the variation of the intensity of the thermal stress

is not larce within a half-wavelength of the buckling pattern.

Hill [ 105] performed tests and analyzed aluminum and steel cylinders heated
on very narrow axial strips of a given width, The prebuckling stress in the
shell is calculated assuming that the cylinder is infinite. Hill tested
his shells with boundary conditions intending to simulate simple support
and clamping. However, only the simple support case represents a valid
test, since his "clamping” support rig was far too flexible to prevent end
motions of his 48-in. long specimens. Ross, Mayers, and Jaworski [ 106]
extended the experimental work of Hill, studying buckling of clamped cylin-
ders heated uniformly along axial strips of various widths. As might be
expected, the analytical and experimental results of Hill and Ross et

al. indicate that uniform circumferential heating (with restraint against
axial expansion) leads to lower buckling temperatures than does heating

along a rather narrow axial strip.

Some work has been done on the more complex problem of determination of
thermal stress and buckling of ring-stiffened cylinders in which the
temperature varies in both the axial and circumferential directions and
~® in which the shell and rings are at different temperatures. Anderson and
card [ 204] studied thermal stress and buckling of stainless steel ring-

stiffened cylinders subjected to a combination of bending and nonuniform
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heating. They obtained the thermal hoop prestress in the cylinder from
the analysis of Ref. [ 202]. The thermal axial prestress was calculated
from an analysis in which the cylinder is divided into a number of bays,
the axial stress being assumed independent of the axial distance within each
bay and variable from bay to bay. Prazonably good correlation was obtained
between test and theory. Holmes performed tests for thermal stress [ 205]
and buckling | 206 ] of ring-stiffened cylinders sukjected to nonuniform

heating and axial compression.

Less work has been done on the problem of predicting thermal stress and buck-
ling of conical shells. Lu and Chang [ 207 Jcalculated thermal prestress
distributions and bifurcation buckling loads of axisymmetrically heated
clamped cones and nonsymmetrically heated simply-supported cones. They per-
formed several parameter studies in a range of geometry for which the coni-
cal shell behaves essentially as would an equivalent cylindrical shell. 1In
further work Chang and Lu [ 208] analyzed thermal buckling using non-

linear equations to determine early postbuckling behavior of axisymmetrically
heated shells. Bendavid and Singer | 209] performed an analysis of conical
shells heated no-uniformly along an axial strip. They applied the Ritz method
with Hill's technique [ 105] of using a s-ape factor to increase rate of
convergence of the series expansion of the buckling modal displacements in

the circumferential direction.

Most of the work just cited predates the development of rather general com-
puter codes for the analysis of shells of revolution. Thermal expansion
effects are included in computer proyrams written by Cohen [ 11), Kalnins
[ 12],Svalbonas [ 13] and Bushnell [ 14, .47). The analytical results
of this secction were obtained with BOSOR [ 14]. 1In the following text the
phrases "critical temperature" and "buckling temperature" mean the same
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thing: the smallest eigenvalue or bifurcation point. "Temperature"

denotes the temperature rise above the ambient or zero-stress value.

Convergence checks were made in all cases by calculation with increasing
numbers of nodal points and Fourier harmonics. The solutions given in the
following sections would change by no more than one or two percent if the

given numbers of harmonics and mesh points were doubled.

Anderson and Card Tests [ 204 ]: One of the tests in the Anderson and

Card series was simulated with the BOSOR code. Cylinder 9 in the test
series was chosen for comparison, since Ref. [ 204] contains all the input
data required for this particular specimen. The cylinder which was rigidly
clamped at one end and supported by a very heavy ring at the other, was
subjected to pure bending and then heated rapidly over a portion of its
surface until buckling occurred. Figure 159 shows the input data for

he determination of thermal stress. The outer (faying) flanges of the

Zz rings were considered to be at the same temperature as the shell skin

at the ring attachment points, and the ring webs and inner flanges were
assumed to be at room temperature. The very large ring at the end of the
shell was assumed to be rigid but free to translate and rotate as a rigid
body. Temperature distributions along the shell lengt and around the
circumference were supplied to the BOSOR program directly from Ref [ 204].
The circumferential Fourier series expansion of the temperature is calcu-
lated in BOSOR, and the result of a 20-term expansion is shown as a dotted
line passing through the data input pointc in Fig. 150(b) . Thermal
stresses were obtained for this distribution. The rings were created as
discrete elastic structures with all components of moment and product of

inertia accounted for. The shell was analyzed in two segments, with 91 nodal
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prints in the segment between rings 3 and 5 and 43 nodal points in the segment

between rings 0 and 3.

Figure 151 shows circumferential distributions of axial thermal stress
at the middle of the bay between rings 1 and 2 (x = 16.5) and at the middle
of the bay between rings 4 and 5 (x = 2.224). Unfortunately, no test resuits

are presented in Ref. [ 204] corresponding to the heated part of the cylinder.

To compute the buckling load factor the following procedure was used: the axial
stress given in Table I of Ref. [ 204](-19.1 cosO)was added to the thermal
stress distribution derived by BOSOR. The generators with the highest compres-
sive axial stress resultant correspond to O = +40°. The distribution of axial
and hoop stress resultants along these generators is therefore used in the
stability equations. Buckling loads for various circumferential wave numbers
are calculated with the assumption that the axial load and temperature vary
proportionally. Because of the rather stiff ring there, stability boundary
conditions are introduced to pexmit antisymmetric buckling at the symmetry
plane shown in Fig. 150(a). The minimum theoretical buckling load corre-
sponds to n = 16 circumferential waves and an axial load-temperature com-
bination factor A equal to 1.41 times that obtained experimentally. Buck-

ling is predicted to begin in the bay between rings 4 and 5 at the genera-

tors located 40° from the generator at O = 0 corresponding to maximum heat-

ing. Maximum compressive stress resultants occur at O = 40 because of the

large thermal gradient between 50° ana 70° apparent in Fig. 150(b). Figure

l. 152 shows the predicted buckling mode. Agreement between test and theory would
E?f doubtless be improved by treatment of the ring webs as flexible shell branches,
- a technigque which will be discussed later (Figs. 182 - 185).

:xj Simply-Supported Cylinder Heated on an Axial Strip: Hill's test [ 105]

i; on simply-supported steel cylinders heated uniformly on a very narrow axial

= )

:n: strip afford a good check case for the BOSOR computer program, since the bound-
N
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ary conditions are easily modeled and the problem of finite flexibility of
supposedly clamped boundaries does not arise. Hill tested 48-in.-long cylin-
ders with diaphragms in the ends. Some cylinders were tested with one dia-
phragm at each end and some with two diaphragms at each end located 4 in.

apart as shown in Figqg. 153. The cylinders were otherwise unsupported

during the tests. Hill records that the specimens with one diaphragm at each
end did not buckle as expected. 1Instead a ridge formed directly under the
heat lamps with subsequent plastic flow. To prevent this nonlinear behavior
Hill introduced an additional diaphragm four inches from each end of the
cylinder. Figure 153 gives the shell geometry and heating distribution with
plots of normal displacement W and axial stress resultant Nx corresponding
to TO = 1.0°F. These results were obtained with the BOSOR code with 40 Fourier
harmonics being used for the expansion in the circumferential direction end

124 nodal points in the axial directicn. The diaphragms were modeled as dis-
crete rings rigid in their planes and of zero stiffness for bending normal to
their planes. The results are in agreement with those obtained by Hill [ 105].
It is seen that Hill's assumption of an infinite cylinder is va’id for the
specimens with two diaphragms at each end of the 48-in. specimen. The forma-

tion in the one-diaphragm case of an axial ridge directly under the heating

lamps is also predicted by the BOSOR theory. As seen in Fig. 153, this

ridge occurs over a range of O of -40° < 0 < 40° and is about 10~3 in from

b 1
»
1'1"1'1‘"
LR AR A S

trough to peak for each degree F temperature rise. No ~ch ridge is ore-

»
I8

E}j dicted to occur for the two-diaphragm model.

.

[

s .

- The straightforward way to use BOSOR to calculate buckling loads for the
#C cylinder heated on a strip would be to assume the axial stress Nx(x,9) at
b <

o .
N © = 0 is axisymmetric and to use this distribution in the stability equations
b,

o

b for the cylinder. However, the compressed region is very narrow and the pre-
7
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stress varies a yreat deal within a half wavelength of the buckle pattern
for ne axisynuetrically loaded cylinder. The assumption of axisymmetry of
prestress would therefore lead to a somewhat conservative estimate of the

buckling load.

The circumferential nonuniformity of axial prestress can be accounted for
through the technique described in connection with Fig. 148: the cylinder
is treated as a portion of a very slender torus. Figure 154 (a) shows the
geometry and temperature distribution. A cylinder with an axially uniform
prestress is transformed into a torus with a circumferentially uniform
prestress. The buckling load is minimized with respect to the toroidal cir-

comferential wave number n, which is inversely proportional to the wavelength

1@

Al
Wut.

of the buckle pattern along the axis of the cyli~der. Figure 154(a) shows

P
I' ‘!

the buckling mode shape corresponding to the min .wum predicted critical

’
1.
(]
2.
]

l'(:l:l

teuperature rise, AT__ = 194°F. In the analysis the region 0 < ¢ < 180°

’l v

is divided into three segments, with 81 nodal points in the range 0 < ¢ 5_120,

56 nodal points in the range 12° <¢ < 450, and 35 nodal points in the range

45° <9 f}lBOo. The toroidal circumferential wave number n associated with
sr_ = 194°F is 160,000, which corresponds to an axial half-wavelength of
0.34 in., a result in agreement with Hill's analysis [ 105]. Hill tested

two steel cylinders with two diaphragms in both ends of each. One buckled

at AT = 143°F and the other at 169°F.

parameter Study - Cylinders Heated on Axial Strips: Ross, Mayers, and

Jaworski [ 1C6] tested several steel cylinders heated on axial strips of

various widths. The cylinder geometry and approximate temperature distribution

are snown in rig. 154(b). Buckling temperatures were calculated with BOSO..

for strips of various widths. The analyses we:e made as just described, by

s 152




treatment of the cylinders as toroidal shells heated on circumferential
strips. The point k = 0 corresponds to the classical solution_ATCr = 0.6t/ (ra)
= 188°F. The analytical results indicate that buckling temperatures are not
very sensitive to width of t..e heated portion, even if very narrow recions

are heated.

Buckling of Conical Shells Heated on Axial Strips: Smith [ 210] tested a

seriec cf ccnical shells heated on axial strips of various widths such that

k in Fig. 154(b) lay in the range 5 < k < 35,

Because his colleagues at Stanford had encounterxed difficulties with support
systems of unknown stiffness [ 104 - 106]. Smith took particular care to
provide maximum rigidity of his test rig, a schematic of which is shown in

Fig. 155(a). The support system consisted of two thick steel end plates

connected by a thick central steel tube. This assembly was made more rigid
by the introduction of 8 half-inch thick steel webs welded at equal circum-
ferential jntervals to the larger diameter plate and central tube. Further

details on the test method and specimens are given in Ref. [ 200].

Figure 155{b) shows the temperature distribution at buckling in a typical

LA AN

)
¢

[}

case. In the BOSOR analysis the conical shell was divided into three seg-

[3

’

ments, as shown in Fig. 155(a). Nodal points were concentrated near the

ends, 29 points being taken in the segment labeled 2V in Fig. 155(a),

2 39 1in (5 and 31 in (Z\ .

f
B JRAER

In the stability analysis of the cone, the "worst™ meridional prebuckling
membrane stress distribution is identified (@ = 0) and assumed to be
. axisymmetric. Figure 155 (c) shows the prebuckling membrane stress state

at 0 = 0, the circumferential variation of prebuckling quantities, and
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buckling modal displacements w for the three lowest eigenvalues and eigen-
vectors corresponding to n_ = 20 circun f.cential waves. The difference
between the lowest eigenvalue A and unity represents the discrepancy
between test and theory, since the prebuckling stress distribution corre-
sponds to that at the experimental ATcr. Critical temperature factors

do not vary much with circumferential wave number n. The values of A
listed in Fig. 155(c) would be about 5% higher if the test rig were con-

sidered to be flexible in the stability analysis.

The effect of circumferential nonuniformity of axial compression is very
small in these cases, since k (Fig. 154(b)) is 12.8. 1Inclusion of this

effect would lead to an additional 5% increase in the predicted value of A.

Conclusions: The BOSOR computer program was used to calculate thermal stress
and buckling of nonuniformly heated monocoque cones and ring-stiffened cylin-
ders. Several comparisons between test and theory have been given which
demonstrate the applicability of the code to bifui cation buckling of a

rather wide variety of nonsymmetrically loade¢ shells. Linear theory is used
to calculate thermal stress and buckling under heating that varies in both
the axial and the circumferential directions. Perfect cylinders or cones
heated on narrow axial strips buckle theoretically at approximately the same
temperature ac do nuniforr heated shells, even if the half-wavelcagth of the
buckle pattern is approximately che sam2 as the circumferential extent of the

heated region.

The maximum prebuckling stress in an imperfect cylinder or cone heated on a
narrow axial strip is likely to exceed that of the uniformly heated shell
simply because the worst imperfections are not likely to occur in the

heated region. The effect of circumferential nonuniformicy v: cemprstacuis
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can often be accounted for by treatment of the cylinder or cone as a very
slender torus in which circumferential variations are transformed into

axial variaticns> aduissible within the shell-of-revolition stability analysis.

It is of interest to compare "knockdown factors"¢ = ATCr (test)/ATcr(theory)
obtained from the above analyses of the Anderson and Card [ 204] tests

(6 = 1/A =0.71), tue Hill [ 105] tests (¢, = 143°/194° = 0.74, 6, =
169°/194° = 0.87), and the Smith [ 210] tests [(1/1.52)< ¢, < (1/1.11) or
0.66 < ¢ < 0.89]. These values of ¢ shourd be compared with the values deter-
mined empirically for uniformly axially compressed cylinders with appropriate
radius-to-thickness ratios. Table 16 summarizes the results. The "typical
knockdown factors for uniform axial compression" are taken from Figs. 1 and

2 of Ref. [ 34]. Notice that the thinner the heated strip, the higher the

knockdc#n factor above the ccrresponding range for uniform compression.

Buckling of Nuclear Reactor Containment Vessel due to Ground Motion

During an Earthquake

A rough idea of the buckling margin may be obtained from a quasi-static

analysis in which the loading on the shell consists of body forces due

to the inertia of the shell as it is accelerated as a rigid body during

an earthquake. Figures 156 (a) - (¢) show the geometry and inertial reactions due to
vertical and horizontal components of ground acceleration 9, and 9+ Te-

spectively. The quantities P, and p, are vertical and horizontal compon-

ents of "pressure" proportional to the (mass/area), pt,of the shell reference
surface and to the acceleration components 9, and 9, and V and H are "line

loads" proportional to the discrete ring (mass/length), pA, and the accelexa-

tion components. Under this system of inertial reactions the containment

155




vessel deforms as shown in Fig. 157. The membrane components of stress
are plotted in Figq. 158. Buckling is possible due to shear le, which is
maximum at © = 90° or due to axial compression, which is maximum along the
meridian at @ = 0. The critical buckling lcad factor and mode are shown

in Fig. 159,

Dynamic effects may be accounted for approximately by performance of a linear
transient analysis of the containment vessel followed by a series of static
bifurcation buckling analyses in which the prebuckling states are "snap shots"
of the shell at instants in time chosen by the analyst because they corre-
spond to peak compressive membrane stress fields. This method is conservative
if the bifurcation buckling load factors are modified by appropriate knock-

down factors to account for ianitial geometric imperfections.

156




(3
.

a8
-

ST AN S AR TN T AR

Section 6

BUCKLING OF RING-STIFFENED SHELLS

OF REVOLUTION

Introduction

In previous sections many examples have been given of buckling of shells of
revolution, especially cylinders, reinforced by equally spaced rings or
by rings at the edges. Figure 22, which reveals the sensitivity of
critical axial load to initial imperfections in cylindrical shells of various
wall constructions, seems to indicate that ring-stiffened cylinders are less
sensitive than the other types for which test results are shown. In Figs.
35 and 36 buckling characteristics are illustrated for a ring-stiffened
titanium cylindrical shell which collapses at stresses exceeding the pro-
portional limit of the material. With creep neglected in the analysis the
shell is predicted to buckle nonaxisymmetrically in a bifurcation mode with
12 cvircumferential waves. With creep included the predicted mode of failure

is axisymmetric collapse.

Figures 64 - 68 reveal the complex behavior of buckling of externally
pressurized shallow and deep spherical caps with a ring reinforcement at the
boundary. Table 3 shows that dependingop the depth of the cap and the size

of the edge ring, buckling may be of the snap-through axisymmetric type

(n

or 0 circumferential waves), may be inextensional nonsymmetric

(n

or 2 circ. waves), may be an edge phenomenon (ncr is rather large), or may

resemble classical buckling of a complete spherical shell (pCr is indeperdent
of n). Figure 64 demonstrates the sensitivity of buckling pressure of

a spherical cap to axisymmetric eccentricity cf the edge ring. It is ex-
plained that this sensitivity is caused by the strong influence of ring

eccentricity on the axisymmetric prebuckling hoop compression near the edge

- of the cap.
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Figures 81, 82, 122, and 123 illustrate ve—-ious buckling phenomena
for a.ially stiffened (corrugated) cylindrical shells witr equally spaced
internal rings. 1In Figs. 81 and 82 the emphasis is on a local load path
eccentricity which causes local buckling and the effect of the rings is of
secondary importance. In Figs. 122 and 123 nonaxisymmetric buckling is
shown to be local between rings, that is the rings are large enough to
prevent buckling displacement of the shell at the circumferential lines of
attachment to the rings, with local maxima of the normal buckling modal

displacement field occurring midway between adjacent rings. The fact that the

+

axial bending stiffness is very large compared to the circumferential bending

4
‘s '!’ .:‘l

il 4
a

stiffeners in these corrugated configurations causes the influence of the

"' g
P{T
PRSI

boundary conditions on the buckling load to decay surprisingly slowly with

'
P4

..‘

increase in the length of the cylinder and increase in the number of

A R A

equally spaced rings. Figure 149 displays the buckling mode for a corru-
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gated, ring-stiffened rocket payload shroud under nonaxisymmetric aerodynamic

pressure.

Other examples already shown of buckling of rinq-stiffened shells of revolu-
tion include theoretical and experimental results of Tennyson [ 170] for
perfect and axisymmetrically imperfect integrally ring~stiffened cylindrical
shells under combined axial compression and external pressure (Fig. 142),
buckling under combined bending and nonaxisymmetric heating of a ring-

stiffened cylinder tested by Anderson and Card [ 204] (Figs. 150 ~ 152),
and buckling of a typical ring-stiffened steel containment vessel due to

vertical and horizontal acceleration of its base during an earthquake (Fig.  159)

e 158
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::;: The purpose of this section is to reveal additional physical phenomena of
- buckling of ring-stiffened shells in order to acquaint the analyst with
W

i:?: various effects and failure modes, thereby providing guidance for the con-

struction of appropriate experimental and analytical models.

.h\ n. :
5 \\--'
by The section opens with comparisons of test and theory for elastic ring-
o
o stiffened cylindrical shells under external hydrostatic pressure. FEmphasis

is given to the effect of boundary conditions on bifurcation buckling pres-

G
'Sj; sures. Local and general instability are demonstrated. Results from a rather
-Ziz extensive study of elastic-plastic buckling of hydrostatically compressed
7_;? internally ring-stiffened cylindrical shells are presented next. The com-

.‘.-

,;:E parisons between test and theory include an investigation of the effect of
5?% finite ring thickness on the shell wall axial bending rigidity and hence on

( ; the buckling pressures of some of the specimens.

- Following is a discussion of the influence on stability of residual stresses
fé' and deformations due to welding and cold bending. After a brief review of the
:Ei literature, examples are provided of the effect on buckling pressure of the
E;; welding of rings to an ellipsoidal shell. Residual deformation patterns are
o,

. displayed for two cylindrical shells: one with rings welded to the inside

zé surface and the other with rings welded to the outside surface. Comparisons
Eg between buckling pressures from test and theory are then presented for two

A

.!i ring-stiffened cylinders of identical dimensions, one of which was machined
:ii from a single billet and the other of which was fabricated by first cold

;fi bending a flat sheet about a cylindrical die and then welding rings to it.

.
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The closes with several examples in which instability failure of

. . -
o
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a ring-stiffened shell occurs in modes that involve local deformations of

7

3
“ 'l .r

the ring cross sections. These modes include circumferential crippling of

'
'
(AN

the ring, axisymmetric sidesway of the ring, local buckling of the shell be-
tween adjacent rings in which the ring cross sections not only rotate but
also deform, and generel instability of shell and rings together in a mode in

which the ring cross sections deform.

Elastic Buckling of Ring-Stiffened Cylinders under External Hydrostatic

Pressure

at
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Table 17 gives a comparison between test and theory for the buckling

P

ring-stiffened aluminum cylinders under hydrostatic pressure. Shell and

ring geometries are shown in Figs. 160(a) and 160 (b). Cylinders of this
geometry with various sizes of T rings (called "Frames" in Fig. 160) were
tested by Blumenberg at the Naval Ship Research and Development Center in
1965 [ 211]. The shells were analyzed with BOSOR { 14]. The heavy frames
were treated as discrete elastic structures but the small rings were

"smeared out” according to the equations of Baruch and Singer | 160].
Eccentricity effects are retained for both small and large rings. The
cylinders are "cut" at their planes of symmetry and buckling loads are

calculated for both modal symmetry and antisymmetry at these planes. Fig.

1]

161 shows one of the cylinders, prebuckling normal displacement LN and
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meridional moment MlO' and buckling modal displacement components u, v, W

ce

~® corresponding to general instakbility with n_. = 2 circumferential waves.

|

e The nodal points are concentrated around the attachment points of the large

o

~ .

AT frames in the BOSOR model.
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Two theoretical values are given in Table 17 for each cylinder. These
values correspond to clamped edges and to free edges with large end rings

such as shown in Fig. 160(a). Buckling with two or three circumferential

waves always corresponds to general instability (buckling of shell and

L]
i

heavy frames together) as shown in Fig. 161, and buckling with 4 or 5 waves

i
R ]

always corresponds to local instability (buckling between heavy rings).

Mode shapes corresponding to gereral (n = 2 circumferential waves) and local
(n = 4) instability are plotted in Fig. .162. "General instability"

denotes kuckling in a mode in which kboth rings and shell deflect. The term
"local instability" denotes buckling in a mode in which the rings are at
nodes, as shown in Fig. 162 for n = 4. If one plotted a curve of critical
load vs. circumferential wave number n for a single specimen there might be
several minima: The general instability load may correspond to a minimum
pcr(n) at a low value of n, and minima at higher values of n may occur
corresponding to buckling of each bay between adjacent rings. An example of
nonsymmetric buckling of an optimally designed conical shell in which there
are multiple minima in the curve p_ (n) v. n is given in Fig. 33 of Ref. [630L,In
calculating critical buckling loads of shells of revolution, especially those

which have been optimally designed with respect to local ané general instability,

.,
L %
4

users of computer programs such as those described in Refs. [ 11 - 14]

‘s
e S
S
¢
[

.
[

and [ 47] should be certain that they have covered all ranges of circumfer-

@,
.

ential wave number n in which minima of pcr(n) v. n may lie.
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In many cases the theoretical critical pressures are rather strongly depend-

a
r

ent on the boundary conditions. This is especially true for the specimens in

which the mode of failure is general instability. In Blumenberg's tests
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[ 211] the cylinders were supported at the edges by the heavy rings shown

’ Y A 3
DA

'y

«
PATRES

161

[
]

e
.
e
s,




in Fig. 160(a) . Additional support was provided by end plugs, which were
furnished with O-rings .~ sealing. As is the case in most experiments of

this type, it is difficult to determine just how much additional support

was provided by the end plugs. Therefore, two sets of calculations were

made, one for clamped edges and one for free edges with large edge rings. Itis
seen from Table 17 that the assumption of no additional support by the

end plugs is too conservative in Cases 1-1 through 7~7 and in all of the cases

in Group 2.

It is li%ely that in the tests the end plugs provided some restraint for all

of the displacement components and that this restraint is dependent on the
circumferential wave number of the buckling mode. Table 18 supports this
hypothesis. Notice that in Group 2 the difference between the loads for shells
with clamped and free edges with large end rings is small for n = 3 but that
restraint in the axial direction alone has a large effect on the critical
pressures for n = 2. It is clear from the experimental results for Group 2
that erough axial restraint was present to cause these cylinders to buckle

into more than two circumferential waves. This discrssion is included to
2mphasize the need to control carefully the boundary conditions in experi-

ments and to specify them correctly in analyses.

Elastic~Plastic Buckling of Ring-Stiffened Cylinders under External
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In 1965 Boichot and Reynolds [ 212] tested 69 integrally ring-stiffened

F";f. aluminum 7075 T6 cylinders under external hydrostatic pressure. The cylin-
S
pz;: ders failed in the plastic range. In 1976 the BOSORS computer program
YOI
- [ 47] was used to obtain theoretical buckling pressures [ 171]. Pphoto-
Yy
oo graphs of some of the failed specimens are shown in Fig. 163. A schematic
S
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of the geometry of all the foichot and Reynolds specimens is shown in
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Fig. 164, with the actual dimensions given in Table 1 of Ref. [ 171]. The

N h
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*
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stress-strain data used in the analysis are listed in Table 2 of Ref [4.171].
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*
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Previous analyses anplicable to some or all of these specimens have been
performed by Lunchick [ 213], Krenzke and Kiernan | 214], Reynolds [ 215},
Iee [ 216], and Gerard [ 217]. All of the analyses agree reasonably well
with the test results, owing largely to the fact that the tangent modulus

of the material decreases by more than an order of magnitude within a 20%

stress range of the 0.2% yield stress.

Comparison of test and theory for bifurcation buckling and axisymmetric
collapse of the 69 specimens is given in Fig. 165. Of the 69 test speci-
mens, 24 (designated "F", in Fig. 164, had fillets near the boundaries

and where the rings join the shell wall. From the photographs in Ref. [ 212],
from which Fig. 163 is reproduced, it appears that practically all of the
specimens without fillets fractured during failure. However, it is not
possible to determine from the test data alone whether fracture caused the
failure or wvhether fracture occurred later as the shell was deforming in

its buckling mode. On the other hand, there is almost no evidence of fracture

.::_:.

ﬁ::' occurring in the case of the 24 specimens with fillets. Therefore, it is
; reasonable to predict that better agreement between test and theory will be
tﬂ} obtained for the specimens with fillets than for those without. Further-
b

e more, analytical predictions that are too high for the specimens without fillets
o

b{¢ would lead one to favor the hypothesis that failure was caused by fracture
@

t?‘ rather than buckling in these tests, since the analytical model (BOSORS) is
N .

e incapable of predicting fracture. This would be particularly true if the too
o . . . . s .
b high predictions correspond to the thicker specimens for which imperfections
' 9.

p - are less significant.

-
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There ere *three different nominal radius/thickness ratios involved in the

test series: R/t v 12, 20, and 50. Buckling pressures for the R/t N 50

specimens are somewhat sensitive to imperfections because buckling, especially

of the models in this class with small ring stiffeners, occurs at average stresses
that are barely in the plastic range. Indeed, the test results for the

thinnest specimens exhibit the most scatter, as indicated in Fig. i65.

The g nerally upward sloping trend with increasing b//Rt in Fig. 165 re-
sults primarily from the fact that the analytical model becomes increasingly
conservative with increasing b//(Rt): The discrete rings are assumed to be
attached to the shell at a single point with the shell free to bend in the
axial direction in the immediate neighborhood of this point. The neglected
effect on the shell meridional bending stiffness of the finite thicknesses
of the rings leads sometimes to predictions of axisymmetric collapse with
relatively short axial wavelengths when the test specimens actually failed
nonsymmetrically. The short-wavelength axisymmetric mode of failure is
hindered by the increased local meridional bending stiffness afforded by the
finite axial intersection lengths of shell and rings more than is the rela-

tively long wavelength general instability mode of failure.

With use of BOSOR5 it is possible to investigate analytically the effect on
predicted critical pressures of including some additional axial bending
stiffness due to the finite axial length of the shell-ring intersection areas.
This increase in axial bending rigidity is modeled as shown in Fig. 166.

Additional nodal points are provided in the neighborhoods of the discrete

b rings with meridional rotation B constrained to be equal at nodal points
b

S

ti‘_ corresponding to the bottom and top surfaces of each discrete ring. The
di‘ solid line, labeled Model 1, corresponds to the origina. analytical models
FAT
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of the test series 15-5XF in which the discrete ring is considered to be
attached at one point and the shell is free to bend under the ring. That

is, the prebuckling meridional rotation 30 and bifurcation buckling modal
rotation Bb are free to change along the shell wall within th: shell-ring
intersection area. With the extra constraint conditions (Model 2) the analytical
predictions are closer to the test results. The critical failure mode for the
specimen with the thickest rings, Specimen 15-58F for whi~l b/Y !Rt) N 0.3, is
predicteu to be axisymmetric inter~ring collapse with use of Model 1 and non-

axisymmetric general instability with use of Model 2. 1In the cases for which

general nonaxisymméfric instability is predicted with uce of Model 1, introduc-

N

g

::j tion of extra constraint conditions as depicted in Fig. 4.166 does not change
-" .

-ﬂé the prediction very much. BAnalytical results for all of the cases investigated
jz, with use of Model 2 are given in Table 7 of [ 171]. Unfortunately, the bud-
X

get for computer time did not permit analysis of the entire series of tests

I
Pty
¥
WL

with use of Model 2.

]

Figure 167 shows tbe predicted axisymmetric failure modes for Specimen 25-88
(b/V(Rt) = 0.431) with use of Model 1 and Model 2 analysis. It is clear from

these plots why introduction of the extra constraint conditions raises the

e

e’ e
N

predicted axisymmetric collapse load.

i
st
(IR
stetatuty,

® Effect of Residual Stresses and Deformations
~:: on Plastic Buckling of Ring-Stiffened Shells of Revolution
Ay
s:\
‘& Review of Previous Work
:{ In 1958 Ketter [ 218] identified four sources of residual stresses and
. deformations of fabricated metal structures: differential cooling during
:’-

Rt
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and after rolling sheet metal, cold bending, various erection procedures,
and welding. He considered the effect of differential cooling in the

{abrication process on buckling lcads of axially compressed I-beams.

Cold Bendii.g: Several authors have investigated residual stresses due to cold
bending. Almen and Black [219] give the residual stress pattern tirough

the thickness of a bar which has been bent about a circular die. Queener and
De Angelis [ 220] derive aprroximate formulas for residual stresses and the
ratio of die radius R to final radius after springback Rf for materials with
stress strain curves of the form 0 = Ke . They perforred tests for various
materials and a wide range of Ro/Rf' obtaining good agreement between test
and theory. Their treatment is based on deformation theory. Lunchick [ 221]
determined the effect of cold bending on buckling loads of cylindrical pres-
st re vessels. He calculated effective stress-strain curves for the pre-
stressed material by averaging effective stresses and strains at twelve
stations through the thickness of the shell wall. Such curves depend on the
service loads. Lunchick's model is based on elastic-perfectly plastic material
and deformation theory. It is determined in | 271] that bending residual
stresses have the greatest weakening effect for cylindrical shells in which
the effective stress in the wall is near the material proportional limit at

the buckling pressure calculated with neglect of these residual stresses. For

such structures, the reduction in buckling nressure due to cold nding can

..,

be as much as 30%.

s e s

1.-‘;}
T .
LI

x
1, .l

1
- ".'-

l.l.
1,
’

.

'.-‘
2

Shama [ 222] derived a simple method for calculating the magnitude and dis-
tribution of cold bending residual stresses for any beam cross section. 7:e

effects of the shape of the stress-strain curve, section characteristics, and

:he degree of bend are investigated. Tac~y [ 223) has w—itter a computer
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program for the calcu'2.ion of the residual stress distribution and the ef-
fective stress~strain curve of cold tent beams for a wide range of practical
cross section geometiies., The Bauschinger effect and possible inelastic
behavior on springback are accounted for. The hardening rule used in

Tacey's program is a combination of isotropic and kinematic rules.

Welding: During the 1970's much work has been done on the numerical model-

ing of multipass welding. The ASME volume, Numerical llodeling of Manufactur-

ing Processes [ 224], contains several papers on this subject [ 225 - 220].

Masubuchi [ 231] wrote a survey of the field in 1375. Three frequently
referenced papers are by Hibbitt and Marxrcal [ 232], Nickel and Hibbitt [ 2337,
and Friedman|[ 234]. The results presented in these papers are generally ob-
tained from sophisticated computer programs for multidimensional eialysis.
Although the heat conduction and the thermal stress problems are uncoupled,

the models include nonlinear boundary conditions for solid and liquid regions,
temperature-dependent material effects, latent heat effects, and convective

and radiative heat transfer boundary conditions.

It is impractical to incorporace such elaborate models of the welding
process into ananalysis of buckling of a ring-stiffened shell with many
welds. A simple, computationally efficient model is introduced in [ 47], in
which buckling pressures are calculated for a welded ring-stiffen~4 ellip-
soidal shell. The shell and rings are assumed to be machined and stress
relieved separately and then welded together. The effects of weld shrinkage
are simulated in [ 47] by means of the assumption that a certain amount of
material in the local neighborhoods of each weld is ccnled below ambient
temperat.: e to a ¢ . erence approximately equal to the annealing temperature.

The residual stress distribution thus generated is characterized by local
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tensile circumrferential yielding near the welds and elastic circumferential
compression over the rest of the cross sections of the shell wall and ring
stiffeners. The structure prestressed in this way remains axisymmetric, of
course, but the radial shrinkage varies in the meridional direction, intro-
ducing an exisymmetric imperfection with a characteristic wavelength equal

to the ring spacing. The weld effect thus modeled reduces the predicted buck-
ling pressure by about 10%. Similar calculations are described in { 235]
for axisym etric creep buckling of girth-welded titanium spherical vessels

subjected to external pressure.

Bending and Welding: Few papers exist in which residual stresses are cal-

culated for more than one fabrication process. Chen and Ross | 236] calcu-
late residual stresses from cold bending a flat sheet into a cylindrical
shape and then welding the longitudinal seam. They suggest that these
residual stresses will cause early column buckling of long cylinders under
axial compression. In his computer program, Tacey [ 223] permits introduc-
tion of arbitrary initial stresses and then calculates residual stresses for
a series of up tc ten sequential bending processes. Faulkner [ 237] gives a
survey of work done on calculation of residual stresses due to welding ring
stiffeners to cylindrical shells and cold bending sheets into cylindrical
shells and beams into rings. He states that when ring stiffeners are welded
to a cylindrical shell of thickness t there is tensile yielding over a
length of shell equal to 2nt and over a length of the ring web equal to nt.
These tensile regions are balanced by compressive residual stresses distribu-
ted over the reriinder of the shell and ring cross sections. Typical values
of n obtained from measurements are in the range 1.5 < n < 4.5. The
measured radial shrinkage at the welds is approximately 10% of the shell thick-

ness t.
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Figures 109 - 115, Table 7, and the accompanying discussion describe

an unsuccessful attempt to explain the unexpected failure of a large steel

e water tank by accounting for residual stresses and deformations due to cold

.:FJ bending flat shee*s into a conical form and then welding them circumferen-
tially.
\') Effect of Welding on the Plastic Buckling Pressure of an Ellipsoidal Ring~
Stiffened Shell
;;1 The geometry of an ellipsoidal shell with internal ring stiffeners is shown
EE: in Fig. 168. The purpose of the analysis of this structure is to determine
LS
':k: the effect on predicted buckling pressure of axisymmetric distortions and
‘%: residual stresses due to welding the rings to the shell.
Figure 169 shows the BOSOR5 model which consists of 313 degrees of freedom
in the axisymmetric prebuckling analysis and 466 degrees of freedom in the
;EEE nonaxisymmetric stability analysis. Symmetry conditions are imposed at the
i;;; equator in both the prebuckling and bifur~ation buckling analyses. (It was
:j~ determined in preliminary runs on the computer that the lowest bifurcation
'igs buckling pressure corresponds to a mode symmetric rather than antisymmetric
Ei; about the symmetry plane. The locations of *he discrete ring attachment points
:: and centroids are indicated in Fig. 169 (b).
:;g; The effect of the welds shown in Fig. 170 (a) is introduced into the analy-
:ie tical mocdel by means of the temperature distribution shecwn in Fig. 170 (b):
:{: A certain amount of the material of ring web and shell wall in the neighbor-
Z?; hood of the welds is considered to be cooled down below room “emperature.
e
L 2
169
e




The value 1000°F corresponds approximately to the anneal temperature of the
steel from which the structure is presumed to be fabricated. The anneal
temperature is used as a reference value because residual stresses are re-
lieved for higher temperatres than this. The zero-stress temperature dis-
tribution corresponds to the weld recion being hot (above 1000°F) ané ine
rest of the material being at room temperature. As the weld material cools
down from 1000°F to room temperature, stresses build up in the shell and
ring, tensile in the region that was originally heated above 1000°F and
compressive elsewhere. Thus, the non-zero stress state corresponds to &
uniform ambient temperature distribution. In BOSOR5 it is not possible t»
generate a non-zero initial thermal stress state with a uniform temperature
distribution. Therefore, one must simulate the growth of residual stresses
and deformations by treating the weld region as if it were cooled down

below ambient temperature.

Figure 171 shows the prebuckling axisymmetrically deformed shape with
increasing external pressure and a comparison with and without welding
effects. The relatively advanced scalloping of the meridian corresponding

to p = 4100 psi with the weld effect arises because of increased local plastic
flow near the ring attachment points. The ring at the plane of symmetry moves
inwerd rapidly with pressure increasing above 3500 psi because the flange
yields and flows plastically, having zero tangent modulus for p > 35C0 psi.
(There is mo.~ welding required in the neighborhood of this ring than the others
because the ring must first be welded to one of the hzlves of the shell and
then the two halves of the chell mast be welded together. Hence, in this area
more of the material is cooled down by an amount approximately equal to the

anneal temperature.)
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Figure 172 shows predicted incipient buckling modes with and without the
weld thermal effect. The lowest predicted critical pressure corresponds

in both cases to nonaxisymmetric buckling with 5 circunferential waves. The
buckle modes are quite different in the two cases because of the increased
amount of prebuckling plastic flow in the ring at the plane of symmetry

predicted with the model which includes the weld effect.

Residual Deformations from Welding Internal v. Extevnal Rings

In 1957 Krenzke [ 238] investigated experimentally the effect of welding
residual stresses and deformations on plastic buckling of ring-stiffened
cylinders under external hydrostatic pressure. Two of his specimens, d.sig-
nated "M1" and "M2" were nominally identical except that the rings of
Specimen M1l were internal and those of Specimen M2 were external. Krenzke
measured average velding distortions for Specimen M1l approximately equal to
those exhibited in Fig. 173 (b), which are predicted by BOSORS [ 47] to
result from the imposed nonuniform temperature distribution shown in
DETAIL AA. An analogous temperature distribution corresponding to exter-
nally welded rings yields a predicted residual deformation shown in Fig.
173 (c). These displacements have the distribution measured by Xrer. .=
for Specimen M2 but the amplitude of the predicted wayes is about twice that
measured. It seems that, in this case at least, about half as much "cool-
down" is required to simulate the welding process with external rings as is

required for the simulation of welding internal rings.

In the tests the externally st.ffened specimen M2 collapsed at a pressure
about 5% higher when corrected for different material yield strengths than
that for the internally stiffened specimen. The same difference is predicted

by BOSCR5. The zollapse mode is characterized by formation of an axisymmetric
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inward dimple, as shown in Figqg. 36(e). The "hungry niorse” residual weld-
ing deformation pattern displayed in Fig. 173 (b) represents an initial
imperfection that is more harmful than the "caterpillar" mode exhibited in
Fig. 173 (c) because the former resembles the collapse mode illustrated in

Fig. 36 (e) whereas the latter has a shape cpposite to that of the collapse

mode.

Effect of Cold Bending and Welding on Buckling of Ring-Stiffened Cylinders

The BOSOR5 computer program can be used for calculation of bifurcation buck-
ling of cold bent and welded ring-stiffened cylinders under external pressure.
Residual stresses and deformations from cold bending and welding can be in-
clided in the model for buckling under setr ice loads by introduction of

these manufacturing processes as functions of a time-like parameter,

"time", ~hich ensures that the m¢+terial in the analytical model experiences

the proper sequence of loading prior to and during application of the service

a
'
«

2

jj; loads. The cold bending process is first simulated by a thermal loading
Y
{?f -ycle in which the temperature varies linearly through the shell well thick-

ness, initially increasing in "time" to simulate cold bending around a die

of radius R, and then decreasing in "time" to simulate springback to

a final somewhat larger design radius R. The weliing process is subsequently
;;; simulated by the assumption that the material in the immediate neighborhoods of
NS the welds is cooled below the ambient temperature by an amount that leads to
e weld shrinkage amplitudes typical of those observed in tests. Buckling loads

are calculated for a configuration including and neglecting the col bending

C;- and welding processes. These predictions are compared to values obtained from
-;'

,.,‘_r tests by Kirstein and Slankard [ 239] and Slantard [ 240] on two nominally

e

Mo
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identical specimens, shown in Figs. 174 (a-c). The specimen designated
BR-4 was fabricated by cold bending the shell and then welding machined

ring stiffeners to it, and the specimen designated BR-4A was carefully

machined.

Cold Beuding of a Flat Sheet into a Cylindrical Shell of Infinite

Length: During the cold bending process the axial and circumferential strain

components in a bent sheet of thickness h are approximately

m
]

(z/R ) £ (e/t ) -h/2 < z < + h/2 ( 39)

in which =z is the coordinate normal to the middle surface and Ro-h/Z is
the radius of the die about which the sheet must be rolled so that when it

sorings back the final radius of the bent sheet is the design radius of the
cylindrical shell R . The quantity t is a parameter (such as time)

which determines how much of the bending process has been completed; to

is the value of t when the initially flat sheet has been bent into a

cylinder of radius R (before relaxation of the applied circumferential
o

moment), and

f(t/t ) = t/t for 0 < t/t < 1.0
o o - o —

.?ﬁ = - . t 40
i f(t/to) 2 t/t0 for 1.0 < t/t0 g_(tr/ 0) ( )
Yy f(t/to) = 2 - tr/to for (tr/to)< t/t0
L
:5? Equation ( 40a) gives the function of normalized “time" f(t/to) during which
:jg the radius intc which the initially flat sheet is being bent decreases until
];f it reaches the minimum value Ro' Equation ( 40b) gives the fun tion f(t/to)
S

Fi{' during the interval when the moment causing the bending is relaxed, so that
“~
ol 173




EEﬁ, at t = tr there are no resultant forces or moments in the circumferential
;} direction. Equation ( 40Oc) indicates that the state of the bent sheet does
R

- not change for t > £ -

é{ The following approximations form the basis for Equations ( 39):

.TE 1. Strains are small compared to unity.

- 2. The sheet is long enough so that end effects can be ignored.
:$ 3. The ratio t/R is negligible compared to unity.

E; 4. Effects ofstrains normal to the sheet surface are negligible.

f"
g
w

There is no average tension of compression during bending;

the neutral axis remains at the middle surface.

.
E I T T i

2 a’y

Durine the bending and relaxation process, each material point in

the sheet passes through three distinct regimes: an initial elastic load-
e ing regime, an intermediate elastic-plastic regime, and a final elastic

- unloading regime.

(el . V.

i
)

o Initial Elastic Loading: In the initial elastic regime, the axial
>

'ﬂ} and circumferential stresses are given, respectively, by

oy

2

o = —E— (e +ve) =—LFo (z/r) (t/r) (4D
y. 1 2 1 2 2 o o

o (1-v7) (1-v™)
o .

;: 0, = —>5" (52 + vel) = cl/v

. (1_\) )

'i:- The von Mises yield criterion is

LN
o 2.2 32 ( 42)
® 5 = (cl + 9, 0102) = oy

,:?; From Eqs ( 41) and ( 42), the normalized time to yvield can be computed as

} 2 2 1/2, (43
= tyierd/t = (o (R /1z])/E] [QA-vT)/ (14, -) /%)
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Elastic-Plastic Loading: In the elastic-plastic regime,

(t

1eld/t ) < t/t < 1.0, the calculation of the stress and plastic strain
components muc<t be performed incrementally because the plastic flow
"directinn", according to the normality rule, depends on the stress state. As
set forth in [ 241], the total meridional and circumferential strain

increments, Ae; and Acy, consist of the sums of elastic and plastic

strain increments:
bey = (8o, - vbo,)/E + e’ (35/307) ( 4h)
Bey = (Los = VAGY)/E + Ae”  (3G/30,)

~p

in which Ae” is the effective plastic strain increment. It is known from

Eqs ( 39) that
AEI = 0 [\62 = (Z/RO) (At/to) ( 45)

and from Eq ( 42) that

- =, 2 2 i/2
G+85) = oy = [ @1+ + (02 +802)" = (01 +801) G2 +80)] /
( 46)
and

- o _ %) 3 2~ (20, 2 (47

o 55?— = (20, - 93)/(20) ; S0, (265 - 51)/(20)

S

fz:: 1f we assume (in this section only!) that the material is elastic-perfectly

o

BN plastic (¢ = constant) £-d that the stress increments are small compared to

SN v p

o the stresses, 40 is zero and Eq.( %6) leads to

-

i. b0y = -[(2c, -09)/ (207 - 05)] Loy ( 48)

F .

I-‘.‘-'

b ,

Q : The three equations ( 44a), ( 44b), and ( 48) can now be solved for the

b

25 /

N three unknowns Aoy, 57;, and 427 for each time increment ./t betwzen

'
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t=t , a d t=t . At the end of each time increment, the new stress
yield 0

state is

Ol(ni—l) _ 01(n) : 02(n+1) _ (n) ( 49)

+ Ao 0o + Ao,

and the plastic strain components are

e POFD) ) opm) (@) oz(n))/(zoy)

( 50)
e, Pt P 4 pfP@ (g, () cl(n))/(20y>

The state of the material at various points in space, z = * mAz, m=1,2,,...M,

and in time, ty + nAt, n=1,2,...N, can thus be calculated recursively

ield
for an arbitrary number of time increments N in the interval tyield
< t <t
— — o

Relaxation: if the relaxation process in the third regime to <

t< t. is assumed to be elastic, the stress components at the end of

the interval, t=tr’ are:

(tr) (to) vE
01 = 01 + Tl——\TZT (Z/Ro) (1 - tr/to) ( 51)
(t) (t,) E
o2 = 02 A (z/R ) (1 - tr/to)
(t) (>
in which ¢, T and P r denote, respectively, the axial and circum-

ferential stresses after the applied bending moment has been completely
relaxed. The normalized time to complete relaxation, tr/to’ can be cal-
culated from the requirement that after relaxation the circumferential mo-
ment resultant is

h/2
() (t,)
2 -
-h/2

M ( 52)

11
Q
D
N
(a9
N
1]
(o)
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With use of Eq ( 51b), Eq ( 52) yields

(to)l

tr/t =1+ l M 12 (1-v2) Ro/(EhB) ( 53)

2

(t)

in which M, 70", the bending moment just before relaxation begins,

is given by

hy2
(t ) (t)
M2 ° = Oy ‘o zdez ( 54)
J—h/2
(t.)
The circumferential moment result M2 can be calculated by Simpson's

rule integration of the stress through the wall thickuness.

Obtaining a Value of Ro: The given quantity in this problem is the

final cylinder design radius R after elastic springback. It is neces-
sary to bend the initially flat sheet to a somewhet smaller radius RO
such that after relaxation it springs back to the design value Rc'

The change in curvature due to elastic springback is

(t,) (t,)
M (1-v?%) M 12(1-v?)
i _1_2 - 2 ( 55
Ro R EI Eh3
(t)
In general, M2 depends in a complex way on the unknown Ro’ through
Eq ( 54) and the recursive relations ( 49) and ( 50). One might solve
(t)

for R iteratively by trying a value, computing M, © from Eqs (4.49)
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and ( 54), and using Eq ( 55) to derive an updated value. For per-
(t)
fectly plastic materials, the moment M2 is given approximately by
(t ) )
(o} - h/lj _ 21/2
M2 Oy [4(1 Ve + v, ) ] ( 56)

in which ve 0.5.

is an effective Poisson's ratio in the range v <« v, <
Equation ( 56)can be used to obtain a starting value for Ro in the

iterative process. Alternatively, one could use the tormula derived by
Queener and De Angelis[4.220]for strain hardening materials with stress-

. . n
strain curves given by 0 = Ke :

1-n
2R
_ 1 IK(1-v2) )
RO/R—l E(2+n)(3/“)(l+n)/2 (h> ( 57)
r{ZRo 1/ (-0) 3
+[\T E) ¢
in which
34n ;
c = 30-v?) GoB” ey
(24n) (3/4) /2 g1 2y (20) /2 (1-vv2)3/2

Equation ( 57) reduces to Eq ( 55) with Eq ( 56) if the last term on the

right-hand side of Eq ( 57)is neglected, K is set equal to 0y,n=0,

and v = 0.5.
e

Simulation of Coid Bending in BOSOR5: The cold bending process is

simulated in a BOSOR5 model by use of a thermsl loading cycle. In the

BOSOR5 analysis the elastic stresses in the cylinarical shell are given

by

[(ey - ay AT)+ v (e ~ ap AT)]
¢ 59)

0o = —

= [ viep = oy AT) =+
(1-v?)

(82 i 3) AT)]
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in which o7 and oy are the meridional and circumferential coefficients of
thermal expansion. AT, a function of z, is the difference between the
applied temperature and the zero-stress or ambient temperature. Since the
sheet in the BOSOR5 model is already in its bent form, the temperature
distribution T(z,t) should be such as to cause the total strains ¢;(z,t)
and €5(z,t) to be zero. In addition, in the initial elastic regime, we
know that o; and 0, are given by Eqs.( 41). These facts and Eqs ( 59)

lead to the equations

v (z/Ro) (t/to) - (a1 + v ap)AT

( 60)
(z/R)) (t/t ) == (v oy +ap) AT
for which the sclution is
apAT = —(Z/Ro)(t/to); ( 61)

a; = 0

The minimum bend radius is calculated from Eq ( 53) or Eq ( 57).

Procedure for Using BOSOR5 to Calculate Buckling Loads Including

Residual Effects Due to Cold Bending and Welding: Pesidual stresses and

deformations due to cold bending are first calculated with BOSOR5 in two
computer runs. The first run gives the peak bending stresses at t=to=l.0
(t)

and yields the circumferential bending moment M2 ° , which is neaded in

order to d.termine the relaxation time, tr’ from Eq ( 53). The second

run yields tlte residual state aftev complete relaxation of the bending
moments. Subsequent computer runs include application of welding, as
described in the discussion associated with Figs. 168- 173, followed by
appiicatioa of the service lvads. The thermal loading and service lozainug
are applied in the proper sequence by means of specification of them

as functions of pseudo-time such as shown in Figure 175, which applies to

i it fo av Sk ou Su ok SR D SR Rriag)

buckling predictions of Slankard's test specimen 240]. (See Tigs. 174 a,c.)
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Comparisons with Tests on Cold-Bent Sheet: Figure 176 shows residual

stresses through the thickness of a srecimen tested by Queener and Deangelis
[ 220).The BOSOR5 results ar» practically indistinguishable fron the
theoretical results of [ 220].Queener and De Angelis describe how they ob-
tained the test points. The parameters of the problem are given ir. the fig-~
ure. The stress-strain curve used in the BOSOR5 analysis is linear up to

. o . n . . .
the proportional limit o_, and follows the curve o = Ke in a piecewise

p2
linear fashion for ¢ > ¢ _,. In the 30SOR5 simulation, the configuration

pR
/2. cos
with symmetry conditions ap-

is a cylinder which is long compared tc (Rt)l
plied at both ends. The temperature vari.s linearly through the wall thick-
ness h as shown in Fig. 176, and varies :ith time as given by Eqs 40

t =1.0 and t —1.25.
Q r

Buckling of Cold Bent and Welded Ring-Sv.iffened Cylinder: Com-

parison of Test and Theory: Figure 174 shows

two ring-stiffened cylinders buckled by external hydrostatic pressure [ 239],

[ 240]. Both test specimens are made of t sume material and have

the same dimensions. The one on the left, desigra’-4 "BR-4" in [ 240],

was fabricated by cold forming *he cylindrical shel. from a flat sheet and

then welding on rings which had been machined. The o-e on the right,

designated "BR-4A" in [ 239], was machined from a single thick tube.
Dimensions of the specimens are given in Fig. 174(c). The material

18 called "Alan Wood Steel"™ in [ 239] and [ 24G], with a yield stress of

50,600 psi. An elastic perfectly plastic property wa: :ssumed for the BOSOR5

models. The test specimens were sealed at the ends in such a way as to sug-

gest the use of simple support boundary coanditions in the araiysis.
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In the tests the cold formed, welded specimen BR-4 buckled at 390 psi
and the machined specimen BR-4A bu~kled at 540 psi. The BOSORS analvsis of

BR-4 yields a predicted buckling pressure of 460 psi and the analysis of
BR-4A yields a predicted buckling pressure of 540 psi. Since the BOSOR5
models are identical except for the simulation of cold bending and welding,
it is the r:sidual stresses and deformations arising from these fabrication
processes that cause the decrease in predicted buckling pressure from 540
psi to 460 psi.

Two BOSOR5 models of the cold formed, welded specimen BR-4 were analyzed.
These are shown on the left-hand side of Figure 177 (Figures 177a and £f). In
the first model, Fig. 177a, the cylindrical shell was treated as a single
segment and the welding process was igncred. The cold bending process was
simulated with a temperature gradient with a maximum temperature rise
ATc = 1243° corresponding to a coefficient of thermal expansion u = 6x10—6/°.
Figures 177 b-d show the axisymmetrically deformed generator at certain stages
of the analysis. The predicted buckling mode depicted in Figure 4.177e corre-
sponds to twelve circumferential waves. The oredicted buckling pressure ignor-
ing welding is 460 psi, the same as that in which simulation of the welding
is included, as described next.

Figure 177f shows the BOSOR5 model for the case in which beth cold bend-
ing and welding are simulated by thermal loading. This is a much more elaborate
model than that shown in Figure 177a: the cylinder generator is divided into
fifteen segments in order to be able to specify different spatial distributions
of temperature for the cold bending and the welding phases of the fabrication
process. The welding process is simulated in the short segments near the
ring stiffeners and the cold bending process is simulated in the rest of the
cylindrical shell. (This segmentation with d fferent AT distributions in the

long and short segments leads to the slightly wavy result in Fig. 177g.)
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Figure 178 shows the two spatial temperature distributions used in the
simulations. A reasonable maxiium welding shrinkage of approximately 8% of
the shell thickness is produced by the assumption that the material near and
in part of each ring stiffener is cooled to 700° below ambient temperature.
The extent of the weld affected zone shown in Figure 178 corresponds to

a value of Faulkner®s 1 between 2 and 3, well within the range observed in

tests [ 237].

Figure 175 shows the BOSORS time functions associated with the two fabrica-
tion processes and the pressure loading.. The predicted shapes of the axisymmet-
rically deformed c;/linder generator at various times are shown in Figures

177g through 177j, and the predicted buckling mode with welding simula-
tion included is ~hown in Figure 177k. While inclusion of welding shrinkage
does not change the predicted buckling pressure or mode in this case, it
does considerably change the prebuckling displacement distribution, as seen
from a comparison of Figures 177d and 177j. The radial shrinkage due to
welding is maximum at the ring stiffeners (equal to about 8% of the shell
thickness) ana minimum midway between rings, a mode similar to that shown in
Fig. 17 3c.  The welding process apparently has little influence on the
buckling pressure because of two counteracting sffects: the residual weld-
ing stresses weaken the shell but the "caterpillar" type residual deformations

strengthen it.

Figure 179 shows the predicted stresses through the wall thickness midway
between rings at various times of particular interest. The bands of plastic
flow indicated in Fig. 179(d) result from the residual compressive stresses
due to cold bending located in the corresponding regions of the wall thickness,

as seen in Figs. 179(b,c). More details are given .. Ref. [ 1421,
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Possible Causes of the Remaining Discrepancy between Test and Theory: The

BOSOR5 simulation of the fabrication process explains a little more than
half of the experimental difference between the buckling pressucres of the
machined model BR-4A and the cold bent, welded model BR-4. The remaining
discrepancy is probably caused by some combination of the following effects
not included in the BOSORS5 model:

1. There exist nonaxisymmetric initial imperfections which are greater
for fabricated models than for machined models. These include nonuniformity
in shell thickness. Measurements of the steel plate from which Specimen BR-~-4
was fabricated indicate that the thickness varied by as much as 10% [ 240].

2. The stress-strain curve of the "Alan Wood Steel" from which Specimen
BR-4 was made is unknown. The material proportional limit may have been less
than the yield stress quoted in [ 240]. If so, inclusion of the Bauschinger
effect in the BOSOR5 model would have generated yielding in compression at
lower pressures than those calculated with the present model, which is based
on an isotropic hardening law. Presumably, the critical pressure would then
also have been lower.

3. The welding simulation is a heuristic model which is in qualitative
agreement with measurements on other specimens made of other material [ 47,

237, 238]. A rigorous treatment including welding sequence and nonaxi-
symmetric effects might lead to a lower critical pressure.

4. The sheet from which Specimen BR-J} was fabricated may have contained
initial residual stresses due to differential cooling during and esfter it was

rolled into its flat form of thickness .132 in.
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Effect on Buckling of Deformations

of the Ring Cross Sections

General and Local Instability

Most of the examples in this section involve cylindrical shells suvbjected to
external hydrostatic pressure. Such structures are often designed through

use of an optimality criterion: Dimensions of the shell wall and ring spac-
ing are determined such that buckling in a general instability mode, such as
shown in Fig. 180(a), occurs at the same value of p_. as buckling of the
skin between adjacent rings, such as shown in Fig. 180(b). The heights and
thicknesses of the ring segments are established such that local crippling

of each of these parts as shown in Figs. 180(c,d) , occurs at the same
critical compressive circumferential strair as that in the shell wall corre-
sponding to general and local instability (a,b). The design is arrived at by
calculation of buckling strains with the assumption that each part can be
analyzed separately and can buckle independently of the rest of the stru~-ture.
Simple support edge conditions are imposed at the boundaries of each part in
order to permit use of simple expressiuns for the assumed buckling mode, such

as sin(7x/L)sin n0.

Local rinc stiffener buckling modes are characterized by buckling of individual

;:;f stiffener segments with no translation of the junctures between these segments.
SE:E Simple suppo:t ronditions are imposed at segment junctures, as illustrated
e

E;%%- in Figs. 18B0(c,4). Each of the internal segments, that is a segment with
?’;: both edges connected to another segment, may buckle with a different number

5 of circumferential waves n. Each end segment has one free edge and does not

defcrm but rotates about the juncture with the neighboring internal segment.
The number of circumferential waves in the critical buckling pattern of each
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end segment 1is equal to the number of circumferzntial waves in the critical
buckling pattern of its neighboring internal segment. Behavior of a typical

end segment is shown in Fig. 180(d).

Figures 180 (e-g) show another type of stiffener buckling, called "rolling".
Three kinds of stiffener rolling are depicted, one (e) in which the panel
skin participates and two (f,g) in whi<h it does not. 1In the first (e} the
stiffener cross section does not deform but simply rotates about its line of
attachment to the skin. 1In the other two rolling modes (f,q) the stiffener
web deforms and the portion of the ring cross section attached to this web
translates and rotates. Buckling of type (f) occurs because of compression
perrendicular to the plane of the paper. The buckling mode usually has
several circumferential waves. Buckling of type (g) occurs in the cases

of internal rings on externally pressurized cylindrical shells or zxternal
rings on internally pressurized cylindrical shells. 1It is due to compres-
sion in the web in the plane of the papexr, a compression generated because
the portiocn of the ring attached to the end of the web resists radial displace-
ment. The resulting radial compression in the web can lead to axisymmetric

"wide-column” buckling of the web.

Modal Interaction

e

One might think at first that the design method just summarized should be

conservative if the effect of geometrical imperfections is ignored. It is

O
PR R

clear that local buckling of the skin between two adjacent rings cannot occur

.
S .
LR .

2t

as drawn in Fig. 180 (b) without forcing the rings to rotate. Similarly,

’

local buckling of each ring cross section segment canrot occur as exhibited

el

PR R R
. .

in Figs. 180 (c,d) independently of the other segments, because these seg-
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are uot hinged at their junctions. The model with many hinges between its
parts should vield lower bound ectimates of buckling loads and therefore
thicker parts than required for rhe actual! (perfect) structure, a designer

might well reason,

However, because of the interaction of local and general instability modes

and the interaction of various local instability nodes, critical buckling
loads calculated for an assembled pzrfect structure are usually lower than

are those calculated separately for parts cf this structure treated as if

they were hinged at their boundaries. Figure 181 illustrates the effect

of interaction between general and local buckling modes on predicted buckling
pressures of a cylindrical shell with external T-shaped rings. This shell was opti-
mized with pegpect to weight through use of two interactive computer programs
described in [ 242] and [ 243], which perform the optimization with use of
simple membrane theory prebuckling analysis and assumed one-term buckling mode
shapes such as expressed in Fig. 183. The results shown in Fig. 181 were
chtained with BOSOR4 [ 14], in which axially nonuniform pretuckling behavior
is accounted for and no assumpticns are made about the shape of the buckling

mode in the axial coordinate direction.

Buckling pressure factors A and mode shapes corresponding to two BOSOR4

models are displaved in Fig. 181, onejin which the rings are smneared out (a,b)
and the other in which they are discrete (c-f). A value of A = 1.0 would
indicate perfect agreement with the results of the optimization programs

[ 242, 243). It is seen that the general instability mode and pressure from
the model with smeared rings (b) and +the local instability mode and pressure

from the model with discrete rings (f) agree well with the corresponding
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modes and pressures from the simplified optimization analysis, but that the
general instahility pressure from the model with discrete rings (e) is more than
107 below that for the models with smeared rings (b). The general instability
mode correspondng to this model has a slight waviness which represents a

mild interaction with the local instability mode (f). This interaction effect
becomes stronger as the critical circumferential wave numbers n.. for general

and local instability approach each other.

Figure 182 revea’s a similar reduction in predicted buckling pressure due to
interaction of the ring rolling mode #2 [Fig. 180{(f)] with the local skin
buckling mode [Fig. 130(b)]. The dashed line in Fig. 182 corresponds to

a buckling analysis in which the ring is treated as a discrete l1%ne strvcture
with certain cross section area, A, moments of inertia ;Y, Ix’ for in-plane
bending stiffness and out-of-plane bending stiffness, and torsional rigidity
GJ. This line structure is lccated eccentrically with respect t. the shell
reference surface: at the shear center of the ring, which is where the

flange and web intersect. In 1iis discrete ring model the ring cross section

is free to translate and rotate but cannot deform. The buckling mode resembles

Q

that drawn 1n Fig. 182 except the web cross section of the ring remains
straight and the flange is therefore forced to bend more in its own plane
(axial direction). The solid line in Fig. 182 corresponds to a discretized
model in which the web and flange of the ring are treated as shell branches.
During buckling in the mode indicated, the web cross section of the ring

bends as shown, allowing the shell wall to buckle locally between rings without
forcing the flange to bend in its plane as much as it has to in the discrete

ring rodel.
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Figures 183 - 185 demonstrate a more complex exairple of buckling

.

v ¥

of an internally ring-stiffened cylindrical shell subjected to uniform external

—

hydrostatic pressure. Helf of the cylinder length is shown in Fig. 183

with symmetry conditions imposed at the plane of symmetry and simple support

-

conditions (52 in Table 8) imposed at the edge. The insert in Fig. 183
depicts the discretized branched shell model provided as input to BOSOR4

[ 14].

The configuration with dimensions identified in Fig. 183 was arrived at

in the following way: Given that the structure must be an internally ring-
stiffened cylinder with Young's modulus E = 17 x 106 psi, radius r = 50 in.,
and length L = 100 in., we are asked to find the configuration corresponding

to minimum weight subject to the constraint condition that the perfect shell
will not buckle under a uniform external hydrostatic pressure of 1820 psi.
Application of the optimization programs described in Refs. [ 242] and [ 243]
leads to a minimum weight configuration with very closely spaced rings, as
with the cylindrical shell generator depicted in Fig. 181(d). 1If one is
willing to accept a rather small penalty in weight (about 3%) one can impose a
lower bound on the ring spacing so that the final design is more amenable to
analytical treatment as a branched shell. (Actually, the ring stiffenerxs in
submarine pressure hulls, for example, are farther apart than a simple
optimization scheme would dictate because of the expense and practical spatial
problems encountered in welding the rings to the shell.) The diiensions
called out in Fig. 183 correspond closely to the optimum design with the lower
bound on ring spacing set equal to 7.692 in. This optimum design is generated

from the simplified buckling models described in connection with Fig. 180.

The dashed line near the bottom of Fig. 183 shows buckling pressures predicted
from simplified theory corresponding to ring web wide column buckling (n = 0;

188

R A R T 2 A

_,/'_ P AN u‘_-q‘_.f-'-".q"f.‘f\d".ﬂ‘-""i:' oy o P :""\.'_-".:f'.‘-'. . .""_-",‘-‘ L N A
A ) - s - a” o o - - - - * - b




Fig. 180(g)), general instability (n = 3; Fig. 180(a)), ring rolling
mode #1 (n = 6; Fig. 180(e)), ana local skin buckling (n = 12; Fig.
180(b)), all of which are active buckling constraint conditions at the

optimum design point.

The other curves in Fig. 183 were all obtained with the BOSOR4 computer
program [ 14]. If the shell were perfect and if the material remained
elastic, buckling would occur with five circumferential waves at a pressure of
1646 psi, as indicated by the minimum load on the curve labeled "Branched

shell (nonlinear)." This curve represents results of the most accurate
analysis of the shell. Unlike the example shown in Fig. 181, for which there
is significant modal interaction between general and local skin instability,
the modal interaction here resembles that demonstrated in Fig. 182: the
discrete ring mede”™ yields erroneous results for high n because the ring

web is not permitted to deform in that model, with the result that far too

much strain energy is predicted to be stored in the flange during huckling.
Replacement of the ring by a simple support restraint (Vb =W = 0; v, Bb free),

as is done in the crude optimization analysis, leads to a far better estimate

of the actual buckling pressure corresponding to n = 12 circumferential waves,

hik as seen from the location of the open circle on the dashed line at n = 12.

.

b,

'

p~ Predicted buckling modes corresponding to bifurcation with linear prebuckling
on

N

analysis are exhibited in Fig. .84, Local instability, identified by circles

.ib or squares in Fig. 183, corresponds to modes in which the attachment lines
.

:! of th2 ring webs to the cylindrical shell do not move radially or circomferen-
b

:}' tially, as illustrated in Fig. 184 (a, d, e, f, and i). General instability,
N .~:

f} identified by triangles in Fig. 183, corresponds to modes in which at least
h -

5! one of these attachment lines moves radially, as illustrated in Fig. 184

-
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(b, ¢, g, and h). Note that for n > 6 the two curves in Fig. 183 labeled
"Discrete Rings" correspond to modes of the types (d) and (e) in Fig. 184,
From the branched shell model it is clear from Fig. 184(t~.) that the degree
of bending in the ring webs increases with increasing n. This is because the
strain energy stored in the flange increases with n4 for a given amplitude

of flange neutral axis modal displacement in the axial direciion. For

n = 12 circumferential waves there is a great deal less modal axial flange

.
r"

displacement in the branched shell model than exists for n = 5, and for n = 5

there is less than for n = 0.

L4

. r

.
e

Figure 185 shows the prebuckled state and buckling modes corresponding to the

'.l* 4":
0’2

lowest curve in Fig. 183. The critical buckling mode for n = 5 circumferential

waves is very different from that corresponding to the linear treatment.

Comparisons with Tests in which Local Ring Deformations are Important

Crippling of Ring Web: Figure 186 shows the discretized model of a ring and

buckling loads predicted for a range of circumferential waves n. BOSOR4 gives
two minime in the range 2 < n < 16. The minimum at n = 2 corresponds to a
mode in which the cross section does not deform — i.e., the ring ovalization

mode. Buckling pressures calculated for this mode are very close to those

-

computed from the well-kncwn formula 9ep = EI(nZ—l)/rz, in which qcr is the

v
(]

\I

.
>,
’

1Y

critical line load in "b/in. (pressure integrated along segmentﬁb, EI is

q" we
A
.

i 8y %

XXX

the bending rigidity ~f the ring, and T, is the radius to the ring centroidal

axis. The minimum at about n = 11 corresponds tc buckling of the web in a

4, 0
e
e
Y 1, ",

[

mode similar to that shown in Fig. 180(f). In a test [ 244] the web

DO
s

.'n "n‘ R

.
.
r

crippled at abnut 1500 psi. The n = 2 mnde was not observed because the ring

was held in a mandrel that prevented the unlimited growth of this rnode.
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Wide Column Ring Web "Buckling": This type of local instabilit, of ring

stiffeners is described in the discussion associated with Fig. 180(g).

An example of an externally pressurized ring-stiffened cylindrical shell that
failed in this axisymmetric mode [ 245] is shown in Fig. 187(a). 1In the
BOSOR4 model of the shell the siender webs are treated as flexible annuli

and the flanges as discrete rings. The problem is a good illustration of

a typical sequence of computer rung that might be required for analysis

of a complex shell of revolution where several failure modes are possible.

As with the case shown in Fig. 183, the choice of a linear bifurcation

buckling treatment for a preliminary analysis is logical because one suspects

that bifurcation buckling may be the primary mode of failure, and approximate

buckling pressures for a wide r'nge of circumferential wave numbers can be

obtaine. without too large an expenditure for computer time. It is likely

that more than one minimum buckline« pressure exists in a plot of pcr(n) Vs n.

The shell may buckle axisymmetrically through 'sidesway' of the deep ring

stiffeners; it may buckle nonsymmetrically in a low-n general justability mode

in which cylinder and rings move together; it may buckle nonsyumetrically in a

low-n general instability mode in which cylinder and rings move together;

it may buckle nonsymmetrically ir. a higher-n 'panel’ or 'bay' mode in which

the rings are located at displacement nodes in the buckle pattern; or the webs

of the rings may buckle nonsymmetrically in a still-higher n mode similar to

that shown in Fig. 186. The choice of a iinear bifurcation buckling

analysis with a wide range of n will reveal all of these modes and cause

to be calculated approximate critical pressures corresponding to them. Figure
187(b) shows the results of such an analysis. The lowest minimum corresponds

to axisymmetric bifurcation buckling ('sidesway' of the webs). This is the wide

column buckling mode described previously.
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Nonlinear axisymmetric analysis of this structure is analogous to a post-
buckling analysis of a wide column or rather a group of wide columns, one
corresponding to each ring web. TFigure 188 gives the stability determin-
ant 'Kl(p,n=0)| as a function of external pressure. At a pressure close to
the bifurcation pressure obt:ined with use of linear thecry, the stability
determinant changes direction rather abruptly, indicating fairly large changes
in prebuckling deformations for small changes in pressure. Since the stability
determinant does not change sign there is no axisymmetric bifurcation. Per-
formance of the nonlinear prebuckling analysis in this case is analogous

to conversion cf the bifurcation buckling analysis of a perfect structure

to a nonlinear collapse or nonlinear post-buckliag analysis of an imperfect
structure, in which the imperfection is the nonuniformity of the prebuckling

state.

Figure 189 contains plots of web tip deflections and effective stresses as
functions of external pressure ir the pressure range corresponding to the
rather abrupt change in behavior of the stability determinant. Frames #2 and #3
display sudden changes in the rate of sidesway because they are far enough

from the clamped boundary so that their webs behave like almost perfect wide
columns in axial compression. Being almost perfect, their load-deflection
curves develop high curvatures in the neighborhood of the bifurcation point
predicted from linear analysis. Fram: #1 is in the edge bending "boundary
layer" so that the junction of its web and the shell wall undergoes considerable
meridional rotation. Thus, the axial deflection w of the flange of Frame i1
increases at a fairly uniform rate compared to those of Frames #2 and #3.

The web of Frame #1 behaves in a manner similar to a very imperfect wide

column or to a column with considerable load eccentricity. The sidesway or
wide column post-buckling deflections of Frames #2 and #3 cause the radial

compressive membrane stresses, built up because of hoop compression in the
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flanges, to be relieved, thus producing the abrupt change in behavior

of the stability determinant.

In a test of this shell [ 245] the rings simply fell off at a pressure
slightly above 3200 psi. The failure was due to high stresses at the junc-

tions of webs and shell.

General Instability of Ring-Stiffened Shallow Conical Shell: Figure 190

shows a very light -weight, shallow conical shell with internal Z-shaped ring
stiffeners. This shell was used as an aerodynamic foil to decelerate the ianding
module for the NASA Viking mission to Mars { 246]. Because of the stringent
mass limitations and the very small loadings which the shell was designed to
support, the wall and rings were fabricated with very thin gage material.

Figure .1°0(c) shows a specimen buckled under uniform external pressure.

This pressure 1s reacted axisymmetrically at the large payload support ring
located widway along the cone generator. Comparisons between test and theory

{ 11] in Fig. 190(d) reveal that the local deformations of the rings

must be accounted for in order to obtain an accurate prediction of the

critical pressure corresponding to general instability. The buckling mode shape
depicted in Fig. 190(e) clearly demonstrates the significant deformation of

the rings during buckling.
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. Section 7
;;: BUCKLING OF PRISMATIC SHELLS AND PANELS
:; Summary
",
o~
- Figure 191 gives several examples of prismatic shells and panels. These are
_ii structures the cross sections of which are thin and do not vary in one of the
'$§ coordinate directions, generally called the axial direction. In this chapter
: a method will be described in which a computer program for the analysis of
{Q shells of revolution can be used to predict buckling of prismatic shells and
;é panels. Results will be given of convergence studies applied to cylindrical
'f shells subjected to external lateral pressure. These studies demonstrate
"i the validity of the technique. The method will then be applied to yield
}f; predictions of bifurcation buckling loads of noncircular cylindrical shells
;5: under axial compression or external pressure and failure of corrugated and
i:? beaded panels under arial compression. The effect of manufacturing processes
i% on buckling and crippling of corrugated semi-sandwich panels of the type
Ej from which the rocket payload shroud shown in Fig. 5 is made will be shown.
N
.%i A discussion of modal interaction in axially compressed column:z and panels
,Si will follow. One form of this phenomenon has already been illustrated in the
ﬁf case of Dbif rcation bucklii. of ring-stiffened cylindrieal shells subjected to
;E uniform external hydrostatic pressure (Figs. 131 - 185). It will be
‘;; shown that buckling loads for optimally designed structures, that is
' . structures configured such that local and general instability occur at the

same or almost the same load, are sensi:ive to initial geometrical

imperfections.
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,;” Use of a Computer Code for Shells of Revclution

to Predict Buckling Loads of Prismatic Structures
Intrnduction

The motivation behind much of the research activity in shell analysis is to
reduce computer time and core storage required to solve complex problems.
It is advantageous whenever possible to reduce the number of degrees of
freedom required by separation of variables and to optimize computer
efficiency by setting up stiffness matrices with as narrow band widths as
possible. Currently, problems in complex shell analysis can be classified
into two groups: that which involves two-dimensional discretization and

that which involves one-dimensional discretization. The two-dimensional

numerical analysis generally requires one to several orders of magnitude

0
PO
AN

.
.

more computer time to solve than does the one-dimensional problem. The
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computer time increases quadratically with the bandwidth of the stiffmness

o

.
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matrix and .inearly with the number of degrees of freedom. Matrix band-
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widths for two-dimensional problems are much wider than those for one-
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dimensional problems and the number of degrees of freedom required for

-
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i

convergence to a given accuracy is greater.

)
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The establishment of the technique described here [ 82] was motivated by

LA

the need for economical computer solutions to problems traditionally
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associated with two-dimensional numerical analyses but amenable by means
of an exchange of independent variables to solution by separation of
variables with consequent reduction to one-dimensional numerical treatment.
In this class are included linear stress, buckling and vibration problems
for simply-supported prismatic shells. Stress analysis can be performed
for prismatic shells with loads that vary in the two coordinate directioms.
Buckling and vibration analyses are restricted to systems in which both

the loads and the geometry are prismatic, that 1s, constant in the axial

f\f: direction.
Eﬁ Figure 191 gives examples c¢f prismatic shells: Fig. 191(a) shows an
-
:i:ﬂ oval cylinder which may be subjected to combinations of pressure and axial
’ﬂ' loading; (b) shows a cylinder with a pressure or thermal load that varies
j:: only >n the circumferential directiom; (c¢) and (d4) represent typical
.:\'.
}:j advanced structural panels considered for hypersonic vehicles, lightweight
- rocket payload shrouds, and space shuttles; and (e) shows a general prismatic
?ﬂi shell with stringers which can be treated as discrete elastic structures.
;if The oval cylinder under axial compression has been investigated by Kempner
- and Chen, [ 248] Hutchinson, [ 249] and Almroth, Brogan, and Marlowe [ 250].
::1: Elliptic cylinders under external pressure have been treated by Yao and
A
:;;; Jenkins [ 251]. Liaw [ 252] gives a survey of papers published before
o ,
e April 1969 on the stability of cylindrical and conical shells of noncircular
o,
;:f' cross section. Buckling allowables for nonuniformly loaded cylinders
:?f have been calculated by Almroth [ 253] who investigated band-loaded
o
s cylinders in which the external pressure varies as pg + pj cos6 la the
_?cl circumferential direction. Ross, et al. [ 106] determined experimentally
e
RS critical temperatures of cylinders heated along an axial strip. Examples of
1 9.
SO
s
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~
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buckling under nonsymmetric loading in which the nonsymmetrical nature of the
loading is retained in the stability equations are given in Figs. 148 and

154.

Local buckling and crippling loads for axially compressed corrugated and beaded
sheets have been determined theoretically and experimentally by Plank,

Sakata, Davis, and Richie [ 254]. Buckling loads were determined experi-
mentally by Shang, Marulic, and Sturm [ 255] for axially compressed longi-
tudinally stiffened cylinders. The geometry of the specimens of Ref. [ 255]
was such that the circumferential buckling half wave-length and stringer
spacing were approximately equal, indicating the need for analytical treat-
ment of the stringers as discrete. Egle and Sewall [ 256] and McDonald

[ 257] have calculated vibration frequencies for cylinders with stringers

included as discrete structures.

The structures shown in Fig. 191 and analyzed in Refs. [ 248- 257] are
all prismatic. If they are simply supported at the generator ends they can
be analyzed as portions of shells of revolution in which the length of the

prismatic shell is given by

L = 7b/n ( 62)

where b is the radius from an axis of revolution to some reference surface
and n is the number of complete circumferential waves. The results presented

here were thus obtained by means of the analysis and computer program

described in { 14].
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Ll Analysis Technique

Buckling of oval cylinders or nonsymmetrically loaded cylinders can be treated
'KF by a modeling of the cylinder as a portion of a torus with a very large

radius b, Figure 192 illustrates the model. A cylinder of length L,

> small diameter d and thickness t is modeled as a small portion of a torus with
radius b. As b - = and L = constant the short cuxved cylinder approaches a
stralght cylinder. The cross section need not be circular, nor the thickne:cs

-0 constant. The pressure can vary along the length as well as over the circum-

\i ference. A limitation of the model is that the cylinder must be simply-

Etg supported at the ends b = 0 and 0-b = L.

‘::j:

, Since the torus is a shell of revolution, the BOSOR4 code [ 14] can be used

to analyze it without any special alteration. What has been done here in

: effect is to exchange the independent variables in the analysis of a cylinder:
g: the axial variable s for the cylinder becomes the circumferential variable
:;E o-b for the torus and vices versa. The circumferential displacement distri-
'55 bution of the cylinder, conventionally expressed in terms of sinn or cosnf
jgc with n the input circumferential wave number, becomes the meridional displace-
‘?LE ment distribution of the torus, now expressed in terms of the displacement

i;g values at discrete nodal points in the finite difference or finite element

!; analysis. Similarly, the meridional displacement distributions of the

.

;%S cylinder, conventionally expressed as discrete mesh point variables, are

N

23; now expressed in terms of sinnf® or cosnf with n being the number of waves

around the large-diameter torus. Given the radius b, the length of the

o @

cylinder is determined by the wave number n, which in the limit of very large

» .)
,
ll 1
PRICAR

-:;5 b is a very large number (such as 10,000, for example). The boundary con-
)

~ - ditions at 0*b = 0 and 6+b = L are simple support: N6 = Me =u=w= 0.
e

- -
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The user has no choice of boundary conditions at 9+b = 0 and 6-b = L, since
the simple-support condition arises from the underlying assumption that the
dependent variables and their derivatives vary in this direction as sinnf

and cosnf.

The loading on the cylinder in Fig. 192 is expressed as a Fourier expan-
sion over the interval -L < 6°b < L. For example, the pressure loading in

Fig, 192 (uniform for 0 < 6°b

IA

is expressed as a Fourier sine series, thus:

p(s,8) = £(s)-g(8) ( 63)
in which
NMAX
g(8) -4 Z sin(mm6-b) /L ( 64)
™ m=1,3,5...

The integer m is the number of half-waves in the interval 0 < 6-b £ L.
Therefore, the correspondirg wave number n for the complete torus is

n = mmb/L. The question arise., why not expand the load in a cosine series
in the interval -L < 8°b < L? This is not possitle because the m = 0 term
corresponds to an infinite cylinder (L = 27b). The longest half wavelength
in the Fourier expansion of the load must be equal to L or an integer

fraction of L.

Thus, the finite-length, simply-supported, oval cylinder under external
pressure is analyzed as a toroidal shell with very large radius b and sub-

jected to loads which vary rapidly around the circumference. In the section

"Numerical Results" the betavior of a simply-supported externally pressurized

elliptical cylinder is discussed.
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There are additional advantages of being able to analyze cylinders in this
manner. Note in Fig. 191{e) that the wall properties (thicknszss,

modulus) in the s-direction need not be constant. Also, note that longi-
tudinal stringers can be included in the analysis as discrete elastic
structures. With the cylinder analyzed as a portion of the torus, the
cylinder stringers are rings in this application of the BOSOR4 code. Also,
cylindrical or flat panels with stringers, corrugations, beads, or other
geometrical peculiarities and with arbitrary boundary conditions along
generators can be treated, since the generators are now meridional stations.

Some of these cases are discussed in the following sectioas.

Convergence Studies: The application of BOSOR4 to the stability amalysis

of cylinders of noncircular cross section and nonsymmetrical loads was
validated by convergence studies for uniformly loaded circular cylinders
analyzed as portions of toroidal shells with various radii b and various
numbers of meridional nodal points. Membrane prebuckling analysis was
used in the convergence studies. For given values of b, the cylinder
lengths were established as des~ribed above by selection of appropriate

circumferential wave numbers, n. This procedure is valid for simply-

.
P

supported cylinders the buckling modes of which have an integral number

‘.

;i of half-sine waves along the length.

3
i:i: Tables 19~ 21 and Figs. 193 and 194 give the results for hydro-
i?g statically compressed circular cylinders. In Table 19 convergence

E;i with increasing toroidal radius b is given for cylinders with L/a = 0.6
;&é and L/a = 6.0, in which "a" is the radius of the cylinder. The values of
iif
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pa/Et for b = infinity are calculated from Eqs. (11) and (12), pp. < 24-425
of Fliigge [ 258]. The lowest two eigenvalues are obtained in each -ase.
In the limit of very large b these eigenvalues correspond to two wave
numbers, n = 10 and n = 12, Figure 193 shows the normalized buckling
displacement w for the second eigenvalue for increasing values of toro ual
radius b. With large b the distribution over 1/4 of the circumference of
the cylinder approaches a cosine wave with three full waves. This mode
corrvesponds to n = 12 for the complete cylinder. Symmetry conditions

are imposed at the ends of the toroidal meridian. All calculations were
performed in double precision on the Univac 1108. The data points in

Fig. 193 indicate nodal points. The discretization method is described

in detail in the discussion and equations associated with Fig.20 of REF. @3@]5

Table 20 and Fig. 194 represent the results of a convergence study in
which the number of mesn points is varied for a given (very large) value

of b. The buckling modes plotted in Fig. 194 correspond to n = 10 waves
around the circumference of the cylinder with L/a = 0.6. Table 21 gives

the convergence of buckling loads with increasing number of nodal points

for the cylinder with L/2 = 0.6 analyzed as a cylinder, not as a portion
of a large~radius torus. These convergence studies indicate the degree
of accuracy obtained with the BOSOR4 code and provide a guide to the user

of STAGS [ 48] or other large-scale two—dimensional computer codes as to

the number of mesh points required for adequate accuracy.

Numerical Results

In this section numerical results are presented for nonuniformly loaded

circular cylinders, externally pressurized and axially compressed moncircular

St}

cylinders and axially compressed corrugated and beaded panels.
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Nonuniformly Loaded Circular Cylindrical Shells: An analysis was made of a

simply-supported cylinder subjected to a band pressure load which varies
around the circumference as shown in Fig. 195. The cylinder was modeled

as a portion of a torus with b = 20,000 in. and n = 10,000. Comparisons
«er. made with the theory of Almroth [4.253] for a cylinder with a = 1.0 in.,
t = 0.0025 in., L = 27 in. and AL/L = 1.0 and J.4. For the case AL/L = 1.0,
Almroth obtains pCRa/(Et)X 105 = 2.253. The BOSOR4 program yi=lds a value
2.292 for this parameter. The buckling modal displacement w is displayed

at the bottom of Fig. 195.

Figure 196 shows the normal pressure loading at s = 0 on the cylinder with
L = 2y, a/t = 400 and AL/L = 0.4. The load is expanded in a 1C-term Fourier
sine series in the interval -L < 6°¢b < +L (see Fig. 192). Figure 197
gives the axial distributions cof stress resultants corresponding to the 10-
term Fourier sine series expansion of the banded pressure load shown in

Fig. 196. Figure 198 shows the circumferential distribution of stress
resultants at the cylinder midlength 0:b = L/2 = 7 inches. These values are
used in the stability analysis, in which the assumption is made that they
are constant around the circumference of the equivalent torus (along the axis
of the cylinder) in a manner analogous to the treatment in the problems
illustrated in Figs. 149, 150, and  155-~ 159, Therefore, the

buckling loads calculated in BOSOR4 are independent of the bandwidth of the
pressure for bandwidths that are long compared to a boundary layer length

(at)llz.

Thus, a/(Et) X 105 equals 2.292 compared to the value of

Per

3.0913 obtained with Almroth's mere exact analysis [ 253].
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i;;? Stress and Buckling of Elliptic Cylinders: Figure 199 shows an elliptic
EEEE cylinder and gives various dimensions and material properties. The cylinders
;& are subjected to uniform external pressure on the curved surface only. Yao
Efn;‘ and Jenkins [ 251] obtained buckling pressures from tests on simply-supported

polyvinyl chioride shells. They compared the test results with a theory

in which the prebuckled state is calculated from linear membrane theory and
buckling pressures are obtained from an eigenvalue problem based on the

Galerkin method.

The B0OSOR4 computer program w.- used to calculate stresses and buckling
pressures for elliptic cylinders of iiie geometries shown in Fig. 199.
The oval cylinders were analyzed as toroidal shells with very large b and
n as described above. Thr uniform external pressure was expanded ir a
20-term Fourier sine series according to Eqs. ( 63) and ( 64). Figure
200 displays the axial distributions of normal displacement and in-plane
stress resultants at s = 0 (end of minor axis B) for an external pressure
of 1 psi on an elliptic cylinder with A/B = 2, t = 0.019, and various
values of L. The quantity 6-b/L is the normalized distance along the
circumference of the torus of radius b (see Fig. 192). Figure 201 gives
the circumferential distributions of rotation about a generator and in-
plane stress resultants at the midlength b/L = 0.5 of the oval cylinder.
Plots cover 1/4 of the circumference, The stress distributions are very

similar to those predicted by membrane theory.

Three hundred degrees of freedom were used, and 1 min, 56 sec of UNIVAC 1108
time were required for the double-precision calculations. The prestress
state was checked by a run with the linear version of the two-dimensional

finite-difference program, STAGS [ 48]. Excellent agreement was obtained.
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Note that as the length L of the shell increases the hoop stress resultant

at L/2 approaches the values predicted from membrane theory, pa = -8.0 1lb/in.
at the end of the minor axis (s = 0) and pa = -1.0 1b/in. at the end of the
major axis. However from simple static equilibrium conditions for an
elliptical ring it is known that as L - « the hoop stress resultant must
approach -2 1b/in., at s = 0 and -4 1b/in. at s = 8end for uniform external
pressure of 1 psi. C(Clearly, the elliptical cylinders of length 4 to 10 in.
with cross sections as shown in Fig. 199, while long compared to bendiung
boundary-layer lengths, are short comparea to lengths required for the

effect of end cross section fixity tc die out.

Buckling pressures were calculated for several cases with A/B = 2.0 and

A/B = 1.5. The results, compared with Yao and Jenkins' tests and theory,
are presented in Figs. 202- 206 and Tables 22- 24. Predicted

buckling pressures are always higher than the test values and .re rather
inaccurate for the thicker shells. The thicker shells apparently buckle

by collapsing gradually rather than failing by a sudden change (bifurcation)
in the mode of deformation (Fig. 4 of Ref. [ 251]). It is probable,
therefore, that the present theory is not valid for the shells with

nominal thickness 0.050 and 0.090 in. A nonlinear, two-dimensional collapse
analysis such as that of Ref. [ 250] is required for these cases. This

analysis has been performed by Marlowe and is reported in Ref. [ 259].

Figures 204- 206 show the buckling modes for externally pressurized
elliptical cylinders with A/B = 2, lengths L = 2,4,6,10 in. and thickness
t = 0.019, 0.029 and 0.091 in. Note that the plot corresponding to L = 10

in Fig. 204 covers 0 < ¢ < 180° of arc length, whereas all other plots
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in Figs. 204- 206 cover O s ¢y < 90°, With the exception of the case

A/B =2, L =10, t = 0.019, *he buckling loads given in Figs. 202~ 203
correspond to modes symmetrical ~boutr the ends of both the minor and major
axes. The lowest buckling pressure for the exceptional case corresponds

to displacements symmecrical about w = 0° and antisymmetrical about y = 90°,
For all cases modes antisymmetrical and symmetrical about y = 90° corre-

spond to pressures witain a few percerc of each other.

Tables 22 and 13 give buckling pressures in psi for the simply supported
elliptical cylinders with A/B = 2 and 1.5, respectively. Theoretical values
are compared with Yao and Jenkins' test results [ 251]. Three theoretical
values, pCRl’ pCRZ’ and pCR3’ are listed for each geometry. The pCR1 corre~
sponds to BOSOR results with both prebuckling in-plane stress resultants
and prebuckling rotations Xg about the generators included in the stability
analysis. The pCR2 are calculated neglecting the cross section shape change
(effect of XO) in the stability analysis. Note that the Xg effect becomes
larger as L and t increase. The pCR3 are the analytical results from

Ref. [ 251].

Table 24 gives convergence properties of buckling pressures for the
elliptical cylinders A/B = 2, L = 10 in., and various values of t. Tne
number of terms in the Fourier sine series representation of the axial
load distribution is varied. In this study the value of the pressure at
the midlength of the cylinder is maintained at unity, independent o. the

number of terms taken in the series.
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Cylinders of Noncircular Cross Section under Axial Compression: Buckling

loads and post~buckling behavior have been determined for axially compressed
cylinders of oval cross section by Kempner and Chen [ 248] and Hutchinson

[ 249). Almroth, Brogan and Marlowe [ 250] have studied the norn:inear
behavior of axially compressed oval conical shells through use of a two-
dimensional finite difference analysis. The BOSOR4 program [ 14) can be
used to determine bifurcation buckling loads from linear theory for axially
compressed, simply supported elliptic cylinders. Membrane prebuckling
theory is used in the analysis. The cylinder is treated as a portion of a
large-radius torus. Figure 207 shows the buckling modal displacements in
the circumferential direction for 0 €< ¥ € 180°. The axial distribution (normal
to the plane of the paper) is a half-sine wave. The lowest two eigenvalues
are very close to ea.h other and the m .. are symmetric and antisymmetric
about ¥ = 90°. Note that bifurcation buckling of axially compressed oval
cylindrical shells does not necessarily signify failure of the structure.
Fig. 57 shows that post-buckling load-carrying capability exists in excess
of the bifurcation load. However, nonlinear two-dimensionally discretized

models must be used to predict ttis collapse load.

Figure 208 exhibits buckling modes for an axially compressed simply

supported cylinder with a pear-shaped cross section. Membrane theory was

used in the prebuckling analysis. The lowest two eigenvalues, Ncr = 24,02 1b/in.
and 34.74 1b/in. correspond to uniform loading over the entire perimeter

of the cross section, and the highest eigenvalue, Ncr = 586 1b/in., corre-
sponds to loading over the curved portions oni,/. Symmetry conditions were

imposed at points A and B. The axial displacement variation is a half-sine

g
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wave. The lowest two eigenvalues :orrespond to buckling of the flat sections.
For axial loads higher than 35 1b/in. these flat sections are considered to
be buckled and thus carrying no load. The third buckling mode illustrated in
Fig. 208 therefore corresponds to a model in which only the curved portions
of the pear-shaped cylinder are loaded. The buckling mode is similar to

the displacement distribution corresponding to collapse obtained with the
STAGS program [ 48]. However, a much lower collapse load is obtained wit*
STAGS because the prebuckling deformations in the flat plate segments
propagate into the curved segments with increasing load, thereby intro-
ducing imperfections into an imperfection-sensitive structure. The axial
load at collapse integrated over half of the cross section perimeter is

1186 1bs according to the nonlinear collapse analysis with use of STAGS,
results of which are displayed in Fig. 58. The axial load at bifurcation
of the curved portions according to the BOSOR4 prediction is 1880 lbs over

half of the pear-shaped cross section.

The reduction from 1880 to 1186 1b is due to inclusisn in the STAGS analysis of
the prebuckling deformation which, with increasing imposed axial end

shortening, propagates from the flat portions into the curved portions.

rendering imperfect these imperfection-sensitive parts of the shell.
The BOSOR4 analysis is performed by treatment of the pear-shaped cylinder
as a shell of four segments, as indicated in Fig. 208. Nodal points

in the discretized model are indicated by small circles.
Iy Bifurcation Buckling of Axially Compressed Panels
Introduction

.. As in the case of ring-stiffened cylinders, axially compressed longi-

tudinally stiffened panels are subject to several types of failure:
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long~-wavelength general instability, intermediate-wavelength (panel)
instability between stiffeners, and local crippling. These failure modes
can often be analytically determined by separate analyses, as described for
ring-stiffened cylinders in connection with Fig. 180, because the wave-

lengths associated with them are often quite different in magnitude.

However, modern lightweight structures are frequently constructed of panels
with deep, slender stiffeners, the distance between the stiffeners being of
the same magnitude as their depth. For such cases the intermediate-wavelength
and the crippling modes of buckling couple and a unified analysis becomes

necessary. It has been shown in a previous section that this is true for

ety Ay A j‘
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ring-stiffened cylinders in which the depth of the web is the same order of

S AN

{
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magnitude as the distance between rings. Also, as will be demonstrated in
this section, the general instability predictions may be rather sensitive
to local deformation of the cross section of a complex panel. We have
already seen an example of this sensitivity in the case of buckling of a
lightly stiffened shallow conical shell used for deceleration of a payload

entering the Martian atmosphere (Fig. 190)

Until about 10 years ago axially stiffened panels were analyzed as equivalent
orthotropic plates. A great deal of work of this type was done by Becker,
Tsai, Block, Card, Mikulas, Anderson, Jones, Peterson and others at NASA in

the '50s and '60s. References to their work are given in Ref. [ 260]. 1In

1968 Wittrick [ 261] published an analysis of prismatic structures composed
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of flat plates. Since 1971 a series of papers [ 82, 260, 262- 269] ...s

appeared on the treatment of buckling and vibration of prismatic shell
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structures. In most o° the papers the buckling and vibration modes are
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assumed to be sinusoidal in the axial direction, with the wavelength of
deformation the same in all of the segments of the complex structure. This
assumption, which limits the analysis to simply-supported panels, permits
separation of variables with consequent reduction of the problem from two
dimensional to one dimensional. Wittrick's analysis [ 261] predicts the
three types of instability identified in the first paragraph - general,
panel, and crippling; the treatment of Viswanathan et al. [ 260C] extends
that of Wittrick to allow orthotropic wall properties and intermittent
elastic beam—type supports; Williams [ 263] extends Wittrick's analysis

to include vibration and to incorporate substructuring techniques; Wittrick
and Williams [ 267] formalized their treatment in a computer program
called VIPASA; and Anderson and Stroud combined VIP: ith an optimization

routine by Vanderplaats and Moses [ 270] to produce a computer program

called PASCO for the optimization of layered, stiffened composite panels [ 269].

Figures 209(a) and (b) show puarts of a semisandwich corrugated panel
undeformed, buckled (a) and crippled (b) under an axial load (normal to

the plane of the paper). Classical analysis of buckling of such a panel
treats it as an equivalent orthotropic sheet with the wall cross~section of
course not permitted to deform locally. The presence of such local deforma-
tions makes it very difficult to assign ¢ priori a torsional stiffness per
length, for example. This J-factor is particularly important in this case
because of the enclosed trapezoidal areas. Local distortions also affect

the axial bending stiffness, another significant determinant of the predicted
buckling load. The degree of local distortion is largely governed by the way

in which the corrugated sheet is fastened to the flat sheet. Figures 209(a)
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and (b) correcpond to cases in which tle centers of the troughs of the
corrugations arc riveted to the sheet. Bonding along the entire widths of
the troughs markedly reduces the amount of distortion with corresponding
increase in the stitfness and buckling load. This difference between
bonding and riveting would not be reflected in a classical orthotropic
plate analysis, except through the empirical introduction of appropriate
knockdown factors applied to the cohstituﬁiae law to bring test and theory

into agreement.

Classical predictions of crippling loads of sections composed of thin

flat sheets such as shown in Fig. 209(b) are based on analyses of long

thin axially compressed strips simply-supported or clamped along the
"cornars” or at rivet or bond 1lines. With regard to Fig. 209(b), an
assumption of clamping at the points labeled symmetry would obviously

lead to overestimation of the crippling load. Ifasimple-support wvere

assumed at these points it is not clear whether ti:2 crippling load prediction
would be too high or too low. The actual condition depicted in Fig. 209(b)

appaarg to be clamping to an elastic foundation with some unknown stiffness.

The simplifications of the various classical analyses lead to errors of
unknown magnitude. The errors frequently cancel, leading to fortuitous
agreement between test and theory or between predictions with crude and
refined models. An analysis is needed in which given structural configura-

tions are modeled in various ways.
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Numerical Results

The results presented next were obtained with the BOSOR4 computer program

[ 14], in which the models are set up as described in the discussion asso-
ciated with Fig. 192. This analysis method can be used to determine
general, panel, and crippling instability of complex, built-up thin sections,
to evaluate various types of fastening techniques, to calculate the effect
of local wall distortions on over-all stiffness and stability, and to
evaluate quantitatively various simpler analytical models of a given complex

shell structure.

Buckling of Axially Compressed Corrugated and Beaded Panels: Figures

191 (c¢) and (d) show typical advanced structural panel designs proposed
for hypersonic vehicles and space vehicles. Reference 254 presents test
and theoretical results for several panel configurations subjected to axial
compression and shear at room temperature and elevated temperature. Panels
were tested for general (panel) buckling and local crippling loads.

In Ref. [ 254] buckling predictions are based on wide-column theory. Local
crippling predictions are based on simple buckling formulas derived for
constant-thickness plate and cylindrical elements representative of

individual components of the complex panels.

Two configurations are analyzed here for critical axial loads: a trapezoidal
corrugation and a beaded corrugation. The geometry is shown in Fig. 210.
The thickness distributions and dimensions are taken from Ref. [ 254]. The
thickness of the beaded panel (Fig. 210(a)) is assumed in the present
analysis to vary linearly between stations where it is called out. That

of the trapezoidal corrugations is assum~d constant in each of the flat
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elements. The panels are treated in BOSOR4 as segmented shells of revolution
- with very large radii b: for the beaded panel b = 10° in. and for the
. trapezoidal-corrugaied panel b = 104 in. Figure 210 shows the division
of the panels into segments with symmetry planes at which either anti-
N symmetry conditions or symmetry conditions are Imposed in the stability

analysis.

Figure 211 shows critical axial load/length NCR for the beaded panel of

Fig. 210(a) as a function of wave number n or length L = 7b/n. The semi-

-y log plot covers lengths from 50 to 0.3 in. Three types of buckling occur
o in this range of L, and their corresponding mode shapes are shown in

i;é Figure 211. The lowest critical load is associated with a long-axial-wave
i;l length panel buckling from bead-crest to bead-crest. The intermediate wave-

-E length load corresponds to buckling of the beads as axially compressed

perfect cylinders, and the calculated NCR from n = 150,000 to 400,000 is very
close to the rlassical value O.6Et2/R. The shortest length crippling load
corresponds to buckling of the flat regions 0.556 in. wide between beads.

= The dotted curves represent critical axial loads for simply supported and
clamped plates calculated from the appropriate formulas in Ref. [ 271]. Two
ﬁ,; cases were run on BOSOR4, one with the angle a=0 (Fig. 210) and one with a=12°,
- which represents the test configuration. In the tests the long panel mode was

first observed at a line load of about 412 1b/in. and a crippling mode involving

il both flats and beads was observed at 1250 1b/in.

i;; The BOSOR4 code is conservative in the prediction of the long panel mode,
l;l probably because the 30-in.-long test panel was not in fact simply supported
o

o
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at the ends and because it was stable in this mode in the initial post~
buckling range. The BOSOR4 code is very unconservative in the prediction

of crippling of the cylindrical beads because this mode of failure is sensi-
tive to imperfections and occurred in the test at average stresses

approaching the proportional limit of the material.

Figure  210(b) shows the trapezoidal corrugated panel, analyzed as a shell
with seven segments. This many segments were taken to permit general
instability across the three flat segments labeled 3, 4, and 5. Such a mode
would be analogous to the long panel mode of the beaded sheet. In the
BOSOR4 analysis this mode did not appear, however. Nor was this type of

suckling observed in the tests reported in Ref. [ 254].

Symmetry conditions imposed as shown in Fig. 210(b) permit the wide-column
mode for long panels (low n). In this case the wide-column mode corresponds
to the lowest eigenvalue for given wave number n if n < 4000 or L > about
7.5 in. The wide-column mode corresponds to the critical load if L > about

15 in. and the panel is free at the unloaded edges.

Figure 212 shows the critical axial load versus length L or wave number n.
The dotted curves represent calculatione based on formulas in Ref. [ 271].
Test values reported in Ref. { 254] correspond to a line load of about
1120 1b/in. The good agreement might be expected since the critical loads
for configurations consisting of flat plates are not very sensitive to
initial imperfecticns, and the average stress at failure in the tests was

somewhat below the proportional limit of the material.
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Effect of Manufacturing Method on General and Local Buckling of a Semi-

Sandwich Corrugated Panel: An example of a semi-sandwich corrugated shell

wall constructicn is illustrated in Fig. 5(b). The rocket payload shroud
shown in Fig. 5(a) has such a wall construction, which is further reinforced
by Z-shaped rings spaced 16 inches apart. Under nonuniform pressure loading
during ascent through the atmosphere this shroud is susceptible to buckling,

as exhibited in Fig. 149(c).

Buckling pressures are calculated for the shroud in an approximate analysis
in which the corrugations shown in Fig. 5(a) are smeared out according to
the metbod of Baruch and Singer { 160]. In such a model it is tacitly
assumed that on a scale of order of the dimensions of a single corrugatiosn
(the lengths d, ¢, and b in Fig. 5(b)), the cross section of the built-up
wall does not deform. However, in the actual structure there may occur in
the buckling mode considerable local deformation of the individual flats of
the corrugation and of the smooth sheet between adjacent troughs of the
corrugation, especially if the critical mode has many rather shor% axial
waves, as shown in Fig. 149(c). This local deformation, which is a
modal interaction effect similar to those observed in Figs. 181 (e), 182,

184 and 190(e), can be accounted for in an approximate way by application

of appropriate reduction factors to the stiffness coefficients Cij
’;“* derived from the Baruch-Singer analysis. The raduction or "knockdown"

factors can be derived from detailed models such as shown in Figs. 213

I GANS M
P
A4y M
s

o, and 214,
S
Al
e
=
- Figure 213 exhibits branched shell models of semi-sandwich corrugated
p .=
t'- ranels corresponding to two types of fabrication, bonded and riveted. In
-
2
l' the model of the bonded panel the smooth skin and troughs of the corrugatrions
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are assumed to form a single wall of thickness t+tg, in which t is the
thickness of the corrugated sheet and t8 is the thickness of the smooth
sheet. The branched shell model consists of 13 segments, as illustrated
in Figs. 212(b,c). In the model of the riveted panel the troughs of

the corrugations form separate branches and are connected (clamped) to the
smooth sheet along discrete axial lines (normal to the plane of the paper)
labeled "RIVET" in Fig. 213(e). This branched shell model consists of
18 segments, as illustrated in Fig. 213(d). In both bonded and riveted
models the pitch of the corrugations is 1.848 in. and the thickness of the
flat sheet and corrugated sheet are 0.032 and 0.02 in., respectively. The

material is aluminum.

Figure 214 shows discretiz2d models, normalized buckling loads N and modes

for axially compressed simply~supported panels of various lengths L. The
compression is normal to the plane of the paper and is considered to be

appiied in such a way that the prebuckling axial strain is uniform over

all segments in the branched shell models. The normalized axial loads N

are calculated by division of the eigenvalues computec from the branched shell
models by eigenvalues computed from a model in which the corrugations are smeared
out according to the Baruch-Singer theory with no reduction factors [ 160].

The results displayed in Fig. 214 were obtained with the BOSOR4 computer pro-
gram from models in which flat corrugated panels are treated as giant annuli

with average radius from the axis of revolution equal to 2750 in.

The normalized critical loads N decrease with decreasing axial wavelength

because of an increasing amount of local distortion of the wall cross-sectiow.
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Note that the distortion is greater for the riveted panels, and as one might
expect, the critical general instability lcads are considerably smaller for

these than for the bonded panels.

Crippling of bonded and riveted panels can be calculated with BOSOR4 in the
same way as general instability, the onlv difference being the axial wave-
length of the buckles, which is fixed by the circumferential wavenumber n,
as shown in Figs. 211 and 212, Figure 215 shows a crippled aluminum
panel and Fig. 216 gives plots of the critical axial load vs buckle half-
wavelength for models in which the extent of the bonded region is varied.

In the models symmetry conditions are imposed at the midwidth of the trough
and at the crown of the corrugation. The dimensions of a corrugation are
given in Fig. 217. 1In tests conducted at Lockheed [ 272] riveted panels
with the same cross-section properties assumed in these analytical models
crippled at approximately 1100 1b/in. and bonded panels crippled at apprezi-
mately 2800 to 2900 1b/in. The rivet heads were about 0.25 in. in diameter.
Therefore, Model b in Fig. 216 represents a closer approximation to the

riveted test specimens than does Model a.

Eé; For the analysis of large structures fabricated of semisandwich corrugated
;EE panels, or any other type of complex panel, it is clearly impractical to

gh find buckling loads by division of the entire structure, or even a large
E&il section of it, into minute segments such as done for the models shown in
.ézg Fig. 214. However, as already mentioned, these relatively small, accurate
};u models can be used to calculate appropriate stiffness coefficients as input
)
-ii: to a theory in which the corrugations or other stiffeners are smeared out.
%SE This ha: been done for the semi~sandwich corrugations and the results are
é? shown in Fig. 217 and 218, The factors kl and k3 are analytically
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:;{j determined knockdown factors which depend on the axial half-wavelength of the
-i5$ buckling mode. Their derivation is discussed in detail in Ref. [ 274].

‘:$S Essentially, kl accounts for the local distortion of the wall cross-section
?F;f due to axial bending and k3 for local distortion due to twist. A third
:}ﬁ‘z factor k2 is also introduced to adjust the circumferential bending stiffness.
Ea‘i This third factor is independent of the axial wavelength of the buckle

- pattern.

‘;nf The analytically d “ermined knockdown factors kl, k2’ and k3 have been used

to predict stresses, deformations and buckling loads of ring-stiffened non-

lr.“
Al

s,
o0

symmetrically loaded payload shrouds with riveted and bonded wall construc-

:
r

3,
Aot

r

tions. The shroud geometry, loading, prebuckling deflection and a buckling

[ A -" (A0
.

v

!!‘ mode are shown schematically in Fig. 149, Rings are located on 16-in.

.

S

.:}; centers in the cylindrical portion of the shroud. These rings are stiff

S

Sﬁ* enough to cause nodes in the buckle pattern. From Figs. 217 and 218 it is

s

seen that a 16-in bucking half-wavelength corresponds approximately to

o~
LS "c '.n
.".l "‘ "

»

knockdown factors kl = 0.9, k3 = 0.3 for the riveted construction and

- .
",

Pt
LS
.

£

kl = 0,98, k3 = 0.6 for the bonded construction. The circumferential bending

stiffness factor k2 is 1.17 for riveted and 1.30 for bonded construction.

N

'lii These analycically derived coefficients were used in BGSOR4 in a subtrsutine
‘%§; for calculation of the constitutive law relating reference surface stress
3}' and moment resultants to strains and changes in curvature (Ref. [430] )
??i buckling stresszs and aeflect:.ons and bifurcation buckling loads and mode
&N

:;: shapes were calculated for both riveted and bonded wall coustructions. The
i;. lowest eigenvalues correspond to 16 circumferential waves in both cases

%: with riveted construction yielding a load factor of 2.761 and bonded con-
Ei struction a load factor of 3.362 times the nonsymmetric pressure distributiom
,;i displayed in Fig. 149(a) waich was measured in a wind tunnel test.
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For axially compressed , anels, variations in fastening techniques have just
been shown to have rather large effects on general instability loads and very
large effects on crippling loads. Also demonstrated is the use of a small,
detailed branched shell model to predict analytically stiffness properties
needed for the analysis of a large structure. While this study was performed
specifically for semisandwich corrugated panels, it is obvious that similar
models can be set up and explored for any complex panels with curved sections

and panels built up of composite materials.

Modal Interaction and Imperfection Sensitivity

of Axially Compressed Prismatic Structures

Introduction

Two Types of Modal Interaction: We have already seen several examples of one

tyre of buckling modal interaction: bifurcation buckling in which the critical
mode contains characteristics of more than one kind of buckling, such as
general and local instability. In Figure 181(e) is shown a general
instability buckling mode of a ring-stiffened cylindrical shell subjected to
uniform external hydrostatic pressure. The general instability bifurcation
buckling pressure predicted with the discrete ring model is about 10% less

than that predicted with the smeared ring model because this mode corresponding
to the discrete ring model is not a pure sinusoid with one-half wave in the
axial direction, but contains superposed on the half sine wave a small
amplitude short axial wavelength waviness with period equal to the ring

spacing. From Figs. 182 and 184 it is seen that buckling pressures
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predicted vw.th models in which the webs of ring stiffeners are treated as
flexible shell branches are considerably lower than are those predicted
with discrete ring models in which local deformation of the ring cross-
section is not nermitted in the bifurcation buckling mode. Similarly, in
Fig. 214 the local cross-section deformations of the buckled axially
compressed semi-sandwich corrugated panel are evident. They are super-

imposed on the half-sinusocidal spanwise '"general" instability mode.

In all of these examples, the shells are assumed to be initially perfect.
The modal interaction does not involve the prebuckling phase at all, but
involves an apparent combination, in the bifurcation buckling mode, of more
than one kind of buckling: In Fig. 181(e) modal interaction is a combi-
nation of general instability of rings and shell with local ("ranel")
instability of the bays between adjacent rings; in Fig. 184 it is a
combination of '"panel" instability of the bays between rings and local
bending or crippling of the webs of the rings; and in Fig. 214 it is a
combinat .on of general instability of the corrugated panel and local

crippling of the flat segments from which the complex panel is built up.

The modal interaction effect to be discussed in this section is fundamentally
different from the examples just described. It is related primarily co

local imperfections in the structure which have the effect of decreasing

the stiffness of it in such a way as to decrease the critical axial load

cerresponding to general instability.

Figure 219 shows several examples of prismatic structures often used in

civil engineering (a-c), aerospace (d-g). and shipbuilding (h) applications.
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Under uniform axial compiession buckling of these structures, which are

built up of plates, may occur in column~-type modes or in local modes
involving crippling of the individual segments. The design of such
structures is often arrived at by optimization with respect to weight. That
is, the weight is minimized subject to the constraint conditions that general
and local buckling shall not occur below some design load or below the

design load multiplied by a factor greater than unity to allow for initial

imperfections and other unknowns. This design process usually results in

configurations for which local and general instability occur at the same
axial load. As shall be seen, the modal interaction effect to be described
here, that is the reduction in load-carrying capability due to small

imperfections, is especially severe at the design point corresponding to

simultaneous general and local instability.
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Previous Work Done: Tvergaard [ 275] presents an excellent survey of the

r A

worx done on modal interaction. Bijlaard and Fisher [ 276} established that
local buckling of the plate elements in a column reduces the critical load
corresponding to Euler-type bucklirg of the column., In 1962 Koiter and

Skaloud [ 277)] emphasized that the load-carrying capability of structures
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with simultaneous local plate buckling and Euler-type column buckling may be
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imperfection sensitive shell structures if the local plate buckling and
general column instability loads are close. Details of van der Neut's

model and results will be presented later.

Thompson and Lewis { 279] determined optimum designs for van der Neut's two-~
flange model, taking into account initial imperfections of the flanges but
asstv.aing that the column axis remains straight. They found that with

growing imperfections the optimum load-carrying capacity decreases steeply
from the value corresponding to simultaneous local and general instability

of the perfect column, and that for very small imperfections the optimum
design shifts away from that obtained from imposition of the simultaneous
buckling criterion to a design in which Euler-type buckling of the column
occurs at a lower load than local buckling of the flanges. Crawford and
Hedgepeth [ 280] calculated optimum designs for lattice columns and truss-
core sandwich panels with initially locallv wavy members. They determined
that both structures are imperfection-sensitive, the lattice column more

so than the truss-core panel, and that the effect on optimum design obtained
with the assumption of small imperfections is opposite to that obtained with
the assumption of larger imperfections. Their major conclusion is that in
neither case is the penalty great for using the conventional practice of
arriving at an optimum design by equating local and general instability of a
perfect structure. (However, it is obvious that a load margin has to be
provided to account for initial unknown imperfections.) Maquoi and Massonnet
[ 281} discuss the optimum design of a square box column obtained from an
analysis in which the effective width concept is used and collapse is assumed
to occur if the maximum stress reaches the yield stress. Graves Smith [ 282]

calculates collapse loads of box columns including the effects of welding
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residual stresses, "cylindrical" imperfections due to welding of the plates

at the corners of the box column, and initial local waviness.

Plates reinforced by axial stiffeners on one side (Fig. 219 (e-h)) are
common in civil, marine, and aerospace structural designs. Ivergaard

[ 283, 284] has used Koiter's general theory of elastic stability [ 15]
to obtain asymptotic estimates of the imperfection-sensitivity of such
structures. Panels such as depicted in Fig. 219(f) are assumed to be
infinitely wide with constant spacing b between the stiffeners, are simply
supported at the two adges on which the compressive load acts, and are free
on the unloaded edges. The eccentric stiffeners are represented as simple
beams. A panel designed so that local buckling coincides with buckling as
a wide Euler column displays a high sensitivity to initial imperfactions

due to modal interaction.

For the analysis of panels for which the local and general bifurcation
buckling loads are not coincident, Tvergaard uses the Galerkin method. The
strong sensitivity to small imperfections is revealed in a continuous manner
for simultaneous and nearly simultaneous buckling. However, as the modal
deflections increase, the post-buckling equilibrium curves tend to flatten
out so that the sensitivity to larger iaperfections is far less severe than
that predicted by the asymptotic equations derived fr:a Koiter's theory.

The solutions are used to study the optimum design of panels with various
combinations of column mode imperfections and local mode imperfections.

For certain prescribed stiffener spacings the local maxima near the design

point corresponding to simultaneous buckling vanishes for rather small
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imperfection amplitudes. The maximum carrying capacity of the panel is
attained above the critical stress for loca. buckling. However, from the
point of view for retaining high axial stiffness at the highest possible
load level, the optirum usually corresponds to a design with tie Euler lond
lower than the critical load associated with local buckling of the skin

between the stringers.

A similar panel configuration has been considered by Koiter and Pignataro

[ 285], who found a panel with a single axial bay to be very sensitive to

small initial imperfecticns at a design corresponding to simultaneous wide
column and skin buckling but relatively l.ss sensitive to larger imperfections,
a result in agreement with those of Refs. { 283] and { 284]. 1In addition

to the single-bay panel, Koiter and Pignataro treat the important case of a
panel continuous over several bays in the longitudinal direction. For this
multi-bay panel, the imperfection-sensitivity is found to be further decreased
because half of the bays buckle in the direction in which the skin is being

stretched.

Van der Neut [ 286] analyzed modal interaction for a liat-stiffened panel
(Fig. 219(g)) with use of a two-flange model similar to that used for the
box column in Ref. [ 278]. The sensitivity of the critical load to initial
local waviness of the plate and of the top of the hat stiffeners is greatest

for designs for which local and wide colurmn bifurcatior buckling loads coincide.

Thompson, Tulk, and Walker [ 287] performed experiments on pin-ended eccen-

trically stiffened panels of the type shown in Fig. 219(f) made of epoxy

plastic. Local imperfections of the skin between the stringers were
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"fabricated" by heating the plastic, loading it, and then cooling it,

thus, "freezing" in an initial deformation pattern with relatively low
residual stresses. Imperfections in the form of the Euler wide column mode
were SImulated by eccentric application of the end load. The sensitivity
of the critical load to initial imperfections in the form of the local as
well as the wide column buckling modes is observed to be maximum at designs

for which local and general buckling of perfect panels coincide.

Tvergaard and Needleman [ 288, 289] have investigated modal interaction
of elastic-plastic panels of the form shown in Fig. 219(f). They used

Jo flow theory with isotropic strain hardening. The panels are infinitely
wide and the stringers are modeled as simple beams. The effect of local

and global imperfections for single bay and multi-bay n-nels (multiple bays
in the axial directior) ~re investigated. They found that modal interaction
leads to imperfection--sensitivity in a single bay panel with column mode
deflections such that the skin is being further compressed by bending. For
column mode deflections in which the skin is being stretched, the considerable
imperfection-sensitivity found by Tvergaard and Needleman is entirely due to
the material nonlinearity. This effect of material nonlinearity explains
why the multi-bay panel is not less imperfection-sensitive than the single-

bay panel, as is the czse in the elastic range [ 285].

Summary of this Section: In this section modal interaction will be illustrated

by the behavior of the two flange column studied so carefully and described
so clearly by van der Neut [ 278]. This will be followed by an account of

modal interaction in eccentrically stiffened elastic plates, as studied
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experimentally by Thompson, et al [ 287] and analytically by Tvergaard

[ 283, 284]. The section will close with a discussion of the effect of
modal interaction on optimum design in which results obtained by Thompson
and Lewis [ 279], Crawford and Hedgepeth [ 280], Tvergaard [ 284] and

Byskov and Hutchinson [ 290] are presented.

Modal Interaction in an Axially Compressed Two-Flange Column

Van der Neut was the first to study in detail the behavior of the axially
compressed two-flange column shown in Fig. 220. The model consists of
two load carrying flanges of width b and thickness h, connected at a
distance 2c¢ by webs which are rigid in shear and laterally but which have
no longitudinal stiffness. Th=2 webs offer simple support to the flanges
In this way the flanges have boundary conditions that are easy to take

into account analytically.

Figure 220 gives a preview of the buckliug behavior of such a model.

Long perfect columns buckle in an Euler mode (ccr = oE). The behavior of

short columns is more complicated: Initially the simply supported flanges

buckle locally at a stress Ucr =g However, the post-buckling behavior

'
of long rectangular plates is stable, so that the column with crippled

flanges continues to carry additional axial load until it buckles in an

Y
.
-

- l-' ‘v

Euler mode at a flange stress ccr = nog, in which n is a factor (n equals

]
KW
[ Y

approxvimately 0.4083 for simply supported long plates) that accounts for the

[l
]

reduced incremental axial stiffness of the crippled flanges. Perfect

L)
@

. 4,0

AR
" l. “ l' A NN
TRVt R RS R T I
PR Y .

columns of such an intermediate length that nog < 0.

r £ o fail at o¢p = 0

because of medal interaction: the crippling of the flanges causes a

5t 2
., A
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"sudden'" reduction in their axial stiffness with consequent reduction of
the Euler stress from op to nog.
It is reasorable to suspect tha. the critical loads of columns in the inter-
mediate range of lengths correswonding to the neighborhood of Op = o would

be sensitive to small initial imperfections, that is waviness, in the

flanges. The amplitude of the waves would grow as the axial load is increased,
with the result that the axial stiffness of the wavy flanges would decrease,
precipitously approaching the limiting value n = 0.4083 times the stiffness

of the perfectly straight flanges at a load well below o or o, and leading

E 2

to Euler buckling of the beam in the range nog < g < OE' Curves are drawn

in Fig. 220 corresponding to bifurcation buckling of columns with straight
axes but initially imperfect flanges. The quantity £ is the ratio of the
amplitude of the initial flange waviness to the thickness h of the flange.

It is seen that the greatest sensitivity to initial flange imperfections

occurs for column designs such that O = Oy Please note that even for

the column with initially imperfect flanges, the failure stresses plotted

as solid curves in Fig., 220 correspond to bifurcation buckling in the

Euler mode, not ic a limit load such as point E in Fig. 7(a). The bifurcation

poiat is converted to a limit point only if imperfections are introduced into

the axis of the column.

The Perfect Column: Referring to Fig. 221, it is seen that for large

slenderness of the column the Euler load KE is less than the flange Luckliug
load, KQ. The stiffness of the flanges is Ebh, and the bending stiffness of

the column is EI. With small slenderness, KE exceeds KQ. The flanges are in
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their postbuckled state and their stiffness under incremental compressive axial
strain Ae 1is nEbh. Therefore the bending stiffness under axial load is

nEI and the colummn strength is Kb = nKE.

Figure 221(b) gives two curves, KE and Kb versus L. Ffig. 221(a) shows the
flange load P versus strain €. The slope for P > Pl decreases slowly with
increasing p/p2 but for g/el < 3 its variation is very slight, almost equal
to 0.4083 which is the slope at P = PQ. With superimposition of prebuckling
and bifurcation modal deflections at the load K = KE’ the compressive strain
in one flange is increased and the incremental stiffness of this flange is

nEbh. The other flange returns to the unbuckled condition, offering the

stiffness Ebh to its strain increment. Then the bending stiffness of the

column is 122 . EI (the Engesser "double-modulus" formula). The column
o . 2n_ 2 1/2
is in neutral equilibrium at K when the column length is LO =Gy T EI/K.Q .
For L2 <L < L0 the equilibrium at KR is stable. However for L1 > L > LO

the equilibrium is unstable; collapse occurs explosively.

The curve of Fig. 221(b) transforms into the one of Fig. 222 by replace-
ment of the abscissa L by L_2 or KE/K2 This graph is composed of three
straight lines. It shows that in the range 1 < KE/K2 < 1.725, the perfect

column collapses explosively at K = K Within this KE/Kz—range, imperfections

Iz
reduce the buckling strength Kb to values below Kg.

Buckling with Imperfect Flanges but Straight Column Axis: The initial waviness

z of the middle surface of a flange can be developed into a series of functions

corresponding to the various buckling modes. The bzhavior of the flange is
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mainly governed by the term which corresponds to the mode pertaining to the
smallest buckling stress. Therefore the waviness is assumed in van der Neut's

formulation [ 278] to be given by:
z = a cosmy/b sin mx/b ( 65)

in which the coordinates (x,y) are shown in Fig. 223. The normalized wavi-

ness parameter o is given by a = a/h.

The relationship between the axial flange load P and the compressive strain

¢ for this imperfect plate strip, simply supported at its edges, can be
established by use of the Ritz-Galerkin approximate solution of the non-linear
plate equation, taking the deflection in the shape of the buckling mode ( 65).
Since we are interested only in the behavior at e in the vicinity of the
perfect plate bifurcation strain ¢, this approximation is sufficiently

2

accurate. Some load-strain curves are given in Fig. 223(b).

The stiffness of the flange is
S = dP/de. ( 66)

The reduction of stiffness with respect to the stiffness of the flat flange

is given by the reduction factor
n= d(P/Pl)/d(e/el). ( 67)

Figure 224 shows n versus P/P2 (or K/KQ) for various values of o. A
continuous curve replaces the broken line, which corresponds to the perfect

flange.
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‘ggé The investigation is confined to the case in which the two flanges have

fzf equal c¢. Then the column axis will remain straight under the load K

ig% until the buckling load Kb is reached. The bending stiffness resisting an

gfﬁf infinitesimal deflection at the column load K is nEI. With this bending

;Ei stiffness the deflected column is in neutral equilibrium if K = nKE. Therefore
;i;; a load K is the buckling load K when

9,

K/K, ) P/P, ) EE_ [ 68)
n(K/K) ~ a(®/P) = K’ '

iis KE is a measure of the column length. Then Eq. ( 68) gives the relation

??3 between column length L and buckling load Kb as functions of o (n being a

.;ii function of o). Evaluation of Eq. ( 68) by means of the 'ata contained in
';i: Fig. 224 yields the relation between Kb/K2 and KE/KQ for various values of
{ o (Fig. 225).

\

.l.
]
¢
.

The broken line for o = 0 in Fig. 225 represen:s the degeneration of the

AP
3, 105008 s
P MAERP

rd

smooth curves for a # 0. It appears that Kb < K2 when KE/KQ < 2. The re-

duction in strength because of & is rather important in the vicinity of

k k)

o

2 KE/K£ = 1: for a = 0.0125 it is 10%; for o = 0.05 it is 17%; and for o = 0.2
fﬁ it is 30%. This confirms the conjecture of imperfe .on sensitivity on the
fﬁg unstable part of the perfect-column-curve (Figs. 221 and 222). The signi-
i; ficant imperfection sensitivity is a direct result of the very large change in
‘E; effective stiffness of the slightly imperfect flanges (small a) for loads

%i below K2 (Fig. 224),

i{

is Stability of Equilibrium at the Bifureation Load, Kb: In Refs, [ 278] and

Eﬁ [ 291} van der Neut derives the slopes of the initial post-buckling load-

,E

3
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et deflection curves corresponding to deflections of the column axis in the form
shown in Fig. 226(a). The formulation is based on Koiter's stability

theory [ 15]. Figure 226(b) shows tangents to post-buckling load-end-

shortening curves at bifurcation points Kb for columns with various KE/KZ
and flange imperfections «a. The dashed curves correspond to the columns
with perfect flanges, and the origins for each curve with o > 0.0125 have
been shifted upward to permit display of all the data in one frame. The
abrupt change in slope of each of the dashed curves at s/s2 = 1.0 corresponds
to K/Kk = 1.0. Each short line segment represents the tangent to the post-
bifurcation equilibrium curve corresponding to a column with a particular

KE/Kz' The value of KE/KR can be determined by reading on the K/K2 axis

the point of intersection of the post-bifurcation tangent with the approxi-

) 4
.
«

Dek 4
o

et

mately bilinear solid curve with which it is associated, identifying K with

N the bifurcation load Kb in Fig. 225, and reading KE/Kl from Fig. 225,

Tery

¥

il

It is seen that for small flange waviness o and 0.7 < e/e2 < 1.0, the

- post-bifurcation curves have negative slopes, indicating that the bifurcation

loads Kb associated with them are sensitive to initial imperfections 2

in the axis of the column. Thus, the two flange columns with KE/KI less than
2 will fail below the load Kb/Kl = 1.0 because of two effects: Unavoidable
waviness ¢ in the flanges of the form givei Ly Eq. ( 65) will reduce the
bifurcation point Kb from the dashed curve as shown in Fig. 225, and
unavoidable waviness eo/c in the column axis will further reduce the load-
carrying capability by conversion of the bifurcation point Kb to a somewhat

lower limit point K_ as shown in Fig. 227, Notice from Fig, 226 that the

f

instability associated with bifurcation in the column mode almost disappears

for a > 0.2,
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Buckling of Columns with Imperfect Flanges and Imperfect Axes: van der Neut

used the Ritz-Galerkin method to calculate limit loads Kf of the two-flange
columns with both imperfect flanges and iuperfect axes. Results of the
numerical evaluation are shown in Fig. 228, which gives the strength

. Kf , €o
reduction 1 - 57— as a function of = for two values of KE/K . Curves

Kp c L

for equal KE/K2 and different o almost coincide, so that owne single curve
sufficiently represents the range 0 < a < 0,1. It should be recalled, however,
that the effect of o on Kb/KR is significant (see Fig. 225). The column
axis eccentricity associated with the maximum reduction in load-carrying
capacity, (eo/c)l depends very strongly on o and increases with increasing

o. The approximate positions of (eo/c)l are indicated in Figs. 227 and

228,

2

L AN}
Wy

'-iv'v
a

The validity of the results depends on the condition that the Taylor series

‘s
I

.
:
» e

expansion of the flange load P as a function of column end shortening e

i
v ' Y
]

' 2

used by van der Neut [ 278] represents sufficiently accurately the actual

P - e-curve. This condition appears not to be fulfilled when the flange
loads Po and Pu of the bent column (See Fig. 226(a)) differ from %Kf by
more than 15 to 20%. Therefore the validity of the curves is restricted to
small values of eo/c not exceeding 2%. However, the stiffness dP/de,
corresponding to the Taylor-exparsion turns out to be smaller than the actual

stiffness. Therefore eo/c is smaller than that predicted by the computation.

-‘..

5
l.ﬁ
4 -

Below the curves a hatched region has been indicated, representing the

uncertainty.

S YN

SRS

Provided the stresses remain within the elastic region, imperfection of the
column axis appears to have a minor effect upon the load carrying capacity;

it will maximally be of the order of 10%. The main reduction stems from

’a 'J"J[“. L

initial waviness of the flanges.
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:Ei; Modal Interaction in Axially Compressed, Eccentrically Stiffened Panels
=

R
é;fi This problem, studied by Tvergaard [ 283, 284], Koiter and Pignataro [ 285],
-;:; van der Neut [ 286], and Thompson, Tulk, and Walker [ 287] for elastic panels
.}ﬂ and Tvergaard and Needleman [ 288, 289] for elastic-plastic panels, is
‘?;5 analogous to the two-flange column problem. The interaction effect studied by
}:ég tu2se researchers involves the Euler wide column mode of the panel, the

g&és unlcaded edges of which are unsupported, and the local buckling of the sheet
itﬁ between two adjacent stringers. Figure 229 gives the geom try and coordinate
Eﬁt‘ system of such a panel, which in the analysis of [ 283] is considered to be
i;ﬂ infinitely wide.

!;: The curves displayed in Fig. 230 are analogous to those in Fig. 220 for
;§§ the two-flange column. PL is the load corresponding to bifurcation buck .ing
iii. of the skin and Lcr is the length for which local and Euler wide column
L buckling occur at the same load. (In the work of Tvergaard and others it is
'Ek; tacitly assumed that the Euler wide column mode is the lowest general

:522 instability type buckling mode.) It is seen from Fig. 230 that the
1;?. maxiaum sensitivity of the failure load PM to initial imperfections occurs for
:g; designs near the simultaneous buckling point, PE = PL' The curve labeled

;E- PE* is analogous to that labeled nog in Fig, 220 and that labeled nKE in
A!; Fig. 221, 1t corresponds to buckling of a wide eccentrically stiffened
ji: panel in which the effective stiffness of the skin has been reduced by local
J?: buckles.
o
1££ Figures 231 and 232 show how the carrying capacity of a particular

?E eccentrically stiffened panel is reduced by local and Euler-type imperfections
i

1ir

S
-2 231

"

.

S

1
*
Y.
Mt

- e e ML tet . A"~ ata

g '1.\-"-‘_‘-:. "‘- "-.‘.‘,\‘.\.,\..--'_'-‘_"- ‘_“. -‘.»._‘,I‘-. ST T AT T _~.~ ST et AT _..v.\-:_-.\.-_..\ '..- - ... ':,-.'.',.‘_-A .»_ . _.-j-.,:..." _'-.,_ ...‘



L S WA T T T, T T e W, - e e T v m L me - - .« e - -
e R - P A LRl N ~_‘\\“\_.~ .._.‘y\\‘-“\_nkq‘»',“~- I S S TV T T T SR

' of various amplitudes. The results in Fig. 231, for which PE = PL, are
obtained from an asymptotic expansion in the neighborhood of the bifurcation
point of the perfect panel, according to Koiter's theory for simultaneous
buckling modes [ 15]. The results shown in Fig. 231 indicate that the
panel is more sensitive to imperfections in the shape of the local buckling

mode than to imperfections in the shape of the Euler buckling mode.

Fig, 232 shows test results for a stiffened panel with slender stringers
that also participate in the buckling mode when Wolh < 0. (Initial Euler

wide-column imperfection W, such that bending induces tension in the skin,

0
compression in the stringers). The curves are not symmetrical about
Wo/h = 0 because the panel configuration is not symmetrical with respect

to inward or outward buckling modal displacements.

Tvergaard [ 284] extended the analysis of [ 283] to study the nonlinear
post-buckling behavior of eccentrically stiffened panels corresponding to

a range for which the initial post-buckling asymptotic analysis method of
Koiter is not valid. He used the Galerkin method to calculate pest-~buckling
stiffness and load-carrying capability of panels such as depicted in

Fig.  229.

Some examples of the relationship between load and modal deflections found
by 1..rgaard are shown in Fig, 233. The solid curves give the behaviour
of a perfect panel, and the dashed curves show the behaviour of a panel with
small initial imperfections. A is the axial load parameter und El and 52

ave Euler mode and local mede imperfection amplitudes, respectively. The

232
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panel corresponding to Fig., .233(a) has coincident buckling loads, while
Euler-type buckling is critical in Fig. 233(b) ana local buckling is
critical in‘Fig. 233(¢). 1In all three cases the initial post-buckling
behaviour predicted by the Galerkin method agrees with that calculated by
application of Koiter's general theory [ 15]. However, as the modal deflections
increase, the equilibrium curves tend to flatten out, For example, in the
simultaneous buckling cace of Fig. 233(a), the sensitivity to very small
imperfections predicted with the Galerkin method is as strong as that pre-
dicted by the asymptotic solution, but for imperfections so large that the
limit point occurs under the flat part of the solid curve, a further increase
of the imperfections results in practically no additional reduction of the

limit load A%*.

Figure 234 represents qualitative experimental confirmation of Tvergaard's
results. The asymptotes correspond to the general bifurcation buckling load
PE* for the panel with the reduced skin stiffness (See Fig. 230).

Optimization of Imperfect Cclumns and Panels in which Modal Interaction Occurs

The conventional criterion of optimization for thin elastic structures is that
overall and local buckling loads should coincide. The validity of this so-
called "naive" approach was originally questioned by Koiter and Skaloud

[ 277] on the grounds that simultaneous buckling might give rise to severe

imperfection sensitivity which could modify or destroy the apparent optimum.

Columns: Figures 235~ 238 pertain to the optimum design of imperfect

columns in which simultaneous local and general instability might occur.



Figures 235~ 237 pertain to the two-flange column studied by van der Neut

[ 278)] and just discussed in detail. All designs corresponding to various

b in Fig. 235 and various x = KE/KR in Figs. 236 and 237 have the same
weight. The point raiced by Felier aud Skaloud | 277] is illustvated by

Fig, 235: An optimum design arrived at by the bifurcation buckling analysis

ot a perfect structure, dimensioned such that o_ = Ty corresponds to some

E

dimension b = b However, the imperfect structure has a maximum load-carrying

Ao

capability at a different design point, b < b Thompson and Lewis [ 279]

A
found that for van der Neut's two-flange column the optimum design shifts to
the left (Fig. 237) for small flange imperfecticns and then back to the

right for larger flange imperfecticns. The implication is that fairly well

made box columns should have dimensions such that the Euler load is a bit

less than the local flange buckling load.

Crawford and Hedgepeth [ 280] came to similar conclusions for axially com-
pressed lattice columns and truss-core stiffened simply-supported panels
(Figs. 238, 239), but in comparing the critical loads of the structures
obtained from the "naive" approach with those of the same weight obtained
from the "sophisticated" approach, they determined that very little strength
penalty results from use of the '"naive" Op =0, criterion for the perfect
structures (Fig. 240). (However, they urge the designer to be aware of the
increased imperfection sensitivity resulting from optimization subject to

the constraint o_ = Oy s and consequently to provide adequate load margins

E

at the "naive" optimum!)

‘
~

I
tats

NN

Panels: Tvergaard [ 284] investigated the effect of modal interaction on

PERLYL S
"l

:j; the optimum design of eccentrically stiffened panels of the type illustrated
.
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in Fig. 229. Definition of an optimally designed panel involves many

parameters, such as the plate thickness, eccentricity of the stiffeners,

spacing between the stiffeners and the shape of the stiffeners. In Tvergaard's
treatment the number of parameters is restricted because the goal of his
investigation is to determine whether a design corresponding to simultaneous

Euler wide column and local skin buckling has the highest carrying capacity.

Thus, the distance "a" between the simple supports, the spacing b between

the stiffeners, the eccentricity e of the stiffeners and the common material

to be used in the whole panel are prescribed. The stiffeners, attached to

one side of the plate, are assumed to have rectangular cross-sectioms.

For a panel built of a given amount of ma.erial per unit width, i.e. a

panel with a given value of hO = h + As/b, where AS is the stringer cross
section area, the maximum carrying capacity or limit load A* can be calculated
as a function of the imperfection amplitudes Ei and Eé in the Euler and

local modes, respectively, and the parameter h/ho which specifies the ratio

of the amount of material in the skin to that in the whole panel. 1Imn the
following, Ao denotes the critical load param cer in the case where the

stiffeners disappear completely (h/ho = 1).

Tvergaard considers a panel with a given weight, the geometry of which is

specified by a/b = 4, e/b = .05 and ho/b = ,0128. 1In Fig. 241 the maximum

e 4
.

x
el

carrying capacities are plotted vs. h/ho for different amounts of imperfections

[}
.

in which the wide column modal imperfection Ei equals Eé. (Note that the

Fa'a

imperfections are normalized by ho’ so that imperfections corresponding to

different points on a curve with constant £ are equal relative to the

constant measure ho’ but not relative to the current plate thickness).

e 235
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Figure 241 also shows the point N at which the initial post-buckling
behaviour of the perfect structure changes from stable to un -~ble according

to the Koiter theory. The A*-curve corresponding to very sma.. imperfections

(2)

c

intersects the A curve just below thits point.

Figure 241 shows that if the panel is ac<igned against the classical
critical buckling stress, the optimum (minimun weight for a given axial load
or maximum critical load for a given weight) is clearly the one corresponding
to coincident buckling loads. However, Fig. 241 demonstrates that the
earrying capacity in the vicinity of this design diminishes rapidly as small

imperfectir s are introducea The local maximum of the A* curves vanishes

when the nu. .d imperfection amplitudes exceed a value of about 0.03. It
i5 also obvious from Fig. 241 that the highest carrying capacities of the
(2)

:mperfect panels are predicted in the range where the buckling stress Ac

has been exceeded. Here, the collapse load A* becomes even slightly larger

than the critical stress of the perfect structure at the design point

corresponding to simultaneous buckling. In this range, however, the

%
limit load A corresponds to quite large modal deflections (Fig. 233(c)),

so that in practice plastic deformations or brittle fracture may often

i;ié reduce the maximum load predicted by the elastic theory.

o

P::“‘_-"

b

p

t. Tvergaard also treats an exemple in which the spacing b of the stiffeners
WIS

[~ is halved without cha.ges in the length "a" between the supports, the
b?}f eccantricity e of the stiffeners, or the amount of material per unit width.
@ In this case, the panel is specified by a/b = 8, e/b = .1 and ho/b = .0256.
N

BAY Results are displayed in Fig. 242. For this panel the design point
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corresponding to simultaneous buckling of the perfect panel occurs at such a
small value of h/ho that further enlargement of the stiffeners at the
expense of plate thickness is of practically no advantage with respect to
Aél), as can be seen from the data at the lowest values of h/h0 in Fig. 242,
Figure 242 demonstrates that the larger the amplitude of the imperfections,
the higher will be the value of h/hO at which the maxima of the A* curves

occur. Tvergaard proved that local mode imperfections of a given amplitude are

more serious than Euler-type imperfections of the same amplitude. The

(2)

{to the
C

carrying capacities A* predicted in the range where A* exceeds A
left of the point N) are smaller than those in the remaining range. If imper-
fections can be kept small, the optimum design will correspond to values of

A§2>/A§l) slightly higher than unity. For larger imperfections, this value

increases to about two, depending on the stiffness required.

Apart from a high limit load A*, the stiffness retained in the panel at a
given load level A may be of considerable interest. Tvergaard [ 284]

defines a normalized stiffness parameter
S = (dr/da)/(dr/da), ( 69)

in which X is the applied load, 4 1is the end shortening, and the denominator

represents the prebuckling stiffness of the perfect structure. For a perfect

panel the stiffness S defined by Eq. ( 69) is equal to unity in the entire

range belcw the classical buckling load. In Fig. 243 the stiffness S is

plotted for two different imperfection magnitudes. It is seen that even for

small imperfections the stiffness decreases significantly at relatively low
(2)

loads in the range to the left of the figure where A* exceeds Ac , SO

that this range is not advantageous from the point of view of stiffness.
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(2) ,, (M)
.

Also, for larger imperfections a design with Ac somewhat above unity

is preferable with respect to retention of a high stiffness in the panel.

Tvergaard [ 284] draws the following conclusions from his study of the

optimum design of axially compressed imperfect elastic, eccentrically

stiffened panels: "An anal;sis of stiffened panels made of a given amount

of material per unit width shows that in some cases the design with the

highest carrying capacity is one in which the limit load is attained beyond

the critical stress for local buckling. However, the stiffness properties are
relatively poor for such designs. From the point of view of retaining a high
stiffness at the highest possible load level, the best design is usually one

in which the critical stress for Euler—type buckling is smaller than that

for local buckling. In some cases, the optimum design has a lecal buckling stress
that is more than twice the Euler buckling stress. Thus, the optimum design from
the point of view of post-buckling behavior often differs significantly from

the design with two simultanecus buckling stresses." [ 284]

Axially Stiffened Cylindrical Shells: 1In all of the elastic modal interaction

problems involving columns and panels, each of the modes acting alone would
result in behavior that is not sensitive to initial imperfections. The modal
interaction problem for axially compressed, axially stiffened elastic
cylindrical shells, studied by Byskov and Hutchinson [ 290], differs signifi-
cantly in that the buckling load corresponding to the general instability mode
is always sensitive to initial imperfections and that corresponding to local
buckling of the skin between adjacent stringers may or may not be sensitive

to local imperfections, depending on the stringer spacing. The effect of
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interaction between local and general instability is to increase the sensi-

tivity of the critical load to initial imperfectionms.

Byskov and Hutchinson { 290] solve the problem with use of an asymptotic
method similar to Koiter's [ 15] that provides uniformly valid results whether
the modes are simultaneous, nearly simultaneous, or well sepcrated. For the
perfect shell, the optimum design has simultaneous overall and local

buckling loads. Overall buckling loads and mode shapes are calculated from

a theory in which the stringers are smeared out and the torsional rigidity

of the stringers is neglected. Local buckling is also calculated on the basis
of neglect of che torsional stiffness of the stringers. The stringers are
considered to be stocky enough that they do not cripple. Initial imperfectiomns
have the form of a sum of i bifurcation buckling modes corresponding to the

lowest 1 eigenvalues of the perfect structure.

Results from Byskov and Hutchinson's analysis are presented in Figs. 244 (a-e).

These figures are analogous to Figs. 241- 243 in that all points on the

abscissa of each figure correspond to a given amount of material, and the
ordinate represents the normalized maximum axial load A = P/Pe. The quantity

Pe is the classical buckling load of a long unstiffened cylindrical shell with

:% the same radius R but with thickness t, corresponding to the same total cross-
"

‘> sectional area of the stiffened shell:

~

-.\:' 2
o = + . P = .

: te tshell As/b, o 27R[0 6Ete/R] ( 70)
'.6 in which AS is the cross section area of a stringer and

o

AN

" b = ZwR/Ng ( 71)
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where NS is the number of stringers. As in Figs. 233 and 241~ 242, Al

represents the critical bifurcation load corresponding to general instability

v
.

and AZ the critical bifurcation load corresponding to local instability of

the perfect shell. The numbers in parentheses represent amplitudes of the

AR}

(general, local) initia:r imperfections normalized by ty: Figures 244(a-d)

T p—
MO
ettt
W e
LY
'

.
.

correspond to cylinders with rectangular stringers and Fig. 244(e) to a

rl

N
vy
.

Y

p cylinder with T-shaped stringers.

e In each example, the total amount of material, the skin thickness t, the radius-
thickness ratio R/t, and the radius-length ratio R/L are held constant. The

relative amount of stiffener material,

a = AS/bt ( 72)

is therefore fixed. so that As varies inversely as the number of stringers
NS. In the case of Figs. 244 (a-d) the stiffener thickness ts is held
censtant, so that the stiffener height h varies inversely with NS. In the
case of Fig. 244 (e) the height and thickness of the web and flange are

equal and vary in proportion.

From their results Byskov and Hutchinson conclude that ''the feature common
to each example studied is the relatively weak dependence of As (the

maximum load-carrying capacity) on NS at rcalistic imperfection levels. As

)

reported in studies of other structures, design for mode coincidence (Al = Az

of the perfect structure does not appear to lead to a design that would be

far from optimum. In fact, the examples studied here suggest that the

LR

. designer has considerable latitude in this regard, although one must not lose
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sight of the fact that the imperfection sensitivity is greater for designs with
coincident modes. In all cases, except that in Fig. 244(d), the optimum in
the presence of imperfections tends to shift toward a design with AZ z Al'
Furthermore, when the local mode of the perfect structure is unstable at

the design of coincidence, the presence of imperfections tends to shift the

optimum toward the regime in which the local mode is stable."

Transverse Shear Deformation Effects

Plate and shell theories represent means to simplify the general analysis of
structures by the introduction of assumptions that make the displacements
functions of two rather than three spatial coordinates, as discussed in

Volume 2, Usually this reduction is achieved by use of the assumptions:

o Normals to the reference surface remain straight during deformation
o Normals to the reference surface remain normal after deformation

o The transverse normal stress is negligibly small

The assumption that the normals remain normal to the deformed surface means that
transverse shear deformation can be neglected. Such an assumption is certainly
acceptable if the shell is sufficiently thin. In the following, such theorie:c
are referred to as first order theories. A second order theory may, for
example, be obtaired if the first of the three assumptions is retained but the
second discarded. Such thecries have been presented by Reissner [ 292] and
Mindlin [ 293]. Higher order theories can be obtained if also the first
assumption is discarded, but it is questionable whether use of such theorirs

have any advantages in comparison to a complete three-dimensional analysis.

241



Laminated Composite Materials

The argument for retention of the effect of transverse shear deformations in
analytical models of plate and shell structures made of laminated composite
materials is much stronger for geometries typical of practical designs than
it is for isotropic metals because the transverse shear moduli G13 and G23
(Fig. 245) are usually one to two orders of magnitude smaller than the

longitudinal modulus, E (In keeping with generally accepted nomenclature, we

1
will refer to longitiuinal and transverse elastic moduli, E1 and EZ’ as the
moduli in the plane of the lamina parallel and normal to the fiber d:irection.
The inplane shear modulus, G12’ is distinguished from the two transverse

shear moduli, G13 and G23. The modulus, G13, corresponding to shear along

the fibers (Fig. 245) is generally somewhat larger than G23.) Typical

values for a lamina may be of the order El/EZ = 20, G13 = 0.6 E2 and G23 =

0.4 E2. Since the transverse shear moduli for a lamina are small in comparison
to the longitudinal elastic modulus, the transverse shear deformations

must have a bigger effect on the buckling load of composites thanm it has on
metallic plates or shells. That is, the composite shells must be thinmner

relative to inplane dimensions or wavelengths before the transverse shear

effect can be omitted.

e .

e
_‘fi Since most generally available computer programs presently do not include
?LQ the effects of transverse shear, it is important to the designer to know

-

:&:§ the limits of the first order theory. For an isotropic plate, it can be
o

i{f seen from Figure 246 that b/h for a simply supported plate may be close
;:i to 10 before the error exceeds 5%. In order to obtain similar accuracy for
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composite material, we must restrict the first order theory to even thinner
plates. Figure 247 indicates that for a material with E1/E2 = 30, the
transverse shear effects should be incluced if the width-to-thickness ratio

is less than about 20. It should be noted that theresults of Refs. [ 294]
and [ 295] apply to plates with simply supported edges. With respect to
buckling of plates, the effect of clamping the edges is escentially equiva-
lent to reduction of the inplane dimensions by a factor of two. It might be
surmised therefore, that for clamped plates the transverse shear effect

should be accounted for if b/h < 40. Similarly, it appears that the opposite
argument applies for a flange with one free edge: the transverse shear erfect
can probably be omitted if b/h > 10. More numerical comparisons are needed for
guidance in design. In particular, if composites are used at elevated hygro-
thermal conditions, El/EZ’ El/G13’ and El/G23 may be very large, and the

transverse shear deformation effect increased.

Sandwich wall construction may be thought of as a class of laminated composite
shell wall which is weaker in transverse shear stiffness than ordinary iso-
tropic or orthotropic constru tion. Figure 248 shows a predicted collapse
mode of an actual part of a space vehicle. The cone is a ring-stiffened
sandwich structure supported by a monocoque cylindrical skirt. The sandwich
construction is made of aluminum honeycomb core with composite face sheets.

The nonlinear collapse load of this structure .as investigated with the use

of two finite element models and the NEPSAP computer program [ 297]: In model
(a) the sandwich core and facings are represented as multilavered composite

elements with the effect of transverse shear deformation of the honeycomb
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core neglected. To study the extent of this effect, model (b) was constructed.
In this model the sandwich construction was modeled "exactly" with use of
three-dimensional orthotropic solid elements for the core and composite shell
elezents [or the facings. The cone is subjected to axial and flexural lcadings
which were applied as equivalent point loads around the top circumference.
Because of planar symmetry, only half the structure (180°) was considered for

both models.

The results of this study are shown in Figs. 248(a) and (b). Figure 248(a)
