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ABSTRACT

A finite element parameter study was performed on

a wide variety of 90-degree piping elbows having
straight pipe extensions to determine the sensitivity
of stress indices and flexibility factors to the
length of the pipe extensions. Both moment and force
loadings were considered. It was found that stress
indices are generally insensitive to the type of load
(moment or force). Flexibility factors are sensitive {
to load type only for short pipe extensions.
Flexibility factors for moments generally exceed those
for forces. Stress indices are sensitive to length of
pipe extension only for )\ < 0.35, where ) is the bend
characteristic parameter, Flexibility factors are
sensitive to length of pipe extension over the entire
range of elbow parameters considered. The “critical
length” of straight pipe extension (defined as the
minimum length of pipe for which the elbow stress
index is insensitive to further increases in pipe
length) was found to be about three pipe diameters for
A < 0.35 and one diameter for ) > 0.35. A comparison
of the finite element results to those of a torus
program called ELBOW indicated that ELBOW is generally
not adequate for predicting stress indices and
flexibility factors for 90-degree elbows with straight
pipe extensions.,

ADMINISTRATIVE INFORMATION

This work was sponsored by the Naval Sea Systems Command in Program
Element/Task Area 63561N/S0348001, Task 21302, Work Unit 1-2740-163.
Naval Sea Systems Command cognizant program manager is Dr. F. Ventriglio

(NAVSEA O5R).

INTRODUCTION

Common practice in the design of shipboard piping systems is to
£ compute stresses and flexibilities for piping elbows using elementary beam

theory for straight beams and applying correction factors called stress
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indices and flexibility factors. The correction factors are generally ]
calculated by assuming that the elbow behaves as if it were part of a complete
torus, for which analytical solutions for stresses and flexibilities are

available. This approach thus accounts for the bend radius, the pipe

diameter, the wall thickness, the material properties, and the internal 4
pressure (a nonlinear effect when combined with other loads). However,
the approach ignores such considerations as the bend angle and end
conditions, which can include flanges, straight pipe extensions, or other

elbows.

Since the inclusion of these considerations rules out the use of analytic
solutions, the only way to compute stresses and flexibilities in such cases
is to use an approximate numerical approach such as the finite element method.
The finite element method is well-established in general and has, in
particular, been verified as suitable for predicting the static behavior of
piping elbows and tees [1-31.*

The overall aim of this work is to determine the flexibilities and
stresses in piping elbows and bends in the configurations commonly used on
naval ships. This report addresses in particular the end coudition protlem
by analyzing in some detail 90~degree elbows with straight pipe extensions
of various lfngths.

The general approach is to analyze a selection of elbows of a variety
sufficlent (1) to determire the sensitivity of the elbow stress indices and
flexibility factors to the length of straight pipe extensions, and (2) to
determine the minimum length of straight pipe extension (Lhe "critical
length") for which the stress indices are considered insensitive to further

increases in pipe ‘length.

* A complete listing of references is given on page 51.
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The volume of data generated by these analyses is sufficlently complex
that only preliminary conclusions will be drawn from the data at this time.
A follow-up report will present a more complete analysis of the data presented

here and develop usable design equations, formulas, or curves.

DEFINITIONS

The stress index c for an elbow is defined [4,5] as the ratio of the
maximum stress intensity for the elbow to the maximum bending stress in a
straight pipe having the same cross section. The stress intensity S is
defined as twice the maximum shear stress in the elbow for a given loading

condition. Thus the maximum stress intensity is the maximum of

s, = |°1 - 02| = {(o, - cry)2 + lo'r:{y}LE
82 = |0'1 - O'3| = ‘(Ox+0y) + Sl|/2 (1)
3= |02 - o3| = |(cx+cy) - sll/z

[7]
]

for any arbitrary orientation of an applied moment vector M, where, for the
two-dimensional state of stress that occurs in thin-walled piping elbows,
i 01 = waximum principal stress

Oy = minimum principal stress

O3 = 0 (the third principal stress in 3-D elasticity)
Ux. Oy = normal stresses in longitudinal and circumferential directions
T = ghear stress
Xy

| The calculation of Smax (the maximum of S SZ’ and S3) requires a search

l!

- over all possible orientations of the moment vector M. Hence, the stress

index ¢ is given by




where Onom is the nominal stress for the corresponding straight pipe as

predicted by elementary beam theory:

Onom = M/Z (3)

where Z is the section modulus.

For internal pressure loading,

¢= Gmax/OnOm (4)

where omax is the maximum stress in the elbow subjected to internal pressure.
The nominal stress Gnom is taken as the maximum stress occurring in a

cylindrical pressure vessel due to an internal pressure load:

O om = PT/E (5)

where p is the applied internal pressure, r is the mean pipe radius, and t is
the wall thickness.

The flexibility factor k for a piping component (e.g., an elbow) is
defined as the ratio of a relative rotation of that component to a nominal

rotation:

k= eab/enom (6)

where eab = rotation of end "a" of the piping component relative to end "b"
of that component due to a moment loading M, and in the directioun
of M
enom = 1ina. rotation of an equal length of straight pipe due to the

moment M
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For elbows, the nominal rotation is computed using beam theory, in which case

. ) = ML/EI (7)
nom

for inplane and out-of-plane moments, and

8 = ML/GJ (8)
nom

for torsional moments, where
M = applied moment load
L = arc length of centerline of elbow
E = Young's modulus of material
G = shear modulus of material
I = moment of inertia of cross section
J = torsional constant of cross section (equal to the polar moment of
inertia for circular cross sections)
For 90-degree elbows, L=TR/2 | where R is the bend radius.

The critical length of pipe extension for an elbow is defined here as the
minimum length of straight pipe extension for which the stress index is
considered insensitive to further increases in pipe length. This
sensitivity results from the reduced ability of the elbow to ovalize due
to the presence of straight pipes and flanges. At some length of pipe
extension (the critical length), additional end effects due to the restriction
of ovalization no longer occur.

The bend characteristic parameter A, a dimensionless parameter widely

used in elbow design, is defined as

A = tR/r2/i-v? (9)




T

where t = wall thickness

bend radius

x
L}

r = mean pipe radius
V = Poisson's ratio of material

The nondimensional bend radius Y is defined as
Y = R/r (10)

The internal pressure loading parameter Y is defined as

Y = pRz/Ert (11)

where p is the internal pressure.

SCOPE OF STUDY

Table 1 summarizes the piping elbows of interest to naval piping
designers. (The data in this table were compiled by Mr. L.M. Kaldor of the
Machinery Stress Analysis Branch (Code 2744) of the David W. Taylor Naval Ship
R&D Center, Annapolis, Maryland.) Included are elbows of 19 nominal pipe
sizes, four bend radii, and three materials. The data in the table represent
a total of 204 different elbows, a number which must be reduced if the
parameter study 1s to be reasonably manageable.

The information in Table 1 can also be displayed in nondimensional form
\Table 2) by dividing all length dimensions by the mean pipe radius r for each
elbow. A graphical display is more useful still. Since the two key
geometrical parameters defining an elbow are its nondimensional wall thickness
and bend radius, we can use these two parameters to construct a figure (Figure

1) which locates all elbows of interest. In Figure 1, a dot is entered for

iatiianione - PO S T conilunbiiilttionnn.  cders.
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TABLE 1 - DIMENSIONS OF PIPING ELBOWS

Nominal Min. Wall Thickness (in.) Bend Radius (in.)
Pipe Outside
Size Diameter CA715 CA719 In625 SR LR 3D 5D
(NPS) (in.) 700 psi| 1050 psi] 1050 psi
1/4 . 540 .065 .106 012% - - - 1.25
3/8 .675 .072 110 L014% - - - 1.875
1/2 .840 .072 .115 .018% - 1.5 1.5 2.5
3/4 1.050 .083 .121 .022% - 1.125 2.25 3.75
1 1.315 .095 .129 .028% 1 1.5 3 5
1 1/4 1.660 .095 .139 .035% 1.25 1.875 3.75 6.25
1 1/2 1.900 .109 146 .040% 1.5 2.25 4.5 7.5
2 2.375 .120 .160 .050% 2 3 6 10
21/2 2.875 .134 .175 .060%* 2.5 3.75 7.5 12.5
3 3.500 .165 .193 .073 3 4.5 9 15
31/2 4,000 .180 .208 .083 3.5 5.25 10.5 17.5
4 4,500 .203 222 .093 4 6 12 20
5 5.563 .220 .253 .115 5 7.5 15 25
6 6.625 .259 .285 .137 6 9 18 30
8 8.625 .340 .343 .179 8 12 24 40
10 10.750 .380 .405 .223 10 15 30 50
12 12.750 454 464 .264 12 i8 36 60
14 14.000 .473 .501 .290 14 21 42 70
16 16 .000 534 «559 .331 16 24 48 80
Poisson's ratio .294 .294 .309
Young's modulus (| 22.E6 22.E6 30.E6 psi

* Thickness may be greater due to welding considerations.
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each of the 204 elbows in Tables 1| and 2., The figure is useful because it
indicates the ranges of interest for the geometrical parameters t/r and R/r.

The collection of dots in Figure 1 has also been enclosed by a dashed
polygon. We expect that the range of behavior (stresses and flexibilities) of
elbows can be deduced by studying primarily elbows lying on the periphery of
the polygon. Moreover, the elbows actualiy analyzed would not have to be real
elbows appearing in Tables 1 and 2, but merely a suitable collection of elbows
defined by parameter pairs (t/r and R/r) lying on the polygon in Figure 1.

Also shown in Figure 1 are several curves of constant A, the bend
characteristic parameter, assuming a Poisson's ratio of 0.3, which is typical
for the materials listed in Table 1. These curves are useful fcr observing
the range of A represented by the elbows in Table 1 and for verifying the
extent to which certain elbow behavior depends only on A, as predicted by the
idealized theory for tori.

This study will therefore concentrate on elbows defined by the periphery
of the polygon in Figure 1. In addition, only 90-degree elbows with straight
plpe extensions will be considered. Elbows with other bend angles and end
conditions will be studied in future efforts.

For moment and force loadings, the internal pressure in the pipe is

assumed to be zero throughout this report. To assume otherwise introduces

a nonlinear effect which would greatly complicate the analyses. However, }
because the nonzero pressure case is of considerable interest, it will be i

pursued in future work.

APPROACH

Elbows defined by the parameter pairs t/r and R/r were chosen primarily

10
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from the periphery of the polygon in Figure l. For each elbow chosen, finite
element analyses were performed by the NASTRAN structural analysis computer
program in order to compute flexibility factors and stress indices for various
lengths of straight pipe extension varying from near zero to three or four
pipe diameters.

The elbow configuration modeled consists of a 90-degree elbow with
straight pipe extensions attached to each end of the elbow, as shown in Figure
2. The end of one pipe extension was fixed. The end of the other pipe
extension was terminated with a rigid flange. Applied loads consisted of
internal pressure as well as the six possible forces and moments applied to
the flange at the free end. For this study, internal pressure loads are not
combined with either force or moment loads.

The finite element results were also compared to results obtained by a
fast-running computer program called ELBOW [6] which is used by some piping
designers. Program ELBOW uses analytical methods to compute flexibility
factors and stress indices for elbows idealized as endless toroidal sections,
For zero internal pressure (y=0), ELBOW's calculation of the flexibility
factor depends only on the bend characteristic parameter A,

For flexibility factors only, the finite element results were also
compared to flexibility factors computed according to the current ASME code

(7], which, for zero internal pressure, uses the relation
k = 1.65/h (12)
where
h = tR/r? (13)

and a k calculated to be less than unity is taken as unity.

11
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For internal pressure loading, the finite element results for the stress

index c were also compared to the frequently used analytical expression
c=(2y - 1)/(2y - 2) (14)

presented in the Kellogg book [5], where Y is the nondimensional bend radius
(R/r). Since for our elbows Y ranges from about 1.5 to 11, Equation (14)
indicates that the internal pressure stress index should be between 1 and 2.

A typical finite element model of an elbow and the two straight pipe
extensions is shown in Figure 3. By symmetry, only half of the circumference
of the elbow cross section need be modeled. The elbow and pipe extensions
were modeled using NASTRAN's two-dimensional quadrilateral QUAD2 plate element
with aspect ratios averaging near unity in the elbow region and about two near
the ends of the pipe extensions. All models used 12 elements in the
circumferential direction.

To compute flexibility factors, the average rotations of the cross
sections at each end of the elbow were required. These averages were obtained
in each cross section of interest by defining in that cross section an
imaginary center point which was connected to the points on the circumference
by beam elements flexible enough not to contribute significantly to the
stiffness of the model.

A special purpose finite element data generator was written to automate
completely the preparation of the NASTRAN input data decks so that the
specification of only a few parameters was required to analyze a particular
case.

Poisson's ratio was fixed at 0.3 for all analyses to eliminate the
material constants as parameters in the study. This assumption has an

insignificant effect on the solutions obtained, since stresses and

13
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flexibilities are very insensitive to small changes in Poisson's ratio.

PRESENTATION AND DISCUSSION OF RESULTS

Finite element analyses were performed for 21 elbows with straight pipe
extensions of various lengths. The geometric data for these 21 elbows are
plotted in Figure 1. In most cases, the pipe extensions placed at each end of
the elbow were of equal length. For each of the 21 elbows, the number of
analyses performed (in order to vary the length of pipe extensions) ranged
from six to 13, the average being about 7.5. The total number of analyses
performed was 157. The stress index and flexibility factor results for all
these analyses are tabulated in detail in the Appendix.

Although our original purpose in performing these calculations was to
derive usable design equations, formulas, and curves, the complexity of the
resulting data (tabulated in the Appendix) makes this a formidable task.

This report, which is therefore a little less ambitious, will instead
summarize some of the key results indicated by the data. All observations
in this section are based on data in the Appendix.

We first consider the influence of the type of loading (moment or
force) on the results. The applied forces were chosen so as to yield the
gsame bending moment at the elbow middle, where stresses are generally the
greatest. The tables in the Appendix show that stress indices depend
very little on whether the applied load is a force or moment, particularly
when the pipe extensions are long. The flexibility factors are only slightly
more sensitive than the stress indices to load type for elbows with long pipe
extensions. However, flexibility factors are quite sensitive to load type for

elbows with short pipe extensions. Flexibility factors due to moment loadings

15
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generally exceed those due to force loadings.
In retrospect, this independence of stress index with load type can

perhaps be explained by noting that the index depends only on the solution in

the middle of the elbow, which is always (for 90-degree elbows) sufficiently
far from the ends so as not to be significantly affected by the load type.

The elbow flexibility, in contrast, depends on the solution over the entire 4
length of the elbow and hence might be expected to be more sensitive than

stress index to load type.

A second question which arises is: How sensitive are stresses and
flexibilities to the length of pipe extensions? A related question is: How
long do the pipe extensions have to be in order for elbow stresses and
flexibilities to be independent of further changes in length? In Figure
4 the dependence of stress index on length of straight pipe extension (equal
at both ends) is plotted for various elbows. Figure 4 indicates that stress
indices are very sensitive to length of pipe extension for small X and
insensitive for large A. It appears that the transition from sensitivity to
insensitivity occurs near A = 0,35. Figure 4 also indicates that the critical
length of straight pipe extensions, based on stress indices, is about three
pipe diameters for A < 0,35 and one pipe diameter for X > 0.35.

Table 3 summarizes the stress index results for the 21 elbows with equal
length pipe extensions three diameters long. The actual stress indices, which
are generally greatest with long (rather than short) pipe extensions, are
grossly over-predicted in general by the idealized program ELBOW. For
internal pressure loading, the classical relation, Equation (14), is
excellent.

Flexibility factors for moment loadings exhibit a sensitivity to length
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] TABLE 3 - STRESS INDICES FOR ELBOWS HAVING EQUAL LENGTH STRAIGHT
PIPE EXTENSIONS OF LENGTH THREE DIAMETERS
‘ 1
NASTRAN Internal Pressure ¥
A Y ELBOW
Moment | Force NASTRAN| Kellogg
1 063 ] 1.50 | 10.2 | 10.0 | 14.5 1.93 | 2.00 i
2| .126 | 1.50 6.55 | 6.41 | 9.28 | 1.89 | 2.00
31 .26 | 3.00 7.13 | 6.96 | 8.56 | 1.23 | 1.25
4| 206 | 1.50 4.61 | 4.52 | 6.82 | 1.82 | 2.00
s | .206 | 4.88 5.39 | s5.21 | s5.98 | 1.12 | 1.13
6 | .210 | 5.00 5.31 | s5.18 | s.87 | 1.12 | 1.13
7| .283 | 1.50 3.62 | 3.68 | 5.53 | 1.77 | 2.00 ]
8| .283 | 6.75 4.39 | 4.26 | 4.70 | 1.08 | 1.09 i
9{ .335 | 8.00 3.90 | 3.81 | 4.14 | 1.07 | 1.07
10| .36 | 1.50 3.39 | 3.45 | 4.88 | 1.74 | 2.00 1
11 451 | 10.8 3.10 | 3.02 | 3.29 | 1.06 | 1.05 1
12 | .451 1.80 2.77 | 2.83 | 3.94 | 1.56 | 1.63
13| .e00 | 3.00 2.43 | 2.32 | 2.93 | 1.25 | 1.25 ]
14 | .700 | 3.0u 2.12 | 2.04 | 2.61 1.25 | 1.25 ]
15 | .973 | 10.2 1.67 | 1.71 | 2.00 | 1.05 | 1.05
16 | .975 | 3.00 1.76 | 1.80 | 2.13 | 1.26 | 1.25
17 | 1.50 9.49 1.47 | 1.45 | 1.71 | 1.06 | 1.06 {
18 | 1.50 3.90 1.9 | 1.5 | 1.75 | 1.9 | 1.17 )
19 | 2.39 8.00 1.27 | 1.25 | 1.52 | 1.07 | 1.07 '
20 | 2.39 5.15 1.32 | 1.37 | 1.52 ] 1.4 | 1.12
21 | 3.01 5.75 1.28 | 1.33 ] 1.45 | 1.2 | 1.11
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of straight pipe extension similar to that of the stress indices, except that
the transition from sensitivity (small A) to insensitivity (large A) occurs at
about A = 1,0, For flexibility factors calculated from force loadings, there
is no clear region of insensitivity. Two plots illustrating this sensitivity
are shown in Figures 5 and 6. These two figures indicate that elbows become
stiffer as the pipe extensions shorten, probably because the flanges inhibit
ovalization of the cross section.

Table 4 summarizes the flexibility factor results for the 21 elbows with
equal length pipe extensions three diameters long. There is considerable
variation between inplane and out-of-plane flexibility factors, neither of
which are predicted very well in general by the idealized approach used in the
ELBOW program; it does not distinguish between inplane and out-of-plane
moments in calculating the flexibility factor. The data listed in Table 4 are

also shown graphically in Figure 7.

CONCLUSIONS

The following conclusions apply to 90-degree piping elbows with straight
pipe extensions terminated by rigid flanges.

Stress indices are generally insensitive to whether the applied load is
a force or a staticaily equivalent moment. For elbows with long pipe
extensions at each end, flexibility factors are only slightly more sensitive
than the stress indices to load type. However; flexibility factors are quite
sensitive to load type when the pipe extensions are short. Flexibility
factors for moment loadings generally exceed those for force loadings.
Stress indices are very sensitive to length of pipe extension for

A < 0.35, where A is the bend characteristic parameter, and generally

19
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TABLE 4 - FLEXIBILITY FACTORS FOR ELBOWS HAVING EQUAL LENGTH STRAIGHT
PIPE EXTENSIONS OF LENGTH THREE DIAMETERS

NASTRAN (Moment) NASTRAN (Force)

A Y ELBOW | ASME
Inplane |Qut-of-Plane [Inplane |{Out-of-Plane Code

1 .063 1.50 { 21.8 9.84 20.9 10.1 27.5 27.5
2 .126 1.50 11.3 5.44 10.8 5.47 13.8 13.7
3 .126 3.00 11.3 5.86 10.7 5.85 13.8 13.7
4 .204 1.50 6.98 3.62 6.63 3.58 8.49 8.48
5 .204 4.88 7.18 4.09 6.63 3.94 8.49 8.48
6 .210 5.00 7.03 4,02 6.54 3.91 8.27 8.24
7 .283 1.50 5.04 2.79 4.76 2.71 6.09 6.11
8 .283 6.75 5.28 3.23 4,80 3.04 6.09 6.11
9 .335 8.00 4.47 2.85 4.05 2.67 5.09 5.16
10 .346 1.50 4,14 2.41 3.89 2.31 4.92 5.00
11 451 10.8 3.32 2.31 2.95 2.09 3.69 3.84
12 451 1.80 3.19 2,05 2.91 1.92 3.69 3.84
13 .600 3.00 2.48 1.82 2.27 1.70 2.71 2.88
14 .700 3.00 2.15 1.67 1.97 1.55 2.32 2.47
15 .973 10.2 1.65 1.48 1.47 1.33 1.73 1.78
16 .975 3.00 1.69 1.46 1.59 1.37 1.73 1.77
17 1.50 9.49 1.30 1.31 1.15 1.16 1.32 1.15
18 | 1.50 3.90 1.35 1.31 1.23 1.20 1.32 1.15
19 | 2.39 8.00 1.14 1.23 1.02 1.10 1.13 1.00
20 | 2.39 5.15 1.17 1.24 1.07 1.13 1.13 1.00
21 3.01 5.75 1.14 1.23 1.00 1.08 1.08 1.00
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insensitive for X\ > 0.35. The critical length of straight pipe extension
(defined as the minimum length of pipe for which the stress index is
ingsensitive to further increases in pipe length) is about one pipe diameter
for A < 0.35 and three diameters for A\ > 0.35.

For elbows loaded by internal pressure only, the stress indices are
insensitive to the length of straight pipe extension. The theoretical
predictions by the classical relation given in the Kellogg book for this case
are excellent.

Flexibility factors exhibit a sensitivity to length of straight pipe
extension over the entire range of elbow parameters considered. Flexibility
factors for out-of-plane loading differ considerably from those for inplane
loading.

The fast-running computer program ELBOW, which idealizes elbows as
sections of tori, is generally not adequate for predicting stress indices or

flexibility factors for 90-degree elbows with straight pipe extensions.

RECOMMENDATIONS

Although a large quantity of useful data has been compiled in this
report, the repor: is viewed as interim, since the information is not in a

form to be easily used by a piping system designer. We therefore recoumend ]

that the data presented here be analyzed fuither to obtain usable design
equations, formulas, or curves for 90-degree elbows with straight pipe
extensions.

Since not all elbows used in naval designs are 90-degree elbows, we N
recommend that other bend angles (e.g., 45 degrees) be investigated. Also,

future parametric studies would be less expensive if a more restrictive

24 |
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selection of elbows is made.

The presence of an internal pressure preload is known to have a
significant effect on momen: stress indices and flexibility factors. A finite
element procedure for this combined loading case, which is mathematically
nonlinear, needs to be formulated and validated. Following such validation,
the various parametric studies discussed above (for which the internal

pressure is zero) should be repeated for several typical nonzero pressure

levels.
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APPENDIX

Tables of Finite Element Results for 90-Degree
Elbows with Straight Pipe Extensions
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