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PREFACE

Each year the Department of Mathematics of the University
of Maryland sponsors a "Special Year" in some field of mathe-
matics. These special years are designed around a series of
lectures by distinquished mathematicians and have the goal of
refining the understanding of the frontier of the field, stim-
ulating new research, and enhancing scientific cooperation.
During the 1980-81 academic year the Special Year was in numer-
ical analysis. One of the major topics of the Year was the
numerical solution of partial differential equations.

Thirty visitors delivered lectures on numerical PDE,
touching on nearly all of the important subfields of the area.
In addition, many of the participants submitted written ver-
sions of their lectures; these papers are contained in this
volume. The papers range from extended abstracts of lectures
to systematic survey articles to research papers. We have per-
pared this volume to record the activities of the Special Year
and also in the expectation that others will find the papers of
interest. - '

The Organizational Committee would like to thank the Mathe-
matics Department and the Air Force Office of Scientific Re-
search* for their support, and all of the participants for their
stimulating lectures and their informal contribution to the
lively =cientific climate that prevailed during the Year.

I. Babu¥ka
T.-P. Liu
J. Osborn

*The Special Year was partially supported by AFOSR Grant
No. 80-0251.

' ’ iii




PARTICIPANTS

Dr. Garth Baker

Department of Mathematical
Sciences

State University of New York

Center at Binghamton

Binghamton, New York 13901

Professor Garrett Birkhoff
Department of Mathematics
Harvard University

2 Divinity Avenue

Cambridge, Massachusetts 02138

Professor James Bramble
Department of Mathematics
Cornell University
Ithaca, New York 14853

Professor F. Brezzi

Laboratorio di Analisi Numerica
Universita di Pavia

Corso Carlo Alberto 5

27100 Pavia

Italy

Professor P. G. Ciarlet

Analyse Numérique, Tour 55, S5e etage
Université Pierre et Marie Curie
4, Place Jussieu

75230 pParis Cedex 05

France

Professor Jim Douglas, Jr.
Department of Mathematics
University of Chicago
Chicago, Illinois 60637

Professor Todd Dupont
Department of Mathematics
University of Chicago
Chicago, Illinois 60637

Professor B. Enquist

Department of Mathematics
University of California, Los Angeles
Los Angeles, California 90024

iv

Dr. Richard Ewing

Mobil Field Research Lab.
P.0O. Box 900

Dallas, Texas 75221

Professor R. Falk

Department of Mathematics
Rutgers University

New Brunswick, New Jersey 08903

Professor P. Garabedian
Courant Institute

New York University

New York, New York 10012

Professor J. Glimm
Department of Mathematics
Rockefeller University
New Vork, New York 10021

Professor Amiram Harten

Department of Mathematical
Sciences

Tel-Aviv University

Tel-Aviv, Ramat-Aviv

Israel

Professor Ling Hsiao
Institute of Mathematics
Academia Sinica of China
Pekin, China

Professor P. Lax
Courant Institute

New York University

New York, New York 10012

Professor Mitchell Luskin
School of Mathematics
University of Minnesota
Minneapolis, Minnesota 55455

Professor A. Majda
Department of Mathematics

University of California, Berkeley

Berkeley, California 97720




|
|
;
!
|
|

a—

Professor J Nitsche

Inst. fir A awandte Math.
Hermann-Herder-Str. 10
D-78 Freiburg

Germany

Professor J. T. Oden

TICOM

W. R. Woolrich Building 304
University of Texas

Austin, Texas 78712

Professor J. Oliger

Department of Computer Science
Stanford University

Stanford, California 94305

Professor A. Schatz
Department of Mathematics
Cornell University
Ithaca, New York 14853

Professor Ridgway Scott
Department of Mathematics
University of Michigan
Ann Arbor

Michigan 48109

Professor G. Strang

Department of Mathematics

Massachusetts Institute of
Technology

Cambridge, Massachusetts 02139

Professor Roger Teman
Université de Paris

Centre D'Orsay
Mathematique, Batiment 425
914905 Orsay

France

U -

Professor Vidar Thomée
Department of Mathematics
Chalmers University of Technology
Fach, S$-402 20
Goteborg
Sweden

Professor Lars Wahlbin
Department of Mathematics
Cornell University

Ithaca

New York 14853

Professor W. Wendland
Fachbereich Mathematik
Technische Hochschule Darmstadt
Schlossgartenstrasse 7

D-6100 Darmstadt

Germany

Professor B. Wendroff
I.os Alamos Science Lab.
Group T-7

Mail Stop 233

Los Alamos

New Mexico 87545

Professor Mary Wheeler

Department of Mathematical
Sciences

Rice University

Houston

Texas 77001

Professor Milos 2lamal
Technical University
Dbrancu Miru 21

Brno

Czechoslovakia




\

-constant mesh-length h 1in space and (for perabolic and hyperholic

ADAPTING COURANT-FRIEDRICHS-LEWY TO THE 1980'S

Garrett Birkhotf
Harvard University

y f
o ﬁntroduction

In 1922, Courant, Friedrichs and Lewy published a now famours
paper [6] on the numerical solution of partial differential equi-
tions (DE's). 1In it, they considered difference approximations
to the Laplace, biharmonic, heat, and wave equa”ions. Their rrar=gd
aim was to treet these by difference methods “hat were applicabl.
to other partial DE's of elliptic, parabolic, Aand hvperbclic Tvpes,

4 R

respectivelv. For simplicitv, thev used ractangnlcr moshen aiil i
DE's) another constant mesh-lei.gvh A+t  in tine.
Thelr main concern was with proving cencvr~l <xisioro o, omiluee

ness, and convergence theorems, and not with actually solving spe-

cific problems. Thaelr intention was *o demenstrate tha. this arca

of Analvsis (partial I'!'s) could ve arithmetired in principle.
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they d1d 278 so o well tha thear ariiola wen I“A.‘\'bx;.'l AT v TR e
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Today, computer hardware has incresscd iv ~SfFisioney by
. e, . i . .
a larye factor (110 72) that the soiuvion o0 many tartia:

been arithmetized in practice. Becaus: of this Vact, 1 ascemn timely

to reconsider “he methods prenosed in [57, and 10 comnare them widr

other nmethceds that have been proposed subsequnilv for s~lving the

same partial DP'S.l
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A. THE LAPLACE EQUATION

2. Dirichlet problems

The problem treated most thoroughly in [6] was the Dirichlet

problem. Letting Mh Jenote the set of all mesh points (xi,yj) =

= (ih,3jh) 1lying in the domain & in which such a problem was
posed, they assumed [8', p.221] that a known smooth, but other-
wise unspecified function g(x,y) was interpolated in some boundary
strip to the given boundary values on T = 3%&. Then Runge's 5-point

difference approximation ViU = 0 to the Laplace equation was

solved for the values of g on the boundary of MH'
i

A better way of approximating Dirichlet-type boundary condi-
tions was developed in the Jate 1930's and early 1940's by Shortley

and Weller [12], R.V. Southweil [123], Leslie Tox [83, and others

interested in the practical numerical soluticn of elliptic problems.

-

As in [6], one Yirst vverlavs domaing in R°  with a saquare mesh,

3

and domains in T with a cubic mesh, verv much in the spirit of
(6. One then supplements the set Mh of peints (Xi’yﬁ) = (ih,3h)

in % where the mesh lincs inters=ect with the set T

" cf boundarv

nodes (xi,v) an! (x,v') where a single mech line intersects

the boundary. (ne then solves un = 0 on “T = MU Ih for the
. I 1 )
B sl values In Fh' This avoids +he preblem of interpolating

Loundary values, and 15 generaily more accurate.

7 1

levelnpad 2imple and practical difference

“+

rowimations at mesh o points aszsoclated with the resultine

il
<

This problem was considored theoreticallv in another connection
B, Whitnev, Tranc. Amer. Math. Scoc.
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Of these two formulas, (2.1) has only 0(h) accuracy, but gives
a symmetric matrix; (2.2) is more accurate, but gives an asymmetric
matrix.

The symmetry of the matrix given by Shaw's less accurate
formula (2.1) is easily explained: it is the formula given by
the electrical network analogy, in which each mesh segment is re-
placed by a conducting wire of the same resistivity per unit length.
Note also that when a = B, the two formulas differ only by a fac-
tor 1 + a. This may be interpreted physically as corresponding
to the area over which the source term f(x,y) 1is introducing an
inflow of current at the node Wy .

It is interesting to compare the preceding formulas with the
recipe given by Varga in [1lu, p.186]. Setting a = hi/h and
B = kj/k in Varga's (6.37), we get (1+a)(14B) times Shaw's
(2.2). This is encouraging, especially since Varga's (6.37) gives
a symmetric matrix in a rectangular domain.

However, in spite of the plausibility of the derivation of
Varga's (6.37) in [14, pp.183-5] it scems unlikely that one should
use the same weighting tor the domain of Fig. 1 as for a rectangle.
Moreover, Forsythe-Wasow consider three recipes for boundary con-
ditions in [7, §20.21, and are non-commital as to which is best.

It may not even be best to interpolate to boundary values!

“Well-known monotonicity principles assert, in fact that the weighting
factor for f should increase with the domain. It would be in-
teresting to obtain numerical results for -v2u = 1 in the square
max (Ix%,ly[) = 1 and the octagon satisfying also
(x| *+ |yl s 3/2.




3. Normal derivatives

Lven less is known about the best wav to approximate boundarv

conditions of the form
(3.1) du/an + a(ylu = p(y) on T,

which was totallv dgnored in (6], than 15 known about approximating
u. Thus, whereas it is relativelv casy to approximate 1 with

-
a truncation error of 0{(h"), the correusponding corror in approxi-

mating ousan, say by

(3.2) [alw

-wy) o+ ﬁ(wa—w”)]/vn)+y:.

1

with the dimensions of Tig. 1, is tvpically 0(h).

A brief but incisive summary Is given bv Fersvthe and Wasow
in [7, 320.10) of the main ideas and results of Barschelet [21],
Shaw 1117, Allen [11, and Viswanathan []b].b Their summary empha-
sives how "complicated" the facts are, and mentions [7, p.204]
the possibility of getting improved accuracy by using "reflection”
methods. We will next supplement their csummary, bv Jdiscussing some

examples.

Ixample 1. Consider the onc-dimensional Poisson DE

-u'(x) = f(x), with the boundarv conditions u(0) = u(l) = 0
and mesh-points X, = ih, 1 = 0,...,I, h = 1/I. Use the Stgrmer-

Numerov dapproximation.

2
(3.3) u. - 2u. + u. = h‘[fi_ + l(in + fi+1]/6,

1

-
Batschelet's paper seems the most thorough. The other authors
cited take Tox [7] and Southwell [13] as their starting point,
and fail to correlate their results with Batschelet's.,




a formula whose truncation error is hGUVi(g)/ZNO if f e CU'[O,I].6
For smooth f and Dirichlet-type boundary conditions, one can
achieve O(hu) accuracy with (3.3).

However, with the boundary conditions wu(0) = 0 and u'(l) = 1,

the approximation
(3.4) u = u + h to u'(1) = 1

gives only 0(h) accuracy! If we approximate the boundary condi-

tion u'(0) = 0 by

(3.5) = uy + hul o+ h2f0/2 + h3f(']/6 + 0(n*)

Uy 0

_ . 2 i
=y, + huO + h (2f0+f1)/6 + 0(h'),

and set u; = 1, (3.3) gives 0(h2) accuracy.
Example 2. Likewise, for the reduced Helmholtz DE,
3.6 = - + Au,
( ) u uyy u

the [third] boundary conditions along the line y = 0 can be well
approximated on a square mesh by using 9-point formulas in [5] and

f10]. 1If one takes as unknowns the u 1,3 and u ’ one gets
=Ll

0,7
one equation for each j from (3.6), and a second equation by

collocation from the boundary condition.

(3.8") ux(O,y) + glydul0,y) = hiy).

6See F.H. Hildebrand, Introduction to Numerical Analysis, 2d ed.,
McGraw-Hil1l, 1971.

mttiitnmensocnd ORCINES t*—J




Reflection methods. The preceding method for achieving higher-

order acecuracy in discretizing boundary conditions is a special
appiication of reflection principles stermming from Fourier (18272),

and extended by H.A. Schwarz (ca. 1880) and manv cthers. These are

especially applicable to boundary cenditions of the form u = 0
or au/dn = 0 on straight boundary segments mdiking angles of
nk/4 with the x-axis, where }+ 1is an integer. Some simple examples

of such applications to the wave equation are presented in Appendix

A, "Discretizing Initial and Beundary Conditions.”




EE e

3
B. THE WAVE EQUATION

4. Wave eguation: regular mesh

We consider next the semi-discretized wave equation on a

square or cubic mesh of side h:

_ 2.2
(4.1) Uy = ¢'Viu,

where Vi is the (2p*1)-point discretized Laplacian in P space
dimensions. We will call a polygonal domain with sides that are
all horizontal, vertical, or make a u45° angle with the axes a
regular domain when its corners can all be made to fall on mesh-
points of such a square or cubic mesh.

The simplest full (central) discretization of (4.1) is

n _ 2 2. n
(4.2) sttui = haohui,

vhere 1r = cAt/h 1is a dimensionless parameter today called the
Courant number. The condition for stability is r = 1/Vp, and the

most accu.sate stable r is also the maximum stable r, with
2

r” = 1/p. This choice reduces (4.2) to the (2p+*+2)-point formula
+1 n n-1
(4.3) ul = u. = u.
1 Ol 17

where <> denotes the sum taken over all mesh-points adjacent to ii.

A 1375 study by Dougalis and the author‘Jr showed that, in free

space, the CFL discretization (4.3) was more efficient than any

other second-order discretization, and competitive with later

fourth-order schemes.*

?V.A. bougalis and G. Birkhoff, pp.231-51 of J.W. Schot and N.
Salvesen (eds.), Proc. First International Conference on Numerical

Ship, Hydrodynamics, N.S.R.D.C., 1975.

*L. Collatz, pp.41-61 in J.J. Miller (ed.), Topics in Numerical
Analysis, Academic Press, 1973; M. Ciment and S.H. Leventhal,
Math. Comp. 29 (1975), pp.985-~94.

ekt e, Y _1
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However, none of the papers referred to above considered in

detail how to handle boundarv conditions. For boundary conditions

of the special form u = 0 on T and %% = 0 on T, and more

generally for 'mixed' b“oundary conditions in which some one of

these 1is specified on each edre of a regular domain subdivided by

a regular (square or cubic) mesh, we can use a reflection method,

stemming from Fourier and applied to the Laplace equation by H.A.

Schwarz, to treat boundary conditions without loss of. accuracy.

Indeed, for u = 0 (the natural physical boundary condition for
vibrating membranes, it suffices to set ul =0 on T. For
su/an = 0, a more elaborate procedure is described in the

Appendix attached.
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5. Approximating boundary conditions

In [6], only the pure initial value problem was considerea;
we next describe a method for approximating behavior near the

boundary of a vibrating membrance, where u = 0. For simplicity,

we assume that a convex domain & in RP with boundary T has
been overlaid with a uniform (p=1), square (p=2), or cubic

(p=3) mesh. This will give rise in general to irregular stars

at nodes adjacent to the boundary.

Since the lengths Ax, of mesh segments adjacent to T can
be arbitrarily small fractions of h, the Courant stability
criterion At = min(Axi/c) can become a severe limitation near
the boundary. But, fortunately, one can circumvent this limita-
tion very easily.

Namely, at the centers of such irregular stars, simply re-
place the usual hyperbolic difference approximation to
Upyp © C2V2u by the elliptic difference approximation to V2u = 0.
In physical language, this amounts to stiffening the membrance
artificially at such points,all of which will be adjacent to the
boundary. Since u = 0 on T, whence Vzu + kzu = 0 implies
V2u = 0 there, the resulting error should be small except for
wave lengths X = 5h (say) very high frequency sound waves. More-

2 2

. . 2
over, i1t can be reduced further by setting Uy = C GEV u, Wwhere

Ci is the minimum ratio of Ax;/h for a mesh sesment issuing from Xy -

For example, consider the case p = 1, with domain

2 = [0,6h+Jh], 0 < & < 1. At regular mesh-points

(5.1) xj+l = 6h + jh,
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the semi-discretized wave equation reduces to
(5.2) ui ) = e2/mDruy, - 2us *+ous,.d.
3] j=1 J it

. . " _ _ . . -
Especially since uO(O) = utt(o,t) £ 0 implies uXX(O,t) = 0,

it seems reasonable to approximate
ul(t) = u(8h,t) by u(h+eh)/(1+6).

For At = h/c, this gives

n+l 2] n n n-1
(5.3) u, = I3 W + uy - U,
and
' n+l n n _ .n-1
(5.3") uj z uj-l 4 uj+l uj for 3§ > 2

We next estimate the discretization error resulting from the

preceding approximation.

Error estimate. One way to estimate the discretization

error of (5.3) is to calculate the 'forcing term' required to

make the functions

cos
. . kmx knt
(5.4) ¢k(X,t) = 81in J+6 { . } Jie *
sin
which constitute a basis of simply harmonic solutions of u = u_

tt XX
become solutions U? of (5.3) with this term added.

Since the difference and differential equations are time-
independent, we can suppose t = 0 without losing generality.
Moreover, for the sin factor in (5.4), all terms, and hence the

forcing term needed to correct for the error,are zero when t = 0.
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There only remains the cos factor, for which ,'

_ .2 knh .__kne
5tt¢k = =4 sin AL 51n‘1+e.

(5.5)

On the other hand, evaluating (5.3), we see that its solution Ul

without a forcing term satisfies :

&

1 = —_—
(5.5") 5. Uy o5 8.eYs
46 . 2 knh . kn(l+6)
~T+g 510 73375 510 T35 .

The left-hand factors in (5.5) and (5.5') are the same. Expanding

the right (spatial) factor of (5.5), we get:

. _km® _  kué 1j{knoe\3
(5.6) San+9 = SET - g(m) +..
as compared with
2 2 2 :
0 . kn(l+8) kn® k“n"(1+9) :
(5.6") sin = {l - —— T+, ..t : W
+ + ;
1+6 J+e J+6 (J+6)2 } §

The forcing term fg required to make

n+l _ ¢}
(5.7) U2 = T7p U

n

n-1 n
2 tf

n
*tU; - Uy 2

satisfied by 1 is thus O(l/J3); it is small. This suggests
that the local relative order of accuracy of (5.3) at x = 6h

is 0(h). Since this is only one of J mesh points, and the

difference equation (5.3') is satisfied exactly elsewhere. The
global order of accuracy should be O(hz).
Unfortunately, it seems to be much harder to find a good

0 for a general

way to discretize the boundary condition au/an

domain € with curved boundary T. Since this is the boundary
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condition that is appropriate for the reflection of sound waves,
it would be most desirable to invent a good procedure for dis-
cretizing it which would not greatly reduce the maximum stable

time step.
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6. Burgers'and Korteweg de Vries' equations

It is natural to wonder whether prescriptions like those
given in §§4-5 have satisfactory analogs for variants of the
linear, constant-coefficient wave equation (4.1). TFor the one-
dimensional heat conduction equation ug = u . as well as for
(4.1), if u(-x,t) 1is a solution then so is u(-x,t). It is
because of this that solutions satisfying the boundary condition

u(0,t) = 0 can be constructed by extending initial conditions

anti-symmetrically by the formula

(6.3) u(-x,0) = -u(x,0),

and ux(O,t) = 0 can be built into a solution by the following

symmetric extension of initial data:
(6.3") u(-x,0) = u(x,0).

For the Burgers equation (6.1), it is still true that if
u({x,t) 1is a solution, then so is -u(-x,-t). Hence, we can still
satisfy the boundary condition u(0,t) = 0 by using the extended
initial condition (f.3). However, one cannot 'force' the condition
ux(O,t) = 0 by an analog of 6.3.

For the Korteweg de Vries equation, which was originally pro-
posed as a higher-order nonlinear approximation to 'simple' gravity
waves moving in one direction, one cannot satisfy either type of
boundary condition by reflection symmetry. This is because, for
the transformation x #» -x, t+ t, ubk \u, to respect (6.2)
for general initial data, we must have X = -Xz z Xz. Hence

neither u(0,t) = 0 nor ux(O,t) = 0 can be satisfied by reflecti

the initial conditions.

ng
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Sricariche, and Lewv,

one of the most important contrilutions was their 7-point formu-
la for discrevticing the rwo dimenoional wave oquation

(1) O G SR TR I

for the coptimal Courant numio: o= LS00, thie i

R n+l 1, n-1_

(: u = =60 - .

17 4 R4

I+ (s 'hard to heat', becauce U T cuwplicity o U(hT)  accu-
racy with AT = Ax/ev., and roguires onowv o4 additiens (and sub-
tractions) and one binary kit per time sten.  However, their

formula (1) does not expylain how
condlitions.

Initial conditiona., As
alwavs has a surerpocition ¢
B I B = ¢
(3.) MTy(,) ‘

and

0" ‘ =
() 4P( ) R
recLectively. In tie firat

regar

fotwo

ds

in

or boundary

itial conditicns, one

caAses

)= Fa,
n use the method of re-

can rerlace (7) when
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In the second case, we know by the reversibility of (1) that

ujg(-t) = 'Ujg(t)' Hence D2u(x,y;0) = 0, and we can logically

replace (2) when n = 0 by

1
(4b) uje

3
gjzAt + 0(h™).

Therefore, using the Whittaker or Birkhoff-Lynch [3] to
infer u(x,y;0) from the gje , one can presumably achieve
higher-order accuracy in estimating the u}e from the data
(4b). This would require applying known (exact) Green's func-

tions and their derivatives to the interpolant thus obtained.

Boundary conditions. We will consider here only the case
of a polygon with horizontal, vertical, and 45° lines as edges,
for Dirichlet-type and/or Neumann-type boundary conditions.

The case of Dirichlet-type boundary conditions, u

(t)

je
given on T, 1is very easy. The only alteration is that, in

Eq. (2), one or more cf the terms in Ou?e is a known quantity

(function of time), whenever U?P is adjacent to the boundary.

For Neumann-type boundary conditions, one must however use

the method of reflection across the boundary. Thus, if (xl,y)

is an interface (vertical side of the polvgon), we must set

u?e on that side. Substituting into (2), this gives

n
Yoe

after cancellation,

n+l n n n-1
2 = + -
(5a) Uy U1,8+1 Up_q uy,
Likewise, if (Xi’ym-i) lies on the oblique interface
] n _ .n .
x + y = mh, then we must set ui+1,m—i ui,m—i-l . Setting
m =2 and 1 = 1, this replaces (2) by

. — e d
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n+l n n i n-1 ; .2 n
u. . = 2(u,,t -uy . - ) £
1] (uDl Uy g ull) Upy s for example, or SPRIE

Rules like the preceding cover all boundary peoints (where

= 2(u81+u?0).
the values of u must be treated as unknowns for the boundary
condition au/an = 0 on T), except corners. Here one must
consider gix cases: (a) 90° corner formed by horizontal and
vertical edges, (b) 90° corner formed by twe diagonal edges,
(c) 135%° corrers, (d) 225° corners, (e) 70° corner formed
by horizontal and vertical edges, and (f) 2709 corner formed

by two diagonal edges. Our recommendations for these cases are

as follows:

Case 1. A 90° corner between horizontal and vertical edges.
Without loss of generality, we can take these edges to be the
horizontal and vertical axes. The configuration of Fig. la

shows how to express the boundary values in terms of interior

values.
®
*u1y Yor  *Y11
.Ul
*Y0 *Yo0 %10 *u,
[ ° u ou3
Y11 Y01 *Y11
[ J
Fig. la Fig. 1b
o = ————
et oo e
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Case 2. A 90° corner between two diagonal edges. Without
loss of generality, we can assume this is the wedge
-n/4b = 6 = n/4% depicted in Fig. 1b. Hence we can use reflec-
tion to obtain equations for the boundary w ., as illustrated

in Fig. 1b.

Case 3. Any 135° corner can be transformed by translation,
rotation, and reflection into the corner vy z 0, x +y 2 0

(i.e., into min(y,xty) 2z 0). The reflections corresponding to

the edges y = 0 and x + vy 0 vyield the identities

U = u. and u . . T U oL o respectively; see Fig.
jo-1 7 T3l -3-1,3 7 T-,3410 P Y5 &
2a.
The logic of reflection symmetries involving reentrant

corners subtending angles a > 180° is more subtle. One must

in effect imagine a Riemann surface in which the given angle

together with its images under reflection in the sides subtends
an angle 180° + a - 360°. Of the three cases dual to Cases
1-3, that dual to Case 1l is logically the simplest. By a rota-

tion, we can transform it to the following.

Case 4. Consider a sguare mesh of side h that fills
the first 3 quadrants, as in Pig. 2b. Reflection in the posi-
tive x-axis, corresponding to the boundary condition
au/on = Ju/ay = 0, suggests setting ulh,~h) = ugg s reflec-
tion in the negative v-axis suggests that we should set
ulh,-h) = U_p,-1 0 which appears to be inconsistent. However,
the inconsistency between these two formulas is only apparent,

and can be resolved by thinking of the origin as a branch point
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in a three-sheeted Riemann surface. In polar coordinates:
u(r,-6) = u(r,e) ul{r,3n=8)

whence
ul{r,9) = u(8=-3n) = u(v-61).

From a computational standpoint, the relevant difference equa-

tions are

= + - + -
Y10 Yoo 7 1 1o,
= + 2 s
Yo,-1 Y90 Yop,-1 T ML a2
= + + + .
Y00 Y10 7 Y10 Yo,-1 © Y-1,1
*U 1,1 *u *t

eu eu ou eu

ou

12 11 01 11 21 ° u_l’_1 Uy ou,y
or or
“_1,-1 Y2,21
Fig. 2a Tig. 2b

Case 5. The complement of case 2 can be treated similarly.
By a translation and a rotation, we can transform it to the do-

main £ : -u5° £ 6 s 225°, It is a good exercise to number the

(A

mesh points in this sector near the corner sequentially, and
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then write out the equations which express the edge values

uj : and u 5,-3 as linear combinations of interior values.
s~ =J»s~
i The hardest case to treat is the vertex value (u0 in Fig. 1b);
it is not clear that replacing u, by the average of the two
! reflected values will give a suitable answer.
‘ Case 6. The complement of Case 3 leads to a similar diffi-
culty!
tme— it o sttt nassiboi . ’ s

h




Parametrization Methods for Approximation of Solutions

of E1liptic Boundary Value Problems
by

J. H. Bramble
Cornell University

The purpose of this talk is to reconsider the Lagrange multiplier
method introduced by Babuska [2] and to present some new error esti-
mates as well as a rapidly convergent iteration for the computation
of the solution. One of the main points which I wish to make is that
the approach given here applies quite well to many other problems.
Problems which can be treated by similar methods include interface
problems, exterior problems, scattering problems, the stokes equations
and the elasticity equations, the biharmonic problem (with first and
second type boundary conditions) and the polyharmonic Dirichlet
problem. I will illustrate the results and the approach here by
discussing a second order model problem, and the biharmonic Dirichlet
problem. A complete discussion of the second order problem may be

found in [4].

Let . be a bounded domain in d-dimensional space Rd with
smooth boundary ... Consider the Dirichlet problem for the Laplacian
Lu = -2u = f in @

1)
u=g9g on aQ

For a > 0, set




25

2% 3% 4y 4 g<o,y>
3Xj BXj

Alo,p) =

Hw~0.
o
—_—

J

where <¢,y> = | oypds. Define
af

Tf = v,
where
tv = f in @
and
%% + av = 0 on 3Q
and
Go = w,
where
Lw =0 in Q
and
%% + ow = 0 on 9%.

Here 9/5n 1is the outward normal derivative on 3Q. Now write

2) u =Tf + Go

where u 1is the solution of 1). Note that o = %% + au on 3R.
We can, loosely speaking, formulate 1) as follows: Find o such

that

Go = g - Tf on aq.

Then 2) gives the solution of 1).

Je seek now an approximation of u in a subspace S, C H](Q)

h

which we call To define Ukh we first define an approximation

ukh.
e in ékc. Lz(aﬂ) as an approximation to o. This we do, in turn,

by approximating T and G by projecting onto Sh relative to A(-,-)




{as an inner product con Hl(ﬂ)). Thus we define {cf. [3])

where P} is the H1~projection given by A(D?y-c,y) = 0 for all
RS H](f) and . . Sh' Let Po be the IZ(AS)—projection onto Sk.

Then we define ., by Db G = Do(q- T,f) and

Now it 15 easy to see that

A(ukh,¢) = (f7¢') + ‘r»‘k9tv

and

K~ 9en o 7

for all & ¢ Sh and x ék where (-,') is the LZ(Q) inner product.

These are essentially the same as the equations given by Babuska [2].
The main stability estimate (proved in [4]) is the following. If

h < ek, for « sufficiently small and fixed, we have that

<G, PL,e> < C 2

4 -
3) ColtlZyse = Gyt < Gty

Here CO and C] are constants independent of 9o, h and k. We

have tacitly assumed the usual approximation properties for Sh and

Sk and inverse praoperties are required only for the spaces Sk (cf.

{3]). Now if r and r are the parameters indicating the degree of

approximation of Sh and Sk respectively, then we can state, for

example, the following error estimates:

lo-0y ) g7 * Mumuypll < SO (il + &3/ 2 o1 0),




..;:dllllllI--‘F

Here the norms are the indicated norms in the appropriate Sobolev
spaces and ||-|| is the LZ(Q) norm. Furthermore if |-| denotes
the L2(39)~norm and if §kC:Hr'3/2(aQ) then
-r+ -

r 1/2h2r ZHUHr"'krl .).

o|r

= -(o,-ag)| < C(k
Both these estimates are new and may be found in detail in [4].
We may illustrate the extension of this technique on the

biharmonic Dirichlet probilem

L

4) '

u = %% = 0 on 3Q.
Set

u = T2F + TG
Then

ATu = f din @
and

iU

R
Yoy an 0 on 3%
an

for any . Hence determine ¢ such that

TGo 2

-T°f on aQ.

H

Then u = 0 and thus %% 0 so that wu 1is the solution to 4). The

approximation is now clear. Set

_ 12
Uyp -~ Thf +ThGh0k

with

T.6,.0, = 2

PoThCh7k = “PoThf

The analogous stability and error estimates are




2
Col®lls/p = <Tp6,0,8> < Cl,b’ 3/2

and

}+5/2IJ .

lo=0 g p *llu=upp il < O flull, + & I

Again assumptions similar to those made previously concerning Sh
and ék are tacitly being made. This approximation was given by
Falk [6] but the estimates here are new.

We finally consider the question of computing Ty For

Skc. H](aw) define the "discrete surface Laplacian" Qk:S + S by

for all o¢,x ¢ Sy - Here SRR is an inner product on H](aQ). Now

L is positive definite and symmetric and hence Qi is defined in

k
the usual way. Now it can be shown {4] that on Sk

|Q]/4

OlUl 1_1/2 o C]1U\

This together with the stability estimate 3) yields

6) CO!U!Z < <(21/4 G 91/4)u,u> < C]|u|2

for some constants CO and C]' This means that the matrix induced
by 1/4POG Q]/4 has a uniformly bounded condition number and hence

in order to solve the system

PoShok = Pol9-Thf)
we solve instead

]/4 1/4 _ 1/4
7) (2" "Pobp Ly o = 4, po(g—Thf)




- A

and then obtain T by

_ .1/4
O = Qk 0

Equation 7) may be solved efficiently by the conjugate gradient
method (cf. [1]) because of 6). We have assumed that the operator
zl/4 is easy to compute which may be the case. For example if
d =2 and ék consists of periodic smoothest splines on a uniform

l/? may be obtained by using the fast

partition of 3R then ¢
Fourier transform [5] in Obk-12n k'l) operations. When this is not
so easy to compute, other stability estimates given in [4] lead also
to efficient computational procedures.

In the case of the biharmonic problem we want to solve

T.G. o T2¢.

8) PoThGhk = ~PoTh

The estimate 5) and the properties of ¢ lead to

K
2 3/4 .3/4 2
Colul® < ‘('k/ pOThGh'k/ Jisue < Gyl
for 1 v ék‘ This leads us to formulate 8) as
,3/4 /4, . _.3/4 2

9) G PTG 0 oy ety
with

.. 374

K "k ’

As in the case of 7), equation 9) may be solved efficiently using the

coningyate gradient method.
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i. inrroduction.

In this puper we wish to =studv two mixed finite clenent methods

Tor toe apyptroximation of a boundary value problem modeling o osimply

supported plate, .ol we consider the hiharmenic eguation

1y STu o= in

subject to the boundary condition:

o u-7u ‘*Kﬁ_ = 0
- I
anid
LS o= U A1 o,
where 0 1 a2 pounded domain in R: with smooth boundary T, f 1is

a4 given tunction, N Ls the curvature of 5, 1-r is Poisson's

ratio, and b, and ﬁn denote the tangential and exterior normal
Jerivatives of u  respectively along

in the standard variational formulation of {1)Y-(3), (2) is a
natural boundary condition and so the solution u mav be

characterized by

(4 Find ou e HT0N Héxad such that
.u.ur)-zf{uxx,vyy) + 4Uyy’vxx) - _iuxy,wxy): = (£,v)

for all v e U™ M Hé(“)

twhere (o, denotes the L, o) inner product).

“

[{ one bases a finite element method on this variational
srinciple, one i3 faced with the daitficulty of constructing

subspaces of Ho( 1M Hé(Ll. This requires the use of C1 finite




o

fen-

.

elements which must vanish on Jdu.

By using the mixed method technique of introducing new
independent variables (e.y. w = -du), we are able to reformulate
this problem as a lower order svstem of equations. This will
allow us to define a conforming finite element method using only
CO finite elements. In addition, we make use of the Lagrange
multiplier method to handle the problem of essential boundary
conditions.

The two finite element methods we shall consider are based on
twé different variational formulations of Problem (1)-(3). For
simnlicity, we shall mainly deal in this paper with the simpler
variational formulation, valid for domains with strictly positive
curvature (i.e. K » 0). Jthe case of gereral K will be dealt with
briefly at the end of the paper.

N

Let <-,+> denote the L7(¢) inner product and also the

’

pairing between HS(F> and HsS(F) and let
A%(u,v) = (grad ou, grad v} o+ a<u,v>
where o is chosen sutficiently large so that 2a+K > 0. We then
consider:
. Dy % - . NN T S 1 . -1/2
Problem (P)#%: Find (u,w,s) ¢ H™ )y =<H7 () xH {I') such that
- . . . - IR P
(3) Al(w,v) = ;f,v) + =3,v- for all v € H {(Q),
- W \ S B
(0O) Afu,2) o= oiw,o, - R tor all =z € H (&),
and
- SR TR A
(7 cu,dr o= 0V oW oe (7}




To understand the relation between Problem (P*) and the
blharmonic probles (1y)-+ % obhserve ‘irst that equation (5) 1is the

weak torm of the boundary valune problom
]

_—— + ‘1 \\' oo ,. L) '1
and equation (o 1: the weak form o:r the boundary value problem
N LI - s

+ B

“n t

o

—

.
i
1
{

Equation (7% gives the boundary Jondition u = U on .

Suppose now that for u a soooth sgration of 11)-{3) we set

(8) W= -Lu

and

(9) o= -L—“ u ot Ju]

- L . . - 30~ ~ .

Then by 1.1, wo= U and by oSy ooy, o= oWt aw which

implies that (u,w,: ] satisfices (51, Now from (3), ds< =0 on T
, 1L . W . : :

so that bv (2) and (8] S+ au o= - --. lence (6) is satisfied.

Finally ¢3) dmplies (71 so that (u,w,c) with w and ¢ defined
by (81-4u) 1% a solution of Problem (P*).

Hazed on rtnts variational formulation, we now consider the
followine tinite element scheme. Althouch other choices are possible
we shall for simplicity let Sh N<h<l,be the restriction to & of

0 .

Iy . ) ‘, . ri - ) / > f ‘hoyre < ’ 3
v € C7(): Vig o« [r-l’ Vot SN where pr-l denotes polvnomials

of degree r-1 or less in x and v and N denotes a

triangulation of some fixed polvgen . containing & with
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triangles t of diameter < h. For 0 < k < 1 we shall denote by

ék the {o € CO(F): o[I € Pr 4, VI et} where P. , denotes
polynomials of degree r-1 or less as a function of arclength
along I and T is a quasiuniform partition of T 1into
subintervals [ of arclength < k.

With this choice of subspaces, our finite element scheme is

given by:

Sk*, . ~ - X .
Problem Ph : Find (uh,wh,ok) € ShXShXSk such that

(10) Aa(wh,vh) = (f,vh) + <ok,vh> for all vy € Sh
o~ o~ Ch

(1) Aa(uh,:h) = (wh,:h)—<?K, 2y for all zy, € Sh

and

(12) <, ,8,> = 0 for all 8, ¢ ék.

The motivation for this formulation comes from the following

ideas.

Define operators
T: H () - 057 ()
and
G: HS(ry - w3ty

by A (Tf,v) = (f,v) for all v e C M

and A _(Go,v) = <c,v- for all v e ¢,
i.e. Tf 1is the weak solution of the boundary value problem
-A(TE) = £ in R

H
fan]

5o (T£) +a (T) on T

WPVERESDRY VP SR P



and GJ  is the weak solution of the bhoundary value problem

-A(6y) = 0 1In

fl

: Go)+u{Go) on
SnLJ ’ AN IO <
Using these definitions we sece¢ from (5)-{0) that

~ -

w = Tf + Go
and
To= Tw - u(al\, W)
= TOf 4 TGo-0(—k TF)-G(— Go)
"TK "1k o
Let us now define
u(s) = TGs - (:[7{. Go |
Then u = T f - G(?% Tt) + u{s) so that Problem Lﬁ*) can be stated

in the form:

- il
Problem (P*): Find o € H 1/“(T] such that

CTTF o+ G(— Tf] on T,

u(o) N

. ~k*
As we shall now show, the approximation scheme Problem Ph
can be viewed as an approximation of the above formulation where

we approximate the function o and the operators T and G.

Let us define operators

T, : H l(n) ~ s

h- h

and

- I
G : By » s

h h

by

ALTRE 0 = (F,0 ¥V x €5y




and

Aa(Gh:’X) = <g,Yx> ¥ ¢ € Sh'

These are just the standard Rit:z-Galerkin approximations to T
and G.
Using the operators T.n and Gh we can also rewrite

in a form analogous to Problem P*, From (10) we have

~ -

(13) ‘.v'h = Tht + Gth
and from (11) that

(14 u, = T,w, -q,

o . i - - - -~ - -~
We now define for oo« |
?
13 . B R -~ -
(15) R e N
.e a N ‘e oN D
;
Then
~ 2. 1. .
A - RN SN
Uy, Do == LT S )
I 1 kN [N
\‘\.":
. - . 30 . - e N -
3o that Frootlen 20 J1n De restatel LT otne forn
I
Lk .
Pronlen 7, Fins  I.o€ 3 suSh Tnat
n N N
= 1
AN s = .2 T=J -~ + - o
AT 2an e N R
S N N A N
.
1 e - - L - - nd
vher2 PO 15 tne Lo Troiecstion 1ntoy 2L
- - - X
_ ) - . .
a2 main idez ¢f this formulation s that the svsten of

5 Suyg e s 4 - 5 - LR PR
linear 2513Tiind JarresIonding to o n

- - 5 " e v - - IR - : ~ . e ey < -~
solved in an 2Zficient manner using the presonditioned conjfugazte
< j: 1 2 i . - ; 3 . 3

sradient method. ve now exanine how this can Te Jone.
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To apply the conjugate gradient method we need to be able to
compute Pouh(s) for anv s € ék' From the definition of uh(:)
we see that this involves the solution otf two Neumann problems
involving the same matrix at each iteration. Hence once an
initial LU factorization is found, the calculation of uh(:)
will involve only two backsolutions. The application of PO then
requires one additional backsolution per iteration after an initisil
factorization of the matrix corresponding to PO.

For this method to be effective we would like to precondition
the iteration so that the spectrai condition number and hence the

number >f iterations required will be independent of the mesh size.

Our choice of preconditioning is based on the following result.

Lemma 1: For h < ek, with ¢ sufficiently small, there exist

positive constants Cl and C, 1independent of ¢, h, and Kk

such that

2 2
Cllol‘1 < l<P0uh(o),o>\ < Czlo‘_l for all o e S,.

To make use of this result we define a discrete boundary

Laplacian

<R, 3,8> = <g,86> + <os,es>

k

for all 6 € Sk'
It is then possible to show that

2 -1/2,2 2
cylol?) < 1%l < cyl0l?)

for all o € ék’ where C1 and C, are constants independent of
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Inserting this result in Lemma 1 and setting o = zi/ze
we get
1/2 1/2 2
Cllelo < I<Pau (8,7 %8, p. 8> < G, 8],

It then follows from the definition of up that

1/2 1/2

1 2
|e|O |<z p [ThGh-Gh(?K)Gh]Qk 8,0>| < c2[9|0.
The above inequalities imply that the matrix induced by the
{(self-adjoint) operator

1/2

1/2
N R N L

has a condition number which is bounded independent of h and k.

Thus we can obtain a solution 8 to the equation

1/2, i 1 1/2
2/ Py [T, 6, -6y ()6 18, “8
_,1/2 2 1
= 2 CI-P TLE v PGy () Ty £

to within accuracy h' by the conjugate gradient method in
O0(2n %) iterations. Returning to the untransformed variables,

1721y and

we now need to compute Pog for g e H
[ThGh-Gh(T%)Gh]o and lko for o € ék' As described earlier,
all of these require only back substitution at each iteration once
some initial factorizations are performed.

We now turn our attention to a brief discussion of error
estimates for the approximation scheme just described. The basic
variable in our formulation is ¢ and the key result will be to
estimate 0-0) in appropriate norms. Once this is done, estimates

for ﬁ-ﬁh will follow easily from known estimates for (T-Th)f

and (G-Gh)o. To see why, recall that

3= 12k 6L
u=T7f G(TK)Tf + TGo G[TK Ga]




uO

and

~ _ : - _i . s _1-'
up = TG (e Tt + Ty 6,0y -6y [ oyl
Applving the triangle inequality, we get

o 2 .2

“u'uhllo = H[T ‘Th]fllo

¢ MGG T-G, (=P T, V£ lly = TGo-T, 6,0y

-

1
r llGleg Gel-6y [ Gye
We now show how estimates may be derived for a typical term in

the above inequality using standard approximation results and

a priori estimates. We write

TG0~ThGhok = (TG—ThGh)c+(ThGh-TG)(g-ok)+TG(o-ok).
Now (TG-ThGh)o = (T-Th)Gc+(T~Th)(Gh-G)o+T(G-Gh)o.
Let us consider the case r = 4 (piecewise cubics). Then

lT-1,) 60y < chtjimeoll, < chtlicall, < cntloly,,,
I(T-T,) (6, -G)olly < Ch?|IT(G, -G)all,
< en’liice,-6)ally < cntlleall, < chtlaly,,,
and
e6-6)olly < lit6-6oll, < caleall, < catloly ;.
A similar argument gives
1Ty G, - T6) (o-0,) Il < Ch4|o-okll/2.
Finally, [TG(o-g )l < Cli6(o-o )|, < Clo-oy ] 5/,

Since the other terms in Hﬁ-GhHO can be estimated in a similar

way, the problem is reduced to estimating lo-ok| in various norms.

The main ideas involved in these estimates are the following.




Step 1: Derive an a priori estimate for the continuous problem.
We prove that for all s - U,

L

- ' oo Sy .
L‘llol—S/Z*S— v“(“’)‘l/3~5 Z|\1~3/3-S

where u{g) 1s the solution of the biharmonic problem:

5
L\HU = U 1n Q
3 -
~-— Au-aiu = ¢ on T
an
=0 on T.

_ A Tk
uu+r}\[un+xu]

The relationship of this problem to the original one is that
we seek a o such that u(o) = —ij + G(¥% Tf) on T. For
this o, u(c) solves (1)-(3).

It is worth noting that this is not a standard biharmonic
problem. From the first boundary condition, it seems that o
should look like three Jderivatives of u on . The a priori l
estimate says it acts like two derivatives. This fact is reflected

in the error estimates,

Step 2: Derive similar estimates for the approximate problem.

We prove:

lheorem 1: For h = <k, with « sufficiently small, there exist
positive constants Cl and (., independent of o, h, and k
such that for all U < s < min(r-2, f+£)
R < ) ol - pe S
Cploiisae 2 [IOUh(j)ll/Z-s LJIJ\_D/Z_S for all o € Sy

Since this 1s a continuous dependence theorem for the

approximate problem with C, 1ndependent of h and k we

l’

can now get error estimates in the standard way.




Step 5t Let e SR “eodan eoprimal arder approximation to ¢
tn ouppropriate neraes. ihoen by Theorem !
T N S R VO I ST N
A N NS TR J[ hoh SN

N . < N N v . R - !
[‘{Ih‘ L 1 L ~41“P~}'Lh( k“)]?l/l—s'

Now using the dedinitions of SR and  ut o) we get
n

Py SR

o N

. - . 1
SRR U el S PN OIS
Ph DR th )
epoTTE -G
Gt TR N

[hese torms are eastilyv estimated using known results for T-Th

and  t-o, . arther use ot those restlts and estimates {or

b
i

-, o allow us to estimate tie term PO[U(:)-uh\fk*\]jl/:‘S.

o

Aospecial ocase ot oour final orror estimates gives the

tollowing resule,

o ‘ . I A I G . - .
Theorem 20 ~uapposoe 1o Y (L), 3o H o) with 3 <« r < r+5/2.
lhen tor h . with satficientty small
! . T - ; I""S/: H
! P . ' !
u-il ¢-h t Lo+ s, SRR
‘ houoo- [ TS tro /20 k T

In particular ¥ we use continuous piccewise cubics for Sh

and continuons pilecewlsce finear tunctions tor Sk’ then r = 4,

.
“

r 2 and we obtaln the estinmate

i

/2 \
‘,/1] +}\ E"Tlﬁr'

. B/8
To balance the-o terms we could chonse h = k /¢ <o that for Kk

sutficiently small the condition h -k is automatically satisfied.

We conclulde this paper with a brief discussion of a finite




element method valid tor arbitrary smooth K. The method is based
on the followinyg vartdaticnal tormulation of the biharmonic problem

(1)-(3).

Problem (P): Find (i,w, ., ¢ bt/ 3y 2
such that
(17) ARV = (F) % o, o v foroall voe uleay,
(18) :\a(u,-) = (w,2) + i+ - for all - € H (),
(19) T o< K[\—r\zi11,$1~»-yu§,4\_-+4{;-,;» = 0 for all

u € HJ/"(T), and
(20) <u,3> = 0 for all * ¢ H_l/“(l").

To understand the relation between Problem (5) and the
biharmonic problem (1}-(3), observe first that equation (17) is

the weak form of the boundary value problem

W - .
S W o= g+ on

r
an S5

y
and equation (18} is the weak form of the boundary value problem
-lu = w o in

3u - .
ou au = A on
an

Equations (1Y) and (20) give the boundary conditions

0 on T

TlK(i-aul+u i
T K{(3-2xu) LSS) W

and

PO T




pa MiBaneiive BN s L

suppese now that for u  a smooth solution ot (1)-(3) we sct

L.‘.l) W= ‘\:Zl,
" Y .
l~-- = - + bl
) N
and
(23) N R R Y e
an nss N

Then from (1), -’w t and by {(21)-023)

3 - ~ ‘
J T o— W o+ aw - T
3n ‘ss

which Implies that (u,w,%,c) =satisfies (17). Now from (21) and
(22), it easilv follows that (u,w,',>) =atisfies (18). Using
{(2), (21}, and (22) we get that §+I:J*<*K(‘"¢G)] =0 on T

and so (19} ts satistied. VFinally, (3) implies (20} so that

(u,w, ,>), with w, *, ¢ defined by {21)-(23) is a solution of

Problem P,

The approximation proceeds as before except now the basic

variables are ‘L and Iy - We then seek \k’:k € Skxsk such
that {1¢)-(20) hold for all u,: « Skwsk wvhere w 1is replaced by
Moot ot Gl ]
and 0 is replaced by
u, = T,w, + U, A

once agaln we get a linear system for Ak, Sy which can be
efticieatly solved by the conjugate gradient method after we
determine the correct preconditioning. To compute the action of
the relevant matrix on a vector we necd only be able to apply the
G and P.. As before this is quite easy once some

h’ “'h 0
Initial factorizations are determined.

operators T
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APPROXIMATIONS OF NON-LINEAR PROBLEMS

S INTRODUCTION

"mAd ALY manldnear ctabisna s oo e eren Hir o one or
more Tararerters . owith o ognocelat ooy o Ten s e saces of nor-
mas Mimitopolintc o oan o sing SO o ion o poeint . An outline
AU e paper T the T T lowine . T Thanrter 1 we present the
seneral form o7 tae conting Soanioaprroxinate praobleoms with

some ceneral contiderations on toe hwpothesos antd come exam-
nles.  In Thoioter Powe pressnt Tirct two bhacic abstract ro-
sults (Secvion 201) In 3 form which i¢ =sli-ntlv different
Ivom the orisinal onol o and we cive a sketch of the rroofs,

3

then (Section 7.70) wo apply thess rosyglts to +he case of the

Lranchec o nonsingalu scolutions.  In Chapter § we tackle
thee oo 7 aimple cincular polats and we chow how the
Liapupcv=Sohmidt procedure can be applied te preduce both the
continesas it the approximatre oo blon s ro Yhe case of map-
ninea EJi » . In Thapter b we ieal with the reduced pro-
Plems » RBodin the cases of nermal Timit pointo (Scetion

4.1) and simple bifarsastion points (Scetion 4.2). Tinally
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Suroob uitiple parameters
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St more has to be done in

o examples, ideas and pro-

blems vteather Yhoan o v ool thieory,

We give here ool oo Tasie

ideas on the proofsy for

the Jdetails we ocior oo bty Tad, Ty Th), Related recults

Al

ther o boorcine et Phere v b bt
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CHAPTER 1

1.1. Weo shal l congilaey LreoThe serc Ly o noniinear problem: 253
the tellowing (v
(1.1 (V) = 1ot Coand) s
. . L .
whore . 1c D SRR e " n Vo T T -
JoLinear compa ot el o : ame v
and W oar Fonggoi : 20 Tae re=th o Teatives of &
3 e " ' o N 3 4 COon-
SR RRVER SRR Cua it ' ~ = ont

ol — . b A

O : o

SECTIRE TR I Livis O o0 e riven i cnop-
O & TR SO ; :
(L. RIS N - .
‘ LG
}1—)[1
The "dicor e ropleon” DUohe derine s e follows:
(1.3) i"h(‘x.,\) B A D
H FE

and our maln obicct will be to compare the set of the solu-
tions of (1.1) In o neirhbourhocd of 4 piven polnt (un,xp)

‘
with the ot of the colaticn o7 (i,9) In the same neighbour-
Lo
1.2, We =hvill now mite comne cormonits on the nature of the

problems and give some examples.  We

[T

v S SN

remark

first that the




o

ba
the application:, problem (I.1) wil!

form

+ Louncary conditions

where A will bz, o/, 2 1llnear c¢lliptic operator from a
functional epice YV Int~ Its dnal space V'i: we mav then
assume that the nonlinear mapping  “(u,ix) maps VYV x IR into

a subspacs W oaor V' and that for any f € V' +the problem:

(1.5)

+ Loaclary ormditions

has a unilque =olution u = Ti.  We may also ascume, without

a "serious" lozos oi yenteralitvy, rhat

are nomogenanus, reotner T Dy Tincar aporatorn In *this
“ramowork, one ov o cournly o sav vthat the o acsumption "T O dis
conpact Trom L i I N n a wildnecss require-
ment on CCioa) o dn oone nence, the o anplicartion o 3 makes
P TRENY . butoth Jiwvee application of
A SR B O Con, L ther wn iy overnn mere redularity,

. T S e ximests weoy then we could

ic assumption o the compace . ocos of the operator T.  In

caodde L L) which can be

cather e written in the

the ponndary conditions

Assume now

(1LY . Tnually the

(1.t) are expressced in




the form

(1.8) iT, F-TE, s chkPTfHV

where V 1is a suitable functional space of "repular" func-
tions and the exponent k depends on the "dogree'" nof the
approximation and/or on the regularity of V. 1In the abstract
theory that follows for nonlinear problems, we shall obtain

error estimates of the type

(1.7) fup-ull, = e (T, =T)5Cu, 0,
V ! v

h

that should be considered as 2ptimal in the following sence:
1f one has an estimate of the tvpe (1.6) for the discrete

solution of the linear problem (1.5), then (1.7) will provide

(1.8) iy < chkuTG(u,x>uV - chkuuuv

which means that the (asymptotic) error in the nonlinear pro-
blem is as good as the one we have on the linear problem, for
the given "method" Th'
A4 particular case which is of great interest in the ap-
plications is the following one, that we shall call the "pure

" Assume that we are given a bilinear contin-

Galerkin case.
uous elliptic form a(u,v) on V x V and assume that T 1is

defined through afu,v) by means of
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T:f ¢ V' - If € V, solution of
(1.9)

a(Tf,v) = <f,v> VYv € V.

Assume finally that we are given a family {Vh} of closed
subspaces of V, such that
(1.10) Vv € V. lim inf fv-v iy, = 0;

h-0 VhEVh

Th can now be defined by

[Th :f e VY S Thf € Vh solution of
(1.11) 1
a(Thf,v) = <f,v> Vv ¢ Vh'

If the inclusion W S V' 1is compact, T} will satisfy the
assumption (1.2) and the abstract theory will be applicable.
We recall that, in that case, the estimate (1.6) can be

written

(1.12) 1T, f=Tfhy, = e inf |Tf-v ly »

. Vhevh
cfr. e.g. [27.

We shall spend a few words now in order to show that, in
fact, the pure Galerkin case is not the only interesting case
in which the theory can be applied: we shall restrict our-
selves, for the sake of simplicity, to a particular example,
but we hope that much more general cases may be easily guessed

once this one is understood. Consider in a convex polygone




3

@ ¢ R the problem

~-Au + Xg(u,ux,uy)

A%

2
where g defines a smooth mapping from L°(R) x Lz(Q) x L2(R)
) ‘ 5
into L°(R) (or, if you wish, into H'(R), s > -1). Assume

that you have a "code" which solves the linear problem
(1.1%) {-Aw = f in @
w = 0 on %

by "mixed" finite elements; this means that for any

f € H-l(Q) and for any given mesh size h vyour code will

provide Thf = (wh,ph) where Wy is an approximation of w
and Py = (p;,pg) is an approximation of p = grad w. Assume

in addition that you have error estimates of the type (see

e.g. [2])

(1.15) llw=w, || + |lp-p,. |l < chlw|]l 4 :
h' L 2¢) hL2(g))? H (2)

then you can study the mixed approximation of problem (1.13)

with the following setting

(Ll = v = e.), o € L), 1 e (L2en?y,

<<
It

L2(2),

=
"

G(v,\) = Xg(w,rl,T?)»
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and with T defined as the mapping that to each f ¢ LQ(Q)
assoclates Tf = (@,11,12) € V with =-4dp = f (o € Hé(&))

and T = grad ¢. The estimate (1.15) yields now

(1.16) ITE-T, £l < c|hllfll
h™ v L2(9)

Hence we may say that an abstract error of the form (1.7) is

still optimal for our mixed approximation of the nonlinear

problem (1.13).




CHAPTER 2

2.1. We shall now give a theorem that will be used systemat-
ically in the sequel; the theorem is a minor modification of

a result proved in [5]1, [6]. However, since the original
prootf of [5), [6] is rather technical and since the two state-
ments do not coincide exactly, we shall also give a sketch of
the proof. The following lemma will be "used" in the proof

and will also be useful in the sequel.

Lemma 1. Let Bl’ B, Dbe Banach spaces and let F ¢ Cl(Bl;B )3

2

let moreover X be an clement of B such that F(XO) =0

0 1

and DF(xO) ii an isomorphism from B1 onto B,. If {Fn}

is a sequence of mappings which converges to F uniformly in

Cl(Bl;BQ) then there exist an integgﬁ_ n, a neighbourhood
U of Xq iﬂ. Bl and a constant ¢ such that for any n 2 n
there exists a unique X € U such that Fn(xn) = 0 and we
have
9 - < = -
(2.1 lixg XO“B < c“Fn(xO)HB cHFn(xO) F(xO)HB
1 2 2
Proof (sketch). Since DFn -+ DF uniformlv and since DF is

nonsingular at x = X we have that, for n big enough,

0

(DFn)"l is uniformly bounded in a suitable neighbourhood of
X independent of n. Hence Fn has an inverse function,

say Gn’ in a sphere Sp(Fn(xo)) in 82 with radius p

independent of n. For n big enough HFn(xo)”B < p and
2




hence x = Gn(O) exists and is unique in a neighbourhood of

Xye Let now G be the inverse mapping of Fj; we have

Hxn—XOHBl = ”GnFnGn(O) -GnFnG(O)UB1
(2.2) < supHDGn -anGn(O) —FnG(O)llB2
= supHDGnH-HO-Fn(XO)HB?
which completes the proof since DGn = (DFn)—1 is uniformly

Fooinded.
We are now able to present the miain result of this section;
we recall first that if ¢ is a mapping (r=1) from

X x Y into 2, where X, Y, ¥ are Banach spaces and

(XO’VO) is a point in X x Y such that

1) ¢(XW’VP) = 0
11)  oelx,,vy) 18 oan isomorphism from Y onto
o

then the clasvical implicit function theorem oncures the

. . . . r .
existence of a unique mapping glx) € C(X:Y), defined on a

neishhourhonl N of X in ¥ such that n(xo) = Vg and
(x,o(x)) = ¢ in N.

Theorem.  Let Ny, Y, L be Banach spaces and let

R - . T . e
¢ (x7Y¢7) for » > 1 with D uniformly continuous

cncobheenede Do retsy Tet (xm,vm) be a point In X x Y such

that conddizine 1) ! 1i1) e catisfied and let  ¢(x)  be




the impliicit funcrion defined by : in the ncighbourhood N

£ox,. Assume that we are piven 1 sequence {4} of

’

mappings from N x Y into 1 and

cume tiiat ¢ SONVETTeC
SRR AT

—_ — n
. - Tu 4 AT . . C s . .
to é& uniformlv in O | “hen there eoxicr: o ono pnbhourhoe !
U(XO) in N, 4« neighbouriicol (s ) in Y. 0 Tnterer v
and a constant o such ihat the following propecion bl ol
= SHCR et e Cn ol o e

Por any integer n > n there oxists a unicur Witwfnr

S S e , : : : .
€ C(x3Y) defined on U(x,) with values In GOl ) ek

(2.3) ¢n(x,gn(x)) A L S IR

1

i

. . Ny .
Moreover £, converges to ¢ oun.iormly in aelowe have

for any m integer with 0 «m < » - 1:

(2.u)

m
DMr, GO=n Gl Ly e D GG
m =

0 ’ )

aniformly in W(xc).

"roof (sketch). Consider as usual the auxiliarv functions

F(x,y) = (x,i(x,v)) and Fn(x.y) (x,ln(x,v)) which are

N . . . . - . .
{ mappinegs frem N ox Y into N x . TProceelding as in the

procf of Lemma 1 we have that the inverse functions G(x,r7) =

(x,¥(x,2)) and Gn(x.z) = (x,Wr(x.:)) ~xX1ist in 2 neighbour-
i

hood of  (0,0)  and (Osdn(xq,vq)) (revp.) with Tixed radiuss

obviously g(x) = ¥(x,N) an:d =otting fp(x) = WW(X,O)

(1llowed for n  big encurh) we ot the implicit function for



- AR W WS

¢ which satisfies (2.3). Proceeding as in (2.2) we obtain
(2.4) for m = 0. Then (2.4) has to be proved by induction;
we sketch the case m = 1: remark first that by a suitable
choice of U(xo) and U(yo) we may assume that the first
derivatives of & and ¢n are Lipschitz continuous (now
r>2). Hence we remark that Dy¢n(x,gn(x))Dgn(x) +

Dx¢n(x,gn(x))

in

0 and Dy¢(x,g(x))Dg(x) + DX¢(x,g(x)) = 0

so that:

Dy@n(x,gn(x))(Dg(x)—Dgn(x))
RS = $ - $
(2.5) (Dy n(x,gn(x)) Dy (x,g(x)))Dg(x)

+ Dxin(x,gn(x)) ~ DX¢(x,g(x)).

. -1 . .
< ¥
Since (Dy?n(x,gn(x))) is uniformly bounded and Dy¢n,

b i, ave Lipschitz continuous we have

(2.5) )Dg(x)—ﬁpq(x)HL(H vy

iA

c{HR(x)-gn(x)Hy+HDv¢n(x,g(x))-Dg(x)+Dx¢n(x,g(x))HL(X,Z)}

c{Hg(x)—gn(x)HY+HD§(x,g(x))HL(X,Z)

and (2.4) for m = 1 follows from (2.4) for m = 0 which
wis «lreriy proven. If r = 1 formula (2.5) together with
the niform continuity of D¢ and D_¢ shows that

X' n v n
DRn(x) converges uniformly to Dg(x) but does not provide

el of the form (2.4).




Remarik. I the totements of Lerona el Uheorem 1o b
viously need onlv that the unction F. F. EPOTNN .
(rospectively) are detinely continue o, ¢ro. In o o nolovbons -
hool o7 the noint ~x, (rero, o)

2.2. ny Theorom Lo oo 1o St i tollowing velsule
S b b e YooY rL LY Aoiutions.,

-
- SR I ~- e £ : N 3 . o
tamilv of < marrtings from UV ox IR inte

- . : . r . .
- . vy ~ . .- o . e N ~ar o o N PR
t> PO, unitormly in O p 0 then there oxist a neighbour-

hooa () ), v neighbourhoeod (w,), an h, > & and a

constant ¢ such that for ecacs h = hj there exists a unijue
C a

marping  u, (VM) Trom (X ) into (u.) such that

—— il —— w ——— N _— ————

TL(uh(X).\) = 2 in U(A,).  HMoreover uh(\) CONVerges uni-

& - 1. B . h ‘r‘ N ')\ te 3 - 3. . o . s ~

Cormlvoto o ua(\)  in JT(UCA) LYY and we have Tor oany integer

3

A

-3
1

| e \
s rhm(x),x))}

o m
(xh(\)-u(X))“v < c Z

h V

und formly o in L(XL).
A rer iy L ;

e
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Remark. When F(u,\) and Fh(u,X) have the form (1.1) and

(1.3) respectively, (2.7) takes the form

an
ax™

de

~—5 (T, -T)G(ulX),N\)
dxz h

(2.8) (uh(x)—u(x»

m
< ¢ )
\Y =0

v

that we already discussed in Section 1.2.




CHADPTER 3

3.1 Ler onpnow oo s nainTta (0 GhL) whoooe U_F(uﬂ~\q) ic

' \ . — -y

‘ ooan boomorphinn. Assanloe thoat o U(aa)) has the form (7TL1)
R TR B A S SR B ¥ VRSN S St A RS A To= identity ano

[ N : onhenees Lo ia g Fredholn opera-
o S S S YT TEE AN AN oo ol s Wi that (o)
. | A SR G R
E Ciiy o) : . Serralge of
(.1 ‘
I T ! F .
. N e . Vot ’ I SRS TR O 4 1 e
ERG IR walath ' o ‘ poE (= G V) suc
.
. i ( .. B B & 3
(+.2) Lo o= 0. = I TN S
. v il

(3.%) L. Soan fooemorphicm of 0 VL onte V..

—

he cpoomparition (C02) will e the starting peint for the

9]
o

Cieal Dlaranov-Sohmicdt Gecompesition that we shall des-
crite dn thT s sectian. We intre uce Tiret the operator

Coe LCVyY ) AR B T TE I
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(3.6) Qv = v - <v,wg>¢0
and we remark that F(u,\) = 0 in V if and only if

(3.7) QF(u,x) = 0

(3.8) <F(u,X),¢g> = 0.

The decomposition (3.3) will now be used to write the solution

(u,\) 1in the form

(3.9) u

H

Uy + ag, + v, a €ER, v €V

(3.10) LN WA 1 £ € IR,

The basic idea of the L-S procedure is to use equation (3.7)
to eliminate v in the expression (3.9), as an implicit func-
tion of ¥ and a. More precisely, let us consider the

auxiliary mapping

(3.11) F(g,a,v) = QF(uO+awn+v, XO+£)

which is clearlv a cr mapping from IR x R x V2 into VZ'
Ct:viouslv F(0,0,0) = 0; it is easy to check that
DVF(O,O,“) = L, which is an isomorphism from V2 onto V2
(3.5); therefore (3.11) defines uniquely v = v(¥,a) with
v(1,0) = 0 as an implicit function. TPlugging v(§,a) into

(3.2) we have that (3.7) is identically satisfied, so that we

have to deal with (3.8) only: setting




n Vo Tlultap tv(s
™) f(r,u) A(L.n @ AN

we easilv ahecl that = Uy toag, *
i v
a4 solution ot (1.1) 1 (&.,a) At

3.2. Assume now that. as in Section

r ) L.

family o U (ayn) o o 00 mappings whic
. . oy s -

o Fluun)  in Oy hviousty P Gy

0 and <Y}101.X).p;> = 0. lsing acai

(3.7, (2.1 we aan censider thoe oy
- . — N ,

(2.1%) fh(*,.g,v) = ‘»\1}:(uﬂ+u»p,\

since F, copveroes to Foouniformly
h
Theorem 1 which ensures, {or h o« IR
.
unique Yy, mappinT a neighbourhood o

a neighbourtos! = 0 in V¥ such

il

y,,(i,\/‘l({”a))

il

It 13 now eacy to vee that u = uo + awo + vh(&.a), r
A = XU o v solution of (1.3) i+ f

i - tag  tv !
(¢ ya) (Fh(un ae \H(,,X

i

15 clear that v}(g,a) fconvergoens
1

£

that

uniformly to

1), \O*F ),@(\.-

vt ya).
“len
(f > R) .

1.1, we are given a

ch oconvereges unt formly

A) = o 10 e (u,) =
h
n the Jdecompesition
iliary mappines
tv, xn+g);
. r
in  C we mav apply

the existence of a

(0,0) 1in ]R7 into

near (0,0).

), X”*E),tp;> = 0.

v(d,a)  in
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CI"

and hence fh(g,a) converges uniformly to f£(¥,a) in
Cr; a more careful use of the estimates (2.4) leads to the

following theorem (cfr. [6], [7] for the detailed proof).

Theorem 3. We have for all m with 0 sm=<r ~1

m
m £
(3.17) |ID (vh(g,a)—v(g,a))HLm(lRQ,v)5 CeZOHD Fh(g’a)nt.z(le,V)

m
™ L
(3.18) |iD (fh(g,a)—f(g,a))HLmCRZ,V)S ceEOHD Fh(g’a)HLngz,V)

where Fh(g,a) = Fh(u0+a¢0+v(g,a), xo+g); moreover if

a(t),g(t), jtj =ty is a ¢’ curve in a neighbourhood of

(0,0) and a, (t),g, (%), it] st, converges to a(t),E(t)

uniformly in C' we have for all 0 =m <7 - 1

dm
21?n—(vh(zgh(t),ouh(t))—v(g(t),a(t)))!lv

|

d8
—7 (ah(t)—a(t))
dt

m d
(3.20) £ ¢ ego ‘“‘Z (ih(t)-a(t)), +

¢

+ £LZ Fy (2 (), a () = D(h,m,t)
dt Y
and
dm
(3.20) 5 (f, (g (1) ,a, (£))=£(2(1) ,alt)) | = D(h,m,t)




ol

where D(h,m,t) 1is defined in (3.19).

In summary we may say that in a neighbourhood of a simple
singular point (that is, a solution (uO,KO) which satisfies
(3.1)) the Liapunov-Schmidt procedure and the "uniform con-

vergence'" Theorem 1 allow the reduction of both (1.1) and

(1.3) to two dimenvional problems

(3.21) f(&,a) = O fh(g,a) = 0
with fh - f in ¢" and with estimates of fh - £ of op-
timal type in terms of @' - F. From now on we shall essen-

h

tially concentrate on the two-dimensional problems (3.21) as
if they were our original problems. Obviously the various
hypotheses that we chall make on f(g,a) can be "translated"
into corresponding hypotheses on F(u,X), as has been done
in (673, [77; similarly the error bounds obtained in terms of
f and fh should be expressed in terms of F and Fh by
means of (3.9), (3.10) and Theorem 3 (see again [6], [7] for

all the details). We finally remark that if (u ) is a

O’XO
simple singular point we have f(0,0) = %g (0,0) = 0.




CHAPTER 4

4.1. We assume in this section that we are given a CT map-
ping f(¥,a) BR® » R with £(0,0) = 3L (0,00 = 0 and a
family fh(g,a) of mappings which converges uniformly in ct
to f(,a), as h tends to zero, in a neighbourhood of the
origin. We shall assume, first, that

The origin is a normal limit point for f(&,a),

(4.1)
that is 2L (0,0) # oO.

Hence, the implicit function theorem will ensure the exis-
tence of a unique c’  function g = E(a) from R to R
such that g(0) = 0 and f(g(a),a) = 0 near a = 0. Theorem
1, in turn, will ensure the existence of a unique o map-

ping ih(a) in a neighbourhood of the origin such that

fh(gh(a),a) = 0; moreover,for 0 sms=sr -1
a® %‘ at :

(4.2) — (£, (a)-E(a)) < ¢ — £ (8(a),a)].
4™ R 220 |{da®? D

Since %g (0,0) = 0 it turns out that necessarily %%(0) = 0.

We assume now that the origin is a "nondegenerated turning

point," that is

(4.3) d°E (o) 2 o.

|

N

65




(4.6)

We have proven

[heorem 4.

then there exi

In that case, for r > 2, we have from Lemma 1 that there
exists a unique ag near 0 such that
dg
h 0 _ .
(4.4) T (ah) = 0
moreover
dg
0y _ 0 h !
]ahl - |ah—0l S C W (O)l
(4.5)
afh
< c{lfh(o,O)l+|—aT (0,0)} = Dy(h).
Hence settin €O = g (aO) we have
& 5p h " h 7
dg
0, . h 0 02
golo= e 0] + g7 @ lapl v 0cla S

If

bb

1A

2
!fh(0,0)l + 0((D1(h)) .

the following thecorem.

(0,0) is a normal limit point of f(&,a)

h 0

0

st a neighbourhood U of (0,0) and an >

such that for

solutions in

0

have for <

(4.7)

gm
da

has a unique branch of

any h = hO,
the branch has the
1

fh(é,a\

U; form & Eh(a) and we

m=r

dz
— fh(z(a),a)
da

<

c
4

(Eh(a)—i(a)) .
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where ¥ = £(a) 1is the (unique) branch of solutions of
f(g,a) = 0. Moreover if r = 2 and (0,0) is a nondegen-
arated turning point for f then fh has a unique nondegen-
. . 0 O .
erated turning point (gh,ah) in U and we have:
of
; 0 h
(:.8) Iahl < c<|fh(0,0)] t 53 (0,0)]),
of
0 h 2
(4.9) B c(|fh(o,0)| P (o,o)‘ .
kemark . In many applications, as we shall see later on,
afh ?
[+, 0y} iIn itself of the order of laa (0,0)‘ , which
Lot ifles the notations in (M.8), (4.9).
4.2. We shall now assume that (0,0) 1is a simple critical
. Ty e Ty 3 7 a_f (n ,)) = N ind th
coint for f(g,a), that is o (0.1 = 0 and e
2.0 .. . .
Pam matr? nor 1t *he cricin 1o nonsingcular. It 1s
. 2.0 .
! ooosoo tThat 10 cdetr(DT ) - 0 then the set of solutions
(rya) = reear tho origin conslicte in the isolated
. ~ e N - T e + n 0
; (°L,0)y. o the other hand, inosume that det(D°f7) < ©
M cons ey the aumiliary finction
n .
(o) F('yo,a) = (¢t “i(to,ta), o +a -1);
Cois olear that 1 we find solutions of  F = C ol the form
o)) faen

— EEEEEEEEE—————— IR mh——.




“r () oz o)

—
o]
—~
T
~
1}

tti(‘kr)

has *to be a b»ranch of solutions o (r,a) = 00 Tnoordder 4o
solve  F =0 7 with the dmplicis oo sden thoorem owe lock Towe
Pl (JQ,LN) o that

An easy computition chowe that (4.1]1) represeonts the inter-
section of the unit circle with a degenerated hvperbola having
vertex in the origin, while (4.17) 15 catizfiecd cvervwhere

rr
1 ltenaoe

except on the oxes of the same degenevatod bhivperbol

3 il )
(4.11) (4.17) rovether pive four solutions (o ,a ), (o' ,a ),

1 1 ; ° . . - .
(=07 ,-a"), (-g ,-a’ ). Disregarding the la-t twoe {or cbviours
reasons (they will give the same branches with -t Instead

of t), we are left with two independent colutions. Applving

*he implici* function theorem we find two branches

ol (1) iz 1.2

1AM
1]

(h.17%)
a’ = tal(t) i=.2

"

Cocodutions of f 0 erossing transversally at the crigin.

. The previous result could have been obtained directly
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from Morse lemma (cfr. e.g. [1]1). However, an explicit cons-
truction of the two branches (4.13) by means of the implicit
function theorem will allow the use of Theorem 1 and make the
error estimates much easier.

The following lemma will be crucial in the study of the

behaviour of the set of solutions of fh(g,a) = 0.

Lemma 2. Assume that of _ of |

3% 3y ° 0 at the o?lgln and that

D2f is nonsingular at the origin. Assume that fh(g,a)

converges uniformly to f(g,a) in c®, r 2 2. Then there

exist a neighbourhood of the origin, N, and an hy > 0 such
0 there exists a unique point (gg,ag

that for each h < h

)

in N such that:

' 0 0
(4.14) : th(gh,ah) = 0
moreover we have:
(4.15) |50| + |a0| < ¢|Df, (0,0)]
) h h - h 7?

R2
The proof is an immediate consequence of Lemma 1.

We consider now the quantity

0

- 0 :
(4.1€) K(h) = f, (& ,a.);3

we remark that fh(g,a) has a simple critical point (neces~

sarily at (gg,aﬁ)) iff K(h) = 0; in such a case, if
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det(szO) > 0 the set of zeroes of fh consists of the

isolated point (gg,ag) and if, on the contrary, det(szO)

< 0, then fh has a simple bifurcation point at (Eg,ag).
Roughly speaking, then, fh reproduces the behaviour of f
iff K(h) = 0, which should be regarded as some kind of

"miracle'; however, some sufficient conditions to ensure
K(h) = 0 1in some particular cases (bifurcations from the
trivial branch, symmetry breaking bifurcations) can be found
in (91, [71].

We set now

(%.17) fh(E,a) = fh(é.a) - K(n)

and we remark that from (4.15), (4.16) one has

(4.18) K| = eClf, (0,00 ] + pf, €0,001%).
Introducing the auxiliary function

(5.19)  F_(t,0,a) = (t‘z%h<gg+to,ao+ta>,oz+a2-1)

h

comparing with (4.10) and using The w . ~e easily get (for

det(szO) < 0) the following resul*: the set of zeroes of

~

fh is composed of two smooth branches (g;(t),a;(t)), ]tlitoa

(1=1,2) crossing at (Eg,ag); moreover
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m , . m . .
d ,r1 1 d” ,~1 1
— (g ()= (t))| + [—(a; (t)-a (L)
at™ °h at™ !
m+1 d& . ;
(4.20) = c = T, ()| + [£, (0,M)]
¢=0 |dt
+ [Df,(0,0)]), (0smsr-3, |t[5t0)

(see [7] for a detailed proof). Clearly we need, in this
case, r > 3; the interest of (4.20) is mainly in the case
K(h) = 0; otherwise it will be enough to remark that, from

(4.20) (for m=0) one has:

de
2

fh(gi(t),ai(t))
dt

~ 2 1
(4.21) D(S8,8,) = ¢ sup
h <igl ego

where S and §h are the sets of zeroces of f and %h
(respectively) in a fixed ball centered at the origin and the
distance D(A,B) between two closed sets A and B is

intended as

(4.22) p(A,B) = max(sup inflix-y||, sup inf|x-y|).
X€A yvEB yEB x€A
We have now to evaluate the distance between §h and
Sh = et of zeroes of t in the given ball. TFor this we

~

remary that since fh has a simple critical point we may

pply, for anv given h < hys the Morse lemma to fh getting \

new vAarliableg
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(4.23) (£.,0) = Ry (& a)

in which

i

. . 2 . 0 8] - -~ - -
(4.°18) £ (z,a) D Ib(gh,ah)((é,u),(g,a))

(that is, fh is a homogeneous polynomial of degree 2 1in

the variables &, a). Hence we also have

R S B T
(4.25) fh(g,a) = D fh(ih,ah)((i,a),(&,a)) + K(h)
and the set §h of zeroes of £, in the (¢,a)-plane is as
follows:

a) if det(D“fh(éi

empty set following the sign of  K(h)

,ag)) > 0 §h is an ellipse or the

b) if det(D'fh(gg,ag)) < 0. §h is a nondegenerated

nyperbola.
In both cases one can check that

) = ¢ |K(n) |2

(4.26) D(S
provided that §h is nonempty. Since Rh in (4.23) is
uniformly invertible one has from (4.28)

a ) 1/2
(4.27) D(S,.8,) = ¢ JK(n) |

provided that § is nonempty.

h

We summarize the previous results in the following theorem.




P

Theore

with r > 3, uand assume that t, (¢,
— il

r

5. Assume that f(¢,a) 1is a

a ! mapping ?RQ + R

) cunverges uniformly

to f(&,a) 1in ¢C in a neighbourhood of the origin. Assume

moreover that (0,0) 1s a simple critical point of f(g,a),

0 0 _ .0

that is f = f_ = £ = 0 and \iot(IVfO) # 0. Then there

exists a neighbourhood of the origin

N and an ho - 0 such

that for anv h <« h”

we hdave the Tollowing results:

. 2.0 . . .
i) if det(D7f ) - 0, S, 1l an iscola, an isolated
point or the empty set follewing K(h) 7 0. f Sh is non-
o L Z i 15 non

emptyv:

(4.28) sup B8 = o m(h) |
TES
I
.. Lo A . .
i1) if der(D o)y o 0y Sy, lsdi
1L hoooAE

3 /0
;

ffoomoryhic £ a hyvper-
= —_— —_— ———

bola (degenorated 197 K(h) = ) and

we have!:

N 1] e I
S ! [ L1 1
= . ';\(h)‘f + e X Z ““P_ t ( (1L)qﬂ (4))
\t;\“ | - '\:‘\w 14‘,

: L : s

where 2 7o), o (t) (<1, 1=1,0) are the twe branches
\ L . .

. ) . - . R ) A NP 1 N
of woluvions of =0 in N (ancibones ST at () = 0);
moreover, Jf K = 0 the twe Dranclbes of solutlions of f‘] =0
RSN RS e e Dran AIAAE RIS LA St S }
can b parametrized in such a way that (L.20) holds,

We oot thar &0 oand 8 e the smets of ceroes of f




£

h
(4.14) (u.16)

and (respectively)

and

30) | K(h) |

Remark. One can show

a Jdouble orior

(cfr [1) that in the "pure Galerkin

for inutance [61,

.
in N and that K(h) 1is defined by
bounded hy j
- . 2 i
c(hh(m;;)! g, (0,009,

case" described in Section 1.7 ~ne has. with the notations of
Sootion 2.0,
i
N , , ’ . - ) N . P 2
( ) C o0 = (ind tamvy Lt ine o TE VFHV)
TR oy :

wiher o LevT) 1o the dual opverator of T. Hence under
roasiorial TN T a Fh(0,0) goes to zero twice
acs fast { et term In the proevious abstract estimates.
Tnowrther arpllotlons to mixed ard hvbrid elements a relation-
ship a- cimel o (4.31) does not hold, but still one can

rrove thot ff(J,P) coes to zero with a higher order (usually,
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CHAPTER 5

5.1. We assumed, until now, that our problem was governed
just by a real parameter X\ € IR. In fact, on one hand, many
physical problems are actually governed by more than one
parameter; on the other hand, other parameters could be con-
sidered, from the theoretical pcint of view, as "imperfection
parameters" in order to see if, in some "expanded space" the
numerical discretization reproduces the whole bifurcation
diagram. We shall give a simple example in order to make our

statements more clear. Assume that

(5.1) F(e,a) = £° + o°

and that fh(g.a) is a C° function which converges uni-
formly to f(f£,a) with all the derivatives. As we have seen,
the set of solutiouns of fh(g,a) = 2 can be: 1) an isolated
point; 2) an isola: 3) the empty set. There is little

doubt that, from the qualitative point of view, the way in
which the solution set Sh of fh(g,a) = 0 reproduces the

solution set § of f(g,a) = 0 is quite unsatisfactory.

Assume now that, instead, we have a two parameter problem
(5.2) f(g,a,uw) = 0

. 2 2
with  “(z,a,p) = & + a° *+ . Tor the moment we may assume

that 1 1s another parameter "contrclled from the exterior”

s that 1 iz an "imperfection parameter." Suppose now




that we dare given a family  f

({.l.u) o O ot T

h

which convergos to f(r,1,) uniformly with 00 the deriva-

i

[o%)

tives. Then asince

(2.,0,0) # 0 the impiicit funetion

(%)

JL

theorem and [heorem 1 give exintonce and aniguencass of the

functions

(5.3) OV CANND | (actualiv 5 = a0 =17)

(5.) T uh(ﬁgi)

fC:yawuCsaa))  and 7‘(R\q.uh(§.q)) vanish iden-

ticallv in a neilvabourhood of Moreover,

m
(5.5) lf“m(uh(rﬁal)—u(f.ax)){ SRS ) \f“(nfh(iqa,u(?\a))].

M oezo '
. 3 N ?
clnce  Du(n,0) = (<t 0,0), ou (0,0)) = 0 and D{(hu) = D'y
RS 3a

i nonsingular, Lemma 1 eonsures the existence of a unique

. 0 . . . 0 90
roint (th,ah) where Duh vanishes. Setting y :uh(ih,ah)
. . n . .
1t 1w easy to check that Wy Lioan absolute maximum for Ky

in a neighbourhond of the origin so that th» solution set

SH(H) ot fo(f.a,n)  in the (A ,1)-plane is empty for

0
- N . . . c .0
o 0 reduced to the isclated point (Eh’q]) for
1
- 0 . . . - . .
o= by, 4nd 1ooan 1sola for u < uh. Hence, 1f we conusider
i

"

wooas an "imperfection parameter” we may draw the following
pictures, for the continuous and for the discretized problem,

"space of perturbations” uw € IR
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isola empty
0 L T
fig. 5.1
isola empty
* — fh =0
HQ u
n
Fig. 5.2

and the qualitative reproduction of the bifurcation diagram
is by far more satisfactory. We may also prove, with little

efort, that

: af, ) 3f 2
i . i Y o0 h
(5.6) }uhl = C("h("’b’”' tgs (0.0,00) + 5E (0,0,0)' )

which, in the appllications, mav provide, as we have seen, a

)

otrer order of convergence. Suppose now that we consider

L dan 1 parameter controlled bv the exterior. An elementarv

1

computation shows that in the "space of parameters" (E,u) ¢

A
=0 we have £

~r f(E,a,n) = 0 the following situation

b i A A e




:M
5 >
= f
R
B =g
Tl 5
\
where the paralola g = -£7  =zeparates the two regilons

RD = {((p,E) if({,a,ﬁ) = ¢ has no solutions} and

RQ = {(Q,i) IF(E,a,g) = 0 has two solutions ay # a,
2
viously a "louble” selution 1s present on py = -E°
consider now the mapping
) af
(5.7) G(g,a,u) = (f(i.a,u),gg (£,a,u))
and 1ts approximation
th
(5-8) Gh(éaaau) = (fh({,a’u), ’a—'a"‘ (E‘,a,}.l,))
0 1
Tlearly 6(0,8,9) = 0 and D ¢(0,0,0) = =
(a,w) 5 0
singular. Hence we may have a = a(£), u = p(E) as
—

}. Ob-

Let

[93)

non-
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Vi,

functions satisfying

(5.9) Glg,a(g),n(g))

m
o

Theorem 1 yields now ah(é), ah(g) such that

(5.10) Gh(i,ah(g),ﬁh(i)) = 0

with an estimate on ah(g)-a(g) and ﬁh(g)—ﬁ(g). Clearly
(5.11) ﬁh(g) = uh(g,ah(g))

from the uniqueness of the implicit function; it is also
obvious that {(g) = —Ez. Therefore we have, in the space of
parameters (&,u) the following picture for the approximate

problem

f
\
B ;Y

]

sl

“h 0

A

o
.
ey

Fig.




It is also easy to oh

verges uniformly to

I I
3
aQ {L!]
ow that  ———= « 0 near zeoro (it con-
AE

in some fixed neirhicuriocod ¢! tihe rigin, where fh(i,a,ﬁ)
0 has more than two solution. a. Agaln a comparison

between flgures .3

which 13 much

nore od

obtained on that sim

v

Thecrem 6. Asgume
(5.322) (g

toery . e summar iz

cdan

le example 10 b followire theoren.

that

sa.p) =2 o+ gt o+

. - .,
and assume that we are oiven 4 f.(Eya,p)  of N

functions which converges: to f(f.a,p) uniformly with all
the derivatives in a n-oichbourhood of the origin. Then we

have t1h ol low

ing re

Siln bae

2)  In the whels oy e (£.,a,0):  there exists, for
h < hq, 3 unio, e 7 maoping

-

in 4 neighbouriiond o

5.1t f
( i) h

and we have:

u, (Eaa)d

(0,0)  ~uch

that

(E,a,uh(i,a)) = 0

a1d that there are no regilons,

now a gualitative agreement

the results
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m
(5.15) |Dm(uh(€,a)—u(£,a))| < e ] lDefh(E,a,u(E,a))l
£=0

where p(g,a) = —€2 - a“.

b) In the "space of perturbations" p € IR: there exists
a unigue ug such that the set of solution of fh(E,a,ﬁ) = 0
. . . . - 0 ..
in the (&,a) plane is: 1) an isola for u < My ii) an

. . - 0 N -
isolated point for u = p3 1ii) empty for p > “E' More-

over
(5.16)  |ul = e(]f,.(0,0,0)[ + D £ (0,0,00]%)
- @h - h b 3 (E,a) h bl ? .

"
- 4
c) In the "space of parameters™ (E,a) € IR : there

exists a unigque mapping

(5.17) o= [\L}‘(F,)

L e, . ) . i h
whiloh divldes o (iop)  plane in two regions RO and R,
such that tor (7 ) € b the equation (in a) fh(g,a,ﬁ) =

Nane colncions oand for (Bup) € R? the eguation (in a)

ST ayu) = o0 nac o rwo Jistinet solutions. Moreover we have:

o <a”<r>—&<i>>{

(i)
o f 4 ].8 af)
] B L 0LREN | | S g (B, 0LHED)
I i ' di




_g? realizes the analogous partition of (&,u)

where (&)

into R, and R, for the continuous problem f(£,a,u) = 0.

Remark. Our assumption that f(&,a,u) has exactly the form
(5.1) is obviously unnecessary; as a matter of fact, in the
proof of Theorem 6 we only need suitable nondegeneracy condi-

tions on the partial derivatives of { at the origin.

Remark. An exchange in roles of u and &, bv considering
4 as a parameter and & as a perturbation will not give

. . . 2

interesting results. In fact, the equation a” + u = 0 has
a nondegenerated turning point with respect to the parameter
uw and such & diagram, as we have seen, is alreadv stable

under small perturbations (see Sect. 4.1).
5.2. Let us consider now a different example; assume that
(¢ ,a,p) has the form
3
(5.19) f(Z,a,u) = a - pa + &

(this form is typical, for instance, in the von Ki&rmédn non-
linear plate bending equations). The form (5.19) can be
considered, on one hand, as a perturbation of the "pitchfork”

form

(5.20) F(E,a)

1"
Q
|

=

Q

"
(=]

or, on the other hand, as a perturbation of the '"mondegecnerated




hysteresis" form

(5.21) fCg,a) = o -

HAN
I
o

o

Let now assume that we are given a family fh(g,a,u) of C

functions which converges to f(&,a,p) uniformly with all
the derivatives in a neighbourhood of the origin, when h
tends to zero. It is easv to check that for h = hO there

exists & = & (a,u) such that
h

[[H
o

27 f
(5.22) ~h(£h(a,u),a,u)
nd gh(a,p) converges to &(a,n) = pa - a3 with all the

.

derivatives. This solves somehow the problem "in the whole

1

space.” Lot us now have a luvok to the "upace of parameters”

(e,u). It is easy to see that, for the continuous problem

£(g,a,n) = N the curve
.\
. - 34
T t
i
(5.23) <' .
K\l’ = >y
ceparates the two repions =0 and Foooor Mone solution" and
4 -2

"ehpoe solutions” (respectiveiy) oas o oin Fig 5.5,
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(5.25) Cleaayu)

Clearly GC2,0,0) = (C2,0)  an’ i(‘ )f(“,j,?) iz nensingulars:
: Wl

hence, from Theorem 7., there exist, together with the implicit

3

Ja’, u = fa , two "discrets implicit func-

functions 4

(5.08) B (a). i, ()

Thrent + 5 4
SUTH }’-“1\_

e
(o)
Y

(3.77) fh(ih(a),a,ﬁh(a))




of, i
(5.28) —a?(ih(a),a,uh(a)) = 0.

The two functions (5.26) define parametrically a curve which

F2
converge to pu = 3 (y%) . We may remark that (5.27) implies

F > ~
a_h afh agh afh auh

(5.29) 34 + ag Sa + au Y = 0
afh
and since 3 # 0 one gets
3l 3E
h . h _
(5.30) 2a  ° Q o= 33 = 0
so that the curve u = dh(a), £ = gh(a) does actually have

- . 2 .
a cusp, because uh(ﬁ) converges uniformly to 3a with all

At
; . . “h
the derivatives and hence 33 has one and only one zero
(cfr. Lemma 1). Therefore, in tne "space of parameters" the
behaviour of the 1iicrete problem is of the type of figure

5.0,

———- —

Fig., 65.¢




We may now pass to the "space of perturbations” in two
different wavs: by considering 1» as a perturbation or by
considering & as a perturbation; the situation is different
in the two cases: 1if u 1is a perturbation we have diagrams

of the following tvpe

*/ <

" T
Fig. 5.7
—'// ‘MS’» £ = 0
—m - bi =
0 : h
By
Fig. 5.8

Te ug being the abscissa of the cusp in Tig. 5.6,

£ is considered as a perturbation parameter we mav have

~< <

0

it

o
B
™

Fig. 5.9
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Fig. 5.10

where ¢’ will correspond to the presence of a hysteresis
h ’

roint and 5& to the presence of a bifurcation point. We can
5ay, there! , that the introduction of the perturbation
parameter o has claritied the nondegenerated hysteresis case
(2.21) while the introduction of the perturba*ion parameter

£ hag not resolveld In @ satisfactory wav the pitchfork case

(5.20)0.

Remart . The orvoy entimaten, oo thl similar to the

ores o Theorer 0 qre ot Gt FIsnlt Lo work out: we leave it

A0 an owercl ..

5.3. It =2oms oo ttaral o oro ash the roliowing question:

Wit oioot e 1on vl Meertentation rarameters,”" for

T vt I N S S BV EE RS S STRAIN IS BT 1acrete problem,

e . Sion oo the whoole Plrarveation Gilacram in

: Tanno b per bt s 7T Iimiortunate v owe o are not o oable
ooy o e st ion, However, ony v L Do thiat the
R P ST Dol et mmmber S parameters of the

mirimil cniverosl ool e o the s vinal oreblem, in the
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It is possible to show (cfr. [4]) that two similar curves
exist for the discrete problem, that they cross at just one
point (pitchfork for the discrete problem) and to estimate

their speed of convergence. For other examples and different

applications, see [41].
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THO-DIMENSIONAL APPROXIMATIONS OF THREE-DIMENSIONAL MODELS
IN NONLINEAR PLATE THEORY®

. *
Philippe G. CIARLET

Abstract

The asymptotic cxpansion method, with the thickness as the parameter,
is applied to the nonlinear, three-dimensional, equations for the equilibrium
of elastic plates under suitable loads and appropriate boundary conditionms.
It is shown that the leading term of the expansion is solution of a system of

! cquations equivalent to a well-known two-dimensional nonlinear plate model,

namely the von Karman equations.

The existence of solutions of the two~dimensional prnblem is established
in all cases (by contrast with the three-dimensional model, where no satis-
factory existence theory is as yet available). It is also shown that the dis-
placement and the stress corresponding to the leading term of the expansion
have the specific form generally assumed a prior: in the usual derivations of
two-dimensional plate models, In particular, the displacement field is of Kir-

-chhoff-Love type.

This approach clarifies in particular tnie nature of the admissible
three-dimensional boundary conditions for a given two-dimensional plate model.
A discussion is also given regarding the class of admissible three-dimensional

models.

(*) To appear in the Journal of Elasticitv.

Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, Paris.
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1. INTRODUCTION, This paper gives a brief description of a method

for deriving known nonlinear two-dimensional plate models from general
nonlinear thrce-dimensional elasticity models. It is based oﬁ, and extends
as regards the consideration of more general constitutive equations, Ciarlet
[1980] , where complete proofs can be found. .

Our approach is based on the asymptolic expansion melliod, applied to
(nonlinear in the present case) problems posed in variational form, Without
any a priori asswmption, either geometrical or mechanical in nature, it is
shown that the first term in the expansion is solution of a two-dimenstional
plate model, equivalent to the von XKdrmén equations.

A feature of the method is to clearly delineate the type of boundary
conditions for the three~dimensional model which lead to a specific two-di-
mensional plate model.

Another aspect of the method is that the displacement and stress compo-
nents corresponding to the first term in the asymptotic expansion are of the
specific forms generally ascwmed in the literature as a rcsult of appropriate
a priori assumptions. For instance we shall find that the displacement field
is necessarily of Kirchhoff-Love type, while this is generally an a priori
assumption of a geometrical nature.

In other works, the asymptotic expansion method has been shown to apply
equally well to :

(1) linear plate models [Ciarlet and Destuynder, 1979a]l, for which it
provides in addition a satisfactory error analysis [Destuynder, 1979] between
the three-dimensional and two-dimensional solutions (the error analysis rests
upon methods developed in Lions [1973]) ;

(ii) etgenvalue problems for plates [Ciarlet aud Kesavan, 1980] ;

(iii) linear shcll models |[Destuynder, 1979),




1t e aloc wutth mentioning that wheteas the abpynptotic expansion method
is coumorly used for linear problems, it is seldom applied to nonlinear pro-
blems ; in this direction, see however Lions [1973], Rigolot. (1977} .

‘Let us review some of the notation used in this paper. The usual par-
tial derivatives will be written aiv = avlaxi, Bijv = azv/’axiaxj, ete . .
If ® is an open subset of 5“, we denote by Wm’p(@), mCN, 1<p, or Hm(G) if
P = 2, the standard Sobolev spaces,

We shall omit the symbol dx in an integral of the form I f(x)dx, except
in those int.grals where the variable of integration is x3€ [—)l(,l] , in which
case the specific symbol dt will be used.

As a rule, Greek indices ; a«,B8,p, .., take their values in the set {1,2},
while Latin indices : i,j,p,. , take their values in the set {1,2,3}. The
repeated index convention for summation is also systematically used, in con-
junction with the above rule. |

W.th each vector-valued function v= (vi) :@c 53“*53, thought of as

being a displacement ficld in 53, we associate the symmetric tensors

y(v) = (Yij (v-)) and y(v) = Gij(v)) : Oc 53 —»RY respectively defined by
1
Yij(v) = 7(aivj + 8jvi)’

- !
Vi) = g0+ g viv,

which are the linearized stratn *ensor, and the strain tensor, respectively.
Finally, if C is a square matrix, we denote by tr(C) and det(C) its

trace and its determinant, respectively,

i
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2. THE THKLE-UIMENSIONAL MOLCL, Let (&) be an orthonoimal

basis in 53, and let w be a bounded open subset of the plane spanned by
(eu), with a sufficiently smooth boundary y. Given a constant €>0, we let

Q% = wx]-e,el, TG = v x [-¢,¢€l,

r: = a)x{C}, FE = U)X{PC},

so that the boundary of the open subset dc of 53 is partitioned into the
lateral surface I‘g and the uppaer and lower foces I‘E and I‘E.

The problem consists in finding the displacement vector field
u= (u;) : @~ R3 and the second Piola~Kirehhoff tensor field o = (oij) : 3 R?
of a three-dimensional body which occupies the set @ in the absence of ap-
plied forces. Recause the thickness 2¢ of the body is considered to be
"small" compared to the dimensions of the set w, the body is called a plate,
with middle surface w.

The plate is subjected to three kinds of given forces :

(1) Body forces throughout Qe, of density
€ £
(fi) = (O’O)fs) ]
(ii1) Superficial forcrs on the upper and lower faces F:andrf, of density
€ €, .
(gi) = (Osoafa) H

(iii) Superficial forces along the lateral surface Fg, of which only the
resuliing density

(h;) = (h},h5,0),

i.e.,after integration across the thickness of the plate (cf. (2.4) below),
is known along the boundary vy of the middle surface w (as a consequence,
the functions h; are given only on Yy).

As regards the boundary conditions involving the displacement field

(ui), we assume that :

“MOENOEEEESTNAE  UT NN DR R A 7R R R - TR e AT e Y
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€
on T .

u; and u, are independent of xj,
} 0

u; =0,

These conditions arc 1 adily verified to be complementary to those invol-

ving the functions h: in the variational formulation of the problem (cf.
(2.20) below).

Following Truesdell nand Noll [196%], or Wang and Truesdell [1973},

the associated equations of finit. olastrstzties, which express the elastic

equilibrium of the plate, take the following form :

£ . £
. - 2.(a,. ApuL) = f,
(2.1) 33(013+0kJ‘ku1’ f1 in Q,
€
2. ..o= o0, i 2
(2.2) c1J 0]1 in Q,
€ c
. o .
(2.3) oi\ o“Dkui Yegoon I’,
i € €
. .. T =
(2.4) 2t [ ,(Lar’ koMt Ve T e o Y
(2.5) up, u; are independent of xj on Fg,
.€
(2.6) u, = 0 on IO’

where v = (v;) denotes the unit outer normal vector along y (and consequen-

tly, also along the lateral surface T;).

Remark 2,1, The reason why we sct tf = f; = 0, gf = gg = 0, and h§ =
is simply that the consideration of such more general applied forces leads
to plate models different from (and more complicated than) the von Karman
equations. N

Kemark 2.2, 1f instead of the boundary conditions (2.4)+(2,6), we had

chosen the (perhaps more familiar) boundary conditions :

€ €
(OQB+°k83kua)vB =h, on T/,

t
u, = 0 on ro,

0,




serious difficulties would arise in the subsequent analysis. In particular,
it scems that this type of boundary conditions along the lateral surface

does not naturally give rise to a two-dimensional plate model. [ |

According to the Riviin-Ericksen theorem (cf. Wang & Truesdell [1973}),

the most general constilutive equation for an elastie, tsotropic, material

which satisfies the principle of frame tndifference is of the form :
-1
(2.7) o = \/IIIC{WO (Ic’IIc'IIIc)C +sol (IC,II‘:,III‘:)I+ﬁP2 (Ic’IIc’IIIc)C}’
where I denotes the unit matrix,
C=1+2y, withY = Y(u),

denotcs . he (right) Cauchu-7reen tensor, Ic, IIC, IIIC denote the three

principal invariants of the tensor C (whose eigenvalues are denoted Ay,Ap,A3)

Ic = )‘1 + A, + Ay = Cii = tr(C),

i 2
I = Ah, + 0+ Ay = o (er0)? - er(c) ],

I = A M), = det(©) = ¢{(ex0)? - 3exC er(c?) + 2ex(chH},

and finally, ¢, % and ¢, are arbitrary functions.

¢. to be smooth cnough, onc can write

¢ 2

Assuming the functions Yoo ¥
a Taylor expansion of (2.7) around a natural state (o = 0 for C = 1) <n
torms of ti. ctrain tencor y. Thus for instance, if we limit ourselves to

sccond order terms, we find a constitutive cquation of the form

K (2.8) 0 = A(try)I + 2uy + ay2 + b(ery)y + c(try)?I + d(erY2)I + . ,

[ where X, w, a, b, ¢, d are constants, The two constants A, u are the Lamé
coefficients nf clasticity ; they satisfy the inequalities (cf. Wang & Trues-—

dell [1973])

(2.9) A>0, u>0.

Wt .
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The same type of constitutive cquation can also be drawn from the
assumption that the material is hyperelastic, i.e., that there exists a

strain enecrgy function

(2.10) M (F) = W(oy,05,03),

vhere

F = (Fij) = (aj‘ui)

denotes the deformation gradient matriz, and

I

o, = try .
1 Y ii’

n
<

= —-2 = "
02 tr(Y ) Yl_]Y_]l’

g3 = tr(?) = ?injkvki’

in such a way that the f.rst Ficla-Kirchhoff stress tensor

def
(2.11) tij - oij + okjakui
satisfies
_ o
(2.12) tij SF

1]

Then if we express that the cnergy

€
(2.13) J(v) = J EVKF) - {J fzv3 + f eggv3 + J {J vudxs}hz]
f

is stationary (i.e., its derivative vanishes) when the functions v span a
space of smooth enough functions which satisfy the boundary conditions (2.5)-
(2.6), we are naturally led to a constitutive cquation. To be more specific,
assume that we can expand the strain energy function (2.10) in terms of
powers of 0;, 0y, 03. Then if we limit ourselves to the quadratic and cubic

terms in this expansion, i.e., if we write

wi>

A
(2.14) W(o,,0;5,03) --Eof + uaz + 0? + Bolo2 +

wio

0y * -y
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we find that (ef. John [1971), Novozhilov [1953])
(2.15) 0 = Xo, 1 + 2uy + (C+4u)y? + (2B+2))oyy + (A—%)ofx + (B-u)ooI + ..

In other words, we find a constitutive equation of the same form as
in (2.8), but with only 5 arbitrary constants (instead of 6 in (2.8)), be-

cause of the assumption of hyperelasticity.

Remark 2.3. When the higher order terms (represented by three dots)
are omitted in (2.18), the resulting constitutive equation is sometimes
know as Murnaghan's law, after Murnaghan [1937], although it seems to have
been first considered by Voigt [1893-1894]. For the actuel computations of

the third order terms in (2.8), see Novozhilov [1953]. (|

We shall henceforth assume that the constitutive equation is a poly-
nomial in terms of the components of the strain tensor y, i.e., we assume
that the expansion (2.8) is finite ; hence we do not have to examine ques-—
tions of convergence in otherwise infinite expansions.

We also make the following assumption, which is crucial for our sub-
sequent purp;ses, and which shall be commented upon later on (in Section 5)

The Lamé coefficients appearing in (2.8) arec of the form
(2.16) AT = eTTr, Wo= € u o,

where A and ul arc constants tndependants of €, while the other constants
which appear in the constitutive cquations (2.8) arc independent of e.
With each tensor X = (Xij), we assoclate the tensor Y = (Yij) = AX

defined by (Gij is the Kronecker symbol)

]+\))x

\Y]
Yii T 055 )X B X i

1]

where the constants E and v are related to the constants Al, u! appearing

in (2.16) by the relations




Ev E

) S A )
A " TCivy)
Since

(Aa~ly).. = aly 5. 0+ 2uly..
1) pp ij 1]

we can also write the constitutive equation (2.8) as

R}
5 3 - 3 . - |
(2.17) ¢ (Ac)ij wij(U) + € } A , vk C) ey Wty

Y

25q=Q IJy'i'\’zml\?q—l-i‘q 1"z 2q-. 2q

for appropriate constants dijklk?“'kzq-ikzq.

The three—dimeneional problim is now completely defined, by the
data of the equaticns of clasi?ic cpdU7brtwr (2.1)-(2.6) and of the cons-
titutive ogetiton (2.17).

As regards existence theory for cuch ronlinear elasticity models,
one can extend the analysis given ia Ciarlet & Destuynder [1979b] (which
relied essentially on the implicit [unction theorem, Lp—regulnrity results
for lincar elliptic systems, and the fact that the Sobolev spaces w"P(Q),

9(253, are Banach algcbras for p>3), and show in this fashion that for

emall encugh applied forces (fi)Ef(Lp(Q))3, the pure Dirichlet problem

- Lo ) o= f. 1 CRr3
aj(oiJ+ kJBkul) f] in QCR7,

(u) -y

; (u),
Zq—leq Kyko k2q—1 2q

Aoy, = ¥ () + 2,

a..,
2q<Q 13k Kk, k

u = 0 on the boundary of Q

(assuming the boundary of Q iIs smooth enough), has a solution in the space
| 2 s
(wo'p(n)ﬁw ’p(sz))?. tor p™ 3. This/also the approach of Marvsden & Nughes

[1978, p. 208], Valent [1978].

Remark 2.4. 1t is precisely the lack of awailable regularity result
(for the linear elasticity system) in the case of a cylindrical domain such

as 2% and of mixed boundary conditions of the form (2.3)-(2.6) which limits

fi

-

— —

4____‘____._____——-“
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the applicability of the method to pure Dirichlet problems and domains with

smooth boundaries. |

Remark 2.5. Under the same assumptions, one can also prove the 1-I|
character of the mapping
pix€EQ — p(x) = x + ux),

a highly desirable property of the solution. [ |

Regarding existence theory for nonlinear elasticity models, we mention
the fundamental results of Ball [1977). For yet another interesting approach,
see Oden [1979]).

We notice at this point that a variational formulation of equations
(2.1)-(2.6), (2.17) consists in expressing that the pair (u,0), with u = (ui)

and ¢ = (oij)’ satisfies :

(2.18) uevt def {v = (vi)G (wl,pmc))B ; V1, Vo are independent of xj
on rf,, vy = 0 on I‘S],
(2.19) - oelt Yt 1o (r e (L2@)? ; r,, =T, ]
) ij SR S IR P S

(2.20) YvevE, I

oijyij(v) + J °ijai“zaj"z=
€ qf

€

€ € €

-[ v, + J gyv; * I {J vudXJ}hu’
¢ roors Uy e

Y]

Vi e J¢, ¢3 - |
(2.21)Vvr e ¥, ¢ (Ao)ijxij Iijyij(u) 5 Tijaiulajul
€ QC nE

]
3% T
e a,. Y (u) .y (u)r,. = 0
2%<q Lk ko quvlqulnc kyk, 2q-1,29 ij i
provided the number p is chosen to be large enough, so that all the inte-
grals make sense. 8
i — = O TR
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s . . €
Remark 2.6. Specific regularity assumptions on the data £3, gg, h§

will be made later on. For the time being, it suffices to assume that they
are smooth enough so that all integrals appearing in (2.20)-(2.21) make

sense. : ._
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3, DEFINITION OF A "LIMIT” PROBLEM FOR € = 0. Our first

task is to define a problem equivalent to the variational problem (2.20)~
(2.21), but now posed over a domain which does not depend on €. Accordingly,

we shall successively define appropriate 'changes of variables and changes

\
of functions. We let

Q=uwx]-1,1[, Fg=yx[-1,1],
r,=wx{1}, r_ = ux{-1},

and with each point XEQ, we associate the point xfen® through the corres-
pondence

X = (x1,x2,%3) €T — X& = (x1,%2,€x3) €Q°.
With the space VE, Ec of (2.18)-(2.19), we associate the spaces
(3.1) V= {v = (vi)E (w"p(n))3 s vy, v2 are independent of xj

€ €
on I‘o, v3=0 on ro}-

= = 2 9 . =
(3.2) P=lv= (e ®®)® s vy, = 1y5h

. . € . .
With the functions (vi)EV ’ (Tij)ezc’ we associate the functions

(vi)ev, (z';'j)ei defined by

(3.3) v (X5) = vi(x), vi(x©) = evi),

€, _ -1.€ €y _ € €, o .€
(3.4) IGB(X ) = € 1QB(X), 1“3()() TM(X), T33(X ) 133(X).

for all corresponding points xcca® and X€Q.
As regards the data, we shall assume that there exist functions

f3, By» hu which are independent of € such that

’ €,,C
(3.5) £,(X5) = £,(0),

(3.6) go&%) = eg, (X),
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(3.7) ho(y) = €7 (y) for all points y€ 1.

The above relations have the basic effects that some integrals appea-
ring in the variational formulation (2.20)~(2.21) of the three-dimensional
problem are left unaltered, up to an apprgpriate multiplicative power of €.
More specifically, one has

= 2 € €
Jnecjinij(v) € Jncinij(v )

for all corresponding pairs (v,o)GVE XFC and (vc,oc)ev xX, and

€
€ € €
| e e ] 4 vt -
] LvYr_ Y ’'-

€
€ € b
" 52{[ fyvy.+ I g3vy * J {J vadt}hu’
i r+LJr_ y /-1

for all corresponding functions vE V" and vCEV. Notice that the integrals
appearing in the above equations precisely represent the classicial duality
(in elasticity theory) between the stresses and strains on the one hand,
and between the forces and displacements on the other.

2

. The justification of the scaling factor €* is twofold : first, we want

v

0 and secon-

the asymptotic expansion (3.17) below to start with a factor of ¢
dly we want equations (3.18)-(3.19) belov to contain all the terms appearing
in the equations found by the same process in the Iincar case (cf. Ciarlet &
Destuynder [1979a]}-
atter
It is then a purely computation§$5zf—;;1ablish the following result,

whose interest is to formulate the three-dimensional plate problem in a form

where the dependence on the parameter € is very simple :

THEOREM 3.1. Let (uf,0%)€vx L be constructed from a solution

(u,0) evcxzc of (2.20)-(2.21) through formulas (3.3)-(3.4). Then (uc,oc)

is golution of

=y ——-—r—-—-"-e?

v

o :A
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3.8 yvev, Bt v + 285" 00 + 228,05 0w =Flw,
(3.9) viel, oo, 1) + e2(0%,1) + " Ay(c®,7) +
+ é(! u ) + o(r uc,u ) + €2 Z(T.;‘c’uc) +

+€a(é;1,u Yy =0,

where, for arbitrary elements u,v€V and 0,162,

(3.10) - Baw - - L, (57559

(G.11) Go(t,u,v) = - %f JRARS
1

(3.12) %Z(T,u,v) = ~ 7[9 1J31 anva,

(3.13) ?(v) = - U fiv, + [ g3Vy *+ [
Q

1
{[ vadt}ha] ,
I‘+U r_ Yy ‘-1

where the functions f3, 83> ha are those appearing in formulas (3.5)-(3.7),
l+v
(3.14) cz’g(o,'{) = In[( )oaB T ouusaB]TGB’

\Y
- = + 1
%33 " E¥3Tm * % 33)}'

(%.15) a?(U’T) = f {2{|*V
(3.'6) ; aO(o’T) = 'é_j 033133’
Q

andd’.(r.,r,uc) 16 a polynomtal with respeet to €, whose coefficients, which

are integrals over Q, are tndependent of e. [

Since the forms @, (&0, (&2, fﬁ, CZO, az, a“, are all independent
of €, as well as the coefficients of the nonnegative powers of € in the
polynomial Q(c,r,uc), and since ¢ is thought of as being a "small" parameter,
we arc naturally led to define a formal scries of "approximations” of a
solution (u%,6%) of (3.8)-(3.9) by letting a priori (the leading term (u,0)
in the following .expansion should not be confused with a solution of the ori-

ginal three-dimensional problem)

3.17) (uc,oc) = (u,0) + c(ul,ol) + ez(uz,oz) 4+ ..
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Then, folliwing the principle ot the oyt 00 copnedon moth ., we equate
to zero the factors of the successive powers (p. p”20, in the expressions
obtained when the expansion (3.17) is used in (3.8)-(3.9).

In this fashion, we find :

(i) equations to be ratisfied by the first term ;

(ii) recurrence reclations for the following terms (of course, nothing
guarantcces at this stage the cxistence of the terms (u,0), (ul,ol), etc.,
let alone the possible convergence of the series (3.17).

In the sequel, we shall be concerned with the computation of the

first term (u,0) which, according to the above considerations, should satisfy :

(3.18) vvev, Bo,v) + 28,60,u,v) = Fvy,
(3.19) vicl, @oo,1) + Bi,u) + Byta,u,u) = 0.

In this respect, our main results consist in :

(i) establishing the cxistence of (at least) one solution to the
"1imit" problem (3.18)-(3.19) ;

(ii) recognizing a known two-dimenstonal plate model in this same limit

problem,

. J

BT GG T A ——

!f-
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lj, EQUIVALENCE OF THE "LIMIT" PROBLEM WITH THE VON KARMAN
EQUATIONS, We let

gt it

€ €
84, = By OD T+,

and we denote by av the exterior normal derivative operator along the boun-
dary vy of the middle surface w. We first establish the equivalence of the

"limit" problem (3.18)-(3.19) with a two-dimensional, displacement, model :

THEOREM 4.1. Asswme that the data have the following regularity :
(4.1) faelﬁ(n), 83512(PJJF_). haefﬁ(Y).
and that the functions hy verify the following compatibility conditions :

@ (-
Y

Eqs. (3.18)-(3.19) have at least one solution (u,5) = ((ui),(oij)]

h2 = J (xlh2 -xzhl) = 0.
Y Y

in the space V x ), which is obt.ined as follows :

First, onc solves the two~dimensional problem : Find u0 = (ug) tw— R3 !

such that
.3) 2E 4200 - 260 (u0)a .ul = + + ! £.dt| in w
. 3TV 3 aB a3 = B3+ T8 T ] 3 '
0 (,.0y = &
(4.4) auoaﬁ(u ) 0 inw,
0 . 0 _
4.5) uy = 3 uy = 0ony,
(4.6) oga(uo)va = hB on vy,
where }
{
0 (,0y def _E _ 0 0
(4.7 °ae(“ )y = TT-_\a?){“ v)YaB(u ) + vy, e )6u8] !
1
F 0 ‘

04 .0
+ vauu33 u-é }.

‘ - 0
* 2(1-\)2){(I VI3 ugdguy w3%R

Thic problem has at least one solution u? = ((ug),ug) in the space

- e - -

(13 w)) 2 x (02 () N () .
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Secondly, omne defines, for (x),x3,x3)€R,

(4.8) U3(X1,X2.X3) = ug(xl,xz),
4.9) u - ug - x3?aug.
e g0 (y0) - _EX - 0 0
(4.10) Oy = 905" Tn——i‘lﬂ“ VI3 gud + vAusduB},
E(I—xz) 0
(l..ll) 038 = 083 = - —2—“—_-;3—)-3&Au3,
) X3

i -1 1

(4.12) o , = Syt » 2y o (R I-lfadt - I-Ifadt}

2 2
Ex3(1-x3),2.0 _ EQ-x3)1,\_ 0 0 + \(Au0)2
+—J—-ﬁ16(‘_v 3 %0 “'—3_2(1-\; ){(1 v)3u8u33u8u3 + v(sud) }.

Conversely, any sufficiently regular solution of (3.18), (3.19) e
necegsartly of the form (4.8)-(4.12) with ul = (ug) solution of problem

(4.3)-(4.6). |

Let us briefly sketch the main steps in the proof of this theorem.

Step 1 : In (3.19), we successively choose "trial" functions rC-Z of

the particular forms

(4.13) T = (Tij), with TGB =Ty, o,

(4.14) T = (Tij), with i " 0.

Then if we restrict to solutions for which uy is sufficiently regular, we

find that, with the particular choices (4.13) and (4.14), (3.19) is satis-

fied if and only if :

(4.15) {the function u, is independent of the variable x, and it
can be identified with a function ugEHg(w),
Ocyl - 0 - 0
(4.16) aua H! (w), u, = u xaaaua.
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Step 2 : Computation of the functiona ul and W) s I 3018), (3.19),

we successively choose "trial" functions of the particular forms

. - 0 2 e
4.17) {TQB fas "t (‘.»)' fiy T O
v =vieul(w), v, =o0,
a [0 3 3
(4.18) aB 3 aB

- 1 1 2
{1 X T Tagel‘(w)’

= = 2
Vo xaaav, vy, =V, vEHO(m).

Aftex some computations (and elimination of the other unknowns) we
find that the functions ugéiﬂl(w) and ugEiﬂg(m) should be solution of (4.3)-
(4.6). !

Step 3 : Computation of the stresses 055 Once the functions ogs(uo)
and ug have been computed by solving (4.3)-(4.6), it turns out that (3.19)

with T = (Ti.), = 0, and (3.18) are satisfied if and only if the stresses

T,
) 13
oij are given by (4.10)-(4.12).
Step 4 : Existence of a solution to the two-dimensional problem (4.3)-
(4.6), for data possessing the regularity (4.1) : One can procced in two ways :

(i) The variational formulation of (4.3)-(4.6) amounts to finding the

stationary points of the functional (wc let v0 - (vg)]

@19 g(vo) ) U%'F)[ (30v97 + =0y (v0)3 v330S
w

0va w03 o€ 4 om0y 0y2
+ VYAX(V )auv3auv3 + é(aav3auva)

+ )y g WOy 00) 4 vy, (WY (VO]

|
- 0o 0
J (e,,*8, * J £,de}vd zj h,vl,
w ~1 Y

0

when v’ varies over the space (H‘(m))zxng(w). Because of the compatibility

conditions (4.2), this functional is also well-defined over the space

(4.20) V= (e )) 207 w),
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wvhere

(4.21) V0= {v=(v)E W) ;5 v, = 0]

~{v = e W)? ;

3a,, bER, vy = a) - 'bxp, v2 = az + bx;},

and besides, it is now coercive over this space (it is not coercive over

the space (Hl(w))ZXHg(w)), i.e.,

lim (v0) = 4o,
Hvoll +¢E¥
4

provided the norms Iih_ | are small enough.
* L2(w)
In addition, it can be shown that the functional is wecakly lower
gsemi-continuous over the space<xpz and the conclusion follows by standard
arguments.

(ii) In order to have an existence theory devoid of any restriction

on the magnitude of the functions ha’ one first introduces the so-called

Ailry stiresg function, as shown in Theorem 4.2 below (a process which again

Ir
shows the necessity of imposing compatibility conditions on the functions b
i}, hy). Next, one may use the existence theorem of John and Nefas [1975]. l
One can also eliminate the Airy stress function, following the method of

Berger [1977], and show that the resulting problem in the single unknown ug l

amounts to finding the stationary point of a specific functional, which has

at least one minimum over the space H%(w), as in Rabier [1980]. l
Finally, using standard regularity results for the system of equations

of linear, two-dimensional, elasticity, in conjunction with the method descri-

bed in Lions {1969, p. 56}, one can show that the solutions (u,0) of problem F I
(3.18), (3.19) found in the above process possess the following regularity :
0ey2 NHY 0eyl nns ‘
uy Ho(m) H* (w), ua Ho(w) H*(w),
e y? 1 2 y
0, SH2(@), 0, €W (@), o, €L2(R). l"
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Remark 4.1. Of course, it now remains to go back to the set Qc. i.e.,
one must define functions on the set Qc, which correspond to the functions u;
and 955 just constructed. For the sake of brevity, we shall skip the corres-
ponding straightforward computations, simply based on formulas (3.3)-(3.7).
It suffices to mention that their effect amounts to introducing appropriate
powers of ¢ at some places in the above equations. Thus for instance, equation
(4.3), expressed with the "new" functions, now reads :

2Ee3 2.0 o 0 0 0 € £ € e
-V Uy = 260, ()3 gu (g3++83- ¥ £4d%;) - |

An important conclusion to be drawn from the above theorem is that the
expressions found for the functions vy and o;; are identical to, or similar to,
the assumed expressions found in the literature concerning nonlincar plate theory.
In particular, we have obtained Kirchhoff-Love displacement fileds, i.e., of
the form (4.8), (4.9), wherecas they are usually derived from an a priori as-
sumption of a geometrical nature (cf. e.g. Washizu [1975, Eq. (8.60)]).

In the same fashion, the expressions found in (4.7) for the stresses 028
(i.e., °a8 for x3 = 0) are standard in nonlinear plate theory, where they are
usually derived after a priori assumptions have been made regarding which terms
should be neglected in the strain tensor corresponding to the two-dimensional
problem (cf. e.p. Stoker [1968, pp. 42-47]). Likewisc, the expressions found

in (4.11) for the stresses o are similar to those found in Green and Zerna

3B
{1968, Eq. (7.7.3)], where they are assumed to be quadratic in X4, etc.

In the second, and final, stage of our analysis, we establish the equi-
valence of problem (4.3)~(4.6) with the von Karman cquations (4.23)-(4.27).
This equivilence essentially relies upon the introduction of the so-called

Airy stress function ¢ , which satisfies (4.22). We recall that the space VO

has been defined in (4.21).
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In the next theorem, we assume that the oet w is siwply connected,
and is of Nikodym type, in the sense of Deny and Lions [19%3-1954] ; for
instance, this is the case if the set w is star-shaped.

Without loss of generality, we also assume that the corigin O belongs
to the boundary y of the set w. Given a point y along the boundary y, we

denote by y(y) the arc joining the point O to the point y along y.

THEOREM 4.2. Assume the data satisfy the regularity assumptions (4.1)

and the compatibility conditions (4.2) and let there be given any solution
wd = ((ug),ug)e (13 () ) 2x (12 (w) NH" (W)

of problem (4.3)-(4.6). Then there cexists a function v EH" (), uniquely

determined if we impose ¢(0) = 3,9(0) = 3,v(0), such that

. 0 0 0 0
119 = 02(%), v = - 015(u"), 3w = o) ().

Besides, the pair (v,ug) s solution of the von Karman equations :
2E 8200 = 2,00 + ( + + ‘ £.dt) inw
3(0-v?) 3 *7, 834 © B3 o3 ’

w-Er,0 401 ¢
A%y 2[ua,ual in w,

0 = 0 =
u3 a\,u3 0Oonyvy,

h2 + y2 f hy

e(y) = -y J
y(y)

Y(y)

+ J (x1hp-xohy1), y€¥Y,
v(y)
e (y) =-vﬂy)f hy +v2W)[ hy, y€y,

Y(y) y(y)

where, for any smooth enough functions v and w,

[v,wl = 3)1v350w + 3,5V3 1w = 23),Vd)ow.

Conversaly, let there be given any solution
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(v.u(l)‘ n (w)'(ll(?)(u) NN (w))
of problem (4.23)-(4.27). Then, tf we define functions ogB by letting
0 0 0 0
0)) = 922¢, 012 = 02] = = 312¢, 022 = 3114,

there extste a unique element (ug) in the space (U3(w))?/V0 such that

0 ._E - 0 0
%8 77:;7){(1 RAPPACIO B VYDH(U )GGB}
E
* ey 1 (-9 wda ] + va ula uls o}, w0 = ((u]),u]),
and besides, the element u® 1s solution of problem (4.3)~-(4.6). a

Remark 4.2. A fairly complete mathematical analysis of the von Kirman
equations, regarding notably existence theory, multiplicity of solutions,

bifurcation theory, etc .. , is found in Ciarlet & Rabier [1980]. [ |
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5. CoNCLUSIONS

(1) The main conclusion is of coursce that we have been able to
mathematically justify the derivation of a rnonlinear plate model from a
well-accepted thrce-dimensional nonlincar elastietity model, associated

with spectific Downdary conditions along the lateral surface of the platc,

(11) Which Joupiizes oo

Stions along the latcral surface are appropriate
for the three-dimensional problem is a question of jmwportance since different
boundary conditions yields fundamentally different twu-dimensional problems
(as expected, of ccurse, but this does not seem to be always clear in the
literature). In this respect, see unetably Ciarlet & Destuynder {1979b}], where
the case of a "clamped” plate is considered.

(1ii) In order that a "limit" problem exist, it has been found that the

vartous data should simultancously vary in an appr.priate mamner as e approaches

zero, as expressed by relations (..16) and (3.5)-(3.7). These are wot the

only possible ones, however. For cxample, the Lam{ coefficients ),y appearing

in (2.8) can stay constant provided relations (3.5)-(3.7) are replaced by

the following :

FL6O) = 300, i) = g ),
€ = 2 € . {
ha(y) € ha(y) for all y@ vy,

and the "higher order counstants' appearing in the constitutive equation
decay sufficiently rapidly with e. Then it is readily verified that the same
"limit problem" (3.18)-(3.19) is retained by an application of the asymptotic
expansion method. The above relations arc mach less realistic however if body
forces, such as the weight, are to be taken into account. But they cannot

be disposed of : One cannot cxpect a plate of zero thickness to carry any

load !

The interpretation of relations (2.16) is simple : They express that




the rigidity of the constitutive material of the plate should increase as

the thickness of the plate approaches zero, if we are to find a "limit"
modet compatible with relations (3.5)-(3.7). Incidentally, s}milar conclusions
have been reached in a related linear problem by Caillerie [1980].

The assumption that the coefficients corresponding to the higher~order
terms in the constitutive equation (2.17) are constant is in turn made neces-
sary by the requirement that these terms do not appear in, and thus do not
affect, the "limit" problem. A different limit problem would otherwise result
which could be studied for its own sake. Our aim was however to clearly deli-
neate three-dimensional constitutive equations correspond to precisely the
von Karmin equations. Notice also that the above assumption regarding the
"higher order constants" is evidently satisfied if the constitutive equation
is linear (as a relation between the tensors ¢ and y(u)), as was the case
in Ciarlet [1980).

(iv) The present analysis suggests that we consider the von Kirman
equations, together with the expressions simultaneously found for the unknowns

j» 015 a8 forming a conatatent set of approximations to the original three-
dimensional problem, in the sense that these equations and expressions are
all obtained as the solution of a single, three-dimensional problem, namely
problem (3.18), (3.19).

Equivalently, if we start out with a solution of either two~-dimensicnal
problem, we may think of the expressions giving the unknowns us oij as being

the natural extension of this solution into the space V x 2. Such an extension

may prove useful for obtaining existence results for the original thrce-dimen-

sional problem.
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CHANGING MESHES IN TIME~DEPENDENT PROBLEMS

Todd Dupont, University of Chicago

This note gives a brief summary of some results on finite element methods
for evolution equations that use functions spaces that change with time. Most
of these results are given in detail in [1].

In several areas of science and engineering, time-dependent problems
arise which have solutions that are near-shocks in the sense that the solu-
tions are smooth over most of the region but almost discontinuous in a small
part of the region. If, as is freguently the case, the small area of rough-
ness sweeps out a significant portion of the region during the life of the
problem, then an approximate solution can be quite expensive to compute,

The expense comes from the fact that a fine grid is needed in the region of
roughness, and with a fixed grid that implies a fine grid over a large part
of the region.

An cxample of such a problem is

ut + veVU = VelWu = 0 on Qx(0,T],

(1) u(x,0)

uo(x) on &,

Nuev

[t}

g on 3Qx(0,T],

where Q is a bounded domain in B with a smooth boundary and v is the outward

nonaal. The function D is assumed to be positive throughout Q.




A

A Galerkin Method

Suppose that M (t) 1s a finite-dimensional subspace of Hl(Q) tor eacn t
in [0,T) and that "™(t) varies smoothly except at a finite number of points
Tj'
u: (0,T) » U ™(t), where U(t) ¢ M(t) and where U satisfies the usual

One can define a Galerkin approximation to u to be a tunction

Galerkin orthogonalities ot each time:
(2) [ LU, + vevU)y + WU-9y)dx = [ qudo , o € Mt).
Q an
At those points Tj at which 7 changes discontinuously, use the LZ(Q)—

proijection into "'f('I‘]) of the limit from below to get U(Tj) to re-start this

process.

Quasi-Optimality

Using the above-deftined process, started fram the LZ(Q)-projection of ugs

one gets a quasi-optimality result
(3) Mu=-uilsCant v -ull,

where the inf 1s taken over all fuctions y(t) ¢ M(t) that vary smoothly
except at the points 'I‘j and are such that w('I‘J) is the LZ(Q)-projection
into m(Tj) of the limit from below. The nomm ||| ||| in (3) is one that is
naturally associated with energy estimates for problems of the form of (1); it
involves tne maximum in time of the L(Q)-norm, the Lz(nx(O,T))-norm of the
spatial gradient, and a semi-nomm induced by the spaces 7M(t).

Estimates of the form of (3) are done in [1]) for discrete-time processes,

with the addition of a time discretization term to the right-hand side.
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Honconvergence

i+f the mesh changes in a completely uncontrolled way the solution of (2)
can converge to the wrong function as the meshes are made finer and finer.
Each mesh change corresponds to adding a very small amount of dissipation, and

thus if the mesh changes extremely often the solution will be smeared out.

Moving Finite Elements

Take @ = (0,1) and suppose that 7 (t) consists of the space of all

continuous piecewise polynomials of degree < r over a mesh

0 = s0 Cs)(t) < eee < sN_l(t) <8y = 1.

The MFE method of K. Miller and R. Miller then uses the orthogonalities
in (2) plus a rule that is tormally derived by saying that the time-
derivatives of the points sj(t) are taken so as to minimize the LZ(Q)—norm of
the residual plus a penalty term. (Such a calculation 1s purely notivational
since the residual is in general not in LZ(Q).) The penalty term is used to
get aonsingular evolution equations and to control the spacing of the points
sS4

In the MFE process the grid points move with the solution and cluster
around areas of roughness, thereby significantly decreasing the work to
approximate near-shock solutions when compared to a fixed mesh method. In {2]
therce is a odllection oi interesting examples of the application of this
method.

In (1] 1t is shown that, under apprcuriate hypotheses, the MFE behaves at
least as well as a fixed grid process. This is clearly just a first step and

does not explain the experimental success of the procedure. More recently the

results of (1] have been extended to some multi-dimensional problems.
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ALTERNAT ING-DIRECTION GALERKIN METHQOODS
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Richard E. Ewing
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A survev >f some recent resul*s in *he use cf aiternating-direction fiaite
alement me*thods for linear and nontinear partial differential eguations of
paraoclic, hyperbolic, and Sobolev type is oresented. These equations have
applications to fluid “low "7 porcus media, thermodynamics, wave propagaticn,
nonlinear viscoelasticitv, and nydrodynamics. The use of alternating-direc-
+tion or operator-splitting methods will reduce multidimensional problems to
repeated solution of one-~dimensional problems. Thus optimal order work esti-
mates can be cbtained in all cases. 7Other new high-order and computationally
efficient time-stepping procecures are also discussed and used as base
schemes fxr *he al*a2rnating-direction variants.




ALTERNATING-DIRECTION GALERKIN METHODS FOR PARABOLIC,

HYPERBOLIC, AND SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS

I+« INTRODUCTION

In this paper, we shall present a survey of some recent results in the
use of alternating-direction Galerkin methods for a variety of partial dif-
ferential equations. We shall discuss methods for time-stepping partial
differential equations of parabolic, hypertolic, and Sotolev types in two and
three spatial dimensions. The use of alternating~direction or operator-
splitting methods will reduce multidimensional problems to repeated solution
of one-dimensiona! problems. Thus optimal order work estimates can be
obtained in all alternating-direction methods.

We shall basically consider only Galerkin or finite element alternat-
ing-direction (henceforth called AD) methods in this paper. Similar results
can alsc be obtained for finite difference versicons of our methods. Since
the analysis of our methocds will appear elsewhere, we shall only describe the
methods in this manuscript and reference the analysis.

Alternating-direction methods were first used for time-dependent prcb-
lems in the context of reservoir engineering mocdeis for fluid flow in porous
media. The methods were developed in orcder to freat large scale multidimen-
sional problems in a one-dimensional fashion on the small early-generation
computers. Finite difference methods were developed for {inear parabolic
problems and analyzed thoroughly by Douglas, Peaceman, Rachford and others
(see (10, 17, 18, 32]). Later Douglas and Dupont developed and analyzed a
Laplace-modified Galerkin AD method for parabolic and hyperbolic equations
with certain nonlinearities in [12]. These ideas were extended to stronger
nonlinearities by Dendy in [8]) and to unions of rectangular regions by Dendy
and Fairweather in [9). Then in (26, 27] Hayes extended these results *o
non~rectanguiar regions via patch approximations. In [28]) Hayes and Percel!
extended these results to nonlinear capacity terms. Finally, in [11],
Douglas discussed the combination of the results ot (12, 28] with some of the
iterative statilization techniques presented in {14] to obtain other effec-

tive AD *ime-stepping procedures.
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In this paper we shall discuss some recent advances in several differ-
ent directions. First we discuss a tensor product projection of the solution
into our computational subspaces and approximation theory results which
greatly relax the smoothness assumptions required for all the earlier analy-
sis of AD methods. Then we discuss some higher-order multistep time-stepping
procedures which yield second, third, and in special cases fourth order time-
truncation errors for parabolic problems. Previously, only second order
methods with fairly strenuous coefficient constraints were known. We then \
extend the AD ideas to various partial differential equations of Sobolev type
which are used in fluid flow in fractured media, thermodynamics, vibrational
problems, nonlinear visocelasticity, and hydrodynamics (see [6, 7, 25, 29,
30, 31, 33, 341). Finally we present some direct methods and iterative
stabilizaticn techniques which yield new, high-order and computationally
efficient methods.

tet & "e & tounded dcmain in Rd, 2 & d & 2, with boundary 3n, and let
J = (3,Tl. We shall consider partial differential eguations for ¢ = u(x,t)

of the form

3L Ju - Ju
a) elx,u) S5+ (xu) 3 - T e alx,u) Tu * b(x,u) v 5
It~
(1.1
s
L3 u
+ 3ix,u) v =, = ftl<,t,u) , xeid, tel,
at”
b) ulx,t) =0 , x€du, teld,
c) ulx,0) = uo(x) , XEua,
for various choices of a, 5, ¢, @, and g« ¢ @ > 0 and g > §, we must also !
specity an adgitional initial condition of the form L
!
(1el) LU0 = v s XEuie
f# 2 o v 2 5 =7 00 (1. atove, *he equation is of parabolic type. This
sur .. nciudes racent [oin* wor< by Jim Bramole and the author (3, 4] on
proclers ¢ t-is *,re, 1f e > and c oz 3 0, the problems are of
hyserzolic tere, 1f e > 2 and ei*rer b > 0 or > 0, the problems are of




Sobolev type. Joint work with Linda Hayes [22, 23] on probtems of this type
will be discussed. ‘

In Section 2 we shall present some preliminaries and notation. We then
illustrate the basic ideas of AD methods for various cases with constant
coefficients in Section 3. In Section 4 we shall discuss higher-order direct
methods which use the ideas of (8, 12, 26, 27, 28]. 1In Section 5 we discuss
iterative stabilization ideas which use the ideas of [13, 14, 19, 20, 24].

We also discuss certain computational aspects of these methods.




11. PRELIMINARIES AND NOTATION

5
Let (u,v) = [ wuvdx and #ul® = (u,u). Let the norm on the Sobolev
Y]

space WK’D(Q) be denoted by hul, o with the second index being suppressed if
)

p = 2. Assume that 39 is Lipschitz continuous. Assume that the coefficients

<

and solutions are smooth; we refer to the various papers referenced for more

precisely defined constraints.
o

For h from a sequence of small positive numbers, let {Mh(O,i]} be a

family of finite-dimensional subspaces of w]’m([O,ll) which vanish at x = 0

and x = 1 and which satisfy:

for some integer r > 2 and some constant Ko ard any

sewdS (1w T e,

inf h 32 NI )

=y + N - % n ! - ni - [

oin hexi LA SERMPUNE thm]

XEMh[O,”
(2.1
<K ol hq
o T3

for 1 & g <sr + 1,
An example of a family of subspaces satisfying (2.1) is the continuous
subspace of piecewise polynomials of degree at most r on each subinterval of

length h of a uniform partition of 10,1].

<

We next define one-dimensional projection operators Px' Py, and P _:




Next, let IG denote The unit cube in Rd and define a sequence cf sub-

spaces on 13 oy

2 o o}
(0,11 x Mh (0,1]).

5
We henceforth assume that 2 = 13 (er 1, in R%). See [9, 27] for technigues

to extend these results to more general regions. We then define the three-

dimensional tenscr product pro,ecticn Z = PXPyP’u in Mh' MHote that the one-

dimensional operators commute and thus can be faken in any order. Using

(1.1.b), we can then obtain a very important orthogonality result.

Lemma 2.1: If d =2 or 4 = 3, respectively,
2 2
a) | (PP u-uj o x) = 0 XEM L
IXdy X vy Py M ’ h Loz
(2.4)
A3 b
0) (== (PPP u-u}, =2—x) =0 xeM !
‘3x3ydz Y x vy z 77 3xdyaz ’ ’ htizJe
We next define some other projections into M . If a2(x,u), 2(x,.), an:

L, 8NC W Te *he

o a

g(x,u) are bounded celow by positive constants, let wa' W

weighted elliptic projections satisfying:

a) (a2l ¥ (W, - u), ¥x] =0 ,REM,,
(2.5) b) (b(x,u) ¥ (wb -u), V) =0 ,XEM,
) (gix,u) v (Wg -u), W) =0 » XEM, .

Then, using the super-close approximation properties of the Galerkin solution

2
in w"“ and Lemma 3.1 of [16], we obfain the following important res.lt:

o~

and wg defined in (2.5), we

Lemma 2.2: For Z = PxPyPZu and Wa, Wb,

have for some Ko >0,
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- r+1
(2.6) IIWa - L"l + uwb ZII] + llwg - ZII] < KO IlullH_l h .

Proof: (see [3]).
For k >0, let N=T/k € Z and 1% = ok, ce R. Also let o" = " (x) =

‘ ¢(x,Tn). Define the following backward difference operators:

a) & =9¢ -9

by %" = o - 20" 4+ "2
(2.7)
) 63¢n - ¢n _ 3¢n-l + 3¢n-2 _ d>n-3
d) 6" = 0" - 40" 4 5e™2 1 4e™3 4 ™Y,




Il DESCRIPTION OF THE METHODS -~ CONSTANT COEFFICIENTS

In this section we shall describe various methods for efficiently YTime-
stepping the Galerkin spatial procedures for various forms of (1.1) with
constant coefficients. We first consider the parabolic case of (1.1) where

e b zg =0 andc and a are positive constants:

c %%-~ adu=1f (x,Tu.
For this case, we first present several multistep methods which will form our
base schemes. Next, we shall introduce terms which allow us to use AD ideas

in space.
For various special choices of parameters, we define the following

class of backward differentiation, multistep, discrete time methods. Let

. . k
U:{fo, ses, TN} > Mh be an approximate sclution of (1.1). Assume that U are

known for k & n. Given a desired global time-truncation error of order k“,

w=1,2,3, 4, we choose parameters ui(u), i =1,2, 3, and B(n) and an

extrapolation operator £(u) for f(x,t,u) to define a method for determining

n+1

u which satisfies
K o(esu™ T, W) ¢ s (anu™!, vy)
(3.1) =< (e fa, 80" 4o, s s ay 60", X)
+8 (¢ (™ B o ™Y, W ) XM,
Choices of 1nhe paramefers and extrapolation operator for w = 1, s+, 4 are

given in Table 1. By extrapolating the values of Uk in the nonlinear term f,

1

. . n+l. .
we have produced a linear operator equation for U in terms of previous

known values of Uk, k € n. See [5, 21] for a detailed analysis of the sta-
bility and accuracy of these methods. We note that the case for u = 2 is not
the second-order Crank~Nicolson method which has a characteristic bounce.

Instead, all the methods presented here are dissipative and s*rongly stable.

Ao
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+ .
We next consider AD variants of (3.1). Let U""! satisfy

2.2 2 2
-1 n+1 n+1 kg™ a 9 n+1 3
K0 (e8U™ 7, x) + 8 (aWU™ T, vx) + = [(3;37 D (W UM, o x)
2 2 2 2
n+1 3 ] n+1i 3
* (3xaz D Gw U ? 3x3z X) * (ayaz 0 G U ’ dyaz X)]
2,3 3 3 3
k"B a 3 n+1 0
(3.2) tT2 (3gy3z 0 W U 355737 )
=k (e fay UM+ e, U+ oy 8U™2), )
i 2 3
+ +
+B(f (fn]:E(U) Un])' X) :XEMh »
where the operator D(u)Un+I makes the additional terms "small" enough so as
not to increase the order ot the errors already present in the
. . . n+1 n+1
approximations. For example, for y = 1 or u = 2, the choice D(u)U = §U
+
will yield convergent schemes. For p = 3, we shall use p(3)u" ' 62Un+].
For the case u = 4, the choice D(A)Un+l = 63Un+] would make the perturbation
terms smal! enough fcr proper truncation error analysis, but will cause the

method to be unstable. Instead, we shall choose

(3.3) 04y = 2 ™ - cs;' s2y"
with
sp= (1 +ky [55+ %; + 2]
(3.4) + iy [Bijy * aijz ¥ azjz] + 0y’ 3§%;33)
= (1 + ky %;)(! + Ky %;)(' + Ky %;] .

Since cs;] is comparable to the identity operator, this choice of D(4) acts

+
like 63Un 1, and y is chosen sufficiently large to make the method stable.
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The additiona!l terms in (3.2) allow the operator to factor in a manner
exactly as in (3.4) into a sequence of one-dimensicnal operators. Since the
methods presented in (3.2) invoive up to five time levels, special start-up
procedures must be discussed. Higher-order start-up procedures for the
methods described in (3.1) have been presented and analyzed in [4]; however,
the procedures have not been shown to be effective for AD methods. Start-up
procedures for cases p = 1, 2, 3 will appear in (3], but no procedure has
been analyzed for the case u = 4 at this time. The AD methods of (3.2) yield
the same order convergence rates as the multistep methods of (3.1) tut yield
optimal order work estimates as well.

Next, we consider other partial differential equaticns by making dif-
ferent choices of coefficients in (1.1). ifa>0, e>0, andc = bzg:z0,

we have an equation of hyperbolic type:

e X8 9. (3 (x,u) VW) o= f (x,t,0) -

AD methods of the form with d = 2

k2 (es® U™, )+ (a v U", Ta) +a (© & U™, 9y
(3.5)
22 .2 2
ATk 9 2 . n+l 3 n
+ 5 (5my 8V sy ) = (U, s ey,

have been presented and analyzed in (8, 12]. The Laplace-modified ideas were
presented and analyzed for both parabolic and hyperbolic equations in [12]
and yield second order time-truncation estimates. Extensions to higher
dimensions are straightforward as pointed out in [8]. However, since only
the weighted elliptic projection (2.5.a) was used in the analysis, more
smoothness on u was required than if Z = PxPszu and Lemmas 2.1 and 2.2 had
been used.

Next we discuss results for equations of Sobolev type which will appear
in [23]. We first consider the case with a > 0, b >0 and c >0 with e z g =

0 in (1.1):

[-%)]

u qu

c==-9Y+(aVu+b¥V 3?) = f (x,t,u) .

(%]
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Equations of this form are studied in {19, 34]1. Since equations of Sobolev
type have a time derivative in the highest-order terms, they are in general
inhereﬁfly more stable than corresponding parabolic equations. However, the
time derivatives in the highest-order terms also make the perturbation ferms

needed for AD variants much larger. Therefore three time levels will be

required for O(k) accuracy and four levels for O(kz) accuracy in this case.

One method which has time-truncation errors of order k is:

K e (W -0, ) (e, Y x)

n+1 n-‘)

+ Kk (bv(u - U , ¥ x)

) 2, n+l ]
C~ PR v e ) B 2 (avaz 87 V7 s Trayez W

(f (Tnv Un)l X) R xEMh .

+
2Un ! by 63Un+] everywhere in the above equation, we obtain a

method which yields error estimates of the form

By replacing §

r+i

(3.7) max 1UM1 < K, (K2 + ATy

n 1
1-

for some positive constant K‘, using spaces with approximation properties

given by (2.1). See [23] for analysis and computational discussion.

Finally we consider second-order Sobolev equations obtained by chcosing

e>0,c=0,a»0,b>0, and g >0 in (1.1):

e ¥ _v¢. (aVu+bV 2, gV 3—2] = f (x,t,u)
LI 4 .
342 at afZ

Equations of this type arise in hydrodynamics and applications of viscoelas-

ticity (6, 7, 25, 29, 30, 31, 33, 34] and numerical approximations have been
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studied analytically in f20l. If g > 0, a method with four time levels is

needed to obtain time-truncation errors of O(k). This method is given by

- 1 \ - -
K2 (e U™, )+ (a v, vg + kT (b w (0™ Y, vy
2 2 2
-2 2+l (kb + Q) ) 3 041 37
+k T (gvst U, v+ 2o [(Bxay STV Ty x)
2 2 2 2
3 3 n+l 3 3 3 n+l d )
(3.8) gz 8 U g 1) (gogp 00 U™ 5i5g ]
N (kb + 9)3 ( 33 63 Un+1 33,_ o)
2 2 axdydz ’ 3x3yaz M
k%e
= (¢ (", "), x) s XMy

Note that if g = 0 and b > 0, the GSUM1 terms in (3.8) can be reptaced by

+
62Un ! terms to obtain a three level method which yields error estimates of h
the form
(3.9)  max "y <k, (K2 + TNy
0

for some constant K'. For detaiis and analysis, see [23].




IVv. DIRECT METHODS

Now that the basic AD ideas have been presented in the constant
coefficient case in R3 we shall discuss methods for treating the nonlinear

coefficients in (1 1) in R2. Extensions to R3 should be obvious. We shall
first consider methods which we term direct methods which have been cerived
from the Laplace-modified ideas presented in [12] and used extensively in [8,
1, 12, 15, 27, 28].

Again, we first consider parabolic equations with e = b=g =0 in
(1.1):
(4.0) ¢ (x,u) %% =V e (a ,u Vw2 f () .
The basic idea of direct methods is to replace the variable coefficients at
the top time levels by a constant, or sequence of constants, which is "close"
to the true coefficient. Then the error made by this replacement is multi-
plied by a "small" term obtained by extrapolations from previous time levels.
Once constant coefficient values are obtained at the advanced time levels the
AD procedures described in Section 3 can be applied.

Since many important problems have different-sized diffusion components
in different directions, we shall not use only Laplace~modified methods but
shall allow a direction-oriented modification. We then modify (3.1) as

fol lows. Let Cor 3y» and a, be fixed, let

2

a e (ke ™) - ¢

(4.1) o 3T =a (% E a0 ) -
~n+1 _ > n+1

) a, = a, (x, E() U ) = a,

+
where a, and ay are the components of the vector a and let Un 1 satisfy
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- + +1 +1 3
e (B o u™) s o™, )+ st(al (B o o™ o™ Ay
X ¢x ax
n+ly 9 n+l 3
+ (a (EGw) U )ayu ‘SyX)
z , 7
+kBa!az(a“ o U™ 2
< \3xay O ' Txay X
(4.2)
R R A I FRY
~n+1 3 n+l 3 ~n+1 3 n+l 3
+8(a, 356 U ,g;x] +B(a2 3 © (W) U ,a—yx]
se (¢ (", e ™, ) , xeM
The choices of a,(w), i =1, 2, 3, 3{w) and E(y) are given in Table 1 for

w=1,2, 3. Choices of D(u), F(u) and G(u) are given in Table 2 for methods

with time-truncation errors of order k" for w=1, 2, and 3. As an example,

the case u = 1, can be written in the form

-1 +1 9 n+l 3 3 n+l a
k [co s u" , x) + (a] % U v x) + (az 57 U ’ 3? x)
ka,a 2 2
172 3 n+1 3
* 5 (8x3y §u ? 3xay x)
(4.3)
_ o=t n n n 3_ n 3_
=k (e (U - e ] s U, w) - ([a (U7 - 8] 0" 32 W)
- ([a, (W) = 2] 320" 50 + (¢ (47, 0", ) e
y 21 3y nayX ’ s X » XEW e
This equation has only constant coefficients at the advanced time level The

operator for the advanced time level can thus be factored easily into a prod-
uct of two one-dimensional operators. We note that *the first-order method

is simitar to tha* discussed in [11, 26, 27}. The first second-order method
from Table 2 is similar to the direct method discussed in (28], which has a
Crank-Nicolson base scheme, but this method is strongly stable. Both of the

aforementioned methods required constraints of the form




n+1J ﬂ+])

) 2c(xE@u" ) ce <2c(x E@ U

S

(4.4)

n+1) < a

b) a (x, E (2) U o

Although this is a very mild constraint on 3, it is a fairly restrictive two-
sided constraint on co and is noted in Table 2. Certain patch approximation

techniques presented in [26, 27, 26] help to make this constraint localized
and thus less restrictive. Another second-order method which has only one-
sided constraints but requires an extra matrix inversion at each time step is
also presented in Table 2 and has been analyzed by Bramble and the author.

If ¢ is a positive constant, we have presented two third-order direct

methods. The first has two-sided constraints on a] and a2 while the second

obtains one-sided constraints at greater computational expense as before.

Analysis and details will appear elsewhere. Note that the operator SY

appearing in Table 2 is given in (3.4).
In the analysis of all the methods presented by (4.2) and Table 2, the
use of backward differentiation multistep base methods and the prcjection I =

PXP qu instead of the usua! weighted elliptic projection allows very weak

mesh-ratio conditions of the form:

a) h <k , for d

]
[pN}
-

(4.5)

a
b) ¢, <k ch?¥ ,

L]
AN
.

for d

The use of *his projection alsc requires only the same smoothness for the AD
variants as for the Sase schemes. Use of only the elliptic projection

requires more smoothness in time than the results presented here (see [3]).

Using the ideas described above, we can also define AD methods for
non|inear Sobolev equations and wave equations. For example let e = g =0
and 2, b, and ¢ be uniformiy bounded from below by positive constants in

(1.1):

c (x,u) %%“ Ve (@ (x,u) Vu+b(x,uV 23) = f (x,t,u) .

at
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We can then consider, for u = 1,2,

!

LT T AR I T

, x) + B {(ax (E (w u

+1y 3 .l D
Ty = )1

+(ay(E(u)u v, =

ay 3y

-1 n+ly 9 n+l 3

kb (E U ) szs 0T, 22 x)
n+l, 3 n+! 3

+ b £ (w) U — & U , —

(5, (£ G ) 3 5y X1

(b1 + kB a])[bz + kB az) 32 nel 32
¥ kco [axay 0 ? 3x3y x)

(4.6)

- k-] (;: n+ 1 F(w) Un+l + e (11 s Unj' XJ

-1 ,r~n+1 3 n+) 3 n 3 5
[ s 5 S
+ < (b, ayF(u)U +b2a‘ay6d],ayx1
n+l 3 n+l 3 c~n+1 9 n+l 3
+8 {(a; "3z 6w U, 5o x) ¢+ (e, 35 6 WU » 57 1)}
+1 +]
se (f (1", E U, ) ;XM
where bx, by, bI’ bZ’ EI' and 52 are analogous to the corresponding coeffi-

cients for a (see (4.1)) and F, D, G, and £ are from Table 2 as before. We
note that the base scheme used for time-stepping the Sobolev equation here is
a backward differentiation multistep method and is different from that used
tor similar equations in Section 3. Corresponding direct methods could be
definea from the methods of Section 3. Analysis of (4.6) will appear in
{221},

In a similar manner, direct methods could be used to obtain efficient
AD methods for hyperbolic and second-order Sobolev equations where e(x,u) is
nonlinear in (1.1). Techniques like those used in [20] are required.

Detailed descriptions and analysis of these methods will appear elsewhere.
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V. |ITERATIVE METHODS

In this section we discuss iterative stabilization methods for treating
the nonlinearities in the coefficients as an alternative to direct methods.
We shall use the ideas developed in [14, 19] and later used for multistep
methods in [5, 21]. The basic idea for the base scheme is to factor the
matrix arising from the linear algebra problem at cne time-step, say the
initial time-step. We then use this factored matrix as a preconditioner in a
preconditioned conjugate gradient iterative procedure to keep frum factoring
a new matrix at each time step. This factored matrix is comparable to the
matrix which should be inverted at each time level. Thus we can extrapolate
from past values to obtain the proper accuracy and only iterate sufficiently
often to stabilize the process. For many problems this requires only *two to
four iterations per time step. |f the coefficients begin to change consider-
ably, onre should refactor to obtain a more comparable preconditioner periodi-
cally. For discussion of these computational! complexities and work esti-
mates, see [11, 14, 19, 20, 24),

The use of iterative stabilization in conjunction with AD methods was

tirs* presented in [11]. The factored operator SY from (3.4) was used as a

preconditioner in a first-order time method. However, since the base method
did not include AD perturbation terms as in (3.2), a mesh-ratio restriction
of the form
(5.1) k < K he , for d =2,
is required in [11] in order that the preconditioner be comparable to the
linear operator which should be solved at each time step. Since we include
an AD per*urbation term in our base scheme, we oh*ain comparability with the
preconditioner with no mesh-ratio restrictions. The only mesh-ratio restric-
tions required by the methods presented here are the weak conditions given by
(4.5).

The base scheme for the methods to be presented in this section for

parabolic problems from (4.0) is




- +
e (x, o U™ s U™
‘ n+ly 3 n+l 3
8 la {0 B U )5 U, 5
c Rely 3+l 3
+ B (ay (x, £ (uw) U ) 3y U * By X)
(5.2}
2 " 5
+ksa1az(a°h(>}n+1 R
<, axay ~ MY Bxay X
= & (e (%, E (W) Lnﬂ‘va] s U+ )
+ 8 ’(" [XI Tn+1t E (L‘) Un+l}, )\] ’ XEMh ’
where ay, a5, and c, are as in {(4.1) and ay, s, 81, “(u) and O(p) are as in

Table 1. We shall next define cur iterative stavilization schemes.

vWe first present the linear equations arising from (5.2) for the case
u = 3 and note that there is no ZJirect AD factorization possible for these
equations. This motivates the introducticn of a fixed preconditioner for
which the linear equations do have an AD factorization.

; . . 12 . .
we define two orderings on the nodes in @ = [0,117., The first is a

global ordering which assigns one of the numbers 1, 2, ¢«¢, M to each node in

2. The second is a tensor product ordering of the M nodes. Grid lines of

the form x = x., 0 < xj < 1, are numbered 1, 2, e°s, Mx while grid lines of

J
the form y = yJ, 0 <y, €1 are numbered 1, 2, se», My' With each node i, we
associate an x-grid line and a y~grid line. The tensor product index of the
node | is the pair (m(i), n(i)), where m{(i) is the index of the x-grid line

and n(i) is the index of the y-grid line. We then denote the tensor product

basis as
x) = ) = 1< eM
(5.3) Bi (x) = ¢m(i) {x wn(i) (y) = ¢m (x) wn (y) ’ i R
M M
where {o (x)} f and {W (y)} Z are bases for the one-dimensional
m m=1 n n=1
o
spaces Mh [0,1] for x or y in [0,1], respectively.
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Let UP from (5.2) be written as

M
p _ p M p
(5.4) VW= ] €78 0= L Tog 0 )y (y) .

Using (5.4), (5.2) with u = 3 can be written as

n

2 .
ntl "y [ a8 e 4k {F? (&) + £ (£}

L {€

n+1 _gn} = C

(5.5)

m
-n

(g)

where the matrices and vectors in (5.5) are defined by

a U"=c"+xaA"+ k",
0y ¢ = ((c (E 3 ") 5., 8,))

" Sy g B
c) A =38 ((ax (e (3 u ) e BJ, = Bi)

+ (o, (E 3 vt g, 5,

) 9y J’ a9y i
(5.6)
B?a a 2 2
no_ 192 3 3
DG = S [(axay Bj' Ixdy Bi)) ’
o) Fl ey = - A ™ g (¢ (4", £ 3 UMY, 8;)
n n n n+1
) F, ) =6 [g8-¢e ],
for i, j =1, 2, so¢, M.

Instead of solving (5.5) exactly, we shall approximate its solution by

using an iterative procedure which has been preconditioned by L® the matrix

(5.6.2) with c, a s and ay replaced by Cqyr 3y and 25 respectively. Since

the matrix L° has constant coefficients, we can use the tensor product

property of the basis to factor Lo into the product




) A = (8a,c SAS2FANO)

for i,

. . o
, , M(, and m, n = 1, ¢ee M, Thuys inverting L corresponds

~

to solving two one-cimensicnal preoblems successively.

The preconcitioning orocess eliminates the need for factoring new
matrices at each time step and reduces the problem to successive solution of
one-dimensional ~roblems, while the iterative procedure stabilizes the
resulting proolem, The stabilization process requires iteration only until a
predetermired norm reduction is achieved,

senote by
(5-8) v =

»
the approximation to US produced by only approximatefy solving (5.5) using

'
L°. Assume sufficiently accurate starting values have been obtained (see
(3,4]). Assuming VO, cen, v" have been determined, we shall determine the M-

+1 !

. . + . .
dimensional vector 8" (and thus V" from (5.8)) using a preconditioned

+
iterative method to approximate gn 1 from (5.5). As an initial guess for

+
En ' &n, we shall extrapolate from previously determined values. Specifi-

cally, for the method under ccnsideration having time-truncation error O(kS],

we shall use as an initialization for our iterative procedure
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(5.9) x_ = (8" - 6"} - 6% o™,

Since we are using previously determined 8' in the matrix problem (5.5) to

. n+1
determine 6 , our errors accumulate.

In order to analyze the cumulative error, we first consider the single

“n+
step error. We define e” ] to satisfy

n+1 {—n+1 _ en} n

(5.10) L 0 = F" () , for n > 3 .

Thus 6n+1 would be the exact solution of (5.5) if the computed values

of ek from previous approximate soiutions of (5.5) using Lo had been used for

k € n. We can use any preconditioned iterative method which yields norm

reductions of the form

n+l]1/2 (—n+l n+1)

(5.11) 1L 8 -8 I

e

n+1)1/2 (_nH n+1 4 n+1)

<o L 8 -8 +6 8 Iy

where o < Ph < 1 and the subscript e denotes the Euclidean norm of the vec-

tor. A specific iterative procedure for obtaining (4.8) is the precondi-
tioned conjugate gradient method analyzed in [1, 2, 13, 14, 19].

Then, letting

N N M
(5.12) vi= § 828, ()= )

. S . . n+1
with 87 defined in (5.10), we see that V

“ht
and V" ] satisfy




1hy

. ntly 3 N+l 3
B (a (x, E (w) v ') 3y v, 3y x)
k 8° 2 <
a a <
1 72 ] n+1 3 N
+ < (Bxay D (W) v * 3xay X
= e (% B G VMY ;6 Vs, s VT )
(5.13)
+ 8 {f (x, fn+1, £ (w V" 1}, %)
c T (e (g B T T

n+ly 2 fn+1_;n+1) )

+ B la, (x, £ (w) Vv Ix L

n+]) a_ (vn+l _ Vn+1~j ) J

+ 1 —_—
B Lay (x, E (W) V 3y » 3y X
ol —_
k B~ a, a 2 2
+ 1 2 ( 3 [Vﬂ+1 _ Vﬂ+]] 3 ) eM
<, Ix3y ' Ixdy X o XEMp

where the last four terms measure the single step error arising from the

iterative stabilization. We must iterate only sufficiently often to control

these terms in the analysis. Since Lo is a sequence of one-dimensional

operators, we can very efficiently update E; if Ln drifts far away from to'

Analysis and details will appear in {3].

Note that in preconditioned iterative methods, only the preconditioner
is inverted. [n this case, that is only a sequence of one-dimensional prob-
lems. |f the basis functions in the one-dimensional problem are linear
(tensor products of linears for the basis for Mh) the matrices to be inverted
are tridiagonal and if the basis functions are quadratic the matrices are

pentadiagonal., Thus if d = 2 or 3 the work estimate is O(MxMy) or O(MxMyMz)’
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respectively. Thus the work is proportional to the total number of unknowns
in the problem and optimal order work estimates are obtained (see (11, 14,
24, 27, 281).

The storage requirements are also very attractive for AD methods.
Since the matrix problem is treated as a series of one~dimensional problems,
only the data corresponding to one grid line are required in core at any
given time. In two dimensions the storage requirements for these AD methods
are comparable to those of a frontal elimination solver, but these methods
require considerably less 1/0. In three dimensions the frontal elimination
solvers require that a plane of data be in core, while these methods only
require one line of data. Clearly all of the above remarks apply to each of
the AD methods presented here, not only to the iterative variants.

The author has applied iterative stabilization methods to problems of
t hyperbolic and Sobolev types in [19, 20]. The extension of these iterative

ideas to AD methods for equations of these types follows from the ideas pre-

sented above for parabolic problems.
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TABLE 1: BACKWARD DIFFERENTIATION MULTISTEP METHODS

+
n B(u) al(u) az(u) 03(“) E(p) Un 1
| | 0 0 0 TUALIF TGS
21 2/3 1/3 0 0 THALPYANT AN
3| 6/11 11 | -2/11 0 THALEP AT
a | 12725 | 23725 | -13/25 325 |yt - st gt

TABLE 2: DIRECT METHODS

Nt 1 n+1 N+ 1 Coefficient
u O(u) U Flu) U G(uiu Constraints
1 sy™! 2! 5 U] one-sided (c_
2 6Un+] 63Un+t GZUn+' two-sided (cO
n+1 2 n+l -1 -1 n 2, n+l et
2 U 8507 ~ke S, 8[c 'L U] §“U one-sided (c_
3| &2t —_ sy two-sided (a_
3fsu™ e s Ty" — czu“+‘~cos"62u” one-sided (a_
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GALERKIN METHODS FOR MISCIBLE 0| SPLACEMENT
PROBLEMS WITH POINT SOURCES AND SINKS -
UNIT MOBILITY RATIO CASE

1. Introduction

In [7] the authors presented and analyzed certain numerical approxima-
tions by Galerkin methods for a problem arising in the miscible displacement
of one incompressible fluid by another in a porous medium. Extensions of
these methods to more efficient time-stepping procedures and more jeneral
boundary conditions [8], to interior penalty procedures [17], to methods of
characteristics (13], to self-adaptive simulation techniques (&), 3and to
mixed methods for pressure [5] have since been develouped. These analyses
were surveyed in (3], All of the above analyses have made a major, and prob-
ably unphysical, assumption that the sources and sinks were smoothly distrib-
uted and the resulting functions of interest were thus fairly smooth in
space. In this paper we shall present th: first convergence analysis on this
problem to appear in the literature where the sources and sinks are consid-
ered as point singularities or Dirac measures. The resulting pressure func-
tion thus has a finite number of logarithmic singularities located at the
various wells. Since the resulting functions are considerably less smooth
than previously assumed, the convergence rates obtained in this paper are
slower than those previously obtained.

At present we are oniy able to analyze the special!l case where the vis-
cosity of the invading fluid is equal to the viscosity of the resident fluid.
In this case, the mobility ratio (see (5, 7]) is equal to one and the equa-
tion for pressure is a linear equation and can be uncoupled from the concen-
tration equation and solved once for all time. Analysis for the general case
when there is a nonlinear coupling between the pressure and concentration
equations is in process and will appear elsewhere,

A set of model equations for our physical problem is given next. For a
more detailed description of the physical problem, see (7, 11, 15]. Find the
concentration ¢ = c(x,t) and p = p(x,t) satistying the following set of equa-

tions:
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N
a) Ve(a(){% - yig}l = -9 eu= 7§ Qj(f) §(x - xJ), xeQ, tel,
J=1
(1.1)
2 2
c ] ]
b) ¢—a?+u-Vc- 2 ): aTi'[DiJ.(X,U)VC]
i=1 j=1
N
= 7 oj(mé‘ -c) §x - xJ.) , xeQ, ted,
J=1

with an initial condition and no flow boundary conditions given by

a) c(x,0) = co(x) , XEQ,

(1.2) b) u v

"
o

, X€3Q, Ted,
c) %% =0 , xedq, ted,

where Q is a bounded domain in Rz, J = [0, Tl, and v is the outward unift

normal vector on 3, the boundary of Q. Here a = a(x), vy = y{x), g = g(x),
¢ = ¢(x) are specified reservoir and fluid properties, u is the Darcy veloc-
ity of the fluid, ¢ is the specified concentration at injection wells and the

resident concentration at production wells, &§(x - xJ) is a Dirac delta func-
tion at x = xj' and Qj(f) are the specified flow rates of the wells with the

convention

oo, N/2 (injection wells) ,

]
—
-

a) Qj(f) > 0 for j

(1.3)

b) Qj(f) <0 for j N2+ 1, «ou, N {production wells).

The diffusion tensor Dij is given by




Ml o o —

D(x,u) (Dij(x'U))
(1.4) 2 2z

%
$(x) DO(X) I+ TET

where Ql and a the magnitudes of lcnjitudinal and transverse dispersion,

*.,
are given constants. Here for «e!Rz, |v|] is the stancard Euclidean norm of

the vector. We make the physically realistic assumotion on DO’ QE’ and a,

that
2
|

T 2 2
(1.5) 0< 0D, lg]® <& Dix,9) ¢, qeRT, EeR” .

This gives us a coercivity property for the parabolic equation and an assump-
tion of non-trivial diffusion and dispersion in the problem. We shal! con-

sider two separate cases for the diffusion tensor., In Case | a, = a, = 0 and

we have only molecular diffusion while in Tase I al > 0 and a, > 0 help to

model physical dispersion or mixing due *o *the flowing motion. Results for
Cases | and |! are presented in Theorems 3.1 and 3.2, respectively.
Using (1.1.2), we can see that pressure can be separated into its loga-

rithmic singularity components and a smoother component, E, as follows:

N
(1.6) pix,t) = ¥

i=1

Qi(f) 1

2 3 X,

nofx - x|+ optx, 1) .

Similarly we can decompose the Darcy velocity as follows:

N

(1.7)  u(x,t)
2w aixii

v |x - Xil +alx) Vp .

We shall be more explicit about the smoothness of E in Section 2 atter we
have presented the necessary terminology (see (2.8)). The fact that pressure

is assumed tTo have logarithmic singufarities also effects the smoothness of




the concentration of the invading fluid. In particular, according Yo [(14],

T 2
/ f %%— dxdt is not even bounded under the point sources assumption.
0 Q

Therefore the convergence analysis presented in this paper is non-standard
and much more difficult than for the case of smoothly distributed sources and
sinks.

The paper contains two additional sections. In Section 2, terminology
is developed, basic regularity and boundedness assumptions are presented,
basic projections needed for the analysis are considered, and the continuous-
time Galerkin approximations of (1.,1) and (1.2) are defined. In Section 3, a
priori error estimates for the continuous-time approximations are obtained.

L2 rates of convergence for Cases | and (| are given by h]-E and hl/Z-e'

respectively.

2. Preliminaries and Description of the Galerkin Approximations

Let (u,v) = f uvdx and ﬂuﬂz = (y,u) be the standard LZ inner~product
Q

and norm. Let w:(n) be the Sobolev space on Q with norm

a
2.0 wwr = [ ] ni—g 1° 17/s
’
WS | af <k Ix L)
with the usual modification for s = @, (f VF = (FV Fz), write 17 F1 . in
W
S
. s s 1/s _ - -
place of _1F 1 + WF_1 . When s = 2, denote iyl = Iyt = gk, . If
DR T 27k K K K
W W, W H

k =3, uwuo = Uy
Let {Mh} be a family of finite-dimensional subsraces of Hl(n) with the

following property:

For p = 2 or », there exist an integer r » 2 and a constant KO such

that, for 1 € q <r and ye wg(a),




a) int {1y = xt o+ iy = xb b <K Iy he,
xeM W W w3
h P P P
(2.2}
. q-1
b) inf {1y - xi g ¥ hiv - xi 1} < Kyhyh b .
XM, W W g

We alsc define a family of finite-dimensional subspaces of H?(Q) called {Nr}
1
1

which satisfies the same property as {Mﬁ; with r replaced by s. We also

assume that the families {Mh} and {N_} satisfy the following so-calle

nl

"inverse hypotheses":

if ye Mh or Nh’ for some K1 > 0,

2 _,
- =i
a) iyt < K1 hP bt o, 2<p S ™
LH
(2.3)
-1
) Iy, <K, h R
We shall use Mh to approximate ¢ and Nh to approximate the non-logarithmic l
part of p.

We shall make the same boundedness assumptions and somewhat weaker
smoothness assumptions on the coefficients than were made in (7, 8, 17]. We

consider spaces of the form

Qa
1yl = v a0 — x | 1 2 g e LPria,on)
wg ((a,b), X) at®
with norm
2 1/
(2.4) 1y =[ 7 llll—-—g(f)ll 1P 1P,

Wl ((a,0), X) at LP(a,b)
p

lal <q
where 1 < p, 7 € »and X is a Sobolev space in our applicatiors. When (a,b)

= J, we shall suppress (a,b) in our notation in (2.4). Let (p,c), the solu-

tion of (1.1)-(1.2), satisfy the following reqularity assumptions:
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a) fci + dct + fci <K, ,
b) kp i . - <K, ,
(2.5)
c) lut <K, ,
L‘”(LZ-E) 2
o 13X <K,

where € > 0 can be chosen arbitrarily small, p can be chosen arbitrarily

large, K, > 0 is a fixed constant, and J has been supressed in the index

2
notation of the norms. These regularity assumptions are based on analysis by
Sammon {141,

In our analysis we shall use two different approximations for c from

A
M We first define the L2 projection c of c info M_ by

n.
a)  (4(c - é), x) =0, XE Mh , or
(2.6)
i Ay .
b) (¢(3; - 3?], x =0, XE Mh .

"
We are led to use the L” projection of ¢ into Mh instead of the now more

1 . . . \
standard H' projection due to smoothness restrici uns on c. Since we assume

D
that & is onty in L4, L57E)

3t for € arbitrarily smali, we are not able to

A A
treat terms |ike %;[c ~ ¢c) in a norma! fashion. Thus we have used c to

project this problem away as in (2.6.b). This causes reduced accuracy in

A
terms like V(c - ¢), but the loss of accuracy was inevitable in any case due

to the logarithmic singularities in pressure. We also denote by <, the
interpolant of ¢ in Mh' We then use (2.3) and the theory of interpolation

spaces to obtain the following approximation theory results:




Lemma 2.1: There exists a positive constant K2 = KZ[Q, KO' K2] such that,
for each telJ and € arbitrarily small,
A A q]
a) Uc - ch + hic - cll, <K,lct h R 0 <q, €2 -~ ¢,
1 2 44 1
' : qz
(2.7) b) 1c - cH < K,lcl h , 0 <qg, <1 =~ g,
® 2 q 2
L 2
W
o
93
c) e -c i+ hitc - c 1+ dc - cl“Lw] < Kznclq3 h™, 1 €q5 €2~ €.

Proof: See [2, 4, 16].
We next note that from (9] we know that 5 defined in (1.6) satisfies

(2.8) “p"H2~e < K3

for K5 > 0 and some arbitrarily small € > O. We shall use the logarithmic

part of p defined in (1.6) to form the leading part of our approximation P of

p. We define P to be

N Q,(h) ~
(2.9) PN = [ gy [x - x| +P,
i

i=1

where X i=1, ..., N, are the locations of the injection and production

wells and P ¢ Nh is an approximation to 5 from (1.6) defined for each ted by

~

(2.100 (at+) V(P -P), Vx) =0, xeM .

This is an example of a weighted elliptic projection used by Wheeler in [16].

We obtain the following result.

L.
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Lemma 2.2: There exists a positive constant K4 = K4(Q, KO’ KZ) such that,

for each te) and € arbitrarily small,

~

(2.11) 1v(p - P )1 <K4Ipqu

ha-!

»

for 1 <q €2 - &

1f we then define u and U by,

N
= - a(x) _ ~
a) u=alx) Vp ) M Ty ¥ in|x xJ.l +a(x) Vp ,
j= !
(2.12)
N ~
_ _ a(x) -
b) U=a(x) vP= ] 0,0 -———a(xj) v 2n]x xJ.l + a(x) VP,
J=1

we can immediately use (2.8) and (2.11) to obtain for each tel and K5 =

KS(KB, Ko a(x)) ,

(2.13) 1u - UK <K =€

where ¢ > 0 can be made arbitrarily small.
We next define the continuous-time approximation of c as follows:

C:(0,T] —> Mh be defined by

2
C 3 3
a (6, )+ I 1 (DU.(U) T Cr g X))t W VC, 0
i=1 j=1 J '
N/2
(2.14) = .2‘ 0, (1) (¢ - C)(xJ., 1) X)), xe My,
J.‘-‘

by (CtO) - ¢y x) =0 , Xe M.,

let




16¢C

~

where U, P, and P are defined by (2.12.b), (2.9), and (2.10), respectively.
The main results of this paper are a priori estimates for the error in
approximating ¢ from (1.1) by C from (2.14), These will appear in the next

section.

3. A Priori Error Estimates

In this section, we shall obtain a priori bounds for the error in the
concentration approximation C - ¢, to go with the bound of the error in the

Darcy velocity approximation given by (2.13). We shall split our a priori

estimates into Two cases. Case | will reflect the assumption that the only
diffusion present in the mode!l is molecular diffusion and a, = a = 0 in
(1.4), Case || will extend the estimates to the more difficult case of

tensoriai physical dispersion given by (1.4) with a, > 0 and a > 0. As

expected, we obtain a reduced convergence rate for the more difficult case.

Theorem 3.1 Let (¢,p) satisty (1.1)-(1.2) and (C,P) satisfy (2.9), (2.10),

and (2.14)., For the molecular diffusion case, let @, = o = 0 in (1.4).
There exist positive constants K6 = K6(Q, Ki' i=0 ..., 5) and ho such that,
it h<hg,
ic - Ct + 1v(c - C)
L™(4,L2) L2(3,L%)
(3.1
- 2 ‘21’ I-¢
+¢ T L 1o - a%(x., t)dr S <k, nE,
0 A j 6
J=1

A A
(e = e(e) > 0 is defined in (3.19) below and can be taken arbitrariiy smatl).

A
Proof: let £ =C ~ é and n=¢c - c with é from (2.6) and C from (2.14),
Subtract (2.6) from (2.14) and let x = £ to obtain
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3
(635, &)+ (80, 9 WE) + (u - T

(3.2) = (6059 m VE)+ (ueVm &+ (u=-U)-7C, &)
N/2
+ L Qe - O (x;y 1) E(x)p 1]

J
J=1

For the last term on the left-hand side of (3.2), we integrate by parts (note

fha-f_g_:.: 0 on 3@) and use (1.1.a) with x = £ fo obtain
£2
(Ue Vg 8= (uevs, 1)
2
- 3
= - (v.u’-z——)

N
(3.3) SR e EZ(XJ-, f
j=1
N/2 N
-l oy o] Px, t)v s T 0D E2(x, t).
2 J J’! 2 J J
j= J=N/2+1

We then combine part of the last term on the right side of (3.2) with (3.3)

and replace c by ¢, at the wells, to obtain
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d /2 _2 1/2 2 |
D) E1° + 1(s0y) Ve s>

N —

N
I lo,0) €(x;0 1)

[}

(6Dy ¥m, VEJ+ (¥ 8+ (u=-U) +VC, B
(3.4)
N/2

+ 3 QJ.(T)[Cl - é)[xj, 1) g(x.

1-
J’ )
j=1

T]+T2+T3+T4.

We next integrate (3.4) ftermwise on Tt in Jy = (0, t] for teJ. The left-hand

side of the resuiting equation is then bounded below as follows

t t
2 & et acs [ (e 0,)"% v &1 dx
0 0
Lo 2
(3.5) += ) [ o0 & (x., t)dt
2 0 J J
J=1
N
2 2 ' 2
> a[16(H 1% + v a1’ ) [ 19.(n]| & (x., 1) dt]
J J
L7(44,L%) j=1 0

where a depends upon uniform lower bounds for the coefficients ¢ and DO such
as D, from (1.5). We next consider bounds for the terms on the right-hand

side of the integrated analogue of (3.4), We note that from (2.7.a), we

obtain .

t t
| [ Tldr|<Kf 19 ni IVEIdr<Kh1-EIVEI
0 0

<2v e +
8 2 2
L (44L)

K h2(1—5)
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where a is from (3.5) and K is used here and in the following as a generic

positive constant, usually of different size with each use. Then using

{2.3.a), (2.5.c), (2.7.a) and the fact (1, 10] that, for QCIRZ and for any
1 €p < =,

(3.7 axt <K axl

’
L 1

we use the Sobolev Imbedding Theorem [1, 10] to see that

u t
[/ T, dt| < wi f wm 150 dr
0 2 LQ(LZ E) 0 L24- S‘ Lp
2+e’
<K_ h K, 17 nl €1
2 1 202 LZ(JT’HI)
(3.8)
e o]
€ 2+ef [ ]
<K h 13 + 17 &1
2 2 2 2
L (04.L%) Lo (4 4al%)
£
) , 2(1-e- 2+e])
<g(v er, e, )+ Kh

2 2
L (1t®) LT el)
where €, €1 and p satisfy the retlation

1 1 +

1
(3.9) 7:—€+—2+€] o

= ] .

We note that since € > 0 from (2.5.c) can be arbitrarily small and

arbitrarily large p satisfies (3.7), €, can also be taken arbitrarily small

and still satisfy (3.9). We next use (2.7.b-c) to obtain
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. N
(3.100 | T, d1] <§- y
0 i=1

1-
[ 10.¢n| E(x., 1) dr+ k n21=€)
o 4 J

Finally we shall break T3 intfo pieces to consider as follows:

—
f

((u-U) «»7E, ) - ((u=U) »V¥n, £) + ({lu=-U) « V¢, E)

(3.11)
T+ T+ T, .

i

Now we again use the Sobolev !mbedding Theorem with €, > Q0 arbitrarily small

and Py > 0 arbitrarily large satisfying

1 1
2 * 2+ ¢

(3.12)
2 P2

and apply (2.3.a), (2.13), and (3.7) to obtain

t +

lfo Todt| < - Ung[Lz) fo v e

2+€2 LEn pzdr
L L

(3.13)

2
+ gl 2

a 2
<[1v g
8 L20,,L%) L

.',)

In (3.13) we have chosen ¢ and €, sufficiently small that ¢ + 5

the same fashion, we use (2.3), (2.7a), and (2.13) to see that

L____________~__
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If t
|[ Todt| < wu-ur [ 19 b1t dr
o ° L7(L2) o L
1-¢ 1-¢ -1
<Ko h 5K, M 7K, hTTnEs
(3.14) 5 2 ! 2 2
L% (440t7)
‘ g '5'22 L +K h2(1-2e)
L (Jt")

Now since (2.5.3) holds for € > QO arbifrarily small, an imbedding result

similar to the one used in (3.7) can be applied to pick a p3 = p,(€) >0,

3

arbitrarily large, and satisfying

(3.15) 1wl <K

from (2.5.a). Using this Pgs we choose €y = ES(DS' e) > 0, arbitrarily

small, tTo satisfy

1 1 1
-+ — +
2 p3 2+ €

(3.16)

=1,

Then we see that, as before,

t t
[[ T, dt] < -yt [ 1V e nen dt
7 w2 p 2+
0 L7(L) "o R
l-¢ 2+83
(3.17) <Kg h A o, KM e, 5
Lz(L 3) L7(4,L%)
£
3
, 2(1-¢~ 2+53)
< g L , * K .
L"(17)




e < i 1 T
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We next combine the above estimates to see that for each te(0, Tl, we have

2 2 ot 2
T+ v, ot 1/ Ioj(r)l £ (xj, 1) dt
L% (44,L%) j=1 0
(3.18)
A
L7(4,L7)
A
where € is defined as
A € €.
(3.19) €= max[2¢, €+ 2e, €+ 7:25]

and can be taken arbitrarily small, We can now apply Gronwall's lemma to
(3.18) and use (2.7) and the triangle inequality to obtain the desired result
(3.1).

We next consider Case |! where a, > 0 and a > 0 mode! physical disper=-

sion [12]. We obtain a reduced rate of convergence in this more complex

case.

Theorem 3.2. Let (c,p) satisfy (1.1)-(1.2) and (C,P) satisty (2.9), (2.10),

and (2.14). There exist positive constants K_ = K7(Q, K. i=0, ..., 5) and

7
hO such that, if h < hO'
flc-Cr + 19 - O}
L7WaL?) L2(4,L%)
(3.20)
N ]
7 -
{1 LMl - ) ot} i nVE
X 0 v
j=

(e = ele) > 0 is defined in (3.35) below and can be taken arbitrarily small.)

Proof: Let £ and n be as in the proof of Theorem 3.1. Subtracting (2.6)
from (2.14) in this Case |! and substituting £ for yx yields




= (u «9n, £+ ((u~-U) «» ¥C, &)

N/2
(3.21) + 1 Qe - c>(xJ., 1) g(xJ., 1)
j=1
2 2
+ 7T 0w -0 ) ==¢, =2 k)
i it e ©
i=] j= J '

We again integrate (3.21) termwise on 1 in Jy = {0, tl for telJ. We obtain an

analogue of (3.5) for the left-hand side of (3.21) where now a depends upon
the constant D, assumed '~ (1.5). Atll the terms are then treated exactly as
in the proof of Theorem 3.1 except for T, . which did not appear in Case !,

Wwe first split T

11

yp Up as follows:

2 2
= ) 3
Ty DD (o -0l gte 5 8)
i=t j=1 J |
(3.22) 2? 2 ; a
- - j i
i=1 =1
= T]‘2 + T15 .

we first note that




(3.23) L2y ) )
t 7 ) fo (DU(U)KE,‘BTE)dT
i=1 j=1 J '
= T\A + T15 .
Clearly, TIS can be subtracted from the corresponding term on the left-hand

side of (3.21). We can then split T14 as follows:

2 2 +
3 3
T\, <4 T 1 J ([DU.(U)— Dij(u)]wn,yn)dr
. . 0 J J
i=1 j=
2 2
(3.24) Gl 3
+4 7 7 7 (Dij(U) S N e M) 9T
i=] j= J !
E T16 + T]7 .
T

dt + Tl6l , we shal! use (3.15) and an analogue for

(n order to bound | [ T2
0

ne First c¢c - cI satisfies a bound of the form

(3.25) 19(c - ¢, ) <K
2, P
L)
where Py is the same as in (3.15). Then since ¢ - é € Mh' we can use (2.3),
(2.5), and (2.7) to see that, for € < %— ,
3




(3.26) — -

Combining (3.25) and (3.26), we have

(3.27) v nt <K .

We next note that by elementary but tedious computations one can show that

DiJ(X’U) is Lipschitz in u with Lipschitz constant 3. Thus combining (3.15)

and (3.27) and the Lipschitz behavior of Dij' we can use (2.3.a) and (2.13)

to obtain
t t
If T,odr+ T | <w - uu [ [ + v ct ] v g
12 16 ®, 7 p D 2+
0 L7(L7) o 3 3 U5
l-¢ 2+€3
(3.28) < K. h K K, h v gn
5 1 LZ(J LZJ
*D
€
3
, 2(1-e- 2+£3]
<§uvgnz , KN .
(J4ot7)
-1-
We next use (1.7) and (2.12.a) to note that for each i,j = 1,2,
N
1 ~
(3.29) lDiJ(U)' < |u| < E KBTX—:TKT+ |a(x) Vpl

k=1

dt
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where |v| for a vector v is the standard Euclidean norm in R, Using (2.3),
(2.7), (2.8) and (3.29), we see that

1—
IT.o| < |T,al + 19 p J 1V ni, 49 ni dt
17 18 0ty o L4
1
< Tyl + Ko 2y nuzz 5
L=(L%)
(3.30)
1
T2 2(1-¢)
<Tigl + K h
3
2{= -
< |T,al #+ K nh G o)
18 )

We note that the second term on the right side of (3.30) does not give an
optimal estimate for the a(x)VE term from (3.29), but yields a better bound

T contains a term of size

than we are at present able to obtain for T18' 18

|x - le-l centered at each well. For simplicity, we will carefully estimate

only one such term. Without loss of generality assume we have a well

centered at the origin x = 0. We shall then split this term by considering

the spatial integration over Bg, a disc of radius h8 centered at the origin,

and its complement § - BS. We then see that

2 t

>

1 an_ 3
Tgl snk T 1 J IBF-—n-—n—dxdr
i=1 j=1 h




We then obtTain

<k n By nnz

T L2[L2)

ZOI

i (3.32)

< K h—B h2(1-6) = K hZ-ZE-B .

Next, we let p, and q satisfy

3

(3.33) PR
. a

'Oll\)

and use (3.27) to obtain

8 1
27 h -
T <K v NG [ P9t dar )9 de
19 2,P3, 70 o
Lot )
4
(3.34) -q+2 - -
<k(®) 9 -kpPy 7
48
8_—
Py

i
A
=

for Py arbitrarily large. We then pick 8 to balance (3.32) and (3.34). With

B8 = 1 and

(3.35) ¢ = nax[e, %-

~e see that

2(5+%)
(3.36) |T,.| «<n 2 .
¥ 18
' Combining the above estimates and corresponding bounds from the proof of

Theorem 3.1, we obtain, for each telO, Tl.




r—

r

17
N +
g e+ 1y guzz 2 ¥ I/ Q.o Ez(x.,r) dt
J J

(JT,L ., 0

J=1

(3.37)

1 -
2(5 ~¢)

< ugazz , * KN 2

L (4ot7)

where € is given by (3.36) and can be faken arbitrarily small. Then applying

Gronwallt's temma to (3.37) we use (2.7) and the friangle inequality to obtain

the desired result, (3.20).
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’ Tracking of interfaces in fluid flow: Accurate methods for
piecewise smooth problems

* James Glimm

ABSTRACT

A survey of hyperbolic conservation laws is presented,

with an emphasis on issues raised by a front tracking code

developed by the author, Eli Isaacson, D. Marchesin and 0.
McBryan. The organization of the code is described and re-
sults of the calcuvlations are summarizocd. The aim of the code
is to provide a general and flexible wetheod for obtaining ac-

curate solutions to problems which are piecewise smooth.

I _INTRODUCTION

A number of problems of fundamental importance to science

and technology involve an intcerdisciplanary mix of fluid dy-

namics, physics and/or chemistry and computer modelling. The
fluids may be either liguids or gases. The flow can be tur-

bulent or laminar. It can have boundary layers, detached bou-

ndary layers, or intcrnal fluid and material discontinuities
‘ (shock and contact waves). In addition to exhibiting such

pure fluid phenomena, fluids of interest may do something
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besides just flowing. Tho fluid constitu=nts may react
chemically (e.g. burn), they may chainge phiase, precaivitate
as solids, or become adsorbed at the active site of a catalyst
in a reactor bed.

Because computer modelling is an ceosential rart of the
problems I will discuss, it is necessary to make two comments

on Ax, as an introduction to the methods to b2 proposed.

First, Ax does not go to zero. Cecond, Ax docg not vary
greatly. Working with a $100K mini-computer, it is fairly
routine to solve time dependenti problcms ccitaining a two
dimensional elliptic equation on a 30x30 mesh. With a large
computer, the cost would hbe several million dellars, and a
typical grid, might be 80x80 or even 150x150, Jdepending on
the computer and the importance of the problcm. For three
dimensions, the grids are correspondingly coarser. These
grid sizes are sometimes adeguate to resolve the principal
hydrodynamics waves in a complex problem, especially for a
two dimensional calculation. They are almecst never sufficient
to resolve secondary waves, nor are they sufficient to resolve
phys»ical or chemical processes which occur on length scales
much smaller than those of the principal hydrodvnanics waves,
unless some special adaptive strategy is emploved.

A second degression is required to explain some conse-
quences of the hasic scientific phenomena to be modelled.
Many problems have the form of a hyperbolic conservation law
(mass, momentum, chemical species, ...) with an elliptic term
added (heat conauction, mass diffusion, viscesity, ...)-.
These problems are parabolic, but depending on the relative
size of the parameters, they may be regarded as approximately
hyperbeolic or elliptic. 1In fact for a problem with several
degrees of freedom, some of the degrees of freedom may be
approximately elliptic, while others may be approximately
hyperbolic.

Let us consider a hyperbolic degree of freedom. This
means that the associated diffusion length is significantly
smaller than one mesh spacing; since the mesh spacing is not
likely to change by as much as a factor of eight from a




177

small scale to a large scale calculation, this property is
independent of mesh spacing over a practical range of mesh
choices. As a temporary approximation, we set the diffusion
length to zero. 1In some cases (the stable regime), the limit
of zero diffusion length is continuous. Still the numerical
implementation of zero diffusion requires special methods. In
fact the most common numerical methods, even when applied to
problems which are stable physically as far as can be deter-
mined by experiment and by linear stability analysis of spe-
cial solutions, cxhibit instabilities in the zero diffusion
limit. These instabilities are numerical and not physical;
they are properties of the discrete approximation and the so-
lution algorithm, and not of the continuum equations nor the
physics which they model. To avoid these instabilities, a
minimum diffusion length of at least twc and perhaps up to
four mesh spaces is required. This diffusion length is a nu-
merical artifact. 7Tt is perhaps the largest consistent error
in numerical hydrodynamics.

Remaining in the (physically) stable regime, let us now
consider a nonzero diffusion length. In this case the dis-
continuity wave is replaced by a smooth transition in a nar-
row region with steep gradients. Actually the situation as
seen by the experimental physicist or chemist is often more
cemplicated. The equations which we ovxiginally set out to
solve are a projection onto a small number of degrees of free-
dor of a very large system. The internal structure of a sin-
gle discontinuity wave may be a series of sharply defined
waves of the laryer system, moving with a common velocity.
Flame fronts are commonly of this nature. When the internal
structure of a hyperbolic wave consists of subwaves of extra
degrees of freedow, thun the correction to include this phe-
nomena can be performed within a framework of sharply resolved
discontinuities. However, the diffusion may also be real,
i.e. the experimentally correct source of internal structure

for the wave, as in the case of a drop of dye in clear water.




Finally we discuss the unstable ywcuime, In this case,
the use of a zero diffusion length, ii taken literally, would
give an incorrect solution. In this case, the subgrid phe-
noma, which occur on length scales too small to be computed
directly but which still govern the physical stability of the
flow and thus affect the large scale hydrodynamic waves, must
be somchow retained cor replaced by some effective pumerical
eguivalent. 1In addition to parabolic ferms with an associated
diffusion length, subgrid effects may include surflface tension
and heterogeneity {(random mediza).

There is a computational strategy which allows zero nu-
merical diffusion. It is to track the waves. Singularities
(e.g. discontinuities) of a solution of a hvrerbolic eguation
propagate along characteristics. The characteristics are
solutions of an ordinary differential equation determined by
the wave speecds, and for a nenlinecar equarion, hy the solution
itself. It is possible to use a purely characiteristic ap-
proach, in which all waves, singular or smooth, are propagated
along characteristics. This is known as the method of lines.
The method of tracking is a hybrid, which uses the character-
istic propagation for certain waves (the "tracked waves”™) and
a finite difference grid for the other waves. Specializing
to a two dimensional problem we then have a fixed two dimen-
sional rectangular oxr curvilincar grid for the untracked
{smooth) waves and a moving one dimensional curvilinear grid

which locates the position of the tracked wave. This method

can be viewed as a variant of the adaptive grid and mesh re-
finement approaches. 1n fact when the internal structure of
the tracked wave is parabolic and governed by a mixing length
(rather than containing several waves from new hyperbolic
degrees of freedom), and when this internal structure is re-
guired as part of the solution of the problem, then the meth -
ods of moving grid local mesh refinement and of tracking over-
lap.

In summary, the computational methods which employ the
known arnalytic and qualitative properties of the solution
have the promise of achieving increased accuracy, speed and
especially resointion.




11 THUORY

We fccus on elementary waves and their interactions.

The Riemann problem is basic, and we explain in what ways

a deeper understanding is required.

The equations of (chemically reacting, ...) fluid dy-
namics are basically conservation laws. The simplest is the

continuity equation

u o+ Ve (vu)= 0 (2.1)

for a quantity (concentration, mass, ...) u carried passively

in a fluid with a velocity v . Writing
(at, V) =D (2.2)

as the space time gradient, we see that (2.1) states that the

vector
-+
(a, wvu) (2.3)
has zero space time divergence:
-+
D(u, va) = 0
-+ . :
Thus the vector (u, vu) i8 a conserved gquantity. By the
divergence theorem, the integral of the outward normal com-

oneu. vf this vector over the boundary 38 of any region
P

vanishes,

§ (u, van do = 0 . (2.5)

A
In particular we choose

Q= [ty t,) x4 (2.6)
to be a cylinder of height ty - 4y and base {i . Then

. I s [ (t2 ps
j u(x,tl)dx - ju(x,t,)dx = J uvendo
: J 2 J
* Y1

3 2 ad
Note that the left hand side is the guantity of u at

time t, minus that at tino t2, i.e. the change in the amount
of v, while the right hand side 1is the flux of u across the
boundary 30t 1. 1n other words,

change in u = {lux across boundary. (2.8)

———. .




0f course the rcascninyg can be reversed. Peermala {(2.8) <an
be taken as furndamental, i.e. the definition of & conserved
gquantity, and (2.1) can be derived from it by considering all
possible Q's and taking a limit as{ becomes infinitesimal.
More generally we consider guantities which need not be
carried passively by the fluid flow. For example, pressure,
or acoustical waves in a gas move {by definition) with the
speed of sound, while the gas molecules move with the gas
{(wind} velocity. In general, the velocity of a chomical re-
action wave is different from the velocity of the molecules
because 1n the rcaction tho mwlecules are chanoing species,
and thus distinct molecules are located at the wave reaction
front at distinct times. Thus we introduce a general flux

function

>

; = E(u) or
a

%(u,t,g)

]

N
Note that xeR 1is a vector taking valuecs in the geometrical -

physical - space, while u is also a vector, but takes its
values in the state space R” which defines the degrees of
freedom of the problem (momentum, mass, encrgy, ...). The
values of f lie in Rden . Reasoning as above from the def~
inition of a conservation law, we are lead to the conservation

law equation
u, + $Ew =0 . (2.9)

An external source g = g(u,t,;), if any, replaces zero on the
right side of (2.9). 1In (2.9) with source g = 0, u is a con-
served guantity and E is its flux function. 1In other words
?'; is the rate of flow of u across a unit surface element
with unit normal ; .

A preliminary classification of the eguation (2.9) falls

back on the linear theory, and so we introduce the Jacobean
A = 3E/2u = (3F;/0u,) (2.10)
1l <i,j <n and

A-n = 3(f-n)/3u . (2.11)
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Than

w. + A.vw + (\-ﬁ(uo))w =0 (2.12)

is the linearization of (2.9) about the solution u
For plane waves moving in the direction n , the eguation

specializes to

w, ¥ (2-3) (heP)w =0 . (2.13)

Note that A.n is an nxn matrix.
Following standard lincar terminology, we say that (2.9)

is hyperbolic if all the eigenvalues Ay T Ai(u,ﬁ) are real

and it is strictly hyperbolic if the i; are real and distinct.

. . r
In general A is not symmetric. Let eg and ei denote the left

and right eigenvectors corresponding to the eigenvalue Ai,

so that
£ > o ' > -+ T r
e/ An = Aiei » Arn e; = Xi e, . (2.14)
'8

Then the e and e' form a biorthogonal family:

2 r
< , €7 > =0 for A, # ). . 2.
e E r \l ; AJ (2.15)

The equation (2.9) is linear if and only if A% is independent
of u. Conversely, we say that (2.9) is strictly nonlinear if

VeF Xi (u,n) # 0 (2.16)
i

for all 1 . 1f it is strictly hyperbolic, so that wave speed

crossings do not occur and the igl mode is globally defined,
then we say that the j»t—E mode is strictly nonlinear if (2.16)

holds for 1 = j. The importance of this concept will emerge
later, but for now, we specialize ton =1 , a scalar eguation.
Then

}; = An = (3f/3u) % (2.17)

is real valued, e? = 1, and

2> 2
VoA, = (3%€/5u%)en (2.18)
o, 1
24
. . ad . .
In other words, strictly nonlinear means that t.n is either
concave or convex as a function of u in the scalar case.

There are important examples which are strictly hyper-




bolic, outhers which are hyperbolic but not strictly hyperbol-
ic. The same applics to the strictly rnonlincar conceszpt. Prob-
ably there are very few properties of A which are un!.ersal
to all examples, but it 1s an open guestion to Getermine prop-
erties of A or f which apply to varicus class of natural ex-
amples and which allow the interaction of elementary waves(or
the Riemann problem) to be understood in the large. It is
this guestion to which we now turn.
Elementary waves.

The easiest way to apprcociete the meaning of elementary
waves 1s to study the Riemann problem. The Riemann problem
is the initial value prohlem for one space dimension and for

data which is constant except for a single jump discontinuity:

Yrefrr X o ¢
u_ = u(t = 0,x) = (2.19)
urtht, x > 0

The solution

ult,x) = ul(l,x/t) (2.20) .
is constant on rays and reduces to a function of one variable:
£ = x/t. To see this cbserve that the equation (2.9%) is in-

variant under the scale transformation
X + ax , t » at (2.21)

Assuming unigueness {(which has been proved in a large enough
class of problems to apply here [DiPerna, 1979)), and obser-
ving that the data (2.19) is also scale invariant, then so is
the solution scale invariant. Thus (2.20) holds. For an n-
dimensional state space the solution (in the simplest case;
exceptions will be considered later) consists of n+l wedges
in which u is constant. Between adjacent wedges in which u
is constant, the allowed change in u is either a single jump
discontinuity or smooth change in an intervening wedge of a
type to be presecribed below. In either case, the variation
of u between adjacent wedges of constancy is an elementary

.th . . . . .
wave. The i— wave involves variation in a single mode, or
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einendirection ei(u\, and preopates with a speed Ai(u) ~E= x/t
at least for infinitesimal waves, as we shall see. In sum-
mary, each elementary wave
Au
t Ay
u N r
rligyt Au = ei {u)
Ylett x speed = x/t =3 (u)
.
Pagl

Figure 2.1 Elementary wave
involves variation in a single mode, and propagates with a

speed characteristic of that mode. The spreading waves are
called rarefaction waves; the jump discontinuous waves are
either shock waves or contact discontinuities, a&s we now
explain.

Because we are contemplating discontinuous solutions,
we are necessarily considering weak solutions. The concept
of weak solution can be formulated in three eguivalent ways.
First, it can be required that the original conservation and
flux relations which defined the conservation law be satis-
fied across discontinuities. Second, the integral form of

the conservation 1aw,
j(¢t u ot g f{x))dt dx + J@(O,x)u(o,x)dx =0 (2.22)

for all smooth ¢ with compact support, defines a weak solu-
tion. Third, if the derivatives in (2.9) are taken in the
sense of Schwartz distributions, then again a weak solution
is defined. Now considered a curve x = x{(t) in space time
moving with speed s = % , and suppose that a solution u of

(2.9) is discontinuous across x(t). Apply the space-time
divergence theorem to the vector field u, f(u) in a small

strip § around the curve x(t).

x(t)

Figure 2.2. The Rankine Huguniot relations

derived from the space-time divergence theorem.




- B
=y

Note that (1,8} 35 vongent to the coive and {(-a,1) 1e normal
to the curve. By the weak ormulation of the differ ncial
equation, the diveracence of u, f{u) vanisnhes when integrated
over ©oand so by the diveragence {heoremw,

:

] (u,f(u))-n dec = 0 .

3

I
If we let (wl deocte the juap o o cugantity w oaoyoss the
curve x{t), then by ahrivnking @, wo concolade that

(lad, Y3y {-3,) = C
identically alona the curvel  vhns

sf{ul = ] , (2.23)
which 1s known as the Rankine-Hugoniobt 1elation.

1f we specialize to an inflinitesiral wave, then the
above 1dentity recames

s du = drY
Recalling that A df/du, we rowrite this as '

s du - A du (2.24)

So that we identify s with an eigenvalue Ay of A and du with®*
infinitesimal variation in the direction of the eigenvector
ei {u) . Motivated by the forrula (2.24), it is easy to
construct the rarefaction waves. The construction beqgins in

the state space. Let Wieft be the value of u in the constan-

.th
cy wedge to the left of the i1-— wave.
& N f-*57::~"~??_.iﬁﬂ wave

i ,
& i
w = W = =
left left “right T Yrignt

L, it 1
— i-
right A g

left N

—~ X

Figure 2.3 An elementary rarefaction wave.
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In the state space, we solve the ordinary differentail equa-

tion
o = r
u = e (u)
with initial point u_ = wi .
) o left

The equation is autonomous and so the integral curve does not
depend on the point along it chosen as initial point. Assum-~
ing strict nonlinearity, the wave speed ki(u) is strictly in-
creasing as we move in one direction along the integral curve.
Now identifying Ai =f= x/? in (2.292 defines the solutior u
in the region of the iri-l'l w;eft and wilght . Note that in mov-
ing from left to right, we are constrained to move along the
integral curve in the direction of increasing li(u).

The general strategy for solving the Riemann problem is to
use the elementary wave strength as a parameter in passing
izéht = wieft to wiight After n steps, we have a s0-
lution depending on n parameters, joinirng left and right sta-

from w

tes. The rarefactizn waves allow only one sided variation of
the parameters, but the shock waves, defined hy (2.23) will
provide variation ia the opposite direction. Then an appli-~
cation of the implicit function theorem will show that an ar-

bitrary state u satisfying

riaht

9oy - uright'

can be joined to Uieft with this n parameter family of ele-
mentary waves, thereby solving the Riemann problem in the
small. The corresponding problem in the large reguires some

hypothesis on A, and has been solved only in a few special
cases.
An_example: Burgers' equation. The simplest example of

a conservation law is the scalar equation

2,
Uy v ) =0, (2.25)

known as Burgers' equation. Here the matrix A = 3f/3u is a

real number,




A= 3(%%)/3u = u = ) (2.26)

1
Because 3X;(u)/3u =1 # 0, the equation is strictly non- lin-
ear as well as being strictly hyperbolic. It is elementary

to construct shock and rarefaction waves to solve the Riemann

problem for Burgers' egquation. If Ujefry <V then

right '’
the solution is a rarefaction wave, defined as follows:

Yiert HE X/t < uppe
u(t,x) = u(l, x/t) =4L x/t if Yert S X/t < uright(2'27)
Uright 1f uright R4
I : ion i r
£ uleft > uright + then the solution is a shock wave By
(2.23), we have
tu} = Yright =~ Yeft
[£] = %( 2 2 )

Uright T Yegr ! = MUl (Uit Uiese
and so
s =.{f]/lu} = k(uright tuyoee) -

The value of s uniquely determines the solution. If we draw
the characteristic curves x = A in the regions where u is
constant, then we obtain the pictures below.

At

~> X

tion. Dashed lines are characteristics.
From this picture, we see that a shock wave is like a black

hole: it absorbs information propagating along character -
istics, and this information is then lost in the solution.

> x

Figure 2.4a,b. Rarefaction and shock waves for Burger's equa-
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The equation (2.9) is invariant under space-time reversal,’

XxX+-x, t>-t .

This reversal interchanges shock and rarefaction wave data,
but it does not interchange shock and rarefaction wave solu-
tions. In fact it maps a shock wave onto a solution which
could be called a "rarefaction shock wave", aud which we want
to exclude. Since the rarefaction shock wave is a weak solu-
tion of the equation (2.9), a new condition is required to
supplement (2.9). This condition is the entropy condition.

The characteristics for the rarefaction shock are shown below;

P AC 7 .
t \ _ /,/ =

| < . e

| - 7
i - 7

~ s
i e

e S x

>

Figure 2.5 A (nonphysical} rarefaction shock.
they are the x-t reversal of the shock characteristics shown

above. One form of the entropy condition excludes discon-
tinuities (shocks) of the iEE family in which the forward
iEE family characteristics leave the shock from either side.
Another form of the entropy condition states that there is

no path in state space consisting of a sequence of clementary

waves, Jjoining Wy.rp tou and with increasing wave speeds

right

as the path is traversed from Ut to uright'

the jump is indecomposable. A third form of the condition
states that the solution should be the limit, as ¢ +0, of

In other words

solutions of the parabolic equation

u, + f(u)x =g, -

In general, the rarefaction shocks are unstable and are ex-
cluded by perturbing the initial data or the equation. For
general equations, considered in the large, it is not known
which forms of the entropy condition will be correct.

Contact Discontinuities.

Linear waves and contact discontinuities do not arise
in Burgers' equation, so we consider the linear equation
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with f = u and A = 9f/3u = Al = 1. The equation (2.24) shows
that discontinuities can arisge in the case [u]l = |f] and

s = 2= 1, Then the characteristics run parallel to the dis-
continuity curve, and neither enter it (as in a shock) nor

leave (as in the excluded rarefaction shock). See below.

¥ /e
N
V4 /7

w4 L y4 L S X

Figure 2.6 A contact discontinuity
The general definition of a cortact discontinui&y is a jump
discontinuity satisfying (2.24) for which s = Xi(uleft) = xi
(uright) , as in the tigure above.
The scaiar eouation: The generul theory.
For the scalar equation, the Riemann prokrloim can be

solved for arbitrary u without furthev hypothesis.

left’ Yrioht
For the strictly nonlinear case, f is convex or cocncave, and
a slight extension of the casc of Burgers' egquarion covers the
situation. In the aconeral case (f neither convey nor concave)
we join Ulnrt to uright by a sequence of elcmentary waves.
In the u, f(u) plane, we reccanize a shock wave as a

chord, joining two points on the graph of £. The speed of
the shock wave is the slope of the chord. BAlso a rarefaction
wave is a portion of the graph of f, and the local wave speed'
within the rarefaction wave is 3= f'(u). Thus a sequence of

elementary waves is just a sequence of chords and segments of

. This < s
the graph is sequence must join u, .. . f(uleft) to Yight,
f‘“right)’ subject to two constraints: the wave speeds must

increase when moving from left to right and the entropy con-

dition means that the elementary wave seguence forms a concave

set in the u,f plane for Yyaft < uright and a convex set for

Uiert > “right . The entropy condition, which forbids waves
which can be subdivided, forces the concave (or convex) set
to be the concave (or convex) envelope of the graph of f, be-

tween u and u . The minimally complicated extension

left right
of this solution to the case of nxn systems follows: Without
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assuming strict nonlincarity (i.e. the general nonconvex, non-
cave case), the single elementary wave of the iEE family in
the Riemann problem sclution may now be replaced by a sequence
of elementary waves of the ith family, altérnately rarcfaction
waves and contact discontinuities, except for the outermost
waves, which may be shocks when viewed from this outer di-

rection. See below.

f(u) ,
rarefaction
J///"\\\\» e—shock
Yert Urjght
N contact 63

Figure 2.7 Elementary waves in the nonconvex case
Under further hypothesis, thiz class of elementary wave solu-
tions is adequate for strictly hyperbolic 2x2 systems. The
hypothesis may include most cases of interest for small data,
but it is not known (and possibly false) that they will in-
clude most cases of interest for arbitrary left and vight hand
states. See {[Wendroff, 1972, haFermos, 1973, Liu, 1974]. The
situation for nxn systems, n > 2, is understood for swall data
[Liu, 1975}.
The Ricmann problem for small data.

For a general nxn system, the Riemann problem can be sol-

ved for Uyert » using the implicit function theorem.

uright
Theorem.

Assume that the nxn system of conservation laws (2.9) is
strictly hyperbolic and strictly nonlinear. Let a lett state

Yieft be given. Then for any right state u sufficiently

close to Ueft’ the Riemann problem is solv;;?Ztand the solu-~
tion contains n elementary waves, each of which is either a

rarefaction wave or a shock wave. The solution satisfies the
entropy condition (no forward characteristics of the i!:-—ll fam-
ily leave an i-family shock wave), and is the unique such so-
lution in this clasgs.

Proof |[Lax, 1957}.
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The Riemann problem ror arbitrary data.

There are only a few special systems for which a complete so-~
lution is given analytically. These inciude: TIsgentropic
(2x2) gas dynamics |[Codunov, 1959], Elasticity in Lagrange
coordinates [Wendroff, 1972}, and polymer injection in terti-
ary oil recovery [Eli Isaacson, 1981] The polytropic (3x3) gas
dynamics can be reduced analyticaelly to a funciicnal equation
in one dimension which is easy to solve numerically [Courant-
Friedrichs, 1948]. Other equations of state sufficientlysim-
ilar to a polytropic gas are also allowed. 1In most other
cases, one f{inds special solutions (i.e. solutions for special

values of u } but no systcematic analysis, either

left ' Yrignt
qualitative or numerical, of the general Ricmann problem.

The polymer problem mentioned akove and celatcd earlier
work {Keyfitz and Kranser, 1980] concern systomns which are
hyperbolic but not strictly hyperbolic. Tn the polymer prob-
lem, the wave sueeds cross. and coincide along a <cucve (the
transition curve) in store space. When the sofution to a
Riemann probtan crosses such a transition curve, an extra
family of elowentarl y waves may be requived. Thus with a sine
gle crossing anc a 2x2 system, three elementary wave families
may be required. 1In the nonconvex case, cach family may con-
sist of rarefaction waves with imbedded contact discontin- *
uities and one sided shocks at the outer edges, as in the case

of a nonconvex scalar equation.

Solutions in the large for arbitrary data, d = 1.

For unrestricted (bounded variation) data, solutions in
the large are known for single equations and for two special
2x2 systems: isothermal gas dynamics (Nishida, 1968] and
polymer oil recovery (Temple, 1981]. For data with small os-
cillation, but otherwise unrestricted, there is a satisfactory
general theory beginning with the papers [Glimm, 1965] and
{Glimm and Lax, 1970). Uniqueness [DiPerna, 1279), regular-
ity [DiPerna, 1975} and lérge time asymptotics {Liu, 1981]
are under control, although some aspects of the uniqueness
question remain open. The use of an equidistributed sequence
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as a sampling method in this construction was justified by
[Liu, 1977); the proof involves tracing of wave packets
through the approximate solution and should be useful for
other purposes, for example the problem of continuity in the
initial data (which is open).

Interaction of waves in higher dimensions.

The general computational program outlined in the intro-
duction is to incorporate analytic information concerning wave
structure and wave propagation into the computational algo-
rithm where possible. To do this, positions of certain
"tracked" waves are stored and dynamically updated at each
time step. The stored wave position defines locally a curvi-
linecar coordinate system. In this coordinate system, the
wave motion is essentially one dimensional and governed by a
Riemann problem. Moreover, continuum waves contained in the
smooth part of the solution can be resolved in this local co-
ordinate system irco normal and tangential components. The
normal components interact with the tracked wave via a Rie-
mann pfablem, while the tangential components move independ-
ently of the tracked wave.

The interaction of tracked waves, however, is intrinsic-
ally higher dimensional. I1f the inferacting waves ate not
parallel, but wect obliquely, then the resulting wave con-
figuration is not sclved by a one dimensicnal Riemann problem.
In fact, thz interaction of obliguely intersecting waves in
higher dimensions is the higher dimensional analog of the
Riemann problem. It has been studied only in some special
cases [Courant and Friedrichs, 1948}.

In summary, we see that the theory of the Riemann prob-
lem in one and hicher dimensions needs considerable dévelop-
ment. The theory of gureral solutions in one space dimension
is satisfactory but not complete.

11I Computation.

Here we describe the front tracking [Glimm, Eli Isaacson,

Marchesin andé McBryan, 1981] and mesh alignment [McBryan,
1980] algorithms down to some intermediate level of detail.
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The generval scientitic perspective on wiviach they ace based
was explained in the introduction. We consider a specific

preblem:  an oil rescrvoir mdergoing water flood, modelled
by Darcy's law and the Buckley-Leverett equation. The basic
equations derive from conservation of mass of water and of
oil. The eguations can be added, and assguming incompress-
ibhitity, the sum of the two conservations has no time deriv-
ative. This resulting equation is elliptic; it determines
the pressure and fluid velocities (Darcy's law} from source
terms, the relative oil/water saturations and viscositics and
rock properties (absolute and relative permeabilities and

porosity). It is

-> -+

vix,y,t} = -ki{s}) Vp (3.1)

6'3 = source terms . (3.2)
Here s = s{x%,y,t) ¢ (0,11 is the relative saturation of water

in the. porous media and k = k{s) {(or = k{s,x%,y)) is an experi-
mentally or phenomcnologically determined function. The sat-
uration, or Buckley-lLeverett ¢quation is a scalar hyperbolic

conservation law

sy + V«(Vf(s)) = source terms . (3.3)

Because (3.3) contains the velocity v, the elliptic and hyper-
bolic eguations are coupled and the system is nonlinear even
when f is linear. For more information on (3.1) - (3.3), see
[Sscheideggyer, 1974} and [Peaceman, 1977].

In order to be able to discuss the calculation, we pre-
sent a flow chart for the highest level routines and the over-

all control flow, see Figure 3.1,

There are up to four distinct grids in this calculation.
We ideniify each grid and explain its role. The most basic
grid is the fixed hyperbolic grid. This is a two dimensional
grid, and may be rectangular or curvilinear. It does not
change with time, or only changes rarely. Thus if there is a

fixed time independent flow which is known in advance to ap-
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N
Ay

prcximate the time dependent flow which is being socught as a

<slution to the equations

[~ Initialize data |
choose geometry

set pointers

+
Compute topology
allocate storage for

multiple valued

variables

¢

EXit e Tost for 7
termination
T Rt Tt S e e = £ e - iy o — el

+

Solve elliptic’

equation

' £

Solve hyperbotic

equation

mAhéjgzewénd print

solution |

Figure 3.1 Flow Chart

(3.1)-(3.3), its strcam and potential function can be used to
construct a curvilinear grid. Otherwise a rectangular grid
is used. The hyperbolic state variables are stored on this
grid. Because the grid is fixed, the interpniation which re-
sults from remeshing is kept to a minimum, but not totally

eliminated.
The track waves are described by a one dimensional time
dependent and dynamically propageted grid. This grid is call-

ed the hyperbolic interface.
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Choose ii1regular

rectangular grid

+

Choose irreaular
gquadralateral grid

+

i

Compute toroleoay

[EDE . e e e o - [

+

Compute coofficients-j

+

Solve alaebraic ]
|

equations

Figure 3.2 TFlow Chart for solution of elliptic equation

Let A{e.g. [0,1}x([0,1]) be the region in which the equations
are to be solved, and let F be the locus of the interface,
thought of as a collection of curve segments. Then MN\Fis not
connected, but is a union of distinct connected components.
For each hyperbolic mesh square, we also store topological
information: which connected components of A\F meet the mesh -
square. I1f the number of components n = ncomp is greater than
one, then the basic hyperbolic state variables are multiple
valued in this mesh square, and a distinct state is stored
for each component meeting the mesh square. V

In addition, the elliptic eguation solver, especially the
mesh alignment algorithm has its own two dimensional mesh
where the pressure and velocity values are computed and in
general it will have a slightly different one dimensional grid
for representation of the interface.
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+
[ Compute velocity ]
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compute topology
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front
+
Remesh front

compute topology .

+
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Figure 3.3. Flow Chart for solution of the hyperbolic equa-

tion.

A careful choice of the elliptic grid is the central virs
tuz of the elliptic mesh alignment algorithm [McBryan, 1979].
First a nonuniform, but rectangular grid is chosen. The non-
uniform spacing of grid lines is a simple one dimensional
mesh refinement strategy. It permits a concentration of grid
lines in regions of greatest interest, but because of its one
dimensional character, is typically somewhat inefficient.
See Figure 3.4.

Figure 3.4. One dimensional mesh refinement.

.




Next this rectargular grid is distorted to a guadralateral

grid ncar the front, bu sliding nodes along grid lines until
they intersect the front. Finally, the quadralateral grid is
trianculated, being careful to pick the diagonal which fol-
lows the front if the front joins diagonally opposite nodes of
a quadralateral.

Once discretized, the resulting algebraic system of equa-
tions is solved by a standard direct or iterative solver.

The method of mesh alignment appears to be superior to
other methods of solving elliptic equations with strongly dis-
continuous coefficients across an irregular and distorted in-
terface, especially where the derivate of the solution must be
evaluated accurately along the discontinuity.

The propagation of the front uses an ordinary differen-
tial egquation defined by the characteristic speed. The latter
comes from a soluticon cf the Riemann problem, using the states
on the two sides of the front. (Recall that the hyperbolic
states are multiple valuved within a single mesh square, and
have in particular distinct values ahead and behind the front)

The computation of topology is necessary to determine the
multiple valuedness of the updated hyperbolic states at the
end of the time step. These calculations are kept at or near
0(n) where n is the number of front points, and thus they do ‘
not contribute significantly to the overall computational
time.

The interaction of continuum waves with the front is med-

iated by the same Riemann problem which determined the char-
acteristic velocity of front. 1In fact this Riemann problem

will in general contain n waves. The n-1 waves other than
the one being tracked are continuum waves which have been re-

flected off of the front or transmitted through it.

It is necessary to remesh the front from time to time, ‘“
because interface points accumulate at some parts of the front
and separate at other parts. The remeshing algorithms involve
some degree of convex interpolation and thus both stabilize
the front and degrade oscillations in it. Here we also check

for changes of front topology (tangles). Eventually any new
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topology (front crossings, tracked wave interactions and bi-
furcations) should be assimilated and propagated dynamically
by the calculation, but these algorithms are not yet imple-

mented.

The propagated of continuum waves uses values defined
within a single connected component of ANF. Thus this is a ~
totally smooth, or untracked problem. State values from dis-
tinct sides of the tracked interface do not interact here.
The operator split version {Chorin, 1976] of the uniform sam-~
pling method [Glimm, 1965} is used, but presumably a second
order finite difference would also work and give §uperior re-~
sults.

The organization is modular, and it is being revised to
increase its modularity. Thus the problem dependent routines,
such as the Riemann problem solver and isolated in a separate
file, and can be easily changed, to change the code from one
problem to another. Also portions of the code which have in-
dependent usefulness can be easily extracted and used out of
context. Examples are the elliptic eguation solver, the Rie-

mann problem solver and the topology -~ interface package.
IV Applications

The ultimate scope of front tracking methods should be
3-d time dependent hydrodynamics calculations for problems
with significant discontinuities and for which a priori know-
ledge of elementary wave interactions (e.g. the Riemann prob-
lem) is known. One proposed application is the Stephan prob-
lem. Although the temperature is continuous across the phase
transition interface, the temperature gradients and tangential
ccmponents of heat flux are in general discontinuous. Common
experience (with melting ice, and with snowflakes) squegts
that phase transition interfaces may be either stable or un-
stable. Another application is gas dynamics. The primary
testing of the code has been in the context of petroleum res-
ervoir simulation, and so we discuss this application in more
detail.

|
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One dimensional calcoilabions.

In cne diwension, the uniform samoling method [G)imm,
19€5) gives excellent results because the correct structure
of elementary waves and their intcractions is built into the
method. Tracking improves accuracy iGlimm, Marchesin and
McBryan, 1980aj. Orly for extremely stif{f problems, such as
flame propation, is the extra accuracy likely to ke worth the
effort. The uniform sampling method has becn tested success-
fully orr a number cof applications. 7Tts use in petrcleum prob-
lems began with ([Concus and Proskurwoski, 1979). Here it re-
solved fronts (water banks, i.e. shock waves) shﬂrply without
nunerical diffusion or numerical instability. A 2x2 system
modelling polymer injecticn (and a prototype vTor general sur-
factant rccovery methods) was developed by l{Isaacson, 1981]
using the uniform sampling method. The mathematical interest
in this model arises from the loss of strict hyperocolicity.

In the region of coinciding wave speed, comparison calcula -
tions by finite Jdiffercnce methods were unable to resolve the
truc wave irnteractions, even on a very fine mesh. The engin-
eering interest in cortrolling numerical diffusion lies in the
case of surfactant recovery. The surfactant is expensive, and
used only in thin laycers. 1Its 2ffect is nonlinear in the con-
centration, and is ineffective at low concentration. Thus

too much or too little diffusion would give incorrect recovery
results. The uniform sampling method was also applied to the
flow in gas cvipelines [Marchesin and Paes-Leme, 1981]. Here
the e.g. by the opening or closing of valves. The uniform
sampling method appears to be better than finite differences

on this prcblem.

Two dimensions with operator splitting.

The extension of the uniform sampling method to two dimen-
sions by operator splitting is not reccmmended in general.
Negative results are due to [Collela, 1979 and Crandell and
Majda, 1980). 1In case the discontinuous waves are approxi-
mately parallel to the coordinate axis (and in some other

special cases) satisfactory results can be obtained. In

R e——
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[Glimm, Marchesin and McBryan, 1980b-1981] multiple fingers
were resolved in a Taylor-Saffinan interface fingering in-
stability, for a parameter range in which the instability was

not too strong.

™o dimensions with tracking of discontinuities.

To overcome the serious limitations of x-y operator split-
ting, a front tracking code has been developed, as discussed
in section III. It does not restrict the orientation or the
topology of the front, and has been tested for mobility ratios
up to 100, thus overcoming the principle restrictions of the
operator splitting method. It also overcomes the main limit-
ations of finite differences: numerical diffusion and grid

orientation effects.

A statistical study of fingers.

Fingering of an interface is caused by a mismatch of the
mobilities between two fluids. If the behind, or upstream
fluid flows more easily, then an interface separating the two
fluids and normal to the flow is unstable against formation
of fingers. The instability is initialed by heterogeneity
(which is certainly present in rock formations). The correct
formulation and analysis of this problem is statistical. A
preliminary study of the statistics [Glimm, Marchesin and
McBryan, 1980b-1981] indicates that the rate of growth of fin-
gers is independent of the heterogeneity and at least for
parameter range which is typical of water flood problems, that
areal heterogeneity does not affect recovery at breakthrough.
(Channeling due to vertical variation of layers was not in-
cluded in this study.) 1In general, the focus of a study of
statistics of fingering should be to find relevant functionals
of the solution which are either independent of the statis-
tics in a simple and predicable fashion.
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Deterministic fingers.

Choice of irregular Cauchy data is a deterministic methodq
for computation of fingers. A number of calcuations of this
type were performed as part of the validation of the front

tracking code, see {Glimm, Isaacson, Marchesin, McBryan, 19811

Deterministic fingers were able to fit experimental data in
tests up to mobility 5, but judging from preliminary results,
agreement can probably be maintained for much larger mobility

ratios.

Coarse grid calcul-tions.

Most tests were performed 30x30 grid. Sample calcula-
tions on finer grids were 2lso performed. For problems which
are not too singular (and typical of a waterflood recovery
process), rcasonable results can be obtained from grids in

the range 5x5 to 15x15. The ability to use coarse grids is
essential for ultimate application to large scale problems.

Validation.

It is known that finite difference methods have severe
mesh orientation problems on problems of the nature considered
here. This means that a rotation of the grid by 45°, for
example causes considerable difference in the computed solu-
tion. The reason, apparently, is that some orientations di-

minish the physical instability, while others may be neutral °*

in effect or may enhance it. Tracking is intrinsically less
grid dependent than the method of finite differences. Only
small grid orientation effects were observed in the trapking
calculations even for fairly singular parameters, and com-
parison was made to a grid which we believe to be neutral in
its effect on the physical instability. Tests were also per-
formed for convergence under mesh refinement and for agreement
with experimental data. Further tests on finer grids are
planned.
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OVERTAKING OF SHOCK WAVES IN STEADY

TWO-DIMENSIONAL SUPERSONIC FLOWS

by

Ling Hsiao and Tong Zhang

ABSTRACT

The purpose of the present paper is to study the overtaking
of shock waves of the same family in a two-dimensional steady flow
with polytropic gas.

It is proved that besides a transmitted shock and a contact
discontinuity resulting from the overtaking of shocks of the same
family, there is a reflected wave which is either a rarefaction wave
or a shock. The criteria that determine whether the reflected wave
is a shock or not is given in Theorems 1-3 in §3. The configuration
of four shocks through one point is then presented when the reflected

wave 1s a shock.
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1. INTRODUCTION

There have been intense interests in the calculation of shock waves in

the multi~dimensional gas flows. For the calculation of a single shock front,

the Rankine-Hugoniot condition provides enough information to follow the shock

front.

However in an actual flow, more complicated wave patterns are involved.

This is the case, for instance, when Mach stems appear in the flow around a

body.

To calculate such a flow, it is helpful to understand analytically

wave patterns involving interactions of shock fronts. It 1is particularly

helpful when one uses the shock tracking technique to supplement an upwind

difference scheme. Of course, the understanding of wave patterns is important

in study of the qualitative behavior of the shock waves.

The purpose of the present paper is to study the overtaking of shock

waves of the same family in a two-dimensional steady flow.

The steady plane flow (without viscosity) is described by the following

(1.1)

.2, 2 2 . 2
[Qu(hv+ u tv )]x + [pv(h +-‘i—;—v—- )]y =0

system:
[ (Pu) + (Pv) = 0

(Du2 +p) + (Puv) =0

x y
Guv) + (pv¥ +p) =0

x y

2
anastibtietite,




where P - density, p - pressure, (u,v) - velocity, h - enthalpy. This

is in Eulerian coordinate for the flow withour viscosity and external
forces. The changes of state are adiabatic.
In this paper we consider polytropic gas, therefore

Yp

b= B e,

Y > 1 is adiabatic exponent. The flow is called supersonic if

u2 + v2 > c2, c is sonic velocity, cZ = %R in present case. It

is well-knownthat the system is hyperbolic when the flow is supersonic
and there may be two kinds of shocks in the solution.

It is proved that besides a transmitted shock and a contact
discontinuity resulting from the overtaking of shocks of the same
family, there is a reflected wave which is either a rarefaction wave or
a shock. The criteria that determine whether the reflected wave is
a shock or not 1s given in Theorems 1-3 in §3. The configuration of
four shocks through one point is then presented when the reflected
wave is a shock.

Finally we discuss the interaction of a shock wave with a
contact discontinuity (84). Under the assumption that the magnitude
of the shock is sufficiently weak the reflected wave is either a
shock or a rarefaction wave, the criteria which determine what the
reflected wave should be is given in theorem 4 in §4.

It should be pointed out that so far as the overtaking of shock

waves 1s concerned there is an essential difference between steady
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flow in two-dimensional and insteady flow in one-dimensional. For

the latter, the reflected wave is always a simple centered wave no
matter what the flow is, isentropic ({2]) or adiabatic (when Y 5'2 ,
[1,3]). But for the former, the reflected wave may be a shock even if

5
Y<3.

2. PRELIMINARY REMARKS

A self-similar solution of (1.1), (u,v,p,P) (x,y) = (u(§), v(§),

p€), P(E)),E = % , satisfies the following system

( £ 3 ( )
v_gu 0 —B— 0 du
0 v - &u 11)_ 0 dv

=0 . (2.1)
£p p 0 v - &u , dp
2

0 0 v -8u -c“(v-§u) de

4 \ /

Let the determinant of the matrix of (2.1) be zero, it turns out

(v-Aw)? (A 22y =0, A =€ (2.2)

which 1s called the characteristic equation of (1.1).

Corresponding to flow characteristic AO = %— which comes from

the first factor of (2.2) there is two-~dimensional manifold Ro in

»

(u,v,p,P) space, namely
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p=

constant

(2.3)

constant

el<
#i

Corresponding to wave characteristic

- / 2 2 2
A uv u'+v -c , 1=1.2 (2.4)

[
i u2

-V

which results from the second factor of (2.2) there is one-dimensional

manifold R, , i = 1.2, in (u,v,p,P) space which 1s defined by the

e AR g T AP 7 e ST T 44 257

i
following:
2
dp = ¢ dpP
du = -Kidv (2.5)
dp = D(Aiu—v)dv
set w = % . It is easy to show that the projection of Ri into (p,w)
plane is monotone
dw _ 3 ¥ cz(u2+ v2— gil (2.6)
a 2
dp uzc P
here - (or +) corresponds to R1 (or RZ) respectively.

A centered simple rarefaction wave § = li {u,v,p,P) is determined
by (2.5) and the requirement that the p value in wave front is greater
than the p value in wave back.

It is well-known that any discontinuity in the solution of (1.1)

has to be satisfied with the following Rakine-Hugoniot condition




[ olpu] = [pv]

4 O[pu2+p] = [Puv]
) (2.7)
o(Puv] = [Py + pl
2+ 2 2+v2
| o[pu(h+-“——2"—)] = [Py(ht 25 )]

where U is the slope %% of the discontinuity line, [ ] denotes the

difference between the values on the right side and left side.

It is not difficult to prove that (2.7) is equivalent to the

following:
( (v_-O o
pO O uo) 0 - 0 u-ug
0 po(vo—Ouo) 1 0 v—vO
-0 _ - -
p 0 0 Yo Ouo p pO 0 (2.8)
2
o
-O0u_ - — (v -0 p-p
0 0 Yoy T (o) (PP )
.Y+ y-1 P
Here = -5 po » (u,v,p,fP) and (uo,vo,po,po) are the states

on the two sides of a discontinuity.

Let the determinant of the matrix of (2.8) be zero, it turns out

that
c 2
2 2 _p 0,2

- -0 -~ = — (07+ = 2.9
(vy=9uy) [ (vy=Ouy) 5y g (O+1)] =0 (2.9

Yo

Corresponding to 00 =5 which comes from the first factor of
0

(2.9), there is contact discontinuity RO + namely,
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p = PO
< v (2.10)
yv_.. 0
u UO
corresponding to
c2 c2
_ J0p 2, 2 S0 P
wv ¥ /oo Wt "% )
00 0 0
Ui= 3 ,1=1-2,
G2 8 S0t
0 po b

which results from the second factor of (2.9) There 1is one-dimensional
manifold, 1 = 1.2, in (u,v,p,P) space defined by

2
c

0
Y (o—po)

[}

p - PO

u - oug = —oi(v—vo) (2.12)

po(uoﬂi—vo)(v-vo) = (p-po).

For any given (uov ), (2.12) determines a curve which passes

0PoPo
through the given point and is denoted by Si(o) correspoading to

Oi, i=1.2.

A shock wave with slope ¢, is determined by (2.12) and the

i
requirement that the p value on wave front 1s less than the p wvalue
on wave back.

Without loss of generality, we take vy = 0. It can be shown
(see Appendix for details) that the projection of Si(O) into (p,w)

plane (still denote it by Si(O), Figure 2.1) has the following

(2.11)




expression for p > p0=

2 b'p 2 2 p 2
_f¢ . % (bu “-c ) bP c p-p
o Yo 0 % % “'TQ'Y_;; 3 2P oo
dp ZU?ZZQ bUO -CO B
0
Here - (or +) corresponds to Sl(O) (or 52(0)) respectively,
S G o |
2 2 P
4.P
—— il
5,(0) 5,(0)
(0,p0)
\ =
\ Figure 2.1

Set £ = t, (2.13) can be rewritten as

(2.13)
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1 ]
__//éi>hg£ (buoz-cozt) c 2
dw _+ 1+E_Y+1 0 t-1
dp 22 t 2 22 "t
2u”c pot buo <o t
B 2 S Gt § beey o YHL y-1
Here b(t) = > 2 t, b'(t) > T .
' 2 2
Denote by t =t the zero of buo - co t , il.e.,
Y2
¢! = 2 0
Y-1 2 2
2 Yo "
It is obvious that 1 < t'< %%% for uo2 > c02 . Therefore (2.14)

makes sense for 1<t<t' and represents the part of the curve Si(O)

which corresponds to p 2> Py

It is easy to see that there exists unique point t = t 1n the

(2.14)

interval (1,t') which vanishes (2.14). Consequently, Si(O) is monotone

in [l,?].

On account of (2.11), (2.12), it can be shown that the following

expression holds along SZ(O):

rvt o ae? ) (2.15)
where Mo is the Mach number of the state (uovopopo) and
2t2 + (Y+1) (t-1)
T = =T+ - 0-De] (2.16)

o e s < o i dmAn 0 v
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It is not difficult to prove that there exists a unique value t =t

*
in (1,;’(%) with t < ¢,

2 *
MO -T(t) =0 at t =t

*
and M02 -T(t) > 0 for 1< t< ¢t .

*
Therefore, only those points of SZ(O) which correspond to 1< t< ¢t

will be used in the following sections since we are concerned with super-

sonic flows.

3. THE OVERTAKING OF SHOCK WAVES

(1) (2)

We only consider the overtaking of two shocks S2 and S2

of the second kind in this section. (The overtaking of two shocks of the
first kind is treated in an analogous way ). Denote the wave front state

(1)
2

state, and the (1) state, respectively. Without loss of generality, we

and wave back state of the first ghock S by (uovopopo), the (0)

také v. =0, u >0 (Figure 3.1). Denote the wave back state of the

0 0
(2)

overtaken shock S2

by (u2v2p2p2)’ the (2) state, and Q the point

of intersection of Sél) and Séz).

Figure 3.1




215
Obviously,
2 2 2 2 2 2 2
> > =
Yo T o dp 7 e (g muptviD)
v v
2 1
—_— D == >0 ’ p > p > P
u, Y 2 1 0

The aim is to construct a solution which consists of a centered
simple rarefaction wave and shock waves centered at Q and separated
by constant states. We also want to give criteria to determine the
configuration of the solution.

Consider the curves in (p,w) plane. We know that (1) state
is on the shock polar curve 52(0) and (2) state is on the shock

polar curve Sz(l). 1f (2) state is inside of 82(0), (Figure 3.2),

then there exist two states (u3v3p303) and (ﬁ3V3F3D3) satisfying

<

=4
W

such that (3) state is on the curve Rl(Z) and (3) state is on
the curve SZ(O) respectively,

A P

RI(Z)
24
31(3)

w

Figure 3.2




In this case, (see 82), we can construct the solution which consists of

a shock S with wave front state (uovopopo) and wave back state

2
(35755353). a centered simple rarefaction wave Rl with wave front state

Y ¢
(u2v2p2 2) and wave back state (u3v3p3p3), and a contact discontinuity

T (Figure 3.3).

I,

() _

- ) R

e

Figure 3.3

If (2) state 1Is outside of the curve 52(0) (Figure 3.4) then

v v
there exist two states 3 and T satisfying T ﬁl and Py = 53
3 3

such that (3) state is on the curve 51(2) aud (3) state is on the

curve 52(0). (The states 3 and 3 always exist when |p2 - pl|
is small). When this happens the solution consists of a shock 52 with

(uovopopo) and (u3v3p3p3) as the wave front and wave back state,
h S o}
shock 1 with (uzvzp2 2) and (u3v3p303) as the wave front and wave

back state, contact discontinuity T (Figure 3.5).
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Figure 3.5

Figure 3.4

So, whether the reflected wave is a shock or centered simple wave

is reduced to whether (2)

It is well-known that the curve 82(1) and Rz(l) are tangent
at point (1) up to the second order. Therefore, it suffices to consider

the relative position between RZ(l) and 52(0) instead of the relative

position between Sz(l) and 52(0) when |p2 -
Let H be the slope of the projection of 82(0) into (p,w)

plane, and A the slope of the projection of Rz(l) inte (p,w) plane.

We consider the sign of H-A along the curve SZ(O) when (1) state

satisfies the following condition:

t (3.1)

*
Since H> 0 and A > 0 when 1<t <t , we will study the

state is outside or inside of the curve SZ(O)'

pll is sufficiently small.
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sign of HZ—A2 instead of H-A, along the curve SZ(O)'

Direct calculations using (2.6) and (2.13) yields

2
2
2_,2 1 b't ,. 2 2 2(t+b) (bu, -c t) - (Y+l)c (t-1)
H-A = %22 ‘—b—'(buo-co t) 2 -
ueh bt(bu ~¢g t)
2 2 1,
Uy bt - <o (t —1+b t) (3.2)
bt J

and so the sign of Hz-A2 is the same as that of the function

G(Mé , t), where

cad 16 = b0 - D) - 26061 eR209D) (-2 (D) ]

ot

+[(3—Y)2t3+(y+1)(7-3y)t2+(y+1)(3y-1)c-(y2-1)]

2
1
MO >1}
Case I 1< ¥ < %
Obviously, (3-Y)2c - (Yz-l) >0 for t >1 in this case. On account
2 )
2 2 2°c
of G > 0 when Mo = T(t); G > 0 when Mo > oo ———E——; > 0 and
M, )
2

min G(Mg ,t) = =16 7 -1 tz < 0 for t € [1, Yti it can be shown

2 (3-7)7t ~(¥Y"-1)
MO > T(t)

i ) +
= v) UV Y ¥ ,j,;._.._j




v
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+
that for any given ¢t €[1, %:% ) there exist Mé ) , i = 1.2, such

i

that T(t) < uf) (t) < ué

(¢) < @, GM2 (¢) , t) =0 and
1 2 ~ 0

i

2
G» 0 when T(t) < M2 < M. (v);
0 0,

G< 0 when M2 (t) < M2 < M2 (t);
0 0 0 ’
1 2
G> 0 when Mé > M2 (t).
0
2
Furthermore,
22 2 c a A2
2 S L3206 - 2y (v-2)t + (yT-1) F 4y -1t
MO (t) = (3.3)
i

b (3-1 2t - (Y1)

here i = 1 (or 2) corresponds to that one with minus (or plus) in front

of the term /(Yz—l)c .

Proposition 3.1 .

2
MS = Ma (t) is a monotone function of ¢t

1
on [I,Itl); Mz = M2 (t) is a convex function of t which attains
Y-1 0 O2
2 ~ Y+1
minimum MO at t =t on [l’Y-l )

m

Proof. From (3.3), i = 1, one gets

2 -1
dM. (t) M(t) -/—= N(t)
% VA (3.4)

dt
b2 1(3-1) %t - (Y2112
where
) 32 2 2
M(E) = (D) 1G-Ne%- 26-20-Dt + (2-1) Gy=7)] (3.5)
2 2 2 2
N(t) = 3(Y-1)(3-Y)"t" = 2(Y+1) (Y -aY45)t - (Y+1)“(¥y-1) (3.6)
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_ Vo
- Let M(t) - L:—l- N(t) = ¢(t), we will show ¢(t) > O.
Noticing that o(1) = (Y+L)3(Y) + ¥r2-1 B(¥), B(Y) > 0 and

a(Y) = 16(Y-Y") (Y-¥), where

a(Y) = 4(4Y2-15Y+13)
B(Y) = 4(4Y2-11y + 9)
5 % 5 .
= < =
2y <2, 2<¥ <y,

it is easy to see that ¢(1) > 0 for 1<Y <« and ¢(1) > 0 if and only

&l

if T(Y) >0 for %<Y_<_%, where

5¢2,y_ 5
72(v- PTO- -

—
~~
-
g
1

Thus &(1) > 0 for 1 <y —g—

A

Similarly we know that ®'(t) > 0 (t > 1)es $(x) > 0(x > 1)

(let vt = x) where
F00 = ()3T - 9/ ¥l (-G - (P -nES +

2 A2-1(v+1) (Yobyas)x® =/ Yo-10v1) 2 (v-1)

and the following inequalities

(V1) (3-Y) 3 4/ Y2-1 (y+1)

3-y > 2(¥-1)
8(Y2-4Y +5) > 5(Y-1)

2(v41) (Y2-4y41) > 5(r-1) (3-1)?% ,

and so 5(x) >0 for x2 1, we have ¢'(t) > 0 for t > 1 which

together with ¢(1) > 0 imply ¢(t) > 0 for t > 1. Consequently,
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Y+1

Mz = M2 (t) 1is a monotone function of t omn [l,7—5 ).
0 0, Y-1
From (3.3), 1 = 2, one éets
am? () M(t) + /1211 N(t)
2
- . (3.7)
a b ((3-nle - (En)?

Let M(t) + /inl_ N(t) = V(t). (3.8)

It can be shown, in the similar way as the above, that

Y(1) < 0 (3.9)
On account of w<¥§% - 16(¥§%)2(2-Y) >0, (3.9) and
3 /Y2-1 'Z ~

YU(e) = 2(r+1)(3-Y)7 + t Ty (t) >0 (3.10)

4

where ¥(t) = 9(y-1) 3-N2t? + 2001 (V2 —av#5)e - 3+1)2(-1),  (3.11)

2
it turns out that M_ = MO2 (t) is convex function of t and there exists

0 2

~ 2 2
avalue t =1t on [1, X1 ) such that M. = M_ (t) takes minimum
Y-1 0 02

Moz at t = t. This completes the proof of proposition 3.1.
m

By using the proposition 3.1, we get the distribution of the sign

of G(MO2 ,t ) in the region |i as presented in Figure 3.6. Here

2 _ 2(3-y) -2 A1 (3.12)
M
0 5 - 3y
1
and _
2 2(3-Y) + 2/ -1 (3.13)
M .
02 5 - 3y
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2
HO
i
HZ I
0,
hg ~-
m|
2
M- ===~ -
01
1
‘l,+l #t
1 ) =1
Figure 3.6

Case 1I: %<Y<2

It is obvious that there exists t € (l,%) such that
2 2 = 2 2
3-Y)°t - &¢"-1) <0 for 1 t<t and (3-Y)"t - (v¥°~1) > 3 for
t>t.

Since G > 0 when Mcz) = T(t); G < 0 when M(Z)"'“’ and

2%

2.2
B(MO)
unique M2 (t) such that T(t) < M2 (t) <= , G(M2 (t), t) 2 0 and

0 0 0

< 0, it can be shown that for any t, 1< t< E, there exists a

G> 0 when T(t) < Mé< M; (t);

1

> M (6),
1

G < 0 when M(ZJ
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where Mé (t) has the same expression as (3.3) for i = 1,
1

= Y+
For any given t with t < ¢t < A2 , it is similar to the case I
Y-1

that there exist MS (t), 1 = 1.2 ( to have the same expression (3.3))

i
such that
> < w2 < 2 .
G >0 when T(t) <M M. (t) ;
0 01
2 < ul o< W2
C <0 when M. (t) M M- (t)
0 0 0
1 2
C > 0 when M2 > M2 (t)
0 0
2
Furthermore, we have the following proposition.
Proposition 3.2 . Mg = Mg (t) 1s a monotone function of t on
1
1, . 2 _ 2 , . = Y+1 ,
[1, ;:I), MO = Moz(t) is convex function defined on (t, Y-l) with

= 2 ~
t =t as its asymptote and takes minimum MO at t = t,
m

Proof. Let M(t) - V—lz:i N(t) = $(t), it is easy to check that

Mg = Mg (t) is smooth at t = t with positive derivative. Thus,
1

in order to prove the first part of the proposition it suffices to prove

that &(t) 20 on (1, %{%) which is a consequence of the following
identities:

®(t) =0 and 0'(t) =0 at t =t
and 2—1 i %

h(e) = & () + 2 e Ce () >0
where

3 13 Y2-1 2
8,(t) = 2(y+1)(3-M)" - =7 " S (-1 (GB-Y)




and

®2(t) = A(w—l)(J—Y)ztz - 2(¥+1)(12—4w+5)t + 3(Y+l)2(Y-l).

(t).
2

From (3.7), (3.8), (3.9) and (3.10), it is easilyv seen that

[ ]

= 2
Clearly, t =t is the asymptote of MO =M

16(1-2) (¥2-1) (y+1)

y(t) » Ty <0 when t » t + 0
_‘

E(t) >0 when t + %j%

1
and ¥o(t) > 0.

. . N = Y41 ,
Therefore there exists a unique t = t € (t.§:1) with ¥(t) = 0. 1In
el i 3 ~
other words, MB = MS (t) is convex with minimum Na at t = t. This
?

completes the proof of proposition 3.2.

By using proposition 3.2, we get the distribution of the sign of

G(MS,C) in the region T as in Figure 3.7.

it
—~
-+

|

—
i .
-

Fienrer 3.7
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Case III. Y>2

Obviously, (3—Y)2t - (Yz—l) <0 for 1< t< aa in this case.

y-1
3 In the similar way as t < E case in II, it can be shown that for any
+
given t € [l,%:%) there exists unique Mg (t) (the same expression of
1
(3.3) for 1= 1) such that G(Mé (t),t) = 0 and
1
. 2 2
G>0 when T(t) < M. < M~ (t);
0 0
1
G<oO when M2 > M2 (t).
0 0
1
Furthermore, we have
Proposition 3.3. MS = Mé (t) 1is a monotone function of t on [1.%;%).
1 .
Y+1
Proof. On account of N(t) <0 at t =1, N(t) <0 at ¢t = ;:I and

Y+l

Y_l) , therefore

N"(t) > 0, it follows that N(t) < 0 on [1,

5
M(t) _/YT'l N(t) > M(t) - (Y-1)N(t) = 4(y-2)B(t) on [1, ‘}%)’

here B(t) = (y+1)2(Y-1) + (Yz—l)t - y(3--Y)2c2 . It is easily seen that

B(t) > 0 and the proposition is proved.
By the proposition (3.3) we obtain the distribution of the sign

of G(Mé st) 1in the region I as presented in Figure 3.8.

- 4
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0
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o
i

M
0

Figure 3.8
In view of these propositions, it ends up that in addition to a
transmitted shock and a contact discontinuity, the result of overtaking
of shock waves involves a reflected wave which is either a shock or a
rarefaction wave. The criteria to judpe the configuration are given in

following theorems.

5 (2)

Thecrow 3.1 When 1 <Y 5.3- and the overtaken shock S2 is

. 2 ; .
sufficiently weak, there exist constants Moi, i = 1.2, which are given

in (3.12), (3.13) and Mé which is determined by Mg = Mg (£) (see
m m 2

Proposition 3.1) such that

If 1 <M. < M2 (Mé is the Mach number of the (0) state), the

reflected wave is the first kind of centercd simple wave (Figure 3.9).

1f Mé < Ma < Mé , whether the reflected wave is a shock or not
1 m
M , (CH -
lepends on_the magnitude ~~ of the first shock 52 « Therc exists
0
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Figure 3.9

unique t& such that the reflected wave is the first kind of shock

0
o1
when 1 < —«< tM ; the reflected wave 1s the first kind of aqentered
0 0
: 1P x 1
simple wave when t < — <t (see Figure 3.10). The value t is
M P —_— M —_
0 0 0
2 2 1
determined by M~ = M. (t._ ).
0 0 M
1 0
Ap
Figure 3.10
*
0
=
- o T L
I1f M2 < M2 < M2 , there exist three values t2 < t2 < tl .
0 0 0 M M M
m 2 0 0 0
]
t2 and t2 are determined by Mz = M2 (t) and tl by M2 = M2 (),
M M 0 0 — M 0 0
0 0 2 0 1
PL 2
such that the reflected wave is the first kind of shock when 1 < o < tM
0

0

A
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the reflected wave is the first kind of centered simple wave when

p '
g < |
o Po 0 |
20 P11
the reflected wave is the first kind of shock when t° < — < t ;
MO DO NO

the reflected wave is the first kind of centered simple wave when

1P o«

t. < — <t (see Figure 3.11).

M P P

(o] 0
*
* Figure 3.11
0
= W
If Mg > Mg , there exist two values t; , 1 = 1.2, which are

2 0

determined by Mg = Mg (t) respectively, such that
i

the reflected wave is the first kind of centered simple wave when

—_——,

0
1<.._1_<t2 .
hY po M
0 p

the reflected wave is the first kind of shock when t2 <« L t, 3
MO pO M

the reflected wave is the first kind of centered simple wave when

1 F *
t, < Le t (see Figure 3.12).

Mo o i
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Fipure 3.12

Theorem 3.2. When 2 < Y <2 and the overtaken shock S;z) is

3

sufficiently weak there exist constants Mg and Mg (defined as in
1 m

Theorem 3.1) with the following properties:

f MZ < M2 , the reflected wave is the first kind of centered simple

— 0 01 D

wave (Figure 3.13).

Figure 3.13
*
0
2 2 2 . v
If M., <M < M , there exists a unique t& such that the reflected
0 0 0

1 n 0

Pr 1.

wave is the first kind of shock when 1 < 65'< tMO'

the reflected wave is the first kind of centered simple wave when




T - o

e
} P ﬂ r
*
*
(4
£ 4
0 o -
w — W
Fipure 3.14 Figure 3.15
p
*
t; < Bi.s t (Figure 3.14).
0 0
2 2 2 2! 1 .
If M. > M , there exist three values t, < t < t determined
- 0 0 M M M -
n 0 0 0
in the same way as Theorem 3.1 such that (Figure 3.15)
1 2
the reflected wave is the first kind of shock when 1 < o < by 3
0 0

the reflected wave is the first kind of centered simple wave when

1)
<t
0 0 0

.
’

the reflected wave is the first kind of shock when

the reflected wave is the first kind of centered simple wave when

. _ 4
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Theorem 3.3. When Y > 2 and the overtaken shock Séz)

weak, there exists a constant Mg (see (3.12)) such that

is sufficientlx

1
£ Mg < Mg , the reflected wave is the first kind of shock (Figure 3.16);
1
2 2 1
If M. > M. , there exists unique value ¢t such that
— 0 01 — Mo-—————————~
P11
the reflected wave is the first kind of shock when 1 5‘;- < tM ;
0 0

the reflected wave is the first kind of centered simple wave when

P *
1 < —i'g t (see Figure 3.17).
t”o Po
| b
p
*
*
0
W
Figure 3.16 Figure 3.17

4. The interaction of shock and contact discontinuity

It can be shown easily that the projection of 82(0) into (p,w)

plane is expressed by




J3

Py a1y - (B 1
Pq a Po
woe e > (4.1)
™y - Py L4y
here uz = %i% .

Let y = g- -1 then 0 <y« (1+p2)(Mg-1) and (4.1) can be
0
rewritten as

awd) -1 -y

w-—2
™My -y y + (1))
0
Fix Po it is easy to see that the sign of ——% is the same as the
oM
0

sign of L=L(y, Mé) where L =y + (2—Mé). Therefore, L] > 0 when
M

™o

o

MZ <_2 (Figure 4.1) and AP 0 when M2 >2 and y=0+0
0 QMZ 0

0

Figure 4.1
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(Figure 4.2) which imply the following theorem.

P
2 2
Mo My > Mg> 2
//NO'
7/

rd

o
Figure 4.2

Theorem 4.1  Assume that a contact discontinuity T interacts with

a shock 82 .

Let the wave front state and wave back state of the

shock S2 be (1) state and (2) state respectively. The states on the

two sides of the contact discontinuity T are denoted by (0) state and

(1) state respectively (Figure 4.3).

that the shock S

Figure 4.3

Suppose the magnitude of 52 is sufficiently weak, then it is certain

and the contact discontinuity T penetrate with each

2
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v

other and a reflected wave comes out which is a centered simple wave

2 7
Rl when Mé < Mi < 2 Lor MI > Mé > 2 (Eigure 4.4) and is a shock S
2 . 2 1 ) ,
when M1 < MO £ 2 or MO > Ml > 2 (Figure 4.5). When 2 is between

l P

1

}
MO
3.3
0,1
2 Figure 4.4
p
i
r‘U
3,3 Ml
2
0,1

e

Figure 4.
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2 2 2 2 2 2
Ml and Mo , no matter what the case is: MO > Ml or MO < Ml , the
reflected wave may be either a centered simple wave R1 or a shock S

1

A




APPENDIX

The proof of (2.13).

Regarding p as the function of p in (2.7) and differentiating

to o, it follows that

| fou] v - Ou -(v-ou)
u dv _ v du oo Lo [puv] dp + v(v-ou) =2v{v-cu)
do do 2 ap
2p(v-ou) 7 [pu] ) I
[p+ ou”] u(v-ou)—o{k -2u(v-gou) |
dp
[pu]) vV - 0u 1
R ) ~ dp
= Zstvmow) [pu] {puv] - v{pu] a4, v . (5.1)
2 dp
1+ - -
e 1
2
Due to [p+pu”) - u[pu] = 0 when Vo T 0, it can be shown that 1
i d
& = [pu) Cwton) P = {Louv] - v[pu] H(v-ou)u + o5}
dp dp
where A is the determinant in (5.1). "
“(p=p b(p-
Cn account of [puv] - v[eu] = u p.v = CO(O o) = te CO) dp.
n 9 } oro bo o dp
dp CG 0 c2
(By using dO =- b ’ —E'— = b,— ), it turns out L
2
b(o-ry) c
dv du _ 1 W _ %o, _
Uip "V T T3 (v-ow) [ou] { [pu] (utov) - (v-gu)u b(p po)}.
. (5.2)
For simplicity, we restrict our attention to 0o = Oye In view of the

following:

l 236




[pe]
w
~3

2
c

0
u = uy, ~ ——=(P-P,) ;
0 uOOOb 0

UUO
[Pu] = (u0+05:56)(0—00)
L2 2p
' b uO c po
—*T;:Q;*—- (p- Po) 3

il

e(v- ou) OO(VO—OU

O)

]
|
Q
c
—~
<

= UO{_\O H
u + vo = UO.
We obtain that
- 2]
b{g-0.) ("_
[pu] (utvo) - ——=— (v-Ju)u- ~~(o Pp)
1220 9
b Yp~¢ o uopob ca(p OO) c (n*ﬂo)
= (pmpy) + : (p- py) - =
b' 0 o] 0 b
And so
) o.b b'c (p o)
v 220 0 v 2 ) ) " 07
(b uyme DO)(O ))*' {b'u Uy bp()(p o ¥ (P- LO) b
dv R du e
dp dp
20, (=00 /c s ug-c ‘—f>
0 0
2.2 2
/ ‘()(h ugc O) (‘()b o CZ b=,
LA T NPT S 3 WY S




—e
2 l_‘;}
By using Ty again, we have
2P0 e Yy _
) bi 0 o bab )
dw o 0 S o P N Gl
C I P2
ar RIGERY v !

This proves (2.13).

N
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I. HOMNOGENIZATION, GIIERALIZCD STRUCTURES, AID OPTIMIZATION,

In many different areas of structural design engineering, one wishes
to consider isonerimetric problems of the following type: how should one
chcose the shape of a structure so as to minimize its cost subject to
congtraints on its strength?

Questions of this tyre have been studied at great length by both
mathematicians and structural engineers, in a wide variety of contexts.
From a practical point of view truly optimal structures are often unwise
designs, being highly unstable and potentially very weak with respect to
loads other than those for which they were designed. Nonetheless, it is
of obvious value to kxnow how the optimal structure looks and what it
costs, in order to approach its performance with more practical designs
if possible,

To fix ideas we begin by describing a typical rroblem in this class
Consider a homogeneous, linearly elastic material characterized by a

stress~strain law
3

() Gy - gf‘, b S

¥
. Yuk/y ot 1,k
“here E:kl(u) -« 2(Ju-/ox" + du/ox) 1s the linearized strain of a
displacement u, Consider a smoothly bounded region (1C2E3, with pIY]
decomposed as fB v f& § we take rb to be clamped and f; to be loaded
by a fized force £: 1= B>, Given 0<V<Vol(fl), we define the

class of "admissible structures”

L1




_-wm"______-l,|

,j(v) a {scﬂ: S is Lipschkitzian, Vol(S)= 7V, and wc JS §

Bach such structure S responds to the load £ by a deformation Ug

- determined by solving the elliptic system
3
L=
x
a:i j

<2) O‘n-{f on Il
0 on 2S~[L

G“ij = 0 un S, 1=1,2,3

where n derotes the unit normal vector to 0S and 6 depends on
ug by (2 ).
We identify the comvlience of the structure — the work done by
the load £ — as
c(usyf) 2 {J:us°f .

A typical geometry optimization problem, then, is

(3) Minimize { c(us,f) 1 Sc J’(v) } .

In words: one wants to remove a given volume from {] such that what is left
has the minimum possible compliance under the load f.
This example represents perhaps the simplest fully three dimensional

cage of geometry optimization. Many, many variations occur in situations

of practical interest. We have taken as "cost" the volume of materialjg

this is rather typical - particularly in problems of aerospace deaign,
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wkere weight is at a preaiuw, One night, however, have several different
materials at one's disposal, each with a different cost per unit volume
and with different material properties, VWhile the compliance is a
mathematically convenient notion of strength, one might wish to control
the pointwise supremum of the stresses instead; for ductile materials the
limit multiplier of the load is an appropriate parameterj or one could try
t0 use nonlinear elasticity and modern theories of fracture., In buckling
or vibration problems the guantity of interest is of'ten the lowest
eigenvalue of an associated elliptic equation. Instead of considering a
single, fixed load, one might want to optimize the strwcture's performance
under several loads at once, or under a random distribution of loeds., A4ind
in addition to fully three dimensional structures, such problems arise
naturally for axially sgmmetric rods in torsion, fla2t plates in plane
strain, variable-~thicaness plates in bending, curved shells, etc,

It's easy to get carried away formulating problems, however, and
quite another thing to solve them. Not survrisingly, almost all progress
bas been restricted to the linearized models of behavior: linear elasticity

and linearly elastic-perfectly plastic materials. The literature in these

areas is vast, and a comprehensive review of it is far beyond the score &

this paper — the interested reader may refer to [/ Jand [ 2] for review

articles and further referencea, What we propose to do here is to
summarize —— in a highly selective and idiosyncratic fashion —— some of the
major ideas in the field.

A great deal of attention has been directed tovard sensitivity analysis

and the development of gradient flow techniques.[3,%.f£]Th1, 4ork views our




ovtimization problems as special cases of the ortimal control theory
of distributed parameter systems, in which the control variable is the
domain on which a given partial differential equation is to be solved.
These methods apply rrimarily to problems where one is solving an elliptic
equation (elasticity, but not plastic liait analysis), and where the
strength is an integral funcitional of the solution (compliance, not
maximum stress).
The most elementary product of this aptroach is a necessary condition
for optimality, ovUiained by taking the "first variation” of the optinzal
domain., or example, if a smoothly bounded set SO i3 ontimal for rroblem ( _ ),

then its associated displacement u, must satisfy [ ]

0

He(u)il? > e on S,

(¢)

Jli(uo)112 =~ © on )SO

for some constant ¢ >0, where we denote oy HE () 2 the associated energy

per unit volume
2 T
el & f? A g Sy Eqla)
‘IJ' ,A

In fact, for complience problems (and for plastic limit multiplier
problems) one can give a sufficient condition for optimality that is
closely related to (#). An entirely elementary argument -- using only the
fact that () is equivalent to a certain veriational problem —— shows th=zt
i#, for some S¢ J(V) and 6>0 the deformation ug extends to an element of

BI(Q $ ]RB) satisfying




H‘C(us)ll 22 c a.e, on § P

(5)

NEU@)HZS ¢ a.e, on [1~S

-]
then S is optimal for (2 ).Y While the computation leading to (¢ ) is very

general, the sufficiency of (§") rests upon the special relationahip between
the compliance of S and the variational form of ().

Given a structure 8 that is not optimal, the same computation that i
yields ("') Zives the gradient of the compliance in the space of local
deforzations of S, This leads to the formulztion of gradient flow
algorithms for finding structures that are at least local optima. Although

the computations are usually too onerous to be practical, some use has

been made of this method[ sﬂ ]. In addition, a "fixed point method”

for satisfying the ovtimality conditioms () directly has been used for

nedel problems of compliance with good preliminary results C’]J. None
of these algorithms has been shown to converge, howeverj indeed, it has
been unclear whéther to exrect a smoothly bounded optimal set S to exist

at all for a problem such as (3 )!

In a variety of special problems, ortimal structures have been shown

to exist, and in some cases they can even be given explicitly. For ﬁ
certain two-dimensional problems, complex variable methods can be applied
[/O,/_ﬂ. In other problems — principally the case of plastic rods in ﬂ

torsion =~ specific formulas for the "strength™ allow one to identify the

optimal structure.[@,“f] And in yet other cases, symmetrization has

Laeen used [ 15 ]. It must be said, however, that many of these methods have

a somevhat ad hoc flavor; they represent, one senses, something less than

— e———




a genersl picture of what optinal geometries can look like.

In fact, there have been indications that in many cases optimal
structures will exist only in a generalized sense., In other problems of
distributed parameter control such a phenomenon was noticed by liurat EU.
In torsion problems this phenomenon was noticed by Lurie and Klosowicz [O‘U.
In fact it is well-known folklore within the gtructural design optimizatian
connunity that as one tries to optimize a three dimensional structure —
for example, in our problem (J ) — the structure may develop nany scall
holes in such a manner as to mimic the behavior of an optimal "truss-like
continuum"; numerical experimentation along these lines may be found, for
example, in [,'3].

That optimal shapes nmight fzil to exist should be no surprise to
a mathematician familiar with recent work concerning "homosenization of
domains” [ !4 1 . There one finds that if a secuence Sn is defined by
perforating a domain fl with holes of a fixed geometry but resczled to a
lattice of size 1/n , then the correspondinz displacements u, converge
in a suitable weak sense to the solution of a new equation, now defined
on all of {1 , of the scme type as (1) but with o stress-strain law that
depenis upon the local geometry of the holes — and which is, in this case,

explicitly computable, In skort: new, "effective materials”" may be

produced from the original one by allowinz geometric microstructures to develop.

One says that the "effective materials", or the equations characterizing
them, are obtained by homogenization (also known es [ -convergence) from

the original equations,

¢
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There is, to be sure, nothing in our original problem that Teauires
the local geonmetry ~f the microstructure to be periodic. 7o say something
nathegntically rigorous about the general situation, however, one must rmodify

the nroblem slightly. Given a set S<fJ(V), let us not lesve [L~S eapty,

but £111 it instead with a second (perhaps very weak) homogeneous linearly

elastic material, whose stresgs—strain law is

3
>4y 7 kff a0 S
)

The displacements nugt now satisfy the equilibrium equations

52y

%y =0 on 1 (ie1,2,3)
(¢) U
Gvn - f én }—'l
uS = o aon /‘70
where
3
Siy " é qga Falig) on S
= 2 Fja falus) on s
h,l-u

The definition of the compliance c(us,f) remains unchanged, as does the

form of the ontimization problem:

2

(7) Minimize {c(us,f) : Se¢ J(V), and ug solves (- )J .

Because the system () is elliptic on all of (1 , we can invoke a
compactness theoren due essentially to Spagnolo [=°,2'] to conclude the

evistence of effective materials in general. Given any seauence {Sn%CQS(V) ,




there is a subseguence {sn(ji} with the following property: for

each £¢ H—é(’,-';ﬁ}) the solutions of (- ) converze weakly in Hl(ﬂ;.’Rs) f a solution
u of equations of the same type as (4 ), with 2 new stress-strain law
(8 - ’i»,qeff () €

) ij o7 iji 1

corresponding in general to an inhomogeneous, anisotropic, linearly elastic
"effective material”. The new stress-strain law ( ) depends only on the
subseguence gsn(J)X , not on the load £, !oreover, tiae conpliances

converge:

c(us , ) = efu, )
n

(3)

for each f.

Thus the existence of solutions to ( ) becomes a triviality if one
allows as generalized solutiong the effective materials that arise
by homogenization in the manner just described., rom this roint of wiew,

the interesting problems are theses

1) 7hat are the effective equations that can be produced using
(‘ ) seta in o (V)?

2) Yhat do the optimal "generalized solutions" look like?

Question ( 7 — |) has considerable ’interest over and above its
relevance to optimization problems . GCiven an ansvwer to it, one should
be able to handle(9-1) successfully by means of first—order optimality
conditions and gradient-flow methods.

Unfortunately, answering (J- 1) seems to be a difficult tesk. Sore

linited orogress has been made: for lLaplece's equation in m2. Tartar




bas choracterized the linmiting equations obtainable by bhomogenizing two
isotroric constant coeflicient ones without regard to volume frrcticn
Il ki
used . .. In more general situations, or when trying to take volume
fracticng iut0 account, one can say much less — in goneral, only rather
s ‘-_\;f-r-"l . X .

crude hounds are available | .- - -< —of, Settling this question remairre
an izportant, onen problem in the theory of homogenization.

Yeohove zo f£0v 4Souchked only briefly upon the engineering literatures

Ao indicated wozller, !ne idea that some sort of "generalized stru

Q

ture

to deserile oPti:al solutions is by no means new 1o the

enmine. tiia comnunity.  Zather than bel-abor the question of what genernlized
.oartares onn te aade Iron ziven noterials, however, most of <heir -iork

passes T.recily 0 consideration of the generzlized structures themselven,

In nany ooniexts this apounts siaply to enlarging the class of materials

one ig o . lins t» work with, so that 2 continuous rance of nateri~ls is

th o4 yreasgigned costy in other cases one allows strictures

2f a2n enlirely rew class, The cases that have received the mogt 2ttenticn

b+

are "trusa-like continua" (for three-dimensional rroblems and two-dimensicnal
plane strain), "grillage-like continua" (for planar structures suvporiing
bending loads), and variable-thickiess plates. fl‘;!ﬂi. In most cases

the relevont optimization problems are formulated in finite-dimensional
veraions, with the continuous version obtained by a formal passage to the
limit., In meny cases involving the compliance of an elastic structure or
the limit =ultiplier of a perfectly plastic one, one can use the theory of

ccnvex duality tc great advantage,

Fertars we can cive some flavor of this asrroach by describing the
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analogue of vrohlem (U ) iz the caterory of truss-lilke continua, Juch

-

2 structure is deseribed Tr = Tinize I.zily of vector Tields, soy
,._..j.;:‘. [ .—J _—J A 3 - A5 -3 R ! s> ]
R s here o /l, | Zetermines tithe direction of thke 'tk Tanily

M 2
or truss mexters , and |:Jj taeir sirength per unit length, rzich ve
ldentify also as the cost ver unit lengiki., ‘e acsume thet  |T¥| can
be arbitrerily large, that joining mecbers of the "*russ" con te dcne 2t

no cos*, and that cne can ignore +the roscitle tuckling of iruss menbers,

AT Tucl o 3truciure, 3e analcgue oI *tae eqnilitriunm ecuntions

(1) min %ff_(i(u), d o d52 4x - J—fou .

u=d on [, a4

The decign optini

2]
4]
t
s
o
o
3]
4]
aQ
[op
[t
1
a
Fon
[ #]

Te have not idegtified appronriate spaces for eiiker Isor us indeed,
it is not clear what choices one should make, and the 2tove fornulas
should be cornsidered formal only.

Cne can choracterize solutions to (/J) — once again, on 2 purely
formal level — by means of convex duality. One is led to conclude
that in en optimal structure N=3, and that the solution u of ( >) has
eigenvectors ‘EJ/(:j| with eigenvalues +o0 , for some constant ¢, whenever
<34 o,

Many interesting mathematical questions remain open here, A correct
mathematical treatment of truss-like continua has yet to be given, es
does a proof of the existence of optimal structures in this class, It
would be useful to have a regularity theory and metkLods for computing

optima as well, There zre other zpplications of convex duality or tlLe
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Iukn-Tucker conditions (in engineering optimization there are usually

called the Froger-Chield conditions) that have yet to be czrried out correc:ily
in infinite-dimensional contexts; this is particuloerly interesting for
plasticity problems, where the spaces one must wWork in are r-ther

unfemiliar [2°],

Finally, we emphasize that whatever class of objects one tzkes as
admissitle structures, one must still consider the possibility that unexpected,
generalized structures can be nroduced by 2 liniting process., ZXecent work
by Chen: and OlhofT’["J has found this to ~ccur, for example, in a previcusly

unexrected manner in tke optimal design of variable-~thickness elastic platec,

IT. CFTINAL CROSS 3TCTICNS FOR RODS LT ANTIPLANE SHOAR

in thig zection we sumnarize some recent work concerning the
ontinmal geometry of the cross section of a rod loaded in mtiplane
shear. The detailsof this worik will appear soon elsewberef;ﬂ: our goal
here is to degcrite the methods used, which seem rather general and
votentially annlicable far beyond the context of the model problem
discursed here,

‘a consider rods of infinite length and constant cross section,

1aded b a boundary shear force directed along the length of the rod,

unifrraly along that length., As the strength criterion we tnke the plastic

lizmi4 multiplier of the load, though we will comment on the correspondin-




compliance wroblem at the end of tke section,

The geometry ontimiczation problem i once 2znin cnst in terms of

4
W
W
o)
(6]
3]
@®
]
o
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®
[o 9
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recovnl of moterial: how should 2 fizxed aaount of
the interior of 2 rod cross section zo as %o ‘rerlzen the struciure 2s

little as poscible? The ey to our arproach is that e neither atlempt

to characterize all homogenized, generalized structures tkat rmight occur,

nor do we merely assume the prorerties of some specific generalized structure.
Rather, we characterize those microsiructures that nrise in o-timal
configurations: in other words, we derive the correct clnsa of generalized
structures. Cne can then apoly infinite-dizensionzl convex aralysis in

a aanner parallel to that used in the engineering literature, o characterize

the ovtimal atruciures.

S0 let UC Rz represent the tod's section befere volume removal, and
assupe [ = oU is piecewise smooth. The load f: "= R hould te tounded
and neasurable, and since (for simplicity only) nome of [ is clamped one
has a consistency condition Xf = O, The geometry of the mocel problem
is represented in figure 1.

Consider the class of admissible cross sections 2,( , defined by
u - {U'C U : 00U is Lipschitzian, and [ <0U" -E .
de define, for U'e¢ z,( ’

(12 ) U' withstands loed f ire There eximts ¢ L”(U'; ]Rz) such that

divs =0 onU's 6-nw=fon [}

5 n=0on 20U/ s and [7[£]1 e.e,




This definition corresponds to the model of plastic limit analysis,
1ith "yvield condition™ [)>i<1. The vector & represents the shear
stresses in the rod (all other stresses are zero). In words, U
withstands the load f if there is some stress which equilibrates the load
f and wbich nowhere exceeds the yield condition. Of course, since 5 1is
merely an ﬁ” vector field the condition divs =0 nust be understood weakly:
also, we are using the fact that 5. n has an L trace on 0U'., Finally,
we renarl that the unknown voundary 0U'-” is always unloaded and
unclacped,

Let us touch base with the more femiliar terminology of plasticity

theory, The limit multiplier )\(U',f) is defined as

N(T',£) = sup { t* U' withstands load tf }.

[ )

The duality theory of plastic limit anelysis oprovides a useful tocl for
J 7 J

determining vhether or not U' withstands load f [Bg]:
"2 \(U',£) = inf {XU,JVUI : ue BL(T; R) ’ X’J'f-l%-
""

One can further interpret ('2) in terms of a very geometric isoperimetric -
tyre »nroblem in the plane, which allsws one to solve for ;\(U',f) in
nany cases.

“e come to an elementary, but crucial, observation: LQ one extends
the vector field ¢ in (/2) to *he "hole" UwvU' by assigning it the vclum

cnrc, thls extension remains divergence~frece, Thus

. . 2
' withetands 1073 £ iff There exists 6¢L (U: R°) such that

divo=0onlU; ~ns=fon [

)

5= 0 a.e, on U~n1l's =snd I71 < 1 o.e.




Far *he nurmoses o7 sur thoovy, Lt i o oavenlient to reocast t:ze
T2oneirr ontinizutiot rrovlem slishily, Jixing not tie amount of area

to be removed but instead the strength of the result. In this form, the

srovlen is: given 0<t < \(U,?) , 2ind

() )Ot = inf{.uea(U')xU'eZ(', ,\(U',f)2t§

and describe an ontimizines seauence of sets U',

The key to solving this nrotlerm is the following lemnma,

x 2

Lemma 1: Let &+ L (U; R°) with divi =0 nnd irf<l. Tor each € > O one
can construct a set U.¢ 1 ard 2 vec=or ®ield <;G-LV(U;Im2) such that
\ \yvan - r‘:3”!
1) Ar_a(Ug ) = — +

ii) 5. =0 on U~T

1ii) I7(el, div SE-O , and D;»n as.-n on oU.
w

The proof of lemma 1 iz rather technical, btut the ides ig simnle: one
replaces 2 region where 0<[7/<1 by a foliation of slits parallel to 5 ,
leaving hehind density [7! of meterialy choose ‘z in such a region to be
parallel to the slits with 7] =1, excevt of course on the sglits where

6; =0, There is, to be sure, some work to be done to show that this
can be done even if 5 is in no way emooth, and that these local pictures
can be pieced together; the complete argument will appear in EH].

One may rewrite (') heuristically as
-Pt - inf {SU %no t gL (Us BR2), Ir£1, dives0, 6-n = t£ on /"},

where z ~noresents the charncteristic function of the ret where

Tro

oA 0. (This is only heuristic, because the set where 6 A0 mey or may

not te regular enough to belong to the admissibvle class 21 .)
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i Using lemma 1, one readily sees that in fact
Eod -

Thus on the heuristic level the role of lemma 1 is to identify the integrand
jm as the lowersemicontinuous hull of jfr‘o ! Given 5 solving (lf‘), ¢
one can construct an optimizing sequence of shapes by the construction
implicit in lemma 1,

The integrand j-ld'l is convex — this, it se=ns, is a2 fortunate
coincidence; one had no right to expect it to be, a nriori. However,
since it is convex one can achieve additional insight concerning (0§)
by considering simultaneously it§ convex du=l., lloreover, the existence of
an oztimal J solving (€) is immediate from the weak* compactness of the

[%,] -
unit ©all in L . Applying duality tkeory leads to the following result l”].

Theoren 1:
- m
A) The infimum in (/7)) is attained by an L vector field.

B) The optimal 2rea f‘)t is also the value achieved by tke dual nrotlem
(/5) ]Ot = sup{_[u (1=lvul)_ + tfu-f : uc-Hl(U) }
r

| and the supremum is attained if we allow u to lie in the larger

space 3V(U).

c) If LA’ (us 132) and utC-BV(U) are solutions of (/57) and (/5)

respectively, they satisfy tbe saddle-point condition

(7) lgisi-¢myu> = Jy (1=1vul)_

which imrlies in particular

AL s vy = s T




i) 5, a2 i “eC. uhere [Qu,| . >1
t VT, | t' 2bs
t
i) 3;/ Wﬁ‘ = Vu, z.e. vhere Qg Ii’t!<1
ii] 57 - a < 2
iii) 5, = 0 =2.e. vhere (Ju,| apy S 1 e

o0, 2 v
D) If ol (Us BR“) with Ir-1£1, div 5= 0, S-ns=<f on | 3 uc V(0);
and if (/7 ) tolds for u and ¥ then u and 5 -re extremal Tor

(/5 ) and (/) respectively.

“Hany of these 3-2%ezents must te uriers-ood in a yather weak sense,
since we have asserted very little re—ul-rity for u and 5, By

(5294

(1-{9u{) one understands (1-)Vul,bs)_dx - tvu

. , Where
sing

tVuls\Vulqbs + )Vuls. is the deccmmozition of the me-sure (Vul into

ing
its ~bsolutely continuous amd singul"r rar*s, ~nd for real numbers v,
p_sminip,OE. One must wverify that when dive =0 -nd I1ri<1, the intecral
§<7,%u> maxes sense for each u¢27(U). 2nd implicis in (C), (i-iii) is
the fact that for ue¢ BV(U), the unit vector 9Ju/\3u| is well-defined
jSu} = 2lmost everywhere.
e exnect to be 2able to rnrove Jurther reul-rity f£or the ex<renmals
to (’.7) and (‘,): it “wpears that u, i3 locally Lipschitzian, and that
G; is a ¢! vector field away from the get { x: 6}(:)-0 % ~— which itself
has piccewise C1 boundary. As of this writing, however, some details
Temain before the proof of these assertions can be considered complete.
Theorem 1 clarifies greatly — at least in the model of antiplane

shear - the role played by optimality conditions such as we discuased

in section I. The analogue in our model problem of the conditions (lr7
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is this : if U¢U, u':U->R achieves inf{jU,lvul : fu.f =1’$ ’
r J

and Tcr some ¢c>0

{Yutlzc omn U

jwu'{£ ¢ on U~T!

then U' has minimal area for its limit multiplier. The prospect of finding
such a set U' may seem bleak, since in general a minimizer for (iZ) may
vwell bhazve jump discontinuities, However, Theorem 1 shows that tkis
criterion comes close to the mark: an ortimal set U' may not exist, in
general, but in a certain sense u'! does nonetheless — it may be identified,

up to scaling, with the function u, in Theorem 1. The optimal stress 4

t t

is the closest thing to an optimal geometry th? exists in general: where
G-t' O one has a hole: where f)’;’ sl one leaves the original section
unchanged, and where O<I'S"t!<1 one obtains "near-optimal" structures by
removing slits parallel to G‘t, as discussed earlier.

The saddle point conditions (/7 ) enable one to construct examples
#ith relative eagse. An instructive case is that of a "butterfly-shaped"”
section, loaded uniformly along the "wing-tips" only (figure 2). The
ortimal stress field for t=1 is shown in figure 3. Where the wings join the
body the integral curves of & are arcs of circles, and [g]=1l; in the
darkened regions & =« 0§ and elsewhere the integral curves of 5 are straight
line segments. Figure 4 shows the corresponding function u,
by markinz some of its level curves. Where |[6f=l, /743 and the level
curves are straight line segments; where O<iri<l, WWul = 1 ; in this

2

case |Vu|=l where G =0. We remark that if u is C and |Jul= 1 on an

open set then quite generally the integral curves of vu/wu‘ must be




straight line secmenta.

llow consider what harvens if the parameter ¢t tenis to zerc. This
corresponds physically to removing essentially 211 the material from the

»* -
cross section. Trormally, one might expect G’t = % 15't to converze to

a solution of
2 . K
(18) infg SUM'l 3 G‘-LI(U;IR ), div5 =0, 5 n = ¢ ?
»

since each o't solves the corresronding rroblem witk the added constraint
* el m 1 .

ld'tl <t -, The unit bvall of L~ 1a not compact under weak conver.ence,

however, = one should extect extremals for ( ?) to lie in a larger space.

The correct place to look is the space of one-dimensional normal currents,

as developed in f:»’/]. Roughly speaking, these are vector valued meacures

that can te approximated by C:l vector fields, viewed as elements of the dual

space to the one~dinensional differential forms. ‘e have proven the following.

Theorem.2: Let &, and u, be solutions of (7) and (> ) resvectively, and
-1
= G‘ - 'f, -
5’: t N For any sequence n o,
»
A) {o‘t 7; has a subsequence which converges weakly to a normal
n
current which is exiremal for (/)

B) {ut .g has a subsequence which converges weakly in LI(U) to
n

olalew Thet u
a Lipschitzian function solving the'\dual to ('¢)e -
(/19) sup {_ru-f 3 u:U—>R Lipschitzian with (7ul £l
: r

C) 4ibe extremal values of (/&) and (/5) are the same.

Figure 5 shows the "integral curves” of the solution to ( >) for
our butterfly example. The heavy segments at the top and bottom of the

"tody" carry positive mass of this current,




The methods sketched herein extend readily to a anumber of related

problens. Je conclude this section by indicating what implications the
method has for linearly elastic rods under antiplane shear, with the
"strength” interrreted in terms of the compliance.

The geometry of the problem rem~ins the same as before, though now
the load f may lie in H‘é(/-’). The vertical displacement solves the
equation

(=) Aus=0 on0U', Una,f on , bnﬁ-o on U'e(7
equivalently, u achieves the extremum in
(::> inf {Q‘YU.NIHZ - If‘u H u(‘Hl(U') } .
F
Integrating by parts in (/3), we note that
..U|Jvul ff- - C(U',f -

As in the case of rlastic linpit analysis it is convenient to deal
with the stresses rather than the displacements. In this problem the

stress g =Ju solves the dual to (2o):

on

Thus a geometry U' has compliance at most C if and only if there exists
e L2(U ;m"’) such that div6 = O on U, ssn=fon /7, o =0 onU~0',
aad % .\’U’G’f?' £ C., Using this observation and the method of Lemma 1 we

have proven the following.

Thesr-m 3. Far each C >0, the following quantities are equal :
1) int{ Avea(U') + UteY, c(U',f)éC {

ii) sup inf {f F (lr)ax - xC s 0’-L2, dive =0, & n = f}
«>0

ir.f{»}_ﬂ),mz : 6« L2(U'; B?), divs =0, Tosf on /[, G.n = O

2T,




(1 v (7/2) &f ¢ 2 (24 )?
where (t) = + N
(L (Zx)'dt t§. (2/){)«~
iii) sup sup 1 SU(I— E%jxvuﬁg) + J‘u £ <~ xC .
x>0 uch - =

4gain, details and examples are in nreparation for rublication elaevwhere

soon,

III, DIRECTICNS FOR THZ FUTCRE.

It should ve arparent that tiere is a great deal yet to be understood
in the area of geometry ortimizatisn. e list here some directions that

future work is likely to ta:s,

1) Even for the nodel case 3f antiplarne shear discussed in section II one
can not yet characterize geometries that are optimal for their yerTormance
under several loads at once. Ultimately, one would like to study performance

under random loads as well.

2) There should be an analosue of Lerma 1 for plane stress or for three
dimensional problems, What integrand replaces Sw1? (He believe that

for these prohlems the relevant integrand may not be convex.)
3) Can one do a similar analysis for eigenvalue problems?

4) The one-dimensional currents discussed in the context of theorem 2
play a role for antiplane shear cnalogous to that of truss-like continua

in plane stress or three dimensional elasticity. It should be possible to
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study the optimization of truss-like continua using methods from geometric
measure theory. Particularly welcome would be algorithms for computine

such optima.

5) Many biological structures have well-defined microstructures, which

one exrects serve to optimize their perZormance for certain tasks; certain
bone and muscle tissues are striking cases of this. It would be interesting
to "explain" such geometries by identifying with creeision functions for
unich specific structures are designed optimelly. Qualitatively this is

an idea long familiar to biological scientists; but in rather few cases

has it been made quantitative,

6) .ny new result in the exiatence or characierization of optimal structures
should lead to nev methods for computing them and to convergence Tresults

for various algorithms. In particular, one should be able to use our
Theorem 3 to study the “"fixed point metkod" proposed for compliance-

tyre »roblems in [2/‘1].

7) Perhaps even the general ouestion of characterizing effective materials
nay yield to similar methods, by considering sufficiently complicated

optimization rroblems.

R
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Weak Solutions to the Nonlinear Waterhammer Problem
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ABSTRACT

A numerical method to compute weak solutions to an
initial-boundary value problem for a nonlinear hyperbolic
system which models fluid flow in a pipe is analyzed. The
effect of friction is included by adding a quadratic zero
order term to the system of conservation laws for compressibie,
frictionless flow. A priori bounds are obtained by means
of a nonincreasing functional that is compatible with
the friction effects and which is equivalent to the total
variation of the solution. The boundary values for this
problem cannot be imposed weakly, so new results on the

regularity of the approximate solution at the boundary are

given. Details will appear in the authors' paper

"The existence of global weak solutions to the nonlinear

waterhammer problem”.
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1. 1Introduction

Fluid flow in pipelines is usually modeled by the

quasilinear hyperbolic system

(x,t) € (0,1),

2
G, + (6°/P), + p(P), = - f|G|G/2DP ,

where P is mass density, G is momentum density, p = p(P)
is pressure, f = f(|G|) is the Moody friction factor,

and D is pipe diameter. We shall give stability and error
bounds for a numerical method to compute global weak solu-

tions to (1.1) satisfying given initial conditions
(1.2) »o(x,0) = Do(x) + G(x,0) = GO(X) + x € [0,1],
and given boundary conditions

(1.3a) P(O,t)

Pa(t) t € (0,) ,

(1.3b) G(l,t)

]

0 -

This poses the classical "waterhammer" problem since
the waterhammer phenomenon in hydraulics can be created by
a sudden valve closure downstream (modeled by the boundary
condition G(1l,t) = 0) or by a rapid change in the pressure

upstream (modeled by a discontinuity in DB). These events

create pressure waves which are reflected at the boundaries.




The term -f|G|G/2Dp accounts for the momentum loss due

to viscous friction between the fluid and the pipe wall.
Since the flow changes from laminar to turbulent at a flow
rate near Gc = 2000u/D (where u is the dynamic viscosity),
the properties of f also change at G = Gc' In the laminar

regire

(1.4) £(|Gl) = 64u/|G|D , lc] < 6

[4

C

but the friction factor is determined experimentally for
turbulent flow (|G| > GC) and depends on the pipe roughness
(which we assume to be constant in space and time) as well
as the flow rate, In particular, it can be observed

from experimental data that there exists a constant f1 >0

such that -

(1.5) lim £(|G|) = £, .

|G|+
Thus, the friction term £|G|G/2Dp is nearly quadratic in G
for turbulent flow. Our analysis assumes only the following

properties for H(G) = £|G|G/2D:

(1.6) H(0) = 0

H
(1.7) HG 22 0 )
(1.8) H is locally Lipschitz continuous.

Property (1.6) states that there should be no friction when

there is no flow. Property (1.7) states that the relative

change in the friction (assuming that P is fixed) 1is »




' 273 <

‘ greater than the relative change in the flow rate. This is
obviously valid in the laminar regime (H(G) = 64G/uD) and
in the completely turbulent regime (H(G) = f°|G|G). Our
study of the Moody diagram [13, p. 297] has led us to assume
its validity in general. Property (1.8) is justified for
all flow rates, G, except possibly at the transition flow
rate |G| = G, (see [7] where f is allowed to be multi-
valued at |G| = G.) .

We also assume that the sound speed, c > 0, is constant;
i.e.,

(1.9) p'(p) = c? .

This 1is valid for an ideal gas which is maintained at a
constant temperature by heat exchange between the gas,
the pipe wall, and the surrounding environment. For many
physical problems property (1.9) is also a good
approximation for modeling the flow of

licuicds.

In {7', Luskin has shown for the initial-value problem
(1.1)-(1.2) that a unique, global smooth. solution exists
if the initial data are in an appropriate invariant region
and if the first derivatives of the initial data are suffi-
ciently small. However, if the first derivatives of the
initial data are too large, then discontinuities can be
shown to occur even when the data is smooth. (This can be
done using a variant of Lax's ideas for the frictionless

case [4]). To allow for more general data here, we need to




consider weak solutions of (1.1). We call °,G € L)

a weak solution of (1.1) if

[D¢t + G¢x] dx dt = 0

o) N

(1.10)

Sy

f [G¢t+-(G2/D + p(O))¢x-(f|G[G/2DO)¢] dx dt = 0

D

for all ¢ € C,(Q), where 2 = (0,1)%(0,=).
We have proven the following existence theorem in (8]
by using the properties of our approximate solution that

will be given in this paper.

Theorem 1. Assume that properties (1.6)-(1.9) hold and
that

(1.11) var &n P_ + Var &n P, + Var 0. n 3475 |
£50 B O xero,11 Po 2
- x€[0,1] '

Then there exists a weak solution p,G € Lw(Q) to (1.1).

The initial values are satisfied in the sense that

(1.12) ©o(-.,t), G(-,t) € Lip([0,=), L} (0,1)) %

and - 1

t-+0

lim G(-,t) =G
t-+0

o’ 0
The boundary values are satisfied in the sense that for
any T > 0,

(1.13)  o(x,*), G(x,*) € Lip([0,1], (o, m),

and

lim p(x,+) = o , 1lim G(x,-) = 0 in Ll(0,T) . i
x=+1 :

x-+0 B




(Here, e.g., P(-,t) € Lip([0,»), Ll(O,l)) means that there

exists a constant, C, such that

leCeaty Pty < Clg -t

|
tl(o,1) 2

for all t).t € [0,»).

2

Also, without loss of generality we assume that
00(0) = P5(0) and that G,(1) = 0 by redefining po(O) and
Go(l) if necessary. In this way the incompatibility of
initial and boundary data is accounted for in the left hand
side of (1.11) by allowing lim oo(x) # DO(O) and

x+0

1im Go(x) # 0).
x-+1

The only purpose of (l.11) is to guarantee a priori

that the flow remains subsonic, i.e.,
(1.14) vl < ¢ for (x,t) €Q,

where v = G/0 1is the velocity of the flow. This, in turn,
guarantees solvability when boundary conditions (1.3) are
imposed.

In general, boundary value problems for (l1.1) in which
either the density or the flow rate is assigned at each
poundary can be solved uniquely only when the character-
istic speeds Xl,Xz satisfy Xl < 0, Xz > 0. Our problem is
posed in FEulerian coordinates where the characteristic speeds

are Al(u) =v-c, Az(u) =v+c ; so (1.14) is required

for Al < 0, A2 > 0. Earlier work on the construction of

solutions to initial-boundary value problems has been done

, | R




by Nishida and Smoller [12] and Liu [5] for the

"piston problem", but a priori bounds similar to (1.14)

were not required there. This is because the piston problem

is posed in Lagrangian coordinates where the boundaries move

with the fluid. Thus for the piston problem, Al = -c,

Xz = c, soO Al < 0, A, > 0 is already guaranteed a priori
Note also that boundary condition (1.3b) is a "natural"

boundary condition and could have been imposed weakly by

requiring that

JI [p¢t + G¢x] dx dt = 0
f
for all ¢ € C;((O,ll x (0,*)). However, the boundary

condition (l.3a) is not a natural boundary condition, and
it was necessary for us to give new results on the regularity
of the solution at the boundary in [8] in order to make

sense of boundary condition (l1.3a). This problem, as well,

did not arise in [5] or [12] since the boundary conditions
for the piston problem are "natural" boundary conditions
and can be imposed weakly.

Our method is a fractional step procedure. 1In the first
part of each step we use Glimm's [1] method to approximate the
solution of the system of conservation laws for frictionless
flow. The second part of each step accounts for the effect
of friction on the flow, and involves solving an O.D.E.
that is determined by the zero order term. Liu [6] and
Ying and Wang {15] have also given bounds for a frictional

step method for some systems of conservation laws with zero

|
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order terms. However, their analyses took account of only
the magnitude and not the orientation of the vector field
given by the zero order terms. These ﬁéthods are inadequate
for our purposes because the physical friction term
f|G|G/2DP is quadratic in G at infinity; and solutions to
systems of conservation laws with quadratic zero order

terms will "blow up" in finite time if the associated vector
field is allowed to have an arbitrary orientation. Moreover,
the methods in [6] and [15] will not imply the a priori
bound (1.14) unless the orientation of the vector field

is considered. Thus, it is crucial that we found a ronlinear
functional which is equivalent to the variation norm

and which 1is nonincreasing on both of the fractional

steps. Although the functional introduced by Nishida [10] is
nonincreasing for the system of couservation laws, it is
inadequate for our purposes since it can increase on the
friction step. However, we have shown [8] that if the zero
order term satisfies certain monotonicity conditions,

then the functional given by Liu [5' is nonincreasing
for both fractional steps. These montonicity conditions

are satisfied by the physical friction term in (1.1) when
the flow is subsonic. WNumerical results for the solution

of (1.1) by this fractional step procedure have recently
been reported by Marchesin and Paes~Lema [9].

More details and proofs for the results reported here

can be fourd in our paper [8].




Solution of the Riemann Problem

2.

The solution of the Riemann problem .is the crucial

element of our method. The Riemann problem is the initial

value problem for data which is constant to the left and

right of x 0. We study the Riemann problem for the

nonlinear hyperbolic system

(2.1) u + F(u), =0, (x,t) € Rx RT ,
X
where u = (D,G)tr, F(u) = (G, Gz/p + p(p N, and
p'{pP) = c2. The eigenvalues of 4F are
(2.2) Xl(u) =v +c¢c, kz(u) =v +c,

with corresponding right eigenvectors

R (w) = (1,v-0)%F , R,(u) = (1,v+c) ¥

The main existence result is that for initial data

u, if x<o0,
(2.3) u{x,0) = uo(x) =
u if x>0
R
(we always assume DL,OR > 0) there exists a unique solution
u(x,t) = u(x/t) such that u(x/t) consists of constant states

separated by "shock wave" and "rarefaction wave" solutions ([10].

We first discuss the rarefaction wave solutions.

U(E)y E

We note that a smooth solution x/t, must satisfy

[8F - EI] U(E) = 0
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Hence, a smooth solution u(§) must catisfy u.(E) € spah{Rz(u(E))}
and § = Xl(u(ﬁ)) for £ =1 or 2 = 2. An f-rarefaction
wave is a continuous solution, u(x/t), whose values lie

on an integral curve of the eigenvector RZ' The functions
_Vv+c &n P _v-c &n?p
=Tz r=——7

are Riemann invariants; i.e.,

(2.4) Vus' Rl =0, Vur' RZ =0.

Hence,s [resp. r] is constant on an integral curve
of Rl [resp. RZ]. Thus, the ¢ -rarefaction curves can

be defined by

(2.5a) Ry (up) lug | rlug) > r(up) sug) = s(up)l,

= {uRI v -vp =~cz for z = £n DL-Zn e > 0},
(2.5b) Ry(uy) = {up | r(up) = r(u) , s(ug) > s(u)},
= {uRI v,-vy = -cz for z = fn pR-zn pr > 0}.

A l-shock wave [resp. 2-shock wave]l of speed 0 is a

weak solution

1 <
(2.6) ulx,t) = o 1 we <o,
l up if x/t > ¢




which satisfies the Lax entropy condition (3]

(2.7a) ll(uL) > 0 > Xl(uR)
{resp.
(2.7p) Aylup) >0 > A (up) J .

Since u is a weak solution, it must also satisfy the

Rankine-Hugoniot jump condition

{2.8) Cflu, ~ u = F(uL) - F(uR) .

L

By eliminating 0 in (2.8) and applying the Lax entropy condition

we obtain the following &-shock wave curves

2/2 z2/2

(2.9a) s (u) = fuf v-v, = cle” - e“ %)
for 2z = %n P, - n Py < 0}

-z/2 2

(2.9b) S, (u;) = {uR] v mvp = cle 2/2 _ %/ )

for = = &n P tn 0 < 0}

Substituting in (2.8) gives

_ _ -2/2 _ _ z/2 - -
(2.10) 0 = v c e = Vg c e , 2 = &n DL Ln DR < 0
for a l-shock and

- ~-2/2 _ z2/2 - -
(2.11) o = v, tce =vp+ce » 2z = Iin Py n Py, 2 0

for a 2-shock.
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It now easily follows from (2.8) and (2.9) that

z = £n DL - 2n Pr [resp. 2z = &n Pr ~ DL]

. . 2 -
parametrization of the C° curve Tl(uL) = Ry(uy) U sl(“L)

is a regular

{resp. TZ(“L) = Rz(“L) v 52(“L)]' We call z the

"signed strength" of a given wave (so that the signed
strength of a rarefaction wave is positive and the sicned
strength of a shock wave is negative), and we call ;z| the
strength of a wave, The existence theorem for Riemann
problems follows directly from the fact that given any

two states u and up s

that Uy € Tl(uL) and up € Tz(uM) [10]1; i.e., the

there exists a unique state uy such

Riemann problem for (2.1) can always be uniquely solved by
a l-wave that connects up, to Uy and a 2-wave that connects
uy to Up-

Finally, we shall need to construct the solutions to
certain initial-boundary value problems. When the boundary

is x = 0, we consider the problem

u + Fu) =0, (xt) € RT x RT
(2.12) u(x,0) = uglx) =up , x € RT
PLO,E) = Py , t e mT

It can be checked that there exists GL such that

up € TZ(uL)' But the 2-wave connecting u, to u_, will take

L R
the value up at x = 0 only if it has positive speed.
If up € Rz(“L)' then it is necessary that kz(u )y = vptc >0

to grarantee the 2-wave has positive speed. 1If
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u € Sz(uL) . then the corresponding 2-wave has positive
speed if va > G since

o> A, (up) =vp +ec >0 .

When the boundary 1is x 1, we consider the problem

u, + F(u), =0, (x,t) €®r xm',
(2.13) u(x,0) = u ’ x € R
G(0,t) =0 . t e mt

In this case, there always exists Pr such that

., = (PR,O)tr € Tl(u but the l-wave connecting u, to up

R L)
will take the value up at x = 1 only if it has negative

speed. This is true if vy < ¢. Thus, the initial-boundary

value problems (2.12) and (2.13) can be solved by simple

waves if all the velocities occurring in the solution are

subsonic.
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3. Definition and Stability of the Fractional Step Scheme

In this section, we define our approximate solution
to (1.1)-(1.3). Let h = 1/N, N a positive integer,
x, = ih, Ii = [xi-l'xi]' 1 = 10,1) and let k > 0, tj'- ik,
= [tj‘lltj]. AlSO, let a = (al'ooo' )' ci e (001)'
be a sequence. We define approximate solutions
u, = (ﬁh.ﬁh)tr and u = (Ph,Gh) tr inductively. Assume

that v, and u, are defined for t < t.. Then u, on 1 x Jj+1

b
is the solution to
Gh(x’tj"') = uh(xi_lmjh'tj-)' x € Ii ’ if j > 0,
Gy (e, 04) = ug(x;_g,5) o x€1;, ,4if j=0

where F(u) = (G,G2/p + p(P))*T and ug(x) = (Py(x),Gq(x)) 5.
Next define the functions ﬁ(t,;) = (h(t,p,C) G(t,p,8))
by
(3.2) 8, =H@ , t >0
W(0) = u
where H(u) = (0, -£]G|G/2D p)tr z (0, -H(G)/p)u.

Then we set

(3.3) uy(x,t) = &'(t—tj.ﬁh(x.tn , teJi,.
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Note that (3.1) poses an initial value Riemann problem
at each mesh point (xi.tj), 0 < i < N, and a boundary
Riemann problem of type (2.12) and (2.13) at i = 0 and i = N,
respectively. Therefore, we can use the Riemann problem
gsolutions of Section 2 to solve (3.1) in Jj+1 . 80 long as
the waves in these solutions do not intersect in Jj+1 '
and so long as |v| remains less than ¢ in the boundary
problems. The results to be given in this section show that
if (1.11) holds and if h/k > 4c, then |v,| < c in @ and
the approximate solution can be successively constructed
as described above on 1 X Jj for j =1,2,... .

Note that if |V < cin I x J,, , then e < 2c

in I xJ In this case, the waves in the Riemann

3+1°
problem solutions do not interact since h/k > 4c. We shall

~ always assume that h/k > 4c in the following.

L
We let Yij

the construction of Gh which leaves (xi’tj)' Furthermore,

be the signed strength of the 2-~wave in

define

L
L(3) i§z Ivisl »

Lg(j) = mzj |¢n Paltys1/2) — n ps(tm-l/z)l'

The following lemma shows that bounds on L(j)-+LB(j) imply
bounds on the pointwise values of the solution.
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Lemma 3.1. Suppose that

(3.4) Lg(3) + L(3) 2 vy < tn éiz'f-s—
Then "
Dh(x,t)
(3.5) sup |2n 5 < Vj
(x,£)ETxT ) s
and
o \'2
v, (x,t) j_
sup 2 c < eV./21 <1
(x,t)EI"Jj+1 e J

where P = 1lim Pg(t).
tt

Lemma 3.1 implies that the waves in the Riemann
problem solutions to (3.1) do not interact in IXJj+1
if Vj < fn (3+v5)/2 since k < h/4c. The next result
is that Vj is nonincreasing for j =1,2,... . This

implies that if V, < 2n (3+/5) /2, then the approximate

solutions can be constructed in IXJj for 3 =1,2,... .

Theorem 3.1. Suppose that (1.11) holds. Then

v

0 34
+ var n po + var e < n —-1

x€[0,1]

(3.7) Vg £V = var n L
tz_O xE[0,1]
and

(3.8) Vy,y = Ly(3+1) + L(3+1) £ Ly(3) + L(J) = Vy

forj=011'o-- .
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4. Regularity and Error Estimates

In this section, we first give regularity results

1

for the approximate solution which show that u_is L

h
continuous in space and time to within an error dominated
by the mesh length. These results are necessary to show
that u, converges to a solution u (after passing to a

subsequence) that actually takes on the appropriate

boundary values in the L1 sense.
Lemma 4.1. There exists a constant, C, such that

1
(4.1) j fay (x,T5) = up(x,7y) | ax < cl1,-7, ]| + k] .
0
Lemma 4.2. Assume that & = (61,62,...) is equidistributed

and T < », Then there exists a constant, C = C(T), such
that for ¥yeYy € (0,11,

T

(4.2) f lup (e ) = up(yg,0) | at < Cliy, -y + kI
0
for k sufficiently small.

To give an error estimate for our weak solution, we define

T1
) E(uh.¢) = - J J [uh¢t + F(uhwx + H(uh)¢) dx dt
00

for ¢ € Cy((0,1) X (0,T)). Note that a weak golution, u,

of {1.1) satisfies E(u,¢) = 0 for all ¢ € C‘S((O,l)x (0,T)).
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The followipg theorem gives a probabilistic measure of

how much u, varies from a weak solution.

Theorem 4.1. There exists a constant, C = C(T), such

that
(4.3) ] Ez(uh.¢) ax < ch((¢|2 + l¢x|£)

The proofs of the estimates in this section and the

argument giving the convergence of u, to a weak solution

of (1.1) can be found in our paper {[8].

-—
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0. Introduction

Let u be the solution of a second order elliptic dboundary
value problem and let o= Rhu € §h be the corresponding
Ritz resp, finite element approximation onto the space sh .
Asking for L” ~¢stinates of w itself or the error u - LY
for approximation apaces sh of order at least 3 , i,e., for
finite elements which are at least plecevise quadratics, the
following results are to be mentioned:

(1) In Scott for N = 2 dimensions it is proven
w0y la- ?{t‘ //Z e 4 /")17/ //V/{'—/\') //l
0 Yesg oo

The proof is based on a carefull analysis of the approxima-
bility of the Green's function in the moram eof H:.
(i1) In Nitsche for arbitrary dimensions the a prieri

estimate

o D, « 4/.7/@4@.(({//41[;{/”/{” g

was showvn, Generalyzing earlier results of Natterer
the proof is based on the extensive use of certain weighted

gorms which are in the case of finite elements atrongly

connected with Ih_-lornl.

(411) Ia Schats = Wahlbin the estimate

(0.3) //?(ult.‘ £ C //((//[

{s proven, The method used is somehow between the sther two
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mentioned above,

The first aim of the present paper is to show that the estimate

(0.3) can be derived firectly following the lines of our former

paper with the only difference that whenever the gradient of u

enters the formulae then partial integration has to be applied.

Actually this happens only in 3 places, In order to give a self-
sontained representation we repeat the arguments of eur paper,

the only changes are explained in Remark 5 and 6, For the sake

of simplicity reap, clearness we give the analysis in the section
3 for the L;pllcinn serving as a model problem. The case of a
general second order equation causes no additional difficulties ,
this {s discussed in section &6, The proof of a crucial lemma was

skipped in our former paper. It is given in detail in section &,

The second aim of this paper is to show the boundedness of the
Ritz operator in Hoelder= resp., Lipachitrz spaces. These spaces
are the adequate ones in treating nonlinear elliptic problems,
The boundedneass of the Ritz operator in the corresponding norms
at least simplifies the analysis of finite element procedures,

in some cases it is essential,

Seeningly up to now Hoelder apaces did mot find any attention
in the finite element literature. Corresponding to this a priori
sstimates or error estimateszs in the norms of these spaces do

not exist in the literature,
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1 Notations, Finite Elements

In the following -Q £R”donotn a bounded domain with
boundary ’)-{2 sufficiently smooth, For any .Q ! < ./2
let W*{A?bo the Sobolev space of funstions having Lp-
1ntogrfablo derivatives of order up to k o The morms are
imdicated by the corresponding subspripts. In the case p=2

we also adopt H‘ [ﬂ. ')-? h/z‘[l’}. The norms then are written
shortly

1y = /.
(1.1) /. //ﬁ,.lzf //Wz,g/ﬂt) .

In addition we will use the abbreviation for boundary

nOIrms

(1.2) /. / = //. //k/

oy fna) -

t
Moreover .Q’ is skipped fn case eof —{2 S-Q and k ia

ease of k=0,

The use of weighted norms resp, semi-norms will be essential,

They are defined by

oo dotel {2 ((/‘-,“/bfv/zz/xi?”z

«. =€

wvith ‘O\ given by

4

(1.%) /4-.-/1 (x}: /X-XO/Z'I' f

E |

|
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(306‘0’ f)a )e The boundary semi-noras [. :{.4, are

defined in the corresponding way,.

By T}\ a subdivision of L  into generalized simplices &
is meant, i, ¢. A is a simplex if 4 intersects ’?-ﬂ-
in at most a finite number of points and otherwise one of

the faces may be curved. T“ is called K -roguh? ir
to any 4 € /‘2 there are two spheres of diameters K - ‘
and ‘ﬁ such that ¢ ocontains the one and is contained

in the other,

The finite element spaces ‘f H] .f { ’1 )ve will work with

have the following structure: Let =m being an integer fixed,
Any element of j‘ is oontinuous in _(Z and the re-
striction to A € P ( is a polynomial of degree less than =,
In curved elements we use isoparametric nodifibations as dis-
cussed by CIARLET = RAVIART ¢ ZLAMAL P (
is the intersection of \f( and /'/: s the clasure ia Hq

of the functions with compact support.

By construction ve have j C h’ but im gederal 5 % A/ (

for k & 2. It is usefull to introduce the spaces ,_/ ME /‘/‘ { ,'7 )
consisting of functions the restrictiom of which to may 4

is in H‘ (6) « Obviously 5‘£ //‘ for ali k.

Parallel to above we use 'broken' seminorms

2 1/2
Iv '/[ ?{ /IVfV/{z.a Z )

ael’

(1.5) \ p 2 72
IV‘V/z Z &% V{‘.ag ’

4 AEP(
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2. Approximation Theory in weighted Norms

In the estimates of the next sections o, ¢, etc, will denote

’
generic constants which may differ at different locations.
Unless otherwvise stated they depend only on (1) the domain
_(2 s (11) the dimension ¥, (1ii) the regularity para-

moter 4 , and (4v) the order =,

Essential is the fact that the function (1.k) does not

change too fast in any A & /-’{ it f ia not small coa-

pared with h:

Lemna 1: Let o Then for an %
(£ 2 =gl

(2. 7 = 54 (x){ém )= A .
‘o x € f/‘ % {/‘ (= o

Proof: Let ,?’ X €4  be points vhere /‘_ attains its

saxinmus and sinimum, Then

(2.2) /:d:/“ (%) :JL /_;_\’)* /;2,\')?/‘/;).

Now we have

(2.3) /V[t (i) 2 [x- x [ ¢ 2/:0 1/2

/21
4

‘¢ <p,

(2.4) /;‘_{‘/5
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leading to

- 1/

/ad-(ﬁo*z/fa /:a/

2

(2.5)
4 -
< ‘?/-‘4 *Z/‘A

)
Next let V & fo/) /"é be given and )r & 5‘ an approe-

priate interpolation. Then the estimate
2(e- £)

(2.6) //V‘/V'X)//z Lc# //V(V//L
lz/o)

{a)

for any 4 € ]7‘ and 0 € (( /;(fnia well known. Because

of Lemma 1 we derive from this

2 2(t-4) r2
(2.7) /l\?‘/Y-)()/'/( , £ ('/I”{ j»?{v//

o<.-(8) ’

The power (¢ will be within the range ,d/! N+7..Thus
ve drop the factor ( ’“’. Sumnation over all 4 € /—' ( gives

/
Lemma 2:_Let {;{.gg._nz Vé(%’;thorci_lg X € 5(
according to

/ ('{ l (
(2.8) //V‘/v-)()/l“ £ ¢ ( I v V/{(

gor 0 {k<1<n,




Remark 1: Since (2.0) is valid also for VY € /o/) // /7 H
with Xé 5 2 the lemma remains valid in this -uuuon.

For ang W £ H (J) the trace theorem gives

-1 2
. I £ W 74 f
(2.9) Illvl( 5 ({f I ‘lz o)+ £/ NI/G) '

Using the argusents of above we get

Corrollary 2: Under the assumptions of Lemma 2

! Z -7 ¢ !
(2.10) Iv‘/V-x){( £ Yy v//“

is wvalid in ndditiog.

The proof of the next lemma and corrollary follows the same
lines and is omitted here,

Lemma 3: For Xe 5‘ and 0 k1< n inverse relations
of the type

I -(-#)
(2.11) IIV(X// Sef IV‘X/I
o [ 4

hold trwe.

Corrollary 3: In addition to (2,11) v

1 | - [(‘ 4"{ ) )

(2.12) IV()(I E "t){//
o o

holds true, Here k = 1 is accepted.

- J
e —— ' . — . ——




In the subsequent sections wve will apply these approximation

results to functions V of the structure VY= /\-“ Sﬂ
with {f € 5 ‘ e Then a certain super-approximability pro=-
perty holds:

Lemma 4: Let yéfx be given, The function /:qu can
be approximated by an element X € S ¢ according to

{Ilvz(/“‘/’-)(){/; ¢ helwTe-x) 1
! « ' £
+{/2/P/6«' p- )f)./.( (0?— ///;0/;*4+ /Ny{/( )

Proof: We apply Lemma 2 and Corrollary 2 with 1 = m and get

(2.13)

the dound

(2.14) // \7 /‘ Sp){/xl

for the three terms om the left hand side ia (2,13). Since y

is piecevise a polynomial of degree less than = and because of

f"‘/l 0/"“"/"//2

(2.15)

Leibuis® rule gives \

™ -1
(2.16) Il\’”//"‘f)!: £ ¢2 v ;0//

h:o df*"h ’

Nov we apply Lemsa 3 for the terms with a2 1




- ’
.

to™ ()L, £
(2.17) ™7 1-%
£ ¢ [hflolfquz “ I’,(f{(uh-'h {'

Using fimally the obvious inequality for /e 20

o -
(e h. ”(-7 7

(2.18) I. A

we end up with

/IV’"//C“(/)//, £

(2419) M-t 40 y-m
, L - od
5([« /Iplfwrgff //Vy{/({

and therefore

e " e / p)// 4
cof ()™ Zen) fﬂ«//jff//fr{{{

The first brackets on the right hand side are dounded by /n { /{
since { .‘? is assumed,

(2,20)

#

As was pointed out is the introduction weighted norms are strongly

connected with the L”-norl. First we show
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Lowos 3t Lot o3 & o fhen foraar v/ atis

2 e N
(2.21) 4
//v/& Ce

Proof: Ne can effimate

b1 2 -
. v € pvi {(
(2.22) p / L 2 [i« a’x

and further with r denmoting the distance /%- T /

(f o <o {/fi;{z)"‘(*ﬂ-fﬂ/w
(2.23) _/zlk 0

oo . AN-7-Aw
< C o( /Nf) o . 4

-

For elements in the space ‘{ﬂ there is the counterpart,

lamms §: Lot w> § 20 £€@ . Then tor y 657 the to-
squarsey

VAR
(2.24) i},{l £e { c({ 00/.2 /)’ /‘(L
00 X &

0of: Let A &4  be chosen such that

(2.25) X /Xp) =2 //1 //l

azd let ﬁp be (one of) the simplices with A 54. .
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/” restricted to 4 o 18 a polynomial of finite degree,
i. e. an element of a finite dimensional space, In this case
any tvo norms are equivalent, Simce A 0 s of size e
there is a constant c¢ depending only on g s N, and m such

that

2 -#
2.2 < o K ¢
(2.26) /,r/&["'/ < 1y /‘z /4,

Because of the choice of X it is
0

(2.271 72 .(/,_ i) £ ?zf {z_l 2{2 .

Therefore wve get further

- 2 2
lyl P 1 V37,
X lao [‘0} ¢ X ¢ Ao
(2.28) _ 2

Remark 2: The last tvo lemmata show jhat the O -norms and the

L enorm are equivalent in the sp,ces 5 .

0o 4




3. The Boundedness of the Ritz Projection

In this section we restrct ourselves to the model prolem
414 = ’/ rn L2 ,
4 =0 on DX,

(3.7)

atithahiaketeiios

The weak formulation is:

rind 4 ¢ ”7 such that

| (3.2) /(' v) = // v)

holds for a1l V& 19 .

Here D(.,.) denotes the Dirichlet integral

(3.3) J/&, v) = [V& Pv/ = {fz 'b It ¥ .
The Rit "? 4 € 5 N
e Rits-approximation F ‘, is characterized by

f the relation

(3.4) @lﬁ X)= ///7)') ﬁ" )’5‘;4

i or alternately by

' (3.5) D/‘p’ x)= J)/W/X) /r /Yéfz ,

L H SR A a——




303

Remark 3: Throughout this section the letter ;’ denotes

the Ritsz-approximation oan w

In the first step of our analysis we derive a bound for the

gradient of 99 in a weighted norm. It is
hvpt, = /V;o,é(.'“ 7.
Il ke
22/ppp)r LA™

(3.6)

Because of

-x-7

(3.7) A/. £ c é"

ve get

) .
oo fopl €D /g pp)rcte?

20e %)= g pe-n) -
. 2/4«,/{"54-,\0 ) /2,/’y)

valid for any X é.’& because of (3.5). By the aid of Schware!

(3.9)

inequalitiy in the form
(3.10) /J)/V,W)/é hovi, //Pwl_‘(

and Lemma 4 we find for the first term on the right hand side of
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| /61-"(7- A 5’)/‘( c');‘//m/ thpy fl/vy/'/(

ol g

4 2
{dé ;//Pfﬂﬁ*,y//mg'

Our aim is to avoid any derivatives of u 4in the@timates.

(3.,11)

Therefore we have to apply partial integration in order to

handle the two other terms in (3.9), We get

D(’k,/‘ “v-x) = 3 &4//‘ V- y) oo

/7
(3.12) €

- Z “44‘//-;0-))4/1
o

a é'/
which may be estimated by

1D (6, p-x /¢ /4/'/7/',;"?-,,)-/:
/ ) /
¥ //ﬂ// M//,. y,)')_//x

(3.13)

) ¢ 4 X is chosen according to Lemma &4 then

Rt ppl¢ e /”*’W"/fﬂmf?'
(3. 14)
[z NIRT 730

In erder to shorten the formulae we introduce

‘f/ bR

-2 - /Z‘
N AT VI AN

of g




e et by e~ i <+ e
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Then we come to =« mote %X \(? -

£ 2
[0, fpallce fhmpfrhed S

2
+t e M)

(3.16)

Following the same line but this time using Lemma 3 and

Corrollary 3 we get

(3.17) /D/ﬁ/ 7)/[(’](/'7P//*//¢ J)/V/fc).

xXte

Schwarz' inequality in the form

2 7 2
(3.18) /HB/(J/Q*QJg
tor O <J’<1 leada to

(D06, 4" £ wa%i//%if

fj /K,/*)z

Now we combine (309)’ (3.11). (3.16) and (3.19) with (3.8)0

(3.19)

This gives

2 2
lvet, < (e, f* d)ivet,

(3.20)

celpllr ga0)°,
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We choose J: //3 and impose the condition on ?

(3.21) f; 11 ﬁ Witk ],=7ﬂﬂ1/’/, 3f1),

Then we get

2 2
(3+22) //V{ﬂ/{( 4 [)2 //4/{/2 tC /Z/d) .

Remark 4: In (3.20) we used for the constant in front of [/ Vfﬂ//p(
the numbering c, since this apecial constant appeared
in the condition (3.21). Similarily the constant c,
in front of lyllo(f appears in a further e¢ondition,
1

Remark 5: In the analysis given in we did not use

partial integration. There //sz enters instead of Ap/( /4),

In the second step we introduce the auxiliary function w

defined by
-X-T

-4 W :/a Sp /’h-d)
W= 0 omn 210

(3.23)

The reason is obvious since then

A
(3.4 lel, = 2D/%w)

which may be rewritten with /\/ S arbitrary

£
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A
et = )/V/ w-x) -/, w-y)
+ }/&’ k/)

Using the defintion of w we get at once for the last tera

(3.25)

on the right hand side

.z) [/12, W ) = (//42., ¢ /{i'f-1
< J//;ﬂ/{m* 2 ptyt

*ry
Using (3.22) we get for the first term with 0 < J 4

[D(y, w-x)] ¢ //Vy// oS- x4
(3.27) J//,??// # — /7/»1 /)r)//

< ¢, d ”P(ﬁ,," ¢ /V/lt/v‘ J//V/u—)()//

Finally the middle term on the right hand -1do of (3.25)

(3.26)

has to be treated by partial integration., Similar to above

ve come to |
10 (hw-x2] € Jul"1opy)/
v -

(3.28) 4 M// /,Vz/‘v_*)// !
2

(u)zf 1 /v/w-;n/ ¢ 7l ¢/ ,y///

By means of the 1ut three estimates we drive from (3,25)




L4

2 2 (4 2
s N
tel,,, © /1*[2)(///;”{01*&‘ % ) r
<l 2 lz
(3.29) U Ji [ﬁp/w-x)-//“f {/P/Jv-,\r?-/.;

. + {’/’Vz/w-)f)//’zﬁ
The choice J =Z+2t2 leads to .

2 4 z
X7 £ e A{(/fa) + (///\7/w-,yj_/;x+

'
(3.30)

—Y

+ f/?/h/—/y)/: {z’lvz/v-/’)//,
- -

Remark § : The counterprart of the last inequality im our former*

analysis was

2

(3.31) IW cethd re/w ‘ r’//v(w—/r)//
o 11 ore

The third step consists in analysing the terms with W "/Y
in (3.30) whioch still depend on (/ since w doss, Since ?
and hence /A¢ 'y is in H, the shift thesvem guarantees
Wél‘/g o We have assumed =) 3 , i, .;v;t least
quadratic finite elements are uwsed, Therefore may can choose

according to Lemma 2 and Corrollary 2 with 1 = 3 and get
from (3,30)

2 2 3 <z
oo ot S CNA) re £po Wil

t1
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The next section is devoted to the preof of

Lemma 7: L6t ¢( Dbe in the range /2 < x <& (N+1)/2 .,
4
Then for any v € 31(\ By with 4\9(//1 the a priori 3
i

estimate !

(3.33) I/v’wlz“ ¢ Ivewl +ef //aw//

holds true.

Because of the definition of w (3.23) we find

(3.34) lhawlh = //V

~o-1 ol tg

heawt, = D (K0l
(3.35) £ 0 { /Ip 4 IVV/{(“ f

ot 3

¢ c¢” {I/;ﬂ//m+ nepd, .

Nov using (3.22) we derive from (3,32)

s Nyl < & yz //W/ reMA),

In analogy to (3.21) we impose the side comstraint

(3.37) f‘ p 3 I’- "4 kh'[l h= M &x /X,,l/{;; )




— L il
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on f e This leads to

"y

Theorem 8: For o € (W/2 , (N+1)/2) and under the conditiom

f%}zﬂ e /o(f 1} -porm of the Ritz-approximation 90: 2 '
4s bounded by the composed (X -norm /\ol( (. ) of u itself

(ad
-2

(3.38) /l?/lu(u £ 0 /1{‘ /’Zt )

with o independent of h , f and the poiat x o
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&k, Proof of Lemma 7

The 3onfcr11 shift theorem in the theory of elliptic equations

includes the two statements

o
Let véﬂ1n Hz.Thon

(he) vty <o favil ,

Let '€§1n By o Then
w47Vl <c’{yvAvlrhavﬂf .

A direct conmequence is

° °
Lemma 9: Let v ¢ H, N H, resp. v é€E, N 113 o The in weighted

norms for / arbitrary

(b.3) ﬂVZV//‘A ~‘C'[lldv /l($+ IIV"/;%'*L l'//;hz fl

31 < hoavl
- INV”ﬂ (’f/[?d"”ﬁf /4,,,'

. ' +’VV///3"1‘? //Vl'/*', ?

are valid,

Proof: Be will give the details only for (4.3), the second
case is handled in the same wvay., For convenience we use f = /9 / 2.

We can rewrite the integrand in




2 gt -y - & 2
(4e5) JI? v//f < ‘:Z‘ _a(( //,' v‘.‘} of x

/
by

"[y’.‘ s /IA-[V)“ - V,- /«.[)"'
(4.6) _ Y‘ //“.i)," Y //‘-[ e -

Therefore ve get using (2,15)

(4e7) Iwzvll/, éZHz//:‘v)//f ¢ /”VV”/"" //”/A'l )

In the similar vay it is

@8 4 ',k-[V).-/:fAVfZVYoV&:{)fVA/‘.‘

leading to

(4e9) lm/‘;‘v)l!,?la VI/} ' "/"me" n;/m)'
(b.7) togebher with (4.9) gives (4.3). s

After these preparations we go back to the fumction w defined
by (3.23) and the a prieri sstimate stated ima Lex=2 7, By
Lemma 9 we have

il <o {l?t\wll ¢ Jovwlh +
- -

-oetq

v oW ] +IW.I."; {.

-t

(4.10)
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Ve have at once

(B11) tawl £ how! i

-~ +1 ,’ﬂ ahaliet
In order to complete the preof of Lemma 7 we have to shov
that the susj

(4013 fvwh + AW

-ot2 -3
is bounded by the right hand side of (3.33). Our choice of
leads to

(hath) f/3'ﬂ’)“o(*z < ;/4- ) .

Therefore the voiA -,(.;2 of the term V¥ W in (4.13) 4s
positive in case 0of N = 2, 3 dimensions and negative for
N & &4 dimensions, Moreover in case of N = 3 dimensions

we have

N
(4.15) 0 <-wtl < Z" - 7 .

Accerding to this the cases of 2, 3 or higher dimension have

to be treated seperately, This will de clearer decause of the

follovwing

(3

PO,




o
Lemma 10: Let v¢ H,/N H, . Then

(1) gor (8<0 the porms Ilvvllp and fvh are gom-
parable modulo ’lAV”/S 70 Lo

lvvﬂﬁ < z’{ “”/Au* Iov/l/,4f)

(be16)

N
(4i) for o(p (i-'f //Y)Z)!&tgtcm_:gboudod
by the last, 1. e.

CRU N FA' ”/3 + fy ”/3+1 e havlh .,
Propf: The identity

[4 - -
(4.18) /I?Ml5 =)/v,/, Ky) -J(L{VVV'V/A /S‘/’
leads to

(4.19) ,’VV/’/S /V AV) L g\’ A/\/s/f

direct differentiation gives - ¢ = ,o\' - o\'o /

(ho2d o/:/‘h//?/\-(d.z{//fzf //V—Z/"?)szo




-

Thus in case (i) 4 /a /3 is bounded from above and below
- -4
»y ¢ /. /‘ giving

4 2

Ilvvllﬂ ¢ /v’-av)/} Y

tq )
(4.21)

} /v' -4 V)ﬁ +C hv ///AM

This proves (4.,16) since
2 1
oo [o,-00, 1€ d0 050 fg havi
In case (ii) ve have
- - -1
(4423) d[L/z{-.'('//‘%

with a positive conatant ¢' giving

//\7\////:+ c’//vi/;, £ /V, -4 V)/s
1

Z
1,1 +t — Jlav)
s el /’m G ! s -,

(ho2b)

Ve are nov able to give a short proof of lLemma 7 for N = 3

dimensions, Because of (4,15) and the second part of Lemma10

we have
bewh + dwh £ clhawl ,
(5.25) LA "Wt -3 w4
£Cq haw h
VR



da .

Now let us eonsieder the case of N = 2 dimensions, We will

give an explicite proof of

Corrollary 9: Under the assumptions of Lemma 9 the terms -,I A

[/in.
in (4.3) resp. fiv ”@f 3 4n (4.4) can be dropped in case

o
of N =2 dimensions, provided AV £ h‘lr ’

Remark 7: The restriction to N = 2 dimensions is unnecessary,

But we vill need it enly in this case.

Before we give the procf let us finish the proof of Lemma 7,
Ve need nov - see (4.13) = a bound of IV W”“‘l enly, Ia
the present case we have ,7/2( —-x12 & 7 o Let P, > 2

be fixed., Then X~ <2 /PZ e Nov we apply Hoelder's in-

equality wvith p = pz/z) 1 and get

z o(~2 yA
rewh, s ((/« Ivw|® ofr

1/
[3 (w-22¢ 7
< llvw//[hf (f 1 »/x;

with 1/q = 1 « 1/p , Direct esalculation = see the proof eof

(bo26)

Lemma 5 « leads to

Jowl < ff- )/Ivu//[

k.2
(h.27) et s

vith

(4.28) A = 4-0(42//2- ,

4




Next let p, be defined by

By the aid of standard a priori estimates - see Morrey

ppe 80 and 157 « we get

2
(4430) I v w //sz < C |y N:ﬁfq
and
am  Wwl & haw, ,
/1 P1

Ia our eabe we have 1 ¢ Pq { 2 . Therefore ve may apply once

more Hoelder's inequality to

f «tr gVl - ) pufa
(h32) l/owlh - f //‘ o) i

this time with p = Z/p1 e Similar to above we get

- M
(4.33) Iawl £ e f haw I
Lfﬂ - ®=q

with

2
(4e35) /*=4+o(-" )
L

The combinatien of (4,27), (4.30), (4e31), and (4,33) leads to
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(he35) howk c':,” /Aw

-t o=

what fimishes the proof of Lemma 7 for N = 2 dimensions,

Ve vill later on need the trace theorem in weighted noras

in the form

Le 11t Let v 6»31 o Then for <J,:> (7]

4
4
(4.36) Iv/ﬁ*m 50[)//7”//5*"//“/ ) v //m

Proof: (4.36) is shown by applying the standard trgce theorem

wm  IVIECe Lavate IvhivVe
. V—‘/«-/Hz‘”;

L
Proof of Corrollary 9: In N = 2 dimensions - we denote the

variables by x,y - it is

1t 1% vt = -2 /1y, " Yy )
(h.38) ,._-.?[ /V)Y,,,)),"/V)« Vr,v}xf

and therefore

2 2 -
"’z\!lf,-/"”/;b - 2 &/./sv ”/Vx
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L9

l IIVZV”/:-‘/IAY'}:.‘( fvi/‘-/AV/ﬂ/Vr*

(4.40)

In order to analyze the boundary integral we introduce the

arc length s and the angle = {5 ) betveen the tangent
1=

and the x-axis, Further Vg0 ¥

normal differentiation. Because of v =0 on’) -d ve have

a denote the tangential and

= -4/ Y Y = fo ) Y
(k1) x; 4 J %) , ' "w

and with K= 6, being the curvature of D.d

2 1
(4oh2) jvya/\; =—j}fl((’oothr<er ooy Yh V”s {“/.5 .

i We insert this in the boandary integral and apply partial in-

tegration because of v v _ = (vn)g./z e Then we get

(i) /2&[’”;/5 /¢ e vy

| 4

I With the help of Lemma 11 then (u.k[o) leads to

/?_
/Af'f/z ‘
£

2 2 2
(bobb) ,/VzY// -havh -‘/J'//PZY// +CS\ Jovh b

? po 7 f pr

i - . ‘ ‘
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This proves (4,3) without the last term on the right hand
side,

In proving the second part of Corrollary 9 we will skip
some of the details., In the corresponding way to above we

get the counterpert of (4.40)

2 2 -
v - Jvavh 2 & P[0 -y Jv. ¢
A I A YT
2 } 3
chv M/m k4 vl/s )
Onrp fl we have for v arbitrary with the abbreviations
5::&'*5, £ = 6'04)

2

Vs ® © Vex * 2sc vq + 8 vn + K Vo 0
2 2
(4o146) Vs ® 8¢ V. @ (cT=s") Yay T8¢ Yy =K Vg
2 2
Yon=® 8 Vyx ~ 28c vxy + ¢ v" .

The condition v = O implies Ve " Vs * 0 ¢ In addition

A v = 0 implies Van * Ya e Therefore we derive

Yy Yor . QK Cos o y, Dsnf v,

va) - 2[4,'4,%\/& f]fodzd

(b.h7)

Bimilar to above we then get

v
(5.48) (Dé {Y’) )ql') lC’{ v Y/H/: V/Af’/a {
L
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and therefore with Lemma 11

2 2
} £ /J//V‘?V// +
A /
2

4 Z z
i {/IV v/I/SH + //?Y/;}'Z f

2
”‘73"”/3 - hvav

(ho49)

resp.

(4450) b\73V///5 é(’{//\?[tvﬂpf ”?2‘///{: //‘7'/}(,”2 i

Now we have to apply the first part of Corrcllary 9 to the

second term on the right hand side of (4.50). 2

Remark 8: Above we derived the a priori estimates needed for
functions aufri{ciontly smooth only., For instance (4.38)
holds only for functions having third derivatives. By
compactness arguments the validity of thelafgimates
for functions with the stated regularity is shown.

The case of K > U4 dimensions hardly is ef practical im-
portance., Therefore we give only an ofgtline of the proof

for these cases. In viev of Lemma 10 and becauas of (4.M:)

it is enly necessary to bound "W!“fs in terms of [lﬂ w 4“_1
i. o, to find an upper bound of

2
(k,51) /\/-(2) = A’ﬂ/) IIM/!/“+3 /IAW‘//*Z;
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/

where the supremus is to be taken over all V & f' /’ N ‘LL .
Obviously the supremum is attained for an sigenfunction of

tho:’r»hl
oLt? 1 «-3
= v /in L2
4 /I« a v) ) M / )

(4.53)

In this way we ask for a lower bound of the smallest eigen-

value of problem (4.52). By standard arguments the monotomi~

oity of ) with respect to the domain, i, e, l‘/—/21> £ } /‘42)
in case of -a, [4 -n- 20 is shown, Therefore an upper bound

for A/ .a) is given by the corresponding A for the

ball with center in x  and radius d = diameter (L ).

The eigenfunktion oornupron‘ing to the lowest eigenvalue

then depends only on ¥ 3 /X— Xo | (or at least one does).

Using the representation
v

| 1-N N-1 y
(hs$) VV ~ V =4 f'ﬂ AY ¥§

(/]

we get without difficulties

-2
(ho54) hevh  £¢4 lav I
- K+2 - -1

whieh ia viev of Lemma 10 bounds ‘V” iz the same wvay.
- a* 3
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5. The Boundedness of the Rits Approxismation in Hoelder Spaces

The Laplacian like any elliptic operator is not eme to ene
with respect to the spaces c<a=ck( L2 o consisting of
functions having continuous derivatives up to erder k in ﬂ .
We will also abbreviate C = c° and denete by 8 the space
of continous functions vanishimg on the boundary Q-ﬂ « Of
course the image /: -4l ot any w él.;'/) ck+2 (k2 0)

is in ck but to £ £ c" there may mot be an original

k+2

°
wecNc as is demonstrated in two dimensions by the

counterexample

(5.1) b = /X}yl) //tn /yi),z)/

with Jl the unit sphere.

The situation is changed in case of Hoelder~ (resp. Lipschitg-)
spaces. These spaces, denoted by Ch) = Ck”\ ( ,Q ) with ,)
according to 0 < A ! 1 s consist of all functions Xk =
times continuously differentiable such that the highest deri-
ke

vatives are Hoelder-continuous to the exponent (‘ «In C

a norm is given by

s.2) v : Z hbf‘/// t Z .:Dr\/
5 c¥ i bo )f/siz ]A

with




— M— e S ————
' ‘F‘
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14 () - A (y)!
W > 6(( :
G [ ]A 0 f& [’(‘}’I'\ p
xdYy
Equipped with this noras cke A is a Banach space. The

k*ZOA

°
laplacian is a one to one mapping of C/) C into

2 Especially

on b g, 1) Chgns € A,

Such an a priori estimate is referred to *Schauder estimate’,

The aim of this section is the proof of corresponding estimates
with u replaced by 50: /p ‘ 4. being the Ritz approximation.

A first result im this direction is more or less a direct con-
sequence of Theorem 8 ¢ See the proof of Lemma 5 - the right

hand side of (3.38) is bounded by

-XtV/Z2 , .
(5.5) /Vc(/&)i‘ Ff /{4//“//4& .
By Lemma 6 we know
otd N -N/2
(547) //(f// £e 4 Au //V// '
[“ g *p/ <7y

Besides (3.37) ? is arditrary. Now we fix fs)'z { and
get
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”~”o

. lph = IR, //[m ¢ ¢l

This gives

°
Theorem 12; The Ritz operator is bounded as mapping of C 4iato

itself,

ke A

The spaces C ° are compactly embedded on C , There is

a general principle to bound the nora in Ck"\ of a linear
projection operator by means of the norm in C whioch we will

discuss now, The situation is that we have two Banach spaces

X, 0 X, (with norms lle 14} l ' //Z )vtth X, eompactly

embedded in X, . Further we have a collection {5{ /0 < (.‘ 1;

of subspaces of xz o Let approximation- and inverse-gquantities

r( and ’T( be introduced according to

(A) To any y & X, there is a 7 € 8, such that simulta-

by-%4 "G'( tyt,
(5¢9) //?//2_ < (4 //). lZ_

is valid with ¢ independent of h ,

1

(I) Por any Xé S, & Bernstein type inmequality holds

(5.10) //X//2 £ '7'{ //)’//1 .




Ve will 'say' the sollection {f ‘ ? fulfills the Al-gsondition
ir

(5.11) K ¢ = 4; /3 6'{ ,rf l 00 '
4
M_)_yz Under 'reasonable’ assusptions @ { will tend to
zero with h , For finite dimensional spaces sh the
quantities ’T‘ are finite since then any two normsas
are equivalent., Wit h > 0 resp. dim( § )=94© then ’T(
will also tend to infinity. The Al-condition just balances
this,

The mentioned principle is

Lemsa 13: Let X, , X, be as described sbove snd ‘f S, { a

gollection of subspaces ot X, o Further let f Pt I § ?

De a oollection of linear projection operators of X, emto 5,
which are uniformly bounded as mappings of X, into itsel?,

i. e

sy NTgl = Sup
4

yo

yith p, Aindependent of h . If ’r 5, { fulfills the AI-condition

Lhen f th as mapping: of X, 4nto itself is wniformly bounded
with

(5.13) Il?‘ /,Z = 4u/

y#0 Iy ty g/)‘-::/p’*“)ﬁ'
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Proof: Because of X, X, and 8§ € X, of sourse P, isa
limear projection of xz into itself, Let Yy ¢ xz be given
and 76 5, be chosen ascording to (5.9)e Then

saw h 7yl £ ”P(}'-7//L+ & byt,

ome GEE} OSSR U2 T W

Since Pﬁ}’ —? is an element of S, we may apply (5.10)
getting

”P‘ //L{T‘/[P‘)/-?// f! //)'//L i
{/f ),),//f//)/}/f'ﬂ-'//)r/ , ,

Now we use the inequality

(5.16) /)/ ‘)/// (/’/f///%//) //// ’//1

(5.15)

the proof of which - in order to give a selfcontained presen-

tation - is as follova Let 7 € 5( be arbitrary. Because

of }’7 } ve have
by-Feyly = Aiy-5 - Pe (51,
< (A hig ) //)—;//1 )

(5.17)

N
In (5.16) resp. (5.17) we may use on the right hand side , ""7
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Because of the assusbion (5.12) e got trom (5.1f)

(5.18) lly— 7'(yll4 < /4*/’4)’/}"}//7

(519) /I /%}JL ¢ /2f/04)'l'( /ly-7//4 + Z, /)'/;_ .
Finally using (5.9) we come to

(5.20) /IP{)'/’L‘Z {/2*/,)6?"}* ¢, ? /;)’//2 '

The nora of any projection operator is bounded from below

by 1 . Therefore ve can also bound
(5.21) /DZ € /3kf£4)/1

wvhich is more convenient,
Remark 10: Lemma 13 first was stated in Nitsche

It remains to prove

°
Lemna 14: Assume 5, C c* . Then with X, =C and X, - okl
o
3he finite element spaces S, fulfill the Al-oondition,

The consequence is the final result:
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Theorem 15: Assume S, ¢ c o Then the Rits operator is bounded

a&s mapping of Ck'A

into itself,

Proof of Lemma 14: The finite elements discussed in section 2
are only in C . We will give the vroof only for the case k=0 ,
The case k2 1 follows the same lines and is omitted here in
order to avoid the introduction of finite elements with higher
smoothnesa. We will show that the standard interpolation will

have the properties needed. Especially we will show

A -A
(5.22) c'fsc'ﬂ | TK!(K p

First we prove the stimate for T( o Similar to Lemma 3 we

have for X é 5(

L

/ -7
: - <o hyr
(5.23) //\7x/[ Znéﬂ/;‘ //V)(/L /o) X L

Now let X’)/é-é be given. In case of /“')’ /? {o
have trivially

-
(5.24) [xo-xn! ¢ 2/ '”(/l
lx—y/r\ )

[

In case of /r—,/(‘ we eome from

(5.25) /)(/x)—)'[y)/! /X‘)'///V)(//l,
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to ) _A
(1-x(y)1 » [yl ! /
[ X et (7 ) Iy 3

Ix—ylA
(5.26) ¢ 0 {-A ///(”

Now we turn over to the estimation of 6" o Referring for

details to Ciarlet s PPe there exista to any

A € ’_’( a set of points fa-'-' /:IJ-A /7:4,, ].)
[\7: oim /?

than m ) with the following properties:

-¢ the space of polynomials of degree less

(1) the conditions
0/7)‘): . bt 7} 4/\7
(5.27) /‘ 7 1

define uniquely a polynomial /) 4 of degree less
than = .

(11) 12 Ty = rjo coincide with the values in P é of a

3
function v continuous in -,z then the fumetion k

defined by

(5.28) Xig = /0

is continnous in —0- .




o - ——y

,7
Now let p be the restriction toa 4 & ‘, fixed of the

interpolation of a function V€[’o' A o For convenience
let ~ poasibly after a translation = the erigin coincide
with one of the corners of ) say P, o Then p has

the structure

- - IF)
(5.29) f/;(): 2 ,Yf(f /v) £

Ifl(‘}n
with
1 7,
S T Lo
and

J

(5.31) Ff /) =7’;Z; ff! V//;') .

-
The K ~-regularity of the subdivision /( leads to the

uniform boundedness of the (’% independent of h ,

Since the function v = 1 4is reproduced by the interpolation

we have

_Z . 4 T /{/’ﬂ
(5.32) Z fl;' f( /
J':-ﬂ ; { //0,1 ///3 7.

This gives on the one hand




41
(5.33) e, [v) = V//?, )
:::non the other hand for cf vith [f/2 7 o representa-
(5.34) ( [v) = 2 ;J;"’.Z/V//o- /- V//D ))
Jurt f

vith some (7 J’ '72 also wniformly bounded. With Y€ A4 we

{
X
(5.35) V/x)/D/'() v x)- V//D)— RIF! i

’/{I]/(an

get

For Vé ( Avo have

(5.36) /V/K)-Y/l%)/é [V]A {A

Because of /X/‘ { in 4 ve get with (5,34)

wn—

) )-r (7,
{4;‘%10,- {f/“( (“fﬂlx /V//Z} r/ﬂ)/
< a[v]A £/

This proves the first part of the approximation property

(5.9) with Cﬂ £c {’\ v

(5.37)

Jiw
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In erder to prove the second part we eonsider firstly twvo

points x, y contained in one of the simplices 4 .« Then

with J: /X—)//vo have 0/,({ and
- - 171
o pl)-ply) = LK 7/){ f_) f) 6.0

117 1<

Because of

(5.39) ,x?‘_)/,?/! Jd £ 'Fe
(5.403 /(%/ £ 0 {A[V]A

/
(5.41) //)/X}-/a//)/!(’a/{/) /[Z‘za/x‘// [V-Z\ ‘

In oase of = /X-)//.f K wut K€ 4y ana)y €4, witn
A" ;‘AL the segment connecting x and Yy intersects enly
a finite nusber of A & /7( because of the A -regularity.

By estimates similar to above we get for the interpoclation

X—_-_I |/ also then

: A
(5.42) /X/K)-X/).)/_ZG /X')'/ [V]/\ .




In case of q/= /"‘)’ />{ and Y £ a, .)/Edz we select
tvo corners ? P of A /4 « Then we have
X 1/ "2

7y
Y& -xl) = (¥ W=y (R) k(X (2)-4(3)
(5.43)
t AN (B x)

According to the oheice of /7-7 P ve have /X- e / £ {

and /), P ¢/ end there tore
/;(/” gl €e K0V
LX) -p(3 1€ ¢ £ V],»

Since } is the interpolation on v we have

(5.44)

[x(F)- X/P)/ [VOR)-x (3]
(5.45) 5 / [L/]

Ve have Q/Z f and //’> /(a/fZ((]J In thil way

also the second part of (5 9) is proven.




6. General Seocond Order Elliptic Equations

In sections 3 and 4 we presented the E”rtnnlysis of the Ritz
procedure in case of the Laplacian being the prototype of an
elliptic differential operator. The sgme results hold in the

general case with -4 replaced by

6.V  fu = - q l'é'a"l t /Z/&‘ . 2t

Remark 11: Throughout this section we adopt the summation
convention. Lower inizes indicate differentiation with

respect to the corresponding variable,
The assumptions regarding the coefficients are:

(a.1) Ellipticity: There is a constant ¢ > O such that for

a1 x € A maféﬁ'v
4 Yoz
(6.2) dlft';?( szf

holds true,

(a.2) Regularity: The coefficients lik ’ bi, and d fulPill
(6.3) ‘ﬂt é c2.1 , bi & c1.1 , d y-. c0.1 .
The letter q 4s used as an wpper bound of all the cor-

responding norms,
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Remark 12: Assumption (a.2) guarantees that the coefficients
8 defined by

of the formal adjoint operator A
* l'l - I' /V
6.4) 4 ¥ = -/ﬂ V)I.‘ // V)I. t

fulfills also (a.2).

The weak formulation of the boundary value problem

/Qk:"// /'ﬂ—d/
4 = 0 ’”P)ﬂ

(6.5)

is

o
holds for all V £ Hd

with a(e.,e) defined by
'¢ )
(6.7) d/’; h/)r “7((’ Y. V,f /’t’- Wr/wan/l'
/]

v
Correspondingly the (generalised) Rits approximation ?: »? % € S L

£

is characterised by the relatioa

o algn- () feres .
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i ' In this geaerality the funotion mu defined by (6.6) resp. 70

defined by (6.,8) may not exist or may not be unique, There=-

fore necessarily wve assume

(a.3) Existencet The problem (6.5) respe (6.6) possesses a

unique solution for £ being arbitrary.

By an argusent due to Schate there is a h°> 0 such
that for h $'h° the Ritz approximation 99 (6.8) is also

unique,.

Now we repeat the arguments of sections 3 and &4, The counter~

part of (3.8) in the form

2 ) 2
wn rpr'ccfaly i) ivh,, S

is a direct oonsequence of Ggrding'a inequality

[2
6100 @ (vv) ;//w//z— Alvk

4 1
for any Y ¢ /91 with ? >0’ /\  depending omly on Q9 Qe

Remark 13: The constants ¢ - see the beginning of section 2 -
' may depend in additiom on (v) the bounds q , q of the

assusptions (a.1) , (a,2)

Followizng the limes of section 3 we get from (6.9) also mow

the final estimate (3.22) of step 1.
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bs

The auxiliary function w = see (3.23) - is this time defined

by

Y

/0' W /_“-1$ﬂ /N /'Q'
0 oOn VL2 .

(6.11)

w

The estimates leading to (3.32) are derived in the same way

as before.

Since tbe shift theorems (4.1), (4.2) are valid with ~4 - i

the Laplacian = replaced by the operator A Lemma 9 is

valid with -4 replaced by A on the right hand sides,

As before it remains to find bounds of the terms in (4.13).

Following the lines of section 4 we consider the case of N = 3
dimensions firstly. In the general case the second assertion of

Lemma 10 has to be changed by the estimate

{
(6.12) llvvllpr vyl b S (7{I/7\//jA

The last term on the right hand side may be treated as was

, //Vll/bg,

done in the sequence (4,26) to (4.35), the details are omit-

ted. Ia this way the case of N = 3 dimensions is settled,

In accordance to (6.,12) the a priori estimates stated in
Corrollary 9 have to be modified:
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49

addition A?v £ AV . Then 1n weighted norms for fg arbitrary

and N =2 dimensions

|
|
' Corrollary 9%t Let Ve // nk Y resp. V€ // ’Hg and in
l
|

2
(6,13) )V Y'ID .ZC{///?V///"‘ ,?V”/»' A ///ff 3 \

. 3
(6.14) ||y yﬁ/b !({//Pﬂv/; fl/r’r‘/?”r //Vv/?“r //Vé/”z)?,

i Having these shift theorems the final proof of Lemma 7 in
ease of a general second order elliptic differential equation

‘ follows the lines of section 4.

Ve will not give all the details in order to prove Lemma 9A

but concentrate ourselves on the essential point, What is

—mmaad s

needed are the counterparts of (4,38) resp. (4.40) and of

(4o45)e By (4,38) the square sum of the second derivatives

is bounded by the square of the Laplacian module lower opder
terms and a divergence term of products of first and second

derivatives. In order to get the counterparts we make use of

Lemma 16: Let ( ok be a positive definite andrisymmetric

matrix aceording $o (6.2) and let ( b, ) be u second order

tensor. Then

615)  £° Z {
£ o1

IN
N
N
S\
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5o
o
Proof: Let {jl /o/—"f,...’/'lfbo an orthonormal set of
eigen-vectors ef the matrix ( ik ) and { ), '(f be the
corresponding set ef eigen-values, i, e.
’'f .o v,
A = 7... .
(6416) 2" "0 = A 24 //n 7., N

The orthogonglity conditions
of I
6. . -
(6.17) ; 3/ =
give rise to
o o /
(6.18) “Z Z’l. 2 ‘ - ) I'l

“
with J / ‘ denoting the Kronecker aymbol
$

Remark 14: In the following the summation convention is not

to be applied with respect to greek letters.

The matrix ( aik ) admits the representation

L€ 'Y o 5 &
(60 9) a = Z A g
! v Z: 2 £ .
Then we get
YERY 5
e A, |

w2 Z 4P 0t d 12t 4 4,

/ ~up ) 2
.-z/S V9P )P




!
!
I
I
|
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with

4
(6.21) v i = j:{ 2/: {z‘é
Because of ) “3 f we get therefore

ey > £ Z 167 ¢

27 IS

.y jz,z” . 2,2, 4 .

With the help of (6.18) we come from the last inequality to
(6615) s

(6.,22)

Now we apply (6.,15) with b,y = ¥4 o Then ve got

(6.23) ,f//V v// 4 “/‘(3//( n“,V’ ) o,

S

Besides of lower order terms the right hand side differs

(A
from // /.7y // by the weighted integral of the difference

d“(“y. Y ~/ﬂ[(l,’-*)/?r5k,.s ):

(6.24) = /7“‘4“ ) - /” & NY' Vrs )"
- /(l‘f V*J){" V'o yt.s '
A, rs
/ﬂ & )i y'. Vr.s .

I ——
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This leads to an imequality of the structure

2
2yt < FRVY, +
fﬂvv//, '

2
(6.25) {jp v [W/,Hr/?v’/léh-f /l‘/&:’)?fh

§/u/°d“‘ “v {‘, N, = Vpy My f'(S

As is to be oxpoctod in view of (4.,40) the boundary integral

gives after evaluation of the sums
(6.26) éluf/ﬁ” it 'Z)Z)A /V-}/’/)J

By the way (k.kk) was derived in the present case we come to

(6.13).

The proof o. (6.14) follovs the same lines, Of courae the
foraulae become somehovw lengthy but there are no additional

diffiounlties.
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ANALYSIS OF SOME CONTACT PROBLEMS IN NONLINEAR ELASTICITY

J.T. ODEN
Texas Institute for Computational Mechanics

The University of Texas

1. INTRODUCTION

In this communication, I shall outline some results recently obtained
on the analysis of certain classes of contact problems in <] asticity as
well as some work in progress on this subject. Complete results can be
found in some forthcoming papers (e.g., [1,2]).

The Signorini problem with Coulomb friction is characterized by the
variational inequality

a(u,v-u) + J(v,u) - J(u,u) Z_f(v—u) ?

(1.1)

¥yve K.
where

alu,v) = 4 EBygppty Ve 9% |
% ‘

J(u,v) = vFlon(u)\ |vT\ ds N (1.2)
/

e ; ﬁ

f(v) = fev dx + tev ds i

2 FF )
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Here the usual notations of elasticity theory are employed:

Eijke

are the elasticities, components of admissible displacements,

"k Vk
vF the coefficient of friction, uk,E = auk/BxQ, f the body forces, and t

the surface tractions. The stress tensor has components oij(f) = Eijkluk,l

and the normal stress component on the boundary is On(U) = Oij(u)ninj
~ i

n, being the components of a unit normal to I . In (1.2), Vo denotes

the tangential components of v on FC . The body Qc:.RN is open and

bounded with smooth boundary I and I 1is composed of three parts: FD

on which displacements are prescribed, T on which forces are prescribed,

and the candidate contact area FC . Here K 1is a subset of a Hilbert

space V,

<
[1]

{v ¢ (Hl(Q)N | v =0 a.e. on TD}
(1.3)

~
1]

{v-uv | ven < s on FC ‘
- J

In (1.3), v°n denotes the normal trace of v, on I' (ven = Y(vi)ni

n being a unit outward normal to I , v*n € HI/Z(FC)) and s 1is the

"initial gap" between the body and the foundation. The space V is

equipped with the norm,

1/2

Il = 4] v g o .0

and the bilinear form a: VxV - IR is symmetric, V-elliptic, and continuous;
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i.e. constants M,m > O exist such that

2
ac,v) <M [Lull lvlly s atew 2 {lvily 0.5

for all u,v € V.

For a more elaborate description of conventions and notations for
these classes of problems, see Kikuchi and Oden [3]. My aim here is to
outline some results on an analysis of (1.1) and certain alternative formula-

tions of contact problems.

2. SPECIAL CASES

Minimizers of the energy functional
F: K+ R ; F(v) = %a(v,v) - f(v) - J(v,v) (2.1)

are also solutions of (1.1) The functional F is non~convex and non-differentiable
on K . In general, no existence theory is available for this class of problems
and it is felt by some mechanicians that Coulomb's law is not a good model for
general frictional phenomena. Because of these mathematical and physical
difficulties, alternative formulations have been sought. These take the form

of special cases of (1.1) which are more mathematically tractable and on completely
different formulations based on alternatives to Coulomb's law.

As special cases of (1.1), we mention:

I. The Signorini Problem - in which friction is ignored. Then

we have the problem,




a(u,v-u) > f(v-u) ¥ ve K (2.2)

II. The Friction Problem with Prescribed Normal Stress. Here

we set \on(u)\ =g>0, gc¢ Lm(FC) and consider the variational inequality,
a(u,v-u) + j(v) - j(u) i_?(v—u) ¥ v ¢ K (2.3)
where
j(v) = Jr g{le ds (2.4)
C

and ?(v) = f(v) + J an-n ds, Fn being a prescribed normal force.

Tr

TII. Perturbed Problems. Since j of (2.4) is non-differentiable,

we introduce

(2.5)

(2.6)

(2.7)




.
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We then consider the perturbed problem

au_,v) + {Dj (u),v ) =f(v) ¥ vev (2.8)

It is easily shown that problems (2.1), (2.4), and (2.8) have
unique solutions. In the case of (2.8) , a solution U exists for all

¢ >D and, if u is the solution of (2.4), then

’

I u-u )y <€ Ve (2.9)

3. FINITE ELEMENT APPROXIMATIONS

1f {vh} is a family of finite-dimensional subspaces of V
constructed using standard conforming piecewise polynomial approxima-
tions of v , and endowed with the usual interpolation properties for

quasi~uniform mesh refinements, and if the solution to (2.3) is in

(HZ(Q))N {1V , then one can show that

I w, = Il < cp/e (3.1)

and
hu - u fl] <Chh (3.2)

. €
where C1 and C2 are independent of € and h and w and Y

are solutions of the discrete problems,




RSNV

) : r e ! -
.l(}xl\.vl\) \ljt‘(uh).vh l(vh) ¥ v, « V \

: WV, - + ) - Y ds
‘(uh i uh) J ‘L'(lvh,‘| iuh,.l o
1. | 1
[
S~ P y O
- kVh uh) v \h' H\
We have solved (3.3) , for a nunber ot ditftferent choices of data,

polvaomial approximations V., and computed rates of

h

consistent with (3.1 and (3.2).

4. NON-LOCAL_ FRICTION

As an alternative to Coulomb's law, we consider

IUTKU)I(x\ . vFS[o“(u)](x).Ab = 0 7
l\\’l‘(\l) [ (\) - \“"S[U“(u)](x) -y jx S 0 os.t.
Uy, - -Xo,l,(u) , X € l(‘.
3 - -1/2 .
where S s a completely continuous map tfrom H (IC) into

such that 1 > 0=380) >~ 0 For {nstance, S could be taken

extension of the map,

3(\‘“(\0) - J ‘“‘p(lx‘."l) On(\l) (y) dv

X

where

convergeace are

the non-local law,

(4.1)

2.5
L (lc)

as an




w, € Cy (D), w20, w(r) =0 forr>p

+ .
Then p € R is a material property of the contact surfaces.

The variational principle for the nonlocal problem assumes

the form,

u € K: au,v-u) + jr v S(on(u)) (]le - |uT| ds (4.2)

C

> f(v-u) ¥ veEK

We summarize some results on this problem due to Duvant [4];
see also Demkowicz and Oden [5]:

1. V1e¢ LZ(Q), T >0, E} a unique u. € V such that

a(uT,v—uT) + J T(IVT| - [uT |) ds 3‘f(v—uT) v € K
FC T

2. The correspondence B: LZ(FC) + V given by

B(D) = u_ : l

is continuous, and the normal stress

cn(uT) = on(B(T))

-1/2

(T

is well defined in H c




352

3. The map T: LZ(PC) + LZ(TC) defined by the composition

T = VSo(-0_)oB
n

is weakly sequentially continuous and has at least one fixed point.
4. Let y* > 0, y* LZ(FC) be a fixed point of T . The. it

is trivial to show that the function
u* = B(U)*)
is, in fact a solution to (4.2).

5. ALGORITHM

The above steps lead to an obvious algorithm for the numerical
solution of (4.2):

1. Solve (a finite element approximation) of Signorini's problem

without friction for the contact pressure On(uh) .

2. Set Tél) = -On(uh) and solve (3.3)l for uél)( uﬁ(l)) for
the choice g = Tél) .

3. Compute TéZ)’

(2) _ (1)
Ty Ty D)

where Th is a finite element approximation of T.
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4. Continue this process until || Téi) - Téi-l) Il

is less than a preassigned tolerance.

We are coding this algorithm at present and should have results

soon since steps 1 and 2 can be handled using existing codes.
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Qur purpose in this paper is to present some results obtained
in Brenner and Thomée [7], [8], and Brenner, Crouzeix, and Thomée

[5) for time discretization of the initial value problem

(1) rrli Au + f(t) for t 2 0, u(0) = v,

in a Banach space X where A 1is a closed linear operator which
generates a strongly continuous semigroup E(t) = etA on X.

In Section 1, which is a summary of [7], we are concerned
with the homogeneocus equation and study approximations of the semi-
group at t = nk of the form EE = r(kA)" where r is an A-
acceptable rational approximation of e®. In Section 2 we examine
some consequences for time discretization of equations which are
already discretized with respect to a space variable; the material
in this section is not contained in the above references. 1In
Section 3, which corresponds to [8], we discuss, with applications

to hyperbolic problems in mind, some modifications in the case

that A generates a group on X. In Section 4, based on [5],

finally, we attend to the full inhomogeneous equation in (1).
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1. Time discretization of the homogeneous equation.

Let X be a Banach épace with norm l*]l. Consider the

initial value problem

du

(1.1) T Au for t =20, u(0) = v,

which we assume correctly posed in the sense that the closed linear

operator A generates a strongly continucus semigroup E(t) = etA
on X with, for some CO and w 2 0,

wt
(1.2) JECE) ] = COe for t = 0.

We shall be interested in approximating the solution
u(t) = E(t)v of (1.1) by a single step discrete method so that
with k the time step, wu(t) is approximated at t = nk by

us defined recursively by
u = E un = r(kA)un, n=20,1,..., u. = Vv,

where 1r(z) 1is a rational function approximating the exponential

ez. We have then

u = E'v = rxA) for n 2 0,
n k

and we shall therefore be concerned with the stability and con-

vergence properties of the operator Ek.

We shall assume below, for Ek to be well defined for any
operator A of the type considered, that r(z) has no poles in
Re z £ 0. More precisely, we shall assume that r is A-

acceptable, or
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(1) lr(z)| =1 for Re z < 0,

(ii) r(z) = e? + 0(z) as z - 0.

Our first aim is to present the following result which was

conjectured by R. Hersh and T. Kato [13].

Theorem 1.1. Under the above assumptions there are constants
C1 and x depending only on the rational function r such that

for any A with (1.2),

n,ooos o nl/2eth

kw - Gy for t = nk 2 0.

P>

It is possible to show that this result is best possible.
For exaimple, with X = L (R) and A = d/dx we have (E(t)v)(x) =
vix+t) and I'E(t)! = 1. TFor the Crank-Nicolson scheme defined

by r(z) = (l1+ %z)/(l— %z) one may then show that

L

IEDN = ent’? with ¢ > 0.

Under additional hypotheses on r, however, it is possible
to show improvements of the above result. We shall assume that
the A-acceptable function r satisfies the following more pre-

cise condition, namelv
(%) [r(ig)! <1 for 0 # & € R, and |r(=)| < 1;

there exist positive integers p,q with p even,

p 2q+ 1 and a positive number y such that for § € R,

r(if) = exp(if+u(£)) with &) = 0(eI*Yy as € + 0




Re ¥(£) = - ygP for Jg| = 1.

Note that if r approximates e’ to order q so that

r(z) = e+ O(zq+l) = exp(z+0(zq+l)) as z -+ 0,

then the above order estimate for (£) near zero holds. Then

also, by analyticity, Re y¢(f) = yogp (1+0o(1)) as ¢ =+ 0 for

some p 2q + 1. Assuming that |r(ig)| <1 for 0 # £ ¢ R we

conclude that Yo © 0 and that p 1is even 3o that the above

estimate for Re y(g) holds for a suitable y. We may refer to

p as the order of dissipation.

Our improvement of Theorem 1.1 is then the following.

Theorem 1.2. For each A-acceptable function r satisfying

(*) there are constants C1 and such that for each A

with (1.1),

n %(l- +1) wxt
IEL I < CyCyn P e for t = nk2 0.
Note in particular that if (*) hold: Ith = -~ q + 1 we

have stability, independently of X and A. Tor instance, for

the backward Euler method we have

r(z) = 1/(l-z) = e’ + 0(22) as z * 0,
so that q = 1 and
2 2
Ir(ie) |2 = 1/(1+rd = 8O o £ s,
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so that Re () = - % 52(l+0(l)) for small g, and p = 2 =
q + 1.

As further examples, let us consider more generally the

Z

Padé approximants sz = Pg/Qj of e with degree P, = % and
degree Qj = j, for which
rjl(Z) = Pg(z)/Qj(z) = &% 4+ O(z]+2+l) as 2z = 0,

so that q = j + ¢. It is known (cf. [12] and [18]) that rjl

is A-acceptable if and only if 0 = j - ¢ = 2. TFor k = j we

have |rjj(i5){ = 1 and we conclude from Theorem 1.1 for
E. = r..(kA) (if w = 0)
k 33
.n 1/2
IEZI < C,Cqn for n > 0.
For 2 = 3 -1 and J - 2 we may use Theorem 1.2 to show

stronger results. In fact, it is shown in [1] and [12] that in

these cases

23

Co2 2 .
|Qj(1£)| = IPQ(lE)[ + qug with a3 > 0,

which implies that (%) holds with p = 2j. We conclude in
particular stability for ¢ = j - 1, and for ® = j - 2 we have
(if w = 0)

nl/(uj)

anu = CC for n > 0.

071

In applications it is sometimes convenient to use approxi-
mants with denominators of the form (l—yz)]. Rational functions

of this type are the so-called restricted Padé approximants

s "l',T\




yer

R.(z) = (—l):](l—\(z)-j % ng-m)(Y_l)(Yz)m,
] o I

where Lj denotes the Laguerre polynomial of degree j. With
suitable choice of Yy, these approximations are of order J + 1,
are A-acceptable for j = 1,2,3, and 5 (cf. [15], [18], and
IRj(w)[ <1 for 3 = 2,3, and 5. For j = 2, (%) is satis-
fied with q = 3, p =14, and for 3 = 3 with q = 4, p = 6.
In particular, Ek = RQ(kA) (the Calahan scheme) is stable, and
the norm of E; = R3(kA)n may grow as nl/12.

We shall briefly indicate the technique of proof by sketching
the proof of Theorem 1.1 for w = 0. The main idea is to use the

possibility of representing certain functions of A as integrals

of the form

¢
(1.3) (= eau(ty,
R
+
where 1 1is a bounded measure. Once this 1s done we may conclude

from (1.2) that

IECarl = ¢ [ dlul(t),

so that in order to estimate the norm it remains tobound the
total variation of the measure u.

Let M be the set of bounded measures uy on R with
ftull = fR dlpl(t) and let M denote the set of Fourier trans-
forms u(g) = J eitg dp(t) of uy € M with norm m(ﬁ) = full.

R

Further, let M denote the set of Laplace transforms

u(z) = I ethu(t) of u €M with supp p ¢ R . From a
R
+
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lemma by Paley and Wiener (cf. [17] p. 10-11) it follows that if

f is bounded and analytic for Re z < 0 and if f(ig) = p ¢ M
then f € M and f(z) = U(z) for Re z < 0. For such a function
f we then have the representation (1.3) as is shown in Hille-
Phillips [1u].

It follows in particular from the above that
EZ = Ik = ¢ omirCike)™),

and since it is easy to see that an affine transformation does

not change m(f) we have
IEQI = Com(r(ied™).

in order to estimate the latter quantity we need the
following inequality by Carlson [10]: 1f f,f' ¢ LZ(R)

~

then f{ € Ll(R) and

~ 12y y1/2
ET = 2 2l el ey

~

Since f 1is the inverse Fourier transform of f we conclude
- 1,z /2,172
m(£) = =€l < /7HfH2 (S P

In order to show our desired estimates we shall not apply
this inequality directly to r(i&)n. Instead, we first introduce
a partition of unity: Let ¢ ¢ C;(R) with supp ¢<{&; % <

[r] < 2} and

5 oe273¢, = 1 for |g| > 2.
j=1




Set
¢j<g) = ¢(2'jg) for j > 0,
0,(8) = 1- ] s27 ).
j=1
Then with r_ = r(e),
m(e(ie)™) < nel) + [ onCe (r(ie) D)),
j=0

The first term is directly seen to be bounded by 1 and it

remains to estimate the general term in the sum. Since

Irig) - r_| < TT%ET and |r(if)] = 1,
we have
le(ied)™ - vl] = ¢ nin(1, Ir?gy)
and hence

372 ~3/2

H¢j(r(ig)n - oY = ¢ minC2l 7 n273 0.
Similarly
d . C
|7 r(ig)]| = ———
de L
implies
g Cos (p(i)™ = w2 - e Fenam
and hence
/2 =i/

m(¢j(r(ia)n - r:)) < Cn 2

It follows that




r(ig)™) = 1 + cnt

/2°z°

which completes the proof.
We shall now consider the convergence of u = r(kA)"v = EEV.
to u(t) = E(t)v as k = t/n tends to zero, in the same general

circumstances as above. We have

Theorem 1.3. For each A-acceptable rational approximation
r(z) of e? of order q there are constants Cl and x such

that for any A satisfying (1.2),

+
HEQV - E(t)v| = ¢ CltkqewKtHAq+lvH for t = nk, v € p(AY l).

0

Notice in particular that there is no loss of accuracy in
the case of non-stabiiity.

The proof of this result consists in noting that with

- -q-1 }1‘ tz
fkn(Z) z (r(kz) e )
we have
v - ECovl = ety - e
- | qtl . q+l
‘fkn(A)A vil = Com(fkn(lg))HA v,
an.l then estimatiny m(thr(ii)) by our above methods.
rTi

For less regulqar dati we have the following




Theorem 1.4. Under the assumptions of Theorem 1.3 there are

constants C1 and x such that for anv A with (1.2), and for

s = 0,...,9 + 1, s ¥ %(q+l),

S—S(S)ke(s)eth

HEQV - E(Ov = c 0t 1aSvil for t = nk, v € D(A%),

where
. 9 4 s__1
B(s) S G+T min(a0, 1 2).
If in addition r satisfies (*) the result holds with B8(s)

replaced by

H

. 1 1 1
B, (s) S E%I + mln(O,(s—-§(q+1))(ari_.g))_

Note in particular that in the stable case of (%) with
p = q+ 1 we have B8,(s) = s q/{q*1). TFor s = 0 wWe recognize
the growth factor of Theorems 1.1 and 1.2.

The above technique for estimating m(r(if)")  was applied

in the analysis of difference schemes in [6§] (cf. also [91).

Remark. For the case that A gpenerates a holomorphic semigroup,
sharper results than the above can be obtained (cf. the dis-

cussion in [71).
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2. Totally discrete schemes,

In application to the numerical solution of initial~boundary
value problems for partial differential equations one has to con-
sider the combined effect of discretization in space and time.
Our above convergence results will therefore, in general, have to
be applied to an approximating semidiscrete problem

duh
(2.1) 35 A, u for t 2 0, uh(O) = v

depending on the small positive parameter h.

We shall consider below the application of the smooth data
result of Theorem 1.3 in two such situations. In the first case,
which might be encountered when one is concerned with a pure
initial-value problem and the differential operator A 1is approx-
imated by a finite differende operator, Ag+lv will be bounded
for smooth v and the analysis 1is straight-forward. In the
;econd ¢ase, which 1s typical in the finite element situation,
the boundedness of Ag+lv cannot be taken for granted, and we
will have to proceed Jdifferently.

In both cases we shall assume that the general assumptions
5f Section 1 are satistied. In particular, we assume that (1.2)

notds, for simplicity with @ = 0, and that r(z) 1is an A-

%4

2cceptable rational approximation of e which is accurate of

order q,.




The finite difference type case.

We assume here that we are given an approximation Ah : X+ X
of A depending on the small positive parameter h, and sub-

spaces, Y, Z of X with Y 0 Z dense in X such that
(a) HAhv - Avif - ethHY Vv € Y,
(b) E(t)Y ¢ Y and
HE(t)vHY < C2HVHY Yyv € Y,
() Al el < coivily s

f tA
(d) Ah generates a bounded semigroup Eh(t) = e " on X with

HEh(t)H =C, for t20.

With €y tending to zero with h, we may think of these as
consistency and stability conditions for the semidiscrete problem
(2.1). We can now infer results about the completely discrete

solution defined by
- - n 13 =
ukh(t) = Ekhv =z r(kAh) v for t nk.

Theorem 2.1. Under the present assumptions we have for t = nk,

no o - q
HLkh\ E(t)vi = CzCutethHY + C0C1C3tk Hv”z.

E Proof. We have for the error between the semidiscrete and con-

tinuous problems

t
Eh(t)v - E(t)v = Jo Eh(t—s)(Ah-A)E(s)v ds,

so that for v €Y, by (d), (a), and (b),
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?m the other hand, for the error between the completely dis-

crete and semidiscrete solutions, we have by Theorem 1.3 and (c),
iRy - Qpaqtl q
LEkhv Eh(t)vH = CoCytk “Ah vl = coclc3tk HVHZ.

Together these estimates show our result.
Note that in the present situation our error estimate is of
order 0(eh+kq) for v sufficiently smooth, even without assuming

the discrete operator Ekh to be stable in X.

The finite element type case.

Here we shall assume that we are given a family of subspaces

X of X, depending on the small positive parameter h, and for

h
each h a projection operator Ph: X - Xh and a semigroup
Eh(t) on X which is known to approximate E(t) = etA in the

. + .
sense that with Y a subspace of X such that D(AY l) Ny is

dense in X, we have
HLh(t)th - E(t)v]] = eh(l+yt)|}vllY yv € Y.

Note in particular that for t = 0 this shows that Xh approxi-

mates X, or more precisely,

Hth-vH = ehnv”Y Yv € Y.

Wwith A~ the generator of Eh(t) our assumptions mean that

”b(f) = Eh(t)vh is the solution of the "semi-discrete" problem

T
.

.1y, which is now posed in Ko and that with vy T th,
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Huh(t) - u(v) = eh(l+Yt)||vllY Vv € Y.

Defining in this case the completely discrete solution at

- . - .
t = nk by ukh(t) = Ekhvh where Ekh = r(kAh) and Vh th
we have now
Theorem 2.2. Under the present assumptions we have for t = nk,

n Qa9+l qtl

- +
HEthhv E(t)v] = En(pn pn_lyt)HvJY-*COCltk | A vl ¥v € D(A yny,
N ¢

where o = m(r(1£)7).

Proof. Consider the representation

f tz

n -
J r(kz) = JR e ” du, (1).
+
Then
n n _ n _ n - -
Ethhv - Ekv = r(kAh) th r(kA) v JR (Eh(t)Ph E(t))vdukn(t),
+

and hence for v € Y,

f
n n .
HEthhv - Eka < ChHVHY(IR dlukhl+y JR td!uknl).

+ +
Here
- > n -
f dluknl = m(r(ig)) = o,
R,

and since
-1
[ etztdu (t) = il(r(kz)n) = nkr(kz)" ’

R kn dz

we have
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! a
\ - ' . n"“l -
} & IR td|ukn(t)| = nkm(r(ig) ) = tpn—l’
{ 7 +
so that
¢
n n -
”Ekh P,v - E vl s eh(pn+pn_lYt)HVHY-

Since by Theorem 1.3,

IEfv - ECov] = C CltquAq+lvH,

0

the proof is complete.

. For example, for »r corresponding to the backward Euler or
Calahan methods, pn is bounded and the convergence rate is then
' 0(ch+kq) as k,h > 0. For the Crank-Nicolson method, the above
’ result only shows a convergence rate of O(Ehk-l/2+'kq) as
k,h » 0 since in this case GRS 0(nl/2) z O(k-l/z) for fixed

l t.

We shall see now, however, that even when pn is unbounded

it is always possible to attain a convergence rate of O(eh+ k9)

' by a suitable choice of discrete initial-values, provided the
given initial data are sufficiently regular. For this purpose
l we first define another proijection Qh: X = Xh by
A, =S -— —q—l - q+l
Qh (1 Ah) Ph(I A) .

Lemma 2.1. With 7 = {v;v ¢ D(Aq+l), (I-A)q+l v € Y} we have

TGRS SITR CchH(I—A)q+lvH v € Z.

Y
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Proof. From

- € dt

(1-zy-9"1 . [Tt (z-Dt
JO q!

we conclude

oo - _A y—4a-1 e (T_Ay~Q-1qr_ayatl
q, - I [(I-A) P, = (I-A) 1(I-4)
fo .q
= L et (0P, - B (1-m 3T at,
g 9 h
and hence for v € 7,
1¢Q, ~D)vif = {m Ty oat - e (1-m 3Ly
h T @ € 0 N Vily »

which shows the lemma.

We are now ready to prove

Theorem 2.3. Under the present assumptions, and with Ph

uniformly bounded for small h and Eh(t) for small h and

t > 0, we have for t = nk and v € 2,

E th - E(t)v]

n
kh

= ce, (-3, ol ¢ cadia-n T,
Proof. We have by Theorem 1.3,

n - qp.qtl
”Ekh th - Eh(t)thH 3 COCltk ”Ah thH

1,9+l

- q _ - _aAyati < q _ayat*l
CoCqtk H(Ah(I Ah) ) Ph(I A) vil £ Ctk|J(I-A) vil .

where we have used in the last step the boundedness of Ph and of

. -1 .
Ah(l~Ah) the latter of which follows from the boundedness of Eh(t)and
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-1 -1
A, (I-AL) = -1+ (I-AD) S J

Further, using the boundedness of Eh(t) once more, and our

approximation assumptions and Lemma 2.1,
HEh(t)th - E(t)v] = HEh(t)(Qh—Ph)vH + HEh(t)th - E(t)v|
< C{H(Qh—I)vH + H(Ph—I)vH} + eh(l+yt)HvHY

= ¢ e -m3 )+ (eyo) vy ),

which comple.es the proof.
In the case that Ekh is stable, which can happen in
specific cases even with Py unbounded, we may of course also

choose other discrete initial data, so that for instance

(N _ q
_ = + ]
“Ekh th E(t)v] O(eh ki) vyv € Z

For then

I|E (Ph—Qh)vH < C(HPh—I)vH + H(Qh—I)vH)

n
<h

S Coe Uity + 1(T-0) T g ).



3. Discretization of reversable initial-value problems.

In Section 1 we studied a correctly posed initial-value

problem

du

== > - vy
it Au for t 2 0, wu(0) v,

which was assumed correctly posed in the sense that A generates

a strongly continuous semigroup E(t). We then considered dis-
crete approximations o this problem at t = nk of the form
- N - N n
u, = Evoo= r(kA) v,

where 1r(z) 1is a rational function with I|r(z)] =1 for
Re z = 0.

When applied to hyperbolic problems, for instance to a first

order symmetric hvperbolic system in RO, d > 2, which corres-
d

ponds to A = ) Aj 3/8x] (with Aﬁ hermitian matrices) the
371 |

assumptions made in Section 1 are not entirely natural. On one

hand, considered as an operator in L say, this A has its

2’
spectrum on the imaginary axis and it should therefore suffice

to assume |r(z)| <=1 on Re z = 0. On the other hand, although
in this particular instance A generates not only a semigroup but

a group of operators on L our results do not permit estimates

2
in Lp for p # 2, since Zj Aj 3/3x3 does not generate a

semigroup on such spaces unless the Aj commute (ecf. [31). It

is knnwn, however, (cf. {4]), that the problem is now well-posed

from wE into Lp if s > dl% - él. '




Our purpose in this section is to extend the results of
Section 1 to a situation which takes into account the above

remar}s. It then appedars natural to assume that X, X and Xl

O)
are Banach spaces, with X 0 Xl dense in Xl’ and that A

generates a strongly continuocus group of operators E(t) = etA

on X with E(t)(X(le) ¢ XO and such that

(1) HE(t)vllX < Cewlt‘HvHX for t € R, Vv € X;

.. . . wlt| :
(11) “L(t)VHXO < Coe l|v||Xl for t € R,

(In the above discussion we would set X = L2,
We shall first concider the general case of a rational

function 1r mapping the imaginary axis into the unit disc. Such
a funoticn, satisfving in addition r(z) = e + o(z) as z + 0
is reterred to as I-acceptable in [16]. We shall then consider
an I-acceptable function r satisfying the more precise
assumption (#) ot section 1.

We then have the following stability result.

Theorem 3.1. Let 1 be a rational function such that

|r(ig)| < 1 tfor £ ¢ R. Then there are constants Cl’ X,

and k such that for A with L(t) = etA satisfying (i)

~
\

and (ii), 4nd Lk = r{kFA),

1772,
e Lwnt S
CO lt n V\Y

vl
Xy Xy

If i a'dition Saticticos (#) we have

1 q+l
A h




The proofs of these results use the techniques of Section

1. In the present case, if |r(z)] =1 for Re z = 0, it is

possible to factor r into n(z) = r_(z)r ,(2) with |r(z)] =1
for Re z = 0 and |r,(z)] = 1 for Rez 20 (or |r (-2)] =1
for Re z £ 0) and we may write r(A) = r (A)r (-(-A)). Noting

that now both A and -A generate bounded semigroups (if w = 0),
one may again show a representation, now with integration over all

of R, of the form

f
rGem)t =1 D(t)du, (1),
J nk
R
with Unk the convolution of the measures associated with the
factors r_ ‘and r, of r and the estimate
Hr(kA)anY © C, f dlu (o five, = c0m<r(ig>“)uv||y ,
'0 jR "1 \l
Fromuwhicl the analysis proceeds as hefore.

One may also prove the following convergence result.

Theorem 3.2. For each I-accep.able rational approximation r

of ez of order q¢ there are constants Cl, x, and kO’ such i
that for A with B(t) = etA gatisfying (i) and (ii), and for f
s = 0s1l,...,q%l, 5 # %(q+l), we have for v € D(A®) with
ASV € Xla
s-8(s s t

IEM - B(t)vl, = c.c 37808 BIS) oxtyyS oy ror t o= nk, k = kg,

k KO 01 Xl 0
where

a(sy = = 3+ omin(u, oo - Ly,
N Togtl o > qtl ?




If in addition 1 satisfiese (%) the result helds with B(s)

replaced by

> 2 - IS W 1 I8} _-l— + —l —l
B, (3) 5 min (3,(s 2(q l))(q+1 p)).
Note that B8(g+l) = g so that the convergence rate is
alwavs of optimal order ok for appropriately regular initial

data.

As oan example we rinally consider the following special
approximation ot e which was proposed by Baker and Bramble
[27 ant ‘urther stuadied in Nérsett and Wanner [16], namely, for

m 1 positive inteper

2
(2 = 1’!;1(2>/<1_Y~22)”‘, y > 0,
with
2T 5 I 2,m-4% 2m .
Py Voo § ™ (=Y ) = yoon .(Y)Z2m-].
i - LY v 2¢-3)1! . e mj
=t L=l %03+ ] =0

This Fuarnoction o as acouriate ot order m and  I-acceptable for
suitable choloe of Y. 4t least for y = ym, the largest zero

SR r
A t

(y). Tue yroont of this latter fact (Theorem 15 of [161)

1o
is easilvy moditi- o 1o wi-ld that for such Yy, 1 satisfies (%)

o

with o= Jnoov Dy 7 2m. Thau, 18y = Yoroowe have for A

)
n ont o b(mEry,
P Ce 9 ! '”‘IY , t = nk >0, k< ko,
v
dared the oo tinate o0 Trearess 300 holds with

mt ]

. 1
smihy
L (3m+1§f2’m+?5)'




4. Discretizaticn of the innomesencen: o 1altion.

Let again

(4.1) e =

a bounded semnigroup L(t) =

X be a Banach o.sue ano assume that A generates

»t[\ L N : 3 “+
(&4 (O8] X Coneider now the P/I‘Oblem

where & = i(t). Let r, ST Le rational functions which

(w.;) qll+]_ - I
wher: * - Nk

n

Feog o~ 0, Al Jolaine an arproximate sclution of

Vv anyg oo IS U
D R T S G W I (R U S BT SNV S S QU D R G
n L& e n i k™n K n’

: m .. . . .
FETCC N I G T ire distincer numbers which for sim-

nlicity we assume 1 (0,17,

p 1Y for all

=N

sulutions <

that 1s. 11 fice

Assuming the!

to analyuee the

W ohoorprve

gy that the olheme thin incroduce.s 19 of order

foand v which result in o sutfolently reyular

(L.1) 2nc with A arbltrarv,

ptl

ult ) - ERU(tn) - R(Qkf)(tn) = 0(k Yy as k » (O,

selutioen of (4.1) satisfier (4.7) with an errcor

that the global crror e = ult )= v satisfies
- T K +
e = N [¢] .
ntl Ko n
hk i otable in N we shali theretore be able
crror provided we et robLuposal the Trro-

sriate reprosentation of oo

i

Hoting Ut
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(Lo
U(tn+l) = EQOult ) + k Jo L(k(*-s))f(tn+ks)ds
= E(k)u(tn) + k(ka)(tn),
we may write
(4.3) pn(k;A) = (E(k)-Ek)u(tn) + k((Ik-Qk)f)(tn).

In order to determine conditions on the rational functions
in (4.2) for the scheme to be of order p and to find a con-
venient representation for P, Wwe shall develop Pr in Taylor
series with respect to k. since u and f are tied together
by (4.1) we shall want to express Ph in terms of only one of
them. We shall prefer here to use the data of (4.1) rather than
its solution.

We begin by considering the case that (4.1) is a scalar
ordinary differential equation, with A denoting multiplication
by a complex number 2z with Rez < 0. We have then the follow-

ing result.

Lemma 4.1. With Pn defined by (4.3) we have

P-1 t z ' 3
. - vt ey e () ptl_'n .
p, (532) = k ng Ny R ET e )+ ke T o(kaIv gy jzl Rpy,5ks2)
where
v u<p+l)(0) = Pty ; zp-zf(l)(O),
(p+l) 220
o(z) = z'(p+l)(ez-r(z)),
L 3 m
-(2+1) 1
I AR AR R I S L AR

3=0




and where

tn (t_ -s)z

R, y(ksz) = kp+1o(kz){-f(p)(0)+J e M _1yeP*D) (548},

0

1 Ks p-1
. - (1-s)kz (ks~T) (p)
Rn,Q(k,z) z k!oe ([0 - f (tn+r)dT)ds,
m ij (kt.-1)P71 (p)
Ry 3tks2) =k jzl qj(kz)fo sooyT— £ (ftmar.

For the proof one notes that in the present situation,

E(k) -~ E = X% - r(kz) = o(kz)kP*1zP*1
tz t (t-s)
u(t) = e "v + J e s Zf(s)ds,
0

so that for the first term in pn(k;z),

t
t z n (t_-s)z
(E(k)-Ek)u(tn)=kp+10(kz){e n zp+lv+l e N zp+1f(s)ds}.
0

Integration by parts p + 1 times in the last integral, Taylor

expansions of ka and Qkf with respect to k, and simple

calculations then complete the proof.

We can now immediately show the necessity of the conditions

of the next lemma.




Lemma 4.2. Necessary and sufficient for the scheme (4.2) to be

of order p is that as z + 0,

(a) r(z) = e? + 0(zp+l)

and |
- p-2 o
(b) YQ(Z) = 0(z ) for x = 0,...,p - 1.

In fact, if (4.2) is of order p we find first by taking
f = 0 that o(z) has to be bounded for small 2z, which shows
(a), and then, since for a sufficiently smooth f, |
Rn,j(k;Z) = 0(kp+l) for 3 = 1,2,3 and small k, and since
the f(z)(tn) are arbitrary, that (b) holds.

We now turn to the sufficiency of the conditions of Lemma
4.2. Recall that M is the set of Laplace-transforms of bounded

measures on R and that for A the generator of a bounded

+ b
semigroup E(t) on X and g = § € &, g(A) may be represented
as :

g(a) = f E(t)du(t),
R+

with

lgtkad) = c [ dlutt)| = cymlglig)) if JE(OI = Cg.
R, .

Any rational function, bounded for Rez = 0, belongs to

-(p_l)vl €M so

M. In particular, if (b) holds we have Y, = z

that we may write for f(l)(tn) € D(Ap—l),
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o)y, G E el = kP, AP P e o) = ek aP e ey

Since under our assumptions also o ¢ M we have

HE(tn)o(kA)v CHV(

el = Seyls

and

t
n
IR, 10 = P e P o+ [ e olast,
? 0

and similarly

t

n+l
20sml IR, S0cml = o [ T 1P s las.

t
n

IR,

We may thus write

™~

p-1
. - 1.ptl > p-2 (L) .
p (k;A) = k {2§0y£<kA)A £777 0t JHE(t do(kA)vV Rn,j(k,A),

}+
+ .
(ptl) 5

=1

where under the appropriate regularity assumptions, each of the
. + . . s

terms is O(kP 1) for small k. This shows the sufficiency of

our conditions and thus completes the proof of Lemma 4.2.

The above estimates (4.4) for Yn(kA)f(z)

(t) require that
(L) p-L - . .

f (t) € D(A ) for % = 0,...,p = 1. 1In applications to

partial differential equations this generally demands not only

(z)(t) but also that these functions satisfy

smoothness of f
certain boundary conditions which are not necessary in existence
and regularity results for (4.1) and thus not natural to impose

for t > 0. These requirements, howevar, disappear if the

e ....—-—-—-——-———-A
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coefficients Yy vanish, which will happen for some methods.
To include this possibility in our considerations we say that the
scheme (4.2) is strictly accurate of order Pp =P if (a) holds

together with

YQ(Z) = 0 for L = Os.eespgy=1l. il

The case Py = P is, of course, of particular interest in that
the above restrictions then all disappear.
We may now state our first global error estimate which is

a simple consequence of the above considerations.

Theorem 4.1. Assume that the scheme (4.2) is stable in X,

accurate of order p, and strictly accurate of order Pq -

Then
p-1
luct d-u = okPle. I sup AP (e)
L=p s=t
0 n
vt r e Py + [ 7 e s P (s)ds)
nlV(p+1d t JO n=S s)ds}.

The term ”v(p+1)" may be replaced by ”U(kA)V(p+1)"-
Observe again that if the scheme is strictly of order p
then the error is of optimal order p without any regularity

f(l)(t) € D(Ap-l) for t > 0. In our

conditions of the type
next result we shall see that this conclusion holds even if the
scheme is strictly accurate only of order p - 1, if we make

the additional assumption
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(
Y _l.z)

(4.5) x(z) = Lo is bounded for Rez = 0.
r(z)-1

Since r(z) =1 + z + o(z) for smali 2z, it follows easily

that (4.5) holds if r(ig) # 1 for C # £ ¢ R, and if

(r(z2)-1)"% = 0(|z|) and a;(2) = 0¢|z]"1) for large z.

Theorem 4.2. Assume that the scheme (4.2) is stable in X,

accurate of order p, strictly accurate of order p - 1,

that (4.5) holds. Then

A

P
”u(tn)—un" = Ck {tnnv(p+l

t
+ I n (tn—s)uf(p+1)(s)Uds}.

0

The term "v(p+l)” may be replaced by Ho(kA)v(p+l)".
In the proof of this theorem one notes that the error

now contains the additional term

n-1 .
- p n-1-j (p-1)
P k jzo Ey yp_l(kA)f (tj).
R )

Setting Sy 5 ° ) E, one finds by partial summation

3 2:0
n-1 n-1-j_(p-1). (p-1)
J:O k’n_l

n-1
(p-1) (p-1)
f - .
+ Z Si,n-1-3 "1 (t;)-f (ts.

JHIEP oy 1 P oy

e

and

n

pegps
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If (4.5) holds we have ¥ € M and

n-1 - J
P = kPX(kA){(Eﬁ-I)f(P'l)(O) + ¥ (! J-I)f £P)(syast,
n j=1 ty_q

from which the result easily follows.

We shall briefly consider application to the case when dis-
cretization also takes place in the space X as would be the
case when finite element approximations are used in X. Thus

let X be a family of subspaces of ¥X and assume that for each

h
h we are given a projection Ph : X+ Xh with

leyvll = clivil.

Assume also that we are given a uniformly bounded family of

semigroups Eh(t) on Xh which approximates E(t) in the

sense that (cf. Section 2)
IE, (OPLv - BVl = e, Qvtdivlly.

With A the generator of Eh(t) we shall now study the

h
semidiscrete problem in Sh defined by

du
ho
gt - Ap

3 hYh + th for t = 0, uh(O) = th,

and its discretization with respect to time,

m
r(kA u, -+ Kk jzl qj(kAh)th(tn+ij)

Yh,n+1 .

= Euy Yhon + k(Qthhf)(tn)'
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We shall consider the error between the solution of the
semidiscrete and completely discrete sciutions. {Combined with
an e or estimate for the semidiscrete problem this would show
a complete error bound. We shall only present the discretized
version of Theorem 4.2; obviously an analogue of Theorem 4.1 can
be similarly obtained. We denote by Ye the interpolation space
Y, = (X’Y)e,m between our basic space X and its subspace Y.

e
We have then:

Theorem L4.3. In the present situation, assume that the scheme

(4.2) is accurate of order p, strictly accurate of order

p - 1, that (4.5) holds, and let Ekh be uniformly stable in

Xh. Then

Huh(tn)-uh,nﬂ

< kP (p)
= CLE vl + ot E I £ (O)HYl_

£=0 L/p
tn

o 1eP Doy + [ (t - P (s))as
0

+ Ce UV, + HAvly T @ oy,
2=0 1-2/p

To sketch the proof, we note that application of Theorem

1.3 at once implies

- < P
Huh(tn) uh,n” = Ck {tnMO(kAh)vh,(p+1)"

t
s e £ P Doy + e p £P o) ( Nt -s)|IP, £ P (s)as)
n"h 0 n h

l--uL---llll--_-.-.---.l-lI.-Hll.lll...-.----—-—-.. e




Lemma 4.3. Let m < p. Then the approximation scheme (4.2)
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where

ptl ®)

= p-L
Vh,(p+1) h Ay P f

v h h

) 0.

h

2=0

Since Ph is bounded, the terms containing f are bounded as
stated. In order to estimate the first term on the right it

suffices to bound

s = kp{c(kAh)v -g (kKA)v

h,(p+1) (p+1)}’

or, with oj(z) = z90(2),

)

S = op(kAh)Ahvh - op(kA)Av + Lo

L (L)
k (cp—l(kAh)Ph'op-E(kA))f (0).
This is done using a technique similar to the one used in Section
2.

We shall make some brief comments on how to construct
schemes which satisfy our above assumptions. We first have

the following alternative conditions for accuracy of order p.

is of order p if and only if

(a) r(z) = e” + 0(zp+l) as z =+ 0,

()" v, (z) = 0zP™*) as 2+ 0, for 2= 0,...,m- 1,

and there are constants b .,bm such that

100

1 m
() [ pltddt =}
0 521

bj@(Tj) Yo € np-l'
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‘ m
Note in particular by applying (¢) *o o¢(t) = T (T—Tj)2
j=1
that the number m of gquadrature peints cannot be chosen

smaller than p/2. On the other hand, given r(z) and {Tj}T

such that (a) and (c) hold, we may determine the qj(z) such

that (b)' is satisfied, for instance by solving the system
yz(z) = 0 for & = 0,...,m -1,
which may be written

3 j
r% q;(2) = 2lo(n(z)- ] ED, = 0,....m-l.

(b)"
At 320 3!

e~ 3

j=1

Here the right hand side is a rational function which is regular
for Rez =0 by (a), and the matrix of the system is of Vander-~
monde's type and thus nonsingular. If 2m 2 p we may always
choose the Tj to be the Gauss poinis of order m to satisfy
(c); if 2m = p this is the only possible choice.

It is now natural to ask if the conditions (b)" and (c)
will in fact imply strict accuracy of order higher than m.

In this regard we have the following:

Lemma 4.4, Let m < p and assume that (b)" and (c¢) hold. Then
the scheme (4.2) is accurate of order p, strictly of order

m+ 1 if and only if

zm—gm(l)(l)
(d) r(z) =

m
where w(t) = TT (t-rj).
zm-ﬁw(l)(o) j=1

P »
ne-1gineyg
o

o
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Let now m = 2 and p = 3 and choose the gquadrature rule
1 2
[ e(t)dt = ¢(§) Vo ¢ H2.
0

The equations for ay are then
%(r(z)—l),

L(r(z)-1-2),
Z

which gives the scheme

1,73 2 . V3, . 1 2,2
(I-(G+IkA) u g = (T-kA-E(/B3+ Dk ATu

V3
T

1 V3 . 3 1
+ k(E'ﬁkA)f(‘_n) + k (E-(-2—+

2
)kA)f(tn+§k).

Again (4.5) holds and Theorems 4.2 and 4.3 apply.




(9]
[£]
o
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Lars B. Wahlbin, Cornell University

First Lecture: Quasi-optimality of the H] projection into finite

element spaces: a brief survey with emphasis on the maximum norm.

Let R be a bounded domain in RV, N > 2, with 28R suffi-

cently smooth. The case of R polygonal or polyhedral will be

commented on later. Let u denote a given function on R.

With 0 < h < 1/2 a parameter, let Rh = Ugi?)r ?

domains partitioned into finite elements 1 = r?, and assume for

be mesh-

simplicity that Rh C R. Isoparametric modifications may be used

at the boundary. We assume a quasi-uniform family of partitions;

the case of a non-quasi-uniform family will be discussed later.
Demand furthermore that aRh is a uniformly Lipschitz family of

curves with dist (x,aRh) < Chz.

Xe 3R
Let Sh’ 0 <h < 1/2, be finite dimensional subspaces of
wl(Rh) consisting of functions x that vanish on aRh, and are such
that xlT > Cz(?). Such functions can, after extension by zero, be
regarded as belonging to w;(R). Typically, {xIT} includes all

polynomials of degree r-1, r > 2 (or isoparametric modificatiors

thereof).

Define u, = Phu € Sh as the H] projection of wu, i.e.,

Lecture in the Department of Mathematics at University of Mqry]and,
College Park, during their Special Year in Numerical Analysis,
1980-81.
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-Ux = [ Wu-vy
"

[ Vu
Ry

h

(1)

Iih) 5
= (- [ uay + ¢ h u gﬁ), for all x e Sh'

i=1 h
Ti ag

The question we consider is whether, giving a Banach space

B, the following estimate holds,

(2) 1P ully < CCh) llulls

with C(h) independent of wu. If (2) holds it follows, upon writing

u-Pru = u—x-Ph(u—x) for x € Sho that

(3) lu-Poullg < (1C(h))min Ju-xllz -
xeSh

If C(h) = 0(1) we call P a "quasi-optimal" approximation, or

hu

P "stable". If C(h) = CEO(h'E) for any ¢ > 0, we say that P u

h
is "almost quasi-optimal", or that Ph is "almost stable"”.

1. B = H(R).

(To be exact, consider the quasi-norm ||flly =|Vf]| .) Here
we have stability with C(h) = 1, and the factor (1+C(h)) 1in (3)
can be replaced by 1. Similarly, we have stability in H'(R).

These results are trivial,

2. B = Lz(R).
If the functions in Sh are merely continuous on Rh but not

continuously differentiable, we cannot in general expect stability or

|

et e . d
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almost stability. A simple counterexample (in one dimension) is
given in [2, p.58].
If Sh §:C](R), then (for u continuous) the boundary terms

in the definition of (1) drop out so that

i= h
h T4

I§h)
IR Vupvx = - ) [ oubx , for all x e S,

(-]

Hence (by density) the definition of the H] projection makes sense
for u e L2(R). Correspondingly it was shown in [1, Theorem 6.3.8]
< H2(R), then P

that if S is stable in LZ(R)'

h h
For Co elements, two lines of investigation have been proposed
in order to remedy the situation. In one dimension, it is well known

that (for u continuous),
lu-u || < Cmin |ju-x]|
WLy (R) £ & 028, ML (R)

X = u at meshpoints

“In [3] this result was extended to more general projections. In a

N L

reiated idea, [2], the Lp,-norm is replaced by a certain mesh dependent

norm. In one dimension,

Il = EIP s 3 I 1 cp < e J
L R x: meshpoint
p J
Then P in one dimension is stable in these norms. In more than ]

h :
- l

one dimension, one knows stability for p = 2. 1




3. 8= L(R,).

Note that the definition (1) makes sense for u continuous.
Correspondingly one has, [12], that Py is stable for r > 3, and
almost stable (with C(h) = C 2n 1/h) for r = 2.

A self-contained proof of this when N = 2 and piecewise linear

functions are employed will be given in my second lecture.

4. B = ul(Rr).

Assume here that R, =R . Then P, is stable for r > 2.
For r > 3, cf. [4], [5], [6], [14], and for r = 2, see [7].

We now turn to listing some results in the maximum norm when

[+
3R is not smooth. The cases of H]

and L are fairly simple and

2
left to the audience. Except partially for iv. below, the case of

w] is also left out. We start with two results for quasi-uniform

[+ ]

meshes.

(i) Polygonal domain in R2, quasi-uniform mesh, Rh = R.

It is proved in [8] that Py is stable in L, for r > 3, and
almost stable in L for r = 2,

oo

3

(ii) Convex polyhedral domain in R™, quasi-uniform mesh, Rh = R.

By a recent result, [13], it is known that Ph is almost stable in

L for r > 2.

oo

We proceed to display what little is known in the maximum norm

in the case of non-quasi-uniform meshes. For the case of L2 or

!

, ¢f. [1].
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(iii) Polygonal domain in Rz, "orderly" refined mesh, Rh = R.

In [10] a guideline for constructing refined meshes is given. For
the type of meshes considered there it is possible to show, [13],
that Ph ijs almost stable.

(iv) Convex polygonal domain in R?, "wilder" mesh, Rh = R.

The result described, which is not a true "stability" result, will
appear in [13]. The kind of less orderly meshes considered may be

of interest in connection with automatic, adaptive mesh-refinements.
To describe typical conditions on the mesh family, assume for simpli-

city that the elements are triangular. Assume either

A: Piecewise linear functions, maximum angle condition, and
Y .
(4) hmin > hmax for some fixed vy > 1.

Or assume
B: Piecewise polynomials of degree r > 2, minimum angle condition,
and (4)

In (4), hmin denotes the minimal side of any triangle in the
mesh, and h the maximal side of any triangle.

max
If either A or B holds, then, [13], for any ¢ > O,

1-¢
|| u-ulf < C.h min [ju-xli .
h''L _(R) € max X€5h Nl(R)

We conclude this lecture by mentioning a local estimate in the

maximum norm:
Let B(d) and B(2d) be concentric balls in RN centered at

a point in R. Assume that with a positive constant c, d > Chloc

D o /TR ———m—
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where h denotes a local meshsize prevailipg, in a quasi-uniform

loc
fashion, in B(2d)f7Rh. If B(2d) intersects the boundary 3R ,

assume that B{2d) N 3R 1is a smooth curve. Then, [9],
Nu-uplle_(s(a)ar,)

< c(en(1/hy o ) "min Jlu=x |
loc ves, L,(B(2d)/R,)

~-N/2~s
+ Cd [lu~u | .
"H7S (B(2d)NR, )

Here s > -1, and ¥ =0 for r >3, r=1 for r = 2.

Thus, the local error in the finite element solution is esti-
mated by two terms: The first term involves the local approxi-
mability of u. The second term takes global effects into account;
however, it measures these effects in an arbitrarily "weak" way.

For an application of this result to calculation of stress

intensity factors, see [11].
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Lars B. Wahlibin, Cornell University

Second Lecture: The quasi-optimality in the maximum norm of the

o
H] projection into piecewise linear functions in the plane: a

complete proof.

Orientation:

The ﬁl projection Phu of a function u into piecewise
linear functions Sh on a quasi-uniform family of triangulations
of sizes h of a basic convex bounded dcmain R in R2 with smooth
boundary satisfies

”U - Phu HLoo(Rh) f_ C SLn(]/h) gggh ”L’ - X ”Lm(Rh)-

Here ang‘R is the meshdomain, and the constant C is independent
of bh and u.

The purpose of the present lecture is to give a self-contained
proof of the result above. Note in particular that R h # R and
that this fact is not assumed away; a certain amount of technical

detail ensues.

The Set-up:

Let R be a bounded convex domain in Rz, with smooth boundary

R. Let 0 < h < 1/2 denote a parameter, and

R, = U ¢ h
i=]

Lecture in the Department of Mathematics at University of Maryland,
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l a family of edge-to-edge triangulations "of R", with RhQR .

Assume that the family of triangulations is quasi-uniform, i.e.,

h

for
that there exist positive constants ¢ and C so that,\ei any

angle in T?,

0<c ie?, ch < diameter (T?)i Ch.

Assume also that the boundary nodes of aRh are placed on 3R.

Then we have

() the number of boundary nodes is < Ch'],

(2) dist (x,aRh) < Ch2, for some constant C.
xedR
: Let Sh be the space of continuous piecewise linear functions
i
on Rh, which furthermore vanish on BRn. After extension by zero,
LS

such functions can be considered as being in wl( R).

o
Let u be a given function on R , and define its H] projection
= Phu € Sh via

)
) u —%ﬁ—, for all  xeS,.

1

Here Green's formula and the fact that Ay 0 on each triangle

were used.

Note that u,_ is well defined for any function u which

h

is continuous onRk,.

The Main Result:

Under the hypotheses above, there exists a constant ¢(

independent of u and h such that

< C en (1/h) min jlu-x|| L
h

| -
llU Uh1‘Lm(Rh) YES m(Rh)
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Remark:

The main result is a special case of a more general result
by A.H. Schatz and myself, see Lecture 1, point 3., in particular.
In the case under consideration the proof is much simpler than in
the general case, and, it is hoped, the main ideas can be discernad
uncluttered by much technical detail. However, some trouble is
unavoidable since Rhfk .
The Proof:

Writing u - u, = (u-x)- Ph(u~ x ) for XeSh we see that it

suffices to show
(4) C en(1/h)
H uh“ Lco(Rh) < n Hu “Lm(Rh)
Let X0 be such that
Iuh(XO)l = Huh” Lco(Rh)'

Denote by T a triangle such that Xg € T. If T is a boundary
triangle we define 1' by "quartering" the triangle; this is
described most conveniently by a figure of the two cases that

can occur. (t' is shadowed.)

or
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[f Tt 1is not at the boundary, let 1'= t. We collect here
two facts that will be used later.

(1) There is a positive constant «c¢' such that
(5) dist (r',BRh) > c'h.

This is easily seen from the geometry of the situation.

(i) There exists a constant C such that for any x ¢ Sh’

(6) Dl oy € enT I

The proof of this is the same as the usual proof of an inverse
property. (Equivalence of any norms on a space of polynomials of

fixed degree, and scaling)

Comment.

The introduction of <t' is made for our proof of Lemma 1

beiow.

We now have, by (6),
-1
]uh(xo)li Ch ]‘uhHLz(Tl)

and it thus remains to show

L]_l HUHHLZ(T') _<_ Ch &n (1/h) HU HLm(Rh)

A duality argument is next in store. We have

(8) I!Uh]lL (TI) = sSup [ Uh ¢
2 ®<CE(T') T




Regard ¢ as zero outside +t'. For each such fixed +, let v

be the s30lution of

(9) ~ Av = ¢ in R, v =0 on IR,

We note that then by elliptic regularity,

V10) Hvl 2 < C.
H®(R)
Further,
(11) vix) = ,fIGx(y)d:(y)dy
T
where
C(l+ | xn x=yll ), 1+] =0,
(12) 0% 6%(y)l < |
Coix-ylTh s 1,2
Now with Vi T th the H] projection of v,
Jupe = - [fug dvos [Yu o owvo= [ Tu vy
T Rh Rh Rh

= é Vu.Vvp = ] § o usv, = )0
h i i 1e

©
Here the definition of the H]projection and Green's formula were
used, and also the fact that Avh = 0 over each element. Note
that we may assume that usC1(f), by a density argument. The first

sum on the right of (13) simplifies to

[+

\J

u
R n
h

o S




(14) u:h\:\{@ s 'y U

Convention.

For the remainder of the proof we use the convention that

We next estimate the two terms in (14).

For I.,:. We have

P dv
R T 1

We use the following lemma, postponing its proof for the moment.

LEMMA 1.

§ vy Ch.
ARh
We thus obtain

(15) 10 O e

i
For 1,: We have

Tyl Vv

(R

T an

On the unit triangle T  with vertices (0,0), (1,0), {(0,1)
it is easily tound, by use of cutoft functions and integration
of derivatives 1n directions locally non-tangential to the
boundary, that

6 ¢ ()if £ hofll ).
T L, (1 Ly (D




Fz—v—-——'—'—"—"

Therefore, by scaling and by the quasi-uniformity of the mesh

family, since second derivatives of Vi vanish,
. -1 v
¢ 13 (vio-v)l < C(h™ "} v(v-v,_ )| hy +max || D*v]| Chy).
e e AR R Ly Gy
Hence,

i u b (max D™ +h T v(v-v

© )=

We now use another lemma, the proof of which will also be postponed.

max |l D"v!] | Ch en(1/h).
:2 -

](R) -
. Using this,

PI,0 - C (h <n(1/h) +h™ v (v-v

!
? IILU,

Upon combining this estimate and (15) into (14), and (8), we

find that in order to prove (7), it remains to show that

2

in{1/h),

(16) (RITES I

where Vv = ¢ in R, v =0 on 4R, ¢ Co (¢, el = 1,
0 ' L2

(0f course, it also remains to verify Lemmas 1 and 2.)
Comment.

The inequality (16) can be viewed as an w} estimate for a
smoothed out and scaled Green's function. For higher order
subspaces, one also need to estimate v-vp in the piecewise N?-norm;
in our particular case this reduced to Lemma 2.

We next need to introduce some notation. Set




A, = | 2 7Y
j X
j = A, (N h
d. = 279
J
— C —_-*x
We have Rh = U
J=0
for convenience. Set

where with

; the

J

lower

index is assumed to be zero

Cy a positive constant (more about it in a moment)

F is defined by the requirement

Note that

Al = A. ALUA
J J-1 v \)L j

Assum
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F = ol/h)l Let

e that

<

A i
!

[

¥

P

J

1s so larqge

diSt(A“

Then with a4 positive constant

(17) dist( g,;)

Comment.

We shall

The role of havin

The other

is to have

‘boundary pieces ot

e

J=0,1,...

C, Tarqge

a cortail

J' )

¢l

Cy

1S

GURLURY Ly = ASNR L0 = AYOR, .

] L

that with a positive constant ¢,

b i )

dual:

ch.

on cccasion, Lemma 3 et seq., need to enlarge C,.

one reason is to satisfy {(17).

n separation between the circular

and

Basically we need that for
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Q. u{rr.‘ which intersect 0 }cq!,
J i i=

L U{Th which intersect .} g€a"
J 1 J J

It is realized that this will be fulfilled if C, is large enough.
A similar state of affairs occurs in the proof of Lemma 3.

The following figire, which is not to scale, depicts the situa-

tion.




Set

and recall that we are hunting for (16). We have

s

I i | :H‘Q’e 1

(o]
Here by Cauchy's inequality, by a well-known result for the H]

projection, and by (10),

,
o
=

~N
<

e

r‘e” . " Ch;leH

j=0 )
Next, again by Cauchy's inequality,

(19) Vet - - Cd. jvell \
We shali use the following local H]-estimate; as usual, we wait

a while before giving the proof.

LEMMA 3.
Assune that ¢, is large encugh. There exists a constant

C such that the following holds: For j=0,1,...,},

. . i - ]
e Comin{ Hv(v-a)1] vy s ve !
Lz‘ j) "Sh Lz(nj) J LZ(
scdll e I (o)
J 2 (2}




Taking x in Lemma 3 to be the intergolant of v, and remembering
that dj_:ch, we obtain from (19) and elementary approximation

theory, and using also the well known result that

2 2
el - Ch™ vl < Ch® (by (10)),
| LZ(R) ) HZ(R) -
’l
N el < Cd 7 (v-x)]] vy Cilv-xll '
+C ilel
L, (R)
CaS T () eyt Gy ey el
J A J o J 2
< cdlh Iy ) v Che
- Way)

(For the last step, cf. the comment after (17).)

By the Green's function representation (11), and using

(12) and (17),

v, < max  Sup DG " (y)! 'e(y)ldy
WE (i) o< oxor v X
Y J — J
-2 f 1 -2
'<‘ C J ] - dJ
Therefore,
‘ 2
S
‘ellL1(32‘)i Ch
J

Inserting this into (13), and recalling that } ~ tn(1/h),

1 . 2

‘Tel‘L] Ch en(1/h).

This is the desired inequality (16).

b
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To complete the proof of our main result it remains now to

verify Lemmas 1,2 and 3.

Proof of Lemma 1.

Recall that -Av=¢ in R, v =0 on 3R, where
¢€C3<T')’ ”CI’” |_2=] .

We first consider

0 fvvl= §lav] = sup § av
R 3R 3n In] o1 oR 3n T -
N _(3R)
neC”(3R)

For each fixed n, let w denote the harmonic extension of n into

R. Then Green's second formula and Cauchy's inequality give

3 1
fo St v s [ oevs o il Wil |
T o

A

Ch,

where the maximum principle was used in the last step.

Hence,

(20) ¢ jvvl < Ch.
iR
We need to prove the corresponding estimate with 3R replaced
by Ry Let N Uij, describing the linear segments Sj

making up ‘Ry. Consider § |Dv| where D 1is a generic first
S.

J
derivative.

Introduce (by rotation and translation) a new coordinate system

locally so that



X A

i

R

\ J

'/—‘\——-——) x

o) Sj Ch 1
Then Lj’ the corresponding piece of #R, is given by
X, = b(x]), 0 < X3 < Ch

We have
(xq)
(21) (Dv)(xy,0) = (Dv)(xy.b(xq)) - f (?%_ Dv) (xy,x,)dx,
0 2

Here, by (11) and (12), and Cauchy's inequality,

; | o )
ey (O 0x) T= 1 55 0,87 () v (y)dy |
¢ Seem—e [l Cnllall €
B dist(T',SJ) 1! - 2 2 h
dist(t' ,sj)2

in the last step we used (5). Hence from (21), since by (2) we have

| b(x)) < Ch,

[ (Dv) (x4,0)] < | (Dv) (x,b(xy) )| + Ch.

Integrating over Sj we obtain (since b(x]) is smooth),




et

bl11

§lovi < C $lov| + ch?

Sj Lj

Summing over j gives, by (1) and (20),

§ [Vv] §>CQ lvvl + C h? < Ch.

JRh th

This proves the Lemma. (Actually, the difference in the two integrals

over R and  ORp is O(hz).)

Proof of Lemme 2.
With D2 a generic second derivative, we estimate

D2v . Let B denote a disc around x, of size Ch and
L (R) 0

such that

dist(R\B, t')> ch

for some positive c¢. We have

i DzviiL

[

= é!Dzvl +  [0%y]

L (R)
R\ B

Here, by Cauchy's inequality and (10),

2 . ‘
:D .- Ch} < Ch.
é o vl He(R) ~

o]

For x- ~\B, the Green's function representation (11) and (12)

qive, together with Cauchy's inequality,




By the manner in which the radius of B was chosen,

{102y} < Ch [ dist(x,t') %dx< Ch an(1/h).
R\B o\B

Hence,

' p%y ]

“L](K) Ch 9,”(]/[])‘

This completes the proof of the lemma.

Proof of Lemma 3.

We start by noting a preliminary result, often referred to
as "superapproximation”. Let w be a smooth function with
lw] < T, Tet x ¢ Sh, and let I« Sh be the interpolant of 'y
Then for any triangle <1, it is well known that

(im2( - < Ch max |
Hi(t)™ bol=2 Ly(7)

If o = upt g, then since x is linear,

.1 Y s X
D (wly) = (0%E) w o+ 2((0 ') b Z (D Z)u D Ny
Consequentily,
(22) Hwl -1

< Ch w | Iy
gy S el Dl

(o]

LEUIIN EE e




et now J be fixed for the rest of our argument, and

set A=A ,a'=A'.; w=.., 2'=u!, d=d.. Introduce the auxiliary domnains
J J J J J
s fe S0 D) < xexgl < d(0F E)Y L K = 2,3,
‘ 2 2k’ — 0 k i L
and
k

Ak N Rh , so that D €& x“4£ 3335 M:Z,C_ o

(onsider first functions WE Sh which are "discrete harmonic" in
2

, 1.e.. such that

(23) " wo= 0, for v oS, with support in

h

We snall show that then
(24) Moy 2 LR,

Comment ,

For our proof to work, we need that d 1is so large that every triangle

intersects at most one of the circular boundary pieces of  Q, k, k = 2,5.4, and

;

‘. Thi. can be arranged by taking C, large enough. (cf. the comment after (17).)

Terrodeeoa osmooth cut-off function  w(x), x ERZ, 0 < w <1, such that

1 on A, supp » € A4

and suct T

(25) < cd ,e=0,1,2.




Such a fuction is easily constructed by change of variables in one valid

for d-=1
+vcall our notational convention following (14)),
{26) . W Lz(“‘) . W -
Here |
W © - f?'w-'w
hH L2 R h )1
h
= W { th) -2 J w, e ( i TI* F2
I i\
§ h
With T r~» dinterpolant of .2wh {1 is supported in Q3 for C,
Targe). " "ty the discrete harmonicity of W, oowe have by (22) and
(75}
ryo= [ vw e i -1)
| E h h
Cllovw, | 3, h (d—z“ W, i 3+ d-ll‘ wIw, 1)
R L () S, (e7) | h' L,

Usinag now ttn well known inverse property that

htoe c . » we have uypon squaring and summing
o L, (1)

over 21 «lerents 1 intersecting
. | O
| y3) < Clwy LZ(JZ) (C, large enough).
Fyurthe o |
Cd™ ([t w, ] 4
2\ _<__ H'\*'\ thEL2 H whH LZ(Q )

. . . . 4 3 2
folle tina the above estimates, since v g ii"gf ,




o2 -2 2 -1 .
b Wit S cd ||Whlk (93) + Cd llwhllL (QZ)HWVWh” L
2 2 2 2
-2 2 1 2
< Cd !swh|k2(92) + 2 vawh”Lz

whereupon, by (26), the desired estimate (24) obtains.

We proceed in pursuit of Lemma 3. We now employ a cut-off

function n(x) such that

i
n -1 on AZ, supp n & A', ;
i
i
and satisfying the estimate of (25) . Then i
ey I\ o .
i Vh;! LZ(SZ) < e' (Ph(nv))HLz + HV (Ph(nv) Vh)HLZ(Q)

< [1\7 (ﬂV)H L2 + HV(Ph(nV)'Vh)“LZ(Q) ’

since the projection obviously is stable in the energy (quasi) norm

over Rh. Hence,

—~——
.

(27) I‘}‘-V. o / }) _:_ C:'VHLZ(Ql) + Cd-]ilV”LZ(Q|)+l'"'v(Ph(er>-vh) L

s}

For the third term on the right of (27), since n=1 on A",

W) -V is discrete harmonic on Qz. Therefore from (24) ,

]Y7(Ph(nv)—vh)H‘L2(g) < Cd~ "ph(nv)—vhl!Lz(Qz)

1.
2, + Cd llv—vhlle(QZ)

Combining this with (27) , using also the triangle inequality,




41¢

el gy < VI gyt IRl y = CRvi ey + CdT VI (g
el ) < I (a) nllLy(0) L,(e") Lp(2)
(28) cd M ledl (g
2
-1
+ Cd™ |l P (nv)-nv]] L, (")

To handle the last term on the right we use a duality

argument:
1P (v)= vl | gy= sup J(P (nv)-nv)e
2 peCo(ah)
{29)
ol .
“‘v | Lz_]

For each such ¢, let ¢y be the solution of

—Ap=¢ in R, ¢ =0 on aR.

Then since Ph(nv)=0 on aRh,Green's formula gives

(30)  f(P, (nv)- nv)e = [V(P,(nv)- nv). Wy - ¢ nv g% = 11
R, oRy

9

For 1,: By well known properties,
= L [ v) - ) v =P = £V(HV)-V (v -Ppu )|
h

Rh

() ClIv (nv) ] L, " HuWIHZ(R)

| A

| A

-1

DR, intersects

Note that the term enters only if h

We have




(35)

(36)

417

I 1,] < |nv] vyl
20 = Lz(aRh) Lz(anh)

Since aRh is uniformly Lipschitz (easily checked),

1/2
(HVILZ(SRh) i C(HHVHLZ an”H])
(32)
Further,
‘ 1/2

vy < C(|{vw i ) .
(33) e,y = Sl
where

fiy < C.

(34) I HH2 <

For the other factor in (33), we have. taking the norm over the

whole of R,

Nl 2 = v Y Y
I {LZ(R) e G e

We next want to show that

Cdifvi

Since SRy and supp{n) intersect we have the following picture,
after straightening the boundary 3R in a neighborhood, assumed

greater than d.
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R,
IR

Here the domain S 1is a square of side length < Cd that contains
Q'. By Poincares inequality then, since ¢y vanishes on dR, we obtain

”Q:HLZ(S) h Cd HVW”LZ(S) and thus (36 ).

There are only finitely many d (=dj) not covered by the above
and for these we obtain (36) from Poincare's inequality over the
whole of R (possibly increasing the constant).

From (35) and (36), I]vaLZ < Cd, and reporting this and
(34) into (33), we get

1/2
70| < ¢
LZ(aRh)

Sy SO

taamg Sennsudl Semmed _  foand | augns | Pt
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Using this and (32),

|12| i C( dIIVV|lL2(Q.) + llvlle(Q')) .

By this and (31) in (30) and (29), since d > ch,

H Ph(rIV)' nv ”LZ(Q') < C(dHVV“LZ(Q') + ”V“LZ(QI))

whereupon inserting into (28 ), we obtain

-1

-1
||v(v-vh)|IL2(Q) < C(“VVHLZ(Q') td ”V”LZ(Q')+ d ||"“’h”L2(Q-))°

This estimate depends only on the fact that vh=th. Therefore

we may write v-vh=v—x—Ph(v-x) for any x in Sh and obtain

o (v-vi) I, () <C min( [[v(v-x) 1 (a)? d-‘l!v-xHL (Q.))
2 2 2

XESh

-1

This proves the lemma, and ends the lecture.




Lars B. Wahlbin, Cornell University.

Third Lecture: A brief survey of parabolic smoothing and how it affects

a numerical solution: finite differences and finite elements.

Finite Differences.
As a suitable model problem we take the pure Cauchy problem for
the heat equation in one space variable, i.e., the problem of finding

a = u(t.x) such that

(1)
u(0,x) = v(x)

Here v is a given function.

Define the solution operator E(t) by

(2) u(t,x) = E(t)v(x) = ——2y7p [ e

For numerical solution of (1) we choose a regular mesh. With
h a spatial steplength and k a temporal one we introduce notation

according to the following figure.

t,n

., X=jh
t=nk
—rA---+~»—~¥— { 4 -+ 4+t —_—
———
h X,J

We demand that, as k and h vary, they obey
) 2 . .
Vo= k/h is fixed.

As a model example, consider the forward time, centered space

Lecture in the Department of Mathematics at University of Maryland,
College Park, during their Special Year in Numerical Analysis, 1980-81.

Lo
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approximation (FTCS). With ug the approximate

n+l n n n n

S A RN U Mk T £

K h?

or

AL, (1-22)u” + 2", = (Eu™)

J i+l ' J-1 k J
For the moment, set u? = vyt v(jh) 3 we shall
of how to choose the discrete initial data. The

(2), we have the discrete solution operator

We shall describe some results for this set

for the rate of convergence in terms of smoothne

v are obtained by use of the Fourier transform,
We have

N - :2.

E(t)v(z) = e Fv(e)

T

Ep v () = a(h)v(e) ,
where, in the FTCS case,

a(o) = 1-23+2x cos(0)
In general, a(c) s
sense of John, [1], i.e., that there exists a po
such that
-Cch 2
ja(e)js e © for (6] < &

In the FTCS approximation, this is the case if
well known that the approximation is useless for

We also introduce the order of accuracy, u

solution,

return to the question

n, corresponding to

-up. Sharp theorems
ss of initial data

and of Besov spaces.

27-periodic, and we demand parabolicity in the

sitive constant ¢

A< 172 5, it is
x> 172

, of the approximation




alny-e 7 = 0( <« ") as 3 -0

In the FICS scheme, 1 = 2

We next briefly describe the Tesov spaces B; (=B;" (R]))

to the extent that uihe audience can appreciate that they wmight come in
handy in a Fourier based investigation. Loosely speaking, & function

in g3 has (almost) s derivatives in L_ . A convenient character-

p
jsation for the present purposes is the following; c¢f. [2] and

references there for details.

Let

& is a smooth characteristic function of the interval [-1,1],

$.. ¥ > 1, is a smooth characteristic function of

Then

1

it s = oy 25T FT e, W ] L,

For p = «» we have,

s non-integral, Bi = Lip{(s), the Holder class,
s integral, Bi = Zyg(s), the Zygmund class.
The following result characterises the rate of convergence in

terms of the smoothness of initial data v. It takes into account

all possible translations of the spatial mesh, and the error at aill

time-levels nk

"

Atk

| S N e W e W
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THEQREM 1.{3].

For 0 < s <y,

i Epv-E(nk)vI] | <ChS (V] . »n=1,2,...
o B

o g v

Conversely, if for a fixed t] >

sup I|EEV-E(nk)vIIL < ch® as h,k ~ 0 ,
0<nk<t-| ©

then vV e Bi .

This result should be compared with classical results
for trigonometric approximation, cf. [3] and references
there, and results for spline approximation, [4].

A generalization of the first part of Theorem 1 to more

complicated problems can be found in [5].

Example.

Let o be a small positive number and Vo the function

0,X<09
(3) v (x) =

o x%u(x), x > 0 ,

where w(x) 1is smooth function with compact support on R1, with

w > 1 in a neighborhood of the origin. Then, see e.g. [2,Prop 2.4.2],

V.ot B but v ¢BS for s > o . Here we have by a simple

o O 20
calculation, )
G/ZhO N O(e-1/(10Ah ))

)

E(k)v (0) = ¢

and, for the FTCS scheme,

Rightfully then, Theorem 1 predicts only h convergence close




to initial time (unless the mesh parameter 1} is Juckily
chosen; then shift the mesh),

However, let us now take into account the smoothing property
of (1), i.e., the fact that even if v is rough, E{t)v is smooth
for t > 0. Will the numerical solution take advantage of that?

tO = pk . Qur first theorem may come as a disappointment.

THEOREM 2. [6].
Let 0 < s < 1., and let ty = nk - 0 be fixed. There exists

. S
a function v ¢ B’ such that

Tim sup h™° || Ejv-E(nk)vIl > 0

h, k~+0 oo
nk=t0

A specific such function was exhibited in [7]; it is,
essentially, a lacunary Fourier series. It is not particularly
likely to come up in many applications. E.g., it has the property,
for s a non-zero integer, a1 v/dxs—] is continuous, but
d%v/dx> is non-existent a.e.

An attempt at an inverse theorem for convergence at a fixed

time leads to the following.

THEOREM 3. [7].

Llet 1 < s < yu, and let to = nk >0 be fixed. Then if

| Egv - E(nk)v]l | < ch®, as h,k -0,

s-1

oo

we have v ¢ B

A positive counterpart to the above is as follows.




THEOREM 4. [7].

Let 1 < s <y . Then

LERy -E(k)vi s )T R

]
Eximple.
1+o

Consider the function v _ of (3). It belongs to B,

a

to B_ , but no better. Theorem 4 predicts 0(h1+o) convergence

(0 <o <u-=-1) for positive time, and Theorem 3 tells us that this

is sharp.

Hence, the comhination of Theorem 3 and Theorem 4 is sharp for

this type of isolated roughness.

The fact that the numerical approximation takes advantage of the

smoothing property was noted in [8].

Still better rate of convergence for positive time than predicted

by Theorem 4 can be accomplished if one employs a preliminary smoothing

of initial data, [7], [9].

Example.

We define a mean-value operator Mh s

h/2 ,
(0 = E 7T vheyray = T ESIEIEIEL ey ()

-h/2

We have, e.g., the following picture for v_ of (3)

and




0, x < -h/2

(4) th"(X) = m';l?;‘ry {x + h/2)J+] s, -h/2 < x < R/2
ey (v )™ o) T e
as long as w 1

CEL Moo= E(nk)vEIL < Ch™ || vii , for 0 < ty < onk < t,

Appiving this result to vy oo while taking the difference scheme

+ . .
] j) , Using 1t on thﬁ results

directly on v, gives a rate of O(h
in an ﬂth) rate. Thus, for o small, we gain almost a full order.
The simple mean-value operator considered fits nicely with the
FTCS ~nproximation; the inherent second order in the scheme is re-
stored as long as initial data has somewhat more than one derivative,

the der ~.tive being measured in the weakest possible Lp-class, viz.,

in L] Similar results hold for higher order schemes by use of

higher .=vder smoothing operators.
Note that if it is possible to decompose initial data v as

v = , then it is sufficient to apply the smoothing

v t v
St h rough

operator io If one is lucky one might choose v SO

vrough' rough

that the smoothing operator on it is easily evaluated, cf. (4),
where ~» rould use a smooth spline cut-off for w in (3).
Thecrem 5 holds also for more complicated problems, [7].
We conclude our survey of results in the finite difference theory

by giving a very rough indication of why a smoothing operator works:




e 4 Wem; | A Ay

~

Split v as v = V]ow + Ghigh into "low" and "high" frequency

comvonents. For rough v, thgh is not "small". With

t. = nk = >\nh2 .

~ 2
- -2 -
(Epv - E(nk)v) () = (a(he)" - e7AMRE)Tyg
2
) -tgt ;
€ high

+ a(he)" T I, + I, + 1

Vhigh 1 2 3

Here, I] is "small" by the order of accuracy condition. Clearly,

I2 is "small" for tO fixed positive; this reflects the smoothing
property of (1). However, since alhg) =1 for hg = 2im , i

integer, 13 will not be small.

Considering next what happens when applying Mh , in the same

sloppy manner we have

(EE M v - E{nk)v) (&)

he/2 Tow
2

N -in(hg)
+o(a(t) € )vlow

.2
BRRCE

€ “high
N sin(he/2) - :
valht)t g Vhigh - 21 Y Y I3t g
Here, T, s "small" since 512 > .1 for o small. J and J

2 3

are "small" for the same reason I] and I2 were. Finally, for
14 , the role of the smoothing operator in damping high frequency

components is easily discerned.

Finite Elements.

As a suitable model problem, this time we consider the mixed
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initial boundary value problem
u, = u » 0 <x <1, t>0,
t XX
(5) u(t,0) = u{t,1) = 0,
u{0,x) = vix).

For the numerical set-up, let N be a sequence of integers,
h = 1/N, I, = [jh,(j*+1)h], 3=0,...,N-15 let r and s be integers

with r > 2, 0 <s <r -2 and set

Sh = {stS[0,1], x(0) = x(1) = O’Xll, polynomial of degree r-1}.
J

For simplicity we only consider a semi-discrete approximation to (5).
o]
We seek uh(t) £ Sh such that

o

((“h)t’X) + ((uh)x’ x.) = 0, for all ¥ ¢ S,

uh(O) = v, given in Sh

Here (f,g) = fé fg . Set E (t)vh = uh(t)

In this situation, let us not review results of a general nature

(cf. [10], [11], [12]) but move directly to the problem of how the
choice of Vi influences the "smoothing advantage". Furthermore,
the precise results we state shall only be quoted for (maximal)
o(h) convergence.

The following very loose indication can he given. Let

¢j(X) = 2 sin(njx), Aj = nzjz , J o= 1.2,... be the eigenfunctions
and eigenvalues of the operator -dz/dx2 on [0,1] with zero endpoint
conditions; let ¢? and A?, j=1,..., N, be their discrete

counterparts. They are “"close" for "low" j, but unrelated for

_ﬁ......‘._..-.u.-....-.-.u.-.-.--lllllillllllllllllll“
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"high" i, although for j large, x? is Jarge. Now,
-iLt

4 = ; { . J . = .
E(t)v ) ke by ks (v,¢3) ,
J
and h
£ (t)v = khe—‘Jt«h k"= (v, ,07)
h j J A h>"j
Therefore,
Eh(tjvh - E(t)v
h
-2t
Sk ke ’b?
i low N
- h
-1t -ALt -a.t
k.(e 3 ¢0 -6 3 s ) k?e ¢h
j Tew Y J J high j
-\'t
J .
- k.e 5. I, + 1, 4+ 1, + 1
i hign I J boe 3
: ( h h .
Hore ] is "small" because >, _ -, and o¢. ~ ¢. for Ytow Jj. For
2 J J J J
ivel poaitive t, 1, and 1, are "small" since >, and xh are large.
3 4 J J

To have L small, we need that k? - kj is small for Tow j.

welowrite

=
t

>
il

{v, -v,b , low J,

J J h J
where the second rember on the right is “small". Thus, Toosely

speakina., we need

(6) (v = v. "™y small, for low
h J

Tt owe tahe v to be the interpolant of v, then (6) would hold
travided v owas smooth; for rough v, systematic sign errors of large
anitude could occur, destroying (6)

Theve is, however, the obvious choice of setting Vi to be the

l pruojection of v,




The above can be made exact. Let denote the L2-projection,

defined by (th,x) = {(v,x} for all

THEOREM 6. [13].

tO > 0

hE,(E)P v - E(t)v(lLoo < Ch

A similar result holds in the presence of a suitable time discreti-
zation, [11], [13].

The smoothing property in parabolic finite element equations was
investigated in [14] and [15].

In the case of smoothest splines (s=r-2) there is a connection
between the Galerkin method and certain "finite difference” operators,
see [16]. Then taking vy T th corresponds to a smoothing operator
in the finite difference theory.

In general, numerical integration is needed to evaluate th
Let, cf. [17] for details, ;hv denote the approximate Lz—projection

given by applying an integration method which is exact, on each

subinterval, for polynomials of degree 2r-2.

THEOREM 7. [17].

Let tO > 0 and vh = th . Then

)\Eh(t)ﬁhv - E(t)vHLoo

N-1
r,
cChiillviby o+ ] min(x,1-x)[D" (x)]dx
w j=0 I.
j
N-1
# 1 L 10" x) fdxy . for 0 <ty <t
j=0 1.

J

A similar result holds if Vi is the interpolant of v; the

S S —
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result also carries over to time-discretizations, [17].

Applying Theorem 7 to functions behaving like (x-xo)f locally,
we have for o non-integral and Xq interior, that o > r-1 is
nesded for O(hr) convergence. This corresponds to Theorem 4 in the
finite difference situation. For Xg = 0 or 1, or for ¢ integer

and g meshpoint we have more advantageous estimates in the finite

piement situation; this is because the analysis does not have to include
411 possible mesh-shifts.

As in the case of preliminary smoothing in the finite difference

setting. if v can be split as v it would

+
Vsmooth vrough ?

suffice to evaluate P exactly.

h Vrough
de conclude this lecture with the following five brief remarks.

i) Take e.g. v to be the step function

‘/\'/ﬁ) = ], ]/4_ixi3/4 ’

0, 3/4 < x <1
The L projection has then an oscillatory error, which gets heavily
darped 1n the approximate solution, which in this respect behaves
iike the true solution.

i1) Connected with i) 1is the fact that

h -r

Cv-Pov . Chr!)v[!L
H 2

iti) A smoothing property in the Navier-Stokes equations has
t.oon put to a somewhat similar use in [18].
ivi For the Euler-Poisson-Darboux equation, !

u + u, = Au

tnore i. a smoothing property, which depends on the size of K. The




finite element solution takes advantaqe of this, [19].

v) The influence of time-discretizations on the parabolic
smoothing property in finite elements has been thoroughly investigated
in [20]. [21]. Certain surprises are in store for high order time-

discretizations when the equation has time dependent coefficients.
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I. Asymptotic Convergence of Boundary Element Methods

This lecture gives a survey on the asvmptotic error analysis
of boundary integral equations, in particular on joint work by M.Costabel
G. C. Hsiao, P. Kopp, E. Stephan and W. L. Wendland [2%,34,38,39,

41, 42, 43, 72, 79, 80].

Introduction

Nowadays the most popular numerical methods for solvina
elliptic boundary value problems are finite differences([22],
finite elements [11, 21] and, more recently, boundary inteqgral
methods. The latter are numerical methods for sclving intearal
equations (or their ceneralizations) on the boundary of the
atven domailn.

The conversion of elliptic boundary value problems into
corresponding integral evuations for the investigation of existence
goes far back in history. For computational purposes, however,
vounuiry integral eqguations of various types became more fashion-
able only recently. (Sece e.g. [44] and the proceedinas [16, 17]
and [68].) The numerical discretizations are mostly based on
collocation methods whereas mathematically Ralerkin's procedure
and corresponding variational formulations provide a further
developed error analysis.

Here we shall develop a numerical implementation of Galerkin's

procedure. The resulting scheme not only provides hiagh accuracy
as Galerkin's method but also is simple to be adapted to modern
computing machines., We shall term this method as the Galerkin

collocation method [79].




It applies to a very wide class of integral equations on
the boundary manitfold ' as to integral eguations of the second
and the first kind, to singular integral equations with Cauchy
kernels on curves and Giraud kernels on surfaces, i.e. Calderon
Zyagmund operators [1Y9] and also some integrodifferential equations
with finite part principal value operators.

The method generalizes the Galerkin collocation in [38] that
has been developed for Fredholm integral eguations of the first
kind with the louaritiamic kernel as the principal part.

The effectiveness of the method rests on the asymptotic
convergence properties of Calerkin's method. For finite element
methods in the domain and for finite differences it is well known

that strong cllipticity implies the asymptotic convergence. But

for the boundoersy 1nte <1l nethods the strong ellipticity of the
corresponding @ seursdl frerential operators seemed not to have
recolived the 11 e attontion yet.

Hoeve we snall foocusing towards (1) strong ellipticity,

(i1) a pri aq

wstimates for the integral equations, and for two-

dimensicnal problems towards (ii1l) convolution operators as the

principal parts and (1v) smoothness of the remaining kernels.

(1) Strong ellipticity:

Since Michiin's fundamental work [51] and the constructive
proof of the Lax-Milagram theorem by Hildebrandt and Wienholtz
[35] it is well known that the Cgrding inequality, i.e. strong
cllipticity implices asvmptotic convergence of Galerkin's method

in the energy norm. This in turn gives optimal convergence rates




in the corresponding Sobolev spaces. Using L2 or the Sobolev
space norms which are equivalent to the eneray norm it turrs out
that the strong ellipticity is even necessary for the convergence
of all Galerkin procedures due to Vainikko ([77]. As for the
variational methods [21]), the use of regular finite element
functions yields optimal order of convergence when the error is
measured in the energy norm or in Sobolev space norms of higher
order. (See also Stephan and Wendland [72].) Here we consider
equations which are strongly elliptic with ellipticity correspon-
ding to Agmon, Douglis and Nirenberqg (see [36] p. 268) but also
with pseudodifferential operators of arbitrary real orders.

It should be pointed out that strong ellipticity is a rather

strong condition. Often serve more specific weaker properties

of the problem for satisfying the Babuska-Brezzi conditions [10].

(ii) a priori estimates:

If the integral equations are interpreted as stronaly ellip-
tic pseudodifferential equations [46, 67, 76] then they provide
a priori estimates in the whole scale of Sobolev spaces in addi-
tion to the Ggrding inequality. This allows to generalize the
Aubin~-Nitsche Lemma {57] from differential equations to the
general class of strongly elliptic pseudodifferential equations
as done by Hsiao and Wendland in [42]. Nitsche's trick proves
super approximation i.e. optimal order of convergence even if
the error is measured in Sobolev space norms of order less than

the energy norm. This super approximation implies high convergence

rates for the approximate potentials in compact subdomains away




from the boundary manifold where the integral equation was solved
approximately. This indeed was often observed in numerical

computations,

(iii) Convolution kernels as principal part:

In any case, the principal part of a pseudodifferential
operator has convolutional character [67, 76]. But if it can be

depicted as a simple convolution in one variable, i.e. for two-

dimensional boundary value problems, then the Galerkin weights
of the principal part associated with finite element functions

on a reaular grid form a “oeplitz matrix whose elements

are given bv a vector. This vectar can c¢ventuallv be expressed

by two vectors which can be evaluated exactly up to the desired

accuracy once for all independent ¢ the boundary manifold 7

as well as of the meshsize nn for any fixed type of finite elements.

It should be pointed out that the accuracy of the numerical results
depends significantly on how to comprte the approximate principal

vart,

(iv) Smooth remaining kernels:

1f the remainder of the inteqral operator subject to the
convolutional principal part has smooth kernel then the corres-
ponding Galerkin welahts can be treated numerically by suitable
quadrature formulas deperding on the particular finite elements

to be used and the consistency needed. This leads to simple

(modified) collocation formulas.
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In this way, the computation of the coefficient matrix of
the finite dimensional algebraic system can be done in a most
efficient and simple manner. On the other hand, the solvability
i of the corresponding algebraic systems as well as the asymptotic
convergence of the approximate solutions are assured by the
strong ellipticity of the integial equations.

If the consistency is of sufficiently high order then the
asymptotic convergence and even the superapproximation remain valid
for the fully discretised Galerkin collocation scheme as well.

Our replacement of the smooth part of the kernel is very
much related to spline collocations of smooth kernels in Fredholm
integral equations of the second kind due to Arthur [6], Chandler
[20], Prenter [60] and Richter [65]. But here we are interested
in an efficient approximation of the Galerkin weichts rather than
of the kernel due to the much wider class of equations.

Although all properties (i) - (iv) seem to restrict us to
rather specific integral equations it turns out that almost all
the integral equations of applications provide all these properties.
In particular, the systems of integral equations of stationary and

time harmonic problems of elastomechanics, thermoelasticity, of

flows (viscous and inviscid) and of electromagnetics form strongly

elliptic pseudodifferential equations. Several examples are

listed in [79]. -
In Section 5 we present some numerical results from [39].

These experiments show the dependence of the accuracy on the 1

meshwidth, i.e. the number of grid points and the smoothness of

the finite elements used. In particular it can be seen that the

doubling of the number of grid points yields an improvement of

d ‘ﬂ---L_—-------...--.-.--.-----.-.."
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one decimal digit. On the other hand, the following table shows

us (for Example 5.2) that the improvement of 3 digits due to the

transition from piecewise constant trial functions to continuously

differentiable piecewise quadratic trial functions requires only
10% more time whereas the doubling of the number of grid points

requires twice the computing time.

Table: CPU-times for examples 5.2 (both ellipses)

m 20 grid points 40 grid points
0 4.60 sec. 9.93 sec.
1 4.71 sec,. 10.48 sec.
2 6.76 sec. 10.55 sec.

Thls comparison shows that for smooth data the use of higher
srider elements is more efficient than @ mesh refinement.

A recent result by Préssdorf and Schmidt [62] indicates
tiat strong ellipticitv is even necessary for the convergence
of Galerkin's method (with piecewise linear functions) in case
- one-dimensional singular equations on a closed curve. That
would mean that the projection methods of Gohberg and Feldman
iy, Priéssdorf [61] and Silbermann [63] with classical Fourier

ies oconverage for a wider class than our stronaly elliptic

oot 1o, Tf one still insists on the use of finite element

nmervoeximations for elliptic but not necessarily strongly elliptic

ruations then one has to use the least squares method [53, 72]).
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Similarly to differential equations, which have been treated by
Bramble and Schatz [15] one again finds convergence of optimal
order and super approximation ([72] (for first ovder elliptic
boundary value problems see (81] Chap. 8).

In the second lecture we shall extend our method to mixed
boundary value problems where the singularities of the solution

require extra care and specific approximations.

n of

In higher dimensions, i.e. for boundary manifolds [I'c<R
dimensions n~1 > 2 the triangulation of the manifold creates addi-
tional difficulties and additional approximations which have been
studied by Nedelec ([55] for a special intearal eguation. This
was extended in [31}. In these higher dimensional cases the
Toeplitz matrix of the convolutional principal part can orly be
defined in the above mentioned economical manner if one uses
tensor product finite element functions on cubic crids in the
local parametrizations. (See Michlin ([52] II § 9.) All this
is still to be done in detail.

Although most numerical implementations of boundary integral

methods are done with the standard collocation yet there are
known only few results on its asymptotic convergence except in
the case of Fredholm integral equations of the second kind.
Here we refer to the extensive bibliography by Ben Noble [59],
the surveys by K. Atkinson [7], C. Baker [12] and results on
super convergence [20, 34, 65, 66].

For our more general equations there are only preliminary

results available for the special case of the Fredholm integral

equation of the first kind with logarithmic kernel on the closed
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Loundary curve ' {1, 2, 4, 78] whereas for a singular integral
equation with Cauchy's kernel S. Prdssdorf and G. Schmidt have
proved recently that the collocation with piecewise linear
functions converges if and only if the singular integral equation
is strongly elliptic [62].

A more rigorous asymptotic analysis for the class of strongly
elliptic equations is yet to be done. The numerical computations
with boundary integral equations show super convergence where the
solution is smooth. This indicates that local convergence
properties also hold for the boundary integral eqguations.

Other open questions are uniform convergence properties and
the analysis of mesh refinements and non-uniform grids on the :

boundary.

Since the boundary integral method is in concurrence with
the well established finite element methods in the whole domain,
let us make some remarks on the computational complexity for two-
and three-dimensional problems. To this end let N denote the
numper of grid points on the simple closed boundary curve I of

an interior domain QCRz and N2 the number of grid points on the

boundary surface I' if QCR3.
Then one has the following relations between complexity
and N 1n terms of orders of N. (This comparison arose from a

Jdiscussion with Professor Dr. I. Babu¥ka, University of

sdaryland and Professor D. J. A. George, University of Waterloo.)

|




. < R® TN SN T T Lo RS
Boandary intearal
Finite Elements in . mcthod on
. B . 2 3 2
Number of qgrid points N N N N
Stifiness matrix, sparsc: fully distributed:
computation and storage
N2 N4 N2 2‘4
Solution of the discrete Use of band struc- Gausslan elimination
equations ture and right
ordering:
(932 33 )% s 2,5 .6
N (u ) = N
Computation of the Alrcady known Compute  bourdary
solution ac all inner intearals in all grid,
agrid points - points of .., i.e.
2\13 N5

The above comparison shows rather clearly that the computa-

tional expensc 1s in both cases of the same magnitude, i.e. propor-

tionalto:fgorNG,respectively. Thus the reduction of one dirension to
the boundary integral method is no reduction in computing time. However

there are several other properties of boundary integral methods *
which may be very advantageous:

(1) The eoxperiments showed very reasonable results already

for small numbors of grid points on the boundary .

(11) The method is applicable to interior as well as to exterior

problems without modifications.

" —catttiemntee. 1r»_-----n----l---------u--.----il-....lllll-llllﬂ‘i
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oW -lt o potentials are oiven by boundar otentials
t

and hence can be differentiated analytically away from T.

On the other hand the beoundary integral method is restricted
to prob:lems where the fundamental solution is explicitly avail-
able whereas the usual finite element procedures provide a

rigorous mcthod.

1. Bourndary Integral Eguations

For the reduction of interior or exterior boundary value
problems as well as transmission problems to equivalent boundary
intearal eguations on the boundary manifold T' one finds many
different mothods, since this reduction is by no means uniaue,
The two most popular methods are called the"direct method and
the'"metion of potentials". In all these cases one needs a
fundamental solution, respectively, fundamental matrix y(z,7)
of the differential equations explicitly since it will be used
in numerical computations. Thus, the practical usefulness of

the boundary intearsl methods hinges essentially on the simple

computsbility of o fundamental solution. This restricts these
metiinds mainly to differential equations with constant coefficients.

For o explanation let us consider the exterior plane boundary

value problem fer the Taplacian in the form
- 2
=0 for z S S
e
(1.3 [ : «n the boundary 7,
C(2) - B log [zl = 0(l) for |z]|-w,




Here I is a simple closed plane curve and g denotes the exteriorn

domain with boundary T'. The exterior problem (1.1) describes o, g,
a charqged conductor in two dimensions [70, ;. 174]. The scluton
of (1.1) can be represented via Green's formula 10t + -
(1.2) U(z) = -2 | u(r) e (oo ‘2= ) s
75 | D)oy 5 z =
r
) . i
+ g_l—J Tg (¢) loa  z- o ‘
r
where )
1 au _ .
(1.3) 27 ) 75-\5‘ ds = B anLi
(1.4) % w = lim (U(z) - B loa |z|)
]z' w
Hence, if v = %%, and w are known then (1.2) agives the solution.
r

The limit z-»I' with the jump relation for double layer potentials

ylelds with the "direct method" an intearal equation for v and w,

(1.5) - % ( v(z) log [z—a[ dsﬁ - w = f

r

1 J .
= *f‘ - 'T'T*J ¢ (WVqu lZ'u!)dS[; ’
. .
1 _

(1.6) ﬁ J vds = B.

r
Here B and f are given and v and w are the unknowns(l.5) is a

Fredholm integral equation of the first kind.

For the method of potentials we try to find the solution

of (1.1) in the form of a double layer potential,




. 1 3
L U(z) = B log lz|+5w + %-ﬁ[ v (%) (g—vz log [z-t|) ds,
T

where the double layer density v and the constant w are to be
determined. Since the last potential vanishes for constant v, we

can add the conditon

g

1 3
(1.9) viz) -~ = Jv(;) (Bv, log |z-z]) dSC —w = f(z)
- S
= 2B log |z| - 2¢(2),
. 1 i
(l.lo) Ey I vds = 0.

liere £ is given and v and w need to be determined.

Similarly, the exterior and interior Neumann problems as
well as the interiov Dirichlet problem can be formulated in terms
ot di1rferent boundary intearal equations.

The ab.ove exterior Dirichlet problem is only one very simple
example leading to boundary integral equations. References to
many other examples can be found in [79], in particular from

contnrmal mapping, clectrostatics, flow problems including slow

viscous fl-ws, plite and shell problems, elasticity problems in

Swe.oaned three dimcensicns, punch and crack problems, problems of
toeron ot it, time harmonic and stationary electromagnetic
frela (see also [44] and e.a. the conference proceedings [16,
17, e
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In many of these cases the integral equations become much
more complicated. However, the types of integral equations are
Fredholm integral equations of the second kind as in (1.9) or
of the first kind as in (1.5). In addition one also finds singular

integral equations on curves as

{
(1.11) a(z)ul(z) + %T b(z) J u(e)

n

~

J

dr, + j k(z,(,)u(x)dsr = f(z), z.T

or the corresponding equations on boundary surfaces [54], or one

finds operators of the form

) 1 3 _ o ?
(1.12) - s & [ ul(z) (§Uf log |z-g]) dsa = f(z), z-T,
Z G
r
and the corresponding operators in higher dimensions. (e.g. see
(371 in (91 the operator K, has (1.12) as principal part.)

Often the above operators also appear in systems of integral

equations.

2. Strongly Elliptic Integral Equations

Although all the above mentioned types of equations have
very different properties in classical theory of integral equations
it turns out that if they are considered as so called pseudo-

differential operators [76] they have a very strong, common pro-

perty. Namely the equations of practical interest are "strongly
elliptic”. 1In order to formulate this property one needs the
Sobolev spaces HS(T) of generalized functions on I', their inter-

polation spaces and their dual spaces. For the definitions we




4y9

refer to [3] (in particular p. 214). Then each of the above men-
tioned operators A defines a continuous linear mapping A : HS+HS—2a
for a whole scale of real s (depending on the smoothness of T).

2a  is called the order of the pseudodifferential operator A [76].
(G. Richter calls -2a in [64] "smoothing index".) For our examples

we have 20=0 in (1.9) and (1.1l1), 2a = -1 in (1.5), S @ #} in

(L.12). The boundary integral equation we write in short

(2.1) Au = f on r.

The announced common property is the coerciveness in form

o
of the Garding inequality:

(2.2) Re (Av,v) = Re J vAv ds > y]]vl]ﬁa - |klv,v]]|

r for all v e H(T)

where >0 1is a constant independent of v and where k(u,v]

s o
denotes a compact bilinear form on E* x H*. 1In some cases k

equals zero, then inequality (2.2) corresponds to strona energy
estimates as in [56].

In order to characterize those equations or systems of
equations that provide coerciveness let us use the above mentioned
context of pseudodifferential operators and let us consider a
more general case of systems of equations in the form }2.1). Then
to A there belongs a pxp matrix-valued principal symbol ao(x,i)
= ({

{x,7))) corresponding to the p equations of

aq,r qaq,r=1,...,p

(2.1) for the p components vq, qg=1,...p. As usual, the lq r(x,E)
14

are assumed to be homogeneous in gekn for ‘Eli 1 with degrees « reR. i

__ e




Now we define strong ellipticity (analoqously to the Agmon-

Douglis-Nirenberg ellipticity for differential ecuations) assuminag

1

. . T
that there is an index vector o = («a ,ap) R such that

preee

(2.3) o1 = . + x , q,r = 1,..., p.
A is then a continuous linear pseudodifferential operator of
order 2o, i.e. defining a continuous map

p s+o _
(2.4) A: uStY(r) = T w Iery o S vy .=

in the scale of Sobolev spaces irn (2.4). (The admissible s depend
also on the smoothness of TI'.)

Now for the following we assume

(2.5) A is stronqgly elliptic

i.e. there exists a complex valued smooth matrix f(z) and a constant

Yy > 0 such that
T - 2
(2.6) Re 7 8(z)a_(z,8) ¢ > v[t]

for all z. 7', all E&Rn with |[¢£[=1 and for all C(@p. A stronaly

elliptic system A satisfies the Gsrdinq inequality [46],

(2.7) Re("av,v) 5 > y'[lvl[|®  -|klv,v]| for all ven"(r)
L°(T) ~ H™(T)
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For its formulation let us denote by Ph the L2 orthoaonal

projection onto Hh. Then we reaulre the approximation propertv
(3.4) lim ||p g-qll = 0 for any g HY.

h-+0 H

This assumption implies with the Banach-Steinhaus thecrem the

stability

< C for all h

where ¢ is independent of h, and also bv duality
(3.6) BN < c.

These reaguirements are satisfied for rcgular finite elements

and also for trigonometric polynomials on closed curves as well
as for spherical harmonics on closed boundary manifelds T in
higher dimensions.

Now wc are in the rosition tostate Céa's lemma.

THEOREM 3,]1: ©Let Equ 's~. © 1) with A be a stronaly elliptic

equation with unidque solution u -« H' to any £ . H Y . Then ’

there exists ho*O such that Equations (3.3) are uniqguely

solvable for every O<h(ho. Moreover there exists a constant

¢ independent of h and f such that

(3.7) v = ull :ocinf [ju=x!l_
1 we dl H'

_ ._,




(@3]

For convenience, in the following asymptotic error znalvsis
we are always using ¢, c¢', ... as generic constants which migh*
change theilr size and meaning at different places.

As was mentioned above, Theorem 3.1 is not restricted tc
our finite element approximations but applies to a rather wide
class of Galerkin methods as e.g. for the projection methods

using trigonometric polynomials as in [61,63].

Proof: Although the proof is standard, let us repeat the

o—————

main arguments. The Galerkin eguations (3.3) are equivalent

to finding V « ﬁh with
RV = PhDPhV + PhKth = Phéu

Since D is positive definite we have from (2.7) the stability

estimate

' 2
(3.9) Re (DPyv,Ppv) > Yfiphv”n’

O AP - A SRR

a

which yields with the continuity of b and duality of H © and

H' the stability estimate

‘ -1 .
(3.10) 1 (P, DP) ... .c

on Hh where c¢ is independent of h. Thus we can write




1

(3.11) P APh = PhDPh(I + (PhDPh) PhKPh)

h's

The sequence of operators

-1
(PhDPh) PhKPh

1s a composition of inverse stable and, hence, elementwise
convergent operators (3.10), P, and the compact operator K.

Therefore the convergence ot

. ) o
lim{(PhDPh) lPhKPh - D LK}Q = 0
heo ! |

for g - 1, g -+ 1 is unitorn due to |[5] and we have

.-~

t

-1p & 1. _ -
Lim (I + (P,DP) "PyRPy) “g = (I + D

for any g : H' since A—lD = (I + D—lK)-l exists. This implies

the uniform boundedness, i.c. stabilitv #

“lp kp )7Ly

' (T + (P ) REPR) T L©

hDP

for all h -~ 0, h - hO with an appropriate ho > 0 where c 1is ;

independent of h. Consequently, an Hh holds stability

-1y

(3.12) "p_ap,) Ll -1 R s

nAPY) _ = [ltI+ (P, DP,) “P KP

-1
) (P, DP c
H w’”w h” h } h

h

for al 0 h - hO where ¢ is independent of h. Now (3.12) implies

with the continuity of A the stability of the Galerkin projection.

~—1---i----n-----l-H-llIllIII-ﬂl-llllll-II.ll“




-1 .
(3.13) G, = (P AP, ) "PA, i.e.
(3.14) |G, || o <c
h H® , g%
for all 0 < h < hy Since Gy |, = I and v = Gyu, Céa's

Hh
Lemma (3.7) is an immediate consequence. This completes the

proof.

Now we specify the spaces ﬁh to regular (m+1l,m) systems
of finite element functions [ll]}) They have the following
approximation property and satisfy an inverse assumption:

Approximation property:

Let the multiindices m,t,s satisfy componentwise

-m-1 < t < s < m+l, -m < s, t < m. Then to any usHS(F) and

any h - 0 there exists a u;ﬁh such that

s -t
3.15)) ua - ol <c n? 9y see [15].
( lug gl g, © llugll s ( [15].)
H H -
The constant ¢ 1is independent of “q , h and uq
The finite element functions o = (Ul,...,up)»ﬁh provide for
-m -t « s < m the inverse assumption
t -s
. o k; q ! | !
(3.16) ql “ch gl t

Wi re the stability constant ¢ is independent of u and h [58].
1f we insert (3.15) into the right hand side of (3.14) we surely

find improved asymptotic orders of convergence if h + 0. Using

Tn general one uses (4,m) systems rather than specifying
= m + 1. We avoid these detalls here.

1)
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find the fol

THEOREM 3.2

Let A be strongly elliptic and let (3.1} have an nnigue

solution. L

(3.17) ¢!

Suppose ¢ -~

d
fpr a = l,..
(3.18) Ha

In addition,

then we find

Remarxs: Wi

stability (3

assumption (3.16) one can also cxtend the estimate

hand side to Ht norms with « < t - m [72]. These

lts which have also been obtained with variational

n [21]. But as was already mentioned in the

, for pseudodifferential operators & one can even

pproximation [42]. Collecting these results we

lowing improved converaence theorem,

42,604,721

et H,oosatisfy (3.15) and (3.1¢6) and define

.= min{:q,o% , S I O A
: I N - % = 04, max-o,te n - =
a0 - - q q P g q 1
NP S 0. Then we have the asymptotic error estimate
s-t 1
- N h Pu .
t+ — R Sy
H TR

if we consider the discrete equations (3.3) 1in

for the stability of these oquations

P 21(’1
: . c ; h w’ah o
Ly (47) G2 Ly ¢y
th a simple analysis ot PRaby, = A for « -~ 0 the

.19) vields the conditioning number of (3.3} to

be



of the order

-2]a|
p ta

1

| ~10

g

The stability estimate (3.19) can also be used for an
estimate of errors due to numerical noise and round off
effects in the framework of ill posed problems. This can be
found in [43].

The asymptotic estimate (3.18) includes the case
t < a, i.e. superapproximation. If t = 20 - m - 1 then one

has for sufficently smooth data the superapproximation

2m _+2-20

(3.20) u - ¢ d q

I
Q
o

11l et

That implies for the desired solnu*ion 4 of the boundary value

problems (1.1) inner superconvergence

(3.21) v - U] sy omoc - ¢t n 4 Uy

<
H-m—l+2a -

where 7 is any compact subdomain in the interior, respectively,
exterior «f [ and X({) denctes any norm. Here c,c' depend on
and X{2).

proof of Theorem 3.2:

Since (3.18) follows for o < t immediately from Céa's

Lemma (3.7) with (3.15) and (3.16) let us here indicate the

proof only for 2« - m -1 - t <« a, i.e. the case of the

Aubin-Nitache Lemma. Moreover let us consider only the case




of one single equation (3.1) instead of a system.

Let us first note that the usual proof of the Aubin-
Nitsche Lemma, e.g. (21, p. 137], would yield only L2~estimates,
i.e. t = 0. Thus we use a slight modification.

Let us denote by
(3.22) e =u - v
the error term from (3.18). Then (3.3) implies that

(3.23) (Ae,\)L = (e,@*x)L = 0 for all k'ﬁh
) 2

1

From the existence of A“ and the strong ellipticity it foll-« -

that the adjoint equation

is uniquely solvable for every @ HTY(r) with won?®"t

Moreover, the continuity of A*—l implies

(3.25) HWMHp_a_t <c IN’HH-t

t

Since Ht(F) and H “(I') form a duality with respect to the

L,-scalar product, we have with (3.24),

I:eH _(_ sup ’(er‘t‘)]
e 1ol <1

= sup| (e,A*w) | = sup|(e,A*(w - x)) + (e,A*X) |

= supl(e,é*(w - )|

_._4.-_..--——----—-------l-----"'4
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IA

sup(le||  [Ia*(w - x) ||
g~ O

in

c supl[e]I(XHw - xllHa for every xefly .
H

Inserting (3.18) for t = a (that follows from (3.7) with
(3.15)) and (3.15) in the above, we find
a-t

llell . < sup ¢ W7 %full _llw]l , _, h
Ht — Hs H2u t

if -m < 2a-t < m+l, i.e. 2« - m - . t < m+20. Finally,

we use (3.25) to find the desired estimate

-t s-t
fell . < sup c K 5 lull _ |l = ¢ h° lul .
ut — us -t us

l!‘:‘lln_t <1

4. The Galerkin Collocation Method

For the numerical implementation of Galerkin's procedure

(Equations (3.3)), the weights of the influence matrix,

(4.1) ajk 1= (Auj,pk) , J.k =0,...,N

have to be evaluated. Since A is given by an integral operator
(in th2 usual or the generalized) sense, the computation of

ajk requires a double integration over I'xT. If this is done
numerically, the kernels of the integral operators must be
computed at all combinations of grid points on I'. In addition,
special care must be taken of the singular integrals. 1In order

to reduce the computing time for the evaluation of the stiffness

- y




matrix (4.1) and in order to simplify the computation of the
singular integrals let us specify the further investigations to
two dimensional problems, i.e. I' is a plane and---for brevity---
closed curve. We further assume that the principal parts of

A are given by convolutional operators. For simplicity let us

consider just one equation (3.1). The extension to systems

is of simplest technical nature (see [79]). Let ' be given

by a regular parameter representation

(4.2) ez = 2z(t), t [0,1]

with z(t) an 1l-periodic sufficiently smooth vector valued

function satisfying

(4.3)

= R(t) > R~ 0 for all ¢t,

where R denotes the Jacobian. Then the operator A with a

convolution operator as principal part has the form

(4.4) Au{ = p.v. f 1

[py(t-1) + log]t-rlpz(t-Tn(u(t)R(t))dt
t [t-tl<3

Here pl(n) and pz(c) for « # 0 are homogeneous functions of
degree ¢ = -2u~-1. The principal symbol a, and (4.4) are

related by the Fourier transformation F,




(4.5) aj(g) = = F(py(+) + log -lpz(->)|g .

For singular integral equations with the Cauchy kernel, the
above special form (Equation (4.4)) of A is too restrictive.
We leave this detail to [80].

From now on we consider strongly elliptic integral
equations of the form of Egquation (4.4) and we further assume
that the remaining terms collected in L(t,t) define a
sufficiently smooth function of 7 and t. Otherwise we again
split into two terms, where the first contains the singularity
and has to be treated similarly to the principal part.

Since in Equation (4.4) only R depends on I' we consider
Equation (4.4) as an integral equation over [0,1] for the

l-periodic new unknown function
(4.6) v{t) : = R(t)u(t)

Note that the principal part in Equation (4.4) then becomes
independent of the special choice of the curve I'. Therefore
we shall adapt numerical integration to the special integrals
in Equation (4.4).

The principal part in the standard form (Equation (4.4))
will be handled independently of the special boundary T
yielding a Toeplitz matrix whose elements are given by a vector,
This vector can be computed exactly up to the desired accuracy
once for all independent of T as well as of h for any fixed type

of element, i.e. shape function. It should be pointed out that




the accuracy of the numerical results depends significantly
on how to compute the approximate principal part.

The Galerkin weights due to the smooth remaining parts
will be treated numerically by appropriate guadrature formulas
depending on the particular finite elements to be used. 1In
them we use only grid points 1n a regular grid connected with
the finite elements such that the kernel functions are to be
evaluated as seldom as necessary. This leads to simple modified
collocation formulas and the computation of the corresponding
stiffness matrix is extremely fast.

In order to utilize the convolution in the principal
part we use regular finite elements on a uniform grid of

[0,1]) defined with shifts and stretched variables from one

shape function 4. (1,). The latter we define as in [8, Chap. 4]
by suitable pilecewlse polynomials of order m with u‘Cm_l
For m = 0,1,2 e.qg. we have
(; =0)m=1 m = 2 for
1 n % i 0 <n <1
0 2-q—-n+37;-—3/2 1;H<2
(4.7) L) =
1 2
0 0 5']—3H+9/2 2 <n <3
0 0 0 elsewhere
With 1 we define a basis of ﬁh by
(4.8) 4. (t): = u(E - )=y for hj < t < 1+hj, j=0 N
J . h )RTU s - [4 [ 2R 14
h=1/(N+1)
and their l-periodic extensions
Uj(t + 1) @ = uj(t) for integer ¢.
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For u in Equation (4.4) we use the approximation
N
(4.9) up(t) + = ) ysui(r) .

Remarks:

Our boundary elements have been defined by the transplanta-
tion of a regular (m+l,m) system in the parameter domain onto
[' with the local parameter representation of I'. For calcula-
tions, the integrals will be evaluted by using the local
coordinates. In those the finite elements appear as simple
functions over the parameter domain, This construction of
finite elements on I' requires that the parameter representation
is fully available. For the two-dimensional case this is a
sensible requirement. In the space, however, the boundary
surface has also to be approximated [55].

For the computations we insert (4.9), (4.8) into Equations
(4.1) and we find for the terms due to the first expression

in Equation (4.4),

1
dyg = f p.v. f JfPLe- log|t-1|p, (t=1) Juy (B)R(t)dtu, (T)R(T)dT
0 ]t—r[<7
m+1 m+1
2+8 ' ' . ' ' .
= h J p.v J [Py (t'-T'+(3-K)) + pyrlog|t'=T'+(j~k)]]
t'=0 t'=0

+ log h [ p.v. f Py (t'=1'+(3=k))u(t")u(r")dt'dar"} ,




24, . ) : \ = - .
(4.10) djk = h ‘Wl, + w2oloq h; with o = j kK« Z
Here the two vectors of welghts
m+l [m+l
(4.11) Wy.o= }’ p.v. (p(Ef=:"+) + pylog t'=1'+, 1] x
1'=0 t'=0
At)yu(rt)ydetdr!
m+1 rm+1
.
(4.12)  w, = ' p v.j P, (£'=T " +p)u(t") (1 ')dedr’, 2
=0 t'=0
can be computed once tor all independent of ;" and h. For
more details see [37] and [79]. For all the remaining smooth

terms in the Galerkin equations to Equation (4.4) we use
numerical integration.
Since 1in the corresponding integrals
m+1

(4.13) [ f(t)uj(t)R(t)dt = hf f(h(j+o))u(o)do

supp 1 a=0

the finite element functions appear as factors, the numerical
integrations are chosen accordingly to the respective reference
function u such that polynomials £ up to the order 2M+1 are

integrated exactly. This leads to formulas like

M
(4.14) [ f(t)uj(t)R(t)dt = th-M be(sz) + R
SUPP i o
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where
+1 . +1 '
(4.15)  zp = = z(h(k + m7——)) and z; g: = z(h(j + 97— + Y, ;
L= -M,...,M. §

are the gridpoints subject to the boundary elements and, {

correspondingly subject to the integration formula. R

2M+2

denotes the error term which is of order h . The simplest ;
: . i
choice Yy = ¢ yields zj2 = zj+l and weights bz = b—l as follows: ;v
m= 0 m=1 m = 2 :
]
bo bl bo bl bo b1 é
(4.16) M =0 1 0 1 0 L o ;
_ 11 1 5 1 3001 !
M=l 1222 6§ 12| 7 3B i
|
- 1 -
For Yo = 5 2 and M = 2 one has
m= 1 m= 2
bo by By by by by
(4.17)
13 4 1 12 Z 01
30 15 60 5 30 15

Instead of (4.17) one often uses Gaussian integration formulas,

then Yq correspond to the Gaussian nodal points and (4.14) is

modified t»




u!S
moM

4.18 £(t)u; (£)R(E)AL = Y B fuiR(z,. ., ,) + R
( ) { ( )u]( JR(t) Jio Lo hy { ]+v,%)

SuppP L.

]
where
. . 1 .

(4.19) Zipi, 0 T z(h(j + 5 + v,))
and B_ ,B,, are the Gaussian weights.

MPTTTITM

Using Formula (4.18) for the smooth terms of the weights

in Equation (4.4) we obtain

S r:,«

- . _ 4.2 =

(4.20) ) J L(L,t)uj(t)dtuk(z)dr = h Z_ bibQL(zki’sz) + R

_ v 1 ¢,1=-M

=0 IT_t‘i?
with the error term

s s
(4.21) |R| < hS*2c!max |2 + max Q—EJ , 0 < s < 2M + 2 .
- a1 35 -7

Now we are ready to formulate the Galerkin-collocation equations

by using Equations (4.8), (4.10) and (4.20). They read as

N N oo4g
.2 . .= . .
(4.22) .Z ah]ij 'z h (wl,p(j,k) + log h w2,p(j,k))
j=0 3=0
2 g
+ h b.b,L(z,:,2.,) Y=
0, i=-M 178 ki’ "38 J
M
=h ] bif(z,) =: F k=0, /N
i=~M




BBt b i

T
G

For saving computing time, the values of L and f at the
grid points should be evaluated only once at the beginning
and then be stored for furthe use as to build up the stiffness
matrix in Equations (4.22).

This suggests a choice Y, = L or % 2 or % 2 , etc., in
the numerical integration formulas.

For the asymptotic error due to the Galerkin-collocation
we shall use the already established error estimates (Formula
(3.18)) for Galerkin's method. To this end we abbreviate the

Equations (4.22) by

N
(4.23) ; 3 3kY5 = Fx » K = 0yt i )N
j=0
as mappings in ﬂh . If
N
(4.24) w,_ = ) u.u.
b 52 373

then the mapping Ah associated with Egquation (4.23),

N N
(4.25) ) fyu, = A
2=0

will be defined by the linear equations for the coefficients B2 ,

(4.26) Fo i i) = k=0,...,N.

= a, . . o,
0 g 3 hik ™3

[N i

N
_ )
‘ =0




in Equation (4.25)

Since the Gram matrix (“Q’“k) is regular, A

h
is well defined. Correspondingly we define F : Hh by

(4.27) (F,u = F

K) K

Then the Galerkin Equations (3.3) and the Galerkin collocation

Equations (4.22) take the form

(4.28) Phéphv = P _f and Ahvh = F, V,vh - Hy a L2 T HT O,
respectively. One easily obtains the estimate

(4.29) Ho—vhan < lliingLsz i <Ah—phavh>ouL2 + thf—ﬁlrLz}

This estimate shows clearly that we need estimates for stability,

. [ % . : - N
ice. |IAQ i LyLy consistency, i.e. || (A, PhéPh)vH L, and the
truncation error]lPhi—FH L, - Let us begin with the consistency.

With Formula (4.21) one can prove the following:

W be accurate to an order ha

THLOREM 4.1: i
THLOREM 4.1: Let the weights W, ,W, be accurate to an

8-2M+2 2M+2
and let [§7J L and (3{] L be continuous. Then we have the
consistency ;
(4.30) !(ﬂhp,x) - (Au,v) | < A(h) H“!Ez Hv[hz for all w,v A,
whe{g
(4.31) A(h) < cqllog h!ha'z“‘l + c2h2M+2

e —————————————




From the estimates (4.30) and (3.19) one easily obtains stability.

THEOREM 4.2: Let the assumptions of Theorem 4.1 be fulfilled and

in addition let a > 1l+2(a-a'), M > ~a'-1l. Then we have stability,

i.e. there exists ho > 0 such that

LyLy —

where c¢ is independent of h for all 0 < h < ho

Finally, the estimation of the error term R in Equation
(4.14) in connection with Equations (4.27) yields for the
truncation error:

M
Theorem 4.3: For F, = h ) b,f(z,,) in Equations (4.27)
k T PL Peflzgg) In Equations

there holds

(4.33) P f ~ Fi[ < ch HEl with 1 < o < 2M+2

H

Collecting the foregoing estimates and using Formulae (4.29)
and (3.18) we find the following estimates for our Galerkin

collocation.

Theorem 4.4: For a > m+2+2{x'-x) and M > m;l - a' we find
; ang Z e

an error estimate
X : S )
(4.54) Ju - v ! < ch &‘uH + £l __ .}

h L2 ] Hs ys 2a
with 1T + 22" = s «m+ 1 and 0 < s.
For a » 2m + 3 - 2« and M > m - a - a' we have even the super

approximation




(4.35) Ta = v

provided 2u-m-1 < t -~ s - m+l , s-t © 1-2.'

5. Some Numerical Examples

As we can sec from the foregoiny error estimates, it seems
that the Galerkin collocation (Eguations (4.22)) combines the
theoretical advantages of Galerkin's method with the practical
advantages of the collocation methods. For illustration we
present some numericar oxamples treatod in (37,38,39,79] with

P ) . : .
e R There, the choice m=2, M=1 and y;:l prcrided
excellent numerical results in combination with short computing
times.

The boundary integral equations treated so far numerically

are all of the form

! -y > -
(5.1) -iloq(z—‘)u( yds_ + JL(?,‘)u(f)ds = f(z) + w,
( q()ds . = é, Z, .
J
S , . -
Hero f 1s a gilven n-component vector function on I', n = 1,2,
B . R" is a given constant vector and u and .. are the unknown

n-component vector function, respectively, constant vector.

L is a given smooth n'n matrix function on [ ~!
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Example 5.1:
Symm's method in conformal mapping [74,75,39,79)

5.1: Interior Conformal Mapping

Let w denote the conformal mapping of Qi onto the unit
disc and let ei = arg wIP denote the angle of the boundary mapping.
Then Gaier [30] showed that Symm's integral ec..ation [74] for
the interior mapping function provides ei as the solution.
Then the slightly modified equations

(5.2) - | log|z-z| u(g) dt, + w = -log|z| , z € T,

z

R e—

f udt =1
T

have a unique solution u = u(t), w [40] and with Theorem 12 in

[30] it can easily be shown that the unique solution is given by
(5.3) u=2—ﬂ——d-t— ,UJ=O,

no matter whether the capacity of I' is 1 or not.

Since the uj(t) = u(% - 3) f% are piecewise polynomials, the
integrals can be evaluated exactly either with explicit integration
or with appropriate most simple numerical formulas. For details
see [39].

In the tables we compare the results of our computations

with the exact values for three examples of inner mappings in [29].




Interior mapping of ellipses

(See [29, p. 264, Example 3 and p. 161, Table 1l4al)
[: z(t) = (cos 2nt, ¢&sin 27t), 0 < & < 1. Computations for
§ = 0.2, 0.5, 0.83 with m=2 and 60 grid points on T in
double precision {14 decimal digits) showed the following

absolute errors:

8 H 0.2 \ 0.5 | 0.83

5

w
X
[
o
1

abs. errors 4 x 1073 ' 7 x 10~

Interior mapping of reflected ellipses

(See [29, p. 264, Example 2 and pp. 102, 103])

Boundary I': z(t) = (cos 2nt, & sin 2nt)/{Cos2 2nt + 62 sin2 2nt}
Computing time for each case: 1.3 sec. CPU.

Number of grids point: N+1 = 36

Computations for 6 = 0.25, 0.6 and 0.65 with m=2, and in single

precision (7 decimal digits) showed the following absolute errors:

8 I( 0.25 ' 0.6 I 0.65
-4

abs. errors

3« 1073 l 7 » 107° ' 10

Interior mapping of an excentric circle

(See [29, p. 264, Example 11])
_i2mt [
= e

Boundary TI': z(t) cos 2nt + /b2 - sin2 2mt )

Computing time for each case: 4 sec. CPU.

Number of grid points: N+1 = 60.

Computations for b = 5 and 5/3 with m = 2 and in double precision

(14 decimal digits) showed the following maximal absolute errors:




b “g 5 l 5/3

abs. errors l’ 1077 l 10

5.1.1 Exterior Conformal Mapping:

Here we compute the conformal mapping w of the exterior
domain Qe onto the exterior of the unit disc and again we are
interested in the boundary map given by Be = arg wlr .
According to Symm [74] and Gaier [30] we now solve the again

modified equations

(5.4) - f log|z - ¢|u dtC— w=0, z¢€¢T .
r
[ u dt = 1.

Due to [40] they have a unique solution u(t), w .
With Theorem 11 in [30] it immediately follows that u(t) and
w are given by
1 dee
{(5.5) ul{t) = = ?ﬂ;-and w = -log (capacity of ') = (Robin's

constant)

Hence, the solution of (5.4) provides at the same time the

boundary mapping of the exterior mapping and Robin's constant.

We have computed one exterior mapping of an ellipse. (See [29,

p. 264, Example 3]). There the boundary curve I' is chosen by
z(t) = 2(¥Y3) cos 2nt + (i/¥3) sin 2wt .

We chose m=2, M=1, N + 1 = 40 grid points and double precision

(14 decimal digits). The boundary mapping is in this case

explicitly known as ee(t) = 27t. The numerical results are

accurate up to 10 digits. The computed capacity is

capacity (') = 0.8660253881 .
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Example 5.2:

Exterior boundary value problem for the Bilaplacian, the Stokes
problem

Here the underlying boundary value problem is the exterior

Stokes problem

2 .
AU = 0 1in Qe p
VU =0on T
and Vvu -+ (0,-1) for |z]| » =

According to [40] we have the solution

u(z) = - % f(vcfz—clzloglz-cl) . (ul(c),uz(c)) dsc- Xwy= yw,
r

where up.u, solve the system (5.1) with

(x, = £,)(xp - £3)
_ 1 a a B B
{5.6) La,B = -3 GQB -

lz - ¢}2

For I' we again choose the ellipses

HMMM

I': z(t) = (cos 27nt,§ sin 2nt) .

1

Computations for 6 = 0.6, 0.9 withm = 0,1,2 and 20 and 40

grid points on I' in double precision (14 decimal digits)

P ]
’ i

showed the following absolute errors for u,:




477

5 0.6 0.9
h 1/20 1/40 1/20 1/40
m=0 1073 2 x 1074 || 1073 2 x 1072
=1 || 2 x 1078 1077 1073 10”7
=2 || 2 x 107 10”7 107> 1077

More details and a further example can be found in [39].

Ao




IT Integral Equation Methods for Mixed Boundary Value
Problems

This lecture gives a survey on joint work by M. Costabel,
G. C. Hsiao, U. Lamp, T. Schleicher, E. Stephan and

W. L. Wendland [24,25,49,50,71,82,83].

Introduction

The application of the boundary element method in
the form of Galerkin collocation to mixed boundary value
rroblems requires some modifications. This is due to the
singularities of the solution's gradient at the collision
points in two dimensional problems and, respectively,
at the collision curve in three dimensional problems where

the two different boundary conditions are adjoining.

Since Fichera's fundamental work on the Zaremba
problem [28], it is well known that these singularities
are unavoidable unless the data satisfy specific side
conditions. These singularities generate corresponding
singularities of the boundary charges in the boundary
integral method. They pollute numerical computations
unless they are handled separately. Here we shall show
how the boundary integral method can be improved by
augmenting the appropriate singularity functions to the
finite element scheme. This is based on a local analysis

of the solution to the mixed boundary value problem due

to Grisvard [33] and cf the integral equations [24,25,83].




Then we apply Galerkin's method to the modified integral
equations. A similar method but with collocation has been
used by J. Blue [14]). Since our system of integral

equations is strongly elliptic in the sense of (I.2.5 ff.) we
find convergence in the corresponding energy norm. This
estimate corresponds to [23] and [27). 1In order to improve
the convergence of the approximation we use local analysis
for better regularity in connection with modified coerciveness
on one hand and a priori estimates for the corresponding
pseudo differential operators on the other hand. We find
improved asymptotic convergence and also super approximation
which cannot be obtained by variational methods and
coerciveness alone. Moreover we approximate the stress
intensity factors besides the desired charges and give

corresponding error estimates.

In this lecture we shall restrict our presentation
mainly to a review on the case of the mixed boundary value
problem in a smooth domain following [83] and the corresponding
Galerkin collocation which has been worked out in [49,50].

The generalization of the whole method to polygonal domains
is here only sketched. It involves much deeper analysis
and will be presented in [24,25). Eventually we shall
indicate a formulation of a system of boundary integral
equations that governs a three-dimensional mixed boundary

value problem [82].
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Mixed boundary value problems in two and three
dimensions describe many problems of classical mathematical
physics as crack and punch problems, contact problems in
thernoelasticity, heat conduction in space science,
electrostatics and flow and infiltration problems---to
name a few. Some of these examples can be found in

(69,83].

References to the first lecture are denoted by

(I1.1) etc.

§1 The Plane Mixed Problem

Let us consider the plane mixed problem with the

Laplacian,

(1.1) AU

0 in 2 < R%(or in RA\D)
U = g9, on Fl ’

13—\)'=920HF2,

(and an appropriate condition at infinity for exterior
problems). O is a simple connected bounded domain in
lz with a smooth boundary curve T = FluF2021022 where
Fl and F2 are two (for simplicity) disjoint parts of T

with endpoints Z2, and Z, . For brevity we restrict us

to the case of interior mixed problems; the appropriate
modifications for exterior problems are easily formulated.

We omit the details.




e

' Lgl

. As in (Il.1)(Il1.2) we formulate the boundary
integral equations via the "direct method," i.e. via the
Green formula with the fundamental solution representing

the variational solution U within the domain Q@ by

U(z) =

N

4

f ul(z) 3%— (log |z-z|) ds
r Z

(1.2)

1 U
- L f 32 (2) log|z-c| as, .
T

Here SC denotes the arc length at ¢ ¢ T and 3%— denotes
g

the normal derivative at I ¢ T in direction of the

exterior normal. Replacing U on Fl by 91 and %% on Y2

by g, and passing z to the boundary I, one obtains with the
well known jump relations for the double layer potential

the following equations on the corresponding parts of the

boundary:

on T,: Al(u,F ' %%’r )= U(2) - % f U(c)[g%—loglz-Cl] ds,
2 1 T, g

+ % f {%%(z)]logiz-;} ds
Ty

4
(1.3)

|
=i

f ql(c)(§%~loglz—cl} ds,
Z

f1

L (¢)log|z-c]| d

7 | 9208 1log]z-¢] as

C [
} _ ' )

o — ‘-.-"‘-.‘--__-___-_-‘-.-.‘un---iillll'
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1Y) =1 3u -
on Flz AZ(U‘ * 3| ): = T ( (av(C)]lOQiz g | dsc
Iy Ty r

1

+ % [ U(C)[ggzlog{z-cl] dsC
Iy
(1.4)
= g (z) - & [ g, (2)=i—(log|z-z|) ds
91 T 175730, z

T

L |

1 f
+ 5 ] 9p(0)loglz-t] ds

T2

g

These two equations now serve as integral equations for
the unknown boundary data UIF and U . As soon as
these are known (1l.2) gives tﬁe desired solution in the
whole of Q. The analysis of the integral equations

(1.3)(1.4) will be presented in the following.

The validity of the above steps must be justified
and depends on the behaviour and regularity of U and %% at
the boundary. To this end and for the further analysis
we need also Sobolev spaces on the boundary parts Fj

defined as

Hr(Fj) : = {f = F, with F ¢ H'(I') and
(1.5) Ty

[ £ : = inf((F }
Hr(rj) F “ '[Hr(r)

h-"A""‘-.---‘-i-H--—HI----.--uﬁ-n-n-.- A .




~r _ r by =
H (Fj) := {f ¢ H (T) with supp f ¢ Pj

and ”f”ﬁr(p.):= ”fllﬂr(r)} .
]

Now let us assume that the data are given with

cy(3/2)+0 (1/2)+0

(1.7) g, (T)) and g,cH (ry) , ol <3 .

Then for the boundary value problem (1.1) we have the

following theorem.

(3/2)+O( (1/2)+c

(r

Theorem 1.1 [83]: To every 9,¢H Fl), g,cH 2)

with |o| < 1/2 there exists exactly one solution u of the

mixed boundary value problem (1.1) of the form

2
_ 1/2 .

(1.8) U(z) = .E 05 sin 7 8; + v(z)

i=1

2

with a smooth function v - 1=t (Q), lof < %
Here H‘H-O (i2) denotes the Sobolev space over the domain Q,
p; = [z-Zi[ denote the distances to the corresponding

collision points Zi and Oi denote the respective angles
between the tangent vectors at Z; in the direction of Fl
and therays z - Zi'

The special form (1.8) of the solution provides
the validity of the Green theorem (1.2) and the jump

relations (see references in [83]). According to (1.8)




the desired quantities in (1.3), (1.4) can be written as

2
.9 v =] aipil/2&1-+ Gy + v
r, =l
and
1.10) 29 - -1 § NS V2 W,
SR ) IR S Xp* 9 * 9

where gj - Hz(Fz) and §2 : Hl(Fl) are arbitrarily chosen

functions satisfying the transition conditions

(1.11) gl(Zi) = gl(zi) for 1= 1,2 '
and
g,(z.) = (z.) 1f 0 < o < L or
20217 T 904y 2
gz(z) for z ¢ F2 ’
(1.12) g¥(z) := ¢ g(1/2)+9 1)

g2(z) for z < Pl

Then these functions LA H(3/2)+0(P2) n ﬁl(Tz) and
b € ﬁ(1/2)+°(r1) represent new unknown smooth densities

1]

whereas oy i 1,2 are the unknown stress intensity

factors. X; » 1=1,2 are two cut-off functions with

Xi ¥ 1 in some neighborhood of Z, which will be specified

later on.




b v————

since the system (1.3), (1.4) admits an eigen-
solution if T has conformal radius 1 we further enforce

the compatibility condition

as an additional equation whilst introducing a real constant
w € R as a new unknown that must vanish for the solution of
(1.3), (1.4). 1Inserting (1.9), (1.10) and incorporating

the preceding remarks, we find for the system (1.3),

(1.4) the final form

(I-Ky )Wy + Ryp(a;,0,) = wy(z) = % J w, () de,
r
2

+ % f o, (2) log|z-z| ds

! -1/2
Vi J Py X3 log|z-z| dsC
'y
(1.13) -
g, a8 + L[ 5, ae - §, (2)
1 T | 91 9
Ty

i
-
’1%

1

1
-5 J gg log|z-z| ds, - w
r

= Fl(z) - w for z ¢ Fz ’
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2 2
1 -1/2 1/2
Vii|%o ~ 7 L @3p; CTXg| * Kpyplwy 4 .Z aiPi" T xy)
i=1 i=1
1 1 2 -1/2
-7 [ 0o(8) - 3 izl a3 "7 x;(2) |loglz-z| ds,
Iy
+ 1 ae § 1 172, ae
T Yo + %3 7 Py i
r i=1 r
2 2
(1.14)
1 .
= gl(z) -7 [ 9; de - %— J' gl dao
Iy Ty
+ 1 g% log|z-g| ds, + w
T 2 c
T
= F2(z) + w for z ¢ Pl
and

In (1.13),

(1.14) we denote by d8 the kernel of the double

layer potential,

(1.16) 46, (z) := 532 (log|z-z|) ds

Note that

arg (z-z).

z

d9 is the total differential of the angle

shaationsdtnet o sn e N e,

PRV WS T
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The mapping properties of the system of integral
equations (1.13) - (1.15) are essentially based on the
mapping properties of the logarithmic integral operator on
a part of ', namely on Iy . We find that this operator is

bijective in suitable pairs of function spaces.

Besides the explicit knowledge of the exceptional
functions we shall also need properties of the logarithmic
integral operators on other parts of I'. To this end we

define

34

(1.17) Vy(z):= ~ [w10g|z—cf ds, for z ¢ T
r

and

for z ¢ Pk; j,»k=1,2 .

1
(1.18) Vyb(g):= - = f vlog|z-z| ds,
r

3

For V;, we already have the following coerciveness inequality
[41].

Lemma 4.1: There exists a constant v > 0 such that

2
(1.19) (Vyq0,¥), 5 > vl ©_
11 L (Fl) — i 1/2(r1

holds for every v « H-l/z(Fl) .

We further need the mapping properties of ij applied to

the exceptional functions




LRR

_ 172 _._ 1 .
(1.20) u; = ey sin Gi , 1 =1,2

Explicit calculations with the harmonic functions (1.20)
yield the following lemma [83, Lemma A.4]:

Lemma 4.2: Let p < 1. With uy in (1.20) and % Zl/le

let us define

r Ju

1 -1/2 1

3 °11/ X1t 3y (L= xp) on Iy,
lpl =J

0 on FZ ,

o 0 on Tl '

wz '—*

aul

v (1 = Xp) on T,

Then wl,wz € HU(F). Furthermore

au
- ) .
(1.21) vy, |3 pll/2 X, * 5o (1= xz)]c BT, io= 1,2
Ju
(1.22) V,,|—=g (- Xz)] e w1y, i=1,2 and

(1.23) V11(X1911/2’ L L

1

The same properties hold for u, and 5 051/2

X2 correspondingly.

With the preceding preliminary results we prove in [83] the

following theorem.
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Theorem 4.2: Let us assume that diameter (T) < 1. For

ol < 1/2 let
2(1/2)+0(P1):= {{al,az,wo} P oay,0, € R and
b © 3(1/2)+°‘T1’} .

2 (/2040 (p ) o y(3/2)40

Then the mapping Vi1 (Fl) with

(1.24) { } o V. yi= oy, (- oL ,o1/2
. Ap,05,%, 111930920V, 11177 P17 X

a
2 -1/2
-7 P2 / X2 + Vg

is bijective and continuous. Moreover, for -2 < s < 0,
s+l

. ~S .
s # -1, the mapping Vyp ¢ H (Pl) + H (Fl) is also

continuous and bijective.

This theorem enables us to apply the approach of
182 to our more general situation. Since Vi is continuous
but not compact, the principal symbol of (1.13), (1.14)
has the form

L. ap,

(1.25) a -1 with a = (0,-1/2)

0, [

Now it is easily seen that a_ (1.25) is strongly elliptic

o

(see (I2.6)) since for « > 144 max [a;,(z,§) |

,C, =1,

2 ¢ T
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one finds the inequality

(1.26) Reqyg ar

2 2 — .
Re{lcll + ol T o+ alz(z,ﬂ)clwz}

2
|

| v

1
Q
=]
o))

%(lcl|2 + 1o,]%) for £}

2

As in (I2.7) we find coerciveness.

Lemma 1.3: To A,,A, (1.3), (1.4) and the above choice of «

there exists a constant Yo 0 such that the Ggrding inequality

(A} (U,¥),U)
(1.27)

+ ’(A (UIW)Iw) ™

2 D12 _
2 vo{I01E iy + W21 - @, w1
1

holds for all (U,y) « Ly(T,) x 3-1/2(rl) where k is a

suitable compact bilinear form on L,(T,) x ﬂtl/z(rl) .

As we have seen in (I1§3), the coerciveness (1.27) provides
Céa's lemma, Theorem I.3.1 and Theorem I.3.2 for the
immediate Galerkin approximation of (1.3),(1.4) with finite

elements. According to the smoothness of U (1.9) and

3u . . lrz .

3| (1.10) we find the following lemma corresponding
1

to (23] and [27].

Lemma l1.4: Let up - Vh denote the Galerkin solutions with

regular finite elements, m > 0, to (1.3), (1.4). Then one

finds asymptotic convergence as




491

(1.28) [[v - wplly (1, * ”%% - wh“ gte

Sog Tl h_(t+2€)“%%”ﬁ

(r,) -€
2 (ry)

with any € > 0 and -1 < t < ~1/2. The constant c_ is

independent of U, h, LI and 79 but may depend on e.

without special treatment of the singularities
this estimate cannot be improved. Thus we need to use a
finer analysis of the integral equations (1.13) - (1.15).
Defining the space of new unknowns by

(1/2)+0

(1.29) W = {{agwiog ot ager, wek, ooc /B,

(3/2)+0 .
W, eH (Fl). i=1,2

we have the following theorem [83, Theorem 2.3 and Theorem
2.4].

Theorem 1.3: The mapping defined by the left hand sides of

(1.13) - (1.15) is an isomorphism

(/240 L g (/240 0y g (3/D %01y g o, p(3/2040

) ¢ F
for any [of < 1/2.

The proof in {83) is rather involved using (1.27), Fredholm

theory and classical potential theory.

--*----lll::::::;;;________________._.__‘_.r__
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Restricting Theorem 1.3 to subspaces one easily finds the
following theorem:

Theorem 1.4: (1.13) - (1.15) defines an isomorphism

(1/2)+c (3/2)+0
O

W

"o > F

where

1]

(1.30) WO : {{ai,w,q:o,wo} € W]wo(zi) =0, 1= 112} '

= -
(1.31) F, := \{Fl,Fz,B} ¢ FIF (2;) + Fy(z;) = 0F .
In order to apply the Aubin-Nitsche lemma to the
system of integral equations (1.13) - (1.15) one needs a
formulation which takes care of the stress intensity
factors also in the case that the singularity functions are

contained in the respective Sobolev space. To this end

1
1

of generality) that diameter (I') < 1. Then the equations

we multiply equation (1.14) by Vv, assuming (without loss

(1.13) - (1.15) take the form

(1.32) (1 - K22)wo + Rlz{ai,¢o} = Fl -w o,

2 2
1 -1/2 -1 1/2
(1.33) 95 - 3 i£1 @ip T Xy + Vg Ky Wy i£ @;pi” % x3)
ol
Vll(FZ + w)
2
1 -1/2
= - 2— 'zlsioi / Xi + \‘yo [
i=




(1.34) ! [%o -5

I

(N
e
Q
(=
©
[ |
—
~
N
>
lp. |
[o7]
(]
]
(v o]

Wwith the function spaces ) .
oyl +lagl+liogll o for o<t
(Fl
(1.35) 2° := {ai,¢°}ll|{ai,¢o}ﬂ T 1= .
z 12 2
||¢o-§.z a;p; Xi” for t<0
k 1=1 gty

the desired shift theormem takes the form [83, Theorem 2.5]:

Theorem 1.5: Let -1 < t <t +1<2, 1#-1, 1 # 0. Then

the system (1.32) - (1.34) defines an isomorphism in

t T
H (Fz) X F (Tl) x R.
The proof rests on Theorem 1.2 and the mapping properties

of R and sz .

12

§2 Improved Galerkin's Method and Galerkin Collocation with
Piecewise Quadratic Functions

For Galerkin's procedure we use the finite elements
(I4.7)%(I4.8) with m = 2 for the smooth parts w, and ¢° in

(1.13) - (1.15). For the collision points Zi we require

(2.1) z; ¢ {z(3*h)[3 = 0,1,2,...,N}

For convenience let us introduce the following two sets of

indices:




(2.2) 1, := {j|0 <

A
J.
| A

I, := {jlo <

A
.
I A

N uj[rz Z 0}

Now we are in the position to define the subspaces on

', by

2

(2.3) H(Ty) = {3 = ] Y-U-(t)lrk} 2 =1,2,

and

1
[
-
o
~
~

(2.4) By (Ty) == (X = 7] viky (B) [p fAp(zy) = 0, i
3:IQ 3

In order to formulate the modified Galerkin method for

(1.13)-(1.15) we first approximate the given functions

gg‘ by ggh “ Hh(rﬂ)' ¢ = 1,2, requiring

- (2.5) for all j ¢ I

(gyprts) = (g, rHz)
Lh'"t5 L2(I“Q) 2P3 L, (T)) 4

Then élh € Hh(r2+l) with I'; := T'; are chosen arbitrarily
satisfying

ng(zl) = th(Zl) , 1 = 1,2 ’

e.g. by linear functions of t.
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For the smooth parts of the desired solutions

we choose the approximations

(2.6) w_, = ] quj(t) with w, (2;) =0, i =1,2,
]eI2
Yon = 1 Bjuj(t) with ¢, (2;) =0, i =1,2 .

jeI,

Now the Galerkin equations for (1.13)-(1.15) read as

1
[ 0+ 2 [ s ol o,
'y

(2.7)

1/ -
;J gzh 109|Z_C' dSC
1

1
- ;f 954 log|z-g| dsc - w Xh ds, for all Xh € ﬂh(rz) ,
r
2

Mtncenbin it oottt ottt ot st




T )

436
1 12 . 172
T %%h " 7 E %iP4 xj (&) log|z-x| dsc
Iy T
1 ¢ 1 1,2 -
+ FJ wop, 46 + izlai ﬂf 0y" “x; dorE, ds,
Iy 'y
(2.8)
1 .
= f 91n (2 nJ 91n 49 - nj 9p 48
r r
T 1 2
+ L d,,. log|z-z| ds
7| 92n ~°9 z
My
+ 1 9., log|z-z| ds, + w}Z, ds
m 2h g z “h v
Ty
z i 5 -1/2
for all Eh o€ Hh(Tl) and Zn Py i’ = 1,2 ;
(2.9) 1 % 5,07 % las = -| §,, as ds = B
y Pon T2 L %P5 Xy 92n 9an 98 = B -
N 'y Ty

For an asymptotic error analysis of the improved
method (2.7)-(2.9) we need the approximation properties
(I3.15) for u « HS(Pj), we H(Ty), 3 =1,2, m=2as
well as for u ¢ H*(I)n ﬁl(rj) and u ¢ #,(T;) and also !

the corresponding inverse assumptions (I.3.16). In addition

we need for




the inverse assumption

r-s-¢ ” ¥

(2.10) |y Mh

h”zs = h”zr
with -2 < r < s < 2 and € > 0 if s < 0 and r > 0, otherwise
€ = 0. The proof in [83, Lemma A.5] 1is not complete.
The complete proof can be found in [25].

With (2.10) available, a simple modification of
the results in [83)] yields the following error estimates
[50]:

Theorem 2.1: There exists a meshwidth ho > 0 such that the

Galerkin equations (2.7)-(2.9) are uniquely solvable for any h,

0 <h<h, . For decreasing meshsize h + 0 we have the

asymptotic error estimates

Il 10

1

. Ja ~a;] + llogp- ¢’0”Ht—l(r + v~ voll ¢ + |o-w]

(2.11) l) H(T

< c r-t-¢
< h “gl”Hr(F )+ ”gZHHr_l(I‘

1 2)

for 1 <t <rc«< 2 and any € > 0




2
~ 1/2
+ Hvoh—vo + izl(a. “i)oi AidHt(T2)
r-t-¢
< ch 1Rl + |lg, |l
Lout () 2wty

1

for -1 <t <r < 2, t <1 and any € > 0 if 1/2 < t < 1

and ¢ = 0 if -1 < t < 1/2 . The constant ¢ is independent of

hy ¢ + vy + g v $5y » Vop and &, but may depend on e.
Remark 2.1: (2.12) provides an explicit error estimate of
order hl_€ with any € > 0 for the stress intensity factors

if 91,9, are given smooth enough, e.qg. gy¢ Hz(Fl),

g, -« Hl(Fz). On the other hand, the highest possible order
in (2.12) is h7%, that is two orders higher. Then

t = -1 + ¢ and the corresponding norms on the left hand
side of (2.12) are rather weak. However, the estimate
(2.12) yields inner local estimates for the corresponding
generated potentials (1.2) in Q with respect to any local
norm, i.e. local super approximation of order h3—C in Q

(see [50]). This result suggests to improve the accuracy

of the stress intensity factors by an additional fitting

within Q. Instead of fitting, the computation of the

‘.‘ A ~ . .
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J-integrals via our approximation of u also promises an

3-¢

h approximation of the stress intensity factors.

For the numerical treatment of the Galerkin
equations (2.7)-(2.9) one has to evaluate the entries of the
stiffness matrix on the left hand sides and the weights on
the right hand sides as well as of (2.5) by the use of
appropriate numerical integrations. Note that in
(2.7)-€2.9) on both sides appear the same double integrals

if gl,éQ are replaced by glh’élh according to (2.5).

In the following we indicate our choices of the
quadrature formulas. More details can be found in [50].
We consider first the cases Z; ¢ (supp uj)° U (supp uk)°,

i.e. away from the collision points Zi‘

2.1 The Logarithmic Standard Terms

For these terms we follow (I.4.22) and use

(2.13) J f log|t-T1| u(% -3 u(% - k) 4t dt
R R

2
= + .
h“(log h wp(j,k))

with o(j,k) = |j-k| the weights WD in [37, Table 1] for

m = 2. They are accurate up to 10 decimal digits.
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2.2 The Regular Double Layer Weights

Because of (1.16) we integrate the corresponding

weights by parts obtaining

do

(2.14) J u(% - k) f u(ﬁ - 3) g 4t dr

t .
= - % J u(% - k) {p'(H - ])OZ(T)(t) dt drt
Since 1 is piecewise linear, i.e., a finite element function

in the sense of {37, (2.14)} with m = 1, we use the

corresponding three point integration formula with m = 1,

[37, (5.15)] for the inner integral, i.e.
. .__]_ ~ _ ~
(2.15) Oz(r)(j) = 17 (Oz(zj+l) ez(zj))
#2006 (34, 2) = 08_(3.,.))

6'72'%5+3 z %542

where Ej = z(j-h), j = 0,1,... and where

£.+1 -z
(2.16) Gz(zj+l) - ez(zj) = arg —%;—1737- .

For the outer integration in (2.14) we use the three point

integration formula [37, (5.21)] for m = 2 obtaining
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(2.17) [ uy (2) f uy(2) @0,(z) ds,

Note that all angles in (2.17), respectively (2.15) can

be evaluated explicitly via trigonometric functions.

2.3 Smooth Remaining Terms

The weights due to smooth remainders are of the form

{2.18) ffA(Z.c) uj(«;) M (2z) ds dsZ

4
= z(t) - z(1) t _ T
= J f 109‘-‘—j;f71F-—— Mg = 3) u(g - k) at dt .
For the corresponding numerical integrations we have used
four point Gaussian formulas (I4.20) although one also could

apply the three point formulas with m = 2 as in [37].

2.4 Weights Involving the Singular Elements

It remains to evaluate the weights if Z; is in
the domain of integration or if the singular elements

pfl/ZX

i i are involved. 1In case of regular finite elements

some of the integrals in (2.13), (2.14), (2.18) are

integrated only over regions corresponding to one of




(&3]
jon)
~o

the parts I or F2 . In all these cases we have used
four point Gaussian integration either without or with
logarithmic weight function. Let us omit these details,

they can be found in [50].

In case of the singular elements let us consider
only one of the typical cases, for the others we again

refer to [50]. Let us consider

o _1a=1/2
(2.19) Ij 1= f uj(z) J log|z clol (£)xq(8) dsC ds, .
ry Py

The cut-off function X, we define by a combination of a

piecewise polynomial and the square root function, namely

by
( s
1 for t < 5
(2.20) xy(z(8)) = L L /gue) for § <t <6,
vz (t)] -
0 otherwise ,

where v(t) is given by

3 2
(2.21) v(t) := %[%}] - %}[%}] + 8[%}] -2 .

Note that with X1 respectively v the whole method depends
on the parameter § > 0, i.e. the support of Xy - As one

of our experiments indicates, 8§ > 0 should be chosen not

, - IiI-IJ‘
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too small in size. With (2.20), (2.21) the integral
(2.19) takes the form

(3+2+1)h
1

1
(2.22) I, = f - — X, (t) log|z(t)-z(1)]
0 Azw] & *

I

il ~0

O (5%0)n

x |2(e)| at u(g - 3) dr

(3+42+1)h ¢ 4

f L loglz(t)-z(1)|dt
0 vt

It
[ Eae] 8]

=0

(j+2)h

8
+ f loglz(t)-z(t) |v(t) dt}; drt
§/2

In order to regularize the first integral in (2.22) we
introduce there the new variable t = x2 arriving at
(3+2+1)h v8/2

2
(2.23) Ij = ) 2[ log|z(x2)-z(1)| dx u(% -j) drt
=0 | (331)h

(3j+2+1)h ¢
+ f v(t) loglz(t)-z(1)]| 4t u(% - j) dart
(3+2)h 8/2
All outer integrations with respect to T in (2.23) have been
executed with the reqular four point Gaussian formula. For

the inner integrations we have distinguished the cases j > 7




and j < 7. In case 3 7 we again used four point Gaussian
formulas. For 3 - 7 we use welghted Gaussian fgrmulas with
the locarithmic weiught and 20 nodal points (see for such

-

formulas in [73]).

2.5 Error Estimates for the Calerkin Collocation

In order to find the consistency estimates for our
Galerkin collocation we collect all error terms corresponding
to the foregoina numerical 1ntegrations.

For (2.1%; let us assume that the W‘ are available
as accurate as reqguired-~tor the presented results they are
accurate up to 10 decimal digits. Thus we negloect
corresponding error terms.,

For the double layer welgnts (2.17) we can use the
error estimates (37, (5.18)] with m = 1 and m = 2,
correspondinaly, and find an errour ot order h6 for each weight
similarly to [37, (5.20)].

For the smooth remainder terms we find an error of
order h8 for each weljht corresponding to the four point
Gaussian formula. Analogously, theerrors belonging to
(2.23), 1.e. to the weiaghts involving singular elements,
are of the same order h8 each.

In crder the formulate the consistency estimates let

us abbreviate the Galerkin equaticons (2.7)-(2.9) by

(2.24) (AVh,Wh) = (I,Wh)

.« — . . 3 1 -l 2

for all W ;1= 1,2))
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and the corresponding equations defined with the above

numerical integrations by
(2.25)  (AVp, W) = (6,W) .

Then we find as in [35, Theorem 6,2] the consistencx

estimate

(2.26) | (KU, W) - (AU ,W )| < h + e(h) HUhllL HWhIIL

2 2

with

(2.27) e(h) <c + h3

where c denotes a constant independent of h, Uh and wh .
This consistency in connection with the estimates (2.11),
(2.12) implies the following error estimates for the

solution & . , V. @, &; of the numerically integrated

Galerkin equations (2.7)-(2.9).

Theorem 2.2 [50]: There exists a meshwidth ho > 0 such

' that the numerically integrated Galerkin equations

corresponding to (2.7-(2.9)are uniquely solvable for any

h with 0 < h < hO . For h ~ 0 we have the asymptotic

error estimates




50¢
T olageagl ¢ e, -
(2.28) S I |
L S TS ‘“oh "oh .
l=l L2(Il)
1l-¢
< C'th ; quH 5 + ngH 1
HE (1)) HO ()
and
(2.29)  llvgp=9o, I+ =) ch? ayll + layll
Ly (1) Hz(Fl) HY (T )

with any ¢ > 0. The constants are independent of h, the

data g, , g, and the solutions but c may depend on ¢.

§ 3 Numerical Results

The following numerical experiments have been carried out

on the IBM 370-168 computer at the Technische Hochschule Darmstadt.

For 9 we choose the unit disc with

- i, - o 1 1
ry = {z = cos 2nt + i sin 2nt | T <t<y
r, = {z = cos 2wt + i sin 27t| Loy o3y

2 4 4
Zl = -i ’ ZZ = +i .




(3.1)

U = Im /21 = —p%/z sin % 0

2

. = : _ _ 2 _ .2 - 2
with P, cOS 02 X, P, sin 62 =1 Y, Py =X + (1 y)< .
Here
(3.2) a, = o, a, = -1 .

The given data are
- _1/2 _. 1 m
U’rl- 02 51n5—02,0§02i-2-
and
U 1 . 1 1l
= = (x sin 5 0, + y cos = 0,) .
v r 20172 2 72 2 2 r
2 2 2
Largest absolute errors, case 8§ = 0.2;
Number of Gridpoints N+1: 40 80 160
error of Ul : 2-107% | 3.1073 | 3.107*
2
error of ¢, : 107° 2.1073 2.10° 4
error of aj: 610> 3.1073 [1.5.1073
As expected, the errors of ay show an order hl-E of
convergence.




Lud

For this example we also experimented with different

_ . . . . . 2T &
) = [ - . = — = .
5 in case of N+1 80 gridpoints, 1.e. 'zj+l zj] 80 0.08.
‘ ¢ : 0.2 0.15 0.1 0.075 {0.05 | 0.01 | 0.001
o = g le 5010701302078 {20007 | 107 (1077 | 3.107% ) 1073
o = 1 31073 13073 1200073 5.1072 107 | 1073 | 7-1070
< ~ L ’

! The table shows increasing errors for decreasing &,
Correspondingly the plots of error curves show that the
biggest errors are located between the boundary points
corresponding to &/2 and & in (2.20). These also increase

with decreasing ..

Example 2:

U =
(3.3) Re 2 XFIy I TTxFIy

\
o Y (x+iy) 241 l-x+iy}
J

Here

(3.4) 1, =

!/ (x+iy)2+1 _ l-x+iy
Ul. = Re V2 x+iy+1 IT+x+1y
1 l
"1
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and %H =0 .
Vol
2
Largest absolute errors, case § = 0.2:

Number of grid points N+1: 40 80 160

error of Ul : 7.107% | 107 1073

2
error of ¢ _|. : 1.5.107%|7 1072 | 4.1072
(o) F2
error of a;: 7.1072 13.1072 | 2.1072
Example 3:
(3.5) U= y? - x?
For this smooth solution we have
(3.6) 1= oy = 0
and the given data are
i, = y2 - xzir = sin2 21t - cos® 27t for -3 < t < 1 '
I ! 4 'y
1 1
iﬁ‘ = 2(y2 - x2)1" = 2(sin2 21t - cos2 2nt) for 1 t < % .
3V .. "y 4
' 2




Example 2 with 5 = 0.2 and 40 grid points.
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Example 2 with & = 0.2 and 40 grid points, plots of error curves.
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Largest absolute errors, case & = 0.2:

Number of grid points N+l: 40 80 160
error of U, : 2:107% | 3.107° | 2.107°
2
error of 9_|. : 5-107% | 6.107° 1073
‘1
error of n,i = 1,2: 6-107° 6-10°° 4.1074

In this case the errors for 160 grid points are unexpectedly
too large. The reason is that the integrals (2.23) are not

evaluated accurately enough. In this case the choice of
6

o

§ = 0.01 improved the results significantly to 4.10 ° for U,

1072 for 9, and 2:1078 for o, , i=1,2.

§4 Plane Mixed Problems in Polygonal Domains

M. Costabel and E. Stephan extended in [24,25] the
results of ([83] to polygonal curves I'.

If the smooth curve ' is replaced by a polygonal,
then it turns out that Lemma 1.3 is not valid anymore for
(1.3), (1.4). Instead one has to eliminate Kzlwo from

{1.14) first and then to solve the modified system

29U -
(4.1) (I + K -V, [5;}“ = By (9y.9;5)

2 1

22)Y)

3U
Vi1 - K21V12)(§U]r * KypKppV
1

e By (gy-95)
2




[€a)
(S}
=

For (4.1) they prove also Gérding's inequality corresponding
to (1.27) with respect to L,(I,) x ﬁ-l/z(rl) where ﬁ—l/z(rl)
needs to be modified at corner points in the interior of

Fl (see (4.2)). The proof is rather involved and needs in
particular the Mellin transformation and a local analysis

at every corner point Zi .

1) If Z; is a collision point of the two different boundary

conditions on Fl and ry (with or without corner) then
the kernel of K, vanishes identically on the adjacent
straight part of F2 . Here the Mellin symbol of

\Y - Ky1Vq5 is positive. The set of indices for such

11
Zi let us denote by IC

2) If Z; is an interior corner point of Ty with interior

corner angle Wy then let us denote by Fi+ and Fi_ the
two straight parts of Tl adjacent to Z; - If ¢ is any
generalized function on T then let w+(oi) denote the
"value" of | at the point on Tis with distance p; from

Z,; ¥_is defined correspondingly. Let R_ := {x ¢ R[x > 0}.

Now they define

Z . -
(@.2) 820 = e, o WY 2w s v, vy B 1/2(n+)}




w
s
~

Then K21V12 1s compact and Vll 1s positive definite on

nml/2 (r2iy

Using a partition of unity on Fl and pasting

.=1/2

together ﬁ_l/z(TZi) for all 2z, ') one defines H (Fl).

The set of indices belonging to the interior corner

points of Fl let us denote by Il

-

3) If Zi is an interior corner point of Ty then K21K22
. | _ .
becomes compact in L, and !1K22\|L2,L <1, i.e. I + K,,

2

becomes positive definite in L The corresponding indices

2

let us denote by 12

For an improvement of Galerkin's method one again expands the
solution about the points Zi and incorporates the stress
intensity factors and singular functions into the integral
equations (4.1) as well as into the augmented trial and

test functions. Here Grisvard's representation [33] yields

for the solution of (1.1) the following form:

_ /2wy . N _ o
U= )] a;0,77"% » sin(0; w/2wy) + ] o Re{(z-z;)log z-z4)}
1e¢1 ie I
C c
ki 3 _m 3
wy # 3o 5T wi T 3o 3"
/Wi o
(4.3) +.Z TN 51n(0in/wi) + .Z aiOl
ieI ie I
1 1
Ll 3 _ T 3
u)i # 7 ’ 'Z—'TT u)i = 2— , 2-‘"
, n/wi -2
+ 7 a0y COS(Oiﬂ/wi) + ) a;0;0]

icIZ i(,I2
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where W, is smooth. Costabel and Stephan find error estimates

similar to (2.4) and (2.12). 1In particular for smooth

1-¢

enough 9,79, they also find convergence of order h for

h3-€ with

the stress intensity factors and a maximal order
any € > 0 in appropriate weak norms.

For the details we refer to [24,25].

§5 The Mixed Boundary Value Problem for the Three-Dimensional
Laplacian

Let © be a bounded simple connected domain in R3

whose boundary T is a sufficiently smooth simple closed

surface (at least C4), i.e. T is topologically equivalent
to the unit sphere. T is divided into two disjoint pieces
r nT

and T, such that T 5 = 3l, = Yy defines a simple

1 1
closed smooth C4 curve on I'. Note that the curve y now
replaces the former two collision points Zj . Let us consider

the classical Zaremba problem:
(5.1) AU =01in @, U= gon T

In contrary to the two-dimensional problems, the asymptotic
behaviour of U near the collision curve y was not known yet.
Only for half space problems with Q = R3 one obtains the
local behavicur for y being a circle from the work of Sneddon
and Lowengrub, see [69], for y being a straight line it is

given by Eskin [26]. Eskin's local asymptotic of U is




obtained via Fourier transform and Wiener-Honf technique
using distributioas in weighted Sobolev spaces. For the
above much more general problem Eskin's approach has been
carried over by E. Stephan in [71]. Based on the formulation
of the Neumann problem in [31], Baldino forrnulated a varia-
tional approach for the integral equacions [13]. Using
complex function theory Johnson investigated in [45] for
the special case of a sphere an integral equation for the

U r

smooth parts of U and =y On . Based on [26], E. Stephan

showed in [71] the following local behaviour of U:

Theorem 5.1: If g is smooth enough, e.g. gLH3(Fl) then

the variational solution U « Hl(Q) of (5.1) has the form

(5.2) J o= u(S)pl/z(Sin %)X(()) + v

with v « 853727t (v and o . B9/2)7%(y) and any ¢ > 0.

Here s denotes the arc length on y and o, O denote the

local polar coordinates in the plane normal to Yy and T

at y(s).

Near Yy, the transformation from R3 to (s,p,8) is
regular for p > 0. x(p) is a suitable c” cut-off function
with y = 1 for p small enough. For the further analysis

we suppose without loss of generality that g is given on

the whole surface ', g ¢ H3(F). Corresponding to (5.2)

the Cauchy data of U are of the form
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U= a(S)ol/zx(p) +w,+g on I,
(5.3)

. ~2- L1~
with w_ ¢ H E(rz) and ¢, € H e(rl) .

Using Green's third identity and a suitable analysis
of the jump condition in the frame work of Kral [47,48] and

Burago, Mazja, Sapozhnikova [18] one finds the system of

integral equations:

do

(5.4)  w_(z) + %? J wo(g){gg— -1 .
; ¢ |z-t]

2

/ 1

1
+ da(s_)p
z | z-2 |

2x(o) + ;; f a(sc)o(a}/zx(ggz ] doc

P

1/2 dOC 1 ¢od%
2m

1 ( -
+ — a(s, )p X
i - |z-c] ro lz-z]
1




"on the curve vy .

do _ do .
T e N 2=
BT EVZY [Eipn—
3= . (ap X o+ wo) o ’z—f‘J do
A2 X B
) 1 " i 3 1 }
= g(z) + 5= I g() (?Vf ger i) do)
i ’ ' |

Since these are two integral equations with the three
~-1/2

and

unknowns W o and 1 we multiply (5.5) by r(z)

Yo

integrate for fixed s(z) with respect to ; obtaining the

third eqution:

1
. do. —
(5.6) ‘J 4_1{31/2”(_)[ “(Sr""“’)—l/zxmmi——‘;—l o
JNEY . g z(p,s)-¢
0=0 Y1 1
1
¢ do,
- LG IO A T AECCIOIE -GS O
5=0 Fl IZ‘QI r2
J 1
- = do do
IV, 2= | b
fl 5~1/2y g(z) + = f (_E_ 1 } do,} dp
0 { 2 r a\)(’ IZ‘C‘ Z




—

—Y

The analysis of this system of integral equations together

521

with appropriate finite element approximations for Wo s ¢o

and o again yields an improved boundary integral method.

These will be presented in {[71].
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1. Defect Correction

Defect correction is one of those deceptively simple ideas which
has been around for a long time, sometimes in disguise. Many numerical
élgorithms use this principle, which attests its obviocusness as well as its
A definitive survey has been written by H. Stetter [20] which has

I am going

power.
aroused and renewved interest in the method of defect correction.
to emphasize certain formal aspects of the method, and show some applica-
tions.

The most basic defect correction algorithm is known as iterative
improvement for linear systems (Forsythe and Moler {9]). Suppose that in
attempting to solve the linear system Ax=)b we obtain an approxircation X,
which is the solution of some cther systen ono==b. For exanmple, Ao might be
the approximate LU decomposition of A obtained by Gaussian elimination. we

would like to use the information contained in X, to improve Xy, This cen be

done by defining a new approximation Xy oy
(1) Ax, =b+ (Ax =~ Ax))

A more common way to write this is to introduce the residual

r =b - Ax
o o

and the correction
do =% = %
co that eq. (1) becomes

Aodo =Ty . ' . I

The iteration is ri=b-Axi, Aodi=ri’ xi+l=xi+di' However, the practical

]
L

529




value of this procedure iz not as an iteration but as a way to reduce the
error in one or two steps. Such a reduction can occur because we have the

identity

(2) Atx =x) = (A=A Jix=-x
-

Then feor any ccrszistent nerm

(3) i, = xfl < 0T-AT"ANfx-x_|

Thus, if A and x_ are within € of A and x, in zhe sense that

1T-A7 A0 < &, lx=-x_0l < €, <hen
o] e}

e, -xll < €2

and we can expect X toc be a better approximation than X,-
Generalizations of the identity eq. (2) are the tasis of Just
about every successful application of defect correction.
An important step forward was taken in (Pereyra [18], where the method
is called deferred correction. Suppose that we wish to solve the differential

equation
u=7¢

using a finite difference operator M to approximate the differential operator

L. If

Mu_ = ¢
2
then the analogue of (1) would be
Mul = f + Muo - LuO .

However, uo, being a grid function, is not in the domain of L. What we can
do is replace L by another finite difference operator N which is more accurate

than M. If we detine U by

() Mup = f o+ Mu - Nug

A 3l A1 s WK A 4w b -
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we have instead of eq. (2) the identity

(5) M(u -u) = (M=-N)(u -u) + (L-Nu .
Suppose that for some representative grid size h, and smooth u,
M, =Tu+ O(n") and Nu=1lu+o0(m?), q¢>p .
Then if u = u+ O(hp), formally,

M(u -u) = o(x™R(2P:a)y

and if q # 2p we can expect Uy to be an approximation of order 2p. For this
to actually work there must be aa error expansion of the form u,-u = hpe,
where e is a smooth function. In the example studied by Pereyra such an
asymptotic error expansion did exist, and the indicated improvement did occur.
Note that one way to obtain a higher order operator is to set
N = LI, where I is an operator defining a smooth function by interpolation
from the grid function. This allows greater flexibility, and is discussed in
(Frank and Ueberhuber [10]). An early application of this idea to neutron
transport can be found in [16]. There, instead of increasing the order of
approximation, certain poor qualitative features of uo are improved in u,.
The obviously attractive feature of defect correction is that with
two passes through a program to solve Muo = f, with different f's, the
accuracy can be increased from o(k®) to O(hep). Apparently, only the accuracy
requirement need be considered when constructing N; stability and ease of in-
version do not play a role. One question which does arise is the following:
Is this the best way to achieve accuracy O(hZP)? If we eliminate ug from the

equation defining uy, we find
-1 -1

=} -1 £
u, =M (2-8M")

Let
5 R
Ml = M

Ye-mh
Then the question is, is there an operator Nl’ with the same accuracy as

which in this case is O(th), such that it is better to solve

My,




(6) Nov=f

rather than

(7 Muw =°f ?
Pereyra attempts a partial answer to this very difficult question
by solving a problem which was also done elsewhere by a finite element method.
He correctly warns the reader not to draw too strcng a conclusion from the
outcome; he claims only that the comparison shows that deferred correction can
be competitive. The actual problem was
3 2y, v (l=y)
= -2 + - - .
Ueg * Yoy u” + (-2 + (1-2x)%)(e 1+ u)
- f - A - - ?
s (e + (1-29)2) (X1 4 gy o (XX g3 (2ay) )3

(exact solution is u(x,y) = (ex(l-x) -1)(ey(l'y)-1))

on the unit square, with u = 0 on the boundary. For M, Pereyra used the
standard five point Laplacian, while N was a fourth order accurate difference
operator. This was also solved in (Herbold [13]) using piecewise cubic finite
elements to define Nl’ Taking into account machine differences, eq. (7) seemed
to be 100 times faster than eg. (6). The reasons that the comparison is not
valid are: different iterations were used to solve the nonlinear equations; an
inefficient linear system solver was used by Herbold; and the error was mea-
sured differently - at the grid points by Pereyra (apparently), and by Herbold
using a much finer grid and the cubic interpolant to define intermediate points.
Before moving on to other uses of the concept of defect correction,
one warning must be given. Boundary conditions and accuracy at the boundary
must be given careful consideration. If this is not done the correction step
will not improve the answer. An example of this can be found in (Pereyra

et al. [19]).

2 The Multigrid Method

A very interesting and powerful application of defect correction
can be found in the multigrid method for solving the differential equation

Ilu=f




by means of some discretization

e

defined on a grid G

e with mesh size h. There are two parts to the idea;
first, since w approximates u up to some truncation error, say O(hp), there
is no point to solving eq. (8) to any better accuracy. Second, coarser grids,
on which computation is relatively cheap, can be used to help with the solu-
tion of eq. (8). We wili concentrate on the latter.

One starts with some relaxation procedure. For example, if L
is the Laplacian and Lh is the standard five-point difference operator, then
SOR might be the relaxation. After several iterations one observes that the
high frequency components of the initial residual are smoothed, but then con-
vergence slows down. The idea is to continue solving the equations on a
coarser grid, G2h' The crucial part is to do a defect correction on the coarse
grid, that is, solve L2hu2h = f + LZhug - Lhug, where uﬁ is the fine grid
approximation. However, the domains and ranges of these operators are wrong.

So we have to choose an operator Jih: u(gh) > u(GZh)’ and then we can write

2h 2h o 2h o}
Q = -
(9) Lopop = I T % (Lopdyuy - Iy Lwy ).

Jih is the residual transfer operator. The grid function Usy = Jﬁhui is the

correction to be added to uﬁ; before doing that we must define an interpola-

tion cperator Jéh: u(Gzh) - u(Gh). Then the new fine grid approximation is
v _ .0 h .2h o
(10) Ty = uy * Tolugy = I )

I+ is not necessary *to obtain u exactly, instead eq. (9) 1is solved by the

same procedure - do several reliiation sweeps, then transfer the defect to
grid th, and so on. Only on the coarsest grid is an exact solution possibly
obtained. Now we work back up through successively finer grids, using eq.
(10) and additional relaxations.

Let us change notation, calling Go the coarsest grid, Gl the next finer
one, etc. The basic cycling algorithm 1) represented by the sequence CN’ where

Cyq = GyOy_y -+ G0y -+ Oy




The full multigrid algorithm would start on the coarsest grid, as follows:
Co’cl‘CE""’cH' The sequence must be terminated according to some error test.
Brandt uses higher order interpolation (cubic if L is O(h2) accurate) each
time a new fine grid is started.

How good is this? We can measure this by defining the relative
efficiency as follows: Let p be the error reduction or spectral ra?ius‘of
one iteration, and let W be the work of one iteration. Define r = ;ﬁ%ﬁi The
larger r the better the scheme. Suppose we measure W in units of the cost of
one relaxation on the finest grid. In one (admittedly easy) example Brandt

observes

| i
Basic cycle: r = L£§7§§2L = .52

In the same example the full algorithm reduces the error from .25 on the
coarsest grid to .001 on the finest grid in 5.33 work units. This means

Full algorithm: r = 1.67
That is, in this case at least, the full algorithm is 3 times as efficient as

the basic cycle. On the other hand

- lﬁn(l-O(hQ)[
T 1

SOR:

The remarkable thing is that while TsoR +0as n~+0, T\ is asymptotically

independent of h. This is proved in varying degrees of generality in (71, [12],

(3], and [2].
The proper formulation of multigrid seems to be due to Fedorenko
[6] and Bakhvalov [2], going back to 1961 and 1966.
Multigrid works as an acceleration of the original relaxation, and
it is instructive to re-formulate it this way. I need to simplify and change

the notation. First let

J = Jﬁh = residual transfer
J = Jgh = coarse to fine interpolation
Q= L2h = coarse grid operators




The relaxation sweeps are based on some splitting of Lh' say Lh = A-B.

o
If we start with some W and do m relaxation sweeps, according to

avt =Bl s, i=1,....m
Then
m o]
. +
W Alw H2f
where
- -1_.\m
H = (A™"B)
H, = S i SIS S P
Now then, let
(11) vt = B v + 1 F , v° arbitrary

1 2

On the coarse grid we have the intermmediate step

Qh = Jr + (QJvl - JLth)

or
q = Q‘lJf + Jvl - Q_lJthl

Then we set V& « v + 3(3 - gvT) = v& + 3(Q Lo - Q‘lJthl>

- 1
= vl + JQ lJ(f - th )

This new value of ve then starts the next sequence at relaxation sweeps.
Thus, the complete iteration is, assuming exact solution on the coarse grid,
is
(12) v aw vl e oghoe - pvhl e B
1 b 2

Note that this is consistent: if le = f then v = Hlv + H2f » th = f, This

also shows the absolute necessity of transfering the defect to the coarse

grid. Let

C = Hl[I - JQ'lJLh]




. N
Recall thnat the efficiency isr = 452%1:1* , where p(C) = spectral radius of C.
It has been proved in varying degrees of generality that there exists o in-
dependent of h such that 2(C) € 3 <1, even for the completely recursive
algorithm. A very neat heuristic estimate of r has been given by Brandt {37,
a3 follows: Let L be the smoothing factor of cne relaxation sweer. Then after
all the grids have been visited all the frequency compcnents have been reduced
by uz, i.e. p(C) = u®. In two dimensions the work, relative to the work of

one relaxation sweep is

, 2 1 |k Ly
{13} W= +( 2y 4 (X + . = 20
(13 W m (l ( 5/ ( 2 ) . ) 3
!bnm‘
Sor = —— . This has proved 0 be very reliable in practice.
m/3 P
3.  Higher Order and Multigrid

Brandt has alsc shown how one can combine multigrid with the use of

defect correction to get higher order accuracy. If Nh is the higher order

difference operator then the coarse grid difference eqguation becomes

_ n . Zho  2n _ o
Loptop = 9y £ % [Lpydy u ~ 07 ],
Brandt uses
2h . _ L 2n 1. .2n
Ty %39 I -3 lady

This is formally fourth order accurate if Lh is Qnd order accurate. This is

called tau-extrapolations. The coarse grid equation becomes

_ .2n 4 2h o .2h. o
(14) Lopion = Jp T+ 3 [Dpdy wy = 9y Ly g,

Here is a sample computation. The test problem is poisson’'s equation
on a rectanyle with Dirichlet data. Lh is the standard five-point operator,
J is injection, and J is linear interpolation except when beginning a new

fine grid, at which point cubic interpolation is used (with or without tau-
extrapolation). The only change in strategy is to use eq. (1bL) instead of
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eq. (9) the first time the fine grid residual is transferred to the next

coarse grid. This is schematized below and the errors are shown.

Error
Grid Usual Tau Ratio
0
1 e e 1
Start 2 with cubic interpolation
from 1
2 relax
(15) -
1 (9) -
0
1
> .32e .2e 1.6
Start 3 with cubic interpclation
from 2
3 relax
(15) -
(9) -
1
2
l .
2 “;
3 .T2e .02e 3.6 :
L
4 .017e .0019e 8.9
5
5 .00ke .0002e 20




Altnough *he accuracy is considerably enhanced by “au-extrapolation

w

0
it is not four+th orier, since the laTter woull zroduce ratios increasing by

factors of four. The reascn for the loss of accuracy i3 that eq. (1&) is

not solved exactly, that 15, instead of inverting L. <the multigrid

~nus,

| “ln’
?

- N . - ; - .

Te i, =01 = 0L J=30N Jiu, -2+ L =-00
, Inoton “2h" h''™h 2

+ (C - M .
(..42h u2h)u~l
The last cerm can cte raxuc2d to O{h'p\ only ty increasing the nurmbter of

“au-2xtragoiation jhist Jlescribed, the more accurate tau-extrapolaticn, and
sclving H%uq = { az efficiently as possible.

Nicciaides 17, and Hackbusch 11 have observed that if instead
of using ¢ = L., , we set
I N
[ \LS) @ T ovay v
~ " Fa)
N - T oy P - . .
then I - J3 "JL_ annihilates the range of J. In addition, the residual of

the corrected solution vanishes when transferred to the coarse grid, that is,

i :r\'l-r i o) =
+L’q U<f‘L.u)]-.]—o .

T
‘J‘“‘n<u o) .

Alcouffe et al. [1] found that (15) was necessary in order to obtain the

predicted convergence rate in a problem in which the coefficients were dis-
continuous and Jjumped by orders of magnitude.
The mappings J and J and the relaxation splitting must be properly

chosen for all this to work. This still seems to be an art, as can be seen

1 in some of the applications to physical problems described in (1], and (5],

which will be presented later. Here is a simple example., Take




-2
(Lyu)y =0 %(ug,y -2uy + 1y )

A~

Let the even points be the coarse grid, and let J be linear interpolation.
Thus

u,, 1 even

l’

(S'u)i =
H(u

+u , 1 odd .

i+l i-l)

Let the residual weighting operator J be defined by
_1 1 1
Gy =guy g+ 39 * Ty »1even .

Then it 1s easy to see that

L2h = JLhJ

and

(15a) J=3=(é—

if (a,b), = Zaibih .

The reader might turn to section 6 to see how the averaging in
eq. (15) arises naturally in a problem with variable coefficients. Egs. (15)

and (15a) are also thecretically useful, as in [12].

5. As Application to rFluid Dynamics

The multigrid method has the ability, in principle, to take an
existing finite difference code in which relaxation iterations use a large
fraction of the running time, and speed it up considerably without making a
major revision of the code. To see if this were really true in practice, my
colleagues Joel Dendy and Hans Ruppel, together with Achi Brandt, incorporated
the multigrid algerithm into the SOLA code.

Some of the results of this work, reported in [1], are given here,
together with scme additional information given me by Joel Dendy. SOLA solves

+he incompressible Navier-Stokes equations, which are

-}
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v+ (V_-#p)_' + <UV) =g + V[V [N
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w = J ao= 0
1 \
ERN | E-
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|
- 3t
o= Q, == 9
Filgure 1
with boundary conditions shown in Fig. 1 The difference equaticns are

semi~implicit, as follows:

(16) L (ur.l."l -um'l ) +

Ax i,Jd i-1,J
( n+l At [ n+l
(17) B 5P Ex \Piel,y

I
)
=

n+l At [ n+l
i, " 8s (pi..m

o b n
The quantities a2’ , and b,
i,¢ i,J

1 [+
Ag i,

_ pn+l
i,d
n+l

RS

37 71,1
_ .n
T8

)

i,

1l n+l ) =0

contain all the information from the previous

time step; their exact form is irrelevant to this discussion. The grid

structure is shown in Figlure 2.




ui—l"j - -+ ui’J Ay

Figure 2

Yote that by using eq. (17) and eq. {18) to eliminate the

n+l n+l

velocities u and v from eq. (16) we have

(19) th =c

i

where Lh is the five point Laplacian. SOLA solves this by an iteration on
7,4, and v which is equivalent to successive over-relaxation for eq. (19).
This iterative procedure was maintained in the multigrid implementation,

the only change being that a residual appears in eq. {16) on the coarse
grids. To keep the proper relationship between velocities and pressure, no
residuals are introduced in eq. (17) or eq. {18), and these equations are
used to define the corrected fine grid velocities once the pressure has

been corrected. The grid structure and the relation between coarse and fine

grids is shown in Figure 3.
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3iscussed velow. The cperator J (crerating only on the tressures
fined by bilinear interpclaticn. The efficlency prediczed Tty e:z. (13 was
achieved. The procedure was ncn-adartive, that 1s, the itersticn was started

cn the Zinest grid.

(o0

. e .
p reguire that a, , and ¢, ,
il XV adl 1Y)

vanish at the sides and <op respectively., This Insures that tke suc over

The boundary conditions on u, Vv, &n

tne zrid of ¢, 3 is zers, whick is necessary for (13} to have a sclution.
-

Because of <he unegual residual weighting thics ccnsistency conditicn is

not satis®ied cn the coarse grids, except in the limit, This causes 10O prec-

-

tlem since exact solutions are not sought 2o the coarse grics.
Egual weigh*s at the boundaries caused a 14% less in the efficiency

predicted by eg. (13). The success of the unequel weigzhts used Yrings ur ccome
interesting points, although we cannot rrcvide a clean arguzment Ior tkat

-
1

success. The actual weights are shown in Figure 4.
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Figure b

Note that the weights in the coarse cells at the boundary do not add to
one.

Let JO be the local sum of the residual weights; in Figure 3, JO
is 1 at interior coarse cells, 1.35 at corners, and 1.17 at the edges. 1In
[3,5] a heuristic argument is given tc show that the effect of the iteration
matrix C of (12a) is approximately Il-JOl when applied to the smoothest grid
functicns, therefore if JO = 1, C will surely reduce the smoothest part of
the error. It seems that all that is really necessary is that |l-—JO| not
be too large.

The weights are a bit mysterious, but they can be obtained by a
more or less convincing argument which we present for the one-dimensional
case. Suppose the differential equation is Peyx = f, with P, = 0 at the

boundaries.
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3 cated weights.

The authers o7 (S, also implemented multigrid into the SOLA-ICE
code, which is a compressible flow version of SOLA. This was not straight-
forward. Difficulties were encountered on the ccarsest grid which could not
be overcome by icing a direct sclution because of the pezuliar nature cof the
SOLA-ICE algori+im, the latter having been dictated by a desire to maintain
an iteration similar to 3CLA. The authors finally hit upon a technique of
shifting 1 wnich improvel both the original algorithm and the multigrid
version to the roint that the correct convergence rate was obtained.

We shoull point out that it is possitle to take a more natural
approach (from tne point of view of a numerical analyst) to the sclution of
semi-implicit difference schemes. The nonlinear difference equations can te
solved by Vewton's method, however, it is important to make the right choice

. . . . . - -1
of variables about which to linearize. TFor many problems p =€ (o—oo), €<<l.
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In this case linearization around p produces an ill-conditioned Jacobian,
so that one should linearize around p. This procedure is followed in {15]
vhere a difficult two-phase flow problem is solved. Since the method also
involves relaxation oscillations it should be possible to apply the multi-
grid concept there also.

6. Neutron Diffusion

A difficult neutron diffusion problem was done successfully by
the multigrid methoed in [1]. The problem is

-V e (DVu) +Oou=¢ .

Some sample configurations and boundary conditions are shown in Figure 6.

u = :-l—u =1
Yy 2Dl uy' U
D =D, p=103 | pae1
=1 } 1 =1
u s F=—u D=D =i u =0 u ===
X 2Dl > ux 2Dl u X X 2D
D=1 D = 10°
=i u =0
U, ® 3o y ©
-
(a) Dz/D1 ranged from 1078 to lOL
(b) Four Cormers
D=1

—

D'lO3I

—

(c¢) Staircase

Figure 6




Because of the large Jumps in the coefficient D there is no easy
way to define the coarser grid operators, therefore the authors used eq. (1%5).
This, together wiEh eq. (15a), at least reducesAthe variability of the rrobler
to the choice of J. It was observed that with J taken to be the bilinear
interpolation operator the multigrid iteration either failed to accelerate
the lexicographic SOR iteration, or even failed to converge at all. We can
gain some insight into this problem by considering the one-dimensional

problem

d du
d.x(Ddx) =1
where D is a step function with Jjumps at the fine grid points, as in

Figure 7.

“Doi_1/2 7 Daieygo

i -
t t

2i-1 21 2i+1

Figure 7

The fine grid difference operator {away from the boundaries) is defined

by

2v -
(h “h“)i = Diar/al¥er muy) = Dyg plug -y )

Let the coarse grid consist of the even-indexed grid points. Consider the

following method for solving

(Lhu)i = fi

o
First, choose anything for the even indices, say ugi, and define Usigy by

relaxation; thus,
o
(Lh“ )21 Tty

o]
(Lh“ )2i+1 = fhie1

L —
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Next, eliminate the odd variables. If we define L2h by

(Lzhu)i R T (Lh“ ) 1’ (Lh“) it 12 (Lhu)i+l

Dy 3/2"0i.1/2 D;41/2%0543/2

for i even only, then

D. D
-1/2 i+1/2
(20) (L u°). =r, + = £, +f, + £,
2h i i Di-3/2+Di-l/2 i-1 i Di+l/2+Di+3/2 i+l

and the left side involves only even indices. Now, solve exactly the coarse

grid correction equations ,

(Lzhv)i =-r, , 1 even

Then if

o
= + i v
ui (u V)l s 1 even

and if Us, i odd, is defined by relaxation, we will have obtained the exact
solution.

The following is easily verified. Let the bracketed terms in
eq. (20) define the residual transfer J. The relaxation at the odd points
defines an interpolation operator 3, and J = 3T, and L2h = JLhB.

This can be summarized by the statement that the appropriate choice
of relaxation strategy and interpolation J produces the exact solution in one
iteration, assuming exact solution on the coarse grid. Since the coarse grid
can be treated in the same way, exact solution can be obtained in one full

cycle. Furthermore,

2 _ Dis1/2Pi43/2 Di _1/2P5-3/2
Blondfi =5 +D (j4p-uy) = g5 = (uy-u .
i+1/2%Pi+3/2 1-1/2"i-3/2 i-2)

Apart from a missing factor of 2, the coefficients are the harmonic averages
of the D's, which are well-known to be the precisely correct averages to use.
While none of this carries over to two dimensions, it would seem reasonable to
try to stay close to this formulation without constructing an algorithm that is

too complicated. The method arrived at in [1] does just that.




Consider Figure 8. Suppose the coarse grid points A,B,C,D, have

peen found. A feasible procedure would be to define the interpclant at

1,2,3,4,5, by relaxation of the fine grid difference operator centered at
each point. Instead, the authors chose to lump the operator centered at 1
into a 3-point operator involving A,l, and D and then used that to define
the interpolant at 1. That is, if the operator becomes au, - bu1 + Cun,
then they set w = (a.uA + cuD)/b. The corresponding interpoclations are done

at 2,3, and 4. The full difference operator centered at S is then used to
P

A ~m
dafine u.. With this definition of J the authors then took J = J°, and
Am/
Lc = J'L.J, where L, is the fine grid operator which will in general itself

have been defined in this way from still finer grids.
The computational results are guite Impressive. For scme of the
fairly hard problems the error reduction (spectral radius) of one cycle is .1
2 e

with an efficiency matching the efficiency of the standard multigrid

algorithm for <he constant coefficient Laplacian.

bt 5 3
® + ©
Figure 8

The method of interpolating from the coarse to fine grid described
above recognizes that an elliptic difference operatcr defines a natural inter-
polation. Elliptic interpolation has been shown by J. M. Hyman [1L4] tc be a
practical way to advance from coarse to fine grids when solving Poisson's
equation. A very efficient checkered relaxation form of multigrid, presented
in [16] also exploits elliptic interpclation. However, this would not work
here because we are not dealing with the five-pocint Laplacian.
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Galerkin-Finite Element Solution

of Nooliacar Evolution Problews
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I. Introduction

The generalized Galerkin method for the solution of ecvolu-
tién problems ceasists of the following steps: 1) We formulate
the given problem in a variational form, 2) We discretize the
problem in space, 1.c., we consider a family {Vh} . 0<lx<lﬂ
of finite dirensional subspaces of the basic Banach space V
such that lim dist (Vh,v)zo V ve \/ and in Vh we define a

-~ 04
semidiscrete solution by means of a discrete analog of the va-
riational fornmulation deternining the exact solution., 3) To com-
pute this solution means to solve a system of ordinary diffe- |
rential equatiens., Solvipg this system numerically we zet a
cconpletely diseretized approximate solution. In cose of nonla-
nexy problers the application of lincar multistep nethods has
advanta.ge in that we are often able to linearize the resulggng
scheme without lowering the accuracy. We restirict onrselv;éqkb
-
a natrrow clas- ol linecar waltistep methaods: to A-stable methods,
These metheds Load e Qucuud;t.onal!y stable xchewes fulfilling
certarn cncory 1noynatities, Both those proporties are dexsirable,

the otter ooy aons a o slanle way for the derivataen of apriori

- '
.- >
. 3

vrror eclarmgtes,

Fir=t ve descerih? a2 clese of Lincar sraltistep methods con-
siydered v the ~sequel, Then we deal wath the nonlaincar heat
cquation an oLt lee tane=Teno pient Navaersstetien coustaons,
ln both cascs Joincacizftien b noss bl r)ihunt tawerany the
ACCUF 0y . o lor I e Ly e s rere debag s the sola-

tvon ef e v attonary penlyne e i cige fyeldys, Fioally, we

rention o resalte conecrarns o aenliocar vperholre egquotion,




11, A-stable Linedar Nultistep Methods

The chuaracteristic polynomials of onc-step consistent nmoe-

thods are

(1) Qle) = -4, T(E)=(4-0)g ~ ©.

As is well known (see La.bert [1]) this © - method is A-stable

1ff

() O <

P~

4
If B« % the metiod 1s of order 1. @"'E gives the tra-

pezoidal rule which 1s of order 2. Lahlquist [2] proved that

A-stable nethods cannot be of greater order than 2. Therefore,
concarning k-step A-stable metods with k >1 we restrict our-
selves to two=-step muethods ol order 2 with S ’G& having no
cormon ruot. These metnods, norualized throuagh .Z_/3&= 4 , are

j-0

given by

-’q(%\:e{‘lgl#dﬂg*o“()) 0,\47- 4“9.(*(1) d\oz“'{*O(.'l .
i
{3) T(%> = ﬂqgl; ﬂ\‘% 4 /50) (B‘z 6_1-\.*‘7_“)- BQ_} /SO’:—LNCXQ*/’))Q )
1o A i
cg 2 gy S>> gdg

.




§

r
)

Remark l. Among A-stable methods those which aro strongly

[Sal
Sl

stable at infinity (i,c.such that the roots of 6‘(%) lio 1n
the interior of the unit disc) are preferable when solving
stiff cquativns., In Zlamal (4] there is introduced a sub-class

of (3) given hy

n

o) :—L+mg"~w§ R

W €
(4) 0« Vg

4 L, 4 ] i 2
Gy = gAY UV g g (- E s 3 (A=)
and having an optimal stability at infinmity. For methods (4)
abtsolute valuzs of the error coastant and of the roots of &

are

(5)  1Cl=g v 1V, ‘%«‘m\za‘;ﬂl'

Yie canaotl manittze hoth o guentitios samualtareously. A reasona-
.. . .4 . 4 .4
Llo corpreraase 34 Lo talie s 3, thin XC \~ q, \%4.1\ =7
Let sis ¢ hace tao MA-statle @ -netpods, 1,c. to methods
1 . . -
(1) wi1th O < o . Let '/ bte a vector spate and b(u,v)
e @ bidincar svaaetrie fornm on Vx Voo e assume that Biu,v)

5 noenneeTrtivey 1500

() 0 ¢ /py(u‘&\\‘i‘\m\l Vue V.




1
r\:)
.
!
-
o
s
3
-
S
1
K
e
[

m, 20O
Hence
T, - A .m { [ ey ? L‘]Q
(s) PPN G EVUAT I RV DD
)

I1f we apply the © -method to the solution of

\ d» , >
(9) e Mx, W@ sx,, AZO,
o 1
we et for the discrete solution {anl from (8) (V=R",
[ X o}
LIX, vy
2 2
xm < xo , T E 1,2, .. o
2 2
The su=: property has the exact selution: a7 (t) € <7 {0} for

2]
t >0, Iite cnersy anequality C3) (wath V=LT S0, b{u.v)=(u,v)L2(§1‘)‘
was uscd Ly noeny aguthiors to derive bowids for the error of ap-
proxit.te solatron to peratolic eyzitions,

The eneroy encqualaty s prescrved Ly schemes (3) as

well, 1t was proved 1a 21 .-a1 237 1m a little different form.
Ye set

;o 2

o n. '
(10) ST N TNY WY S0 Aiumre)
30 N E-.(x 3

atg donrot s

) . N
(1) N O R S ()




An easy conputation gives

6™ 4 (r v U™ = (o= U™ PR A (ol 4Y e S T T -
(o lota-t) s S I Ftume u™hy - fu™ ™) +

f -5 ™ 2 u ™ w™ )

Therefore
R T TP R AR - P
T Lk (dy 1) + 9] 1?('4”*, U™y - Rusuty,
(12) IR (U unl € Clety Iy 1uelt e tuty?),
As

(oky + d)1 L L ST um -

J moy 2
. ‘_(‘ fan” . - 4 = .
—Qtdr\b('{:“«)*‘ Jljv\‘k ,,,\ ) (d -,()Q*_d. \u \ +
1
o T ()~ E ™ (el O S ™
k’{r 4) ¥ O
it follows '
- . (Y-'r)* o'l A n
4
cld,, 8= 7 (—m:—«“:,cf >0 .

e vwiate the rnoguatataies o8) and (13) 1n a joint form,




Let
(14)
where
A
d\,\-?'t) d°=‘4\ /5424-@) /Bone, egfi ]f l;:l.
(15) )
haz 4-0kq, do= A4y A= g +hg=273,, A= 7 -kt By,
> 4 i e Lo
Ade 2%y Pgdgdhy 1If k2,
Then it holds
) Bed o m R
(16) lu™1" € C 3 Tudt s CQZ S, wzk (k=1,2);
.‘O mao
herc C,,C, are positive constants depending on the coefficients
d%‘/Rﬁ only,
Frow (16) it f{ollouws that the approxiuate solution of (9)

the incqualitv

szb'

3:0

satisfies

rméi.

Another application of (16) concerns the problem

d.x 0
(\ = Moy d,w =const,d &0,

(17) j,txl oLd”‘ w'x =0, x(0)= Mo s

We write (17) as a system

A dx 2
18 = —_— - -
(18) ‘—%lt < : Wy (LM)
(15) ond maltiply the first cqxnnti(ﬁx by

the method

we apply




Z /53,‘%"‘ -and the second »by 2/33 meq Using (16) we ob-

ta1n
- 2 £- 2
(19) O Mo + &m £ G 2 (w? “h"“i)’ m A
4o

Remark 2, It is easy to see that if a linear multistep
schene with an arbitrary number of steps and of arbitrary or-
der of accuracy has the property (16) then the method is A-sta-
ble (in fact, one proves that the method is A-stable in the sen-
s¢ of definition by Crouzeiy-Raviart (6] » P.10; however this
definition is equivalent with the classical Lahlguist defini-

tion - see [G]; p.4l).

II1. Nonlinear Heat LEquation

l. Let RN RY ve a bOunded domain with a boundary O S1,

x=(x1,...}xy) and { (x t, u)} be a uniformly positive

th‘\
definite natrax. Furthgr. the coecflicients kiJ(x.t,u) are sup-

posed to Le uniformly Lipsciiatz continuous fuinctions of te {0,T]
and of ve{~o0,00! and the righi-hand zide f(x,t,u) a uniformly

Lipschitz continuous function of ueg {-00,0}, W¢ counsider the

provlen
du & A du
I} C, Z [ «A(Xtu\ ] {(Xtu) in S¢x(0,7T)
A
Ulx ity =0 on A x (0,T), 0<T < oo, |

u°(x3 in o QU

v (x,0)




More gencral cgyuations amd boundary conditions can be treated
in the same way we will now descrabe,

If the exact solution i1s smooth enough then 1t holds

Here
U - %% ) (u\vxzéﬂAvdx
ou 9
o (t, wiu s &Z JA*%(Xt w) 3—3 a—g dx

R"\§ A
H®(QU) is the Sobslev space {Me LQQQ)‘) b ue L'L(R) LRESRS rm,}

with thc usual scalar pxoduct (u Mrm Z (Du bv)\_ﬁndr»d
the norm H«Awm=(u u\q and HOGR§={&AIMG H(QXBthR’O}~
Let us consider a fumdly of fimite element spaces such
\ .
that th Ho (). The Gulerkra wethnd yvields a senmidiscrete
solution U(x,t) which for each t € <0,T?> 15 a function fron

VB, C(x,t) is uniyuely determined by a discrete analog of (21):

(220 (U, v)o +alt,uyue) = (f(xt,0), ), VYVove VY

U(x,0) = UoLx)3

t%x) is a suitable approximation of u®(x) from Vh,

2) re-
presents a system of ordinury differential cquations. Apply-
q

ing the method (15) we obtain

(Zox v, +m}‘ Ayt Um0 e -

n\,+6 )
§’°

= At

Mkp

+4 T
(@(x tm,%‘Um%),ArBO \va’ﬁ Oémé[ﬁ‘-&-,&.

or
o

20) (0 e) s alt,uyaw) = CEOotuy, o), an [0T] ¥ ve Ho (R).
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The scheme (23) being nonlinear has little practical value. We

linearize it as follows:

& . % o )
(LA™ vl s D Aaltn, UR U™ o) = Bt (fonutg 0%y, 0),

(24) T
V«revk, 0¢< m,é[g;g]-/ﬁ;
for k=1
ot 0<% U™, o<
@) t™. VAT N
t, +3At, 6-1 NBOU™- U™t et

(see Douglas and Lupont [7]),
for k=2

(26) te ct, v (B )ht,  U™e (3l YU (f-ola) U™

(see Zlamal [5]). The order of accuracy q of the method (24)
is equal 1 if k=1 and B¢ % and 2 if k=1, ©@= % or k=2,
Notice that whercas (23) with k=1 and O= & is a one-step

scheme the correspondang scheme (24) is a two-step scheme,

Remark 2. Even when (24) represents a linear algebraic
system at cvery time step 1t is not the final schieme 1n prac-
tical computations. In general, we have to coneader finite

: dioo . , v g
element spaces Voowhiich are sulispaces of lk)(gljv). R t N
{best knovn exanple; curved iroparanetric elewments), In addi-

tion, we have to compnte mass and stiffness matrices numeri-




cally. Let us denote by (u,v)h and ah(t,w;u,v) the approximate

values of

N /% a(i BU‘
S words  ng - ,ﬂ()ﬂt'w) Ax: Oxy cl )
2 g \

respectively, conmputed by a suitable quadrature rule. The f1-

nal scheuwme 18

4 e & .
(;:A:,Oo(aU )v))mwt Mgo/sécxk(t&)u U b)) =

{27)
s ot (Bt U™ o)y VeeVh 0 ms[p]- A

When poss<itle we use for the computation of (u,v) a quadrature

\]

L™ (8L g}
formula such that the (mass) natrax corresponding to (.,.)h be
diagonal. The ensincers spoak about lurping (see Zaenkaewice

(81 , p.3250,

2. We outline tie way hew to derive error bounds. We assu-

-h " . : ,
me that the fungly {‘.Y] , O<h<h, hay the following approxi-
rration property siared by fimite oleoent subspaces: to any

va- LA v .
ue H)r“'\(l) M He (92)  there cxisty ae v sueh that

ve A .
(28) Wu- u&llo + A (lu-ug”iu < C,.Jn\,1 \\u\\«w,‘ .

{i1in the sequel, C denotes a constant! not pecessarily the samo

at any (wo places which may depend on u). Ve decompose the exact
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solution in A= % +M  where §é V&‘ is the itz approxima-

tion defined LY

(29) ot u;ue) =altuy € v) V ve VM
Under some asssumptions onc¢ can prove thut
W< LA '
(30) Ul + im'ly € Ch {HquM-HMAHyM] Vte(o,T]
(see Wheeler (91 and Dupont, Fairweather, Johnson [10] ). Hence,

1% m m
it is sufficient to estimate e”"=% ~U ) g =§(tm). One de-

rives (see Zlamal [5]) that

2 : _ A .
(30 (T dge™d o), + Mtaulty, U"*-,gofst;e"“a, v)lt (¥ v), VeeVh

w0

(32) Y™, € COA™ v atY e ne™u);

(again, q=1,2 is the order of accuracy). We choose ‘\r-_z& ﬁie""‘i
in (31) and use the uniform Hl(gl)-cllipticity of the ;gsm
a(t,w;u,v) following from the uniformly positive definiteness

of the matrizx {kl\i(.\'.t,w\] , 1s€, a(t,\-.';v'.v)-z- /5“‘0'“'11 Yae HQ(SU,
/3>0. Estimating the right-hand side of (31) by

PO, € %_5\\\{)“\\': *%g\\v‘lri with a suitable O and

taking into account (32) we get (b(u.v):(u,v)o)

B : A : . -
ST a5 Ay I, ¢ §pat u% ™ CRLTAT Y T E™ L),

(16) gaves

’&'4 . + -4 . .
et e ¢35 el s COAML YT ot L hed 'y |
o o




The discrete Gronwal incqualsty {see Lees {l]]) implices

%4 . 44 0
\\@"‘\lié C{Z uez\\:‘ﬁ[/f{p s AtY] }
o

from which using (30) one gets easily the final result

-4
. . e A
(33) fy™ U™, SC [Z fad-Ubp, + K s At“f} .

§°

1V, Time De¢pendent Navier-Stokes Lguations

1. Whereas in the preceding scection we did not precise the
variational formulation of the problem we want to do it here,
To this enid we introduce some spaces of functions valucd in a
Banach space, we definge the weak or generalized derivative of
such functions and consider a certain space suitable to the so-
lution of'txme.dependent problems,

Let X be a Banach space normed by |- Ity and let
0<T < oo

For pz1 we denote Dby Lp(O,T;X) the spce of strongly measurable
functions £:(0,T)>X (see, v.g.Kufncr+JohndFuéik (121, p.107)

such that

T ]
“’?“U”(onsx‘) - { &\\{»(t)\lfdt ‘r< o i 4% Ap<coo,

ey @ L b TR Co AL e

Ry

Avetacy




By C( {0,T);X) we dunoto the space of continuous functions

f:[O,T]-* X normed by

I f’“C(EO.Tl',X) : tm] I ?‘u)“x-

To define the weak or gencralized derivative of a function

valued in a Banach space we introduce the following

Lemna 1. Let X be a given Banach space, X  its dual and
let u and g be two functions belonging to Ll(O,T;X). Then the

following three conditions are equivalent:

i) u is a.e. equal to a primitive function of g,
: .

w(t)- §’+ S%(&‘;d};, %GX, a.e. 1n (o,T),
)

(all intesrals with respect to the time are Bochner integrals;

sce, e.g., Kufner+John+Futik [12], sect.2.19),

T T

ii) %u(ﬂ k{’u‘)di : - gcg(’v\ U{Lﬂdi | \Qefb((otr)\)
O (¢}

iii) for all me X
o8 . )
Tt <M U> T < in D (o)

where ¢.,+ % 18 the scalar product in the duality between X
and X. 1n addition, 1n cach of these cases U iS d.€. cqual tc

a function of C{[0,T};X),

The proof of Leruma 1 o can he fowd in Temnan [13], p.250,

The function g of this lerma - the weak or gencralized deriva-

dou

tive of u-1s denoted by u or 22

dt

et om0 v




If uell (0,T,X) 1s a solution of an evolution cquation
which should satisfy the 1nitial condition u(0)=u0 and 1f we
find out that from the cquation 1t follows ' €1'(0,T;X) then

according to lemma 1 it holds ue C({0,T];%X) and thc initial con-

dition makes sense 1f u,€ X and if we take 1t as Liwe Haey - Mol\x=0.

t > O+

OUften, we have a different situation. Let us consider the
simple problem g—% ~hu =0 in R, “/asz:o> u():,0)=uo(x) in &
as an operator equation, Takin” -Au  in the distributional
sense we have <-Qu, $> = 249,( ’bx > 1r uell (G1) then the
right-hand side is bounded by\“AHHSLQ)‘“?“HQ(Qy‘ Hence, for
ueLz(o,T;ugm )= Nu maps LQ(O,T;}E(‘)(S\H into 1L2(0,T;07 ()

l(fl) is the dual of H;(§2>), From the equaticn it fellows
that Qi*g L (OT HY(RY) . More gencrally, let us assusnie that
there are given a Hilbert space M with a scalar product (.,.)
and norm (-1 and a refiuxive Banach space YV with a norm |-\
which is dense and continuously imbedded 1n H (1n case of the
heat equation HrLz(fl), V:H;(Q))° We identify H with its dual
space by means of 1ts scalar product. Tnen H can be identified

with a subspace of ¥V and we have inclusions

(31) Vc HceWVv

where cach space is dense in the following one and the injec-
tions are continuous, Furtherwore, the scalar product <y >
between V' oand V is an extension of (e,o)s NOW, let us consider
an operator equation u +a(u)=f with the initial condition
u(O):uO. Alu) is supposed to bhe 4 nonlincar operator from
LP(0,T;v) anto LP (0,1;v*), i"}C A, and relP (0,1;¥)),

Looking for ueLp(O.T;\') we see from the equation that

L_"__-'-_‘-——--------—dn-_..-__.ﬂr .

[P |

s A

P

[

e

~ I s ROV VS N e oy




welPe(0,T;V' ). The following lemma guarantees that the initial

condition L'(U):uO makes sense 1f we zssume u,€ H and if we take

it as limlu(td-u ] =0,
t»0¢ Y

Lemma 2, lLet I be a Hilbert space and V a reflexive Banach

space which is dense and continuously imbedded in H., Let W be

)
the Banach space W= {v!véiJWtLT;V): welf)(O,T;V’)}, l<p <00,
4 4

2

A 1«,.’ ~ 4 ) noruad by “V’“w = llVllL{\’(o\T)V\* “V’“U\)(O‘TSV\)-T".CH
wcC{{0,T)};H) and the imbedding 1s continuous. Furthermore, for
any u,vel¥W 1t holds the formula of integration by parts

t

(33) %{W\M+<v‘-u>}ovc=(uu)mr@%—(ucos\«rcoxs, O<t§T.
o]

The lewma 1s true cven in a sorewhat more general foruw
and the proof can be found 1n Gajewski+GrogervZacharias [13],

p.147

2. The clessical formulation of Jhe initial boundary value

problers to the Navier-3Stokes ecuations is the following: Find

‘ FORY

T .
a vectur funct.ieon U= Uy Xt a..,u#(x,t)) (T written as a su-

perscript denotes travspe.ation of a vector or of 3 matrix) and
a scalar functoion pix,t) =uch that

N -~
(34) '53&9‘ vl o+ z u.}-é%'\_)\* * Céulo\ v = \eb‘at\)
SR

in Qx (o,71)

(57) div u = 0,

(3~) u = 0 on OR x (0,T),




In these equations 2 c RV 15 a bLounded domayn with the

boundary 9% , X=X ueen,Xy), the vector function [T

thoe velocity of the N=dimeasional motion of a viscous im-
compressable fluid, p is the Kinemat:ce pressure, v > 0 as-
sumed to be constant is the kinciatic viscosity, j represents
a density of body foreces per unit mass and Y, is the initial

velocity. We restrict ourselves to twe and three diacasions:
N - 2.30
. o N
Evadeatly, we have to cons:ider now the spaces (LT(Q0))
v

P | SN ) . .
and {(H7¢S2 1) with the usual scalar prodact and norm whlch we

denote as in case N=l (see scct.11D):

N i
r‘_ r).
(v 0y, - Z U v,y WA, E {24\\%&«““} y Mmoo 04,

Let V be the space (wethout topology)

(40) ‘U/‘ i’\iﬁﬁ (Q(Q\/\>N ') (J\,\l,g\— H = O}

. . . 2 N : 1
The (loscres i and Voof U dn (L7(SU)) " and (HY ()Y, respec-
tively, are basic spaces an the study of the Navier-Stokes
equations, It a1s proved an Tonan 1371, P.ll an? 18, that f

SN s a Larpsehitz” boundary then
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Ha {ue (LURY; die u=03 p,m =0},

1) 1
V- {uelug (NN, din y=0}.

N

As liyl s lull, V is dense and continuously i oedded in H,
hence H and V are examples of abstract spaces introduced in pa-
ragraph 1, we have inclusions (34) and the scalar product <., >
between V and V is an extension of (epodge

To givo a variational formulation of the problem (36)=-(39)
lct us first consider sufficiently smooth functions u,p say
ye (€1« [O\T])N, fve C4(§ x[0.,7]) , satisfying the equations
(36),(37) and (38). Certainly, u belongs to L2(O,T;V). Further,

multiplying (36) ty a function v eV and intcgrating we get
% " ol (f,v)
T (o) - v(AM, )+ Aa (U4, 2) 4 (Qaad i) = LB Do

where N
S Quc . d
O (W m ) = ny; Q. .
4 -—-)_\..) i'\.k"( &fé_{& A
Using Green s theorcia we obtain -~V {(bhwy \\I)°=Qo(*d\‘\.’:\, with

'3\44 'ao.; dx

— ey

qu

Qolt, )= v §
R

>

and

V‘;: * -
(sra p,l)o 0

and ¥ is the unit exterior nornal toa‘




(due to YIBQ'

(42)

we see that
E(u,ed) ralusne) - Chhede Yeel

By contiruity this equation is truc for each v &V,

The preceding lines suggest the following variational
formulation of the problem (36)-(39): For a given right-hand
side [eLg(O,T;(H-l(R))'\') and a given initial value ueaH

find g,eLQ(O,T;V) such that
d : . )
(43) & (uyvdoralusuiey: <furs in Dom) VYyeV,

(44) u(0) = u_.

It is proved in Girault-Raviart [15] (chap.V, theorem 1,4 -
1.2 and 1.,5) that there is a function u satisfying (43) which
lies even in a smaller spuce:lgeLz(O,T;V)r\f” (0,T:H), In ad~

n P | .
dition, u’eL“(0,T;V') if N=2 and uel3(0,T;V’) if ¥N=3, The-
refore, the initial condition (44) makes scnsc and is sa-
tisfied in the following form: lim Wu(t)-u_ I, =0 and

t+0e = ~o 0

lim uu(t)-gohv. =0, respectively., Finally, if N=2 such a so-

t+0+s ~
lution is umique.

3. We define a semidiscrete solution of the problem (43),

(44) applying thc scheme (24)=(26G) and derive error bounds by
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‘means of the inequality (16), These results belong to Girault
+Raviart [15] (chap.v, §3).

We remind the reader that the method (24)-(26) is of or-
der q=1 iff k=1 and 8< fi and of order =2 iff k=1 and ©= %_‘
or k=2, Thc approximate value of _g(t")=_l_1_"( t,=n At) is denoted

by QF and recurrently defined as follows:
m : X
UMev, osmsliel=M,

£ “ L - ) -
(45) (%oo(‘: U_m 8‘ 1_)—)0 + At \Z'b ﬁiq(g"‘-)g""§)a_;_—§ z At<fm;9.'>o
VoeV, 0fm § M-R,

A Mo if CY'A‘
(’1‘7) i W - Y Q‘: Y, if O(-‘Z.

—-—

Here t- and gﬁ are defined by (25) and (26), £E=£(x,tﬁ),
gozg(O) is now supposed to lie in V and !1‘v is given. Of
course, U, should be an enough accurate approximation of gjtl).
We can take for u, the value gl conputed by the O -method
with 0< }. .

Given the s;qrting values the equation (4%5) defines a

. m

unique set {Q }m“& .
is tlec solution in V of the liucar boundary value problem

To see it we remark that the function
Un+k

(47) dt(gm*k‘«z)o ¢/:,,1_Mq_(g"~.)g"“&)1_r).<.[:?> Y veV

m .
vhere :ﬁ is a known clement of Vo The tralinear formn
. . .\. 3 .
alw;u,v) 1s continuous on (V)', N&1 (see lemma 2.1, p.lld in
(15))e M1so, 1t is (uniformly) Veolliptic as a bilinear form

in u,v:

M—M



=
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(48) ou(x_x_r-,«z‘y)gdl\g\\: Vg,«_ge'v, ol = omal > 0.

We have namely

N 3 NZEN_
)} 2 (wlydx = -% ———a -
3' Sglw .(‘\)’1_ ‘L‘\ é dx

N
4
QW v, ) 'i-z

vna 4 h'bx&
A N
Y N N

Therefore

[

N N 'a.'L
Aol Y= v Y YO (‘Sg§>d)<-

Q.a(\}_y 0"’0'3 AP

Applying Friedrichs inequality we get (48)(of course, o is

2 multiple of V ). As Q,, Ao are positive the form
o (M‘/xr)°+/!,aﬁta(u s, A ) is V-elliptic. This proves exi=-
stence and uniqueness of {Unb}

Let us now introduce the re5ulurity conditions for the

exact solution u. We assuue

(49) uec(lo,T]; (L=>(@NY,

(50) wel?(0,1;V), 0" €L%(0,T:V")  if ¢=1,

(51) wel200,T;V), u"el®(0,T;v) if g=2.

In view of lemma 1 and 2 the condition (50} implies that

ueC((0,T];Vv) and y_'eC(EO,T];H). As a conscquence,

a.u(t);u(t),y) € 2(LC,T]), o{%iu\t),z)f(ﬁit).y_)oeC((O,I‘]), hence
due to (43) £f(t),y> € C({0,T]) and

(52) (u (1), )+ alu(t);ulv),y) =<f,v> in [0,T] VeV
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We want to estimate

" = u(r))-U"s y"-um,

We define the truncation error by

2
(53) B CE™ u > (T koMY, + Ata(y I/st ~dy)-t< e

3’°
. : Na-e V.
From (45) and (53) it easily follows

(20( e"“g v o +M.CL(U 2/5 M‘é\y\=l\t<§_ﬂ"“g—>-
o

(k)
- Ma, (&% 2 AUt ) Y eV,

Before applying tho inequality (16) we have to estimate the

terns on the right-hand side of (54). Choosing suitably )
1 -4

in the inequality Q.Qr Sy (50\0'*5 497 ) we have

1

1
(55) 1< eg™ vr>|<gd h«_rll? s Che™u,

(Ul =U-nAH2re (and in the sequel of this section) C depend
on u., Further, for the truncation error one derives using
Tavlor s formula and (52)(see [15], lema 2,6, p.17S and lem-
ma 3,2, p.185; the case O0< @ ¢ "‘1 is not covered but can

be proved in the same way) that

' M-& 2 tq
(56) Atmgo he™w, ¢ Cdt " | oA,
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Concerning the form a, we casily get using lemma 2,2

fis], pe.114 that

from

. . |
la,Ce™ E_ /5% "\_z)l=\-m£€;"‘ﬂz,£/‘:aa"‘“)\é
b-o

e
sClhe™lg Nty

due to the regularity condition {49). Honce,
~ . 4 - 2
61 lagle™ LA™t ool € Getholy + Clig™y,
3°°

Now, Lhoo<1ng blu, v)=(my)

P

(sce section I1), put

V= 5_ /5)5 in (54) and using (48),(55
o0 ~':
e palt ‘Eo/"" ™, £ e fue™ul s et .
From (16) it follows in case q=1 (noticc that ¢°=0)

-4

(53) le™1ts LD ne " *cm):ue‘*u S \\Z A€

mso ~ MNzo %'0

Thus by (56)

Ne™it e CAtt s Cnt Y et

MO

and by the discrete Gronwal inequality

ting

5),(37) we get

o
"\40’% ““




W—_—gu-————————‘—‘

If q=2 we get in the same way

(60)  ax Bu-0™1 2 CLuult) -yl + A5 ]
L8m g™

From (58) we can also derive bounds for L‘tzoizoﬁ ™4 ‘

which are of interest in case of the Euler implicit :;heme (the
© -method with 820 ) and of the scheme (3) with o(l'}_ )

pa=4 (then B, Ay, = O ). These schemes are the only tﬁo
members of the backward differentiation schemes (sec Lambert

é [1), p.242) vhich are A-stable. We easily derive

M o %
(61) Lat) wa™o™i }& ¢ ont
. and
i{ L2 & < { 2 )
(62) (AL bu™u™it e ¢ Cfhmtey - f s ot

Remark 4. It is'proved in [15] (sec theorem 2.2, p.179)

that in case of the Euler implicit method the bounds (59) and
(61) are true without assuming (49), Girault and Raviart apply

a different way of estimating the fbrm a, for which the only
regularity condition (30) is sufficient. In fact, the same trick
can be used in case of the other backward differentiation sche-
me nentioned above and (60} and (62) are t{rue under the regu-

larity condaticrs (50) and (31) only,

I S 1L4&--nnn--nuﬁ---u-n----i-.ﬁ-l‘




model way: There is given a two-dimensional bounded domain S
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V. Nonlinear quasistationary Magnetic Ficld

1, In recent yeavs attention has been paid in electrical
engincering journals to the computation of nonlinecar quasista-
tionary maguetic field. Thi§ problcm occurs, e.g.,, 1n designing
the magnet systems for fusion reactors and in rotating machi-

nery. In two dimensions it can be formulated in the following

and an open nonempty set Rc R .+ We are looking for a func~

tion u=u(xl,x2.t)(magnetic vector potential) such that

1) .
> .
(63) T 3% 5; (v '3,,(4) ¥ Sk \)5};3‘13* 3 in R,
(64) M(x,.,x.“ 0)‘ Mol X4y X2n) in R)
2)

) : - -R
(65) 0"-5’;“(\)%%:.1) +% -s-;\q.v‘k J n §S=§8 R)

3) u satisfics a boundary condition on J¥N ,

4) u satisfics thc conditions

(66) (Ml:-tu'%‘—:vli-o on D2 R A DS.

Here the conductivity @ « T(x, %\is a positive function on
R, the reluctivity V= ¥(x,xq,hqnod slt), iguad w3 \ (,DM\,
is a positive fuinction on Qxl'_o‘oe)’du(xl,xz.t) is a given
current density, uo(xl.xc) is a gaven function defincd on R

and n is the normal orjented in a unique way.




577

The problem 1) - 4) can be easily formulated in a varia-
tional form. Let us, for simplicity, consider the lirachlet

boundary condition _ .

(67) u=0 on ©°%.

We multiply (63) and (65) by a function ve!l;(ﬂ), we integratc,

wo use Green s formula and (66) and we sum, The result is
'aU\ ' - A

where

LTV

)
(69) Liu, o) = S i v .55,;*; %‘-:‘, Ox .
@

(68) is taken in Melkes+Zlamal [161 as the starting point for
the construction of the approxinate sclution,

Here we outline main results of the paper [17]+ We give
two equavalent abstract formulations of the above problem. One
of them is a variational formulation generalizing the special'
case (08), VWe introduce an existence and uniqueness thoorem.
We define a conpletely dascretized approxinste solution., The
discretization in tume is carried out by two members of the
backward differentiation schemes mentioned at the end of sect.IV.

We closc this section by intreducing results concerning conver-

gence of the approxisute solution and error estinates.

2. To foraulate the problem 1) - 4) in a general way we
introduce scveral notatici= and hypotheses.
1) Let H“, M-R,S, Yo twoe (real) Hilbert spaces with scas-

lar products (.,.)“ (the induced norus are denoted by | ‘M )

»




and let the Hilbert spaco H=Hp x Hg (with elenent {vn,vs] ,

vp € Hp, vsells) have the scalar product (.,.) =uch that the

[

norm Ilvi=(v,v) satisfaes

| Chiol g (gl ¢ Ioele € Cled Yuoek

(C here and in the sequel denotes a positive constant not ne-

cessarily the same at any two places). Further, let YcH be a

separable reflexive Banach space normed by 0.1\ . Finally,
;P the vector space V, = {wlw-vH y re V} (M=R,S) and

A-J
! Vk'[uﬂujka,ﬂrGV\v;-O} should posses the following properties:

[ VM are subspaces of reflexive Banach spaces BMCLH“ normed by

Iy - (fpg , 3t holds

Cliwy gl * Mg lig & Cliary YoeV,

Ru%

VR' the closure of VR in BR' is continuously imbedded in H,,

i1.e.

lwel ¢ Cllwig VooeVR,

-]
and VR is dense in HQ.

Example. Let ST, R and S be domains from section 1 with

2.
Lipschitz boundaries. We choose HM:L’(M). (u,v)R=( 6 u,v)L:f_’(m

where T UO(RY, G2 G, > 0, (u.v)é:(u,v)LZ(s). H=L2(f2) (uy is

. . _1qA 3 Y]
the restriction of u to M), V=l (), Vn=H;(R). Ve = {u;hp e H'KRY,

. Wlag nar * 01, B HURY, Wlgs Mlpgy s Vo {wlw e sy,

Wlag nos * 03, B WU, M-llg=h Wy -

n G ’ —L_-———_-J
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Rerark 5. Wo set H;”R if HS= iOi. The assumption 1) is to
be understoodas follows: Therc is a sepuarable rcflexive Banach
space V normed by Il -l which is dense and continuously imbed-

ded in H.

Remark 6. It is easy to see that ﬁR is a closed subspace
of BR. Furttlier ﬁn, VR and VS‘ being closed subspaces of refle-
xive Banach spaces Bn and BS, respectively, are reflcxive Ba-
nach spaces, and Vﬁ is dense in HR because GRC»VR.

We identify HR with its dual by means of its scalar pro-
duct (.,.)p. Then Hp can be identified with subspaces of Vﬁ

(R .
and VR and we have inclusions

VRCHRcVé, §RCHRcVé

where each space is dense in the following one and the injec-
tions are continuous., Furthermore, the scalar product ¢.,. }‘
in the duality Letween Vé and ?R is an extension of ( .,. g,
i.e.

{u,vy, = (u,v)R if uel&v VEVR.
We denote the scalar product between viand v by
<oy D
and between V. and V. by
3 S -

<oae Dg '

Let AM(u), maR,S,bu two, in graeral, nenlincar operators from

frum V“ to Vﬁ with the followving propertics:

1 M
2).G%u)urehwncmm1mmum i.0, X-A (A\(M*\v),ur)m

are continvous functions on the anterval (-o0 00) ¥ mvwre VM-




3) 1t holds

N N AT I VPN

where < fv ¢ oo

4) AM(u) are monotono, i.e.
(AM(u)-AM(\'),u-V)M_?_ 0 V u,ve-‘:'M

and AS(u) is strictly monotone in the following sensc:

<.{S(u)-AS(v).u-v>S>0 Vu,vevs, utv, u-vee's

where §S =£w’w=\ys) D‘e\/) VR‘O}'

The first of the above mentioned formulations is the fol-

lowing:

Problea P. Given

-,

Me P (0,7:7)), M=R,5, and u_eH
BTyl IS, ARE U € TR

) —
find uevy = {ujualPo,T;v); ulel? (0,1:V)] such that

due

R R

' s _ .S
(71) ASlug) = 1°,

Remark 7. If H:lg then we denote AR(u) by A{u) and the
assumptions 2,3,4 arc to be understood as follaws: A(u) is
hemicontinuous, monotone and bounded, i.e. §Acuyll, € C\\M\Vpiq
The formulation of the problem P reads: Given fel}n(O,T;V')

. ) .
and uoell find ueVW ={uju eLp(O,T;\'); uel? (0,1;V )} ~ such
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that

+ Alu) = £, u(0) = u,.

Q-ia-
Lo 1

4 , - g
Remark 8, We could leave tho requirement uRGLp (O,T;VR)
because due to (70) it is automaticaly satisfied. From uewR
. . - S ) =)
it follows Uz € {wlwe W (oTV) ) We L“'(O,T-)VR}. By lemma 2

up € C([O,T];HR) and the initial condition u(0)p=u  makes sense.

We introduce an equi&alent variational formulation of prob-
lem P, To this end we definec a form a(u,v) on VxV which is li-
near in v and, in genceral, nonlinear in u and a functional f

from L? (0,T:V"):

R S '
(72)  alu,v) =<aNup),vp > g +<A7(ug),vg > ¢ V u,vev,

R S .
(73) <L,v> =<, vpdp +<00,vgd g V vev.

The form alu,v) possesses the following properties:

a) it is hemicontinuous on VY, i.e, A= a{ur hv,w)

is a continuous function on the interval (-o0,00) Y M, e V.

b {atuadl e Clat ™ el Vuvel,

¢) alu,v) is monotone on Y xV, i.e,
alu,u-v) = a{v,u~v) % 0 V u,veV.

At this place we add the last assumption which we shall
later need:

5) ale,w) 2alivd® o a(vv)2ale) Ywvav,

ds comnl s> 0.

e e e St
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Here (-) is a seminorm on VYV such that
Lol + hlogla 2 AN0N YoeV, . ), As tomak >0,

Problem P°, Given f“e Lp’(O.T;-\:L}). M:R,S, and uoelln find

ueWR such that

(74) ﬁ(ug\&R)R+®(u‘&)=<¥,&> 1n @\((oa‘\\ VxeV,

(75) u(())R = u

(¢

Here a(u,v) and £ are defined by (72) and (73), respectively,

Remark 9. If H=Hy then the problenm P~ reads: Given
) .
rel? (0,1;¥7) and u el fird ueW such that in D(o0,1))

g—f (u,z) + afu,z) =<f,z > Vze\'. u(0)=u°.

Theorem 1. Let the assumptions 1) and 3) be satisficd.

Then the probleas P and P° are equivalent.

Proof. If u is a gsolution of problem P then (70), (71),(72)
and (73) imnly '

¥ kedg vatu, k- <Byky Vke V.

)
All terms in this equation beloang to LP (0,T) and for h(t)e@(LO‘T))
T

T
we have S( %.CR y Ard Rat = - S(“R\KVJR ,?\? dt by lemma 2 '
° o

. ) -

as /‘LRhGLP (O,I;Vn). Therefore, it holds (74).,
©°
Let u be a solution of problem P. Choose A = [Lu‘()], we Vy

in (74). Then by (72) and (73)
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d R AR . ) Y

a‘_{(“‘k,w)k’<$‘A (“R);w>g in @((O.T)\ V(oevg.
The function G(t)=(u(t)R.w)n is continuous on L0,T) because
uReC([O,ﬂ;HR) and the function g'(t)=<fn-:\n(un),u)>p, be-

P R .R P A e Ty
longs {o L" (0,T) (due to £ ,a (upl&l (0,T{Vg )). Hence,
F(t)= SQ(’C) dT  is an absolutely continuous function on [0,T],
[

consequently FZg a.e, and the distributional derivative of G-F

is_equal to zero (due to the above equation), Thus G(t)= Co +

+ %(’t)d.’t and evidently C0=G(0)=(uo.w)n. We have proved that
o

t
(4ltdr, @ = Luoywdn * < STE-AYU) T, w dpdt Ywe, .
0

[
As u(t)Re!!RVte [0,1‘]. u,€ "R and \'R is dense and continuously

imbedded in "R it follows

t
“LDQ 3 Mg+ S(@R'A‘(“ﬂ]d"t taken as elements of HR’
0

Further, t‘R--An(un)(-.'.f’;x and HR is dense and continuously imbed-

=)
ded in Vn. Hence

t

r Q -)
“(‘0‘1 = A4 3 [e, - AR(MR\ .}djt taken as elements of \’R,

0

and by i) of lemma 1 1t follows (70). Finally, as %t(qk\&‘l)ka
’<M\R;*’LR>R the equations (74),(72) and (73) imply (71).

J. Now we define a completely disceretized approximate so-

lution of problcm P. The discretizatien in space is carried out

by means of a generalized Galerkin method (see Necdas [lS].
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p.47), in time we use the backward daifferentiation schenes nen=

tioned in par.l, Written for the scalar cquation y-f these are

A
A
(76) 32‘0«&_ '“6 AL{Z
where
(17) dyad, dho=-4 it k-4,
(78) Ao+ 3y kir-0, dosy i K-l

We assuwme that there exists a family {Vh}, he(0,h"),
l:>0, of finite dimensional subs.apces of V, such that
(79 lim dlst(\'h,v) =0 Y vev.

Ao+
We have three important renarks:
: . "g\‘m, = )
1) If a family {V by 2=0,2,0.0,0 3 s> ool lim b
M.-bw

withml:itgodxst(\"&*\v)-‘-o Yvev exists, then defining V -Y‘“’

-

for he(h hn] we have a family with the above property.

n+1’

2) A family vl with the property (79) alway exists under
the assumption that V is a separable Banach space, In this case
there exists a sequince {‘f‘k:"‘ y 96 V, such that for all n=1,
2,... the elements Y, %QV..)q%varc lincarly independent and
the finitc linear combinations of \?:5 are dense in V,

Ao

,hn = ,:'; , the space of all linear combi-

nations of te,‘ Wy ooy L,

3) In case that V is a Hilbert spaco u;(Q)cvcu‘(Q).

Ve take for V

and S2 is a polyhedron, all in practice used fimite element
spaces have the property (79), Ve consider the boundary value
problem: find z eV such that a (z,¢): g, (v, @) ] Ye V
where Qo(u ) = §[ z a“‘ B‘f_ qu\f]dxam! v is a given clement
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of V (of course, z=v), If Yh is the finite eclement approximate
solution and the finite element spaces satisfy certain requi-
rements then jkl:"(‘)l' v-vhll H(G)=0 (see Ciarlet (19]), Theorem

3.23, p.134);h is the maximum diameter of all elements,

We introduce At-=£§ o F being a natural number and consi-

der the partition of the interval [0,T] with nodes

ty = ildt, i=0,...,r.

WWe set

-

vy
XY

and define Uie Vh. i=l,seq.,r by

(ad

g’(tt)d_rt Gv‘ ) i= l.coc.r
N

Iy . , ;
(20) (gou.xu;", ko )g + AtalUf x) < At ¢ g5 x> ¥ oxe VN

~4 o
UR - UR = uoo

Remark 10, Instead of u, we can take any approximation

h R _,h
u, of u, such that luo uy ‘R -0,

In {17) it is proved that (80) is equivalent to a nonli-
ncar system Fld )=0. Here F: I N Rd""(whcre d, is the di-
mension of Vh) is contipuous, cecercive and strictly monotone
from which existence and uniyuencss of Ui follows (see Ortcga
+ Rbeinbold (201, 6,4.2, 6.4,3). We extend the approximate

solution on the interval (0,73, The extended approxinate solu-

tion UJ‘ 6‘.(9\.‘5?,3) is the step function

51 UEaUY e oyt ey 80 (R M),
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In {17] it is proved the following

Theorem 2. Let the assumptions 1) - 5) he fulfilled, let

’ . 1.4
fus L?P (0,T; V), M=R.S, 1l<p<oo, PR 4, and uoelln.
Then there exists a unique function ues'o'nz {u[ueLp(O,T;\');

b =
ul‘leLp (O'T;VR)} satisfying (74) and (75). Further, the ap-
proximate solution U‘S- defined by (S0) and (81) exists, is uni-

gue and

(82) Us—n u in Lp(O.T;V) weakly if d — 0,

If ueC({0,T];V) and the form a(u,v) is uniformly monotone,
i.e.
a(u,u-v) - a(v,u-v) 2 Q(lm-v) YV w,veV

where Q is a strictly increasing fun:tion on the interval

(0,00) with Q(0)=0, then

T
. 5 ) . g
(83) é’:’:ﬂoﬂ “uR-UR“CKLO\T]"HR) ‘0) gf\f'; %og(“ M-\ “\d»t‘ C.

Remarx 11, If H=HR then the assunptions 1) - 5) are the

same as those of th::orem 1.2 and 1.2 bis in Lions (21], p.162-163.

4. We apply theorem 2 to the problem (63)-(6G7). Let

e (RY, ©2G,30

and let OQ QR be polygons, We choose the spaces Hy, llg

etc, as in the example introduced at the beginning of para-
graph 2. Then the assmmption 1) is satiusfied. Wo consider a
regular family of triangulations %, (see Ciarlet (191, p.132)

covering St and satisfying the assumptions of theorem 3.2.3
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trom (19). Then the family (V'] satisfies the condition (79),
The opcrators AM(u“) (in the sequel the subscript M=R,S means
restriction to M and will be often left out) and the form
alu,v) are:

M ? ? 3 o)
A (un) "Z -8' (\)M MH) a(m ) - é &, 'b‘:‘ B\;\&x

Concerning the function v(xl.xa.%) we assume:

a) ¥ E’G[O\w) the function (xl.xa) ——->\’(x1.x2. g)

is measurabla on SV and for almost all (xl,x2)€ S0  the func-
tion g - QLx“xt‘g)is continuous in [ 0,00 ) (Carathéodory’s
propertyv);

b) Y g‘e [0,00) and for almost all (xl,xz)eQ VC Xy Xq, g\\

is bounded from above and satisfies for almost all (xl.xz) e S

(84) Evixxa, EV- MU X M) 2ALE-M) Y E27M 20,d-oml>0.

Then the assumptiors 2)-4) arc satisfied with p=2 (seec Gajew-
ski+Griger-Zacharias {1%) , p.68-71), (84) implies that

V(X4 Xa, g) 2d >0  for almost all (x;x,) € S and \ g\e Lo,>).
Therefore the assurption 3) 1s also satisfied with p=2 aund,

in addition,
QM u-0) - (A, U0 Efbllu-vll't‘«m) Yuuwoe H;LQM /5> 0,

| | | S 1
1.0 alu,v) 15 uniforaly monotone with g(ﬁ‘)-/sg Concerning
the data J acd u, we require

) 3 a
JeL™(0,T;L7(SV)), u, € L“(nr).,
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The equation (80) can be written as follows:

'y .
: ) : %
(¢ \é«&_gu* ey t MUt ) s MUY R gy YaeV]
(85)
Up = Up = Mg
t
: A
where 1« it > I(,t)dt,
4=

Theorem 3, Under the above introduced assumptions there
exists a unique function uejﬁlwhich is the solution of the
problenm (63)-(67). Further, the approximatc solution Ué., de-

fined by (85) and (81) exists, is unique and

)

%= u in L2(0,T;H;(Q }) weakly if & - O.

If u cC(IO,T];H;(Q)) then

Ko, W0 g oy ey = O §""; ha-U%u e °. 1
-+

-

RN

Now we introduce error bounds under assumption that the

solution u is enough smooth., We restrict ourselves to trian-

gular elements and to piecewise lirear trial functions which h
are mostly applied in practise. We take into account only
triangulations which consist of triangles belonging either to
R or to S and which form a regular family, '
In applications, the coefficient V (x,x,, %) is a piece-
wise continuous function of x=(x1.x2). Every discontinuity in
X along a. boundary of a subdomain leads to a natursl boundary

condition of the form (G6). We consider a3 model problen assu-

\ L _ . ._....;......-----i----------l-lllll‘
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mming V to be continuouy in R and in S for all ﬁe Lo )
with discontinuity along [« OR " 3S. We add two more assump-~

tions:

PEvixe, §) = MV X, IS LIE-R1 Y € ,qe o,
Lxu“mSQ RusS

1e CL Lo, 11 LYY,
and investigate first the approximate solution constructed by
means of the scheme (76);(77). The right-hand side of the de-
fining equation will not be the same as in (85). t! is now de-

fined by

(88) (o B0Y, M)y + QU ) 88028 ) gy ¥ e vd

where Ut=ri.yi-l a4 JiaJ(..ti).
The initial condition is

(87) U0, = ug

where uga\'a = (wlw = vR.vth) is any approximation of u,

such that

Wye "'\3\’“&(&\ S CR Wl HARY

h

2
Remark 12, If uoekr(R) we can take for u,

the interpo-

late of U e If u satisfies (83) then u’ must belong to Hl(R)
]

and theorthogunal projection of u, in L°{(R) onto the subspace

Vg has the required propertv,

Thearem 4. Let the above asumptions bte satisfied and let

the exact solution u he so0 snmooth that




590

(88) My, € CLLOTY WM M)), M=R,S | We \."‘(o_.T-,H‘(m\,

M € 200, T4 V).

Then for the approximate solution defined uniquely by (56) and

(87) it holds

S . . A
(s9)  {at ) uu*-u‘"u';m)}" = 0( R,

a4
*

Now we define U} by means of the scheme (76),(78):

(90) (W [. %‘_U‘:‘ Q.Ui-‘* %_U“'-'l] \ M)LQQRB + AtQJ(Ut\ k) = At (1{’"1\\_'1&)

Y .
N neV ©y V3L,

N A4
(91) U:. uj‘ R U computed from (S6).
Theorem 5. Let the exact solution fulfill (S8) and

ud ec(0,77 ;L2(R)), upel®(0,1;7p).

Then for the approximate solution U' defined uniquecly by (90)

and (91) it holds

A .
it X "
(92) { at _é hur-Ulig IF = OL&L A%,




Vi, A damped nonlinear wave equation

Lot SL ¢ R be a bounded domain with a boundary OR and
{a*i(‘)}:&'4 be a uniformly positive definite matrix. Let
d(x,t,u,z) and g(x,t,u,z) be piecewise continuous with res-
pect to x and uniformly Lipschitz continuous with respect to
t,u and z for (x,t¥¢€ ﬁ x[0,T] and u,ze(-oo,oo). Further,

we assume

(93) dix,t,u,z) > 0,

We consider the equation

3
(94) %*d(x.t,u,u‘)g{l Ly« %(K.t,h,“‘) in R

where

\

S D 2
Lu -‘:L:‘g;“ [Oa‘\(*) 'ﬁil\ e %% )

with the boundary and initial conditions

(95) u=0on 2Q x (0,T), ulx,0)« u%x), W(x,0)« 4°(x) in Q,

W e Ho(Q).

We write the problem (94),(95) in a variational form.

We set

(86) us=z




80 that z = -d(x,t,u,z)z + Lu + g(x,t,u,z). If the exact solu-

tion is smooth enough then it follows

(87) (&) ) * ~(d(x,t,u, &) &, )~ A (u,¥)+ (%(x,t)u,&)‘v)o
Yo e Ho(R)

where

o (u, ) = S}. Az () S: %ﬁ dx .
"Wy 4
The equations (96),(97) will serve as the starting point for
the construction of the fully discrete approximate solution,
First, we define a semidiscrete solution, As in section
II1 let {Vh}, O<h¢h®, be a family of finite dimensional sub-
,8paces of Ht(fl) possessing the approximation property (28).

By a semidiscrete Galerkin solution we mean a couple of func-

tions U(x,ty, Z(x t)e VA Yt € [0,T] satistying tn (0,1)

Va2, (2,0) == (d(x,t,U,2)Z, ), - a(U,v) ¢+
(98)
+(q(xt,0,2),v), \l«revp”) Ux,0) = Ux), Z(x,0)=2%.

Here U°,2°e Vh are gsuitable approximations of u°,z°. The dis-
cretization in time is carried out by linear one or two-step
A-gtable methods defined by (15) and by the linearization pro-
cedure introduced in section III:

R ,
o ~ey . . 5y
xgo u™*d . At 8[ 2

-MQ(BZQ/ESU"“%\ )+ M(Cf‘, vy, Vve vt

)

& . ’-l'\. Q MA‘
(2278, B E 2 ),

(99)



here

~ ~ o m o R oo
A’ dlx,ts, U™ 2Z%), q¥ - qix, b5, 0% 2™)
and tﬁ.U", and in the same way Zﬁ. are given by (25),(28).
Let us show that the fully discrete approximate solution
exists and is unique. Assuming that we have already computed

Uk,zk,,..,u"+k'1,z"+k'1

let us compute x=Un+k,Y=Zn*k. As Ui,
Zi, i=0,1,... beléng to Vh we may assume X and Y in the form
X= Z;xjvj(x). Y= S:Yjvj(x) where {vj(x)} are basis functions

of the finite dimensional space Vh. Denoting

_x. =(X1|X1\"')T) X * (Y4IY'L).“ )T) M N i(v&\v&)o}{\k )
. {(d-m‘\*-z,'\"&\OI&\g , K= {Q.(v:\\v{'\\};\g

we easily find out that X and Y are solutions of the following

system of linear algebraic equations:

(100) dy X = BtAgY + @ |, olg MY » -At Ay ba'\_( Mgk ¢+ L

Here a,b are known vectors, the matrices M and K are positixe

definite whereas D" is positive indefinite due to (93)., From

(100) we get

(101) g M+ Bt (D™ Bty A K)TY = ¢, X~ QtaimgY + &y a

(c is again a known vector). Evidently, the matrix dqhbﬂ +

*Mﬂg(g\"ﬁlo{lﬁhk\ is positive definite which pr.ves the above

assertion,




The energy inequality (16)(used twice with b(u.v)=(u.v)o
as well as with b(u,v)=a(u,v)) can be again succesfully applied
for deriving error estimates. We state the result for the case
of O -method with B« & which is of order one (q=1l). Besi-
des the hypotheses introduced above and besides gome regularity
conditions which we do not introduce we assume that U® is the
Ritz pro jection of u®, i.e. a(Uo.v)=a('\A°,v) Vo e V‘;’
and that || Zo-k"llo s CK‘H‘ (e.g., we can take the interpolate

of 2°% in vh for 2°), Then

hu™-um™n, § COAM At),
oy W U™-zZ™i0s CLRTTL MY, As s T
ha™- U™, s CCRN Ay,
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