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I PREFACE

Each year the Department of Mathematics of the University
of Maryland sponsors a "Special Year" in some field of mathe-
matics. These special years are designed around a series of
lectures by distinguished mathematicians and have the goal of

I refining the understanding of the frontier of the field, stim-
ulating new research, and enhancing scientific cooperation.
During the 1980-81 academic year the Special Year was in numer-
ical analysis. One of the major topics of the Year was theI numerical solution of partial differential equations.

Thirty visitors delivered lectures on numerical PDE,
touching on nearly all of the important subfields of the area.
In addition, many of the participants submitted written ver-
sions of their lectures; these papers are contained in this
volume. The papers range from extended abstracts of lectures
to systematic survey articles to research papers. We have per-
pared this volume to record the activities of the Special Year
and also in the expectation that others will find the papers of

I interest.-

The Organizational Committee would like to thank the Mathe-
I matics Department and the Air Force Office of Scientific Re-

search* for their support, and all of the participants for their
stimulating lectures and their informal contribution to the
lively 7cientific climate that prevailed during the Year.

I. Babugka
T.-P. Liu
J. Osborn

I-
/

I.
I

* The Special Year was partially supported by AFOSR Grant
No. 80-0251.I

±ii-I
I
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ADAPTING COURANT-FRIEDRICHS-LEWY TO THE 1980'!:,

Garrett Birkhoff
Harvard University

K. troduction

In 1902, Courant, Friedrichs and Lewy puiblished a now faroui:

paper [6] on the numerical solution of pri~ ifrn~e m-

tions (DE's). In it, they considered difference approximations

to the Laplace, hiharmonic, heat, ancl wave eq~:o~.T1 t a

aim was to treet these by Aifferencce methods, -:-hat wcire apl])cal]''

to other partial DE's of elliptic, pirabolic, indhvecl. v:s

respectively. For simplicity, they lised rca~~rm.h:

constant mesh-length h in space and (for po-rabolic andhyc-o

DE' s) another mess tm t mesh-] e !,h At in L im(-

Their main occmcern was wit'-h po'n C-lnrl (''1 pp

ness , and cunvteI4,cflce rheorems , and not with calysir n-

cific nblm.Th ir i nten ,ion was to domcnurstiattc thae this arce

jt' pnnci.T

'v omputc) r irware i~

alar -i fac't"- ( Ili thI atL th -, C,> -t~

IQlan,. thmoti.-e,, in ractice. h'n,,,s c' 1 b' P C' LP'

~P rcn n +~rhr meth-ods prc n 'qpC - [ 1( -r ""em ~~' rri'

other me thc'd th.-t have been pro-nsor .uhse'" n tl v -Far -"-Ivnp t' PP

same pirtial DE',.'
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A. THE LAPLACE EQUATION

2. Dirichlet problems

The problem treated most thoroughly in [6] was the Dirichlet

I problem. Letting Mh denote the set of all mesh points (xiY)

= (ih,jh) lying in the domain Q in which such a problem was

posed, they assumed [6', p.221] that a known smooth, but other-

Iwise unspecified function g(x,y) was interpolated in some boundary

strip to the given boundary values on F = aO'. Then Runge's 5-point

I difference approximation V 1U = 0 to the Laplace equation was

solved for the values of g on the boundary of Mh.

A better way o, approximating Dirichlet-type boundary condi-

t 'c:s was developed in the 1a1e 1930's :ind early 1940's by Shortlev

and Weller [12], .V. iiutw 1 1 1, L Ede Fox [8], and others

interested in the jritical numerical solulion of elliptic problems.

As in [61, one first overlie:: lomijiuns in IF, with a square mesh,

and d-mains n F 'tF a ,,:b -i me-!h, .er'.' much in the spirit of

[6]. o, then sMp:7ieenc [io,;et o f p uints (X. ,V.) (ih,1h)

i 'ILI where the meI lne iuterect w th ihe set P o boundary

nodes (xI,v) auK (;,',') wie asingle mesh line ntersects

the bour.ar, . n< then sol e Z ' u7 J on I , for the

u" values Hn F. . This avoids the problem of interpolating
:L n b,_Vur' : I -alu, , is -'!e'aly Tio'e -Cc, r- te.

i Te :;s;en ::s ,, ,. :-.e andr orjcti differenceg .•"o<;'t~cnm at r:cc:l. a-S 2S.t C ,'Zo~ w t te V -sd 1]tinR

-'This problem wa" ,onsi heoreticallv in another connection
S". Whi tnev, Tr in:. er. 'Vath. Soc

I
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Of these two formulas, (2.1) has only 0(h) accuracy, but gives

a symmetric matrix; (2.2) is more accurate, but gives an asymmetric

matrix.

j The symmetry of the matrix given by Shaw's less accurate

formula (2.1) is easily explained: it is the formula given by

the electrical network analogy, in which each mesh segment is re-

placed by a conducting wire of the same resistivity per unit length.

Note also that when a P, the two formulas differ only by a fac-

tor 1 + a. This may be interpreted physically as corresponding

to the area over which the source term f(x,y) is introducing an

inflow of current at the node w 0 .

It is interesting to compare the preceding formulas with the

recipe given by Varga in [i1, p.1861. Setting a , h./h andi

P= k./k in Varga's (6.37), we get (]+a)(I+0) times Shaw's
3

(2.2). This is encouraging, especially since Varga's (6.37) gives

a symmetric matrix in a rectangular domain.

However, in spite of the nlausibility of the derivation of

Varga's (6.37) in [14, pp.183-5] it Sr(nms unlikely that one should

use the same weighting for the domain of Fig. 1 as for a rectangle. 4

Moreover, Forsythe-Wasow consider three i'ecipes for boundary con-

ditions in [7, §20.21, and are non-commital as to which is best.

It may not even be best to interpolate to boundary values!

4Well-known monotonicity principles assert, in fact that the weighting
factor for f should increase with the domain. It would be in-
terestin to obtain numerical results for -72u = 1 in the square
max (lx|,l y) - 1 and the octagon satisfying also
jjxl + y s 3/2.

I



. Normal derivatives

Even less is Known ibout the host wv to approximate boundary

n di t on ; of the lo rm

(3.1) au/an + (i(v)u : ,( ) on I ',

which was totally, ignored i n [hf I, thin i; kno ti ,,i approxh , inTrI'

u. Thus , whereas [ t is t Iat i ve I ,1:3 v tc- ip 7D, o i l o i wi t I;

a t runcition erion of 0(h" ), the corro'spondinp, error in applox i-

mating, auI an, say by

(3.?) [a(wI-w ) + I'(w -w)]/ "+tV

with the dimension, of li,. 1, is tvp callv 0 (h).

A bricf but incisive s/.ummarV i; given bv ForsVtle and Wasow

in [7, .. f. ] f 1 main idea c and result:; of Barschelct []

Shfaw [11], Allen ii, and V iwanathan 1!,]." The ir summary empha-

s how "complicated" the fact; are, and mentions [, p . 204]

the pos.;ihi litv ot gett ing improved accuracy by us ing "reflection"

method, . We will next supplement their s-ummarv, bv discussing some

examples;

Examp1e 1. Consider the onc-dimensional Poisson Dl.:

-1' (x) = F(x) , with the boundary conditions u(0) = u() 0

,irid mesh-points x. = ih, i 0,... I, h = I/I. Use the Stormer-

Numerov approxLMcfion.

('1 3) u - u 1 i-[ + 1Of. + f. ]/6,

Rat,;chelet'.' paper' seems the most thorough. The other authors
cited take Fox 17] and Sout-hwell [1.31 as their starting point,
and f ail to ('orr'o iate their' r'esuits with Batscholet's.
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a formula whose truncation error is h6 u v()/240 if f E C 4[0,1]. 6

For smooth f and Dirichlet-type boundary conditions, one can

achieve 0(h4) accuracy with (3.3).

However, with the boundary conditions u(O) 0 and u'C1) = 1,

the approximation

(3.4) uI  ui_ 1 + h to u'(1) = 1

gives only 0(h) accuracy! If we approximate the boundary condi-

tion u'(0) = 0 by

(3.5) u I  = u 0 + hu + h 2f 0 /2 + h 3 f6/6 + 0(h 4 )

u 0 + hu' + h 2(2f 0 +f )/6 + O(h 4),

and set uI = 1, (3.3) gives 0(h 2 ) accuracy.

Example 2. Likewise, for the reduced Helmholtz DE,

(3.6) u = -u + Xu,xx yy

the [third] boundary conditions along the line y = 0 can be well

approximated on a square mesh by using 9-point formulas in [5] and

[10]. If one takes as unknowns the u- 1 i and u0 , , one gets

one equation for each 5 from (3.6), and a second equation by

collocation from the boundary condition.

(3.6') u (O,y) + g(y)u(0,y) h(y).

6See F.H. Hildebrand, Introduction to Numerical Analysis, 2d ed.,
Mcqraw-Hill, 1971.



Reflection methods. The preceding method for achieving higher-

order accuracy in discretizing boundary conditions is a special

application of reflection principles stemminc from Fourier (1822),

and extended by H.A. Schwarz (ca. L880) and many others. These are

especially applicable to bourldar' ccn!itions of the form u = 0

or, au/an = 0 on straight boundar,, segments making angles of

7k/4 with the x-axis, where is an integer. Some simple examples

of such applications to the wave equation are presented in Appendix

A, "Discretizing Initial and Bun ary Conditions."

k-
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B. THE WAVE EQUATION

4. Wave equation: regular mesh

We consider next the semi-discretized wave equation on a

square or cubic mesh of side h:

(4.1) u cV2u

where V2 is the (2p+l)-point discretized Laplacian in p space

dimensions. We will call a polygonal domain with sides that are

all horizontal, vertical, or make a 450 angle with the axes a

regular domain when its corners can all be made to fall on mesh-

points of such a square or cubic mesh.

The simplest full (central) discretization of (4.1) is

(4.2) 6 u n r2h 2 u n
tt h

where r = cAt/h is a dimensionless parameter today called the

Courant number. The condition for stability is r s 1/Vp, and the

most accu'ate stable r is also the maximum stable r, with

r2 I/p. This choice reduces (4.2) to the (2p+ 2 )-point formula

n+l An n-l(4.3) u +l u.

where 0 denotes the sum taken over all mesh-points adjacent to x..

A 1975 study by Dougalis and the author showed that, in free

space, the CFL discretization (4.3) was more efficient than any

other second-order discretization, and competitive with later

fourth-order schemes.t

V.A. Dougalis and G. Birkhoff, pp.231-51 of J.W. Schot and N.
Salvesen (eds.), Proc. First International Conference on Numerical
Ship, Hydrodynamics, N.S.R.D.C., 1975.

t L. Collatz, pp.41-61 in J.J. Miller (ed.), Topics in Numerical
Analysis, Academic Press, 1973; M. Ciment and S.H. Leventhal,
Math. Comp. 29 (1975), pp. 9 8 5-9 4 .
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However, none of the papers referred to above considered in

detail how to handle boundary conditions. For boundary conditionF3

of the special form u = 0 on r and n 0 lon F, and more

generally for 'mixed' boundary conditions in which some one of

these is specified on each edge of ! regular domain subdivided by

a regular (square or cubic) mesh, we can use a reflection method,

stemming from Fourier and applied to the Laplace equation by H.A.

Schwarz, to treat boundary conditions without loss of accuracy.

Indeed, for u = 0 (the natural physical boundary condition for

vibrating membranes, it suffices to set u. 0 on F. For

au/n - 0, a more elaborate procedure is described in the

Appendix attached.

1
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5. Approximating boundary conditions

In [6], only the pure initial value problem was considerea;

we next describe a method for approximating behavior near the

boundary of a vibrating membrance, where u = 0. For simplicity,

we assume that a convex domain 2 in RP with boundary F has

been overlaid with a uniform (p=l), square (p=2), or cubic

(p=3) mesh. This will give rise in general to irregular stars

at nodes adjacent to the boundary.

Since the lengths Axi of mesh segments adjacent to F can

be arbitrarily small fractions of h, the Courant stability

criterion At s min(Ax./c) can become a severe limitation near1

the boundary. But, fortunately, one can circumvent this limita-

tion very easily.

Namely, at the centers of such irregular stars, simply re-

place the usual hyperbolic difference approximation to
ut 22 2 0

utt c V u by the elliptic difference approximation to V 2u 0.

In physical language, this amounts to stiffening the membrance

artificially at such points, all of which will be adjacent to the

boundary. Since u = 0 on F, whence V 2u + k 2u = 0 implies
2

V u = 0 there, the resulting error should be small except for

wave lengths X s 5h (say) very high frequency sound waves. More-

over, it can be rEduced further by setting u c2a2V u, where

C. is the minimum ratio of Ax./h for a mesh segnent issuing from x.2-
For example, consider the case p 1 1, with domain

= [0,Oh+Jh], 0 0 1 1. At regular mesh-points

I(
(5.1) x.+I  :oh + ih, S : 1,2,...,Jl

1
!
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the semi-discretized wave equation reduces to

(5.2) u'.'(t) (c 2/h2 )[U - 2u. + u
] -1 J+ I

Esecalysnc "(0) = u(0,t) S 0 implies u (0,t) :0,
Especially since u0( utt0xx

it seems reasonable to approximate

ul(t) u(eh,t) by u(h+eh)/(i+0).

For At h/c, this gives

(53) n+l e n n n-i(5. ) 2 1 +0- u2 3 - 2

and

n+l n n n-i for
(5.3') u 1 j+l uj

We next estimate the discretization error resulting from the

preceding approximation.

Error estimate. One way to estimate the disretization

error of (5.3) is to calculate the 'forcing term' required to

make the functions

kTTx Icosl k~t

(5.4) £6k(xt) = sin j-, sin J+

which constitute a basis of simply harmonic solutions of utt Uxx ,

become solutions U' of (5.3) with this term added.

Since the difference and differential equations are time-

independent, we can suppose t = 0 without losing generality.

Moreover, for the sin factor in (5.4), all terms,and hence the

forcing term needed to correct for the error, are zero when t = 0.

L _i, . .
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There only remains the cos factor, for which

(5.5) 6ttk -4 sins2 k nh k=t 2J+2() snJ7"

On the other hand, evaluating (5.3), we see that its solution U1

without a forcing term satisfies

(5.5') 6tUl l U
ttJ 1+0 tt 2

4 _ __ 2 knh sin kv(l+8)
1+6 2J+2s J+e

The left-hand factors in (5.5) and (5.5') are the same. Expanding

the right (spatial) factor of (5.5), we get:

(5.6) sin -k- krr6 1(kT+..3•J+O J+O J+B ''

as compared with

2 2 2
(5.6') 0 sin kv(l+e) k 1i k r (1+0)2

i+ J+ J+e1 - 2 "S (J+G)2  ""

The forcing term f2n required to make

(5.7) n+l n + n n-l + fn
2 1+0 2 3 2 2

satisfied by 0k is thus 0(i/j3); it is small. This suggests

that the local relative order of accuracy of (5.3) at x = eh

J is 0(h). Since this is only one of J mesh points, and the

difference equation (5.3') is satisfied exactly elsewhere. The

global order of accuracy should be 0(h 2).

Unfortunately, it seems to be much harder to find a good

way to discretize the boundary condition au/an = 0 for a general

j domain 2 with curved boundary r. Since this is the boundary

!
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condition that is appropriate for the reflection of sound waves,

it would be most desirable to invent a good procedure for dis-

cretizing it which would not greatly reduce the maximum stable

time step.
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6. Burgers' and Korteweg de Vries'equations

It is natural to wonder whether prescriptions like those

given in §4-5 have satisfactory analogs for variants of the

linear, constant-coefficient wave equation (4.1). For the one-

dimensional heat conduction equation u t = Uxx as well as for

(4.1), if u(-x,t) is a solution then so is u(-x,t). It is

because of this that solutions satisfying the boundary condition

u(O,t) = 0 can be constructed by extending initial conditions

anti-symmetrically by the formula

(6.3) u(-x,0) = -u(x, ),

and u (O,t) = 0 can be built into a solution by the followingx

symmetric extension of initial data:

(6.3') u(-x,O) u(x,O).

For the Burgers equation (6.1), it is still true that if

u(x,t) is a solution, then so is -u(-x,-t). Hence, we can still

satisfy the boundary condition u(O,t) = 0 by using the extended

initial condition (F.3). However, one cannot 'force' the condition

Ux (0,t) E 0 by an analog of 6.3.

For the Korteweg de Vries equation, which was originally pro-

posed as a higher-order nonlinear approximation to 'simple' gravity

waves moving in one direction, one cannot satisfy either type of

boundary condition bV reflection symmetry. This is because, for

the transformation x '- -x, t '- t, u I- Xu, to respect (6.2)

2 2
for general initial data, we must have X = -X = X . Hence

neither u(O,t) = 0 nor u (O,t) = 0 can be satisfied by reflecting

x
the initial conditions.
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In the second case, we know by the reversibility of (1) that
2

u. (-t) = -uj (t). Hence D u(x,y;0) = 0, and we can logically

replace (2) when n = 0 by

(4b) u 1 gjt + 0(h 3).

Therefore, using the Whittaker or Birkhoff-Lynch [3] to

infer Udx,y;0) from the git , one can presumably achieve

higher-order accuracy in estimating the u 1 from the data

(4b). This would require applying known (exact) Green's func-

tions and their derivatives to the interpolant thus obtained.

Boundary conditions. We will consider here only the case

of a polygon with horizontal, vertical, and 45
° lines as edges,

for Dirichlet-type and/or Neumann-type boundary conditions.

The case of Dirichlet-type boundary conditions, u je(t)

given on F, is very easy. The only alteration is that, in

Eq. (2), one or more of the terms in Ou is a known quantity

(function of time), whenever un is adjacent to the boundary.

For Neumann-type boundary conditions, one must however use

the method of reflection across the boundary. Thus, if (xly)

is an interfacu (vertical side of the polygon), we must setn n onta

u e = u n on that side. Substituting into (2), this gives

after cancellation,

(a) i+ I  U n + Un - un-l

1. ?l,e+l e-l ?

Likewise, if (xi Ym_i ) lies on the oblique interfacen n

x + y = mh, then we must set ui+lmi Uim.i I • Setting

m = 2 and i 1 1, this replaces (2) by

I
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n+l 2 n n n n-I 2n = 2 n n
U ll : (U + uUri - u 1  , fo r exam p le , or 5 u 2 (u n +U.

11 u 01 Iui )L 1t1 01 10

Rules like the preceding cover all bounda2, points (where

the values of u must be treated as unknowns for the boundary

condition au/an = 0 on F), except corners. Here one must

consider six cases: (a) 90 ° corner formed bv horizontal and

vertical edges, (b) 900 corner formed by two diagonal edges,

(c) 1350 corners, (d) 225' corners, (e) 7701 corner formed

by horizontal and vertical edges, and (f) 2701 corner formed

by two diagonal edges. Our recommendations for these cases are

as follows:

Case 1. A 901 corner between horizontal and vertical edges.

Without loss of generality, we can take these edges to be the

horizontal and vertical axes. The configuration of Fig. la

shows how to express the boundary values in terms of interior

values.

S u6  .u 7  U8

• u I eu 2  u 3  * u7UU U1 *U *U1o 1

00 10 2 2 6 o

u *u u u
# 11 01 11 2

qu 6  ou5  U4

Fig. la Fig. Ib
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Case 2. A 90° corner between two diagonal edges. Without

loss of generality, we can assume this is the wedge

-v/4 s 0 s n/4 depicted in Fig. lb. Hence we can use reflec-

tion to obtain equations for the boundary uk , as illustrated

I in Fig. lb.

5 Case 3. Any 1350 corner can be transformed by translation,

rotation, and reflection into the corner y 4 0, x + y z 0

(i.e., into min(y,x+y) 0). The reflections corresponding to

5 the edges y = 0 and x + y = 0 yield the identities

U],_l = Uj,l and u-j_l,j = u_,j+l respectively; see Fig.

9 2a.

The logic of reflection symmetries involving reentrant

Icorners subtending angles a > 1800 is more subtle. One must

g in effect imagine a Riemann surface in which the given angle

together with its images under reflection in the sides subtends

an angle 1800 + a , 360'. Of the three cases dual to Cases

1-3, that dual to Case 1 is logically the simplest. By a rota-

Ition, we can transform it to the following.

5 Case 4. Consider a square mesh of side h that fills

the first 3 quadrant;, as in Fig. 2b. Reflection in the posi-

I tive x-axis, correspcnding to the boundary condition

Sau/an = u/ay = 0, siggests setting u(h,-h) = u ; reflec-

tion in the negativo v-axis suggests that we should set

5 u(h,-h) = ul _1 , which appears to be inconsistent. However,

the inconsistency between these two formulas is only apparent,

I and can be rosolved bv thinking of the origin as a branch point

I
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in a three-sheeted Riemann surface. In polar coordinates:

u(r,-e) u(r,e) u(r,3T=0)

whence

u(r,e) u(0-3T) : u(e-6n).

From a computational standpoint, the rt-levant <d11ference equa-

tions are

U 10 u00 + 2u11 + ."J'

u 0 ,-i u 0 0 + 2u- 'l+C

U _ 0 U1 0  + 2 1 0 i,_ + uo +. u

U OU OU ~0,l -_1,1 1 O U2

u Uu

UOOU 0 U O U O + O-1-

1, 2u021 11 21

OU u O i 01 U Uleu1,u

• 02 01l U0 uO -2

.u 1 2  Ull uOl 1 1 u21 * u 1 ,12

or or
-l u- 2 ,- 1

Fig. 2a Fig. 2b

Case 5. The complement of case 2 can be treated similarly.

By a translation and a rotation, we can transform it to the do-

main 2 : -45 °  ( 9 225 ° .  It is a good exercise to number the

mesh points in this sector near the corner sequentially, and
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then write out the equations which express the edge values

u. ,_ and u- j5_ as linear combinations of interior values.

The hardest case to treat is the vertex value (u0  in Fig. ib);

it is not clear that replacing u2 by the average of the two

reflected values will give a suitable answer.

Case 6. The complement of Case 3 leads to a similar diffi-

culty!I
I

i
I
I
I
i
I
I
I
I
I



Parametrization Methods for Approximation of Solutions

of Elliptic Boundary Value Problems

by

J. H. Bramble

Cornell University

The purpose of this talk is to reconsider the Lagrange multiplier

method introduced by Babuska [2] and to present some new error esti-

mates as well as a rapidly convergent iteration for the computation

of the solution. One of the main points whikh I wish to make is that

the approach given here applies quite well to many other problems.

Problems which can be treated by similar methods include interface

problems, exterior problems, scattering problems, the stokes equations

and the elasticity equations, the biharmonic problem (with first and

second type boundary conditions) and the polyharmonic Dirichlet

problem. I will illustrate the results and the approach here by

discussing a second order model problem, and the biharmonic Dirichlet

problem. A complete discussion of the second order problem may be

found in [4J.

Let be a bounded domain in d-dimensional space Rd with

smooth boundary <.. Consider the Dirichlet problem for the Laplacian

Lu = -Au = f in Ql)

u = g on Q

For a - 0, set
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Id A(p,ip) d 7.f d + @

l I ax. ax.

i where <fip> = a nds. Define

i Tf = v,

where

I Lv = f in 02

and

iv + av = 0 on a9I ;n
and

j where

Lw = 0 in 2

I and

-- + aW a on a2.
anI

Here a/an is the outward normal derivative on ao. Now write

2) u = Tf + Go'

au
where u is the solution of 1). Note that a = - + czu on .

We can, loosely speaking, formulate 1) as follows: Find a such

thatI 
Go =  g - Tf on a§2.

I Then 2) gives the solution of 1).

,Je seek now an approximation of u in a subspace ShC HI(Q)

which we call Ukh. To define ukh we first define an approximation

ak in Sk C L2 (aP) as an approximation to a. This we do, in turn,

by approximating T and G by projecting onto Sh relative to A(.,-)

I



(as an inner product on H (11 )). Thus we define (cf. [33)

T h P T and G = P G
h I hi 1

where P1  is the HI -projection given by A(' 0 for a
H ( ) and S h ' Let PO be the 12( ,)-projection onto Sk .

Then we define -k by PObh k p ( k- Thf) and

Ukh Ghk

Now it is easy to see that

A(ukh'¢) = (fk) +

and

U k h x cJ -  C

for all , t: Sh and ' Sk where (',') is the L 2 (s) inner product.

These are essentially the same as the equations given by Babus'ka [2].

The main stability estimate (proved in [4]) is the following. If

h < Ek, for sufficiently small and fixed, we have that

3)2 0 C 2
-)0 1/2 " h -1 - /2

Here C0  and C1  are constants independent of 9, h and k. We

have tacitly assumed the usual approximation properties for Sh and

Sk  and inverse properties are required only for the spaces Sk (cf.

(3]). Now if r and r are the parameters indicating the degree of

approximation of Sh and Sk respectively, then we can state, for

example, the following error estimates:

(3-ak_3 12 -lU-Ukhl C(hrluflr+ kr+ 3/2 I

k 3/ u--, r
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Here the norms are the indicated norms in the appropriate Sobolev

i spaces and 11'11 is the L2(N) norm. Furthermore if denotes

the L2 (ar)-norm and if S kCHr-3/2 (aM) then

I -- - (,jk- g)l < C(k- r+1/2 h2r-2 IjU 1r+ k r , c )"

an k r CkhluYkor

Both these estimates are new and may be found in detail in [4].

We may illustrate the extension of this technique on the

biharmonic Dirichlet problem

A u f in Q

4)
U =- 0 on M2.5n

Set

2
u T f + TG. .

Then

A 2u = f in

and

_U + -x n =  0 on DQi n

for any i. Hence determine o such that

TGo = - 2 f on ?E2.

Then u 0 and thus 'u = 0 so that u is the solution to 4). The

approximation is now clear. Set

k = T2 f + T Gh

kh h h h k

with
SoThGhk -po

The analogous stability and error estimates are

1

J-



) <ThGhO> < C 25 ) '00 - 1 h hI o -3 / 2

and

0- okK_3/2 +IU-Ukh hr(h julir + k r+5/2101r

Again assumptions similar to those made previously concerning Sh

and Sk are tacitly being made. This approximation was given by

Falk [6] but the estimates here are new.

We finally consider the question of computing o k' For

Sk C H 32) define the "discrete surface Laplacian" zk:Sk - Sk by

for all @,x £ Sk. Here is an inner product on HI( i). Now

z is positive definite and symmetric and hence Qs is defined in

the usual way. Now it can be shown [4] that on Sk

1/4CO k 1-/2 - C

This together with the stability estimate 3) yields

6) CO 2 < <('I/ 4poGh J/4 < Cc 1 1 2- k )h J k Il~

for some constants C and C This means that the matrix induced

by G POh has a uniformly bounded condition number and hencek h k

in order to solve the system

POGh0k = PO(g-Thf)

we solve instead

7) (/ 4 POGhQ'/ 4)0 Q 1 4 p(g'Thf)

k h k-=ui- k h
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and then obtain k by

k k

Equation 7) may be solved efficiently by the conjugate gradient

B method (cf. [1]) because of 6). We have assumed that the operator

k /4 is easy to compute which may be the case. For example if
k

d = 2 and Sk consists of petiodic smoothest splines on a uniform

partition of then Z k12 may be obtained by using the fast

Fourier transform [5] in O(-k-ln k - ) operations. When this is not

so easy to compute, other stability estimates given in [4] lead also

to efficient computational procedures.

In the case of the biharmonic problem we want to solve

8) PoThGh k 
= -Poh

The estimate 5) and the properties of k lead to

2 3 /4 3/42
C0POT h Gh )k , o . .. C1 I 1 2kk

for i t S k' This leads us to formulate 8) as

3/4p0 3/4 3/4 2 m
9) ( k P h Gh'k " k PoThf

w 0 h hh ~
with

3/4
k k

As in the case of 7), equation 9) may be solved efficiently using the

,o'i ,qate gradient method.
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elements which must vanish on J .

By using the mixed !niethod technique of introducing new

independent variables (e.,,. w = -,1u), we are able to reformulate

this problem as a lower order system of equations. This will

allow us to define a conforming finite element method using only

C finite elements. In addition, we make use of the Lagrange

multiplier method to handle the problem of essential boundary

conditions.

The two finite element methods we shall consider are based on

two different variational formulations of Problem (1)-(3). For

simjlicity, we shall mainly deal in this paper with the simpler

variational formulation, valid for domains with strictly positive

curvature (i.e. K : 0). 1he case of ge eral K will be dealt with

briefly at the end of the paper.

Let <-,'> denote the 1,- (i) inner product and also the

pairing between 1is(1 and I 1 1') and let

A (uv) = [grad u, +rad \} +

where a is chosen sufficiently large so that 2a+K > 0. We then

consider:

P,-obl m C1 P)'*" t ind 11, , ) " H I ) xII tI i r-112 ( ) such that

5) .A (mv,) = f,v) + ':,v for all v E H (Q),

(0) A - , for all E Ifu 1

and

7) .{ , ' = I) V ' ii -t1- I/' (

.. .... _ . . . .. .. ... . .. ... .' • ... .. . , ... . ... , .... . ...... ... .. . ..
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Sulppose now that o r a a ' (I O f ) we set

(8) :, = - Iu

an d

Then by I . I a f and H , w + -w which

imp i es that i1 ,I%, atisties N fo, from (3), u = 0 on Fss

so that by (2 anH u . . ence (6) is satisfied.

1F i na 1 3) imp? ic s Io that 1 t, wVith w and c defined

b " .8 ) is a .; olution Df Proble ( t).

o 1c. on t 1- var It 10Ial ferin.u I at ion, we no,, cons ider the

fol1ow tin i tt element scheme. Although other choices are possible

we shall for jim;) Ii cit let S 0<h1l,hbe the restriction to sl of

v -, I:: v t Pr- V t E: " where P denotes polynomials

of degree r-I or less in x and and Vh denotes a

triangulat ion of some fixed polyg4on containing w ith
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triangles t of diameter < h. For 0 < k < 1 we shall denote by

Sk the (o e C0 (F): o P _, V I E Tk} where P. _ denotes

polynomials of degree r-l or less as a function of arclength

along F and rk  is a quasiuniform partition of F into

g subintervals I of arclength < k.

With this choice of subspaces, our finite element scheme is

I given by:

Problem Ph: Find (Uh,wh,Ok) e ShxSh×Sk such that

(0) A h) = (fv 1) + <Gk) for all vh E Sh1 1)(WhVh kVh

(11) A (Uh,zh) = (Wh,zh)-<TK, Zh> for all zh e Sh

andI
(12) <Uh,yk" =  0 for all Sk C Sk"

The motivation for this formulation comes from the following

ideas.

Define operators

T : H s(;) -Hs+2 K)

and

'~~~ G:IS p  s + 3 / 2

G: If () +H

by A (Tf,v) = (f,v) for all v (

and .\ (Gov) = <Gv> for all v c C(oo)

i.e. Tf is the weak solution of the boundary value problem

-A(Tf) = f in s2

-- (Tf)+a(Tf) 0 on Un



and Gj is the %,eak solut ion of the boundary value problem

- ;. = 0 infl
0 i

Using these definitions we see from 5)- (b) that

= Tf + :

U = Tw ; 7
L 1

2  1 1
= Tf + TG:-G(K rf-G (- Go).

Let us now define

u(_ = TG - G
-,L 1

Then u = T f - G-ITf) + u(,7) so that Problem (P*) can be stated
TK

in the form:

Problem (P,*) Find o c f 1 /  Such that

u(o) = -TVf + T;- If] on F.

k
As we shall now, show, the approx Lmat ion scheme Problem Ph

can be viewed as an approximation of the above formulation where

we approximate the function a and the operators T and G.

Let us define operators

Th : H (f) - S1

and

Gh: H-1/2(F) Sh

by

Aa(Thfx) = (f,x) V X C Sh
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I and

I A (G h ,X) = < S h.

These are just the standard Ritz-Galerkin approximations to T

and G.

Using the operators Th  and Gh we can also rewrite
Problem k* in a form analogous to Problem P*. From (10) we have

g that

(13) "h T h + G h k

and from (11) that

".-.K N hTh'k --K . .. G:Jk

i We now define c07 - P:

(1 3) T. ,, . ?

Then

I ---- -

N . - ....

50Y aL n7 . c t r7- . a. t. nest:?'r h:ie ,iteL. ~  eton r. a k
I

The ainide cf thi friain a- e)e- f

Iinen 'a ti n r Z re -- o- n -r , t -i C- e rat -r equat ion z n

solve d in a n effciet -.annie r uS I he _r e Zo ndi tioedL-.,, zua e
a ": e t h e-w eXaMine hS t Zi a.n .e ne

I



To apply the conjugate gradient method we need to be able to

compute P )Uh ,) for any , e Sk. From the definition of Uh(C)

we see that this involves the solution of two Neumann problems

involving the same matrix at each iteration. Hence once an

initial LU factorization is found, the calculation of uh(-)

will involve only two backsolutions. The application of P then

requires one additional backsolution per iteration after an ini~iz!

factorization of the matrix corresponding to P0

For this method to be effective we would like to precondition

the iteration so that the spectrai condition number and hence the

number )f iterations required will be independent of the mesh size.

Our choice of preconditioning is based on the following result.

Lemma 1: For h < ck, with c sufficiently small, there exist

positive constants C1 and C, independent of c, h, and k

such that

C 1io 12 < I<PoUh(O),o>I < C 2 jol
2  for all a E S-I 0 h 0 'G> < C2 -1 k'

To make use of this result we define a discrete boundary

Laplacian

Zk: Sk - Sk by

<Zk0O,> = <0,8> + <Oses>

for all e e S

It is then possible to show that

for2 kw 1  ad C 2 < con 2C l G - 1 - , k - Z - 1

for all a e Sk' where C 1 and C. are constants independent of k.
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IInserting this result in Lemma 1 and setting a =

i we get
2 get 16Pouh(l/2 l/2e> < c 2

1 0 - 'k ),k - 211 0 "

I It then follows from the definition of uh that

SclIel2< 1<Z/ZPo[T Gh()G 1 1 200>I _ c2I>iO"0l~l _ k [h h  E)h ] F <N26

The above inequalities imply that the matrix induced by the

(self-adjoint) operator
1 1 /2

Z ' 2Po [ThGh Gh(-I)G 11
k 0h h hTK h]Zk

has a condition number which is bounded independent of h and k.

Thus we can obtain a solution e to the equation

Z P[ThGh- G (-!)G ]k 0 [h h Gh (TK) h k

= Zk [-Po T f + PoGh(-)Thf]

to within accuracy hr by the conjugate gradient method in

1O(Zn F ) iterations. Returning to the untransformed variables,

we now need to compute P0g for g e 1/ 2((F) and
10

[ThGh-Gh( )Gh]a and Z for a E Sk" As described earlier,

all of these require only back substitution at each iteration once

some initial factorizations are performed.

We now turn our attention to a brief discussion of error

jestimates for the approximation scheme just described. The basic

variable in our formulation is a and the key result will be to

j estimate a-ak in appropriate norms. Once this is done, estimates

for u-uh will follow easily from known estimates for (T-Th)f

and (G-Gh)a. To see why, recall that

T 2 f-G( 1 )Tf + TGo-G[-4 Go]

I



'4 0

and

uh Thf-Gh(--k)T hf + T hGhk-Gh[7- Gh3k].

Applying the triangle inequality, we get

t[ -hI~o _< [[T2-Thlf[110

J[G fl -IK)T-Gh (TI) Th I f I0 ITGa-ThG h k iO
1 1

+ IG[-1 Gc]-Gh[-I G C ] k1 O -

We now show how estimates may be derived for a typical term in

the above inequality using standard approximation results and

a priori estimates. We write

TGc-ThGhak = (TG-ThGh)a+(ThCh -TG) (y-k)+TG(a-ak).

Now (TG-ThGh)o = (T-Th)Ga+(T-Th )(Gh-G)o+T(G-Gh)o.

Let us consider the case r = 4 (piecewise cubics). Then

II(T-Th)G02Io < C h 4 ITGa 114  < Ch 4Gat12  < Ch 4 1o i/2,

II(T-Th ) (Gh-G)aJo < Ch 2 IT(Gh-G)a112

< Ch 2 I(Gh-G)aflO < Ch 4 lGa112 < Ch 4 101/2'

and

JIT(G-Gh)oI1 0  < i(G-Gh)a 112  < Ch 4 IlGo1I2  < Ch 4 1ol 11 2.

A similar argument gives

I(ThGh-TG)(o-ak) 0 < Ch 4 1a-akll/ 2.

Finally, JITG(a-ak)1 0 < CJIG(a-ak)l2 < CIOkJ- 7 / 2 "

Since the other terms in IiU-hio can be estimated in a similar

way, the problem is reduced to estimating 10-okI in various norms.

The main ideas involved in these estimates are the following.
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Step 1: Derive an :i priori esti.uate for the continuous problem.

We prove that for all s o,

Cl1 1 i- 3 /2-s - 1 ) l/2 -/2-s

where u(a) is the solution of the biharmonic problem:

A2u =  0 i r,

-- -- u-,i'u 0 on F

- Iu4-:K[un~aU] = 0 on i
no

The relationship of this problem to the original one is that) 1

we seek a o such that u(a) = -T f + G(7 Tf) on F. For

this a, u(c) solves (1) -(3).

It is worth noting that this is not a standard biharmonic

problem. From the first boundary condition, it seems that j

should look like three derivatives of u on 7. The a priori

estimate says it acts like two derivatives. This fact is reflected

in the error estimates.

Step 2: Derive similar estimates for the approximate problem.

We prove:

Fheorem 1: F or h - _A, kwith r sufficiently small, there exist

positive constants C1  and C, independent of c, h, and k

such that for all J) s < min(r-2, r+-)

S1 1/2-s < 3/2 for all o S

Since this is a continuous dependence theorem for the

approximate problem with Cl, C2  independent of h and k we

can now get error estimates in the standard way.

i



step_ 3: Let all ~ i optimal'11 o approximlation to

\o% 111. o U "U

\o\\~~~~~ as T~ e t i 71c~ at tn C S, 0d ri- C

ph - S 2

III v- .ur cli tk r em~ 1~ t: c r I II t s anoId e timatuhe s for Sh

theore 2: ~r ~ ~ with n r = 4+/2

I11; -nt partCl~ c 11 2a r l-c con t Itm m- o cov so cu iC for Sh

r 2and 6N-- _htain time est i:r-ite

II 1 kill

TO balan11CeC to 1,0 t C rml WC colId ohm e 11 k 'So that for k

sufficientV lvS1.1,11 thle Condi t ion 11 is Mutoniaticallv satisfied.

We concludle timis paper with a h)ricf discuss ion of a finite
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element method valid for ab-htrar\ smooth K The method is based

on the following yariati,rial toi::.tilat on of the biharmonic problem

(1)- (3).

Problem (P F in ( ,,, If 1: (.L) × 3/2(F)xH- 1/2(F)

g such that

(w + , v> for all v e H1

1
(18) Au,:) = L,,:) for a 1 z H

(19) T KK-..,--<-I, , +w,;- = 0 for all

3/ (), and

(20) <u,3" 0 for aI c (H).

I To understand the relation between Problem (P) and the

biharmonic problem (1) -(3), observe first that equation (17) is

the weak form of the boundary value problem

- = f in .

+ -1w o + \ Oi ,
nss

and equation (18) is the weak form of the boundary value problemI
U = w in

2u + -x = . o l

Equations (19) and 20) g ive the boundar" conditions

7 [KU -ati +LI = (1 on 

I and

I



SLppose now that for uL a smooth soluti en ,of- l-3 ,e set

(21) U

n

and

(23) - -5 l + u + u, +

Ihen from (1), -"., = f and by i ) 23)

- - w + -

n +

which implies that (iw, t) sft sfies 1". e7 from (21) and

(22), it easiv follos that U,w ;,c l satisfies i8) Using

i ') , 21;, and % %e get that W i -,ui = 0 on F

and so (19) is satisfied. linally, ; imlies 0 so that

, with w, , - defined byK )-(23) is a solution of

Problem P.

The i p1roxima tion proceeds as before except now the basic
variables are .I. and 7k ' e then seek ', k "_kCSk such

that (1f) - (20) hold for all ,:: e r whe I is replaced b
K 'k

h =  f + hc s s

and is replaced by

uh  = T lh + ;\k

Once again e get a linear system for X k which can be

efficie.itlv solved by the conjugate gradient method after we

determine the correct preconditioning. To compute the action of

the relevant matrix on a vector we need only be able to apply the

operators T h and P0. As before this is quite easy once some
h' 11 o'

initial factoriz:ations are determined.
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the form

(1! ) h f-Tf tV < ch"'!Tf1 V

where V is a suitable functlona! space of "r-Fular" func-

tions and the exponent k depends on the "(cr,,r-e" -f the

approximation and/or on the regularity of V. in the abstract

theory that follows for nonlinear problems, we shall obtain

error estimates of the type

(1.7) ?u,-u. < cli(T -T)2(uX)l,
h

that should be considered as optimal in the following sense:

if one has an estimate of the type (1.6) for the discrete

solution of the linear problem (1.5), then (1.7) will provide

(1.8) UhUW < c khk !TG(u,k) V chk u11

!!i'uu,)!l =

which means that the (asymptotic) error in the nonlinear pro-

blem is as good as the one we have on the linear problem, for

the given "method" Th.

,. particular case which is of great interest in the ap-

plications is the following one, that we shall call the "pure

Galerkin case." Assume that we are given a bilinear contin-

uous elliptic form a(u,v) on V x V and assume that T is

defined through a(u,v) by means of



(T :f E V' -I Tf E V, solution of

(1.9)I a(Tf,v) <f,v> Vv E V.

g Assume finally that we are given a family {Vh} of closed

subspaces of V, such that

I (1.10) Vv ( V lim inf I!V-VhIlv 0;
h-+O vhEV

h

T can now be defined by
-J h

T h :f E V' -+ T hf E V h  solution of

jhh h'
.. ,a(Th~v) <f~> VvE Vh

If the inclusion W c V' is compact, T will satisfy the

assumption (1.2) and the abstract theory will be applicable.

We recall that, in that case, the estimate (1.6) can be

written

(1.12) ITh f-TfV c inf I Tf-vh V
V hEV

cfr. e.g. [2].

We shall spend a few words now in order to show that, in

k:' I fact, the pure Galerkin case is not the only interesting case

in which the theory can be applied: we shall restrict our-

selves, for the sake of simplicity, to a particular example,

- but we hope that much more general cases may be easily guessed

once this one is understood. Consider in a convex polygone

A.
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2 ]}l2 the problem

-Au + Xg(u, ,u) 0 in 2Ux y

(1.13)

u : 0 on aS

o 2 L2

where g defines a smooth mapping from 1.(2) x L (2) x L (2)

into L2(2) (or, if you wish, into {51(2), s > -1). Assume

that you have a "code" which solves the linear problem

(1.14) -w Z f in 2

w : 0 on 8

by "mixed" finite elements; this means that for any

f ( H-(2) and for any given mesh size h your code will

provide Thf = (wh'Ph) where wh  is an approximation of w

1 2and Ph = (plh) is an approximation of p = grad w. Assume

in addition that you have error estimates of the type (see

e.g. [2])

(1.15) Iw-w 11 2 + IP-Ph'l 2 2 - chIIwII
L (2) L (2)) H2)

then you can study the mixed approximation of problem (1.13)

with the following setting

3 2 2 2
V (Q() {v (,t), (p L (), T E (L ()) },

W ( 2N) ,

G(v,X) = g( , , 2



I
53

and with T defined as the mapping that to each f (L 2 (2)

I dssociates Tf = (E,TI, 2 ) E V with -Ap = f (p E H1(2))

and T = grad p. The estimate (1.15) yields now

(1.16) ITf-TiflIv < cIh11f11L 2(2 ) .

Hence we may say that an abstract error of the form (1.7) is

still optimal for our mixed approximation of the nonlinear

problem (1.13).

I

I
I
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CHAPTER 2

2.1. We shall now give a theorem that will be used systemat-

ically in the sequel; the theorem is a minor modification of

a result proved in [5], [6]. However, since the original

proof of [5], [6] is rather technical and since the two state-

ments do not coincide exactly, we shall also give a sketch of

the proof. The following lemma will be "used" in the proof

and will also be useful in the sequel.

Lemma 1. Let BIl B be Banach spaces and let F E CI(B -B

let moreover be an element of B such that F x 0

and DF(x) is an isomorphism from B onto B2). If {Fn }

is a sequence of mappings which converges to F uniformly in

IC (B I;B ) then there exist an integer n, a neighbourhood

U of x0  in B1 and a constant c such that for any n n

there exists a unique x n E U such that F n(x 0 and we

have

(2.1) I1X -x 1 < cIF n(x )B cIF Nx )-F(xo)11B.
n OH 1  n 0 B 2  n 0 2'

Proof (sketch). Since DF - DF uniformly and since DF is
n

nonsingular at x = x 0 we have that, for n big enough,

(DFn)-i is uniformly bounded in a suitable neighbourhood of

x 0  independent of n. Hence Fn has an inverse function,

say G , in a sphere S P(Fn (x 0)) in B 2 with radius P

independent of n. For n big enough IF n(x 0)I1 < P and

n B



I

I
hence x n G (0) exists and is unique in a neighbourhood ofn n

Sx. Let now G be the inverse mapping of F; we have

i Xn XOI )B IIGnFnGn(O) -GnFnG(O)11B

(2.2) < supIDG n11IIF G (0) - F G(0)I

supjjDG n 1 10 - F (x 0)1B 2

which completes the pr'oc ;ince DG : (DF ) is uniformlyI n n

"unded.

We are now able to present the main resLIlt of this section;

we recall first that if f js a C mapping (r? 1) from

X X Y into P, where X, Y, "7 are Banach spaces and

(x0 ,y ) is a point in X x Y such that

i) J(xq,v ) 0

i() 7 i ', ) an isomorphism from Y on-o

then tne clas: cal imp1icit iunction theorem ,nures the

existence of- a unique rasp ing g(x) 6 C r(X;Y), defined on a

h ...... N of x in X such that g7(x0) V 0 and

-(x(x)) _ in N.

" -- m. Le' ', Y, be Banach spaces and let

C.., Y; ) for , I with D uniformlv continuous

I., . . t ,yr ) be a point in X x Y such

tht L.' us i ) m ii) ii, atisf-ed and Iet i(x) be

!

I



the implicit fucindefined by inl thu c~buho N

ofxl Assume that w,,e are 7;,r j, cuyrlicc {f 2

,apping7s ;ro X x Y into) I,' ,m:n I~

to un if ormlV i n Then Ihsc rox:K~hc

Ux)in i. no E)hbo urhz-oI ( ) ire r

and a constant i ucthlhe.

.For any Iit-or n n tiere J2i Il 1 n

g E x -Y\;) Uofined on ___N- _____ ,v

that

(n3 (x,Fg (x) ill (x

Moreover convergoFs -to r, :_::x iis ief~

for Liny m integ"-or with m i

L n(Lc.

!1niformiy in '(x 2

Prcoof (sketch). Consider a0 U,511,1 the a ilayfunctions

F (x , y) (x ,;4( x, ) ) ind F C = ( x, n ( x , v)) which are-

!(n Xa~n' e x Y into X x Prcwce ii nF as ini the

procof of' Lemma I we have that thie I Iys TInr t i Ons,, Cx

CX, ?(X,z) ) And G (X,v.) z ( X T (X,,) ) "XistI in aneijrhbo--

heod~c of (0,0) 'Ind (0, CX2 , 5 )Cre-s) w t-! ixeld adus;

obvioj ly ,(x) ' (x,n) an tin,! nr (.x) Cx

iliowed for n ldie. ene-ilh) wec, -t *he iTTm;<l1i ct fUnCt 3 n for
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(P which satisfies (2.3). Proceeding as in (2.2) we obtain

(2.4) for m = 0. Then (2.4) has to be proved by induction;

we sketch the case m = 1: remark first that by a suitable

choice of U(x 0 ) and U(y 0 ) we may assume that the first

derivatives of P and n are Lipschitz continuous (now

r_>2). Hence we remark that Dy ,n gn(x))Dgn W +

D 4 (x,g nX)) - 0 and D y(x,g(x))Dg(x) + Dx 4(X,g(x)) = 0Dxn ny

so that:

D tn (x,g n (x))(Dg(x)-Dg nX))

((.5) CD n(x,gn (x)) - D y 4 (x,g(x)))Dg(x)

+ Dx4 (xF (X)) - D 4 (X,g(x)).
x n n x

Since (Dy4 (x,g (X))) - I  is uniformly bounded and DyP
y n -n n

x n are Lipsciiitz continuous we have

• - n L(X'.,

c{i1(x)-ng (X)!,+ D 4 (x,g(x))"Dg(x)+D 4nx ,g(
n % n x n LXZ

,< (2.L) for m I Follows from (2.4) for m 0 which

wis ,Areilv proven. If r = 1 formula (2.5) together with

th, :.iform continuity of D t and D t' shows that
x n v n

D, (X) converges uniformly to DgFx) but does not provide

-,f the form (2.4).
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Remark. When r(u,X) arid F h(u, X) have the form (1.1) and

(1.3) respectively, (2.7) takes the form

dm m d
(2.8)0d ( u WX)-() c - (Th T)G(u(X),x)

dX M h V Z= d% zV

that we already discussed in Section 1.2.

hL)
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(3.6) Qv v - <v' , > 0

and we remark that F(u,X) = 0 in V if and only if

(3.7) QF(uX) 0

(3.8) <F(u,X),(P0> : 0.

The decomposition (3.3) will now be used to write the solution

(u,X) in the form

(3.9) u 1u0  + cnp + v, a EIR, v E V2

(3.10) X X 0  + L E IR.

The basic idea of the L-S procedure is to use equation (3.7)

to eliminate v in the expression (3.9), as an implicit func-

tion of a and a. More precisely, let us consider the

Iuxiliary mapi ing

(3.11) F(tav) QF(uo+aP0 +v, XO+ )

which is clcarlv a C mapping from IR x ]R x V? into V 2 .

Olv~ou:Jv F(0,0,0) = 0; it is easy to check that

D F( ,0, , ) = L, which is an isomorphism from V onto V
v 2 ot V2

(3.S); therefore (3.11.) defines uniquely v = v( ,a) with

v(9,0) = 0 a an implicit function. Plugging v( ,a) into

. 2) we h.ivo that (2.7) i:- identically satisfied, so that we

hive to deal with (B.8) only: setting

1I
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3.2. \'-''t , i: p 71n wi r e h g von i

0 and < F(aN)p>HF fu1 thoc cPP21- o
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since F, t 111 f ( nrmIv n ~r we mao apply

T:heorem I r Ii -c V i th existencer of a

sniqu I ' Lfl' I 001 u'hho'jrho, of (041) in I 2 into

a no :i glbotiiu( a (- * W uch that
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(3.16 0. +ai % +v (F, X) X +,.),qp 0.

Ith'1 12 cla !r 1 ( - Onverc'tf: uniformly to v. ,ci) n



I
63

C and hence fh (,,a) converges uniformly to f( ,a) in

C a more careful use of the estimates (2.4) leads to the

following theorem (cfr. [6], [7] for the detailed proof).

Theorem 3. We have for all m with 0< m r - 1

m
(3.17) lIDm(Vh(.'c)-fv("a))IIL (R2 c = I JD'Fh(Ea)" OR 2 ,V)

m I V)

(3.18) 11Dm (fh( 'a)-f( ))Lim ( 2 ,V )  c = lgh('),i ( 2 V)

where Fh (,a) = Fh(uo+a p+V( ,a), X0 +t); moreover if

a(t),E(t), It) t is a Cr curve in a neighbourhood of

(0,0) and a h(t) ,h(t), tI ft O converges to a(t), (t)

uniformly in Cr  we have for all 0 n m : r - 1

Id m(v h ( h(t),a h(t))-v( (t) a(t))) V
I dt m

(3.20) f c( + h=0 dt g  dt $

+ Fh((t ,a(t)) D(h,m,t)

and

(3.20) - (f h(h(t),ah(t))-f(E(t),a(t))) < D(h,m,t)



where D(h,m,t) is defined in (3.19).

In summary we may say that in a neighbourhood of a simple

singular point (that is, a solution (uIX n) which satisfies

(3.1)) the Liapunov-Schmidt plocedure an,! the "uniform con-

vergence" Theorem 1 allow the reduction of both (1.1) and

(1.3) to two dimensional problems

(3.21) f(r,a) = q, f h ( , ) : 0

with f f in Cr and with -stimates of f of op-anh h siatso h

timal type in terms of !'I F. From now on we shall essen-

tialy concentrate on the two-dimensional problems (3.21) as

if they were our origlnal prob ems. Obviously the various

hypotheses that we shall make on f( ,a) can be "translated"

into corrospondins hypotheses on F(u,N), as has been done

in [6], [7]; similarly the error bounds obtained in terms of

f and fh should be expressed in terms of F and Fh by

means of (3.9), (3.10) and Theorem 3 (see again [6], [7] for

all the details). We finally remark that if (u0 ,X0) is a

simple singular point we have f(0,0) (0,0) 0.

aa

Ii
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CHAPTER 4I

4.1. We assume in this section that we are given a Cr map-
ping f ( ,a) I2 _ ,R with f(0,0) f (0,0) = 0 and a

family fh (,a) of mappings which converges uniformly in Cr

to f(,a), as h tends to zero, in a neighbourhood of the

origin. We shall assume, first, that

rThe origin is a normal limit point for f(t,a),
(4.1) a

(that is (0,0) 0.

Hence, the implicit function theorem will ensure the exis-

tence of a unique Cr  function = (a) from IR to JR

such that E(O) = 0 and f(E(a),a) = 0 near a = 0. Theorem

1, in turn, will ensure the existence of a unique Cr map-

ping h (a) in a neighbourhood of the origin such that

f h(E h) 0; moreover,for 0 m s r - 1

(4.2) !- h( fh

dam  V0 da

Since 2 (0,0) = 0 it turns out that necessarily d (0)- 0.

aa da

We assume now that the origin is a "nondegenerated turning

point," that is

(4.3) d (0) 0 0.

da 2

65
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In that case, for r > '2, we have from Lemma 1 that there
0

exists a unique h near 0 such that

dah 0

(4.4) dh (a )
da h

moreover

hl : I dh 

(4.5)

- c(jfh(OO)I + j (00 Dl(h).

0 0)w hv

Hence setting h (a ) we haveh ~hh

(I.6 hh I I d ( 0)II + 0 12)
h f Ih(0)1 + _ (0) 2

h 1
(4.6)

Ifh(0,O)l + OM(n(h))2

We have proven the following theorem.

Theorem 4. If (0,0) is a normal limit ooint of f( ,a)

then there exist a neighbourhood U of (0,0) and an h 0 > 0

such that for any h S h0 , f h (, has a unique branch of

solutions in U; the branch has the form E (a) and we

have for 0 ! m < r - 1

(4.7) If (Eh(a)-E(a)) < c f h ((a),a )

--- '" eI d" a' I- I
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where (a) is the (unique) branch of solutions of

f( ,a) = 0. Moreover if r > 2 and (0,0) is a nondegen-

arated turning point for f then fh has a unique nondegen-

0 0created turning point ( , h in U and we have:

-3 f
(58) lah < c Ifh(0 0)i + h (0,0)

(n IO < c I fh(0,0)1 + 1 (0,0) 2

.>emar~. In manV applications, as we shall see later on,

!!(c i itself of' the order of (0,0) , which

] ~ ~ i ;i~e;th ot-itions in (O .S), ( . )

4.2. U U all now assume that (IC) is a simple critical

I, 'oa), that Es: (0,]) : , the

2 0-,It the * I n sr Fn u I a r la. I t is

- -' t, ,o 'a t i ,, t(>" ) > ! then the et of solutions

(,), ,. 9~r n nn mists i thn i[solated

.. ' (> ') . s e t,.y her ,Yan.. ]sn me that det(D f0 ) < 0

:, i . r1 Ti a y. il varv f- nction

F0 4 +

(1 ) t- ,a) : (t >f(tta), o- F-])o

' is '1,- i' th it [.f we: find soluiticns of F C of the form

S (' ) ,,T( ) ', s



has to be a >,cinen'ef Toct.c i,1>Aut

An~v Fas zo-'1 .j11 tho inter-~-

5section of tuec un it ci rrc' le withr ci ciciir hyperbola having

vcr re: x 4n t',- ,- i ci i , w i ]. ci (4.? c !i 41> vcrv.'llere

eixcept nn the (ieulc tfte -- imc 1e cnri se i I i~nc

(4.1 4 ti .1 ii'e hr 7,ye v" c " i cit Iec rc ,j l ")- (3 ,a)

,-a ) - -a). isreFar?2 ngr~j the I a utleHrbi~

resos(they1, wiL 1 Ive the ciOO (- ranclies wI -t fli te-ac

ot t), we are leflt- with two indelpendent :elu~n.Applvirnc

t-h- imP2 llc function tlheorem we findl two branches

ta (t)21,

I us H -H )Ucrossing, transversal lv it thu cii r',in.

..i)- previous res ult couldl have b~een ob--tained directly
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fi~m Morse lemma (cfr. e.g. [1]). However, an explicit cons-

truction of the two branches (4.13) by means of the implicit

function theorem will allow the use of Theorem 1 and make the

error estimates much easier.

The following lemma will be crucial in the study of the

behaviour of the set of solutions of fh(,a) = 0.

Lemma 2. Assume that 0 at the origin and that

D 2f is nonsingular at the origin. Assume that fh( ,a)

converges uniformly to f( ,a) in C r > 2. Then there

exist a neighbourhood of the origin, N, and an h0 > 0 such

0 0That for each h < h0 there exists a unique point (Eh,)ah

in N such that:

(4.14) Dfh( ,a h  0;

moreover we have:

(4.15) I hi + [aL cjDfh(0,0)l2

The proof is an immediate consequence of Lemma 1.

We consider now the quantity

i 0
•(4.16) K(h) f f (E , a )0

we remark that fh(E,a) has a simple critical point (neces-

0 0
sarily at 0 iff K(h) = 0; in such a case, if
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det(D2 f 0) > 0 the set of zeroes of fh consists of the

0,0 T)0
isolated point h and if, on the contrary, det(D2 f)

hh 2

< 0, then fh has a simple bifurcation point at , ).

Roughly speaking, then, fh reproduces the behaviour of f

iff K(h) = 0, which should be regarded as some kind of

"miracle"; however, some sufficient conditions to ensure

K(h) = 0 in some particular cases (bifurcations from the

trivial branch, symmetry breaking bifurcations) can be found

in [91, [7].

We set now

(4.17) (h ( ,a) fh( a) - K(h)

and we remark that from (4.15), (4.16) one has

(4.18) IK(h) -- c(Ifh(0,0)l + jDfh(0,0) 2).

Introducing the auxiliary function

(4.19) F (taa) = (t-2i ( 0 0 ' 2+a2-I)
h fhCh t~h~t)o+ 1

comparing with (4.10) and using Thp ... 'e easily get (for

det(D f) < 0) the following result: the set of zeroes of

f is composed of two smooth branches ( (t),( h )) t t0 ,hh h
0 0

(i=1,2) crossing at h,ah moreover
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+m Ii(t)()) + h ( t - a

dt hdm

(4.20) < c - fh( ' (t),ai(t)) + Ifh(0,n)I
0 dt

+ IDfh(0,0) (0m<r-3, ltl:t0)

(see [7] for a detailed proof). Clearly we need, in this

case, r > 3; the interest of (4.20) is mainly in the case

K(h) = 0; otherwise it will be enough to remark that, from

(4.20) (for m=0) one has:

(4.21) (S )S c sup Y 1h t i<t 0  ( = l t dt e

where S and Sh are the sets of zeroes of f and h

(respectively) in a fixed ball centered at the origin and the

Aistance D(A,B) between two closed sets A and B is

intended as

(4.22) D(A,B) max(sup infjjx-yl, sup infjlx-yij).
xEA y(B y(B XEA

We have to evaluate the distance between Sh and

S h et of zeroes of I in the given ball. For this weh .i

oork -that since ?h has a simple critical point we may

*VpiV, for any given h _ h 0 , the Morse lemma to fh getting

new vriables

!
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(4.?3) (~):R( a

7n which

2 0 0)

(that is, h is a homcoeneoi: polynomial of degree 2 in

the variables [, ). Hence we also have

(4 ~.25) fh (a) Dh (. hc)(( ,),( ,C)) + K(h)

nd the set of zeroes of f, in the (Ta)-plane is as

follows:

a) Li et (D h (r h S is an ellipse or the

emptv set following the sign of K(h)

0 0
b) if: d et(Dh h )) < 0. s is a nondegenerated

hyperbola.

In both cases one can check that

(4.26) V(ShSh) _ cIK(h)l 1/2

provided that Sh is nonempty. Since Rh  in (4.23) is

uniformly invertible one has from (4.26)

(4.27) D(Sh'Sh) cjK(h)1

provided that S is nonempty.

We summarize the previous results in the following theorem.



Theorem _. Assume that f(f,a) Q a C mapping IR -R

with r > 3, And assuIC that K, (t *ct ) a <vep~ej uniformly

to f( ,c) in Cr in a noi hL<u'hood of the origin. Assume

moreover that (0,0) is a sple critical point of f( ,a),
0 0 0 0

that is f f - 0 arnd (,t(D~f 0 ) 0. Then therea _ _

exists a neighbourhood of t>,, oriicin N and an h > 0 such

that for any h < h ( we h\'ive the following results:

i) if det(D ) 1) f , S l an isola, an isolated

point or the empty set foliowin K(h) < 0. if S is non-

emptv:

(L. 2 8) su '; : 1k h)l ! ' '

.

ii) _if dot(P _) <. 2,, Sh;: diffeomonphf to' a hy:'c-.

(S SS,b ola C 1' I-gen Ce!i K (h)1 ) 'In'! 1,7 have:

V(SS ')
C h. 7)) ) + :.p h '  % ,. ( )

w e,'-, <( ), t ( ) C : , = ,) are ti1 t 1- tranches

CI :'~ t o : f : i: V(-nm : a-:: : r:, ( ),, ( )) - );
.. 1

mnIreo\vt, , K = , the -tw \,',' - n -!i~ of -Ioii ion.s of '

c, Ir nanamei ', c n such a "wV that (U.?2) holds

S 7 4Z

! 1



and f~(respectively) in N and that K(h) is defined by

(:3.14) (4.16) ane boundeL. I.v

4 .33 1Kh)j c(; h- (0; + i-c h (0 0)1?)

Remark. One can show (cr PIK) that in the ''Pure Calerkin

case" describo-d in Section 1.? -ne 'has, with the notations of

E (V, v EV

L 77 s 7da peraitor of T1. lience under

rojnl MTM assars::op o (n 0) goes to ero twice

an Fu~ a ir in- min ' e prov iouz abstract estimates.

'_ e c1 tn 1:ixe,_ ai. h\brl, elements, a relation-

a,-pi -1 ) does- nct hol r t s7till one can

p7oes to ::cro ,.Ith aihe order (usually,

a louble ar V) :er- for in.: tince [F Ii, 17 1 , P



CHAPTER 5

5.1. We assumed, until now, that our problem was governed

just by a real parameter X E IR. In fact, on one hand, many

physical problems are actually governed by more than one

parameter; on the other hand, other parameters could be con-

sidered, from the theoretical pcint of view, as "imperfection

parameters" in order to see if, in some "expanded space" the

numerical discretization reproduces the whole bifurcation

diagram. We shall give a simple example in order to make our

statements more clear. Assume that

(5.1) f(2) 2 + a2

and that f h(,a) is a C function which converges uni-

formly to f( ,a) with all the derivatives. As we have seen,

the set of solutiuns of fh (,a) = 2 can be: 1) an isolated

point; 2) an isola, 3) the empty set. There is little

doubt that, from the qualitative point of view, the way in

which the solution set S o f h(,a) = 0 reproduces the

solution set S of f(Q,a) = 0 is quite unsatisfactory.

Assume now that, instead, we have a two parameter problem

(5.2) f( ,i," I ) 0

with 2() 2 a 2 + p. For the moment we may assume

t is another parameter "contrclled from the exterior"

tholat [L is an "imperfection parameter." Suppose now

7 5



that we ave R Ivoe i Fi-,i:l1% f C"

w!"i convcri 7 "'- I- *, in em2  vv i tn

v I7ienl *;.I- 6i mr *) ,I I)IYe ' . I cr

thcoren ar'7 i'heol'em 1. ri, v- cxi-,tt-noe md 11 <I ri

func:t ions

zsuch t hati fC L1j~ ,))a] ts .J.-))vanish,' idonI-

tic illv i n ai noi m, iOoui hood ol (0 0) Mo0reOver.

L nce DLIC. ) fl " (t ) ) , ( 1) 0an P(Pp.) = D I

*no i nF uII rn L trim I nu re s t h c c x st en(-e o f a unriq(Iue

1, 0 0 0ok- .nt (1 11, , ) wbe re t 1u va-nis hes S IttlFug 0 h =4

L t i' ea 'v to (hIeck that 4 a an absFolute maximum for

.1I I~ 1c 11 1h eurI-Ieod oC t he or I, 11 in o tha IIt th , so lut ion set

S, i * L) i the V _,-)-pianie is empty for

, ci Imce'l t te 1md 3Ited Point ,()fo

III(, -IanI ina fo,-r p, < IHnrta, if we con!;ider

~masmm;imprtfection parameter" we- may draiw thme following

pictmmro-, f, r the con t inuous and for the ti r 5ndpi-ch 1 m,

in th- "-spaco o)f pert urbatjoo,;" IL TR
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isola empty

0

Fig. 5.1

isola empty

0h
h

Fig. 5.2

and the qualitative reproduction of the bifurcation diagram

is by far, more satisfactory. We may also prove, with little

e':fort, that

(5.6) hi -C i () + (020,0) + h (0 0,0)

which, in thc ipplicatious, mav provide, as we have seen, a

.' o, cr o' convergenc,. Suppose now that we consider

iLa-; , p-vmeter controlled hv the exterior. An elementary

compultation I:,w:; that in the "space of parameters" ($, E

w hive -r f(fa,,.) 0 the following, situation

I-

1



DV

U

whero the ,)arouola -- ep:tatces the two rneFions

R~~~n 2 (,c,)2 V Oiutiont._} arol4

, ) §([,ap) 2 0 h:s two solutions a 6 } " 0b-

viouslv a "oobie" solition is Drc:3ent on Le - Let us

consider now the mappino,

(5 .7) (~a~)2
aa

andj it2 approximation

af 
h

(5.8) Gh g-
,t, ) 2 ( h (f, )  ( ,c ,u.))

Clearly 0j, ) : 0 and 1)( )'( 0' 0 ) a : non-

uingular. Hence we ma-iv have a a i(),s implicit
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functions 
satisfying

(5.9) G( ,a( ),Ft(O)) - 0.

Theorem 1 yields now ah( ), 4h such that

(5.10) G ( , (
h h ~0

with an estimate on ah( )-( ) and h Clearly

(5.11) 4h1 : h( , h(

from the uniqueness of the implicit function; it is also

2
obvious that () = _.r Therefore we have, in the space of

parameters (fi) the following picture for the approximate

problem

I0

\5

I h "

I!fr
F'I,  .

!



It is- also easy t ;iw u orceo(tc

verges uniformly to - = tha thre are no regions,

in some fixed nechee-ro ot w -u igin, w'hre f (7a
h ,L

0 has more ho-wc otie.a Agairi comparison

b)etw-7-en figures1 u. .a nd S. e:nwa -t-al itative agreement

wh ich Ismu 'e -110are OiS: 2t, '-C can summarize. the results

obtaiir e(- on. that simpli- exarir - foow, terom.

Fuo iUv oUanao to) 0( ,~) if ormlIy with all

t he 'e r v~ ase i n a n taotro:of the origin. Then we

h a ve r cc, 1, v:CIn7

A) In the whel 1'uti) there exists, for

in i oilborhe o'0 (O0 0) u-chl that

and we have:
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(5.15) IDm(h( a),)-L(ta)) - c D m fh(,a,L(Ca))hm h=

9 02

where i(c,,) :- 2

b) In the "space of perturbations" 4 E IR: there exists

aunue such that the set of solution of f = 0

0
in the ( ,a) plane is: i) an isola for p. < h' ii) an

0isolated o = L iii) empty for > 0 More-isolated neint fr~___ ~ >~ oe

over

(1 .16)( Ifh(0 ,0,0)1 + f ( ,0,0)1 2 ).
hh '' (f,a) h

c) In the 'nae( of vararneters" (k ,c ) E IR : there

exists a unizue mapping

(5.17) ,L I (i, )

oP) ~V_'i.. ,.: .... ( ,p) :tl. n in two regions R 0  and Rh
___0 -1

t : (7,) E ; t x : Jltion (in a) f ( ,a,4)

(~,p) EF, the equation (in ~

, ) ' 2;t Lict --olutions. Moreover we have:

8 at0(
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2
where (%) - realizes the analogous partition of (£,p)

into R 0 and R for the continuous problem f(gQa) 0.

Remark. Our assumption that f(<,c, ) has exactly the form

(5.1) is obviously unnecessary; as a matter of fact, in the

proof of Theorem 6 we only need suitable nonlegeneracy condi-

tions on the oartial ierivatives of f at the origin.

Remark. An exchange in roles of 4 and t, by considering

4 as a parameter and as a perturbation will not give

interesting results. In fact, the equation a? + 4 = 0 has

a nondegeneratei turning point with respect to the parameter

4 and such a diaram, as we have seen, is already stable

under small perturbations (see Sect. 4.1).

5.2. Let us consider now a different example; assume that

f(gai) has the form

3
(5.19) f(<,cLj1) = - +

(this form is typical, for instance, in the von K rm~n non-

linear plate bending equations). The form (5.19) can be

considered, on one hand, as a perturbation of the "pitchfork"

form

3
(5.20) f(3,) : - [a 0

or, on the other hand, as a perturbation of the "nondegenerated



I
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!
hysteresis" form

(5.21) f(3,) a - : .

Let now assume that we are given a family fh( ,a, 1 ) of C

functions which converges to f(<,a,1 ) uniformly with all

the derivatives in a neighbourhood of the origin, when h

tends to zero. It is easy to check that for h <_ h there0

exists h(a,P) such that

(5.22) fh( h(a,[z) , l) 0

3
,nd h(a,L) converges to Y(a,R) = ia - a with all the

derivatives. Th; s solves somehow the problem "in the whole

space." Let us now hlave i l.ok to the ",,pace of parameters"

( , ) . It is easy, to see that, foor the continuous problem

[(<, , ): n the curIve

(5.2)
one s 2 a

£epdrate;< ti> to. " '2"i f '- illni in2'< ''one solution'' and

5 Jo t !s''\',o) o Pc .5



C , ,. n ,E4 jI

hem-efl , §rom -Theorn 7 ..ere L: g, ~e 1 er wih the irl~ici-

ci, w a'crt :mnicit fune-

h a 'h



b h

(5.28) a (),a)) 0.

ThE two functions (5.26) define parametrically a curve which

converge to . - 3 . We may remark that (5.27) implies

af af f C
(5.29) + h h + h 0as (a a as

a h

and since 0 0 one gets

h h |

(5.30) aa 0 a : 0

so that the curve . z i h(a), h : (a) does actually have
soh

a cusp, because 4h(a) converzes uniformly to 3a with all

hh
the derivatives and hence has one and only one zero

(cir. Lemma i). Therefore, in tne "space of parameters" the

behaviou)" of the i -- crete problem is of the type of figure

5.C-.

Tic. S.f
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We may now pass to the "spacc of perturbations" in two

different ways: by considering t' as a perturbation or by

considering as a perturbation; the situation is different

in the two cases: if is a perturbation we have diagrams

of the following type

Fi . 5.7

1h

Fig. 5.8

Tf h being the abscissa of( the cusp in Fig. 5.6,

< is considered as a perturbation parameter we may have

f 0

Fig. 5. 9

L1
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where w wi 7. :>re spoc to the pre se nce of a hy stere sis

point an! t-o the presence of a bi furication point. We can

s av, therefo-,,, thii the intti uctalon m-f the perturbation

parme~r i o;0131:0 ti( nionj ,__ eiier~ateihvsteresi, case

K !) hleteint 11~ ' o* the iverturlba-ion parameter

ha 10r tec E) l c4 -v thet pi tchfork case

(5 .2 0)

I§ s r> m imila1r to 0 C

0~ e . A: k sut. we leave e

I T

53 T7, er 1,~ i

711 ,T~ I "j -h. ' i Ie



:7 [ I ] Ecu L,- aince, such nurnhr~ iu si< c

I th e p r Oble-,l n.i

I.' i -lI*nal pet VW~~

2 7orn :i2 recions I- l- --
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It is possible to show (cfr. [4]) that two similar curves

i exist for the discrete problem, that they cross at just one

point (pitchfork for the discrete problem) and to estimate

their speed of convergence. For other examples and different

j applications, see [4].

I
I

I
I
i
I

I
i
i

II
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TWO-DIMENSIONAL APPROXIMATIONS OF THREE-DIMENSIONAL MODELS

IN NONLINEAR PLATE THEORY(*)

Philippe G.'CIARLET

I

Abetract

The asymptotic expansion method, with the thickness as the parameter,

is applied to the nonlinear, three-dimensional, equations for the equilibrium

of elastic plates under suitable loads and appropriate boundary conditions.

It is shown that the leading term of the expansion is solution of a system of

equations equivalent to a well-known two-dimensional nonlinear plate model,

namely the von Kfrmin equations.

The existence of solutions of the two-dimensional problem is established

in all cases (by contrast with the three-dimensional model, where no satis-

factory existence theory is as yet available). It is also shown that the dis-

placement and the stress corresponding to the leading term of the expansion

have the specific form generally assumed a pm-ori," in the usual derivations of

two-dimensional plate models. In particular, the displacement field is of Kir-

-chhoff-Love type.

This approach clarifies in particular tie nature of the admissible

three-dimensional boundary conditions for a given two-dimensional plate model.

A discussion ib also given regarding the class of admissible three-dimensional

models.

(*) To appear in the Journal of Elasticitv.

Laboratoire d'Analyse Nutafrique, Universitf Pierre et Marie Curie, Paris.
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I I. INTRODUCTION, This paper gives a brief description of a method

i for deriving known nonlinear two-dimensional plate models from general

nonlinear three-dimensional elasticity models. It is based on, and extends

as regards the consideration of more gene'ral constitutive equations, Ciarlet

[19801, where complete proofs can be found.

I Our approach is based on the asymptotic expansion method, applied to

(nonlinear in the present case) problems posed in variational form. Without

any a priori assumption, either geometrical or mechanical in nature, it is

1 shown that the first term in the expansion is solution of a two-dimensional

plate model, equivalent to the Von XK6rmn equations.

I A feature of the method is to clearly delineate the type of boundary

conditions for the three-dimensional model which lead to a specific two-di-

mensional plate model.

IAnother aspect of the method is that the displacement and stress compo-
nents corresponding to the first term in the asymptotic expansion are of the

Ispecific forms generally ascumed in the literature as a result of appropriate

i a priori assiumptions. For instance we shall find that the displacement field

is necessarily of Kirchhoff-Love type, while this is generally an a priori

assumption of a geometrical nature.

In other works, the asymptotic expansion method has been shown to apply

equally well to

() linear plate models [Ciarlet and Destuynder, 1979a] , for which it

provides in addition a satisfactory error analysi [Destuynder, 19791 between

the three-dimensional and two-dimensional solutions (the error analysis rests

upon methods developed in Lions 119731)

(ii) eigenvalue problems for plates (Ciarlet and Kesavan, 19801

(iii) Zinea2r shcZl modcr, [Destuynder, 1979).
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is coiinor.ly used for linear problems, it is seldom applied to nonlinear pro-

blems ; in this direction, see however Lions 119731, Rigolot [19771.

Let us review some of the notation used in this paper. The usual par-

tial derivatives will be written aiv = 3v/axi, ai v - a2v//9x. axi, etc

If &)is an open subset of Rn , we denote by Wm'(), mC, I~p, or 1m( ) if

p - 2, the standard Sobolev spaces.

We shall omit the symbol dx in an integral of the form f f(x)dx, except
in those int.!grals where the variable of integration is x 3 E [-1,11, in which

case the specific symbol dt will be used.

As a rule, Greek indices ; c,8,i,..., take their values in the set 81,21,

uhile Latin indices : i,j,p, ..., take their values in the set {1,2,3). The

repeated index convention for summation is also systematically used, in con-

junction with the above rule.

W.!.th each vector-valued function vf= (v) :6' c __ R 3, thought of as

being a displacement field in R3 , we associate the symmetric tensors

y(v) - (ij(y. )) and y(v) - I ij(v))- C R3 -R 9 respectively defined by

Y.i(v) ivj + C1.),v 0

Yij(v) = Yij (v) +

which are the linea ized strain tenoor, and the strain tensor, respectively.

Finally, if C is a square matrix, we denote by tr(C) and det(C) its

trace and its determinant, respectively.



2. rTHL TMHLL-IJIMENSIONAL MOLJLL, Let (v Ie an orthbeausial

j basis in R3, and let w be a bounded open subset of the plane spanned by

(ea), with a sufficiently smooth boundary y. Given a constant E>0, we let

j1 - X [-ce, rc - y [-E, l,

+ , x{C), r= x= {),

so that the boundary of the open subset SI of R 3 is partitioned into the
C C C

lateral surface r0 and the upper and lower faces r + and r-.

The problem consists in finding the displacement vector field

u - (u) :, _A 3 and the second Piola-Kirchhoff tensor field a = (a..) i--.R 9

of a three-dimensional body which occupies the set fl in the absence of ap-

plied forces. Fecause the thickness 2c of the body is considered to be

"small" compared to the dimensions of the., set w, the body is called a plate,

with middle surface w.

The plate is subjected to three kinds of given forces

(i) Body forces throughout 11C, of density

- (f ) =(0,0 ,f,) C C
(ii) Supcrfi ?aa7 fo. on the upper and lower faces " and r, of density

(gC) =(0,0 ,fc)

(iii) Supcrficial forces along the lateral surface PO, of which only the

, esulting density

(hi) = (hi,h2,0),

i.e.,after integration across the thickness of the plate (cf. (2.4) below),

is known along the boundary y of the middle surface w (as a consequence,

the functions ht are given only on y).

1 As regards the boundary conditions involving the displacement field

(u.), we assume that

1-" -. ... ..- - II I I l - - 1 1 .. . . .. .. . . . . . l , l, , , -. . . . . . . , --
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u 1 and 12 are independent o*f x3,
uj - 0 t) r

These conditions are i 'dily ve'rified to be complementary to *those invol-

ving the functions h
C in the variational formulation of the problem (cf.

(2.20) below).

Following Truesdell nd Noll [19651 , or Wang and Truesde]l [)973j'

the associated equation, of finit, c,' ttzti', which express the elastic

equilibrium of the plate, take the following form :

(2.1) 0 j +0." ) u fe in Q E,
j j kj k i'

(2.2) c.. a C.. in P,

(2.3) o. + 0 k3 1 C O C

(2.4) 2 J + k u )V = h on y,

(2.5) ul, u- arc independent of x 3 on F0O9

(2.6) u3 = 0 on I'V L

where v - (v) denotes the unit outer normal vector along y (and consequen-

tly, also along the lateral surface 0).
0

C C C C

Remark 2,1, The reason why we set f1  fF = 0, g 3= = 0, and h = 0,
1 2 g1  2 3 ,adh=0

is simply that the con,;ideration of such more general applied forces leads

to plate models different from (and more complicated than) the von Karman

equations. U

Rcmark 2.2. If instead of the boundary conditions (2.4),-(2.6), we had

chosen the (perhaps more familiar) boundary conditions

a =u)v hC ol

U- 0 on r0 ,
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I serious difficulties would arise in the subsequent analysis. In particular,

it seems that this type of boundary conditions along the lateral surface

does not naturally give rise to a two-dimensional plate model.

I According to the Rivlin-Erzcksen theorem (cf. Wang & Truesdell [1973)),

j the most general constitutive equation for an elastic, isotropic, material

which satisfies the principle of frame indifference is of the form

1 (2.7) o = vI- C{ (I ,II ,III )C- + O (Ic'IlI Ii )I +p2 (IC'IIC'IIIc)C}'

where I denotes the unit matrix,

C = I + 21, with y = YM)

denotts he (right) Cauchu-7reen tensor, Ic, IIc III c denote the three

principal invariants of the tensor C (whose eigenvalues are denoted A1 ,X 2 ,, 3 )

= A +2 + A, = C.. = tr(C),Ic
III ) 1X2 + X2X + X X " l{(trC)2 - tr(C 2 )),

I . X X = let(C) l-{(trC)3 - 3trC tr(C 2) + 2tr(C 3)},
C 1 2 3I

and finally, P 's1 and P2 arc arbitrary functions.

Assuming the functions v. p 2 to be smooth enough, one can write

a Taylor expansion of (2.7) around a nafura state (a = 0 for C = I) in

t 7r, of t;.." e t rain ti ,:-" P r. Thus for instance, if we limit ourse lves to

seccnd order terms, we find a constitutive equation of the form

(2.8) a ),(try)I + 21ty + a-y- + b(try)y + c(try) 2 I + d(tr7)I +

where ), A , a, b, c, d are constants. The two constants X, P are the L=4

1 coeffifcents of c[articaty ; they satisfy the inequalities (cf. Wang & Trues-

dell [1973])

(2.9) X>O, v>0.

I
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The same type of constitutive equation can also be drawn from the

assumption that the material is hyperelastic, i.e., that there exists a

strain energy function

(2.10) /N(F) = W(o 1 ,o 2 ,0 3 ),

where

F = (Fij) = ( .u i )

denotes the deformation gradient matrix, and

a, = try =

02 " tr(y) = Yijyji,

03 - tr(7 - ) = Yijyjkyki

in such a way that the J~rst Piola-Kirchhoff stress tensor

def
(2.1|t .i - a.. + ak~~

13j 13 kJ k i

satisfies

(2.12) t..
'3 aF..ii

Then if we express that the energy

(2.13) J(v) W(F)- f v +fgv 3 + vdx3 ihC

-ur_ y -C

is stationary (i.e., its derivative vanishes) when the functions v span a

space of smooth enough functions which satisfy the boundary conditions (2.5)-

(2.6), we are naturally led to a constitutive equation. To be more specific,

assume that we can expand the strain energy function (2.10) in terms of

powers of ol, 02, 03. Then if we limit ourselves to the quadratic and cubic

terms in this expansion, i.e., if we write

)2+p + A 3  C
(2.14) W(0 1 ,O 2 ,0 3 ) ,o I -2A 3 + Bo1o2 3

2 ,2

t
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we find that (cf. John [1971], Novozhilov [19531)

(2.15) a - A 1 1 + 2py + (C+4j)72 + (2B+2A)oly + (A-.1)Ol + (B-)o 2 1 +

In other words, we find a constitutive equation of the same form as

in (2.8), but with only 5 arbitrary constants (instead of 6 in (2.8)), be-

cause of the assumption of hyperelasticity.

Remark 2.3. When the higher order terms (represented by three dots)

are omitted in (2.18), the resulting constitutive equation is sometimes

know as Mirnarhan's law, after Murnaghan [19371, although it seems to have

been first considered by Voigt [1893-1894]. For the actuel computations of

the third order terms in (2.8), see Novozhilov [1953]. 

We shall henceforth assume that the constitutive equation is a poly-

nomial in terms of the components of the strain tensor y, i.e., we assume

that the expansion (2.8) is finite ; hence we do not have to examine ques-

tions of convergence in otherwise infinite expansions.

We also make the following assumption, which is crucial for our sub-

sequLnt purposes, and which shall be commented upon later on (in Section 5)

The Lame coefficients appearing in (2.8) are of the form

c -3 1
(2.16) X = _ X c P

where A1 and pl1 are constaUs inITpcudants of E, while the other constants

which appear in the constitutive cqwuations (2.8) are independent of c.

Vith each tensor X = (X.j), we associate the tensor Y = (Yi ) - AX

defined by (6ij is the Kronecker symbol)

YiJ = (AX).. = ( X -X 6
1.1 ij ('-" Xi j - pp ,

where the constants E and v are related to the constants X1, p1 appearing

in (2.16) by the relations

I



X1 = Ev E ...

+V)(I-2")' 2 0 +(t v)"

Since

(A- Y)ij = IyP 6.. + 4Y ij'

we can also write the constitutive equation (2.8) as

(2.17) f 3 (A)ij ij(u) + K a. . ..k k k k (k ),

2-q: Q 2 q-1 q 1 ?q-: 2q

for appropriate constants a ijk k, k

The tI ' o,- ] : .I'It, 1'0' is nO , Comp I etL IN defined, by the

data of the equat9 a a t., n I 'I' :7' b 7uri (2 I )- (2 . 6) and of the o na-

titUt ;v: , -qi-z", u (2. 17) .

As regards existence theory fur -uch vonlinear elasticity models,

one can extend the analysis given ia Ciarlet & Destuynder [19;9b] (which

relied essentially cn the implicit tunction tlcorecm, IP-regularity results

for linear elliptic systems, and the fact that the Sobolev spaces W' (),

C F3 , are Banach algebras for p>3), and show in this fashion that for

nall encuTh applied forces (fi)E (LP(Q))3 , the puwe Dirichlet problem

(o ij+kj 'i )  = f.] in rCR ,

1W 1 ) + q ijk k k k U)k -u) ]
ij,"j 2 'q<Q 1k2 2 q-j Iq~k I "k2q-k2 q

u - 0 on the boundary of Q

(assuming tile boundary of 0 is smooth enough), has a solution in the space

(w0' P(&) n w2'p(l,)) tor p, . Th 5
7 ,iio the .pIr,'.Lch ,f Mam,,;.,n & ,ughes

[1978, p. 2081, Valent [1978].

Remark 2.4. It is precisely the lack of available regularity result

(for the linear elasticity system) in the case of a cylindrical domain such

as Q c and of mixed boundary conditions of the form (2.3)-(2.6) which limits
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the applicability of the method to pure Dirichiet problems and domains with

smooth boundaries.

Renar'k 2.5. Under the same assumptions, one can also prove the 1-I

character of the mapping

p :XE -[I )(x) = x + u(x),

a highly desirable property of the solution.

Regarding existence theory for nonlinear elasticity models, we mention

the fundamental results of Ball [1977). For yet another interesting approach,

see Oden [1979J.

We notice at this point that a variational formulaticon of equations

(2.1)-(2.6), (2.17) consists in expressing that the pair (u,o), with u (ui)

and a (a Co.), satisfies

! ( .1 ) u V d e f { ( v ) wI 'P ( c) 3

(2.18) uE V' . IV = (V )e (W (Q)) ; v1, v2 are independent of x3

Con r0, v3 - 0 on T'c,

(2.19) - E C def {1 . (i. . L2 (f2)) 9 . i. "

(219 CE .( i jil

(2.20) VvEVC, a ij ij (v) + a .a iu k.v = j

a, fc

r 3 + 3 + v dx ~h,
rur c

(2.21)Vi C Ic, .3 (A)i ij I i 'ij(u) - J

2 a- ikkpkqk Y k 2k (u) ...Y q - l
2q(u)Tj - 0,

provided the number p is chosen to be large enough, so that all the inte-

grals make sense.
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Cc E
Remark 2.6. Specific regularity assumptions on the data f 3, g, ha

will be made later on. For the time being, it suffices to assume that they

are smooth enough so that all integrals appearing in (2.20)-*(2.21) make

sense. U

mp
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I 3. DEFINITION OF A "LIMIT" PROBLEM FOR 0 O. Our first

I task is to define a problem equivalent to the variational problem (2.20)-

(2.21), but now posed over a domain which does not depend on c. Accordingly,

jwe shall successively define appropriate changes of variables and changes

of functions. We let

fl - wx-ll [ , ro-yx[-l,],

r= w xI, r - wx (-),

and with each point XEfi, we associate the poinL XE - Eid through the corres-

pondence

X - (xjx 2 ,x 3 ) E-- XE - (XIx 2 ,cx.)E 5.

With the space Vc, Ic of (2.18)-(2.19), we associate the spaces

(3.1) V {v = Cv ) (W'1P(p)) 3 ; vl, v2 are independent of x3

on r, v3 -0 on r,}.

(3.2) = = (Tij)E (L2C(Q)) 9 ; Tj " 'ji}.

With the functions (v)EVt , (T j)E C, we associate the functions
£ Cj

(v)CV, (c. .)E defined by1 1i C
(3.3) V a(Xc) = vac(X), v 3(Xc) = cv,(X),

(3.4) (XC) = C-r (X), I (XC)= tc (X), T (XC) M (x),

0 B ct a 33 33

for all corresponding points XC ciic and XGfl.

As regards the data, we shall assume that there exist functions

f3 g3 ha which are independent of E such that

1 (3.5) f C(X C f3(x),

1 (3.6) g k . g W

I

. .,6
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(3.7) lE(y) - 111 (y) for all pointr. ycy.

The above relations have the basic effects that some integrals appea-

ring in the variational formulation (2.20)-(2.21) of the three-dimensional

problem are left unaltered, up to an appropriate multiplicative power of c.

More specifically, one has

ayi .(v) = c2J oC ), CC jojij~j()

for all corresponding pairs (v,o)CV x and (v ,o)EV x1, and I
~f Cv3  + Jrt' 3i , + I { v:dxJhb -

+ I 

f 2{ 3  93v 3 + a d f}h =

Jcr% r  + U -] -
"f -

for all corresponding functions veVc and v GV. Notice that the integrals

appearing in the above equations precisely represent the classicial duality

(in elasticity theory) between the stresses and strains on the one hand,

and between the forces and displacements on the other.

The justification of the scaling factor E2 is twofold : first, we want [j4

the asymptotic expansion (3.17) below to start with a factor of c0 and secon- 4

dly we want equations (3.18)-(3.19) belov to contain all the terms appearing

in the equations found by the same process in the lincar case (cf. Ciarlet &

Destuynder [1979a).
ma tt er

It is then a purely computational to establish the following result,

whose interest is to formulate the three-dimen-ional plate problem in a form

where the dependence on the parameter c is very simple

THEOREM 3.1. Lct (uE ,oC) EVx Y be constructed from a solution

(u,o) EVCx J of (2.20)-(2.21) through formulas (3.3)-(3.4). Then (uC 0£)

is solution of
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(3.8) VVE V, !(OCv) + 2 6o(aC,uC,v) + 2E2 K 2 (oCut,V) 9PV

(3.9) VEj, a
0
(0 C,T ) +  C2(o:,:) + E 4 (oCC) +) +

) - 0,

where, for arbitrary elements u,v E V and o,t E,

(3.10) (r,v) =- TijyijW),

(3.11) O(r,u,v) = - ij'iu3ajv3 ,

(3.12) 2 (T,u,v) - -1 J

(3.13) cfv) f- f 3v 3 + 93v3 + J{J vadtlh a]'
, Jr+u r- ly -1

where the functions f3  g3 ha are those appearing in formulas (3.5)-(3.7),

(3.14) a o(O,T) - I -! a - a 6 6 Tao,

('.15 Qf.t = 2(1+v ') T T + 0 T
a3 a3 - ( 33 ip 33

(3.16) q 0 (0,T) afo33 133 ,

and(C,,uE) is a polynomial with repcct to c, whose coefficients, which

are integrals over fl, are independent of c. 0

Since the forms (8, ,& 0 , S ' ,0 , are all independent
0' 2' 0' 2' 4'

of c, as well as the coefficients of the nonnegative powers of C in the

polynomialC(cr,uC), and since c is thought of as being a "small" parameter,

we are naturally led to define a foiynal series of "approximat ions" of a

solution (uC,oc) of (3.8)-(3.9) by letting a priori (the leading term (u,o)

in the following expansion should not be confused with a solution of the ori-

ginnl three-dimensional problem) :

(3.17) (u C,a) (u,o) + C(u1 ,o) + C2 (u2, 02) +

4



10 U

111Vn. f 46| 1, il, it Ihr 1.1 hit it.l6- 6,,! : *1e"fl , f ,t.' I ' LJ1 i . ',n ,-T. We.l V411. 4.-

to zero the factors of the successive powers E , p> O, in the expressions

obtained when the e-pansion (3.17) is used in (3.8)-(3.9).

In this fashion, we find

(i) equations to be ratiefied by the first term ,

(ii) recurrence relzicns for the fol.Zowing termsq (of course, nothing

guarantees at this stage the existence of the terms (u,o), (u ,o ), etc.,

let alone the possible convergence of the series (3.17).

In the sequel, we shall be concerned with the computation of the

first term (u,o) which, according to the above considerations, should satisfy

(3.18) vv eV, 0(o,v) + 2 0 (o,u,v) = 3 (v),

(3.19) VTCY, a70 (0 ,1 ) + 66(i,u) + 0 (T,u,u) - 0.

In this respect, our main results consist in

(i) establishing the extvtence of (at least) one solution to the

"Limit" problem (3.18)-(3.19) ;

(ii) recognizing a known taoo-dimensional plate model in this same limit ["

problem.

I
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@
4. EQUIVALENCE OF THE "LIMIT" PROBLEM WITH THE VON KARMAN

I EQUIATIONS, We 'at £ C

I3 _ = 3 on r
and we denote by a v the exterior normal derivative operator along the boun-

I dary y of the middle surface w. We first establish the equivalence of the

"limit" problem (3.18)-(3.19) with a two-dimensional, displacement, model

THEOREM 4.1. Assume that the data have the following regularity

(4.1) f3 CL
2 (f), g3 C1 2 (r+ Ur), h Eli (Y),

+ - ciO

I and that the functions h verify the following compatibility conditions

(4.2) fyh I Jyh 2 ' jY(xIh 2 - x2hi) - 0.

Eqs. (3.18)-(3.19) have at least one solution (u,a) = (Cui),(oij))

in the space V x ., which is obt,,aned as follows :

First, one solves the two-dimensional problem Find u0 - (uO) : X3

such that

(4.3) 1(Tz2)A u 3 0 3 (93+ + g 3-i in 

(4.4) a o0 (uO ) = 0 in w,

(4.5) ,,0 = 3 UO = 0 on y,

I (4.b) o0 (u0 )va  h on y,ao

1 where

S o 0) def E {(l v)y (u 0 )6
(4.7) Oa 0(U ) =_-vLr ) jovya u+ y lp kuO) }I

+ -Ti-7) (I-v c, u0 '°v + ,3 u0  u06 ^.

I This problem has at least one solution u (0),) in the space

j(113 (.i)) 2 . (11 (w) rl H 4 (()))
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Secondly, one defines, for (x1 ,x2 ,x3)Efl, L

(4.8) u3 (xl,x 2 ,x3) - u3 (xl,x 2),

(4.9) U U0 -x3 0.
a Ea 3. 0

(4.0) a 3 3 a

23~(0 ) -00 -3 z(v) 0 3

(4.11) 038 = 0833 - 2 ( ) X3

(4.12) . + f 3dt - dt33 2 3+ 2 3- 2 -1 _

2 2

Ex3(l'x3)A20 - E(]-x)1 u0 U0 +
+6(1-vz) 3 2(1 4_1(v 8 OL

Conversely, any sufficiently regular solution of (3.18), (3.19) is

necessarily of the form (4.8)-(4.12) with u0 - (u9) solution of problem

(4.3)-(4.6).

Let us briefly sketch the main steps in the proof of this theorem.

Step I : In (3.19), we successively choose "trial" functions TC- of

the particular forms [
(4.13) T - (Ti ), with T = "33 = 0,

(4.14) T - ( ij), with T = 0. 0

Then if we restrict to solutions for which u3 is sufficiently regular, we

find that, with the particular choices (4.13) and (4.14), (3.19) is satis-

fied if and only if :

(4.15) the function u3 is independent of the variable x3 and it

Ican be identified with a function u1EH2 (w),
3 0

(4.16) 3 U0Ci (W), uc U0 _x u0.
3a 3
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I
Step 2 C oputation of the funetiona u0 a,'J uo : Tn (3.18). (3.19),

we successively choose "trial" functions of the particular forms

To  - T o =L 2 (w), 0,

(4.1)a i3

v IN v0 EIII(W), v =0,
CL a 3

= x3 3v, v v, vEH 2(w).
0

After some computations (and elimination of the other unknowns) we

find that the functions u0EH11 (w) and u0EH 2 (Cw) should be solution of (4.3)-
3 0

(4.6).

Step 3 : Computation of the stresses a.. : Once the functions o 0(u 0 )13 aB

and u0 have been computed by solving (4.3)-(4.6), it turns out that (3.19)
3

with r = (rij), T = 0, and (3.)8) are satisfied if and only if the stresses

o.. are given by (4.10)-(4.12).

Step 4 : Existence of a solution to the two-dimensional problem (4.3)-

(4.6), for data possessing the regularity (4.1) : One can proceed in two ways

(i) The variational formulation of (4.3)-(4.6) amounts to finding the

stationary points of the functional (we lct v0 - (v))

(4.19) (vO) F 1(vO)2 + (I-v)y (V0 )3a v03 v0

(O av 03 vo 0+ v 0V )2
+ VY X X v 3 ji 3 a 3 a 3

+ (i-V)y aa (v 0 )y (v0 ) + vy j(vo)y P(v )

f (g3+g 3 - + { f3dt)v3 f L

when v0 varies over the space (H1 (w))2 .|H2 (.). Because of the compatibility

conditions (4.2), this functional is also well-defined over the space

(4.20) 11 1 (,o))2/VO 1 ,(w),
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where

(4.21) V0 - v a )E (11 (w)) 2 ; _y = 01

I V = (V) E (HI(w)) I

3a bER, v, - al - bx2 , v2 = a2 + bX11

and besides, it is now coercive over this space (it is not coercive over

the space (0 1 (w)) 2 xH2 (w)) i.e.,

liam (vO) = +=,

provided the norms 11h l1L2(w ) are small enough.

In addition, it can be shown that the functional Y is weakly lower

eemi-continuous over the space , and the conclusion follows by standard I'
arguments.

(ii) In order to have an existence theory devoid of any restriction

on the magnitude of the functions h , one first introduces the so-called

Airy strece function, as shown in Theorem 4.2 below (a process which again

shows the necessity of imposing compatibility conditions on the functions r

hl, h2). Next, one may use the existence theorem of John and Necas [19751.

One can also eliminate the Airy stress function, following the method of

Berger 119771, and show that the resulting problem in the single unknown u
0

amounts to finding the stationary point of a specific functional, which has

at least one minimum over the space H2(w), as in Rabier [19801.

Finally, using standard regularity results for the system of equations

of linear, two-dimensional, elasticity, in conjunction with the method descri-

bed in Lions 11969, p. 56], one can show that the solutions (u,o) of problem

(3.18), (3.19) found in the above process possess the following regularity

u0 CEH2 (w)nfH 4(W), u0 ElI 1 (w)nf113(W),3 0 a 0

oB0EH 2 (p), a0EHI.(Q), o3 3 EL 2 (Q).

j.
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Remark 4.1. Of course, it now remains to go back to the set nic i.e.,

one must define functions on the set 0 , which correspond to the functions ui

and o ii just constructed. For the sake of brevity, we shall skip the corres-

ponding straightforward computations, simply based on formulas (3.3)-(3.7).

It suffices to mention that their effect amounts to introducing appropriate

powero of c at some places in the above equations. Thus for instance, equation

(4.3), expressed with the "new" functions, now reads :

2Ec3  A2u0  2co0 (u0)3 t a
3(1-VL) 3 +(g 3 ~g + jc frdx)

An important conclusion to be drawn from the above theorem is that the

expressions found for the functions ui and oij are identical to, or similar to,

Ithe assumed expressions found in the literature concerning nonlinear plate theory.
In particular, we have obtained Xirchhoff-Love displacement fileds, i.e., of

the form (4.8), (4.9), whereas they are usually derived from an a priori as-

sumption of a geometrical nature (cf. e.g. Washizu [1975, Eq. (8.60)1]).

In the same fashion, the expressions found in (4.7) for the stresses o

(i.e., oa for x3 - 0) are standard in nonlinear plate theory, where they are

usually derived after a priori assumptions have been made regarding which terms

should be neglected in the strain tensor corresponding to the two-dimensional

problem (cf. e.g. Stoker [1968, pp. 42-47]). likewise, the expressions found

in (4.11) for the stresses a are similar to those found in Green and Zerna

11968, Eq. (7.7.3)], where they are assumed to be quadratic in x3, etc.

In the second, and final, stage of our analysis, we establish the equi-

valence of problem (4.3)-(4.6) with the von Kirm"n equations (4.23)-(4.27).

This equivalence essentially relies upon the introduction of the so-called

Airy stress function , which satisfies (4.22). We recall that the space V0

has been defined in (4.21).
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In the next theorem, we assume that the brt W is siwply colected,

and is of Nikodym type, in 1Le sense of Deny and Lions [19S3-1954] ; for I'
instance, this is the case if the set w is star-shaped.

Without loss of generality, we also assume that the origin 0 belongs Ii-

to the boundary y of the set w. Given a point y along the boundary y, we

denote by y(y) the arc joining the point 0 to the point y along y.

THEOREM 4.2. Assume the data satisfy the regularity assumptions (4.1)

and the compatibility conditions (4.2) and let there be given any solution [1

UO = ((UO),UO) c (113 (w)) 2 .(11 2 (W) nl14 (w))

of problem (4.3)-(4.6). Then there exists a funotion (O CIO(w), uniquely

determined if we impose o(0) = 31 P(O) = 3 2P(O), such that

0 0 0 0 0)K

a1 °  -" o22(u°), D121 - 0 1 2 (u ), 32 2SP = ° 1 1(u
O
)
-

Besides, the pair (p,uO) is solution of the von Krman equations

TO_\)2E O 2 hu 0g+ f3dt) in
) u3 = 2[p'u31 ig3  w

U 0 
=. uO = 0 on y,

3 V 3
0(Y) - Y fy(y) h2 + y2 (y) h,

f) (xlh 2-x2h,), yE y,

a vO(Y) -v1 (y) 1  )h 2 + V2(Y) I Cy) hl, yEy,

where, for any smooth enough functions v and w,

IV,wI " allVD 2 2 w + D22v311
w - 23 1 2vl 1 2w.

Conversaly, let there be given any solution

' I i i II I i " -I:,4
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I
of problem (4.23)-(4.27). Then, if we define functions co by letting

0 0 0 0
011 - 32 21P, 012 ' 021 " - 120P 022 311V,

there existe a unique ezement (u0 ) in the space (3O(w)) 2 /vO such that

0 = -,--- )-., )Yt(u ° ) + vY I(u°) 6S}

+-E 1(1-v)a U03 UO + Va uo% U0 6 }, Us0 = (u)u)
2(=-v ) ai 3 a 3 11 3 IP 3 aaS

and besides, the element u0 is oolution of problem (4.3)-(4.6).

Remark 4.2. A fairly complete mathematical analysis of the von Karm'n

equations, regarding notably existence theory, multiplicity of solutions,

bifurcation theory, etc ... , is found in Ciarlet & Rabier [1980].

I'

I



5. CONCLUSIONS I,

(i) The main conclusion is of course that we have been able to

mathematicaliy justify the c-'rivattoi of a nonlinear )2tatc( mod3 from a

r
weZZ-accepted tiwce-dimcnsqoniaZ nolfnrm'ar ertiait ode?, associated

with specific ,a, ur..ary conditions along the lateral surface of the plat.

(ii) Which .;':.z .'. i... along the I:: -,l .urface are appropi late

for the three-dimensional problem i s a question of i 1portance since diffecrent

boundary conditions yields fundamentally different two-dimensional problems !

(as expected, of ccurse, but this does not seem to be always clear in the

literature). In this respect, see notably Ciiulet & Destuynder (1979b] , where

the case of a "clamped" plate is considered. L

(iii) In order that a "limit" problem exist, it has been found that the

various data should simulta :cous 7y vu(". r! an app r a', mno' (- r app'oacbc IfJ

zero, as expressed by relations (.'.16) and (3.5)-(3.7). These are not the

only possible ones, however. For example, the Lam- coefficients ),v appearinT'

in (2.8) can stay constant provided relations (3.5)-('.7) are replaced by

the following

f C(x) 3f (x) g f c (x)
3 3 3 3 '

hE(y) c2hc(y) for all y' "Y,

and the "higher order constants" appearing in the constitutive equation

decay sufficiently rapidly with c. Then it is readily verified that the same

"limit problem" (3.18)-(3.19) is retained by an application of the asymptotic

expansion method. The above relations are much less realistic however if body

forces, such as the weight, are to be taken into account. But they cannot

be disposed of : One cannot expect a plate of zero thickness to carry any

load !

The interpretation of relations (2. 16) is simple : They express that
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the rigidity of the constitutive material of the plate should increase as

the thickness of the plate approaches zero, if we are to find a "limit"

modei compatible with relations (3.5)-(3.7). Incidentally, similar conclusions

have been reached in a related linear problem by Caillerie [19801.

The assumption that the coefficients corresponding to the higher-order

teris in the constitutive equation (2.17) are constant is in turn made neces-

sary by the requirement that these terms do not appear in, and thus do not

affect, the "limit" problem. A different limit problem would otherwise result

which could be studied for its own sake. Our aim was however to clearly deli-

neate three-dimensional constitutive equations correspond to preciseZy the

von Karman equations. Notice also that the above assumption regarding the

"higher order constants" is evidently satisfied if the constitutive equation

is linear (as a relation between the tensors a and _(u)), as was the case

in Ciarlet 11980.

(iv) The present analysis suggests that we consider the von Karmlan

equations, together with the expressions simultaneously found for the unknowns

ui, oj as forming a conoistcnt Bet of approximations to the original three-

dimensional problem, in the sense that these equations and expressions are

all obtained as the solution of a single, three-dimensional problem, namely

problem (3.18), (3.19).

Equivalently, if we start out with a solution of either two-dimensional

problem, we may think of the expressions giving the unknowns u., a.. as being

the natural cxtcnsion of this solution into the space V xy. Such an extension

may prove useful for obtaining existence results for the original three-dimen-

sional problem.
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CHANGING MESHES IN TIME-DEPFDENr PROBLEMS

Todd Dupont, University of Chicago

This note gives a brief s~umary of some results on finite element methods

for evolution equations that use functions spaces that change with time. Most

of these results are given in detail in [1].

In several areas of science and engineering, time-dependent problems

arise which have solutions that are near-shocks in the sense that the solu-

tions are smooth over most of the region but almost discontinuous in a small

part of the region. If, as is trequently the case, the small area of rough-

ness sweeps out a significant portion of the region during the life of the

problem, then an approximate solution can be quite expensive to compute.

The expense comes from the fact that a fine grid is needed in the region of

roughness, and with a fixed grid that implies a fine grid over a large part

of the region.

An example of such a problem is

ut + v.Vu - V-LVu = 0 on Sx(O,T],

(1) u(x,O) = u0 (x) on Q,

DVu.v = g on afx(O,T],

where sl is a bounded doiain in Rd with a smrooth boundary and v is the outward

nomial. The function D is assumed to be positive throughout .
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A Galerkin Ietod

Suppose that 7(t) is a finite-dimensional subspdce of Hi(Q) for eacn t

in [0,T] and that "(t) varies smoothly except at a finite number of points

T*. one can define a Galerkin approximition to u to be a function

U : [0,T] +L) 7(t), where U(t) E 7n(t) arid wliere U satisfies the usual

Galerkin orthogonalities o each tine:

(2) f [(Ut + v-VU) + LVU.V*ldx f gido , " nt).
S1 al

At those points Tj at which 1'7 changes discontinuously, use the L2(S) -

projection into "(T ) of te limit fran below to get U(Tj) to re-start this

process.

Quasi-Optimality

Using the above-detined process, started from the L2 (Q)-pro3ection of uO,

one gets a quasi-optimality result

(3) U - u C inf -u - u

where the inf is taken over all fuctions *(t) E T(t) that vary smoothly

except at the points T* and are such that 4i(T ) is the L2 (a)-projection

into 7(Tj) of the limit fron below. The norm in (3) is one that is

naturally associated with energy estimates for problens of the form of (1); it

involves the maximum in tine of the L2(f)-norm, the L2(Qx(O,T))-nom of the

spatial gradient, and a semi-norm induced by the spaces 7 (t).

Estimates of the form of (3) are done in [I] for discrete-time processes,

with the addition of a time discretization term to the right-hand side.
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I

1f the mesh changes in a cozpletely uncontrolled way the solution of (2)

can converge to the wrong function as the meshes are made finer and finer.

Each mesh change corresponds to adding a very small amount of dissipation, and

thus if the mesh changes extremely often the solution will be smeared out.

Ptving Finite Elements

Take 2 = (0,I) and suppose that T(t) consists of the space of all

continuous piecewise polynanials of degree r over a mesh

0 = s o < sl(t) < ... < S Kl(t) < su = I.

The MFE method of K. Miller and R. Miller then uses the orthlogonalities

in (2) plus a rule that is formally derived by saying that the time-

derivatives of the points sj(t) are taken so as to minimize the L2 (1)-norm of

the residual plus a penalty term. (Such a calculation is purely nrtivational

since the residual is in general not in L2(Q).) The penalty term is used to

get nonsingular evolution equations and to control the spacing of the points

sj.

In the MFE process the grid points move with the solution and cluster

atound areas of roughness, thereby significantly decreasing the work to

approximate near-sho,-k solutions when compared to a fixed mesh method. In [2]

there is a collection oL interesting examples of the application of this

method.

In II it is shown that, under apprclriate hypotheses, the MFE behaves at

least as well as a fixed grid process. This is clearly just a first step and

does not explain tne experimental success of the procedure. iore recently the

r2sults of [I have been extended to some multi-dimensional problems.
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ALTERNATI NG- IRECTION GALER(IN NETHODS

I FOR PARABOLIC, HYPERBOLIC AND

SOBOLEV PARTIAL DIFFERENTIAL EQLATIONS

!
I

Richard E. Ewing
Mobil Research and Development Corporation

Field Research Laboratory
P. 0. Box 900

'a s, Texas 75221

I

S, srvev :f some -ecent resj!'s n "he use of alternating-direction finite

element rnethods for linear and nonlinear partial differential eauations of
paraoolic, hyperbolic, ana Sobolev type is oresented. These equations have
applications to fljij 4low 1n porous media, thermodynamics, wave propagation,
nonlinear viscoelasticity, and hydrodynamics. The use of alternating-direc-
tion or operator-splitting methods will reduce multidimensional problems to
repeated solution of one-dimensional problems. Thus optimal order work esti-
mates can be obtained in all cases. Other new high-order and computationally
efficient time-stepping procedures are also discussed and used as base
schemes fhr the atternatii--direction variants.
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ALTERNATING-DIRECTION GALERKIN METHODS FOR PARABOLIC,

HYPERBOLIC, AND SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS

I. INTRODUCTION

In this paper, we shall present a survey of some recent results in the

use of alternating-direction Galerkin methods for a variety of partial dif-

ferential equations. We shall discuss methods for time-stepping partial

differential equations of parabolic, hyperbolic, and Sobolev types in two and

three spatial dimensions. The use of alternating-direction or operator-

splitting methods will reduce multidimensional problems to repeated solution

of one-dimensional problems. Thus optimal order work estimates can be

obtained in all alternating-direction methods.

We shall basically consider only Galerkin or finite element alternat-

ing-direction (henceforth called AD) methods in this paper. Similar results

can also be obtained for finite difference versions of our methods. Since

the analysis of our methods will appear elsewhere, we shall only describe the

methods in this manuscript and reference the an3[ysis.

Alternating-direction methods were first used for time-dependent prcb-

lems in the context of reservoir engineering models for fluid flow in porous

media. The methods were developed in order to treat large scale multidimen-

sional problems in a one-dimensional fashion on the small early-generation

computers. Finite difference methods were developed for linear parabolic

problems and analyzed thoroughly by Douglas, Peaceman, Rachford and others

(see [10, 17, 18, 321). Later Douglas and Dupont developed and analyzed a

Laplace-modified Galerkin AD method for parabolic and hyperbolic equations

with certain nonlinearities in 1121. These ideas were extended to stronger

nonlinearities by Dendy in 181 and to unions of rectangular regions by Dendy

and Fairweather in [9). Then in 126, 271 Hayes extended these results to

non-rectangular regions via patch approximations. In 1281 Hayes and Percell

extended these results to nonlinear capacity terms. Finally, in (111,

Douglas discussed the combination of the results of 112, 281 with some of the

iterative stabilization techniques presented in [141 to obtain other effec-

tive AD time-stepping procedures.
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In this paper we shall discuss some recent advances in several differ-

ent directions. First we discuss a tensor product projection of the solution

into our computational subspaces and approximation theory results which

greatly relax the smoothness assumptions required for all the earlier analy-

sis of AD methods. Then we discuss some higher-order multistep time-stepping

procedures which yield second, third, and in special cases fourth order time-

truncation errors for parabolic problems. Previously, only second order

methods with fairly strenuous coefficient constraints were known. We then

extend the AD ideas to various partial differential equations of Sobolev type

which are used in fluid flow in fractured media, thermodynamics, vibrational

problems, nonlinear visocelasticity, and hydrodynamics (see 16, 7, 25, 29,

30, 31, 33, 341). Finally we present some direct methods and iterative

stabilization techniques which yield new, high-order and computational ly

efficient methods.

Let ' !e a bounded d(main in Rd, 2 w d L ,ith bcundary 3 , and let

J = WLTi. We shall consider partial differential equations for u u(x,t)

of the form
+ X' + bc,_ V L

a) e(x,u) --- u) * •a(<,u) Vu tb(x,u)

, (1.1)

+ ;(xu) V J f(x,t,u) , xE.2, tE j,

b ) u(x,t) = 0 , xE31 , tEJ,

c) u(x,0) = u (x) , x F,,

for various choices of a, t, c, e, and g. I e > 0 and a > 0, we must also

spe:ifv an a t i ina initial conditioan of t'he form

(1 .2) .. *, ) = V ) , p ,I
.. atovs, e equation is of parabol K tpe. This

Sur,,I. "cIdes recent Jo>' worK ny Jim Bramnle and the author !3, 41 on

Drocler ,  s te. If e > " in( c I C, the problems are of

i ,:er:i: If e > D and ei+ er L )r j > 0, the problems are of

,I
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Sobolev type. Joint work with Linda Hayes [22, 231 on problems of this type

will be discussed.

In Section 2 we shall present some preliminaries and notation. We then

illustrate the basic ideas of AD methods for various cases with constant

coefficients in Section 3. In Section 4 we shall discuss higher-order direct

methods which use the ideas of 18, 12, 26, 27, 281. In Section 5 we discuss

iterative stabilization ideas which use the ideas of [13, 14, 19, 20, 24].

We also discuss certain computational aspects of these methods.



I1. DRELIMINARIES AND NOTATION

I?
Let (u,v) = f uvdx and Ilull 2 (u,u). Let the norm on the Sobolev

space wk P(Q) be denoted by ullu , with the second index being suppressed if

p = 2. Assume that 3%1 is Lipschitz continuous. Assume that the coefficients

and solutions are smooth; we refer to the various papers referenced for more

precisely defined constraints.

0
For n from a sequence of small positive numbers, let {M h[0,11 be a

family of finite-dimensional subspaces of WI'([0,11) which vanish at x = 0

and x = 1 and which satisfy:

For some integer r > 2 and some constant K and any

q0

inf II-x 1  
+ hI - I + h if - [l w + hlt - Xl ]0 - 0 1j

XEMh[ 0 , 1l

(2.1)
2 

K 011 hq
o q

for 1 . q ( r + 1.

An example of a fari lv of subspaces satisfying (2.1) is the continuous

subspace of piecewise polynomials of degree at most r on each subinterval of

length h of a uniform partition of [0,11.

We next define one-dimensional projection operators Px P y' and P :

€[C i1 cv

1, xox x =

0

a u l'-X x 0hE [0,1 ,

b) J" u X dy = 0 , xEM [0,11,-I °
. )) J" y ) -- x d y = 0 , EM h  [0 , [1

I1
T 7) j ,)' - P z U U ) 3 Z X d z 0 , C ,a h [C , T I .
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Next, let I denote the unit cube in R and define a sequence of sub-

spaces on 13 by

00 0
(2.3) M h  = [13] Mh [0,1) x Mh [0,1] x Mh (0,11.

We henceforth assume tnat 2 = 3 (or 1, in R2). See [9, 271 for techniques

to extend these results to more general regions. We then define the three-

dimensional tensor product projection 7 = P P P u in M . Note that the one-
x yz h

dimensional operators commute and tnus can be taken in any order. Usinc

(1.1.b), we can then obtain a very important orthogonality result.

Lemma 2.1: If d = 2 or = 3, respectively,

a) P
1--(P P T a u T = ,>cl KV x yh

(2.4)

b) ( P u - U _, h  ,
x~yz x y zx y z L [

We next define some other projections into M ,. If a(x,z), :(x,.), .n-

g(x,u) are bounded below by positive constants, let W, W,, anJ 4 :e t e

weighted elliptic projections satisfying:

a) (a(x,u) V (Wa  - U), v%) = 0 , X:Mh o

(2.5) b) (b(x,u) V (Wb  - u), VX) = 0 , XFMh,

c) (g(x,u) V (WB - u), VX) = 0 , XEM h '

Then, using the super-close approximation properties of the Galerkin solution

in W1,2and Lemma 3.1 of [161, we obtain the following important res.It:

Lemma 2.2: For Z = P xPyPzu and W a, W , and W defined in (2.5) we

have for some K > 0,
o
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r+l
(2.6) 1W a - ZnI + uWb  Z 1I + liWg - ZII 1 K 0 llhr+ I h

Proof: (see [31).

For k > 0, let N T/k E Z and t ak, aeIP. Also let n (x)

O(x,tnJ. Define the following backward difference operators:

n n n-I
a) 60 0

b) 6 2 0n P ¢n _2(,n-I + ,n-2

(2.7)
c) 6 3 n = in n- + 3 n-2 - n-3

d) 4 0n = cn 4 n-I + &Dn-2 - 40n-3 + ,n-4

1

• -



Ill. DESCRIPTION OF THE METHODS - CONSTANT COEFFICIENTS

In this section we shall describe various methods for efficiently time-

stepping the Galerkin spatial procedures for various forms of (1.1) with

constant coefficients. We first consider the parabolic case of (1.1) where

e E b 2 g E 0 and c and a are positive constants:

c a u= f (x,t,u).

For this case, we first present several multistep methods which will form our

base schemes. Next, we shall introduce terms which allow us to use AD ideas

in space.

For various special choices of parameters, we define the following

class of backward differentiation, multistep, discrete time methods. Let

U:{t, "'." t~1 - Mh be an approximate solution of (1.1). Assume that Uk are
0, N h

known for k 4 n. Given a desired global time-truncation error of order k

= , 2, 3, 4, we choose parameters t (p), i = 1, 2, 3, and B6() and an

extrapolation operator EC() for f(x,t,u) to define a method for determining

Un+ l which satisfies

(c 6 u n+ ,  aU n + , V),

k1  cUx (aV , j

(3.1) = k - (c [ 6
Un + 2 6 Un- ] + C3 6 Un-2' X

+ 0 (f (tn+l, E () Un+ ) I EMh

Choices of ine parameters and extrapolation operator for w = 1, ..., 4 are

kgiven in Table 1. By extrapolating the values of U in the nonlinear term f,

we have produced a linear operator equation for U n+in terms of previous

known values of U , k < n. See [5, 211 for a detailed analysis of the sta-

bility and accuracy of these methods. We note that the case for w = 2 is not

the second-order Crank-Nicolson method which has a characteristic bounce.

Instead, all the methods presented here are dissipative and strongly stable.

4
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We next consider AD variants of (3.1). Let Un + 1 satisfy

k- 1 (c6Un+l, ) + 8 (avUn+l. V) + k l2 a2  [+a D ( 2) n1 2 )
kc axay D x)y

2 un+ a 2  X ) 2 un+ a 2

+ (--i- D (p) Dn~ W)+0(n

k2133a3 _)3 un+i a 3
(3.2) + 2 {axayaz D ) u axayaz x)

c

-k (c [C11 6U n + U  n -  3 6Un- 2]' x

+ 8 (f (tn+, E () Un+l , , X Mh

where the operator D(OU +  makes the additional terms "small" enough so as

not to increase the order of the errors already present in the

approximations. For example, for p = 1 or P = 2, the choice D(i)U = 6U

will yield convergent schemes. For = 3, we shall use D(3)U n + 1 = 6 2Un+l.
Fo=h cs 4, tecoeD4)n+1 63Un+1

For the case = the choice D(4)U = 6 U would make the perturbation

terms small enough for proper truncation error analysis, but will cause the

method to be unstable. Instead, we shall choose

(3.3) D(4) = 62 Un+l - cS-1 6
2un

Y

with

Sy = (I + ky [ a I a +

22 a2 + 2 + 2 ] 3 3

(34+ a~ axa a az axayaz
(34 y xy+ - az + k~y3 l; y

(I + ky ax)(I + ky -- ) (l + ky 'z).

-1
Since cS is comparable to the identity operator, this choice of D(4) actsY

3 n+llike 63U n
, and y is chosen sufficiently large to make the method stable.



The additional terms in (3.2) al low the operator to factor in a manner

exactly as in (3.4) into a sequence of one-dimensional operators. Since the

methods presented in (3.2) involve up to five time levels, special start-up

procedures must be discussed. Higher-order start-up procedures for the

methods described in (3.1) have been presented and analyzed in 141; however,

the procedures have not been shown to be effective for AD methods. Start-up

procedures for cases w = 1, 2, 3 will appear in [31, but no procedure has

been analyzed for the case 4 = 4 at this time. The AD methods of (3.2) yield

the same order convergence rates as the multistep methods of (3.1) but yield

optimal order work estimates as well.

Next, we consider other partial differential equations by making dif-

ferent choices of coefficients in (1.1). If a > 0, e > 0, and c = b = g z 0,

we have an equation of hyperbolic type:

a2u
e--- V • (a (x,u) Vu) = f (x,t,u)

at

AD methods of the form with d = 2

k-2 (e62 Un+ l , () + (a V Un , V.) + A (V 62 Un+l ,  X

(3.5)
22 32

+ Xe2k2 (.- 62 Un+l, a = (f (tn, un), .i, XEM,
e axay 2xa h J

have been presented and analyzed in [8, 121. The Laplace-modified ideas were

presented and analyzed for both parabolic and hyperbolic equations in (121

and yield second order time-truncation estimates. Extensions to higher

dimensions are straightforward as pointed out in [8]. However, since only

the weighted elliptic projection (2.5.a) was used in the analysis, more

smoothness on u was required than if Z = P P P u and Lemmas 2.1 and 2.2 hadxyz

been used.

Next we discuss results for equations of Sobolev type which will appear

in [231. We first consider the case with a > 0, b > 0 and c > 0 with e Z g

0 in (1.1):

(a V u + b V = f (x,t,u)at a-t•(aVu+
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Equations of this form are studied in [19, 341. Since equations of Sobolev

type have a time derivative in the highest-order terms, they are in general

inherently more stable than corresponding parabolic equations. However, the

time derivatives in the highest-order terms also make the perturbation terms

needed for AD variants much larger. Therefore three time levels will be

I required for O(k) accuracy and four levels for O(k2 ) accuracy in this case.

One method which has time-truncation errors of order k is:

k- I (c (Un 1 - U n-), X) + (a V Un , V X)

I + k- 1 (b V (Un+ l - on-i), v x)

b b2 a. 2  2 n+1 a 2  a 2  -2 un+1 a2

2 2 2 2 2
(3.6) + 7b [ax 62 n+ a3a )n(i + [(( u az 62U

+ 3 a 2 n+l a 2 ) + b 3 a 3 2 n+l a3

ayzayaz kc 2axayaz 'axayaz x

( f ( t n  Un), )() , )LEM h  "

By replacing 6
2 Un+l by 63U n+ l everywhere in the above equation, we obtain a

Imethod which yields error estimates of the form

(3.7) max IIU n KI (k2 + h 
r + }

t 
n

I for some positive constant KI, using spaces with approximation properties

given by (2.1). See [231 for analysis and computational discussion.

3 Finally we consider second-order Sobolev equations obtained by choosing

e > 0, c = 0, a ) 0, b > 0, and g ) 0 in (1.1):

I2 a 2 u  au 2u)

at 2 • (a V u + b Vat + g V at f (x,t,u)

Equations of this type arise in hydrodynamics and applications of viscoelas-

I ticity 16, 7, 25, 29, 30, 31, 33, 341 and numerical approximations have been

A
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studied analytically in 120!. If g > 0, a method with four time levels is

needed to obtain time-truncation errors of O(k). This method is given by

k-2 (e62 Un+!i '. + (a V U n , VX) + k- 1 (b V (Un+l - Un- ), v 

+ k- 2 (g 7 
6 2 un+l . X) + 2 a2  63 n+ ;2

k2 e La~y axay

(3.8) + a2  n+1 a2  a2  3n+ a2(38)+ - 6 u+! - X) +  X 3 f - )]
'axaz aya un 3 yaz

(5 a3za

+ (kb + g)3 ( a 63 un+I a 3
k2e2 axayaz axayaz

= (f (tn, un), , X-Mh

Note that if g 0 and b > 0, the 63U n+ 1 terms in (3.8) can be replaced by

62U n+  terms to obtain a three level method which yields error estimates of

the form

(3.9) max u n 1 9 KI {k2 + h r + 1

t n

for some constant K 1  For details and analysis, see [23.'

AJ
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I
IV. DIRECT METHODSI

Now that the basic AD ideas have been presented in the constant

I coefficient case in R3 we shall discuss methods for treating the nonlinear

coefficients in (1 1) in R. Extensions to R should be obvious. We shall

first consider methods which we term direct methods which have been derived

from the Laplace-modified ideas presented in [121 and used extensively in 18,

11, 12, 15, 27, 281.

Again, we first consider parabolic equations with e =b 0 in
(1.1):

au
(4.0) c (x,u) - - V * (a (x,u) V u) = f (x,t,u)

The basic idea of direct methods is to replace the variable coefficients at

the top time levels by a constant, or sequence of constants, which is "close"

to the true coefficient. Then the error made by this replacement is multi-

plied by a "small" term obtained by extrapolations from previous time levels.

Once constant coefficient values are obtained at the advanced time levels the

AD procedures described in Section 3 can be applied.

Since many important problems have different-sized diffusion components

in different directions, we shall not use only Laplace-modified methods but

shall allow a direction-oriented modification. We then modify (3.1) as

follows. Let co, al, and a2 be fixed, let

a) : = c (x, E (p) Un+l) -

(4.1) b) a+ ax (x, E u ,n+1 - ac) (x, E(i.) nl) - a2

~n+lc) a 2  =a y(x, E (4)U l)  -a 2

where a and a are the components of the vector a and let Un+ l satisfy

x y

I
1 ta
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k-  (c (E (L ) Un+ 1) 6 Un+1 , x) + {(ax (E (X) Un+la x n+ -

+ (a (E(Iw) Un+ l]  a ' ay

y ay U Tx

kaa a
+ 12 2 D (0 Un  a 2

c L D(Y ) ax3y

(4.2)

= k - [K F (p) U
n+ I + c I  6 U, + 2  6 Un- 1 , >]

n- 4 Cn+l a n+ , _ + +1 +a G (LA) Un + , a-

T(a G U Txi-> + _y (a ~ C U , X)

+ (f (t n + l , E (LA) Un +  I, X Mh

The choices of ai(), i = 1, 2, 3, 3,'P) and E(P) are given in Table 1 for

L = 1, 2, 3. Choices of D(w), F(LA) and G(LA) are given in Table 2 for methods

with time-truncation errors of order kLP for Ii = 1, 2, and 3. As an example,

the case L = I, can be written in the form

1 n+1 a un+1 , a n+l
k (c 6 U , x) + (a 1 ax x + (a2 ay T Xy >)

ka a2  2 2n+1 a2

C 'xa y 6 axay X

(4.3)
= k-1 ([c (Un) - co] 6 Un ] - ([a (Un) - a1 ] un, >2

a a([ a,]n I U

([a (Un) - a2 _ Un, I X) + (f ( 1, n), , xM
y 21a 3  y h

This equation has only constant coefficients at the advanced time level The

operator for the advanced time level can thus be factored easily into a prod-

uct of two one-dimensional operators. We note that the first-order method

is similar to that discussed in II1, 26, 27). The first second-order method

from Table 2 is similar to the direct method discussed in (281, which has a

Crank-Nicolson base scheme, but this method is strongly stable. Both of the

aforementioned methods required constraints of the form
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I
3 un+l c E u2 n+1

a) c (x, E (2) U ] c < c (x, E(2 )

(4.4)

b) a (x, E (2) U
n ) n a

Although this is a very mild constraint on a it is a fairly restrictive two-

sided constraint on c and is noted in Table 2. Certain patch approximation

techniques presented in [26, 27, 2b help to make this constraint localized

and thus less restrictive. Another second-order method which has only one-

sided constraints but requires an extra matrix inversion at each time step is

also presented in Table 2 and has been analyzed by Bramble and the author.

If c is a positive constant, we have presented two third-order direct

methods. The first has two-sided constraints on aI and a2 while the second

obtains one-sided constraints at greater computational expense as before.

Analysis and details will appear elsewhere. Note that the operator SY

appearing in Table 2 is given in (3.4).

In the analysis of all the methods presented by (4.2) and Table 2, the

use of backward differentiation multistep base methods and the projection Z =

P P P u instead of the usual weighted elliptic projection allows very weakxyz

mesh-ratio conditions of the form:

a) hr 4 k , for d = 2

(4.5)
d

b) c1  k o h2 for d = 3

The use of this projection also requires only the same smoothness for the AD

variants as for the base schemes. Use of only the elliptic projection

requires more smoothness in time than the results presented here (see [31).

Using the ideas described above, we can also define AD methods for

nonlinear Sobolev equations and wave equations. For example let e = g = 0

and a, b, and c be uniformly bounded from below by positive constants in

(1.1):

c (x,u) - V ( (a (x,u) V u + b (x,u) V au = f (x,t,u)

at a
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We can then consider, for L, 1,2,

k c (E W U n4 ) 6 Un  ) + a {(a (E (P) Un+ 1) I Un+' 
ax ax

+a(E a,, I n+l Iay U 3+ Y T ;y

+ k-
1 1(b 'E (p) ) U n+1

+ (b (E (P) n ) U 1  6 U 1+ ' X)

b + k B al)(b 2 + k B a 2 ) )2 2nl a2

kc 0oD (1) U

(4.6)

k-1 (rcn( F) F jn+ 1 6 1 n xi
nl a (-U×c ) n + b_ 6 ],xn

' = F+ b O -
I dX I x a

+ k- I  ;n + l b F un+ + Un U 1)

n+1 3 un+1 a -,+I I G (, ) Un+1 }

(+4 U 7- ax (P) a, ~ (~

+B f n+1 ,n U ,,,
+ B (f (t n +  E (w4) Un  ) x) hxEMh

where b×,b, bi, b2 , b,, and b2 are analogous to the corresponding coeffi-

cients for a (see (4.1)) and F, D, G, and E are from Table 2 as before. We

note that the base scheme used for time-stepping the Sobolev equation here is

a backward differentiation multistep method and is different from that used

for similar equations in Section 3. Corresponding direct methods could be

definea from the methods of Section 3. Analysis of (4.6) will appear in

1221.

In a similar manner, direct methods could be used to obtain efficient

AD methods for hyperbolic and second-order Sobolev equations where e(x,u) is

nonlinear in (1.1). Techniques like those used in 1201 are required.

Detailed descriptions and analysis of these methods will appear elsewhere.



I
I

V. ITERATIVE METHODS

In this section we discuss iterative stabilization methods for treating

the nonlinearities in the coefficients as an alternative to direct methods.

We shall use the ideas developed in (14, 191 and later used for multistep

methods in 15, 21). The basic idea for the base scheme is to factor the

matrix arising from the linear algebra problem at one time-step, say the

initial time-step. We then use this factored matrix as a preconditioner in a

preconditioned conjugate gradient iterative procedure to keep from factoring

a new matrix at each time step. This factored matrix is comparable to the

matrix which should be inverted at each time level. Thus we can extrapolate

from past values to obtain the proper accuracy and only iterate sufficiently

often to stabilize the process. For many problems this requires only two to

four iterations per time step. If the coefficients begin to change consider-

aDly, one should refactor to obtain a more comparable preconditioner periodi-

cally. For discussion of these computational complexities and work esti-

mates, see 111, 14, 19, 20, 241.

The use of iterative stabilization in conjunction with AD methods was

first presented in [11 . The factored operator S from (3.4) was used as ay

preconditioner in a first-ordar time method. However, since the base method

did not include AD perturbation terms as in (3.2), a mesh-ratio restriction

of the form

(5.1) k 4 K h2  ,for d = 2,

is required in [111 in order that the preconditioner be comparable to the

linear operator which should be solved at each time step. Since we include

an AD perturbation term in our base scheme, we ottain comparability with the

preconditioner with no mesh-ratio restrictions. The only mesh-ratio restric-

tions required by the methods presented here are the weak conditions given by

(4.5).

The base scheme for the methods to be presented in this section for

parabolic problems from (4.0) is



k-  (c (x, E (f Un+ ) 6 Un+ , X

x 3 xun+1

(n× Ix @ Un n+ ) I, 3-

+ (a (x, E ( I) Un+ a u n+l
aay

(5.2)

k Ba 1 a 2  _ ( n+1

3Xoy 'xyC

K 1 (c (x, E (iA ,nI L 1 U n  + 6 U n-I] X

, n+ l XEMh

where a,, a,, and c are as in (4.1) and a.,, a, , 11 E(w) and D(P) are as in

Table 1. We shall next define cur iTerative stabi l ization schemes.

We first present the linear equations arising from (5.2) for the case

L = 3 and note tnat there is no direct AD factorization possible for these

equations. This motivates the introduction of a fixed preconditioner for

whicn the linear equations do have an AD factorization.

2
We define two orderings on the nodes in [ =0,112. The first is a

global ordering which assigns one of the numbers 1, 2, .', M to each node in

Q. The second is a tensor product ordering of the M nodes. Grid lines of

the form x = x., 0 ' x • 1, are numbered 1, 2, ... , M while grid lines of
j j x

the form y = y., 0 ( y. r I are numbered 1, 2, ... , M . With each node i, we
J J Y

associate an x-grid line and a y-grid line. The tensor product index of the

node i is the pair (m(i), n(i)), where m(i) is the index of the x-grid line

and n(i) is the index of the y-grid line. We then denote the tensor product

basis as

(5.3) B. (x) MM (x) n(i) (YY)=M (x) n (y) i M

M M
where I(D (X),x and fn ( are bases for the one-dimensional

spaces Mh 10,11 for x or y in [0,11, respectively.

_I• . . .. _ i -- - . . ... . . . - .h
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Let Up from (5.2) be written as

M M

M x y
(5.4) u p = I B. (x) = E E 0 (x) 1P ( y)

i--= m=1 n=1 mn m n

Using (5.4), (5.2) with w = 3 can be written as

Ln+l {n+1 - n} Cn () 2 n+ + k ) + n

j=1 1
(5.5)

E Fn (C)

where the matrices and vectors in (5.5) are defined by

a) n n + k An +2 n

b) Cn = ((c (E (3) Un+l ) B Bi) ,

c) An = a ((a (E (3) Un+l -L BiB

+ (a (E (3) Un+ l  B B

(5.6)

d) Gn 12a1a2 a2 2
= c 0 (aTay jaxay B]

e Fn An+1 6n+1 +
e () = - A n + 8((f (t n + , E (3) U n+ I B)J

f) Fn (6) = Gn [n - n+ ]  ,

for i, j = 1, 2, ... , M.

Instead of solving (5.5) exactly, we shall approximate its solution by

using an iterative procedure which has been preconditioned by L0 the matrix

(5.6.a) with c, ax, and ay replaced by co, al, and a2, respectively. Since

the matrix L has constant coefficients, we can use the tensor product

property of the basis to factor L into the product



(5.7) L (C + k A jo + P,
x x " y

where

a) c = c (× , .

b) A = al -1' ' () , ! x) j

c) C /(c 12 (y)
y n

-(/2
d) A (3 a, c 0- (y), ' (Y)j

for i, = , -- , M, and m, n = 1, , M . Thus inverting L corresponds

to solvin two cne-dim.ensicnal problems successively.

The preconditioning arocess eliminates the need for factoring new

matrices at each time stop and reduces the problem to successive solution of

one-di-ensional problems, while the iterative procedure stabilizes the

resulting pro le.. The stabilization process requires iteration only until a

predetermired norm roduction is achieved.

Denote bv

MC M
M x 

y

(5.8) V s 
= e. B (>' = 2 s  (x) n '

( y )
'

I= m=1 n=1

the approximation to U produced by only approximatefy solving (5.5) using

L0 . Assume sufficiently accurate starting values have been obtained (see

(3,41). Assuming V , --. , Vn have been determined, we shall determine the M-

dimensional vector n + 1 (and thus V n +  from (5.8)) using a preconditioned

iterative method to approximate ,n+1 from (5.5). As an initial guess for

n+1 n
n, - F, , we shall extrapolate from previously determined values. Specifi-

cally, for the method under consideration having time-truncation error O(k 3,

we shall use as an initialization for our iterative procedure
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I
(5.q) x0 (fn+1 - n) 64  an+1

Since we are using previously determined 8 in the matrix problem (5.5) to

determine n+ J, our errors accumulate.

In order to analyze the cumulative error, we first consider the single

step error. We define 8 n +  to satisfy

(5.10) L { n+ 1 - 8n} = Fn (8) for n > 3

Thus 8n+ 1 would be the exact solution of (5.5) if the computed values

of 8k from previous approximate soutions of (5.5) using L had been used for
0

k i n. We can use any preconditioned iterative method which yields norm

reductions of the form

(5.11) :I(Ln+1 ( - 8n + 1 ])1

P n II(L n+1 1 / 2 (8 n+1 - 8 n+1 + 64 8 n+I1 ie

where o < pn < I and the subscript e denotes the Euclidean norm of the vec-

tor. A specific iterative procedure for obtaining (4.8) is the precondi-

tioned conjugate gradient method analyzed in 11, 2, 13, 14, 191.

Then, letting

M M Y -
(5.12) Vs = B. (x) =  1 0 'D (x) 4n (Y)

i=1 m=1 n=1 mn m

with as defined in (5.10), we see that Vn + 1 and Vn+l satisfy

I

I

I



k-1 (c (x, E W Vn+ l  6 V° '1, x

+ a (a (x, E (W) vn+l) a vn+l' D

* 6 (a (x, E () Vn +l) a Vn+l, a
yay -y

2
k S- a1  a 2  ( a 2 0n+I a

+T C', av n  --axY XJ

13)1 I Ic (x, E (0) Vn+ )" 6 Vn + a 6 Vn- I.

(5.13)

+ 3 f (x, tn+ , E (,) Vn+, XI

+ k- 1 (c (x, E (W) Vn+ ) v - vn+, x

(a;) a n1 -,n v 1 , x3

+ 6 (a x, E (,,) Vn+l ) _L (vn+ v -n+lj _L X)

x a 2 a2

k 2 a[1 2a - vn+ ' 2 [.

where the last four terms measure the single step error arising from the

iterative stabilization. We must iterate only sufficiently often to control

these terms in the analysis. Since L is a sequence of one-dimensional

operators, we can very efficiently update L if L drifts far away from L
L n

Analysis and detai Is will appear in [3].

Note that in preconditioned iterative methods, only the preconditioner

is inverted. In this case, that is only a sequence of one-dimensional prob-

lems. If the basis functions in the one-dimensional problem are linear

(tensor products of linears for the basis for M ) the matrices to be inverted
h

are tridiagonal and if the basis functions are quadratic the matrices are

pentadiagonal. Thus if d = 2 or 3 the work estimate is O(M xMy) or O(MxMyMz),

xy xyZ
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respectively. Thus the work is proportional to the total number of unknowns

in the problem and optimal order work estimates are obtained (see 111, 14,

24, 27, 281).

The storage requirements are also very attractive for AD methods.

Since the matrix problem is treated as a series of one-dimensional problems,

only the data corresponding to one grid line are required in core at any

given time. In two dimensions the storage requirements for these AD methods

are comparable to those of a frontal elimination solver, but these methods

require considerably less I/0. In three dimensions the frontal elimination

solvers require that a plane of data be in core, while these methods only

require one line of data. Clearly all of the above remarks apply to each of

the AD methods presented here, not only to the iterative variants.

The author has applied iterative stabilization methods to problems of

hyperbolic and Sobolev types in [19, 201. The extension of these iterative

ideas to AD methods for equations of these types follows from the ideas pre-

sented above fcr parabolic problems.

I
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TABLE 1: BACKWARD DIFFERENTIATION MULTISTEP METHODS

0(p) a I(p) a2 (W) a3 (p) E(W Un + 1

U1 0 0 0 1 n+ l

2 2/3 1/3 0 0 Un+l 62 U n+l

3 6/11 7/11 -2/11 Un+ l  63 U n+

4 12/25 23/25 -13/25 3/25 U n+ - 4 un+1

TABLE 2: DIRECT METHODS

Gn~ )Un+l Coefficient

D(P) U 1  F() G( Constraints

6U n+1 62Un+1 6 Un+ 1  one-sided (c)

Un+ 1  63 Un+1 S2 un+l two-sided (c)

2 6Un+ 1  62 un+l-kc S_16[c ILnUn ]  62 Un+l one-sided (c)
o y n n 0

3 62U n+ 1  6 3 Un+ l two-sided (a

3 6U-C s 62 u n+-c S- 162Un one-sided (a
o y 0 y 0
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GALEI IN METHODS FOR MISCIBLE DISPLACEMENT

PROBLEMS WITH POINT SOURCES AND SINKS-

UNIT MOBILITY RATIO CASE

1. Introduction

In [71 the authors presented and analyzed certain numerical approxima-

tions by Galerkin methods for a problem arising in the miscible displacement

of one incompressible fluid by another in a porous medium. Extensions of

these methods to more efficient time-stepping procedures and more general

boundary conditions [81, to interior penalty procedures 1171, to methods of

characteristics (131, to self-adaptive simulation techniques 6;, and to

mixed methods for pressure [51 have since been developed. These analyses

were surveyed in [31. All of the above analyses have made a major, and prob-

ably unphysical, assumption that the sources and sinks were smootnly distrib-

uted and the resulting functions of interest were thus fairly smooth in

space. In this paper we shall present thi first convergence analysis on this

problem to appear in the literature where tie sources and sinks are consid-

ered as point singularities or Dirac measures. The resulting pressure func-

tion thus has a finite number of logarithmic singularities located at the

various wells. Since the resulting functions are considerably less smooth

than previously assumed, the convergence rates obtained in this paper are

slower than those previously obtained.

At present we are only able to analyze the special case where the vis-

cosity of the invading fluid is equal to the viscosity of the resident fluid.

In this case, the mobility ratio (see 15, 71) is equal to one and the equa-

tion for pressure is a linear equation and can be uncoupled from the concen-

tration equation and solved once for all time. Analysis for the general case

when there is a nonlinear coupling between the pressure and concentration

equations is in process and will appear elsewhere.

A set of model equations for our physical problem is given next. For a

more detailed description of the physical problem, see (7, 11, 151. Find the

concentration c = c(x,t) and p = p(x,t) satisfying the following set of equa-

tions:
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N

a) V I [a(x){Vp - yVg}I - - V - u = I Qj(t) 6(x - xj, xCQ, tCJ,
j=1

~(1.1)
2 2

b) + u • * - 2 2 - [D NxU) -- cati=1 j=1 axJij a

iN
I. Q(t)(c - C) 6(x - x.) , xe , t J,

| j=1

with an initial condition and no flow boundary conditions given by!
a) c(x,O) = c (X) , xEQ,

I
(1.2) b) u * v= 0 , xeM, teJ,

I
C) = 0 , xC30, teJ,

I
2

where SI is a bounded domain in IR , J = [0, TI, and v is the outward unit

normal vector on M, the boundary of S. Here a = a(x), - = y(x), g g(x),

4 = *(x) are specified reservoir and fluid properties, u is the Darcy veloc-

ity of the fluid, c is the specified concentration at injection wells and the

resident concentration at production wells, 6(x - x j) is a Dirac delta func-

tion at x = xi, and Q.(t) are the specified flow rates of the wells with the

convention

a) Q.(t) ; 0 for j = I, ..., N/2 (injection wells)
( i.3)

b) Qt) r 0 for j = N/2 + 1, ... , N (production wells).

I

I
II



D(X,u) = (Dij(X,u))

(1 4) 2  22*(x) D0(X) I + yt ~ ~1

where a and at' the magnitudes of lcngitudinal and transverse dispersion,

are given constants. Here for icfR 2, >jv is the siandard Euclidean norm of

the vector. We make the physically realistic assumotion on D,, a., and at

that

2 T 2
(1.5) 0 < D, 2  D(x,q) E, qEIR , E:1

This gives us a coercivity property for the parabolic equation and an assump-

tion of non-trivial diffusion and dispersion in the problem. We shall con-

sider two separate cases for the diffusion tensor. In Case I a = at z 0 and

we have only molecular diffusion while in 7ase II a > 0 and at > 0 help to

model physical dispersion or mixing due to the flowing motion. Results for

Cases I and I are presented in Theorems 3.1 and 3.2, respectively.

Using (I.l.a), we can see that pressure can be separated into its loga-

rithmic singularity components and a smoother component, p, as follows:

N Qi(t) 1

(1.6) p(x,t) = I T;- -7 -j. -x + p( x, t)

i=1

Similarly we can decompose the Darcy velocity as follows:

N Q* (t) a(x)
(1.7) u(x,t) 2 ?r a 7 1X - xI + a(x)Qt ax

i=1

We shall be more explicit about the smoothness of p in Section 2 after we

have presented the necessary terminology (see (2.8)). The fact that pressure

is assumed to have logarithmic singularities also effects the smoothness of
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the concentration of the invading fluid. In particular, according to (141,

T a2
ff -y-- dxdt is not even boundej under the point sources assumption.

Therefore the convergence analysis presented in this paper is non-standard

and much more difficult than for the case of smoothly distributed sources and

sinks.

The paper contains two additional sections. In Section 2, terminology

is developed, basic regularity and boundedness assumptions are presented,

basic projections needed for the analysis are considered, and the continuous-

time Galerkin approximations of (1.1) and (1.2) are defined. In Section 3, a

priori error estimates for the continuous-time approximations are obtained.

2 I-C 1/2-eL rates of convergence for Cases I and II are given by h and h

respectively.

2. Preliminaries and Description of the Galerkin Approximations

Let (u,v) = f uvdx &nd 4ull2 = (u,u) be the standard L2 inner-product

a

and norm. Let wk (Q) be tlie Sobolev space on R with norm
s

(2.1) R, r = s 11/s

W axk t L s )

with the usual modification for s = . If V F = (Fi, F2 ), write IV FNwk in

s

pWace of IF N + iF I When s - 2, denote 0i. l Hik .  If
IW k 2W k)W k Hk k

s s 2

Let {MhI be a family of finite-dimensional subs-,aces of H (Q) with the

following property:

For p = 2 or -, there exist an integer r > 2 and a constant K0 such

that, for I < q < r and q)E W( m,)
Iht



a inf {11, - XII 0  + hll,- 11 0K 1 1 h q ,

XEM h  Wp Wp P

(2.2)

b) inf {!Il - x1 0 + holi - X11 } KO ii0ilq h
X)Eh W0  Wp

We also define a family of finite-dimensional subspaces of HI () called {Nh}

which satisfies the =ame property as {Mh- with r replaced by s. We also

assume that the families IM } and JNh} satisfy the fol lowing so-cal leJ

"inverse hypotheses":

if * M or N for some K > 0,

2

a) l4~ h 1,l 2 < p '
Lp

(2.3)

b) 11 P11  K1  h 1pri

We shall use Mh to approximate c and N h to approximate the non-logarithmic

part of p.

We shal I make the same boundedness assumptions and somewhat weaker

smoothness assumptions on the coefficients than were made in [7, 8, 171. We

consider spaces of the form

= {i : (a,b) -> X II -- (t) I E LP((a,b))}l lw q (Ca,b), X) at a

p

with norm

(2.4) v~ ip tA 11 AtWq ~~)Xa X LP(a'b '

where I p, q < - and X is a Sobolev space in our appl icatiors. When Ca,b)

= J, we shall suppress (a,b) in our notation in (2.4). Let (p,c), the solu-

tion of (1.1)-(1.2), satisfy the following regularity assumptions:

. .... ... ... 1 i I ..
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a) c H + cI p + IclU K2

L) IL2 (W2' LCDH1 - C

L"(H 1 K2 ,

(2.5)

c) (L2_ 2 ,

d) I La Kat L 2 (L2 -c) 2

where F > 0 can be chosen arbitrarily small, p can be chosen arbitrarily

large, K2 > 0 is a fixed constant, and J has been supressed in the index

notation of the norms. These regularity assumptions are based on analysis by

Sammon [141.

In our analysis we shall use two different approximations for c from

2A
Mh. We first define the L projection c of c into Mh by

a) ( (c - c), X) = 0 X E Mh  or

(2.6)
A

b) ac a h
b) (, X = 0 Xe Mh

We are led to use the L- projection of c into M, instead of the now more

standard H projection due to smoothness restrici ,ns on c. Since we assume

that Cis only in L2 (J, L 2- ) for E arbitrarily small, we are not able to

A

trat terms olyike

treat terms like T(c - c) in a normal fashion. Thus we have used c to

project this problem away as in (2.6.b). This causes reduced accuracy in

terms like V(c - c), but the loss of accuracy was inevitable in any case due

to the logarithmic singularities in pressure. We also denote by c I the

interpolant of c in Mh . We then use (2.3) and the theory of interpolation

spaces to obtain the following approximation theory results:

II I



Lemma 2.1: There exists a positive constant K2 K 2 K0 , K2 ) such that,

for each tFJ and e arbitrarily small,

A A ql
a) lIc -C9 + h~c C 1l 1 <1 211cq h , 0 q 1 2 -

A q2
(2.7) b) Ic - c 11 4 K 2 cl h , 0 2 1 - E,

W
o@

c) Uc - CII + h[4c - cIII + Ic - c a ] 2 K2 NcO h 3, I q3 < 2 - c.
I iL q 3 1 2 -

Proof: See 12, 4, 161.

We next note that from [91 we know that p defined in (1.6) satisfies

(2.8) pf 2-s 3
H

for K3 > 0 and some arbitrarily small e > 0. We shall use the logarithmic

part of p defined in (1.6) to form the leading part of our approximation P of

p. We define P to be

N
Qi(t)

(2.9) P(x,t) = ax .7jEn Ix - xI + P
i=I

where xi, iI, ... , N, are the locations of the injection and production

wells and P e Nh is an approximation to p from (1.6) defined for each tcJ by

(2.10) (a(') - P), V X) = 0 XE M h

This is an example of a weighted elliptic projection used by Wheeler in (161.

We obtain the following result.
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Lemma 2.2: There exists a positive constant K4 = K4 (0l, KO, K2 ) such that,

for each teJ and E arbitrarily small,

(2.11) IV(F- P)Il - K4 11plq h

for 1 4 q r 2- e.

If we then define u and U by,

N Na(x) 1 - x .I + a(x) v

a) u = a(x) V p = Q(t) a(x. I V

j=
1  J

(2.12)
N

b) U = a(x) VP = I Q.(t) a(x) v tnlx - x.1 + a(x) V P
j= a(x.i) j

j:1

we can immediately use (2.8) and (2.11) to obtain for each tcJ and K =

K5 (K3 , K4 , a(x))

(2.13) flu - UK < K5  h 1- C

where e > 0 can be made arbitrarily small.

We next define the continuous-time approximation of c as follows: let

C:(OT] -> Mh be defined by

2 2

a) [- , x) + (D (U)-C,ax+X (U • VC, x)
i= j=a x a

N/2

(2.14) = Qj(t) ( - C)(xJ, t) X(x.) , xEMh P

j=l

b) (C(O) c 0  
= 0 X£Mh P

4.
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where U, P, and P are defined by (2.12.b), (2.9), and (2.10), respectively.

The main results of this paper are a priori estimates for the error in

approximating c from (1.1) by C from (2.14). These will appear in the next

section.

3. A Priori Error Estimates

In this section, we shall obtain a priori bounds for the error in the

concentration approximation C - c, to go with the bound of the error in the

Darcy velocity approximation given by (2.13). We shall split our a priori

estimates into two cases. Case I will reflect the assumption that the only

diffusion present in the model is molecular diffusion and a, = at = 0 in

(1.4). Case II will extend the estimates to the more difficult case of

tensorial physical dispersion given by (1.4) with a > 0 and at > 0. As

expected, we obtain a reduced convergence rate for the more difficult case.

Theorem 3.1 Let (c,p) satisfy (1.1)-(1.2) and (C,P) satisfy (2.9), (2.10),

and (2.14). For the molecular diffusion case, let a= a. = 0 in (1.4).

There exist positive constants K6 = K6 (, Ki, i=O ... , 5) and ho such that,

if h < hot

Ic - CII + IV(c - C) a
L-(J,L 2 L (2J,L 2

(3.1)
+ (3f) 1Ij(t)l(C - c)2 (x , t) dt K K6  h

A A

(C = e(e) > 0 is defined in (3.19) below and can be taken arbitrarily small).

AA A

Proof: Let = C - c and n = c - c with c from (2.6) and C from (2.14).

Subtract (2.6) from (2.14) and let X = to obtain
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| ( - , )+ Do 7 , VC) + (u • v g ;

(3.2) = (O0 V n, V ) + (u • V n, C) + ((u - U) • V C, C)

N/2+NI2Qj M)(C - C) (xj, t) (xj, t)

j=1

For the last term on the left-hand side of (3.2), we integrate by parts (note
au 0on3)

that -L= 0 on D11) and use (1.1.a) with X = to obtain

2Cu • V F , )= (u .* , )

2
--- (v u, - )

N
(3.3) 1 e(xpt= - Qjit) (x j, tJ

j=1

N/2 N2 t) + I IQj(t)I &2 x., t) .21 1 2Q ( I t l)

j=l j=N/2+1

We then combine part of the last term on the right side of (3.2) with (3.3)

and replace c by c I at the wells, to obtain
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N
Id 1/2 I/2 + 1/2 I I2 , t)

j=l

DO V n, V ) + (u * V n, ) + ((u- U) •V C, r)

(3.4)

N/2

+ I Q (t)[cI -)[(xj, t) [(xj, t]

j=l

I + T2 + T3 + T4

We next integrate (3.4) termwise on T in J = (0, tl for tcJ. The left-hand

side of the resulting equation is then bounded below as follows

-t d I2tI/
t d I1/2 02 dT + D 01/2 O & 2 dT

-ff0 TTf0 0

N
(3.5) + I1 T)I (x., dr

2 ~
0j=

Nt

2 + 2 T XpT T+ 2 (JtL 2 ) + I f 1Q.+) 2(x., f 0 di]

j=

where a depends upon uniform lower bounds for the coefficients # and D such

as D* from (1.5). We next consider bounds for the terms on the right-hand

side of the integrated analogue of (3.4). We note that from (2.7.a), we

obta in

t t 1-e

If0 Ti dTj 4 K f 0 17 rI IV &I dT 4 K h IV I 2 2
0 0 L (jt#L)

(3.6)

V + K h2 (
2

-
2

:0
L 2(Jt,L )

I
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where a is from (3.5) and K is used here and in the following as a generic

positive constant, usually of different size with each use. Then using

(2.3.a), (2.5.c), (2.7.a) and the fact [1, 101 that, for Q CUR 2 and for any

I rp<-,

(3.7) 1XlLp 4 K Il 1

we use the Sobolev Imbedding Theorem [1, 10] to see that

t t
If0 T2 dTI 4 lulL *L 2 - e f0 IV niL 2+ e &1 Lp dT

<K 2 h 2 K I IV nlL2(L 2) L L(Jt,H )

(3.8)
LI

< K h 2+ 2 + 2 2

2 2 22(1 -c- -)
(v 2 2 2+ 1

(JtL 2 L2 (ti,L 2

where e, el, and p satisfy the relation

2-c 2-c1  p

We note that since c > 0 from (2.5.c) can be arbitrarily small and

arbitrarily large p satisfies (3.7), c can also be taken arbitrarily small

and still satisfy (3.9). We next use (2.7.b-c) to obtain

I
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t N t2(10

(3.10) 1 T 4 dTl 4- 1 f IQ ( )I (xj -) dT + K h
0 4 0

Finally we shall break T 3 into pieces to consider as followsz

T3  ((u - U) * 7 g, ) - ((u - U) * V n, ) + ((u - U) • V c, g)

(3.11)

T 5 + T6 + T7

Now we again use the Sobolev Imbedding Theorem with £2 > 0 arbitrarily small

and p2 > 0 arbitrarily large satisfying

(3.12) 1 + 1 + +  = 1
2 2 +e 2 P2

and apply (2.3.a), (2.13), and (3.7) to obtain

t t
if0 T5 dTj 4 Iu - UNL (L2 f 0V gL 2+22 II IL 2 dT

2
1£ ~2+2 av 2

K5 h I - C K I h IV go L2(Jt,L2) 2 L2 (JtH )

(3.13)

(K h I / 2 IV ( IV &I

L 2 (J, 2L 2) L2 (jt 2 L 2

2 2 2L (Jt.,L L (J toL)

In (3.13) we have chosen c and £2 sufficiently small that £ + 2 <  In

the same fashion, we use (2.3), (2.7a), and (2.13) to see that
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St t

f T6 dTj 4 Iu - UI 2 f IV nI II dT
0 L (L) 0 L

(3.14) K5 h l - K2 1- KI h - I IL2 2

(31)5 2 1 L 2(JtDL2

2 2 ( 1- 2
2 2+ Kh

IL2(jtL 
2

)

Now since (2.5.a) holds for e > 0 arbitrarily small, an imbedding result

similar to the one used in (3.7) can be applied to pick a p3 = P3 (C) > 0,

arbitrarily large, and satisfying

(3.15) IV cl L K2L2 (LP3)

from (2.5.a). Using this p3, we choose c3 = 63 (p 3 , c) > 0, arbitrarily

small, to satisfy

(3.16) - + -L + 1 1
2 p 3  + -63

Then we see that, as before,

t t
If T7 dTI < Ou - UIIL (L2) f 0IV cll IP3 L2 drI0 L L30 P3  2+ 63

IL L

S3

(3.17) < K5  h I- C I Cl L2( L p 3  KI  h I L2 (it L2

3

I
a 22(1-e- 'E

8 L 2 (JtL 23

t NI' IImII



We next combine the above estimates to see that for each tc[0, TI, we have

2~t) + I I22 + Q .T)~ I &I. o r ) dT
L 2 (jt L2 1 f0 

x ,

(3.18)

2 2 + K h2(1-C
L 2(JtL 2

A

where c is defined as

(3.19) : max[2e, c + c +-
S 2+ c3

and can be taken arbitrarily small. We can now apply Gronwall's lemma to

(3.18) and use (2.7) and the triangle inequality to obtain the desired result

(3.1).

We next consider Case II where a > 0 and at > 0 model physical disper-

sion [121. We obtain a reduced rate of convergence in this more complex

case.

Theorem 3.2. Let (c,p) satisfy (1.1)-(1.2) and (C,P) satisfy (2.9), (2.10),

and (2.14). There exist positive constants K7 = K7 (, K; i=0, ... , 5) and

h0 such that, if h r hop

Ic - CI + I V(c - C) I2( 2
LC(JL 2 L 2(J,L2

(3.20)

N T 112 /2-i

+ { I IQ j(t)j(C -,- C K dth

j=1

(e = c() > 0 is defined in (3.35) below and can be taken arbitrarily small.)

Proof: Let & and n be as in the proof of Theorem 3.1. Subtracting (2.6)

from (2.14) in this Case II and substituting for X yields

[ .A
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2 2

~~~ I)- (D~u (U) +, .( ) u *VF
i=1 j=1 I a

- (u + V n, ) ((u - U) • V7, )

N/2

(3.21) + Q.(t)(c - C)(xi, t) &(xj, t)
iJ

j=1

2 2

(U ) 
a x a

i=1 j=l 1

=T8 + T9 + TO + Tl
8 9 10 11

We again integrate (3.21) termwise on T in J. = 10, tI for tcJ. We obtain an

analogue of (3.5) for the left-hand side of (3.21) where now a depends upon

the constant D, assumed - (1 .5). All the terms are then treated exactly as

in the proof of Theorem 3.1 except for T11 which did not appear in Case I.

We first split T11 up as follows:

2 2

TI, I ([D. (U) , u-D c,
i=1 j=1 ax ax i

(3.22) 2 2

(Dj ax. ax
- [ (0.. (U) a ax.

i=1 j i

-T + T
12 13

We first note ttat
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t 2 2 t a
If0 T13 dTI 4 1 . f (Dij (U) ax n ,

i=1 j= 1  0 J

(3.23) 22 t

i= j=1 0 ax a

=T + T14 15 *

Clearly, T15 can be subtracted from the corresponding term on the left-hand

side of (3.21). We can then split T14 as follows:

2 2

IT,141 < 4 1 f ([oi j (U)- D ij(u) a a n)dT
i=l j=1

2 2

(3.24) t a a na d+ 4 1 f (D ij (u) n) n,

j=) j=l 0 ,

16 17

t
In order to bound If T2 dT + T161 , we shall use (3.15) and an analogue for

0

n. First c - c I satisfies a bound of the form

(3.25) IV(c - c1 ) I  KL2 (Lp3 )

A

where P3 is the same as in (3.15). Then since c- c e Mh, we can use (2.3),

(2.5), and (2.7) to see that, for c < 2__
p

3
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^P3 
^V(

L2 L 3 ) ( hL2 
(L 2

2
(3.26) ---

K h P3 K h1  IcK1 h 2 2l 2e)

L (H2
-

(K

Combining (3.25) and (3.26), we have

(3.27) [IV nd K

L2(L 
p3

We next note that by elementary but tedious computations one can show that

Dij (x,u) is Lipschitz in u with Lipschitz constant 3. Thus combining (3.15)

and (3.27) and the Lipschitz behavior of D, we can use (2.3.a) and (2.13)ij,

to obtain

t t
T dT+T161 4 IU - u IL'L 2 0 [IIV n il P3 + IV cL P3 IV 1 L2+ e3

e3

(3.28) K 5 h K- KK h I3V &0L2(JtL2

221-- 2E3
2 2+K h

8 L 2I j I Jt,L2

We next use (1.7) and (2.12.a) to note that for each i,j = 1,2,

N

(3.29) i (u)l ul K8  - + la(x) V pj

k=1

I ,..... i i i i- _. . ...



- i

where vi for a vector v is the standard Euclidean norm in IR Using (2.3),

(2.7), (2.8) and (3.29), we see that

tIT 171 e. ITi 1s, , v Lv n4 v4 fl n dTIT7  ~1181+ iv L*(L4 ) 0 L

I

IT81 + K h 2 V n 2 2 2
L (L

(3.30)

< IT 18 + K h 2 h2(1-E)

3
1T18 1 + K h2 h

We note that the second term on the right side of (3.30) does not give an

optimal estimate for the a(x)Vp term from (3.29), but yields a better bound

than we are at present able to obtain for TI8. T18 contains a term of size

Ix - x i centered at each well. For simplicity, we will carefully estimate

only one such term. Without loss of generality assume we have a well

centered at the origin x = 0. We shall then split this term by considering

a a
the spatial integration over Bh , a disc of radius h centered at the origin,

and its complement a - 8. We then see that

2 2 t l _ an x

ITl N K I f f - dxdT
i=1 j=l 0 Bh  x axi

(3.31) t I.. h a1 n  an  d d

+ NK f -f dxdT
0+ Q8 0 r ax. ax.

T = j=9 h T

- 19 + 20•
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We then obtain

IT20 1 4 K h- 1 1IV nli 2

L 2(L2

(3.32)
- B 2(1-E) 2-2E-O

4 K h h ~ K h

Next, we let P3 and q satisfy

(3.33) 2_ + I = 1
P3  q

and use (3.27) to obtain

2 27r h
IT19 1 4K IV ni2  f (f 0r - q +  dr) q d6

L (LP)

(3.34) 4

< K(hJ q = K(h' ) P3

8-4B

=K h P

for 3 arbitrarily large. We then pick 8 to balance (3.32) and (3.34). With

1 1 and

(3.35) = max[c, 2
P

3

we see that

2
(3.36) IT18 1 K h

Combining the above estimates and corresponding bounds from the proof of

Theorem 3.1, we obtain, for each tF-[O, TI.

/ I -



2 2Ny 2(t) 112 + IV &IL 2 (jtL2) + jIl 0 Ij( T)I (xiT) dT

j= 1 0
(3.37)

~12 21 2 + K h

L (JtL 2 )

where E is given by (3.36) and can be taken arbitrarily small. Then applying

Gronwall's lemma to (3.37) we use (2.7) and the triangle inequality to obtain

the desired result, (3.20).

II
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I
Tracking of interfaces in fluid flow: Accurate methods for

piecewise smooth problems

James Glimm

ABSTRACT

A survey of hyperbolic conservation laws is presented,

with an emphasis on issues raised by a front tracking code

developed by the author, Eli Isaacson, D. Marchesin and 0.

McBryan. The organization of the code is described and re-

sults of the calculations are summarizod. The aim of the code

is to provide a general and flexible method for obtaining ac-

curate solutions to problems which are piecewise smnooth.

I I NTPODUCTION

A number of problems of fundamental importance to science

and technology involve an interdisciplanary mix of fluid dy-

namics, physics and/or chemistry and computer modelling. The

fluids may he either liquids or gases. The flow can be tur-

bulent or laminar. It can have boundary layers, detached bou-

ndary layers, or internal fluid and material discontinuities

(shock and contact waves). In addition to exhibiting such

pure fluid phenomena, fluids of interest may do something

175
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besides just flowing. Th, fluid Co,)St -t& , rc.- ct

chemically (e.g. burn), Lhey m av chl.i p.-i se, 1 --*; , i tite

as solids, or become adsorbed at the active site o a catalyst

in a reactor bed.

Because computer modelling .is an alt :a] a-rt of the

problems I will discuss, it is necessary to make two coniments

on Ax, as an introduction to the methods to )% 1 roposed.

First, Ax does not go to zero. S-corid, Ax does not vary

greatly. Working with a $00K mini-computcr, it is fairly

routine to solve time dependent problc'rms cc taining a two

dimensional elliptic equation on a 30x30 mesh. With a large

computer, the cost would be several million do]],irs, and a

typical grid, might be 8Ox8) or even 150x150, O,pcnding on

the computer and the JmporL-dnce of the problcm. For three

dimensions, the grids are correspondingly coarser. These

grid sizes are sometimes adequiate to resolve the principal

hydrodynamics waves in a complex problem, especially for a

two dimensional calculation. They are almost never sufficient

to resolve secondary waves, nor are they sufficient to resolve

phy:,ical or chemical processes which occur on length scales

much smaller than those of the principal hydrodYnamncs waves,

unless some special adaptive strategy is employed.

A second degression is required to explain some conse-

quences of the basic scientific phenomena to be modelled.

Many problems have the form of a hyperbolic conservation law

(mass, momentum, chemical species, ...) with an elliptic term

added (heat concuction, mass diffusion, viscosity, ...).

These problems are parabolic, but depending on the relative

size of the parameters, they may be regarded as approximately

hyperbolic or elliptic. In fact for a problem with several

degrees of freedom, some of the degrees of freedom may be

approximately elliptic, while others may be approximately

hyperbolic.

Let us consider a hyperbolic degree of freedom. This

means that the associated diffusion length is significantly

smaller than one mesh spacing; since the mesh spacing is not

likely to change by as much as a factor of eight from a
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small scale to a large scale calculation, this property is

independent of mesh spacing over a practical range of mesh

choices. As a temporary approximation, we set the diffusion

length to zero. In some cases (the stable regime), the limit

of zero diffusion length is continuous. Still the numerical

implementation of zero diffusion requires special methods. In

fact the most common numerical methods, even when applied to

problems which are stable physically as far as can be deter-

mined by experiment and by linear stability analysis of spe-

cial solutions, exhibit instabilities in the zero diffusion

limit. These instabilities are numerical and not physical;

they are properties of the discrete approximation and the so-

lution algorithm, and not of the continuum equations nor the

physics which they model. To avoid these instabilities, a

minimum diffusion length of at least two and perhaps up to

four mesh spaces is required. This diffusion length is a nu-

merical artifact. It is perhaps the largest consistent error

in numerical hydrodynamics.

Remaining in the (physically) stable regime, let us now

consider a nonzero diffusion length. In this case the dis-

continuity wave is replaced by a smooth transition in a nar-

row region with st:eep gradients. Actually the situation as

seen by the experimental physicist or chemist is often more

ccrmlicated. The equations which we originally set out to

solve are a projection onto a small number of degrees of free-

dop of a very large system. The internal structure of a sin-

gle discontinuity wave may be a series of sharply defined

waves of the larger system, moving with a common velocity.

Flame fronts are commonly of this nature. When the internal

structure of a hyperbolic wave consists of subwaves of extra

degrees of freedom, than the correction to include this phe-

nomena can be performed within a framework of sharply resolved

discontinuities. However, the diffusion may also be real,

i.e. the experimentally correct source of internal structure

for the wave, as in the case of a drop of dye in clear water.

!



Finally we discuss the unstable \ruyime. in this case,

the use of a zero diffusion length, if taken literally, would

give an incorrect solution. In this case, the subgrid phe-

noma, which occur on length scales too small to be computed

directly but which still govern the physical stability of the

flow and thus affect the large scale hydrodynamic waves, must

be somehow retained or replaced by some effective xiumerical

equivalent. In addition to parabolic terms with an associated

diffusion length, subgrid effects may include surface tension

and heterogeneity (random media).

There is a computational strategy which allows zero nu-

merical diffusion. It. is to track the waves. Singularities

(e.g. discontinu ities) of a solution of a hvperholic equation

propagate along characteristics. The chaiacteristics are

solutions of an ordinary di fferential equation determined by

the wave speeds, ai'd for a noalinear equa i5 n, by the solution

itself. It is possible to use a purely char,ilWerlstic ap-

proach, in which all waves, singular or smooth, are propagated

along characteristics. This is known as the method of lines.

The method of tracking is a hybhld, which uses the character-

istic propagation for certain waves (the "tracked waves") and

a finite difference grid for the other waves. Specializing

to a two dimensional problem wc, then have a fixed two dimen-

sional rectangular or curvilinear grid for the untracked

(smooth) waves and a moving ono dimensional curvilinear grid

which locates the position of the tracked wave. This method

can be viewed as a variant of the adaptive grid and mesh re-

finement approaches. In fact when the internal structure of

the tracked wave is parabolic and governed by a mixing length

(rather than containing several waves from new hyperbolic

degrees of freedom), and when this internal structure is re-

quired as part of the solution of the problem, then the meth-

ods of moving grid local mesh refinement and of tracking over-

lap.

In summary, the computational methods which employ the

known analytic and qualitative properties of the solution

have the prcomise of achieving increased accuracy, speed and

especially resolution.
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TI TH']ORY

t We focus on elementary waves and their interactions.

The Riemann problem is basic, and we explain in what ways

a deeper understanding is required.

Equations

The equations of (chemically reacting, ...) fluid dy-

namics are basically conservation laws. The simplest is the

continuity equation

Ut + V"(vu)=  0 (2.1)

for a quantity (concentration, mass, ...) u carried passively

in a fluid with a velocity v Writing

(t' V) = D (2.2)

as the space time gradient, we see that (2.1) states that the

vector

(u, VU) (2.3)

has zero space time divergence:

D (u, vu) 0

Thus the vector (u, yu) iS a conserved quantity. By the

diver ..ence theorem, the inteqral of the outward normal com-

ponei of this vecitor over the boundary h2 of any region

vanishes,

(u, vu)i ncl = 0 (2.5)

In particular we choose

S = [t ,  t2  x Q+ (2.6)

to be a cylinder of height t2 - t1 and base . Then

r (rt
I u( ,tI)d - u(x,t 2)dx = f uv.nda

4 t

Note that the left hand side is the quantity of u at

time t. minus that at t L r. t 2, i.e. the change in the amount

of u, while t]h- riqht hand side is the flux of u across the

boundary a of 2 In other words,

change in u = flux across boundary. (2.8)

I I



Of course the reoscninq ca-) be reversed. FurrWl (2.8) ,-in

be taken as furnda-mental, i.e. the definition of e conserved

quantity, and (2.1) can be derived from it by considerinq all

possible Q's and takinq a limit as becomes infinitesimal.

More generally we consider quantities which need not be

carried passively by the fluid flow. For example, pressure,

or acoustical waves in a cas move (by definition) with the

speed of soun'!, while the cas molecules move with the gas

(wind) velecity. In gt n.T al, the volocity of a chcTical re-

action wave is diffei.ent from the velocity of the piolecules

because in the rc,'act ion the "ioleculcs are chancing species,

and thus distinct molecules are located at the wave reaction

front at distinct times. Thus we introduce a general flux

function

f I fu) or f f(u, t ,
R~d

Note that x £R s a vector takinq values in the geometrical-

physical - space, while u is also a vector, but takes its

values in the state space Rn which defines the degrees of

freedom of the problem (momentum ,.a IS, energy, .... The
d n. ovfrmted-

values of f lie in R xR Reasoninq as above from the def-

inition of a conservation law, we are lead to the conservation

law equation

U + 'f(u) = 0 (2.9)
t4

An external source g g(u,t,x) , if any, replaces zero on the

right side of (2.9). In (2.9) with source g = 0, u is a con-

served quantity and f is its flux function. In other words

f n is the rate of flow of u across a unit surface element

with unit normal n

A preliminary classification of the equation (2.9) falls

back on the linear theory, and so we introduce the Jacobean

A = a f/u= ( , (2.10)

1 < i,j < n and

A-n = (f-n)/au .(2.11)
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9 Then

w t + + = 0 (2 12)

is the linearization of (2.9) about the solution u

For plane waves moving in the direction n , the equation

specializes to

wt + (A.i) (n.4)w = 0 (2.13)

Note that A.n is an nxn matrix.

Following standard linear terminology, we say that (2.9)

is hyperbolic if all the eigenvalues Ai 
=  i (u,) are real

and it is strictly hyperbolic if the Ai are real and distinct.

In general A is not symmotric. Let e. and er denote the left
1 1

and right eigenvectors corresponding to the eigenvalue Xi.

so that
k er re. = i e , A-n e= Xi e i  (2.14)e1 i 1 11

Then the e and er form a biorthogonal family:

<e e r > = 0 for Xi (2.15)
1 ei ''

The equation (2.9) is linear if and only if A.n is indpendent

of u. Conversely, we say that (2.9) is strictly nonlinear if

e (u,n) 7 0 (2.16)

for all i Tf it is strictly hyperbolic, so that wave speed
•th

crossings do not occur and the i--mode is globally defined,

then we say that the j-h mode is strictly nonlinear if (2.16)

holds for i = j. The importance of this concept will emerge

later, but for now, we specialize to n = 1 , a scalar equation.

Then

A An n ~/~)~ (2.17)

is real valued, er = 1, and

V r Xi (2 f2 '/-u2)n (2.18)
1

In other words, strictly nonlinear means that T.n is either

concave or convex as a function of u in the scalar case.

There are important examples which are strictly hyper-

!



bo Iic, others which -re hyperbol c b, f inot strictly hyperbo l-

ic. The same !,pl ~I s to the strictIy nonljicar concept. :,rob--

ably there are very few properties of A wilich are on ,,rsa]

to all examples, but J t is an open question to determine p)rop-

erties of A or f which apply to vi r-ius class of nat oral cx-

amples and which a Low The inter act, i c of ele..tntarv wavos (or

the Riemann problem) to be undor ;tood in the larue. It is

this question to which 'we now turn.

Elernentary' wa\,,s.

The easiest way to appreciate the m,'anin,.l of elementary

waves is to study the Ricmann problem. The Riemann problem

is the initial valeu prollom for one space dimension and for
data which is con-tant excrtpt. for . single j'.imp discontinuity:

11 left' X -- C

u u = u(t = 0,x) (2.19)
I ght x > 0

The solution

u(t,x) = u(l,x/t) (2.20)

is constant on rays and redtices to a function of one variable:

= x/t. To see this observe that the equation (2.9) is in-

variant under the scale transformation

x + ax , t - at (2.21)

Assuming uniqueness (which has been proved in a large enough

class of problems to apply here IDiPerna, 1979)), and obser-

ving that the data (2.19) is also scale invariant, then so is

the solution scale invariant. Thus (2.20) holds. For an n-

dimensional state space the solution (in the simplest case;

exceptions will be considered later) consists of n+l wedges

in which u is constant. Between adjacent wedges in which u

is constant, the allowed change in u is either a single jump

discontinuity or smooth change in an intervening wedge of a

type to be presecribed below. In either case, the variation

of u between adjacent wedges of constancy is an elementary
thwave. The i-w.ave involves variation in a single mode, or
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e.,qendirection e r(u), ind prepates with a speed . (u) =-&= -X/t

at least for infinitesimal waves, as we shall see. In sum-

mary, each elementary wave

rq t Au e (u)

Ule4t speed = x/t . (u)

Figure 2.1 Elementary wave

involves variation in a single mode, and propagates with a

speed characteristic of that mode. The spreading waves are

called rarefaction waves; the jump discontinuous waves are

either shock waves or contact discontinuities, hs we now

explain.

Because we are contemplating discontinuous solutions,

we are necessarily considering weak solutions. The concept

of weak solution can be formulated in three equivalent ways.

First, it can be required that the original conservation and

flux relations which defined the conservation law be satis-

fied across discontinuities. Second, the integral form of

the conservation law,

J( t u + x f(x))dt dx + If (0, x)u(0,x)dx = 0 (2.22)

for all smooth t with compact support, defines a weak solu-

tion. Third, if the derivatives in (2.9) are taken in the

sense of Schwartz distributions, then again a weak solution

is defined. Now considered a curve x = x(t) in space time

moving with speed s = , and suppose that a solution u of

(2.9) is discontinuous across x(t). Apply the space-time

divergence theorem to the vector field u, f(u) in a small

strip Q around the curve x(t).

X(t) t:

Figure 2.2. The Rankine Huguniot relations

derived from the space-time divergence theorem. -



Note that ( , I :s I-,ont to tW. .'u c ,1$l .- s, 1) Gn I r-f

to the curve. By t'i. , we,,k :-orI"', 1 - o;, oi thte d I j-

equation, thW di%'k'Tane of u, f (u) va i Is, e wh:*:t rV' ,grAt(:d

ov.,r Q, and so by t- L vcrqcnce Jtereai

(u,f( ))O n d - 0

2

I f we .let iwt d,,o I a: , a t it w ,, .s th

curVO x (t) . tlkhon 'bv 2 K i na , ; Ila . J t-

( fu], ~ } . (-3, ) -

identi 3a ly ati.i thV. w2XY'c ' , :

s[u] If] , (2. 23)

which is kno,wn :s the Tiink - Huq(oini , iolat ion.

If we spFecial ize to an :i itesir.a &i,, , th,--n the

above identity ,ecthOs

s du - d f

Reca 'liny that A dF/du, we t this as

s du -- A du (2. 24)

So that we identify s with an ciqenvalue . of A and du withI

infinitesimal variation in the direction of the ei envector
er (u) . -otivated by the forirula (2.24) *t is easy to

construct the rarefaction waves. The construction hegins in

the state space. Let wleft be the value of u in the constan-
th

cy wedge to the left of the I-- wave.

t i hwv

w w =wleft Wleft riqht rieht

p-iihl i-
W ri ht

left

Fiqu.-,e 2.3 An elementary rarefaction wave.
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In the state space, we solve the ordinary differentail equa-

tion

J (u)

with initial point uo = Wleft

The equation is autonomous and so the integral curve does not

depend on the point along it chosen as initial point. Assum-
ing strict nonlinearity, the wave speed Xi(u) is strictly in-
creasing as we move in one direction along the integral curve.
Now identifying Ai = &= x/t in (2.29) defines the solutior U

in the region of the i t h  and w. Note that iwi ov-l-Weft adright ' oeta nmv

ing from left to right, we are constrained to moire along the

integral curve in the direction of increasing Aj (u)
The general strategy for solving the Riemann problem is to

use the elementary wave strength as a parameter in passingi+l = i tow
fromw ight left towi After n steps, we have a !o-

rih et right stpslution dependinq on n parameters, joining left and right sta-

tes. The rarefacti:3n wives allow only one sided variation of
the parameters, but the shock waves, defined by (2.23) will
provide variation i1 the opposite direction. Then an appli-

cation of the implicit function theorem will show that an ar-
bitrary state u . h satisfying

lUeft - UrightI < £

can be joined to u left with this n parameter family of ele-
mentary waves, thereby solving the Riemann problem in the

small. The corresponding problem in the large requires some

hypothesis on A, and has been solved only in a few special
cases.

An example: Burgers' euation. The simplest example of
a conservation law is the scalar equation

u t + (4u2) x = 0 , (2.25)

known as Burgers' equation. Here the matrix A = af/au is a

real number,
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A = ( u 2 )iUu u =(2.26)

Because aX1 (u)/3u = 1 0, the equation is strictly non- lin-
ear as well as being strictly hyperbolic. It is elementary
to construct shock and rarefaction wavcs to solve the Riemann
problem for Burgers' equation. If uleft ' Uright , then
the solution is a rarefaction wave, defined as follows:

Uleft if x/t < Uleft

u(t,x) = u(1, x/t) = x/t if Uleft < x/t < uright (2.27)

uright right if x/t .

If uleft " Uright then the solution is a shock wave. By
(2.23), we have

(u] Uright Uleft

If] = (uright left 2 u (Uright + uleft)

and so

s = .f/lul = (Uright + Uleft)

The value of s uniquely determines the solution. If we draw
the characteristic curves x = ? in the regions where u is
constant, then we obtain the pictures below.

ktt

/ z
I ~/ '

II/ / 'I

I I'/ / // I .. 2

Figure 2.4a,b. Rarefaction and shock waves for Burger's equa-

tion. Dashed lines are characteristics.
From this picture, we see that a shock wave is like a black

hole: it absorbs information propagating along character-
istics, and this information is then lost in the solution.
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En tro _pY.

The equation (2.9) is invariant under space-time reversal,

x -x-X, t - -t .

This reversal interchanges shock and rarefaction wave data,

but it does not interchange shock and rarefaction wave solu-

tions. In fact it maps a shock wave onto a solution which

could be called a "rarefaction shock wave", and which we want

to exclude. Since the rarefaction shock wave is a weak solu-

tion of the equation (2.9), a new condition is required to

supplement (2.9). This condition is the entropycondition.

The characteristics for the rarefaction shock are shown below;

I -/

Figure 2.5 A (nonphysical) rarefaction shock.

they are the x-t reversal of the shock characteristics shown

above. One form of the entropy condition excludes discon-

tinuities (shocks) of the i-- family in which the forward

i- - family characteristics leave the shock from either side.

Another form of the entropy condition states that there is

no path in state space consisting of a sequence of elementary

waves, joining Uleft to uright and with increasing wave speeds

as the path is traversed from uleft to Uright* In other words

the jump is indecomposable. A third form of the condition

states that the solution should be the limit, as e -0, of

solutions of the parabolic equation

ut + f(u)x = C Uxx

In general, the rarefaction shocks are unstable and are ex-

cluded by perturbing the initial data or the equation. For

general equations, consideted in the large, it is not known

which forms of the entropy condition will be correct.

Contact Discontinuities.

Linear waves and contact discontinuities do not arise

in Burgers' equation, so we consider the linear equation
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Ut + ux = 0

with f = u and A = f/ u = A.1 
= 1. The. equation (2.24) shows

that discontinuities can arise in the case [u] = If] and

s = )= 1. Then the characteristics run parallel to the dis-

continuity curve, and neither enter it (as in a shock) nor

leave (as in the excluded rarefaction shock). Sue below.
/ /

// / / -- 1 -- * x

Fiqure 2.6 A contact discontinuity4

The qoneral definition of a contact discontinuity is a jump

discontinuity s.itisf lng (2.24) for which s = left

(Uright) , as in the tgure above.

The scalar ,'nuation: The qener l _i-orv.

For the scalar equation, Lho. Ritmann prok-11m can be

solved for arbitrary u , Ur;,ht without utLhet hypothesis.

For the strictly nonlinear case, f is convex or concave, and

a slight extension of the case of Burgers' equarion covers the

situation. rn the ciezieral case (f neither convoc nor concave)

we join ulft to u t by a sequence of elementary waves.
we jin ( to right

In the u, f(L) plane, we reconnize a shock wave as a

chord, joining two points on the graph of f. The speed of

the shock wave is the slope of the chord. Also a rarefaction

wave is a portion of the graph of f, and the local wave speedo

within the rarefaction wave is A= f'(u). Thus a sequence of

elementary waves is just a sequence of chords and segments of

the graph. This sequence must join uleft f(u ) to u
let' left right,

f(Uright ) , subject to two constraints: the wave speeds must

increase when moving from left to right and the entropy con-

dition means that the elementary wave sequence forms a concave

set in the u,f plane for uleft < Uright and a convex set for

Uleft > Uright . The entropy condition, which forbids waves

which can be subdivided, forces the concave (or convex) set

to be the concave (or convex) envelope of the graph of f, be-

tween uleft and Uright . The minimally complicated extension

of this solution to the case of nxn systems follows: Without
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I assuming strict nonlInearity (i.e. the general nonconvex, non-

cave case), the single elementary wave of the i- family in

the Riemann problem solution may now be replaced by a sequence

of elementary waves of the i-h family, alt4rnately rarefaction

waves and contact discontinuities, except for the outermost

waves, which may be shocks when viewed from this outer di-7

rection. See below. fa %in
f (u) rarefaction contact

<-f-shock shock

Figure 2.7 Elementay waves in the nonconvex case

Under further hypothesis, this class of elementary wave solu-

tions is adequate for strictly hyperbolic 2x2 systems. The

hypothesis may include most cases of interest for small data,

but it is not known (and possibly false) that they will in-

clude most ca-ses of interest for arbitrary left and Eight hand

I states. See [Wendroff, 1972, DaFermos, 1973, Liu, 1741. The

situation for nxn systems, n > 2, is understood for small data

[Liu, 19753.

The Riemann problem for small data.

For a general nxn system, the Riermann problem can be sol-

ved for Uleft - Uright , using the implicit function theorem.

Theorem.

T Assume that the nxn system of conservation laws (2.9) is

strictly hyperbolic and strictly nonlinear. Let a left state

I Uleft be given. Then for any right state Uright sufficiently

close to Uleft' the Riemann problem is solvable and the solu-

tion contains n elementary waves, each of which is either a

rarefaction wave or a shock wave. The solution satisfies the

entropy condition (no forward characteristics of the i h fam-

I ily leave an i-family shock wave), and is the unique such so-

lution in this class.

I Proof ILax, 1957).

I
I
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The Riemann problem ior arbitrary data.

There are only a few special systems for which a complete so-

lution is given analytically. These inciude: Isentropic

(2x2) gas dynamics iCodunov, 1959], Elasticity in Lagrange

coordinates [Wendroff, 1972], and polymer injection in terti-

ary oil recovery [Eli Isaacson, 19811 The polytropic (3x3) gas

dynamics can be rediced analytically to a funcLional equation

in one dimension which is easy to --olve numerically [Courant-

Friedrichs, 1948]. Other i-euations of state sufficientlysim-

ilar to a polytropic gas are also 7llowed. in most other

cases, one finds special solutions (i.e. solutions for special

values of uleft , u r t) but no systematic analysis, eitherri.h

qualitative or numerical, of the g0neral Picmanri problem.

The polymer problem mentioned ahave and relatcd earlier

work [Keyfitz and Kranser, 1980] concern syst- .s which are

hyperbolic but not strictly hyperbolic. Tn the polymer prob-

lem, the %dve si~eeds cross. and coincide along a cuve (the

transition curve) in state space. When the solution to a

Riemann probtcen crosses such a transition curve, an extra

family of ,.:,v(a-;i iaves Ivay be -equired. Thus with a sine

gle crossing and a '?x2 system, three elementary wave families

may be required. In the nonconvex case, each family may con-

sist of rarefaction waves with imbedded contact discontin-

uities and one sided shocks at the outer edges, as in the case

of a nonconvex scalar equation.

Solutions in the large for arbitrary data, d = 1.

For unrestricted (bounded variation) data, solutions in

the large are known for single equations and for two special

2x2 systems: isothermal gas dynamics (Nishida, 1968] and

polymer oil recovery (Temple, 19811. For data with small os-

cillation, but otherwise unrestricted, there is a satisfactory

general theory beginning with the papers [Glimm, 1965] and

[Glimm and Lax, 1970]. Uniqueness [DiPerna, 1979], regular-

ity [DiPerna, 1975] and large time asymptotics JLiu, 1981]

are under control, although some aspects of the uniqueness

question remain open. The use of an equidistributed sequence
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as a sampling method in this construction was justified by

[Liu, 1977]; the proof involves tracing of wave packets

through the approximate solution and should be useful for

other purposes, for example the problem of continuity in the

initial data (which is open).

Interaction of waves in higher dimensions.

The general computational program outlined in the intro-

duction is to incorporate analytic information concerning wave

structure and wave propagation into the computational algo-

rithm where possible. To do this, positions of certain

"tracked" waves are stored and dynamically updated at each

time step. The stored wave position defines locally a curvi-

linear coordinate system. In this coordinate system, the

wave motion is essentially one dimensional and governed by a

Riemann problem. WMreover, continuum waves contained in the

smooth part of the solution can be resolved in this local co-

ordinate system irto normal and tanqential components. The

normal components i nterafct with the tracked wave via a Rie-

mann problem, while the tanqe tial components move independ-

entlv of the rached wave.

The interaction of tracked waves, however, is intrinsic-

ally higher dimensional. If the interacting waves are not

parallel, but meet obi icuely, tl-,en the resulting wive con-

figuration is not solved by a one dimensional Riemrann problem.

I In fact, thz interaction of obliquely intersecting waves in

higher dimensionLs is the higher dimensional analog of the

j Riemann problem. It has been studied only in some special

cases [Courant and Friedrichs, 1940].

In summazy, we see that the theory of the Riemann prob-

lem in one and lhusher dimensions needs considerable develop-

ment. The theory of gj,'eral solutions in one space dimension

is satisfactory but not complete.

III Computation.

Here we describe the front tracking [Glimm, Eli Isaacson,

Marchesin and McBryan, 1981-] and mesh alignment [McBryan,

19801 algorithms down to some intermediate level of detail.

I
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The qaeraJ so i ent.i . c pCrs:ecti%- >v- J V'" 'n ,: y a Co bosed

was exp1ained in LhJ r-toducoj. ., ;'c.- cor: scder a spci fic

problem: an oil rescrvoir -.ndergoing water flood, mo-.delled

by Darcy's law and the Buckley-Leverett equation. The basic

equations derive from conservation of mass of water and of

oil. The equations can be added, and assuming incompress-

ibility, the sum of the two conservations has no time deriv-

ai:ive. This resulting equation is elliptic; it determines

the pressure and fluid velocities (Darcy's law) from source

terms, the relative oil/water saturations and viscositics and

rock properties (absolute and relative permeabilities and

porosity). It is

2C(x,y,t) = -k(sl Vp (3.1)

.
v = source terms (3.2)

Here s = s(x,yt) [0,11 is the relative saturation of water

in the. porous media and k = k(s) (or = k (s,x,y)) is an experi-

mentally or phencar:nologically determined_ functior, The sat-

uration, or Buckley-Leverett c.quatlon is a scalax hyperbolic

conservation law

s t + I'(Sf(s)) = source terms (3.3)

Because (3.3) conta.ns th e velormti on ellitic and hyper-

bolic equations are coupled and the sysem is nonlinear even

when f is linear. For more information on (3.1) - (3.3), see

[Scheidegger, 1974] and [Peaceman, 1977].

in order to be able to discuss the calculation, we pre-

sent a flow chart for the highest level routines and the over-

all control flow, see Figure 3.1.

There are up to four distinct grids in this calculation.

We identify each grid and explain its role. The most basic

grid is the fixed hyperbolic grid. This is a two dimensional

grid, and may be rectangular or curvilinear. It does not

change with time, or only changes rarely. Thus if there is a

fixed time independent flow which is known in advance to ap-
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Ic ximate the time depoendent flow which is being sought as a

, ,lution to the equations

Initialize data

L choose geometry

set pointers

I- Compute topology

allocate storage for

multiple valued

variables

Exit [ s for

Lermination J
+

equation

salivehy.roi

equation J

I Anaiyz7e arid print1

solut ion I

Figure 3.1 Flow Chart

(3.1)-(3.3), its stream and potential function can be used to

construct a curvilinear grid. Otherwise a rectangular grid

is used. The hyperbolic state variables are stored on this
grid. Because the grid is fixed, the inteipniation which re-

sults from remeshing is kept to a minimum, but not totally

eliminated.

The track waves are described by a one dinw_2nsional time

dependent and dynamically propagated grid. This grid is call-

ed the hyperbolic interface.
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l+

Ch-"ose iireqular

rectangular grid

Choose i rreuuar 1
quadi- alat z:a I gr id

Compute t,--olo(o'

1Comp'ute coefficeints]1

4

Solve al iebl aic

e1at ions

Finure 3.2 ii ow Chart for solution of elliptic equation

Let A (e.q. 1O,l]x[,l]) be the region in which the equations

are to be solved, and let F be the locus of the interface,

thought of as a collection of curve segments. Then A\Fis not

connected, but is a union of distinct connected components.

For each hyperbolic mesh square, we also store topological

information: which connected components of AF meet the mesh -

square. If the number of components n = ncomp is greater than

one, then the basic hyperbolic state variables are multiple

valued in this mesh square, and a distinct state is stored

for each component meeting the mesh square.

In addition, the elliptic equation solver, especially the

mesh alignment algorithm has its own two dimensional mesh

where the pressure and velocity values are computed and in

general it will have a slightly different one dimensional grid

for representation of the interface.
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Compute velocityI4
Propagate front

get new front+

ICompute topology
of new front.

J Store multivalved
variablesI4

Continuum waves

interact with

--front
4

I Remesh front

compute topology

I+
I Propagate continuum{ . .. waves

Figure 3.3. Flow Chart for solution of the hyperbolic equa-

Ition.

A careful choice of the elliptic grid is the central virv
tue of the elliptic mesh alignment algorithm [McBryan, 1979).

First a nonuniform, but rectangular grid is chosen. The non-

Iuniform spacing of grid lines is a simple one dimensional
mesh refinement strategy. It permits a concentration of grid

lines in regions of greatest interest, but because of its one

dimensional character, is typically somewhat inefficient.1 See Figure 3.4....-.

I

1 Figure 3.4. One dimensional mesh refinement.

I
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Next this recta-qular grid is distorted to a quadralateral

grid ncar the front, bu sliding nodes along grid lines until

they intersect the front. Finally, the quadralateral grid is

triangulated, being careful to pick the diagonal which fol-

lows the front if the front joins d'agonally opposite nodes of

a quadralateral.

Once discretized, the resulting algebraic system of equa-

tions is solved by a standard direct or iterative solver.

The method of mesh alignment appears to be saperior to

other methods of solving elliptic equations with strongly dis-

continuous coefficients across an irregular and distorted in-

terface, especially where the derivate of the solution must be

evaluated accurately along the discontinuity.

The propagation of the front uses an ordinary differen-

tial equation defined by the characteristic speed. The latter

comes from a solution of the Riemann problem, using the states

on the two sides of the front. (Recall that the hyperbolic

states are multiple valued within a single mesh square, and

have in particular distinct values ahead and behind the front.)

The computation of topology is necessary to deteriIne the

multiple valuedness of the updated hyperbolic states at the

end of the time step. These calculations are kept at or near

0(n) where n is the number of front points, and thus they do

not contribute significantly to the overall computational

time.

The interaction of continuum waves with the front is med-

iated by the same Riemann problem which determined the char-

acteristic velocity of front. In fact this Riemann problem

will in general contain n waves. The n-l waves other than

the one being tracked are continuum waves which have been re-

flected off of the front or transmitted through it.

It is necessary to remesh the front from time to time,

because interface points accumulate at some parts of the fron't

and separate at other parts. The remeshing algorithms involve

some degree of convex interpolation and thus both stabilize

the front and degrade oscillations in it. Here we also check

for changes of front topology (tangles). Eventually any new
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topology (front crossings, tracked wave interactions and bi-

furcations) should be assimilated and propagated dynamically

by the calculation, but these algorithms are not yet imple-

mented.

The propagated of continuum waves uses values defined

within a single connected component of A\F. Thus this is a -

totally smooth, or untracked problem. State values from dis-

tinct sides of the tracked interface do not interact here.

The operator split version [Chorin, 1976] of the uniform sam-

pling method [Glimm, 1965] is used, but presumably a second

order finite difference would also work and give superior re-

sults.

The organization is modular, and it is being revised to

increase its modularity. Thus the problem dependent routines,

such as the Riemann problem solver and isolated in a separate

file, and can be easily chanqed, to change the code from one

problem to another. Also portions of the code which have in-

dependent usefulness can be easily extracted and used out of

context. Examples are the elliptic equation solver, the Rie-

mann problem solver and the topology - interface package.

IV Applications

The ultimate scope of front tracking methods should be

3-d time dependent hydrodynamics calculations for problems

with significant discontinuities and for which a priori know-

ledge of elementary wave interactions (e.g. the Riemann prob-

lem) is known. One proposed application is the Stephan prob-

lem. Although the temperature is continuous across the phase

transition interface, the temperature gradients and tangential

components of heat flux are in general discontinuous. Common

experience (with melting ice, and with snowflakes) suggests

that phase transition interfaces may be either stable or un-

stable. Another application is gas dynamics. The primary

testing of the code has been in the context of petroleum res-

ervoir simulation, and so we discuss this application in more

detail.

-II
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One dimensional calc.iai ions.

In one dimensio1n, the uni form sampl ing P:ethcd [G] imm,

19E5] qives excellent results because the correct structure

of eltmentary waves and their interactions is built into the

method. Tracking improves accuracy 'Glimr., Marchesin and

McBryan, 1980a]. Orly for cxtremely stiff problems, such as

flame propation, is the extra accuracy likely to be worth the

effort. The uniform sampling method! has been tested success-

fully o. a number of applications. Tts use in petroleum prob-

lens began with [Concus and Proskirv'oski, 1979]. Here it re-

solved fronts (%,,ates banks, i.e. sh.ock wave's) sh:,rely without

numerical diffusion or numerical iristability. A 2x2 system

modelling polymer injection (and a prototype for general sur-

factant recovery methods) .,as devhl citd by Isaacson, 1981]

using the uniform samplingi method. The m:.thomctical interest

in this model arises from the loss of strict hyperlbolicity.

In the region of coinciding wave speel, comparison c Ilcula-

tions by finite differonce methods were unable to resolve the

true wave irteractions, even on a very fine mesh. The engin-

eering interest in cortrolling numerical diffusion lies in the

case of surfactant recovery. The surfactant is expensive, and

used only in thin layers. Its effect is nonlinear in the con-

centration, and is ineffective at low concentration. Thus

too much or too little diffusion would give incorrect recovery

results. The uniform sampling method was also applied to the

flow in gas pipelines [Marchesin and Paes-Leme, 1981]. Here

the e.g. by the opening or closing of valves. The uniform

sampling method appears to be better than finite differences

on this problem.

Two dimensions with operator splittinc.

The extension of the uniform sampling method to two dimen-

sions by operator splitting is not recommended in general.

Negative results are due to [Collela, 1979 and Crandell and

Majda, 1980]. In case the discontinuous waves are approxi-

mately parallel to the coordinate axis (and in some other

special cases) satisfactory results can be obtained. In
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[Glimm, Marchesin and McBryan, 1980b-1981] multiple fingers

were resolved in a Taylor-Saffinan interface fingering in-

stability, for a parameter range in which the instability was

not too strong.

Two dimensions with tracking of discontinuities.

To overcome the serious limitations of x-y operator split-

ting, a front tracking code has been developed, as discussed

in section III. It does not restrict the orientation or the

topology of the front, and has been tested for mobility ratios

up to 100, thus overcoming the principle restrictions of the

operator splitting method. It also overcomes the main limit-

ations of finite differences: numerical diffusion and grid

orientation effects.

A statistical study of fingers.

Fingering of an interface is caused by a mismatch of the

mobilities between two fluids. If the behind, or upstream

fluid flows more easily, then an interface separating the two

fluids and normal to the flow is unstable against formation

of fingers. The instability is initialed by heterogeneity

(which is certainly present in rock formations). The correct

formulation and analysis of this problem is statistical. A

preliminary study of the statistics [Glimm, Marchesin and

McBryan, 1980b-1981] indicates that the rate of growth of fin-

gers is independent of the heterogeneity and at least for

parameter range which is typical of water flood problems, that

areal heterogeneity does not affect recovery at breakthrough.

(Channeling due to vertical variation of layers was not in-

cluded in this study.) In general, the focus of a study of

statistics of fingering should be to find relevant functionals

of the solution which are either independent of the statis-

tics in a simple and predicable fashion.
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Deterministic finqers.

Choice of irregular Cauchy data is a deterministic method

for computation of fingers. A number of calcuations of this

type were performed as part of the validation of the front

tracking code, see [Glimm, Isaacson, Marchesin, McBryan, 1981.

Deterministic fingers were able to fit experimental data in

tests up to mobility 5, but judging from preliminary results,

agreement can probably be maintained for much larger mobility

ratios.

Coarse grid calcul-tions.

Most tests were performed 30x30 grid. Sample calcula-

tions on finer grids were also performed. For problems which

are not too singular (and typical of a waterflood recovery

process), reasonable results can be obtained from grids in

the range 5x5 to 15x15. The ability to use coarse grids is

essential for ultimate application to large scale problems.

Validation.

It is known that finite difference methods have severe

mesh orientation problems on problems of the nature considered

here. This means that a rotation of the grid by 450, for

example causes considerable difference in the computed solu-

tion. The reason, apparently, is that some orientations di-

minish the physical instability, while others may be neutral '

in effect or may enhance it. Tracking is intrinsically less

grid dependent than the method of finite differences. Only

small grid orientation effects were observed in the tracking

calculations even for fairly singular parameters, and com-

parison was made to a grid which we believe to be neutral in

its effect on the physical instability. Tests were also per-

formed for convergence under mesh refinement and for agreement

with experimental data. Further tests on finer grids are

planned.
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I OVERTAKING OF SHOCK WAVES IN STEADY

ITWO-DIMENSIONAL SUPERSONIC FLOWS

by

1Ling Hsiao and Tong Zhang

I

ABSTRACT

The purpose of the present paper is to study the overtaking

of shock waves of the same family in a two-dimensional steady flow

with polytropic gas.

It is proved that besides a transmitted shock and a contact

discontinuity resulting from the overtaking of shocks of the same

family, there is a reflected wave which is either a rarefaction wave

or a shock. The criteria that determine whether the reflected wave

is a shock or not is given in Theorems 1-3 in §3. The configuration

of four shocks through one point is then presented when the reflected

wave is a shock.
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1. INTRODUCTION

There have been intense interests in the calculation of shock waves in

the multi-dimensional gas flows. For the calculation of a single shock front,

the Rankine-Hugoniot condition provides enough information to follow the shock

front. However in an actual flow, more complicated wave patterns are involved.

This is the case, for instance, when Mach stems appear in the flow around a

body.

To calculate such a flow, it is helpful to understand analytically

wave patterns involving interactions of shock fronts. It is particularly

helpful when one uses the shock tracking technique to supplement an upwind

difference scheme. Of course, the understanding of wave patterns is important

in study of the qualitative behavior of the shock waves.

The purpose of the present paper is to study the overtaking of shock

waves of the same family in a two-dimensional steady flow.

The steady plane flow (without viscosity) is described by the following

system:

(Pu) x + (Pv)y = 0

(Pu2 + P)x + (Puv)y - 0

(Puv) x + (PV
2 + p)y = 0

u(h,+ u 2 +v 2  + Pv(h+u + 0
•2 x 2 ]y
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where P - density, p - pressure, (u,v) - velocity, h - enthalpy. This

5is in Eulerian coordinate for the flow withour viscosity and external

forces. The changes of state are adiabatic.

In this paper we consider polytropic gas, therefore

h = -Y
(Y-l)P,

Y > 1 is adiabatic exponent. The flow is called supersonic if

2 v2  2 2 _kpi rsetcs.IU + V > c , c is sonic velocity, c= in present case. It

is well-knownthat the system is hyperbolic when the flow is supersonic

and there may be two kinds of shocks in the solution.

It is proved that besides a transmitted shock and a contact

discontinuity resulting from the overtaking of shocks of the same

family, there is a reflected wave which is either a rarefaction wave or

a shock. The criteria that determine whether the reflected wave is

a shock or not is given in Theorems 1-3 in §3. The configuration of

four shocks through one point is then presented when the reflected

wave is a shock.

Finally we discuss the interaction of a shock wave with a

contact discontinuity (§4). Under the assumption that the magnitude

of the shock is sufficiently weak the reflected wave is either a

shock or a rarefaction wave, the criteria which determine what the

reflected wave should be is given in theorem 4 in §4.

It should be pointed out that so far as the overtaking of shock

waves is concerned there is an essential difference between steady
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flow in two-dimensional and insteady flow in one-dimensional. For

the latter, the reflected wave is always a simple centered wave no

5
matter what the flow is, isentropic ([2]) or adiabatic (when Y < ,

[1,3]). But for the former, the reflected wave may be a shock even if

5
-3

2. PRELIMINARY REMARKS

A self-similar solution of (1.1), (u,v,p,P) (x,y) = (u(Q), v(4),

p( ), P(4)),$ I , satisfies the following system

v -eu 0 - 0 duP

O v - u 1 0 dv

P
= 0 . (2.1)

_-,p P 0 v - u dp

0 0 v -u -c2(v- u)

Let the determinant of the matrix of (2.1) be zero, it turns out

(v-Xu)2 [(v-Xu) 2 -c 2 (A2 +l)] - 0, = , (2.2)

which is called the characteristic equation of (1.1).

Corresponding to flow characteristic X0  -_u which comes from
0 u

the first factor of (2.2) there is two-dimensional manifold R0 in

(U,V,p,P) space, namely
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p = constant 
(2.3)

= constant

Corresponding to wave characteristic

- /2+-2 2
A UV + c Vi -t-v -c , i = 1.2 (2.4)

i 2 2
u - v

which results from the second factor of (2.2) there is one-dimensional

manifold Ri , i = 1.2, in (u,v,p,P) space which is defined by the

following:

dP = c2 dP

du = -X .dv (2.5)
1

dp = P(Aiu-v)dv

set w = . It is easy to show that the projection of Ri into (p,w)u

plane is monotone

u = v - c 2 (2.6)
dp u2C20

here - (or +) corresponds to R, (or R 2) respectively.

A centered simple rarefaction wave 4 = Ai (u,v,p,P) is determined

by (2.5) and the requirement that the p value in wave front is greater

than the p value in wave back.

It is well-known that any discontinuity in the solution of (1.1)

has to be satisfied with the following Rakine-Hugoniot condition

I
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SO[Pu2] = [Pv]
2O[Pu +] = (Puv

UcPuv] = p 2  (2.7)

G[Pu(h+-- ----)] = [Pv(h+--- )

where U is the slope d- of the discontinuity line, [ 1 denotes the

difference between the values on the right side and left side.

It is not difficult to prove that (2.7) is equivalent to the

following:

Po(Vo-Ouo) 0 -0 0 u-u0

0 Po(vo-Ou) 1 0 v-v0

-OP 0 0 v0 -Ou0  P-po 0 (2.8)

2co

0 0 vo-U --- (v-CU) P-P
0 0 b 0 0 0

2I Y- P (u,v,p,P) and (u0 V,P,P 0 ) are the statesHeeb 2 2 PO0

on the two sides of a discontinuity.

Let the determinant of the matrix of (2.8) be zero, it turns out

that
2

u2(v 2 _ p Co 2
0 0 00 P0  b (2+1)] = 0 (2.9)

v0
Corresponding to F0 - u which comes from the first factor of

(2.9), there is contact discontinuity R0 , namely,
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< (2.10)

u0I
corresponding to

1i 2= 0  , i = 1.2, (2.11)p b/2 20Uo P O 2b

which results from the second factor of (2.9) There is one-dimensional

manifold, i = 1.2, in (u,v,p,P) space defined by

o
2

2 P PO 2 -b 
1 .2,-2O11

u (2.12)

For any given (UoVoP0P0 ), (2.12) determines a curve which passes

through the given point and is denoted by S(o) corresponding to

If i= 1.2.

A shock wave with slope sa is determined by (2.12) and the

requirement that the p value on wave front is less than the p value

on wave back.

Without loss of generality, we take v 0 = 0. It can be shown

(see Appendix for details) that the projection of S(0) into (pw)

plane (still denote it by S (0), Figure 2.1) has the following

!I

I
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expression for p '> pO0

dw /c P(bu 2 -co " [ bPo + 2 2 P(

_w /T - 0 0 4---~l 0
dp 2 2 p 2 bu02c02 P P.

2ucP 0 0P

Here - (or +) corresponds to S1 (0) (or S2 (0)) respectively,

Y+l Y-1 P
b' -

2 2 P

,P

S (0) S2 (0

(0, p 0

Figure 2.1

Set - = t, (2.13) can be rewritten as
PO
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dw -2 b't_( 2  2tb +1_ ____ t1l

dpu 22 IC 01+)b Y+ 2 2 - (2.14)dqw +1 + b Yl•(.4

dp 2u2c2P t 2 bu 2_co2t
0 0 0

Y+l x-i b' t 1- .-!
Here b(t) = - 2 b'(t) 2 - 2t

2 2

Denote by t t' the zero of bu0  -c 2 t ,i.e.,
0 0

Y+1 2

i 2 
2

Y-12 2

It is obvious that I < t'< + for u0
2 > C2 Therefore (2.14)Y-1 0 0

makes sense for 1<t<t' and represents the part of the curve S (0)

which corresponds to p . p0.

It is easy to see that there exists unique point t = t in the

interval (l,t') which vanishes (2.14). Consequently, S (0) is monotone

in [l,t].

On account of (2.11), (2.12), it can be shown that the following

expression holds along S2(0):

u + v -T(t)} (2.15)

where M0  is the Mach number of the state (u0v00P 0 ) and

T(t) = 2t 2 + (Y+I)(t-J) (2.16)
t(Y+l) - (Y-l)t]
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It is not difficult to prove that there exists a unique value t = t
in Y+l -

in y_- with t* < _t,

2 *
M0  - T(t) = 0 at t - t

M2 *
and M - T(t) > 0 for I_< t < t

Therefore, only those points of S2(0) which correspond to I.< t < t

will be used in the following sections since we are concerned with super-

sonic flows.

3. THE OVERTAKING OF SHOCK WAVES

(1) (2)
We only consider the overtaking of two shocks S2  and S2

of the second kind in this section. (The overtaking of two shocks of tile

first kind is treated in an analogous way ). Denote the wave front state

and wave back state of the first shock S 2() by (uo0PoP0 ) , the

state, and the (1) state, respectively. Without loss of generality, we

take v 0 = 0, u0 > 0 (Figure 3.1). Denote the wave back state of the

overtaken shock S2  by (u2v2p2P2 ), the (2) state, and Q the point

of intersection of S2 and S(2)

i22
s1) s(2)

S2  S2

Figure 3.1



I

215

I
Obviously,

S2 2 2 2 2 u2 v2 )U0 > C ' ql > C I (ql 1  2V

V 2 I- > - >0> > p
u 2  uI 1 P2 P1 0o

The aim is to construct a solution which consists of a centered

simple rarefaction wave and shock waves centered at Q and separated

by constant states. We also want to give criteria to determine the

configuration of the solution.

Consider the curves in (p,w) plane. We know that (1) state

is on the shock polar curve S2 (0) and (2) state is on the shock

polar curve S2 (1). If (2) state is inside of S2 (0), (Figure 3.2),

then there exist two states (u3v 3P3p3) and (U3v3P 3P3) satisfying

V 3 = and P
u3 33

3 73

such that (3) state is on the curve R (2) and (C) state is on

the curve S2(0) respectively.

p

2R (2)

3(0)

0

u 3 W

Figure 3.2



In this case, (see § 2), we can construct the solution which consists of

a shock S2 with wave front state (u0 v0 POP 0 ) and wave back state

(-u3 v3P3p3), a centered simple rarefaction wave R with wave front state

(u2v2pP2 2) and wave back state (u3v3P3p 3 ), and a contact discontinuity

T (Figure 3.3).

y

M T

Figure 3.3

If (2) state is outside of the curve S2 (0) (Figure 3.4) then

V 3 V
there exist two states 3 and J satisfying -- = =- and p =

u 3  u 3  3 - 3

such that (3) state is on the curve S (2) and (0) state is on the

curve $2(0). (The states 3 and I always exist when JP2 - P11

is small). When this happens the solution consists of a shock S2 with

(u0voPP) and (ii3VP3p3 ) as the wave front and wave back state,

shock S with (u2v2P2 2) and (u3v3P3P3) as the wave front and wave

back state, contact discontinuity T (Figure 3.5).
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I S (2) 
(3

I

IFigure 3.4 Figure 3.5

ISo, whether the reflected wave is a shock or centered simple wave

iis reduced to whether (2) state is outside or Inside of the curve S$2(0 ) .

It is well-known that the curve $2 (1) and R 2(1) are tangent

I at point (1) up to the second order. Therefore, it suffices to consider

p the relative position between R2(1) and 22(0) instead of the relative

position between S2() and S2(0) when Ip2 - P11 is sufficiently small.

()Let H be the slope of the projection of $2(0) into (p,w)

Iplane, and A the slope of the projection of R 2(1) into (p,w) plane.

We consider the sign of H-A along the curve $2 (0) when (1) state

I satisfies the following condition:

-- < t (3.1)
PO

St

I

F. . g u r e .4. . F i g u r e . . . . . . . I I i i . . . ... . 5 I . .... . i II
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sign of H2A2 instead of H-A, along the curve S2(0).

Direct calculations using (2.6) and (2.13) yields

2 2 1( 2 0 2 2
H1-A t (bu -c t) [ -

u 42 p 2 b 0 0 4t(bu0 -c t) 

u bt - c0 (t 2-1+b't) (3.2)

bt

and so the sign of H 2-A 2  is the same as that of the function

2
G(M2 , t), where04

G(M2 0 bt 2 b2(3-Y) 2t-(y 2-)IM 0  - 2b[(3-y) 2t 2-2(y+l)(y-2)t+(y2_M 2

+[ (3-y) 2t 3+(y+l)(7-3Y)t 2+(Y+l)(3y-l)t-(y 2-1)]

2
2 U0M0  =

c0

Now we discuss the sign of G(% ,t) in the region R: (I < t < t

20
2 >1
0 •

Case I: l< Y <

Obviously, (3-y)2t - (Y2-1 > 0 for t > 1 in this case. On account

2 2 2

of G > 0 when M0  -T(t); G > 0 when M0 -. M2) >0 and

3(0 )

mii 2 ,) -16 (y2 -1)t
min G(M0 It) - y2 2t < 0 for t E [1, Y+I ) it can be shown
2 (3-Y) t - (y2-1)

Mo > T(t)
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that for any given t E[i , ) there exist M2 (t) , i 1.2, such
H 0C0t

that T(t) < (t) < M 2, G(M (t) , t) 0 and

G > 0 when T(t) < M2  < M 2lW;

0 01

when M2 2 < M20<0 whe OMl(t) < H0  H0 2(t);

01 0 2

G > 0 when M 2  M 2

0 02

Furthermore,

2 (_Y)2 2  2_ 4$"t(3
M2 M(3t t - 2(yl)(y-2)t + (y 21) (343

tb)(3- Y) 2 2_b[ ty 2- (Y2-1)]

here i = 1 (or 2) corresponds to that one with minus (or plus) in front

of the term (-2--l)t .
22

Proposition 3.1 M 0 = M (t) is a monotone function of t
0 0 1

Y+I. 2 2

on [,L-'); H0 = 0 (t) is a convex function of t which attains
2 +2

minimum M0  at t = t on l )
m

Proof. From (3.3), i = 1, one gets

2 V-1 NdM0 t) M(t) -1(t)

I1 - - (3.4)

dt b 2[(3-1)2t (Y 2_)]2

where
3 2_ 2( y ) + (Y2_

M(t) = (Y+1)[(3-Y) t 2 (y-1)t -1)(3y-7)] (3.5)

N(t) - 3(Y-1)(3-Y) 2t - 2(Y+I)(Y 2-4Y+5)t - (Y+I) 2(0-I) (3.6)
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•2
Let M(t) - N(t) = a(t), we will show s(t) > 0.

t

Noticing that O(l) = (Y+l)O,(Y) + V O(Y), O(Y) > 0 and

a(Y) = 16(Y-Y )(Y-Y), where

(Xy) = 4(4Y 2-15Y+13)

O(Y) = 4(4y2-Ily + 9)

5<7* < , 2<Y<3,
4 3

5

it is easy to see that ((l) > 0 for 1 <Y < 5 and 4() > 0 if and only
5 5

if r(y) > 0 for 4 < Y <3 5 where

5 2 5

r(Y) = 72(0- 3) (Y- W).

Thus 4 (l) > 0 for I < y < 5

Similarly we know that V'(t) > 0 (t > li (x) > O(x .1)

(let tv--x) where

1(x) - 4(y+l)(3-Yx 5 - 9 Y -l (y-1)(3-y)2x 4 - 4(Y2-1)(3-Y)2x3 +

2 1-4+l)y(2-4Y+5)x2 -/-7- (Y+1) 2(¥-)

and the following inequalities

(Y+1) (3-Y) _> 4 1- (¥+1)

3-Y > 2(Y-1)

8(Y2 -4Y +5) > 5(02-1)

2_ 2
2(y+l)(Y -4Y+l) > 5(y-l)(3-Y)

and so i(x) > 0 for x. 1, we have *'(t) > 0 for t > 1 which

together with t(I) > 0 imply 0(t) > 0 for t > 1. Consequently,
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M = M2 (t) is a monotone function of t on [1,- ).
0 1

From (3.3), i - 2, one gets

dM2 (t) M(t) + -1 N(t)

0 2 2t (3.7)dt b 2 [(3-y)2t (y2_ 1)]2

Let M(t) +/q-t I N(t) = (t). (3.8)

It can be shown, in the similar way as the above, that

±_(l) < 0 (3.9)

-Y+l. Y+1 2
On account of l(-) - 1 6 (1-1) (2-Y) > 0 , (3.9) and

2(Y+l)(3-Y) + - t '_ (t) > 0 (3.10)

where ±(t) - 9(y-1)(3-Y)2t 2 + 2(Y+I)(Y 2 -4Y+5)t - 3(Y+I)2 (Y-1), (3.11)

2 2
it turns out that M0 . M (t) is convex function of t and there exists

12 2
a value t = t on [1, -I )such that M0  H (t) takes minimum

20

MN0 at t t. This completes the proof of proposition 3.1.
m

By using the proposition 3.1, we get the distribution of the sign

2of G(M0 ,t ) in the region n as presented in Figure 3.6. Here

2 2(3-Y) - 2 (3.12)
01 5 3Y

and
2 2(3-Y) + 2S1"-1 (3.13)020O2 = 5 - 3Y

. . . . "ifA
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22 2
N0  

2

M 2 = 2 - M ( t )
2

0 m G 0

220

Figure 3.6

Case II: 5< Y < 23

It is obvious that there exists t E (i,-t) such that

-2 C2 <0fr 1<-_~ad (Y 2 -2

(3-')2t - 1) < 0 for I < t (Y - 1) > 0 for

t > t,

2 2 an

Since G > 0 when 0 = T(t); G < 0 when M0  ' and

2G

2 < 0, it can be shown that for any t, 1. t < t, there exists a

unique M 2 (t) such that T(t) < M2 2G(M 0 and
S

0 1 (t)

G >0 when T(t) < M2 < M
2 (t);

0 Gi

G < 0 when M 2 >m2 ()
0 M (t) ,

G < 0 when 0 1
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where M (t) has the same expression as (3.3) for i = 1.

For any given t with t < t < y--  it is similar to the case IY-2

that there exist M 2  (t), i = 1.2 ( to have the same expression (3.3))

such that

G > 0 when T(t) < M< (t)
0 01

C < 0 when Ml(t) < m < (t)

G '0 whn M2 > M2 (t)>00 when 2

Furthermore, we have the following proposition.

2 2
Proposition 3.2 M0 = M0 (t) is a monotone function of t on

Yi1 2 2 +I[1, -- ) M0
=  (t) is convex function defined on (t, )with

2
t = t as its asymptote and takes minimum M0  at t = t.

m

Proof. Let M(t) - N(t) = 1(t), it is easy to check that
t

0 2140 (t) is smooth at t = t with positive derivative. Thus,
01

in order to prove the first part of the proposition it suffices to prove

that $(t) 2 0 on (1, Y+l) which is a consequence of the following

identities:

t(t) = 0 and ?'(t) = 0 at t = t

and +

= $1 (t) + 4 t 2 42 (t) > 0

where

S'l(t) 2(y+l)(3-Y)3 13 Y2 (y-1)(3-Y)

I



and

S2(t) = 40-i) (3-Y) 2t - 2(0+I) _ -4 +5)t + 3(Y+I)2 0-1)

22

Clearly, t = t is the asymptote of M = m (t).
0 2

From (3.7), (3.8), (3.9) and (3.10), It is easily seen that

2_
3(t) wh-2)( -1) -1) < ) when t - t + 0-- 3 -

(t) > 0 when t + 4

and (t) > 0.

Therefore there exists n unique t t E (t,---) with P(t) 0. In

other words, M, M' (t) is convex with minimum M' at t t. This
0 0) 0?(m

completes the proof of proposition 3.2.

By using proposition 3.2, we get the distribution of the sign of

G(M2,t) in the region # as in Figure 3.7.

M 2 
>2

M2

01 G M- = T(t)

t
t )+Il

Y-1

. . . . . . I II 'l i r. . . . . .. I . . . . . -
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Case III. Y > 2

Obviously, (3-y) - (y2-1) < 0 for 1 < t < 1+1 in this case.

Y-1

In the similar way as t < t case in II, it can be shown that for any
o.y+l , 2 ( ) ( he s e e pr si n o

given t E [1,-I) there exists unique M2 (t) (the same expression of

(3.3) for i = 1) such that G(M2 (t),t) = 0 and
1

2 M2(t
G 0 when T(t) M< M0  (0;

0 0 1
2 M2

G< 0 when M0 > Mo(t).00 1

Furthermore, we have

Proposition 3.3. M2 (t) is a monotone function of t on [1 ,Y+)
0 OY-1

Proof. On account of N(t) < 0 at t = 1, N(t) < 0 at t = and
y-1

N"(t) > 0, it follows that N(t) < 0 on [1,y , therefore
y- 1

M(t) - N(t)> M(t) - (y-l)N(t) = 4(y-2)B(t) on [1 Y+1)

2 2_ 2 2
here B(t) = (y+l) (y-1) + (y -1)t - y(3-y)2t 2

. It is easily seen that

B(t) > 0 and the proposition is proved.

By the proposition (3.3) we obtain the distribution of the sign

of G(M ,t) in the region 1T as presented in Figure 3.8.
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0

I -J L- -

In view of these propositions, it ends up that in addition to a

transmitted shock and a contact discontinuity, the result of overtaking

of shock waves involves a reflected wave which is either a shock or a

rarefaction wave. The criteria to judge the Loil iguration are given in

following theorems.

5. ()

Theorem 3.1 When I < 3 -- and thIe Over taken shock S 2) is

sufficientkywek there exist constants M2  i = 1.2, which are given

in (3.12), (3.13) and M20 which is determined by_ M 0 M 0 M2  e

m m 2

Proposition.3.1) such thlat

l__fI< M02 < MO2 (M 2is the Mach number of the (0) stae _!

reflected wave is the first kind of centered smimple wave (Figure 3.9).
2 2

if MOI< MO < bM , whether the reflected wave is a shock or not

lepends on the magnitude -- of tile first shock S ),There exists
0 2

1~i
ti

IL

"
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I p .

0

W

Figure 3.9

unique t 1
j such that the reflected wave Is the first kind of shock
0

when 1 < - < t ; the reflected wave is the first kind of aentered

1 p0 
MO

simple wave when t < < t (see Figure 3.10). The value t is
M0 P0 0

determined by M = M2 (t ).
0 0 11 0

p

Figure 3.10

0

0 
w

If M 2 < M 0 < M2 there exist three values tM2 < to, <tI
0 0 0  0 0 0

2 2' 2 2 1 2 2tM0 an t are determined by M = M (t) and tI0 by M 20 0  t),0 t0M 02 0_ Ob 0  o~)

P 1 2
such that the reflected wave is the first kind of shock when 1 P- < t0"

0 0
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the reflected wave is the first kind of centered simple wave when

2 < l 2'
t 2  tM

0  p0  0

the reflected wave is the first kind of shock when t2o < 0 < to

the reflected wave is the first kind of centered simple wave when

Pl *

ti < - < t (see Figure 3.11).
MO P0  - P

Figure 3.11

0
W

If M 0 >0M2 there exist two values , i 1.2, which are

2 2 (t) respectively, such that

the reflected wave is the first kind of centered simple wave when

2the reflected wave is the first kind of shock when tm <

the reflected wave is the first kind of centered simple wave when

t < t* (see Figure 3.12).
N 0 P0
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0

Figure 3.12

5 (2)
Theorem 3.2. When - < y <2 and the overtaken shock S 2  is

32

sufficiently weak there exist constants M and defined as inm0(defined asri

Theorem 3.1) with the following properties:

if M 2 < M 0 the reflected wave is the first kind of centered simple0 01'

wave (Figure 3.13).

Figure 3.13

0

2 2 2W
If MO02 < M < M , there exists a uniquet such that the reflected

__ 1

wave is the first kind of shock when 1 < - < tM

the reflected wave is the first kind of centered simple wave when



p

I 1*( r

0/

Figure 3.14 ,iue31

t[  < < t (Figuire 3.14).

m < O

in the same way as Theorem 3.1 such that (Figure 3.15)

P 2
the reflected wave is the first kind of shock when 1< -

< t

the reflected wave is the first kind of centered simple wave when

2 l 2'
2 p 1 2;

to "v 
< tmo

t .e reflected wave is the first kind of shock when

2'~ P1  121< Pi< 1
tMo 0 tMo;

o 0 0

the reflected wave is the first kind of centered simple wave when
,I 

p

t 0< --< t.

.... ..
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Theorem 3.3. When y > 2 and the overtaken shock S 2  is sufficiently

weak, there exists a constant M2  (see (3.12)) such that
01

ifM MH 0  , the reflected wave is the first kind of shock (Figure 3.16);

If H2  2 1
2 M > M0 , there exists unique value t such that

the reflected wave is the first kind of shock when 1 < - < tMo;

the reflected wave is the first kind of centered simple wave when

t I  Pl
1M 0 <  t (see Figure 3.17).

p

p

! 0

I -- Mm
Figure 3.16 Figure 3.17

4. The interaction of shock and contact discontinuity

I It can be shown easily that the projection of S2 (0) into (p,w)

plane is expressed byI
I
I



P0  0_ PO (4.1)

YM0 - '-+ I - +
PO PO

2 yJ
here I 2- 1

Let y I1 then 0 < y< (14V2 )(M2 0 -1) and (4.1) can be
PO0

rewritten as

:(i l  ) (M 0 - ) - y

YM2 - y y + (i+1 2 )

Fix p0 9 it is easy to see that the sign of Dw is the same as the

a0

sign of L [L(y, M20 ) where L = y + (2-M0 ) Therefore, > 0 when
a 0

0

M< 2 (Figure 4.1) and -w < 0 when M2 > 2 and y = 0 + 0

0

p

2 2

m Il

/ 0

/W

Figure 4.1
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I(Figure 4.2) which imply the following theorem.
P

0 00 ,

I

I 
Fiure 4.2

ITheorem 4.1 Assume that a contact discontinuity T interacts with

Ia shock S 2  .Let the wave front state and wave back sae of the

shock S 2  be (1) state and (2) state respectively. The staes on thie

two sides of the contact discontinuity T are denoted by (0) state and

II
I (i t t e p c ive y ( i ur .

i, 
Figure 4.3

Sppose 4.1 m e tof S2  is sufficiently weak, then it is certain

that sies of the contac ddicontnut T reinuity T penetrate with each

k . . , .. . . . _ , _ . .. (. .) . .st a t e. r e s e c t v e l ( F i g u re. 4, . .. 1

.. ..... .. . ... . , ,,. .. ..



other and a reflected wave comes out which is a centered simple wave

R2 < M < 2 N M > M 0 > 2 (Figure 4.4) and is a shock S
1 2 1 1

when M 2< < 2 or M2 > MI > 2 (Figure 4.5). When 2 is between
1 0 -20 1

p
-~ s~T

-

T q3 0.1

q 00

q 
33

q 2
0 , 13 .

S2
w2 Figure 4.4

2 q3p

,1

q2 S1  

,

3

Figure 4.5
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2 2 2 2 2 2
M1  and M0 , no matter what the case is: M0 > M1  or M 0 < < , the

reflected wave may be either a centered simple wave R or a shock S

t1
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The proof of (2.13).

Regarding p as the function of p in (2.7) and differentiating

to , it follows that

,uI v - 0u -(v-0l,)

dv du I [ Uv 4- , (v-ou) -2v( '-''u)
dp dp 2 (v- u) ..... (I[

p4 o 2 1 1u (v-(ju) -Cdd -2u(v-ou)

[Ou] v - ro
1 d 1,

_2-- u- ] -  [ (uv] - v[Qu ]  dp v (5.1)

IIQU2 -[u 4111
do[i+P±2 1 - u[puj -dp

Due to [p+pu2 ] - t[pul] =  when v 0  0, it can be shown that

A= [pu](u+ov) f V - V IPUIf( - (11puJ){(+-c upu

where A is the determinant in (5.1).
co(o-rO)h b(p-r 0) dp

On account of [puv] - v[Pu] = oPoV ba a dp
2 2

dp C 0
(By using = b b it turns out

2v du1b (p-('O) c O2

(IV - v d- (Ipu] (u4Vv) - (v-ou)u - 0-(P-po)}"
dp dp -2p(v- a u) 0b

(5.2)

For simplicity, we restrict our attention to a = o2 . In view of the

following:

23'



2

[ Pu] = u+U 0)(- )

bu2 C2 p

b'0 PO

P(v- GOu 0 0 (v O-Ou 0 )

2 0

b'u 2- C20 0

u + va (1'

We obtain that

[Pu] (u+VO) 0 -- ~ (,v-,Ju) U- (P-p 0

-cu 2_I-c cp 0 2_-P
0 Cb

And so 2 bc(- 0
2 2PO b 2 b' 0

CIV (it) 0----------------------

U -v - - = -- __

2rt c Y l) 1 2p2

00 0

~2 p 2 2_ 2_p ---

bu0 K)



Bv usimg ;I b i I TIWe have

2 p 2

Is proves .~13)
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I. HOMOTILIZATIO2, G::-RALI-D STRUCTURES, LTD OT)IMIZATIOT.

In many different areas of structural design engineering, one wishes

to consider isorerimetric problems of the follouring type: how should one

choose the shape of a structure so as to minimize its cost subject to

constraints on its strength?

Questions of this type have been studied at great length by both

mathematicians and structural engineers, in a wide variety of contexts.

P-rom a practical point of view truly optimal structures are often unwise

designs, being highly unstable and potentially very weak with respect to

loads other than those for which they were designed. Nonetheless, it is

of obvious value to lcnow how the optimal structure looks and what it

costs, in order to approach its performanve with more practical designs

if possible.

To fix ideas we begin by describinz a typical problem in this class.

Consider a homogeneous, linearly elastic material characterized by a

stress-strain law

3

where Ekl(u) . i(uk/)xl + ul/*xk) is the linearized strain of a

displacement u. Consider a smoothly bounded region f c I 3, with r
decomposed as 1 U r we take to be clamped and 9 to be loaded

0 1 0O 1

by a fixed force ft I-B 3 . Given 0<V-Vol(fl), we define the

class of "admissible structures"

I



(v) s cC.: IS is LipseLitzian, Vol(s)= V, and CS

Each such structure S responds to the load f by a deformation US,

determined b,., solvinz the elliptic system

erSi. 0 So 1-1,2,3
J -?

0 on S

u ~0 onuS

where n denotes the unit normal vector to !S and S' depends on

uS by ().

;e identify the comrliance of the structure - the work done by

the load f - as

C(us,f) f

A typical geometry optimization problem, then, is

C') Minimize .,c(us,f) I S C (v)

In words: one wants to remove a given volume from 12 such that what is left

has the minimum possible compliance under the load f.

This example represents perhaps the simplest fully three dimensional

case of geometry optimization. Many, many variations occur in situations

of practical interest. We have taken as "cost" the volume of material;

this is rather typical - particularly in problems of aerospace design,



I
2 11

I
where weight is at a ireuiiuas. One might, however. have several different

materials at one's disposal, each with a different cost per unit volume

and with different material pro-nerties. While the compliance is a

mathematically convenient notion of strength, one might wish to control

the pointvisesupremum of the stresses instead; for ductile materials the

limit multiplier of the load is an appropriate parameter; or one could try

to use nonlinear elasticity and modern theories of fracture. In buckling

or vibration problems the quantity of interest is often the lowest

eigenvalue of an associated elliptic equation. Instead of considering a

single, fixed load, one might want to optimize the strcture's performance

under several loads at once, or under a random distribution of loads. And

in addition to fully three dimensional structures, such problems arise

naturally for axially symmetric rods in torsion, flat plates in plane

strain, variable-thicaness plates in bending, curved shells, etc.

It's easy to get carried away formulating problems, however, and

quite another thing to solve them. Not surprisingly, almost all progress

has been restricted to the linearized models of behavior: linear elasticity

and linearly elastic-perfectly plastic materials. The literature in them

areas is vast, and a comprehensive review of it is far beyond the scope ce

this paper - the interested reader may refer to L! ]and L.ZJ for review

articles and further references. What we propose to do here is to

summarize - in a highly selective and idiosyncratic fashion - some of the

major ideas in the field.

A great deal of attention has been directed toward sensitivity analysis

and the development of gradient flow techniques.[3 ,YYiJ This work views our

4

,



optimization problems as special cases of the ortimal control theory

of distributed parameter systems, in w!7ich the control variable is the

domain on which a given partial differential equation is to be solved.

These methods apply primarily to problems where one is solving an elliptic

equation (elasticity, but not plastic limit analysis), and where the

strength is an integral functional of the solution (compliance, not

maximum stress).

The most elementary product of this approach is a necessary condition

for optimality, obtained by taking the "first variation" of the optimal

domain. For example, if a smoothly bounded set 5 in ortimal for problem (-)
0

then its associated displacement u0 must satisfy L

I/ F(u O ) I2 > c on S0

IIZ(u o ) 12  c on s

for some constant c>O, where we denote by//&(u)/I 2 the associated energy

per unit volume

(u f1 2 u&,f-(~l A ijkl Eij (  W Ek(u)

In fact, for compliance problems (and for plastic limit multiplier

problems) one can give a sufficient condition for optimality that is

closely related to ( ). An entirely elementary argument -- using only the

fact that (21) is equivalent to a certain variational problem - shows that

if, for some S Cj (V) and a> 0 the deformation uS extends to an element of

9( I~2 3 3 ) satisfyinR

- _ _ _ _ _ _ _ _
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iM'(u s ) l 2> c a.e. on S

(us)" 2 c a.e. on S

then S is optimal for (2).V While the computation leading to (f) is very

general, the sufficiency of (5a) rests upon the special relationship between
the compliance of S and the variational form of (,2.

Given a structure S that is not optimal, the same computation that

yields (f) gives the gradient of the compliance in the space of local

deformations of S. This leads to the formulation of gradient flow

algorithms for finding structures that are at least local optima. Although

the computations are usually too onerous to be practical, some use has

been made of this methodL 100 ]. In addition, a "fixed point method"

for satisfying the optimality conditions (-7) directly has been used for

medel problems of compliance wdith good preliminary results -7J. None

of these algorithms haz been shown to converge, however; indeed, it has

been unclear "-hether to expect a smoothly bounded optimal set S to exist

at all for a problem such as (3)!

In a variety of special problems, optimal structures have been shown

to exist, and in some cases they can even be given explicitly. For

certain two-dimensional problems, complex variable methods can be applied

0 In other problems - principally the case of plastic rods in

torsion - specific formulas for the "strength" allow one to identify the

optimal structure.[I3,193  And in yet other cases, symmetrization has

been used [ I-) ]. It must be said, however, that many of these methods have

a somevhat ad hoc flavor; they represent, one senses, something less than

i | , . . .. . • .. .• ... . .. .
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a general picture of ',hat optimal geometries can look like.

In fact, there have been indications that in many cases optimal

structures will exist only in a generalized sense. In other problems of

distributed parameter control such a phenomenon was noticed by Nurat CC.

In torsion problems this phenomenon was noticed by Lurie and Kiosowicz EiYJ.

In fact it is well-known folklore within the structural design optimizatimn

community that as one tries to optimize a three dimensional structure -

for example, in our problem (.3) - the structure may develop many small

holes in such a manner as to mimic the behavior of an optimal "truss-like

continuum"; numerical experimentation alona these lines may be found, for

example, in ['2.

That optimal shapes might fail to exist should be no surprise to

a mathematician f-miliar with recent work concerning "homogenization of

domains" L I I There one finds that if a sequence S is defined by

perforating a domain i with holes of a fixed geometry but rescaled to a

lattice of size 1/n , then the correspondinz displacements un converge

in a suitable weak sense to the solution of a new eouation, now defined

on all of 2 , of the same type as (.) but with a stress-strain law that

depends upon the local geometry of the holes - and which is, in this case,

explicitly computable. In short: new, "effective materials" may be

produced from the original one by allowina geometric microstructures to develop.

One says that the "effective materials", or the equations cheacterizing

them, are obtained by homogenization (also Lnown as r-convergence) from

the original equations.



There is, to be sure, nothing in our original problem 'thtzt renuires

the loci! geometry f the microstructure to be periodic. To say something

mathem'lticp.lly rigorous about the general situation, however, one must mcdify

the problem slightly. Given a set St-j(v), let us not leave f-S empty,

but fill it instead with a second (perhaps very weak) homogeneous linearly

elastic material, whose stress-strain law is

ij= Aij Ica

The disolacements must now satisfy the equilibrium eauations

0 on i2 (i-1,2,3)

'- n f on

u 0 on F'0

where 3
1-,iJ " , AiJkl -k (uS) on S

F-j~~k z(us) on ,2-S.

The definition of the compliance c(u,,f) remains unchanged, as does the

form of the ortimization problem:

K7') Minimize c(us f) : S- 4J(V), andUS solves (

Because the system (6) is elliptic on all of Si , we can i=Y ke a

comnactness theorem due essentially to Spagnolo E-U=,2 3 to conclude the

evistence of effective materials in general. Given any sequence Sn c (V)



there is a subsecuence S with the following property: for

each fc- H"(I;e) the solutions of ( ) converge weakly in Hl(l.q!) Ib a. solution

of equations of the same type as (4w), ith a new stress-strain law

QSt) -ij AeW C,
ij ± ijkl (x)

corresponding in general to an inhomogeneous, anisotropic, linearly elastic

'effective material". The new stress-strain law ( ) depends only on the

subsecuence Sn(j)\ , not on the load f. ::oreover, tae compliances

converge:

c(USn(  , f) - c(U, f)n(j)

for each f.

Thus the existence of solutions to (7) becomes a triviality if one

allows as generalized solutions the effective materials that arise

by homogenization in the manner just described. .rom this point of view,

the interesting problems are theses

1) What are the effective equations that can be produced using

sets in J()
2) What do the optimal "generalized solutions" look like?

Question (?- has considerable interest over and above its

relevance to optimization problems . Given an answer to it, one should

be able to handleo9-z) successfully by means of first-order optimality

conditions and gradient-flow methods.

Unfortunately, answering (-- 1) seems to be a difficult task. Sore

limited progress has been madet for Laplace's equation in IR2, Tartar



has chrracterized the limiting equations obtainable by Lomogenizing t'o

isotroio constant coefficient ones without regard to volume frrcticn

used , :nore general situations, or when trying to take volume

fracti:na iiita account, one can say much less - in g-neral, only ra:her

crude bounds are available [:: :-, :4 1. Settling this question remairr

an important, open problem in the theory of homogenization.

f - &o toucLed )nly briefly upon the engineering literatu r e.

. indi,?ated C idea that some sort of "generalized str'acture"

:itl L e"- : a t. d~criLt optimal solutions is by no means new to the

eni-ine. 2ather than bel-tbor the cuestion of what generalized

e dze from given materials, however, most of their -or.:

pass t- to mu..icration of the generalized str-nctures th._selven

Tn m :< taS thi.a aoounts siipiy to enlarying the class of materials

one linc t) wo:- k;th, so that a continuous ran?e of nateri-ls is

i 'ai" , eich rea o assi-ned cost; in other cases one allows strilctures

of an en-,,ir1 r new css. The cases that have received the nost 'ttention

are truss-like continua" (for three-dimensional problems and two-dimensiona"

pla-ne strain), "grillage-like continua" (for planar structures sunrorting

bending loads), and vnriable-thick-ess plates. LITON. In most cases

the rPlevant ortimization problems are formulated in finite-dimensional

versions, -,i th the continuous version obtained by a formal passage to the

limit. In mnny cases involving the compliance of an elastic structure or

the limit -utiplier of a perfectly plastic one, one can use the theory of

convex duality tc great advantage.

Perh '.rs we can s-ive some flavor of this atproach by describing the



analoIue of 'roblen ( ) in the cate.--or7 of t-ass-!ike con ti' ua. -uch

a structure is dencribed b- zi -7.4%l of vector fiells, :ay

; ere I determines the lirection of the ,'th family

of truss members , nd I , their strength per leri: th, -:ich -c

*derfy %.zo an te cost rer u'.it en.- . ",e assume t C an

be arbitrrrily lir~e, that joinin. members of the "truss" can be done :t

no cost, a-nd that one can n zre the 7osi'zle buc', jin5 of tr-uss me.berz.

Tor Zch . s:ructure, tze 2ona!g-e of thc eq'j-;iiri'n eru.tions

("K.) is most ely eCX-ressed in vri:ional fo-m:

(0m in Z j~~Z() -=j *j2 dx -u-0 on I0  11--

The design ortimization 7roblem ic

'Minimi ze f-u u solves ( )with f Z- Lu, !E C

WTe have not identified ippropriate spaces for either or u: indeed,

it iz not clear :ihat choices one should make, and the above formulas

should be considered formal only.

One can characterize solutions to (') - once again, on a purely

formal level - by means of convex duality. One is led to conclude

that in an optimal structure N-3, and that the solution u of (") has

eigenvectors " J// ' f with eigenvalues +Io , for some constant c, whenever

-J4 0.

Many interesting mathematical questions remain open here. A correct

mathematical treatment of truss-like continua has yet to be given, as

does a proof of the existence of optimal structures in this class. It

would be useful to have a regularity theory and methods for computing

optima as well. There are other applications of convex duality or the
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;:.uhn-muc:er conditions (in engineering optimization there are usually

c.1.ed the Fr-iger-Shield conditions) that have yet to be carried out correctly

in infinite-dimensional contexts; this is particularly interesting for

plasticity problems, where the spaces one must work in are r-ther

unfamiliar [T~l.

Finally, we emphasize that whatever class of objects one takes as

admissible structures, one must still consider the possibility that unex-pe-ted,

&ener-ilized structures can be produced by a limiting process. Recent :ork

by Chen., and Olhoff [3] has found this to ccur, for example, in a rreviously

unexpected manner in the optimal design of variable-thickners elastic nlaten.

11- CF=L'. CROSS .. :.c FOR RODS = . T LAUE S1rAR

:n this section we summarize some recent work concerning the

o-i S.eometry of the cross section of a rod loaded in ntiplane

shear. The detailsof this work will appear soon elsewhere ;/: our goal

her? in to describe the methods used, which seem rather general and

rotenti ally a":licable far beyond the context of the model problem

discu'oed here.

*..; consider rods of infinite length and constant cross section,

I .ii b.- a boundary shear force directed along the length of the rod,

unlfrnnrly along that length. As the strength criterion we take the plastic

limit multiplier of the load, though we will comment on the corresponding

j



compliance problem at the end of the section.

The geometry optimization problem iz once a7:in c.2st ir ter~s of

remov-l of material: how should a fixed anount of 7i:.-ea be renoved fr-m

the interior of -. rod cross section zo as to rep.ken the struiture as

little as posible? The :ey to our aprroach is that ,e neither attempt

to characterize all homogenized, generalized structures that might occur,

nor do we merely assume the rorerties of some specific generalize-I structure.

Rather, we :haracterize those 7icrostructures that crize !n o-timal

configurations; in other w.ords, we derive the correct cl?.ss of -eneralized

structures. One can then apply infinite-dinensional convex alysis in

a manner parallel to that used in the er-ineerinJ literature, to cha'cterize

the ortimal structures.

So let UC I represent the rod's section before volume removrl, and

assume I- U is piecewise smooth. The load f: M should be tounded

and measurable, and since (for simplicity only) none of /' is clrmred one

has a consistency condition f - 0. The geometry of the model problem

is represented in figure 1.

Consider the class of admissible cross sections & , defined by

B - U'C U : " U' is Lipschitzian, and I c. U' .

We define, for U'r U,

2)
U' withstands load f iff There exists L (U'; ]R) such that

div 0 on U' ; 6- n - f on

- n 0on )U' /f ; and Ir( It6 a.e.
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This definition corresponds to the model of plastic limit analysis,

with "yield condition" /riil. The vector 0- represents the shear

stresses in the rod (all other stresses are zero). In words, U'

ithsta-nds the load f if there is some stress which equilibrates the load

f and which nowhere exceeds the yield condition. Of course, since S" is

merely an L vector field the condition divS".O must be understood weakly;

also, we are using the fact that T. n has an Lo trace on ) U'. Finally,

we remark- that the unknown ooundzry U'I -  is aiways unloaded and

unclamped.

Let us touch base with the more familiar terminology of plasticity

t."eo:. The limit multiplier \(U',f) is defined as

(U',f) - sup " t: U' withstands load tf

The duality theory of plastic limit analysis provides a useful tool for

determn.ing whether or not U' withstands load f Eft3:

('' (U1,f) - inf UJu u- El (U; Z) U. Xuf l

One c n further interpret (';) in terns of a very geometric isoperimetric -

type problem in the plane, which allows one to solve for A(U',f) in

zany cases.

':e come to an elementary, but crucial, observation: one extends

the vector field C in (ta) to the "hole" U-' by assigning it the valut

-ern, this extension remains divergence-free. Thus

U' -!ithzt~ndz lond f iff There exists L(U • - ) such that

div o = 0 on U; n a fon :

5= 0 a.e. on U- tT - .nd Iril 1 a.e.

I



?or the rur-os,'s f . urr -- ', : :_ - nve:-iczn< to rccast the

-o - . .. - " .. .. " 7 -- o-- " i, _ _ o r ... htlj, fixi ::,- not t:e amount of axea

to be removed but instead the strength of the result. In this form, the

nroblem is: " iven O<t X (U,f) 1nd

Pt~; - inf Ire a(U) i Ut ~ (OJ I, f) > t

and describe an ontimizinr senuence of sets U'.

The key to solving this 7roblem is the followin.3 lec-.a.

Lemma 1: Let ,.- L (U; M2) with div'<=O -,nd T1. 'or each £ ' 0 one

can construct a set U. < %( and a vncto:' field 1. - L (U; in 2 ) such that

ii)-, 0 on U- U

iii) irf !, div 5=0 and T-n = <. n on

The nroof of lemma 1 is rather technical, but the idea is sirle: one

replaces a region where 04fr14I by a foliation of slits rnrallel to T,

leaving behind density Inrf of material- choose T in such a region to be

parallel to the slits with ,,1 =1, except of course on the slits where

5 -0. There is, to be sure, some work to be done to show that this

can be done even if ' is in no way smooth, and that these local pictures

can be pieced together; the complete argument will apear in t>J.

One may rewrite (') heuristically as

-P in! L , S-, ~ L(U; M), 171lk , divIr-0, 5' n - tf on rf
where Irescnts the cha-ricteristic function of the !-et where

/ c0 . (This is only heuristic, because the set where 6-/0 may or may

not be regular enough to belong to the admissible class Z .)
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Using Lemma 1, one readily sees that in fact

(,C) Pt n J~r Y ~T . L(UT; in2), 10-1~ 1E1, div 5- -0,,~ n a tf on

Thus on the heuristic level the role of lemma 1 in to identify the integrand

I ITas the lowersemicontinuous hull of Jl,.o I Given 5 solving (IV, "

one can construct an optimizing sequence of shapes by the construction

implicit in lemma 1.

The integrand 1171 is convex - this, it seems, is a fortunate

coincidence; one had no right to expect it to be, a nriori. However,

since it is convex one can achieve additional insight concerning (01

by co:,sidering simultaneously it5convex dual. Moreover, the existence of

an o~timal I'- solving (If) is immediate from the weak* compactness of the

unit b,,ll in L . Applying duality theory leads to the following result II.

Theorem 1.:

A) The infi.aum in (/-) is attained by an L vector field.

B) The optimal area Pt is also the value achieved by the dual nroblem

)p t sup{J U (l-IVUf)- + tfu.f u & Hl(U)}

and the supremum is attained if we allow u to lie in the larger

space BV(u).

C) If S& L (U; M 2) and u t GBV(U) are solutions of (Is) and (/ )

respectively, they satisfy the saddle-point condition

which imrlies in particular

!

A



i) t _u .. e. -.:here 1,7 Ut/ >-
t

iii) -' - 0 a.e. where (Vut abs !

D) If Y'&L'(U;M') with Ir.Il, divY. 0, Tn-:f on - u C V(U);

-nd if (17) holds for u and .5- then u and 5- "re extremal for

() ~and (<) respectively.

'!any of these szatezents must 'Ce ',nders-ood 4n a rather "ea sense,

zince we have azserted very little e-l7,irity for u ind T'. Ey

(1-1-u() one understands (1-17ul ,bs) dx - VUjS4ng , where

ivul-iVU 1b s + 7u1in is the deccmrosition of the me-sure %7uj into
sing

its absolutely continuous ,.-d sin-ullr rart. , rnd for real numbers D,

p-minlpO . One must verify that when div5--0 -nd irI- I , the integral

0<-,7u> makes sense for each u-V(U). .Ind implicit in (C), (i-iii) is

the fact that for u&BV(U), the unit vector gu/\-uiu is well-jefined

J u) I- l-ost ever where.

:e expect to be able to trove further re-.nl-rity for the extremals

to ('7) and (".): it -"pe-rs that u is locally Lipschitzian, and that

is a C1 vector field away from the set X: t(x)-O (- which itself

has piecewise CI boundary. As of this writing, how'ever, some details

remain before the proof of these assertions can be considered complete.

Theorem 1 clarifies greatly - at least in the model of antiplane

shear - the role played by optimality conditions such as we discussed

in section I. The analogue in our model problem of the conditions (C)
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is this : if UIC, u':U-> achieves inf 0 , IuI • u.f =

and fcr some c>O

1\7u'l>, c on U'

I qu'I c on U U'

then Ut has minimal area for its limit multiplier. The prospect of finding

such a set U' may seem bleak, since in general a minimizer for (i-) may

well have jump discontinuities. However, Theorem 1 shows that this

criterion comes close to the mark: an optimal set U' may not exist, in

general, but in a certain sense u' does nonetheless - it may be identified,

up to scaling, with the function ut in Theorem 1. The optimal stress 6t.A. t
is the closest thing to an optimal geometry thf exists in general: where

T - 0 one has a hole: where ( .1 one leaves the original section
t t

unchanged, and where O<IIT1<l one obtains "near-optimal" structures by

removing slits parallel to 9, as discussed earlier.

The saddle point conditions (17) enable one to construct examples

with relative ease. An instructive case is that of a "butterfly-shaped"

section, loaded uniformly along the "wing-tips" only (figure 2). The

optimal stress field for t-1 is shown in figure 3. Where the wings join the

body the integral curves of 6 are arcs of circles, and l6--; in the

darkened regions r- 0; and elsewhere the integral curves of V are straight

line segments. Figure 4 shows the corresponding function u,

by markirw some of its level curves. Where I6-l, 1V?4>4I and the level

curves are straight line segments; where 0. Irl - , 19 u I - I ; in this

case tVu(-l where 6'-0. We remark that if u is C 2 and 19ul- 1 on an

open set then quite generally the integral curves of qu/iul must be

I.



ztrqight line ze--ments.

Now consider what happens if the parameter t tends to zero. Th'q

corresponds physically to removing essentially all the material from the
* t-

cros3 section. Formally, one might expect 6t " 5 to converge to
t t

a solution of

(8') inT , (U; R) , div1-O, n - f V

since each T t solves the corresponding roblem with the added constraint

Ic-t 1 . The unit ball of L is not compact under weak converrence,

however, so one should expect extremals for ( ') to lie in a larger space.

The correct nlace to look is the space of one-dimensional normal currents,

as developed in s]. Roughly speaking, these are vector valued meacures

that can be approximated by C 1 vector fields, viewed as elements of the dual

space to the one-dimensional differential forms. '.e have proven the following.

Theorem.2: Let Cr and u t be solutions of ( -- and (',) respectively, and
t

<T* t- I  t" For any sequence tn 0,

A) {- I has a subsequence which converges weakly to a normal
n

current which is extremal for ('u)I

B) fut has a subsequence which converges weakly in L'(u) to

a Lipschitzian function solving the dual to (7)

sup jfu.f ; u:U- ,R Lipschitzian with u'uI-6l

C) the extremal values of (/i) and (/5) are the same.

Figure 5 shows the "integral curves" of the solution to ( k) for

our butterfly example. The heavy segments at the top and bottom of the

"body" carry positive mass of this current.
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The methods sketched herein extend readily to a number of related

problems. ;ie conclude this section by indicating what implications the

method has for linearly elastic rods under antiplane shear, with the

"strength" interrreted in terms of the compliance.

The geometry of the problem rem'ins the same as before, though now

the load f may lie in H4 (['). The vertical displacement solves the

equation

0 0 on U,, -) 9-f on , Tng-O on " U'-')n n

equiv:ilently, u achieves the extremum in

()inf 1\UNqu(2 - ff~u u EH1 (Ut)

Integrating by parts in (/ ), we note that

17u, 2 wj f. - c(U,,f_)

-U''

As in the case of plastic limit analysis it is convenient to deal

with the stresses rather than the displacements. In this problem the

stress - solves the dual to (Z.):

i,-- L2 (U,,7 2&, div -O,5 n-f on F, r.n - 0

on U'A I".

Thus a geometry U' has compliance at most C if and only if there exists

Y'c- L2(U ; M 2 ) such that div6- 0 on U , Tn - f on /', - 0 on UAU',

and I 2 _ C. Using this observation and the method of Lemma 1 we

have proven the following.

Theor-m J. For each C >0, the following quantities are equal :

i) inf Area(U') t U'-J , c(U',f)#C

ii) sup inf ff F (iqt)dx: - -K C , -L 2 , divr- 0, .. f
0o70 O



1 + (1)Jt 2

where (
t)~ ' < 2/.~

iii) sup sup i- jul 2 + J - C

A4gain, details and examples are in nrepaxition for ;ublination elsewhere

soon.

III. DIRECTICNS FOR TL= FUTqR.

It shouli be a parent that there is a g reat deal yet to be understood

in the area of geom-try octUzAtin. 'Je liat here zome directions that

future work is likely to t2-s.

I) Even for the model case 3f antinlane shear discussed in section II one

can not yet characterize geometries that are optimal for their 7erformanc

under several loads at once. Ultimately, one would likc to study performance

under random loads as well.

2) There should be an analogile of Ler'ma 1 for plane stress or for three

dimensional problems. What integrand replaces iaj ? (We believe that

for these problems the relevant integrand may not be convex.)

3) Can one do a similar analysis for eigenvalue problems?

4) The one-dimensional currents discussed in the context of theorem 2

play a role for antiplane shear analogous to that of truss-like continua

in plane stress or three dimensional elasticity. It should be possible to
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study the optimization of truss-like continua using methods from geometric

measure theory. Particularly welcome wou2d be algorithms for computinu

g such optima.

5) many biological structures have well-defined microctructures, which

one exrects serve to optimize their performance for certain tasks; certain

bone and muscle tissues are striking cases of this. It would be interesting

to "explain" such geometries by identifying with mrecision functions for

*.r1ich specific structures are desi-ned optimally. Qualitatively this is

an idea long f-miliar to biological scientists; but in rather few cases

has it been made quantitative.

6) .bny new rezult in the existence or characterization of optimal structures

-hould lead to new methods for commuting them and to convergence results

for various algorithms. In particular, one should be able to use our

Theorem 3 to study the "fixed point method" proposed for compliance-

type Problems in j.

7) Perhaps even the general question of characterizing effective materials

may yield to similar methods, by considerinw sufficiently complicated

optimization problems.
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Weak Solutions to the Nonlinear Waterhammer Problem
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ABSTRACT

A numerical method to compute weak solutions to an

initial-boundary value problem for a nonlinear hyperbolic

system which models fluid flow in a pipe is analyzed. The

effect of friction is included by adding a quadratic zero

order term to the system of conservation laws for compressible,

frictionless flow. A priori bounds are obtained by means

of a nonincreasing functional that is compatible with

the friction effects and which is equivalent to the total

variation of the solution. The boundary values for this

problem cannot be imposed weakly, so new results on the

regularity of the approximate solution at the boundary are

given. Details will appear in the authors' paper

"The existence of global weak solutions to the nonlinear

waterhammer problem".
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1. Introduction

Fluid flow in pipelines is usually 'modeled by the

quasilinear hyperbolic system

Pt + Gx = 0 , (x,t) G (0,1),

(1.1)

Gt + (G2/P)x + P(P)x = - fJGJG/2DP

where P is mass density, G is momentum density, p = p(P)

is pressure, f = f(!GI) is the Moody friction factor,

and D is pipe diameter. We shall give stability and error

bounds for a numerical method to compute global weak solu-

tions to (1.1) satisfying given initial conditions

(1.2) P(x,O) = P0 (x) , G(x,0) = G0 (x) , x [0,1],

and given boundary conditions

(l.3a) P(0,t) = PB (t) , t E (0,)

(l.3b) G(l,t) = 0

This poses the classical "waterhammer" problem since

the waterhammer phenomenon in hydraulics can be created by

a sudden valve closure downstream (modeled by the boundary

condition G(l,t) - 0) or by a rapid change in the pressure

upstream (modeled by a discontinuity in PB) . These events

create pressure waves which are reflected at the boundaries.

I
I



The term -fIGIG/2Dp accounts 
for the momentum loss due

to viscous friction between the fluid and the pipe wall.

Since the flow changes from laminar to turbulent at a flow

rate near Gc = 2000P/D (where p is the dynamic viscosity),

ccthe properties of f also change at G G Gc . In the laminar

regi me

(1.4) f(IGI) = 64P/IGID , IGC < Gc

but the friction factor is determined experimentally for

turbulent flow (IGI > G ) and depends on the pipe roughness
C

(which we assume to be constant in space and time) as well

as the flow rate. In particular, it can be observed

from experimental data that there exists a constant f1 > 0

such that

(1.5) lim f(IGI) = f
IGL

Thus, the friction term fIGIG/2Dp is nearly quadratic in G

for turbulent flow. Our analysis assumes only the following

properties for H(G) = fjGIG/2D:

(1.6) H(0) = 0

(1.7) H > H > 0
G -G -

-(1.8) H is locally Lipschitz continuous.

Property (1.6) states that there should be no friction when

there is no flow. Property (1.7) states that the relative

change in the friction (assuming that P is fixed) is

I "
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greater than the relative change in the flow rate. This is

obviously valid in the laminar regime (H(G) = 64G/UD) and

in the completely turbulent regime (H(G)'= f0IGIG). Our

study of the Moody diagram [13, p. 297] has led us to assume

its validity in general. Property (1.8) is justified for

all flow rates, G, except possibly at the transition flow

rate IGI = Gc  (see 17] where f is allowed to be multi-

valued at IGI = G ).

We also assume that the sound speed, c > 0, is constantp

i.e.,

(1.9) p'(P) = c 2

This is valid for an ideal gas which is maintained at a

constant temperature by heat exchange between the gas,

the pipe wall, and the surrounding environment. For many

physical problems property (1.9) is also a good

approxi-ation for modeling the flow of

licuids.

In 7', Luskin has shown for the initial-value problem

(1.1)-(1.2) that a unique, global smooth solution exists

if the initial data are in an appropriate invariant region

and if the first derivatives of the initial data are suffi-

ciently small. However, if the first derivatives of the

initial data are too large, then discontinuities can be

shown to occur even when the data is smooth. (This can be

done using a variant of Lax's ideas for the frictionless

case [4]). To allow for more general data here, we need to
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consider weak solutions of (1.1). We call P,G G L (R)

a weak solution of (1.1) if

If [POt + GOx] dx dt = 0

(1.10)

ff [GO t + (G2 /P + P(P))OX- (fIGIG/2DP)O] dx dt = 0

for all E C0 (Q), where Q = (0,i)x(O,-).

We have proven the following existence theorem in [81

by using the properties of our approximate solution that

will be given in this paper.

Theoren 1. Assume that properties (1.6)-(1.9) hold and

that

(1.11) Var Zn PB + Var £n P0 + Var - < 9n 0.96.
t>0 xe[O,l] 0xE(0,1] cP0 2

Then there exists a weak solution p,G G L (Q) to (1.1).

The initial values are satisfied in the sense that

(1.12) P(',t), G(-,t) E Lip([0,-), LI(0,1))

and
lim P(-,t) = P0  lim G(,t) = G0in L(0,)t 0- t-0

The boundary values are satisfied in the sense that for

any T > 0,

(1.13) P(x,-), G(x,-) E Lip([Ol1, LI(0,T)),

and lim P(x,-) = PB ' lim G(x,-) = 0 in LI(0,T) .

x-O x-1
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(Here, e.g., P(-,t) E Lip([O,), LI(0,1)) means that there

exists a constant, C, such thati
lp(-,t 1) -  ( - , t 2) I L _ (01 .clt 1- t 21

for all tl,t 2 G [0,-).

I Also, without loss of generality we assume that

P 0 (0) = PB (0) and that G0 (l) = 0 by redefining P0 (0) and

G0 (1) if necessary. In this way the incompatibility of

initial and boundary data is accounted for in the left hand

side of (1.11) by allowing lim P0 (x) P0 (0) and
x+0

im G0 (x) 0).
x~l

The only purpose of (1.11) is to guarantee a priori

that the flow remains subsonic, i.e.,

(1.14) IvI < c for (x,t) E ,

I where v = G/P is the velocity of the flow. This, in turn,

guarantees solvability when boundary conditions (1.3) are

I imposed.

In general, boundary value problems for (1.1) in which

either the density or the flow rate is assigned at each

boundary can be solved uniquely only when the character-

istic speeds X1 ,X2 satisfy X 1 < 0, X2 > 0. our problem is

I posed in Eulerian coordinates where the characteristic speeds

are l(u) = v- c, ?2 (u) = v+c ; so (1.14) is required

for X1 < 0, X2 > 0. Earlier work on the construction of

I solutions to initial-boundary value problems has been done

l
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by Nishida and Smoller [12] and Liu [51 for the

Npiston problem", but a priori bounds similar to (1.14)

were not required there. This is because the piston problem

is posed in Lagrangian coordinates where the boundaries move

with the fluid. Thus for the piston problem, X1 = -c,

2 = C, so 1 < 0, X2 > 0 is already guaranteed a priori

Note also that boundary condition (l.3b) is a "natural"

boundary condition and could have been imposed weakly by

requiring that

Jf [POt + GOx] dx dt = 0

for all E C((O,1] X (0,-)). However, the boundary

condition (l.3a) is not a natural boundary condition, and

it was necessary for us to give new results on the regularity

of the solution at the boundary in [8] in order to make

sense of boundary condition (l.3a). This problem, as well,

did not arise in [5] or [12] since the boundary conditions

for the piston problem are "natural" boundary conditions

and can be imposed weakly.

Our method is a fractional step procedure. In the first

part of each step we use Glimm's [1] method to approximate the

solution of the system of conservation laws for frictionless

flow. The second part of each step accounts for the effect

of friction on the flow, and involves solving an O.D.E.

that is determined by the zero order term. Liu [6] and

Ying and Wang [15] have also given bounds for a frictional

step method for some systems of conservation laws with zero
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order terms. However, their analyses took account of only

the magnitude and not the orientation of the vector field

given by the zero order terms. These methods are inadequate

5for our purposes because the physical friction term

fIGIG/2DP is quadratic in G at infinity; and solutions to

jsystems of conservation laws with quadratic zero order

terms will "blow up" in finite time if the associated vector

field is allowed to have an arbitrary orientation. Moreover,

the methods in (61 and [15] will not imply the a priori

bound (1.14) unless the orientation of the vector field

is considered. Thus, it is crucial that we found a nonlinear

functional which is equivalent to the variation norm

and which is nonincreasing on both of the fractional

steps. Although the functional introduced by Nishida (101 is

nonincreasing for the system of conservation laws, it is

inadequate for our purposes since it can increase on the

friction step. However, we have shown [8] that if the zero

order term satisfies certain monotonicity conditions,

then the functional given by Liu [51 is nonincreasing

for both fractional steps. These montonicity conditions

i are satisfied by the physical friction term in (1.1) when

the flow is subsonic. Numerical results for the solution

of (1.1) by this fractional step procedure have recently

been reported by Marchesin and Paes-Lema [9].

More details and proofs for the results reported here

can be found in our paper (81.

I



2. Solution of the Riemann Problem

The solution of the Riemann problem .is the crucial

element of our method. The Riemann problem is the initial

value problem for data which is constant to the left and

right of x = 0. We study the Riemann problem for the

nonlinear hyperbolic system

(2.1) ut + F(u)x = 0 (x,t) E R x IRT

where u = (PG)tr, F(u) = (G, G2/p+ p(p ))tr, and

p' (P) = c2 . The eigenvalues of dF are

(2.2) Xl(u) = v + c , X2 (u) = v + c

with corresponding right eigenvectors

tr trR1 (u) = (l,v-c) , R2 (u) = (l,v+c)

The main existence result is that for initial data

UL if x < 0
(2.3) u(x,O) = u0 (x) if x > 0

(we always assume PLPR > 0) there exists a unique solution

u(x,t) = u(x/t) such that u(x/t) consists of constant states

separated by "shock wave" and "rarefaction wave" solutions (10].

We first discuss the rarefaction wave solutions.

We note that a smooth solution u(&), = x/t, must satisfy

[dF - &I] u(s) = 0



279

Henc a smooth solution u( ) must s'>tisfy u(C) : spanfR, (u( ))}

and = A£(u()) for £ = 1 or Z = 2. An £-rarefaction

wave is a continuous solution, u(x/t), whose values lie

on an integral curve of the eigenvector R. The functions

v+c Zn P v-c kn P
s= 2 ' r-= 2 '

are Riemann invariants; i.e.,

(2.4) Vus- R1 = 0 V r-R 2 = 0

Hence, s [resp. r] is constant on an integral curve

of R1 (resp. R2
] . Thus, the t-rarefaction curves can

be defined by

(2.5a) R1(uL) = fuR I r(uR) > r(uL) , s(uR) s(uL)},

= {uR I VL-VR = -cz for z = Zn PL- 9n PR > 0}

(2.5b) R2 (u L ) = fUR  r(uR) = r(uL) , s(uR) > s(u L ) ) ,

= fu j VL-VL = - cz for z = £n P R- Zn PL > 01

A 1-shock wave [resp. 2-shock wave] of speed a is a

weak solution

(2.6) u(xt) f L if x/t < a

t uR if x/t > a

I



which satisfies the Lax entropy condition (31

(2.7a) X 1(U L) > a > X (U )

[resp.

(2.7b) X2 (uL) > a > 2 (uR)

Since u is a weak solution, it must also satisfy the

Rankine-Hugoniot jump condition

(2.8) O(uL - UR] = F(uL) - F(uR)

By eliminating a in (2.8) and applying the Lax eatropy condition

we obtain the following I-shock wave curves

(2.9a) Sl(uL) = {URI VL-VR = c(e - z/2 - e z / 2

for z = In PL - In PR <-- (}

(2.9b) S2(UL) = {UR VLVR = c(e
-Z/ 2 - ez / 2

for T = In PR - 9n PL < 01

Substituting in (2.8) gives

(2.10) a = VL - c e - z / 2 = vR - c e z / 2 , z =In P £In PR < 0

for a 1-shock and

(2.11) a vL + c e- z/2 =v R + c ez/ 2  z InPR n PL< 0

for a 2-shock.

L - _ _ _
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it now easily follows from (2.8) and (2.9) that

z = In PL - In PR [resp. z = In PR - PL3  is a regular

parametrization of the C2 curve Tl(uL) RI(u L ) U SI(UL)

I [resp. T2 (uL) = R2 (UL) U S2 (uL)]. We call z the

"signed strength" of a given wave (so that the signed

jstrength of a rarefaction wave is positive and the sicned
strength of a shock wave is negative), and we call 1zj the

I strength of a wave. The existence theorem for Riemann

problems follows directly from the fact that given any

two states uL and uR , there exists a unique state uM such
that uM E TI(UL) and uR E T2(u M) [101; i.e., the

Riemann problem for (2.1) can always be uniquely solved by

a 1-wave that connects uL to uM and a 2-wave that connects

SU M to UR'

Finally, we shall need to construct the solutions to

certain initial-boundary value problems. When the boundary

is x = 0, we consider the problem

SUt + F(u) x = 0 , (x,t) C 3T x 3RT

1 (2.12) u(x,0) = u0  = uR x E 3RT

P(0,t) = PL t e mT

It can be checked that there exists GL such that

u R E T2 (uL). But the 2-wave connecting uL to uR will take

j the value uL at x = 0 only if it has positive speed.

If uR E R2 (uL), then it is necessary that X2 (u ) = VL +c > 0

j to g''arantee the 2-wave has positive speed. If

I
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UR E S2(uL) , then the corresponding 2-wave has positive

speed if vR > -c, since

a > A2 (u R ) = VR + c >'0

When the boundary is x = 1, we consider the problem

ut + F(u)x  0 , (x,t) eR- X+

(2.13) u(x,0) = uL F x E 3R

G(0,t) = 0 , t e 3R+

In this case, there always exists PR such that

uR = (P R, 0tr E Tl(UL), but the 1-wave connecting uL to UR

will take the value uR at x = 1 only if it has negative

speed. This is true if vL < c. Thus, the initial-boundary

value problems (2.12) and (2.13) can be solved by simple

waves if all the velocities occurring in the solution are

subsonic.
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3. Definition and Stability of the Fractional Step Scheme

I In this section, we define our approximate solution

I to (1.1)-(1.3). Let h = 1/N, N a positive integer,

x i = ih, Ii = [xi_lx i ] , i = [0,i] and let k > 0, tji- jk,

-Jl = tAlso, let s = (9if*--, )V U. 6 (0,1),

be a sequence. We define approximate solutions
A ad h tr

Sh = (Ph,Gh t and uh = (PhGh) inductively. Assume

that uhand uh are defined for t < t . Then uh on I x J+ 1

is the solution to

SAht + F(uh) x = 0 , (x,t) 6 1 x JX +

(3.1) Ph(t,O) = PB(tj+l/2) , t 6 Jj+ 1

Gh(tl) - 0 , t 6 3 j+l

uh(x'tj+) = uh(xill+jhtj-), xE I , if j > 0,

U h(x,O+) = u0 (xi-1 / 2 ) , x 6 i  if j - 0

2 tr trI where F(u) = (G,G /P + p(P)) and u0 (x) (P0 (x),G 0 (x))

Next define the functions u(t,u) - ((tA,G) G(t,,G))

1 by
(3.2) ut = H() , t > 0

1- 0
ui(0) - u

where If(u) = (0, -fIGIG/2DP)tr B (0, -H(G)/p)tx.

1 Then we set

(3.3) uh(xt) - (t-tj.,Uh(Xlt)) , t J+161
l
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Note that (3.1) poses an initial value Riemann problem

at each mesh point (xi,t.), 0 < i < N, and a boundary

Riemann problem of type (2.12) and (2.13-) at i - 0 and i - N,

respectively. Therefore, we can use the Riemann problem

solutions of Section 2 to solve (3.1) in Jj+l P so long as

the waves in these solutions do not intersect in j+l '

and so long as lvi remains less than c in the boundary

problems. The results to be given in this section show that

if (1.11) holds and if h/k > 4c, then IVhI < c in 0 and

the approximate solution can be successively constructed

as described above on I x J* for j = 1,2p....

Note that if I Vhl < c in I x Jj+l I then iui(Uh)I < 2c

in I x Jj+l" In this case, the waves in the Riemann

problem solutions do not interact since h/k > 4c. We shall

always assume that h/k > 4c in the following.
£

We let Y' be the signed strength of the I-wave in

the construction of uh which leaves (xi,tj ). Furthermore,

define

L(j) = Z I .1
i,,. 1

LB(J) - jln PB(tm+l/2) - In PB(tm-l/2)I*m>j

The following lemma shows that bounds on L(j) +LB(J) imply

bounds on the pointwise values of the solution.



285

Lemma 3.1. Suppose that

(3.4) LB(J) + L(j) E V < In 3+V,

Then

(3.5) sup lin P. 1 h_ vx
and (x't)ElxJj~l p !

sup E h (x ' t) ej+

Vhp -1< 1(xt)EIxJ j+  c e V /2

where P, = lir PB(t).

Lemma 3.1 implies that the waves in the Riemann

problem solutions to (3.1) do not interact in ZxJ j+

if V. < In (3+V5)12 since k < h/4c. The next result

is that V. is nonincreasing for j = 1,2,... This

implies that if V0 < In (3+/5)/2, then the approximate

solutions can be constructed in IxJJ for j = 1,2....

Theorem 3.1. Suppose that (1.11) holds. Then

v3+
(3.7) V 0 < V E Var In P. 4 Var In P0 + var -< In

t>0 xe[0,l] xe(0,1] c

and
(3.8) V - + L(j+l) < LB(J) + L(j) V

j+1 =LB(i+l) LBi)-

for j = 0,1,...

A -
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4. Regularity and Error Estimates

In this section, we first give regularity results

for the approximate solution which show that is Luh

continuous in space and time to within an error dominated

by the mesh length. These results are necessary to show

that uh converges to a solution u (after passing to a

subsequence) that actually takes on the appropriate

boundary values in the L sense.

Lemma 4.1. There exists a constant, C, such that

1

(4.1) J Iuh(xT 2  - h(Xr1) dx < C 2- T1 1 + k]

0

Lemma 4.2. Assume that a = (al 1 a 2 1... ) is equidistributed

and T < O. Then there exists a constant, C = C(T), such

that for yl,y 2 e [0,11,

T
(4.2) f luh(y 2 ft) - uh(ylt)l dt < C(ly 2 -ylj + k]

0
for k sufficiently small.

To give an error estimate for our weak solution, we define

T I

uE(Uh) = - J J [(Uht + F(uh)*x + H(uh) M dx dt

00

for C C;((0,1) x (0,T)). Note that a weak rolution, u,

of (1.1) satisfies E(u,f) = 0 for all * 6 CO((0,1) x (0,T)).

. . .. I
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The following theorem gives a probabilistic measure of

how much uh varies from a weak solution.

Theorem 4.1. There exists a constant, C - C(T), such

that

(4.3) E E2 (u ,0) do < Ch( 1,I1 + t, 2 )

The proofs of the estimates in this section and the

argument giving the convergence of uh to a weak solution

of (1.1) can be found in our paper [8].

I!

€'
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j 0, Introduction

Let u be the solution of a second order elliptic boundary

value problem and let uh = %u G h be the corresponding

Ritz reap. finite element approximation onto the space 8 h 0

Asking for L -estimates of uh  itself or the error u - h

for approximation spaces 8h  of order at least I e. for

finite elements which are at least piecewise quadratics, the

following results are to be mentioned:

(I) In Scott for N a 2 dimensions it Is proven

The proof is based on a carefull analysis of the approxima-

II bility of the Green's function in the morn of WI.

(ii) In Nitsche for arbitrary dimensions the a priori

Iestimate

was shown. Generalyzing earlier results of Natterer

SJ the proof is based on the extensive use of certain weighted

norms which are in the case of finite elements strongly

connected with -norms.

(iii) In Schats - Wahlbin the estimateI
(0.3) it ad//

is proven* The method used in somehow between the other two
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mentioned above.

The first aim of the present paper is to show that the estimate

(0.3) san be derived firectly following the lines of our former

paper with the only difference that whenever the gradient of u

enters the formulae then partial integration has to be applied.

Actually this happens only in 3 places. In order to give a self-

contained representation we repeat the arguments of our paper,

the only changes are explained in Remark 5 and 6. For the sake

of simplicity reap. clearness we give the analysis in the section

3 for the Laplacian serving as a model problem. The case of a

general second order equation causes no additional difficulties ,

this is discussed in section 6. The proof of a crucial lemma was

skipped in our former paper. It is given in detail in section Ag

The second aim of this paper is to show the boundedness of the

Ritz operator in Hoelder- reap. Lipschitz spaces. These spaces

are the adequate ones in treating nonlinear elliptic problems.

The boundedness of the Ritz operator in the corresponding norms

at least simplifies the analysis of finite element procedures,

in some cases it is essential.

Seemingly up to now Hoelder spaces did not find any attention

in the finite element literature. Corresponding to this a priori

estimates or error estimates in the norms of these spaces do

not exist in the literature.



I
i 293 J

1. Notationa, Finite Elements

In the following -0 1R A'denotes a bounded domain with

boundary QJ2 sufficiently smooth* For any .2'. .2IIB ~let 1qAqAbe the Sobolov space of funotions, having Li.

integrable derivatives of order up to k e The norme aro

indicated by the corresponding subspripts. In the case p=2

g we also adopt / (',A- /i49. The norm then are written

shortly1
k., k1//2'X

I In addition we will use the abbreviation for bouzdary

norm;:I

SMoreover J21 is skipped i came of is mad k ,

ease of kuO.

The use of weighted norms reap. semi-norms will be essential,
~They are defined by

(1.3) V: £ Z

With g given by

< '">k : ")= x- z+
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(k5  12 ).The boundary asemi-norms ar I
of.

defined in the corresponding way.

By t a subdivision of -a i nto generalized simplices 3

in meanto 1* 0* is a simplex If A intersects

in at most a finite number of points and otherwise one of

the faces may be eurvedo . is called K -regular if

to any 4 f there are tvo spheres of diameters .k"

and A such that 4 contains the one and is contained

in the other.

The finite element spaces zr Si 0 ve wili work with

have the following structure: Let a being an integer fixed.

Any element of St i continuous in and the re-

striction to 4 E i Is a polynomial of degree less than so

In curved elements we use isoparasetric nodiftstions as din-

cussed by CIARLET - RAVIART 9 ZLIAML f4

Is the Intersection of an# .4 the clusure In 1.
of the functions with compact support.

By construction we have 5 fbut In gederal

for k > 2. It is uful to Introduce the spaces )
consisting of functions the restriction of which to uny

isin In () Obviously S, ! for al! k.

Parallel to above we use 'broken' seminorms

I / vi jL.I.,/

. . . -- - -... .. . .. . . I II I - - ,. . . . . . . . . . . . . .. .. . l tlll . . . . Il ... "
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2. Approxination Theory in weighted Norms

In the estimates of the next sections Go a1 oet. Vill denote

generic constants vhich may differ at different locations.

Unless otherwise stated they depend only on (i) the domain

12 * (ii) the dimension I, (iii) the regularity para-

meter K , and (iv) the order a.

Esential is the fact that the function (1.1,) does not

change too fast in any j 6 /7 i6 is not small ea-

pared with hd

Lemna I1: Let f*3 for M 1

Proof: Lt~,' be points where attains Its

maximum and minimum. Then

low we have

and

(2.4) / " /2.
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leading to

-2 l/z - /

(2.5)

Net lot V4 /7P be given and dan appro-

priate interpolation. Then the estimate

(2.6) 22
(2.6 10) ' L?

12 . { 2¢'d/ )'

for any 40 67 and 9 %K *?~in veil known, Because

of Lemma I we derive from this

4z jig 114 102

(2.7) I/Q W /Y ) . / h Y//

The power oK will be within the range I,/. N-i .. Thus
we drop the factor summation ever all PC gives

Leoma 2: Lot * Than therei1.a, Sir

according to

(2.8) . .

for 0 k < I .
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I Remark1I Sizce (2et) Is valid also for V -
with S the Umeia remains valid in this situation*

For any W 1() the trace theorem gives

S1IL 2 17M 1

Lzl)3
SUsing the arg ments of above we get

Corrollary 2: Under the assumption of Lemma 2

0,(P10) L ey A

1 is valid in addition.

j The proof of the next lema and eorrollary follovs the same

lines and is omitted here.

IaLemma 1: For 6S~ and 0~ k <1C in alvers* relations

j of th~e type

1 hold true.

Corrollary 2: a addition to (201)

(,., I (e. /i

holds true. Here k - 1 is acceoted.
'! -mmnm - emn e
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In the subsequent sections ye vill apply theme approximation

results to functions V of the structure Vx 7 0(O

with C £5( * Then a certain super-approxziability pro-

perty holds:

Lemma. 4s Let I&6S 1e gven. The function can

be approximated b an element according to

2-w

(2.3) -.

Proofs We apply Leoma 2 and Corrolsry 2 with 1 - a and get

the bound

for the three term on the left hand side Is (2.13). Since

is piooewis a polynomial of degree less than a and because of

#" - 12.#//

Loibuis rule gives

(2.16) It~~vc~) V /o
fix pl# 4f - ht

Now we applyi & 3 for the term with maX I t
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we end up with

II

1 (2.19) ~- V ,*

f -'

and therefore

* (2.20)' (z~zoefe'-4') ;

The first bracket. on the right hand side are bounded by 4k

since is assumed*
I'

A was pointed out ii the introduction weighted norms are strongly

oonneoted vith the L -normo First we show
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Lemma 5: Let N .Then for Vj Vi in-i

(221) N A , 2.

040

Proof: We can 44inate

(2.22) /vl

and further with r denoting the distance 1k- /

se,, VL .."ef,,,' ,

(2.23)

W-f -,s

For elements in the space there is the counterpart,

k - " sm ": Lot nd. Then for fo tein-

holds true.

Proof: Let r be ehoea such that

&ad let be (one of) the simplices with 4' if
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I r ,estricted to 4 0  is a polynomial of finite degreo

i, *o an element of a finite dimensional space& In this case

any tvo norms are oquivalent, Sinoe 60 Is of &is

Sthere is a constant c depending only on N .N and m such

that

1 ~ ~(2.26) 4 4

I Because of the choice of A' it Is

I (2.271

Therefore we get further

(2.28) 
be, do

Remark 2: The last two lemmata show that the O( -norm and the

L -norm are equivalent in the sPaOe 5.

1
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5. The Boundedness of the Ritz Projection

In this section we restrct ourselves to the model prolen

-Ate. = (/ ,'. d2 /

(301)

The weak formulation in:

0
Lind such that

0..

holds fo all

Zero D(.,.) denotes the Diriohlet integral

(3.3) qo.

The Rita-approximation fox is oharacterised by

the relation
0

or alernately b

__ ._ ----- 3 ). . . . ... . F " , _ l . . . ... . ... I ... I I m iII . .. . .. •.. .. i
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Remark 1: Throughout this section the letter 0 denotes

the Rits-approximation on a *

In the first ste of our analysis we derive a bound for the

I gradient of q in a weighted norm. It is

i / # : ', -, "

(3.6) o -Pe)

I ~~~Because of 2(e 6 'AtL~ <"
1(3-7) Id X

we get

(3.8) // 9~ 2 /I

I Next we use the identity

J(3.9) p-~~ , ) f / 'i<,I-

valid for any ' 6 5 because of (3.5). By the aid of Schwarz'

inequalitiy in the form

and Lemma 4 we find for the first term on the right hand sil of
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Our aim is to avoid any derivatives of u in thestimatese

Therefore we have to apply partial Integration in order to

handle the two other terms in (3.9). We get

- -me

vhioh way be estimated by

~se
(3.13) -Dc

~/

if is chosen according to Lemma 4 then

In order to shorten the formlae we introduce

(3.15) A /t /4/

te'
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I . ,The o..to we ce t note.

1 (3.16) 2

I
Folloving the same line but this time using Lemna 3 and

I Corrollary 3 v get

I (3.17) IKK /f p/~ V)
I

Schwarz' inequality in the form

I ,/R / %,e
I ,o. '-c,.,.,

for 
leads to 

o

(.3.19)

I Now we combine (3.9), (3.11), (3.16) and (3.19) with (3,8).

" IThis gives z a
17r//

I ~(3.20)2e

I
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We choose Jr f13 and impose the condition on

(3.21) >,/

Then we get

22

Remark 4: In (3.20) we used for the constant in front of

the numbering c1  since this special constant appeared

in the condition (3.21)o Similarily the constant c2

in front of I F/I appears in a further condition.
get,

Remark 1: In the analysis given in we did not use

partial integration* There //V?'1 // enters instead of14 1)

In the second step we introduce the auxiliary function w

defined by

6 
0<-

(3.23)

The reason is obvious since then

i i

(3.24) e n)

which may be rewritten with d~5 arbitrary
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(3.25) ( "- )

Using the defintion of v we get at once for the lat term

on the right hand side

(3.26) A 2 ) z

Using (3.22) we get for the first term with <

(3.27)

Finally the middle term on the right hand side of (3.25)

has to be treated by partial integration, Similar to above

Ue come to

(3.28) .7i. ji'/ 1 J- ,

/V, < 2 L// z' - , //,,,,,

ly moans of the last three estimates we drive from (325)
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<-PC(3.29) I" '/ ",t( /P / *", t

The hoice 2' , : 2leads to .

it Al ( -" hf tKrv < e ,* 1 e i Sc -, )Ip.

(3.30) Z 2 2/

Remark 6: The counterprart of the last inequality in our formet'

analysis wan

7. 2t 2.

(3.31) lee/ {C//' 1t~'~ 4 e 0K

The htrd c consists in analyzing the tems with W /"

in ( .30) which still depend on 9 since w dos. Since

and hencef Is in R, the shift thesee guarantees

.3 /9We haveassumed a >t3 ,iLo e0at least

quadratic finite elements are used. Therefore ma can choose

according to Lemma 2 and Corollary 2 with I a 3 and get

from (3*.30)

(MR) 17 -
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I

The next section Is devoted to the proof of

lemma Z: LO ( ~e in the !ng* /2< C 4C (N 1)/2.

Then for V C. v ( 1 I wth the yriori

estimate

-z
(3.33) I6 Wz k t .. IV / 4 e f' howI

t--

holds true.

Beoause of the definition of v (3.23) we find

(3.34) /14kI

and

cV3

Nov using (3.22) we derive from (3.32)

(3.36) /1 o/ / otZ )

In analogy to (3o21) we impose the side onstaint

4(3-37) 1(4aVIO ztnn



310

03 * ,This loads to

Theorem 8: Fr 0( C (/2 , (N+.1)12) and under the conditioa

L~ he ', )-norm of the Ritz-ap roxi ao

.bounded Z the oompos.d c( -Nor,2 N it u Itself

(3.38) N~f
with a independent of h , and the point x 0- - ) - o
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I Ji. Proof of Lemam 7

I he genferal shift theorem in the theor7 of elliptic equations

includes the two statements
0

Letv 1i 1 2 . .Then

II 4.1Le E1 I)K / ez IM V/ I/l ,

0

I e~A direct oonsequence is _

o 0
SL..__a 2: Lot v x R 11? iap. v il  T-e in weighted

norms for arbitrary

(4.4) It 7

are valid.

Proof: ge will give the details only for (4.3)9 the second

case is handled in the mane way* For convenience we use is

Ve can rewrite the integrand in
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by

(4.6) Y * 1  '

Therefor* we get using (2.15)

In the similar vay it In

(4.8) 6 /' )f/ 7 . 7 i I V 1

leading to

(4.9) kbivk~kY// .c(Iv/? ) Z)V

(4.7) togebber with (4.9) glves (4.3).

After these preparatlo e go bask to the funetion v defined

by (M023) and te a priori estimate stated In Lou-.- 7. By

Lea 9 vO have

(4.10) -
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I
Ve have at enoe

-z

In order to oomplete the proof of Lena 7 we have to show

that the aus#

(4.-13 +

- Oef 2. , 3

in bounded by the right hand side of (3.33). Our choice of

leads to

(4.14) 3 - N V
2 z

S,.Therefore the ,eiA -oe#2 of the term in (4.13) is

positive in case of N = 2, 3 dimensions and negative for

N ) 4 dimensions. Moreover in came of N a 3 dimensions

j we have

1 (.1,5) - ,-2  < - -
2

Aeording to this the oases of 2, 3 or higher dimension have

I to be treated seperately. This will be leoaeer because of the

following

I
I
I
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0

Loma-.l 0: Lot v o 1 /1 R The

(1) the Dorms J I7 V pI ad /
parabl modluloI L Y/I .1' e

,,,,7 jV 4 to V 4/,) .. of4

(I) ox (/>2) both termawemm bounded

+~ e
(4.7) #'v i + ki ft-l

!. o: The identity

(4.18) ''Wv I ell

leads to

diet differe tilation gives f z 19 X-,,. Dft/.

--- - ..... i .. .... 
... di r... " - J . .. .. .. . .. . . ... I. . .. . ._. _ m
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I
T 1hus In case(U) 4AIn bounded from above and below

by giving

(4.,21)

I This proven (4.16) since

in case (ii) vs have

1 (4.23)t

i it ,,sitiveconstan .c" giving

I // ~~~/, // + .v -, ,
(4.24) f(

ie /, -C A-I ".

I
e are now able to give a short proof of Lema 7 for N - 3

dimensions, Because of (4.15) and the second part of LemmalO

Sowe have

(.25) 
-2

. . ....-



Nov let us sonsieder the ease of N J 2 dimensions. We will

give an explicit. proof of

Corrolla y 2: Under the a.ssumptions of Lema 2 the tors

In (4.3) r1.p, Iit p1, 3 in (4 .) can be dropped in case

Of N a 2 diBOnsions provided V 6 .

Remar__k Z: The restriction to N a 2 dimensions in annecoeary

But we will need it only in this caee

Before we give the proof let us finish the proof of Lemma 7.

We need now - see (4.13) - a bound of //.76 acaal, I

2. 
o -2W

with I/q 1 - I/p * Direct calculation - se the proof of

Lemma 5 -leads to

(4.27 e hhw/

With
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lext lot p, be defined by

(4.29) 1/p1 = 1/2 + I/p2

By the aid of standard a priori estimate - see Morrey

pp. 80 and 157 - we get

(4.30) q e 7

and

In our ease ye have I < p 4( 2 e Therefore ye may apply onee

more Hoelder's inequality to

fV, A (ae f

I fI
this time with p a 2/pl e Similar to above ye got

(4.33) Wf £' - "

with

( (.35) )

The combination of (4.27), (4.30), (4.31), and (4.33) leads. to
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.2
_O 2 -9:-I

vhat finishes the proof of Lemma 7 for I a 2 dimensions.

We viii later on need the traoe theorem in veighted norms

in the form

Le al lit Let YvE 1  * Then for x 0

(4.36) Iv 17 fkVI cf1)v/

Proo f (4.36) in shown by applying the standard tr~oe theorem

/. IV z // V

to V r "  ,

Proof of Corrollary 9: In N - 2 dimensions - ve denote the

variables by zy - it in

and therefore

kV C Z -h l L '// = 2'e

At Y
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respe

(4.40)

In order to analyse the boundary integral we introduce the

arc length a and the angle I (5) between the tangent

and the x-axis. Further To , v n denote the tangential and

normal differentiation. Because of v - 0 on) , we have

(4.41) Y Y Y Vf LV1

and with K: being the curvature of j)

(4.42) 2v 6,v~ . f£'D2 yt'.Ifor~

We insert this in the boundary integral and apply partial in-

tegration because of vvna - (Tn)5 /2 . Then we get

(4.43) /' ,AI.1/a

With the help of Lemma 11 then (4.4/0) leads to

2. 7 2

(4.44) ,
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This proves (4.3) without the lest term on the right hand

side.

In proving the second part of Corrollary 9 we will skip

some of the details. In the corresponding way to above we

get the counterpart of (4.40)

03~~~~~ /iV v7oh24P4 -Y),ve

OnQ .iZ we have for v arbitrary with the abbreviationsI _-4' e": e'o6)

yes a c2 vxx + 2so v x + a v y +77 v ,

(4.46) vns - -sc v x 0 (c2-s) v 7 + sc yy - vs a

nn a 8v2 T= - 2sc vXY + C v .

The condition v - 0 implies va von = 0 * In addition

v a 0 iplies van a v .* Therefore we derive

(4.47)

V k

Similar to above we then get

(i.8 6 & - )'v / Cj/ T.
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!
and therefore with Lem 11

V3 V)

(4.49)

resp.

3 Y L)

Now we have to apply the first part of Corrallary 9 to the

second term on the right hand side of (4.50)0

Remark 8: Above we derived the a priori estimates needed for

functions suffifciently smooth only. For Instanco (4-38)

holds only for functions having third derivatives* By

compactness arguments the validity of ther iw ates

for functions with the stated regularity is shown.

The same of N > 4 dinensions hardly is of practioal in-

portance. Therefore we give only an *ttlie of the proof

for these oases. In view of Loma 10 and because of (4.4)

it is only moesosary to bound I oe in term of Ii W 1-gts3 -v-vt

i. e. to find an upper bound of

2. 2-
S/W h W .,

.. .... .- 14 " ... ... .. . . "•". .. .. ... ' "1.... . ..l , ,.. .. . i
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0

where the supresun in to be taken ever all V 46

Obvious1y the suprenum is attained for an eigenfuctiou of

the problem

In this way we ask for a lower bound of the smallest eilgen-

value of problem (4o.5). By standard arglments the sonotoni.

ity of with respect to the domain, i.. e, I [-,) --/W ) )
in ease of -a I J! _In shown. Therefore an upper bound

for A 4 is given by the corresponding A for the

ball vith center in a . nd radius d - diameter (-2 ).

The eigenfunktion oorrespronding to the lowest eigenvalue

then depends only on t r ix- X I (or at least one does).

Using the representation

/1. ./V ( N-I

0

we get without difficulties

-2

whish in view of Lema 10 bounds 1 I in the same way.
" 1
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I
5- The Boundedness of the Ritz Approximation in Noelder 

8 paces

The Laplacian like any elliptic operator is not one to one

with respect to the spaces Ck a Ck( a 0 consisting of -

functions having continuous derivatives up to order k in .0o

We will also abbreviate C - C and denote by C the spa*e

of oontinous functions vanishiag on the boundary V . Of

course the image =- I& of any u 6 s1 Ck+2  (k 0)

in in Ck  but to f 6 Ck there may not be an original
0 Ck+2 as is demonstrated in two dimensions by the

counterexample

with i the unit sphere.

The situation is changed in case of Hoelder- (resp. Lipschits-)

spaces. These spaces, denoted by Ck - Ck •  ( *2 ) vith ()
according to 0 e A . -I consist of all functions k -

times continuously differentiable suck that the highest deri-

vatives are Hoelder-continuous to the exponent .' . In Ck e

a norm is given by

(5.2) i

wi th
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(5.3) LWJ( B'

Equipped with this norm Ck  is a Banach space. The0

Laplacian is a one to one mapping of C , k +P "-A into

Ck . Especially

(..4) Ile Itz. A<- 7k( u * : II-d ('CP.A - C

Such an a priori estimate is referred to ISchauder estimate'.

The aim of this section is the proof of corresponding estimates

with u replaced by C --9 -- 4%, being the Ritz approximation.

A first result in this direction is more or less a direo con-

sequence of Theorem 8 Z ee the proof of Lomma 5 - the right

hand side of (3.38) is bounded by

(5.) / efC"tV/ k

By Lan 6 we know

oe# -f -A/2<5e7> /I ?, /I 'd< 6t A / i,

Besides (3.37) Is arbitrary. Now we fix foand

got

__ _l . . . .-- " ' . . . . . . . . . . . . . . .. . I . . . . .1 -- I . . . .. . . .. . . . I I -M e..n "
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This gives

Theorem 12t The Ritz operator is bounded an of C into

itself.

The spaces Ck. or si compactly embedded on C * There Is

a general principle to bound the norm in C0* of a linear

projection operator by means of the norm in C vhioh we will

discuss now. The situation is that we have two Banach spaces

, X2 (with norms e. I. Iri with , compactly

embedded in X1 Further we have a collection {S /O( r 11

of subspaces of 12 . Let approximation- and inverse-quantities

CC and t be introduced according to

(A) To any y 6 X2  there is a C- Sh such that simulta-

neously

/V /

is valid with a1 independent of h .

(1) For any Y Sh a Bernstein type inequality holds

(5.10) 'IX"/ _ ,/ ,..,



we will Isayv the 6*enectioa Se~j fulfills the Al-oodition

if

Remazy Under 'reaonablel assumptions vill tend to

sero with h . For finite dimensional spaces Sh the

quantities ri are finite since then any two norwa

are equivalent. Wit h - 0 reap. dim( Sh )o)g@ then

will also tend to infinity, The Al-condition just balances

this.

The mentioned principle i

Lemma : Let .. X 1 X be as described above and Sh f

.olect ion of subaaces o. X2 . Further let f Ph : , -> S h

be a collection of linear ProJection operators of X onto Sh

which are uniformui bounded as mappings of X1 into itself,

i. e.

(5.12)~' ft? i d

Zilk p, Independent of h *If [Sb j fulfills the 11-condition

Shea Ph 91maping of 12into Itself Is uniformly bounde

with

l &y l/0
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I iProof:t Beause of X?_- X 1 and S,. e X2 of ,oure P, h , Is
lintear pro:jection of 2  Into itself. Lot y f X2 be given

d ( Sh be hosen aocor4ing to (5.9). Then

Since - is an element of Sh vesmay apply (5.10)

5 getting

i (. .i. x1..

I
Now we use the inequality

I

the proof of which - in order to give a selfoontained presen-

tation - is as follows: Let be arbitrary. Because

in (5e16) reap& (5.17) we may use en the right had side
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Because of the assuation (5.12) we get from (5.1)

and
(5.19) hly- 1  2y k, 6 ( ty - I e~~f , z

4 axid

Finally using (5.9) we come to

(5.20) h Pyk ll. {! 2 l) r t1~/z

The norm of any projection operator is bounded from below

by I , Therefore we can also bound

which Is more convenient*

Remark 10: Lemma 13 first was stated in Nitsohe

It remains to prove

Loema 1.: Assume C * Te .ih 1" C and

the finite element 0sees Sh fulfill the AI-oonditiono

The oonsequonoe is the final result:
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Theorem 15: Assume S, . C
k  Then the Rits o is bounded

as mappig o C Into Itself.

Proof of Lemma 14s The finite elements discussed in section 2

are only in C e We will give the proof only for the case k 0 9

The ease k./ I follows the same lines and is emitted here in

I order to avoid the introduction of finite elements with higher

smoothness. We will show that the standard interpolation will

have the properties needed. Especially we will show

IA f--A
(5.22) l'e e4

First we prove the stimatO for Similar to Lema 3 we

Ihave for keS

Now let X,) e 4 be given. In case of I -y / o

I have trivially

(5.24)
I (r>-x 0,F 1 .' 2 " X/

In ease of /wY/ we come from

I
I

(52)It1
IL
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to -

(5.26) '' C~

Nov we turn over to the estimation of 6 k Referring for

details to Ciarlet , pp. there exists to any

6 (a gtof poinlts ~ It I

-- . the space of polynomials of degree less

than m ) vith the folloving properties:

(1) the conditions

(5.27) r~ I ~ j'~

define uniquely a polynomial of degree less

than a .

(1i) if rj a rj coincide vith the values In P of a

function v continuous in .i2 then the fuastion

defined by

0
(c.28) Xtn in

i eotont a in8 4 2
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Now let p be the restriotion to a fixed of the
interpolation of a function Ve O . 

' For convenience

let - possibly after a translation - the origin coincide

with one of the corners of 4 say P, * Then p has

the structure

(5.29) AVFe~v /V7

with

(5.30)N

and

,2

(5.31) CfZ~)~2 6

The K -regularity of the subdivision leads to the

uniform boundedness of the (* independent of h

Since the function v I I is reproduced by the interpolation

we have

V ;? , = /1 f/1 .

This gives on the one hand



(5(3)) V'/2

and on the other hand for C with Ia representa-

tion

(5.34) c /v) 2 Le ( ~ p 2
with some also uniformly bounded* With t,4d we

get

(5.35) Y(x)-/(<)- A)- Y/',<) Z ,

F o r 
'' e h a v e

Because of in ye get with (5.34)

This proves the first part of the approXimation property

(5.9) with
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I& order to prove the second part we sonsider firstly two

points x, y contained in one of the simplices 4 * Then

with W k,~ e have 0(C and

(5.38) f)X) t/ ). 2(K , )6 ( )

Because of

(5.39) ci '

and

we get

In ease of but /Ay/ 6- ut andX 4 with

14 L the segment connecting z and y intersects only

a finite number of L because of the e -regularity.

By estimates similar to above we get for the interpolation

alo thot

(5.I42) /(x) ) C -



In ease of and .;f ,YE a we select

two corners ? P of A .Then we have

(5.43)

According to the chtice Of we have I i
and ly-Pand therefore

(5.44)A ;

Since is the interpolation on v we have

We have 06(and /J~,~!1(f3.In this way

also the second part of (5.91' 1 proven.
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6. General Second Order Elliptic Equotione

In sections 3 and 4 we presented the L -analysis of the Ritz

procedure in case of the Laplacian being the prototype of an

elliptic differential operator. The same results hold in the

general case with -4 replaced by

(6.1) 17 -

Remark 11: Throughout this section we adopt the summation

convention. Lover inizes indicate differentiation with

respect to the corresponding variable.

The assumptions regarding the ooeffioients are:

(a.1) Ellipticity: There is a constant j> 0 such that for

allX4 and~ I

Iholds true.

j (a.2) Regularity: The coefficients aJ A bi. and d fulill

I (6.3) aik C2 1  bi E C ° IA d9 4 C0e1

The letter i is used as an upper bound of all the cer-

responding norms.

I
I
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Remark 12: Assumption (ae2) guarantees that the oooffileents

of the formal adjoint operator A1 defined by

fulfills also (a.2).

The weak formulation of the boundary value problem

(6.5)

is
i is 0

ind sk / ouch that

holds for all V 1 4

with a(.,.) defined by

Correspondingly the (generalised) Rits approximation * II S
Is eharaoterisod by the relation

(6.8) 6(W si
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0
I

In this generality the function u defined by (6.6) rep.

defined by (6.8) may not exist or may not be unique. There-

fore necessarily we assume

(K.3) Existencee The problem (6.5) resp. (6.6) possesses a

unique solution for f being arbitrary.

By an argument due to Schatz there is a h o > 0 sueh

that for h C h the Ritz approximation 5 (6.8) is also

unique.

Now we repeat the arguments of sections 3 and 4. The counter-

part of (3.8) in the form

Z z

(6.9) V

is a direct consequence of Gdrding's inequality

(6.10) ,~ ~A /PV

for any 9'>Cwit depending only on I

Remark 21: The constants c - see the beginning of section 2 -

may depend in addition on (V) the bouads o , j ef the

assumptions (a.1) , (a.2)!
Follov the lines of section 3 we get from (6.9) also now

the final estimate (3.22) of step 1

I
I



The auxiliary function v - see (3.23) - is this time defined

by

(6.11)12

The estimates leading to (3.32) are derived in the same vay

as before.

Since the shift theorems (4.1), (4.2) are valid vith -4

the Laplacian - replaced by the operator A Lenma 9 is

valid with -, replaced by A on the right hand sides.

As before it remains to find bounds of the terms in (4.13).

Following the lines of section 4 we consider the case of N 1 3

dimensions firstly. In the general case the second assertion of

Lemma 10 has to be ohanged by the estimate

Tbe last term on the right hand side may be treated as was

dome in the sequence (4.26) to (4-35)9 the details are emit-

ted. In this way the case of N a 3 dimensions is settled.

In accordance to (6.12) the a priori estimates stated in

Cerrollary 9 have to be modifiedt
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0 0

Corrollary2t Lot f h k res V g # * d1 in
addiicaRV 6 . Then in veixhted norms for arbitrary

and U = 2 dlmenaions

(6.13) Avv 'fi7 I, f* /V/

(6,14) V/7 3 Y/Ae/P Y1f hV1 /VV/ fA

laying these shift theorems the final proof of Lemma 7 in

ease of a general second order elliptic differential equation

follows the lines of section 4e

Ve will not give all the details in order to prove Lemma 9A

but ooncentrate ourselves on the essential point* What is

needed are the oounterparts of (4.38) reap. (4.40) and of

(4.45). By (4.38) the square sum of the second derivatives

is bounded by the square of the Laplacian modulo lover oider

torms and a divergence term of products of first and second

derivatives. In order to get the counterparts ve ake use of

Lemma 16: Let ( a ik ) be I positive definite am(r*ymmtric

matrix aceording to (6.2) and lot ( b ) be a second order

tensor. Then

I
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Proo f : Lot be an erthonoral set of" i k
*igen-v.otor. of the matrix € .,k a ) ad " be the

oorresponding set of eigen-values, i. *.

"'t C, -, . 4,
(6,16) 4 ij~~~*

The orthogonality eonditions

(6.17) f/
give rise to

(6.18) z22~ -/.
with ;'/ ;'. denoting the Kronecker symbol

Remark 14: In the following the summation convention is not

to be applied with respect to greek letters.

The matrix ( aik ) admits the representation

(6.19) a= 2 A W 7

Then vs get

(6.20) :2e5

s,A
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with

(6.21)- j'A~

Because of we get therefore

4,2#4r I /'/

(6.22) t
Z< S/I '

With the help of (6.18) we come from the last inequality to

Now ye apply (6.15) with bik - k Then e get

7f I le1#.

IBesides of lower order terms the right hand ide differs

from by the weighted integral of the differenoe

(6.24) Y Y .

I )t
- Ve

1 ~v rs
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This leads to an inequality of the structure

2 z .z

14t

An is to be expected in view of (4.40) the boundary integral

gives after evaluation of the sums

(6.26) -. P- 7r

By the way (4.i ) vas derived in the present case ve come to

(6.13).

The proof o. t6.14) follows the same lines, Of course the

formulae become somehow lengthy but there are no additional

difficulties*
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ANALYSIS OF SOME CONTACT PROBLEMS IN NONLINEAR ELASTICITY!
J.T. ODEN

Texas Institute for Computational Mechanics

The University of Texas

1. INTRODUCTION

In this communication, I shall outline some results recently obtained

on the analysis of certain classes of contact problems in e7asticity as

well as some work in progress on this subject. Complete results can be

found in some forthcoming papers (e.g., [1,2]).

The Signorini problem with Coulomb friction is characterized by the

variational inequality

a(u,v-u) + J(v,u) - J(u,u) > f(v-u)

Vv E K

where

a(u,v) = E ikkk,Zvi.j dx

J(u,v) = N FlOn(U) IvT ds (1.2)
F C  /

rC

f(v) = fv dx + t-v ds

F
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Here the usual notations of elasticity theory are employed: Eijkk

are the elasticities, ukVk components of admissible displacements,

VF the coefficient of friction, Uk, 3Uk/ xZ, f the body forces, and t

the surface tractions. The stress tensor has components a ij() = EijkUk,k

and the normal stress component on the boundary is n(u) = ij(u)ninj,

n. being the components of a unit normal to F . In (1.2), vT denotes

the tangential components of v on FC . The body Q C IRN is open and

bounded with smooth boundary r and r is composed of three parts: FD

on which displacements are prescribed, rF on which forces are prescribed,

and the candidate contact area F . Here K is a subset of a Hilbert

space V,

V = {v E (Hl(Q)N v = 0 a.e. on rD } I

K = {v V I v-n < s on F C (1.3)

In (1.3), vn denotes the normal trace of vi on F (v-n = y(v i)ni

n being a unit outward normal to r , v-n E H /2(F)) and s is the

"initial gap" between the body and the foundation. The space V is

equipped with the norm,

~ 1 ' =jvi J d 1 / (1.4)

and the bilinear form a: VxV - JR is symmetric, V-elliptic, and continuous;
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I
i.e. constants M,m > 0 exist such that

a(u,v) < M 11 ujt1 fvjl ; a(v.v) > m I v(.2

for all u,v E V.

For a more elaborate description of conventions and notations for

these classes of problems, see Kikuchi and Oden [3]. My aim here is to

outline some results on an analysis of (1.1) and certain alternative formula-

tions of contact problems.

2. SPECIAL CASES

Minimizers of the energy functional

1

F: K - IR ; F(v) ? (v,v) - f(v) - J(v,v) (2.1)

are also solutions of (1.1) The functional F is non-convex and non-differentiable

on K . In general, no existence theory is available for this class of problems

and it is felt by some mechanicians that Coulomb's law is not a good model for

general frictional phenomena. Because of these mathematical and physical

difficulties, alternative formulations have been sought. These take the form

of special cases of (1.1) which are more mathematically tractable and on completely

different formulations based on alternatives to Coulomb's law.

As special cases of (1.1), we mention:

I. The Signorini Problem - in which friction is ignored. Then

we have the problem,

'A
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a(u,v-u) > f(v-u) V v C K (2.2)

II. The Friction Problem with Prescribed Normal Stress. Here

we set I0(u)l = g > 0, g E L (F C ) and consider the variational inequality,

a(u,v-u) + j(v) - j(u) > f(v-u) V v - K (2.3)

where

j(v) = { givT ds (2.4)

and f(v) = f(v) + F v-n ds, F being a prescribed normal force.

Ill. Perturbed Problems. Since j of (2.4) is non-differentiable,

we introduce

IV IVT - C/Z if IV I >

S(v) = if(2.5)
1 VT'VT if 'VTI < C

and

j(V) (v) ds (2.6)

as a differentiable perturbation of j

() { gy J(u+e v) ds (2.7)> F go=0
FC
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We then consider the perturbed problemI

a(u ,v) + <Dj (uc) ,v > T(v) V v C V (2.8)

It is easily shown that problems (2.1), (2.4), and (2.8) have

unique solutions. In the case of (2.8) , a solution uC exists for all

c > D and, if u is the solution of (2.4), then

u-u <_ C vr (2.9)

3. FINITE ELEMENT APPROXIMATIONS

If vh I is a family of finite-dimensional subspaces of V

constructed using standard conforming piecewise polynomial approxima-

tions of v , and endowed with the usual interpolation properties for

quasi-uniform mesh refinements, and if the solution to (2.3) is in

(H 2(Q))N rIV , then one can show that

II - Il Clv- (3.1)

and

u -uh  II1 < C2h 
(3.2)

where C1  and C2  are independent of c and h and and

are solutions of the discrete problems,



a(It v +\Dj (It v f (v) V v V '
1 It It I, ' It

(% f g"t(+ v Is~(.

St kv 1-11~ v I

We -;oe I ved, ( . 13) t or a numbe'r ot It f terent cho i cc,~; of data

polynvom ial d pprox imat ionis V I, an1d comput I'd 1,11t 01, 0 ICk'1vergV1nCe tire

C01ns itent wi th (31. 1) and (3.)

4 . NOLN- LOC(',AL -,F-Rl"I TON

As ani al tornat i vt to Con 1 onib ' law,* we cons ide r the noi- local law,

(n)( x - (U). ](X) 0 ' 3S. (4.1)

where S Is it comp let cIv continuous tuap front (V 110) it to L.. (1' )

Such~ that i 0 --)S(i ) 1' 03 For instance * S CoUld 110 taken as an

extenlsionl Of thle maup.

(n)) J k- (I X-y ) 0 (11)(y) dy (4.2

whett'r
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p (), > 0, pr) 0 for r > P

!+
Then p E IR is a material property of the contact surfaces.

The variational principle for the nonlocal problem assumes

the form,

u E K: a(u,v-u) + J V S(an(u)) (Iv TI - IuTI ds (4.2)

> f(v-u) V v E K

We summarize some results on this problem due to Duvant [4];

see also Demkowicz and Oden [5]:

1. V T C L 2 (Q), T > 0, 1 a unique uT E V such that

a(u T,v-uT ) + f T(IV T[ - IIIT ) ds > f(v-u ) v E K
FcT

2. The correspondence B: L 2(F) - V given by

B(T) = u
T

is continuous, and the normal stress

an (u ) = n (B(T))

is well defined in H-1/ 2 (F )

!C

I.-" ., " . . I I -I I I 1 i . ..
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3. The map T: L ( UC) L2( c) defined by the composition

T = vSo(-o )oB

is weakly sequentially continuous and has at least one fixed point.

4. Let * > 0, zp* L 2(FC ) be a fixed point of T . The. it

is trivial to show that the function

u* = B(i*)

is, in fact a solution to (4.2).

5. ALGORITHM

The above steps lead to an obvious algorithm for the numerical

solution of (4.2):

1. Solve (a finite element approximation) of Signorini's problem

without friction for the contact pressure an(uh)

2. Set T ( G) n (Uh) and solve (3.3) 1 for u )( (I)) for

the choice g = TM()
h

3. Compute T(2)

T(2) m Th(T I )

where Th is a finite element approximation of T.



!
353

4. Continue this process until 1i T i) - T 1i - l )

is less than a preassigned tolerance.

We are coding this algorithm at present and should have results

soon since steps 1 and 2 can be handled using existing codes.

ACKNOWLEDGEMENT: My work on this problem was supported by the
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IN BANACH SPACES

Vidar Thom6e

Chalmers University of Technology
Goteborg, Sweden

Our purpose in this paper is to present some results obtained

in Brenner and Thom6e [71, [81, and Brenner, Crouzeix, and Thom~e

[51 for time discretization of the initial value problem

du
u) = Au + f(t) for t ? 0, u(O) v,

in a Banach space X where A is a closed linear operator which
tA

generates a strongly continuous semigroup E(t) = e on X.

In Section 1, which is a summary of [7], we are concerned

with the homogeneous equation and study approximations of the semi-
n =~An weeri nA

group at t = nk of the form E r(kA) where r is an A-
k z

acceptable rational approximation of e In Section 2 we examine

some consequences for time discretization of equations which are

already discretized with respect to a space variable; the material

in this section is not contained in the above references. In

Section 3, which corresponds to [8], we discuss, with applications

to hyperbolic problems in mind, some modifications in the case

that A generates a group on X. In Section 4, based on [5],

finally, we attend to the full inhomogeneous equation in (1).
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1. Time discretization oT the homogeneous equation.

Let X be a Banach space with norm Ij'll. Consider the

initial value problem

(1.1) du Au for t > 0, u(O) v,

which we assume correctly posed in the sense that the closed linear
tA

operator A generates a strongly continuous semigroup E(t) = e

on X with, for some C and w ? 0,

(1.2) IIE(t)II - C0 eWt for t > 0.

We shall be interested in approximating the solution

u(t) = E(t)v of (1.1) by a single step discrete method so that

with k the time step, u(t) is approximated at t nk by

u n5defined recursively by

un+1 Ek u r(kA)u , n = 0,1,..., u0  v,

where r(z) is a rational function approximating the exponential

ze We have then

un : Env r(kA)nv for n 0,

and we shall therefore be concerned with the stability and con-

vergence properties of the operator Ek.

We shall assume below, for Ek to be well defined for any

operator A of the type considered, that r(z) has no poles in

Re z - 0. More precisely, we shall dssume that r is A-

Acceptable, or
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(i) Ir(z) 1 1 for Re z <_ 0,

(it) r(z) e + 0(z) as z -+ 0.

Our first aim is to present the following result which was

conjectured by R. Hersh and T. Kato [13].

Theorem 1.1. Under the above assumptions there are constants

C1  and K depending only on the rational function r such that

for any A with (1.2),

En C /n2 w t

1:1k1 1 CC1n e for t nk _ 0.

It is possible to show that this result is best possible.

For, oximple, with X L (R) and A = d/dx we have (E(t)v)(x) =

v(x+t) and 'E(t)11 1. For the Crank-Nicolson scheme defined

1 1
by r(z) = (1+ 1z)/(1--z) one may then show that

21/2

IIEn11 _ cn with c > 0.
k

Under additional hypotheses on r, however, it is possible

to show improvements of the above result. We shall assume that

the A-acceptable function r satisfies the following more pre-

cise condition, namely

(*) r(i ) < 1 for D C F ( R, and Ir(-)l < 1;

there exist positive integers p,q with p even,

p > q + 1 and a positive number y such that for E R,

r(i&)= exp(iF+O(.-)) with 0(() q+ l) as 0 + 0



358

and

Re ( ) -yP for KI 1.

z

Note that if r approximates e to order q so that

r(z) = e Z + ( ) = exp(z+O(zq+l)) as z - 0,

then the above order estimate for p(&) near zero holds. Then

also, by analyticity, Re (C) yo p (1+o(l)) as C 0 for

some p ! q + 1. Assuming that Ir(iE)l < 1 for 0 9 < E R we

conclude that yo < 0 and that p is even so that the above

estimate for Re q(E) holds for a suitable y. We may refer to

p as the order of dissipation.

Our improvement of Theorem 1.1 is then the following.

Theorem 1.2. For each A-acceptable function r satisfying

(*) there are constants C and such that for each A

with (1.1),

IIEnII 7 CoC nI e t  for t nk 1 0.

Note in particular that if (*) hold, It q + 1 we

have stability, independently of X and A. For instance, for

the backward Euler method we have

r(z) = l/(l-z) e Z + O(z2  as z 0,

so that q = 1 and

2 1/(1+ 2)  2 +,&2 2,

• -- ] - - -- -- I... . .. .. III + III .. .... .. . . .. . . ... . .0l .. .
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1 2
so that Re t() - - ( 1(+0(1)) for small , and p = 22

q +.

As further examples, let us consider more generally the

Pad6 approximants rj9 = P9z/Q. of ez with degree P = t and

degree Qj = j, for which
IQ.z " + i)l

r (z) P (z)/Q.(z) e + O(z as z

so that q = j + k. It is known (cf. [12] and [18]) that r.3Z

is A-acceptable if and only if 0 5 j - £ 2. For k 5 we

have Ir.j (i) = 1 and we conclude from Theorem 1.1 for

Ek = r. (kA) (if w = 0)

1lE1 < C C1n
1 1 2 for n > 0.

For Z = j - 1 and j - 2 we may use Theorem 1.2 to show

stronger results. In fact, it is shown in [1] and [12] that in

these cases

IQ.(i )I 2 IP2z(i )1
2  + qj 2 j  with qj, > 0,

which implies that (*) holds with p = 2j. We conclude in

particular stability for Z = j - 1, and for j 5 - 2 we have

(if u 0)

IIE'll < C 1C nl / ( 4 j ) for n > 0.

In applications it is sometimes convenient to use approxi-

mants with denominators of the form (1-yz)j
. Rational functions

of this type are the so-called restricted Pad6 approximants



R.(z) J L Jm)(y- 1 )(yz)m ,

I m=:0 ]

where L. denotes the Laguerre polynomial of degree j. With

suitable choice of y, these approximations are of order j + i,

are A-acceptable for j = 1,2,3, and 5 (cf. [151, [18], and

IR (-)I < 1 for = 2,3, and S. For j = 2, (*) is satis-

fied with q = 3, p = 4, and for j = 3 with q = 4, p = 6.

In particular, Ek = R2(kA) (the Calahan scheme) is stable, and
n n 1/12

the norm of E n R (kA)n may grow as n
k 3

We shall briefly indicate the technique of proof by sketching

the proof of Theorem 1.1 for w = 0. The main idea is to use the

possibility of representing certain functions of A as integrals

of the form

S tAd
(1.3) f(A) jR e di(t),

R+

where ii is a bounded measure. Once this is done we may conclude

from (1.2) that

f f(A)l C0  f dj i(t),

so that in order to estimate the norm it remains tobound the

total variation of the measure 0.

Let M be the set of bounded measures 0 on R with

=  diPl(t) and let M denote the set of Fourier trans-

forms G(E) = Reit dp(t) of 0 E M with norm m(i) =  I.

Further, let M denote the set of Laplace transforms

1(z) f e dp(t) of p E M with supp ji c R+. From a
R+
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lemma by Paley and Wiener (cf. [17] p. 10-11) it follows that if

f is bounded and analytic for Re z < 0 and if f(i) = E M

then f E M and f(z) = p(z) for Re z 0. For such a function

f we then have the representation (1.3) as is shown in Hille-

Phillips [141.

It follows in particular from the above that

IEkII n Ilr(kA)nI < C 0m(r(ik ) n),

and since it is easy to see that an affine transformation does

not change m(f) we have

iE n1 < C m(r(i) n)
k - 0

in order to estimate the latter quantity we need the

following inequality by Carlson [101: if f,f' E L 2(R)A2

then f E L (R) and

< 
1 12 1/2lif !I, - 2vr jfj 2  lif' 2

Since f is the inverse Fourier transform of f we conclude

m1f) 1/2 1/2
27 ' 1 ' 2 2

In order to -;how our desired estimates we shall not apply

n
this inequality directly to r(i) . Instead, we first introduce

a partition of unity: Let E C(R) with supp I{; . <
02

,If and2

7 c¢(2J, 1 for IH > 2.
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((2-J ) for j > 0,

jl

Then with r = r(-),

m(r(i fl) < m(rn) + m(4.(r(i )n-rn)).
co 0o

The first term is directly seen to be bounded by 1 and it

remains to estimate the general term in the sum. Since

SC

Ir(i ) - r. - - and ir(iF)j 1,

we have

Ir(iC)n - rn C min(l, n-

and hence

nl n j/2 ]§/2iLj(r(i<) - rn,)l < C min(2 ,n2

Similarly

dC

1+1<

implies

Id(P.(r(i ) n- r 1)) C(2-j 2 +n2-3?/')

and hence

n 1 1 2  -j12m(Y(r(iO) r') < Cn 2

It follows that

'I
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r(i) nf) 1< + Cn/2 2- j  Cn

j 0

which completes the proof.

We shall now consider the convergence of u r(kA) n, EnV
n k

to u(t) = E(t)v as k = t/n tends to zero, in the same general

circumstances as above. We have

Theorem 1.3. For each A-acceptable rational approximation

r(z) of ez of order q there are constants CI and x such

that for any A satisfying (1.2),

HIEkv - E(t)vjj<- Co C tkqe')tIA q+ivII for t = nk, v E D(Aq+I

Notice in particular that there is no loss of accuracy in

the case of non-stabiiity.

The proof of this result consists in noting that with

f kn(z) --l(r(kz)n etz

we have

IIULkv - L(t)v I  : r(kA)nv - e tAvII

If kn(A)A ( v1+ < C 0m(fkn(i ))IIAqivjj ,

ani1 then istimatin i r(!,- (i)) by our above methods.

F;or less reguli iati we have the following



Theorem 1.4. Under the assumptions of Theorem 1.3 there are

constants C I and x such that for any A with (1.2), and for

S = 0,...,q + 2, s 2(q+l),

IlEnv - E(t)vlt < C C 1 ts-(S) k 6(s) e (t; ASvlj for t nk, v E D(A s

where

B(S) s q + min(O, s
q+l q+l 2

If in addition r satisfies (*) the result holds with O(s)

replaced by

S -q- + min(O (s- q+l))( - - )

, q+l 2 q+l p

Note in particular that in the stable case of (*) with

p q + 1 we have B,(s) = s q/(q+l). For s = 0 we recognize

the 'growth factor of Theorems 1.1 and 1.2.

The above technique for estimating m(r(iO) ) was applied

in the analysis of differencP schemes in [6] (cf. also [9]).

Remark. For the. case that A Fenerates a holomorphic semigroup,

sharper results than the above can be obtained (cf. the dis-

cussion in [7]).

_| _ _.. . . .. 2 . . • . . .
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2. Totally discrete schemes.

In application to the numerical solution of initial-boundary

value problems for partial differential equations one has to con-

sider the combined effect cf discretization in space and time.

Our above convergence results will therefore, in general, have to

be applied to an approximating semidiscrete problem

duh

(2.1) dt Ahu for t > 0, uh(0) v
dt h h h Vh5

depending on the small positive parameter h.

We shall consider below the application of the smooth data

result of Theorem 1.3 in two such situations. In the first case,

which might be encountered when one is concerned with a pure

initial-value problem and the differential operator A is approx-

imated by a finite differende operator, A q+iv will be bounded

for smooth v and the analysis is straight-forward. In the

;econd cise, which is typical in the finite element situation,

th';e boundedness of Aq+lv cannot be taken for granted, and we
h

will have to proceed differently.

In both cases we shall assume that the general assumptions

oF Section 1 are satisfied. In particular, we assume that (1.2)

I is, for ci-mp 1ic 1tv with z0, and that r(-z) is an A-

oc cptable rational aproximation of eZ which is accurate of

or der q•

I

I
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The finite difference type case.

We assume here that we are given an approximation Ah : X * X

of A depending on the small positive parameter h, and sub-

spaces, Y, Z of X with Y q Z dense in X such that

(a) WIAhV - AvI -_ ch v11 y Vv ( Y;

(b) E(t)Y c Y and

jE(t)VJ1y < C 2 I vI Vv E Y;

(c) lAq+l VII 7 C 1V0
h 3 3 IZ;

tAh

(d) Ah generates a bounded semigroup E (t) = e on X with

IIEh (t)II < C4  for t > 0.

With E h tending to zero with h, we may think of these as

consistency and stability conditions for the semidiscrete problem

(2.1). We can now infer results about the completely discrete

solution defined by

u (t) E nv r(kA v for t nk.
kh kh h

Theorem 2.1. Under the present assumptions we have for t = nk,

,Lkhv - E(t)vfl < C C t h IIvlI + C C C
kh2 4h Y 0 13 Z*

Proof. We have for the error between the semidiscrete and con-

tinuous problems

Eh (t)v - E(t)v i Eh(t-s)(Ah-A)E(s)v ds,

so that for, v Y Y, by (d), (a), and (b),



9367

I

)n r other hand, for the error between the completely dis-

I 2rete and semidiscrete solutions, we have by Theorem 1.3 and (c),

SIEn kv - Eh(t)vII - C0 Cltk q A q+lvI _5 0C1C3 tkqIlvl,.

9 Together these estimates show our result.

Note that in the present situation our error estimate is of

order 0(Ch +kq) for v sufficiently smooth, even without assuming

the discrete operator Ekh to be stable in X.

The finite elementtyRe case.

Here we shall assume that we are given a family of subspaces

Xh of X, depending on the small positive parameter h, and for

each h a projection operator Ph : X - Xh  and a semigroup

Eh(t) on Xh which is known to approximate E(t) = e in the

sense that with Y a subspace of X such that D(Aq+l) n Y is

dense in X, we have

!IEh (t)P v - E(t)vl e Eh(l+yt)llvlly Vv E Y.

Note in particular that: for t = 0 this shows that X approxi-

I mates X, or more precisely,

!PhV-vl I < hIlvII y Vv E Y.

With Ah the generator of E (t) our assumptions mean that

u (t) I h (t)v is the solution of the "semi-discrete" problem

,' ' j hc is n'w posed in Xh, and that with vh Phv,
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Iu h(t) - u(t)II E h (1+yt)llv YII Vv E Y.

Defining in this case the completely discrete solution at

t nk by u (t) = Ehn v where E r(kAh ) and v P v
kh kh h kh h h h

we have now

Theorem 2.2. Under the present assumptions we have for t = nk,

IE'hPhv- E(t)vjj n c(Pn+PnYt)JVII, + C Cltkq IIA q+lv Vv ( D(A q , ) n Y,

where p :m(r(iO)n)
n

Proof. Consider the representation

r(kz) n eR+ tzdk (t).

Then

Ehn P - Env = r(kA ) n P v-r(kA) nv f (Eh(t)Ph-E(t))vdpkn(t),
R+

and hence for v E Y,

IIEkhPhv - Evl chiv<C Y(J dkI+y tdip 1).
khh k h Yf+ kh J+

Here

J dIIkn I m(r(iC)n) Pn'

and since
I tz d )n-i
Re t dwkn(t) : L(r(k z)n )  :nkr(k z~nf+ kn dz

we have
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JR tdlPkn(t)I nkm(r(i&)n - l) =tP n_ ,

+

so that

iiE h Ph v - EkV II Ch(Pnni+PnYt)IivII

Since y Theorem 1.3,I
HEkV - E(t)vI < C0 CltkqIIA q+vii,

k
the proof is complete.

For example, for r corresponding to the backward Euler or

Calahan methods, Pn is bounded and the convergence rate is then

0(c1 +k ) as k,h - 0. For the Crank-Nicolson method, the above

result only shows a convergence rate of O(h k-i/2 + kq ) as

k,h - 0 since in this case pn = 0(n / 2 ) = 0(k- / 2 ) for fixed

t.

We shall see now, however, that even when p n is unbounded

it is always possible to attain a convergence rate of O(eh+ kq )

by a suitable choice of discrete initial-values, provided the

given initial data are sufficiently regular. For this purpose

we first define another projection Qh : X - Xh by

I h ( I-Ah)-q-1 Ph(I-A )q + l "

Lemma 2.1. With 7 {v;v E D(A q+l), (I-A)q + l v E Y} we have

I(Qh-I)vI I Cc h I(I-A)q+lvliy Vv E Z.

I
I
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Proof. From

(l_z)-q-i = 00 t q  (z-l)t
J .e dt
0

we conclude

SQh [(l-Ah)-q-1 Ph (l-A)-q-l](l-A )q+1

h hh

roo t q  -t q
JO e- (Eh t)Ph- E(t))(I-Aql dt,

h-t

and hence for v E Z,

(M t -t q+l

11 (Qh-1)0l I L- e (l+Yt)dt Eh J(I-A) ivyj0 q!

which shows the lemma.

We are now ready to prove

Theorem 2.3. Under the present assumptions, and with Ph

uniformly bounded for small h and Eh (t) for small h and

t > 0, we have for t = nk and v E Z,

IIE'h Q v - E(t)vI

C I{I (L-A)q+lvIY + (l+yt)Ivl) y} + Ctkq1 (l-A)q+l j.

Proof. We have by Theorem 1.3,

IIEkh Qhv - Eh(t)QhVII < COC1 tkqlIAhQhvI

C0 C1 kI ( Ah ( I A h ) _ )q+1 (I-A ) q+lv - Ctkqj}( I A ) q + I v jj .

where we have used in the last step the boundedness of P and of
h

-iAhb(I-A h ) the latter of which follows from the boundedness of Eh(t) and
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A h (I.-Ah -1 I + CT-Ah )-I '- , + r Eh(t)e-t dt.

Further, using the boundedness of E h t) once more, and our

approximation assumptions and Lemma 2.1,

1E (t)Qhv - E(t)vJj < 11E h()(Q h-P h)vI + 1IE h Ct)P hv - E~t)vI

< CON(Qh-I)vI + 1(P -I)v1I} + C h (l+yt)11v 1Y

< h Q ( -~ ' vj + (1+yt) jIvIjy) ,

which comple-es the p roof.

In the case that E £ is stable, which can happen in

specific cases even with p nunbounded, we may of course also

choose other discrete initial data, so that for instance

bEn P V - E(t)VII =OC +k q) Vv E Z.
kh hh

For then

I' El (P -Q )vI -- CC 'P -T )vj + J(QhT)VI )

C C h (!viy + 1!(I-A)qlviy).



3. Discretization of reversable initial-value problems.

In Section 1 we studied a correctly posed initial-value

problem
dudu = Au for t 1 0, u(0) = v,dt

which was assumed correctly posed in the sense that A generates

a strongly continuous semigroup E(t). We then considered dis-

crete approximations of this problem at t = nk of the form

un LkV r(kA)nv,

where r(z) is a rational function with Ir(z)I 1 1 for

Re z n 0.

When applied to hyperbolic problems, for instance to a first

order symmetric hyperbolic system in R , d > 2, which corres-
d

ponds to A I A. 9/3x (with A. hermitian matrices) the
jrl I

assumptions made in Section 1 are not entirely natural. On one

hand, considered as an operator in L2, say, this A has its

spectrum on the imaginary axis and it should therefore suffice

to assume jr(z)l - 1 on Re z = 0. On the other hand, although

in this particular instance A generates not only a semigroup but

a group of operators on L2 5 our results do not permit estimates

in L for p 2, since E. A. a/ax. does not generate a

semigroup on such spaces unless the A. commute (cf. [3]). It

is known, however, (cf. [1]), that the problem is now well-posed

from Ws  into L if s > dli- _ 'I.
p p p
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Our purpose in this section is to extend the results of

Section 1 to a situation which takes into account the above

remar s. It then appears natural to assume that X, and

are Banach spaces, with X A X1 dense in XI, and that A

generates a strongly continuous group of operators E(t) e tA

on X with E(t)(X(IX I ) c X 0 and such that

(M) ljE(t)vbjX < CeItIlI for t E R, v E X;

(ii) E(t)VHo Coe 1IVI for t E R, v E X N X
X

0 
0 0 and

(In the above discussion we would set X L2 , P0  L and

Xp

We shall first aonsider the general case of a rational

function r mapping he imaginary axis into the unit disc. Such
z

funct.:n,_ 3 t'frvin, in addition r(z) = e + o(z) as z 0

is reteirred to as !-acceptable in [16]. We shall then consider

an I-a )e tab1e !unction r satisfying the more precise

assumption o of Section 1.

We then lave the following stability result.

I
Theorem 3.1. Let 11 1,e a rational function such that

IIr(i )j 1 fo1tr F R. Then there are constants C1, X,
tA

and k, such thai foi A with E(t) = e satisfying (i)

and (ii), i. Lk  r(LA)

IiE Vl CA le0 t n / V 1' for t = nk 0, k - ko.

If :,n ii us sa11:!i. (i:) ,, ,t nkwe have

tI
Ln t nk > 0, k <
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The proofs of these results use the techniques of Section

1. In the present case, if lr(z) - 1 for Re z = 0, it is

possible to factor r into -(z) = r_(z)r+(z) with Ir(z)l 1

for Re z ' 0 and Ir+(z)l - I for Re z > 0 (or Ir+(-z)l 1

for Re z 0) and we may write r(A) = r_(A)r+(-(-A)). Noting

that now both A and -A gene.'ate boinded semigroups (if w 0),

one may again show a representait~on, now with integration over all

of R, of the form

r(kA) : E(t)d nk(t),

with 1nk the convolution of the measures associated with the

factors r 'and r+ of r and the estimate

n n
jr k ) j -C djW (t) I 1V: C nni(r(i ) )llIr(kA) nk

7r .... -the analysis proceeds as before.

One may also prove the following convergence result.

Theorem 3.2. For each I-accep~able rational approximation r
z

of e of order q there are constants C1 , x, and k0, such
tA.

that for A witi E(t) = e satisfying (i) and (ii), and for

s 0,1,..,q+l, s (q+l), we have for v E D(A s) with

A Sv E X I ,

IEkv- E(t)vlh C C ot-B(s) Y(s) e Wt JA'vl for t = nk, k _ k0,

where

q + milO, -+
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If in addition r satrs/ies () th result holds with 6(s)

replaced by

.,.(s) = l + ain (0,(s- (q+))(-q+l p

Note that 6(q+l) q so that the convergence rate is

alwaVs ot optimal order iI(k 1 ) for appropriately regular initial

da t a.

A:; in uxisp~ we finally consider the following special

app-oxdtion ,te which was proposed by Baker and Bramble

[12sV ),:rthcu studled in N rsctt and Wanner [16], namely, for

P11 I p osit ; 1t Ell,

2m
(/ )m > 0,

wit h

2m 2- m2 m-Z 2m 2m-jp (.): - (r (-Y ) _ Y nm ( )

(2Z-j)! ~ mj

-'s/ f u' t 2, , ardor ?m and I-acceptable for

Su" talle .Y Keas_, t Io a 1, -Y , Y the largest zero

C,' p (i). ii:>' :~~ " iis latter fact (Theorem 15 of [161)!no

i-s easilv m .: %? vi- I that for such 1, r satisfies (*)
wit , -- ,," . ,. Thbs, i: y - y we have for A

X , : , t nk " 0, k ko,

intl t 'l tW tt ., r, . , ih lds With

.. ( ) . ... , (, - .... + I

I



Ler again X be a lBanact ~e~v rm that A generates

t A
a LounJe, c-i 'uro up L t) e n. r-e r now t le Tproblem

(4.1) Au + fo'0, )

wheref (t) . Let Lt rat>:,nal functions which

are bcuriec f' e, ~ i~o ~j~~rxirt scitiu of

(4.1) by u,- v :in.i

ii+ k nn k n

whIner, I2 ire ii s& :iic: numbei which for sim-

,1ic i tv we acsauoc iii F.1

~~~~;0~~~~T t~n I vhi r:~ i af~>io Stor

2 R k
1

) 2 ~ +~ -U u t )I -kQ t n 2 (kl)+) as k 0,

thnat is. el curo of ( i :rtsfzs C2 with an error

'A b -Lrvz th'it tile f'1 otV01 cti ~ ts o

n+n

L- It,0

;~~sl~n~; th. V t ibe d ~:~1 i~:

to unavzo omoj~il'
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U(tn+I) E(k)u(tn) + k E(k(l-s))f(t +ks)dsn1n j0 n

= E(k)u(tn) + k(Ikf)(tn),

we may write

(4.3) Pn (k;A) (E(k)-Ek)u(tn) + kM(Ik-Qk)f)(tn).

In order to determine conditions on the rational functions

in (4.2) for the scheme to be of order p and to find a con-

venient representation for pn we shall develop P n in Taylor

series with respect to k. Jince u and f are tied together

by (4.1) we shall want to express pn  in terms of only one of

them. We shall prefer here to use the data of (4.1) rather than

its -olution.

We begin by considering the case that (4.1) is a scalar

ordinary differential equation, with A denoting multiplication

by a complex number z with Re z f 0. We have then the follow-

ing result.

Lemma 4.1. With Pn defined by (4.3) we have

P-1 M P+l tnz 3
Pn(k;z) :k k %£(kz)f (tn) + k e a(kz)v (p+l) + I R n,j(k;z)

0 ( j=l

where

= pl)zP~iv += u Pl (0) z~ + P z P-£ f(M)(0),
V(p+l) A

G(z) Z (P+l)(eZ-r(z)),

z zm(Z) Z_ z- l (r(z)- 1 . ) - 1. 1 T qj(z),
VI =0 j: j
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and where

t n (t -s)z
R n,l(k;z) = kPa(kz){-f(P) (0)+ (e n _l)f(p+l) (s)ds},

Rn 2 (k;z) = ke(l-s)kz(fks (ks-T) f( +)dT)ds,

Rn,3 (k;z) k M qj(kz)f (-I) f (tn +)dT.n, 0 U"

For the proof one notes that in the present situation,

E(k) - Ek = ekz - r(kz) - (kz)kP+lzp +I

and

u(t) e tzv + f e(t5)Zf(s)ds,
0

so that for the first term in p (k;z),
n

(E(k)-E k)u(tn )=kP+l a(kz)f{e n zYP v+Ien ez f(s)dsl.0

Integration by parts p + 1 times in the last integral, Taylor

expansions of Ikf and Qkf with respect to k, and simple

calculations then complete the proof.

We can now immediately show the necessity of the conditions

of the next lemma.
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Lemma 4.2. Necessary and sufficient for the scheme (4.2) to be

of order p is that as z 0,

(a) r(z) = ez + 0(zp+ )

and

(b) y,(z) = O(zp - ) for 0,...,p - 1.

In fact, if (4.2) is of order p we find first by taking

f = 0 that o(z) has to be bounded for small z, which shows

(a), and then, since for a sufficiently smooth f,

R n,j(k;z) = 0(kp + l ) for j = 1,2,3 and small k, and since

the f M(t n ) are arbitrary, that (b) holds.

We now turn to the sufficiency of the conditions of Lemma

4.2. Recall that M is the set of Laplace-transforms of bounded

measures on R+ , and that for A the generator of a bounded

semigroup E(t) on X and g = E M, g(A) may be represented

as

g(A) f E(t)dp(t),fR+

with

jjg(kA)jV CO f dip(t)j Com(g(i&)) if jIE(t)I C0 .

Any rational function, bounded for Re z ! 0, belongs to

M. In particular, if (b) holds we have z (P-10 Y M so

that we may write for f M)(t n ) D(AP-),
in

!1
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(4.4) llY (kA)f U)(tn )I = kP-jji (kA)Ar,9f(P )II E CkP- 4 jjAP-£f(£)(t )Il

Since under our assumptions also a E M we have

IE(tn )O(kA)v(p+l)li ( C1v(p+l)i

and

t

JRn,l(k;A)I :E CkP+I tf(P)(0)I + nf(P+l) (s)jtds},

and similarly

IRn,2 (k;A)lI + IRn 3 (k;A)II 5 CkP f if(P)(s)JIds.

n

We may thus write

Pn(k;A) =kP+{: (kA)AP-f( )(t )+E(t )C(kA)v + Rn,(k;A),
X=0J=

where under the appropriate regularity assumptions, each of the

terms is 0(kp +I ) for small k. This shows the sufficiency of

our conditions and thus completes the proof of Lemma 4.2.

Theabove estimates (4.4) for y,(kA)f(M)(t) require that

f(£)(t) E D(AP- 1) for I = 0,...,p - 1. In applications to

partial differential equations this generally demands not only

smoothness of f( )(t) but also that these functions satisfy

certain boundary conditions which are not necessary in existence

and regularity results for (4.1) and thus not natural to impose

for t > 0. These requirements, however, disappear if the
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coefficients y. vanish, which will happen for some methods.

To include this possibility in our considerations we say that the

scheme (4.2) is strictly accurate of order p0 
:5 p if (a) holds

together with

Y£(z) 0 for z =0,...,P0-1.

The case p0 = p is, of course, of particular interest in that

the above restrictions then all disappear.

We may now state our first global error estimate which is

a simple consequence of the above considerations.

Theorem 4.1. Assume that the scheme (4.2) is stable in X,

accurate of order p, and strictly accurate of order p0

Then

Iju~tn)-u n (,kP{t n sup fIAP-'f(£) (s)I
JP 0 S~stn

s~t

+ t nIV(p+l)I1 +tnilf(P)(0)II + (tn-s)lf (p~ (s)ds}.

The term 11V(p+l)II may be replaced by lo(kA)v(p+1 )II.

Observe again that if the scheme is strictly of order p

then the error is of optimal order p without any regularity

conditions of the type f(t)(t) E D(AP- t) for t > 0. In our

next result we shall see that this conclusion holds even if the

scheme is strictly accurate only of order p - 1, if we make

the additional assumption
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(4,.) X( ) = P-l(Z)
(4) X(z) r(z)- is bunded for Rez n 0.

Since r(z) = 1 + z + o(z) for small z, it follows easily

that (4.5) holds if r(i) 4 1 for 0 9 E R, and if

(r(z)-l)- I = O(IzI) and q.(z) = 0(1z - I ) for large z.

Theorem 4.2. Assume that the scheme (4.2) is stable in X,

accurate of order p, strictly accurate of order p - 1, and

that (4.5) holds. Then

)- 1 ! C P~ 1v( +1 1111 p-1) iif(P)(o)ll

Ilu(tn ) n p (0)11 + tn 11f

+ f (t-s) f(Pl (s)JIds}.
0

The term llv(p+ 1 )1 may be replaced by Ilo(kA)v(p+1 )I1-

In the proof of this theorem one notes that the error en

now contains the additional term

P n kp n E kn-l-jyp-l (kA)f (P-l) (t )

j=0

Setting Sk,j = k  one finds by partial summation

nil 1 f(P-1)()

I E k -f (t.)
J= k k,n-i

n-1 ((P-l)(t)_(P-l)tl)
+ = kn-l-3

= j
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If (4.5) holds we have X E M and

n-i " (P

= kPX(kA){ (En-I)f(P-I)(0) + n (,n- 3- 1 f) (s)ds},Pn kj=l ti_ 1

from which the result easily follows.

We shall briefly consider application to the case when dis-

cretization also takes place in the space X as would be the

case when finite element approximations are used in X. Thus

let Xh be a family of subspaces of X and assume that for each

h we are given a projection Ph : X + Xh with

1Ph cv11 .C11 A

Assume also that we are given a uniformly bounded family of

semigroups E (t) on X which approximates E(t) in theh h

sense that (cf. Section 2)

JJEh(t)Phv - E(t)vi :5 h (l+yt)llvll.

With Ah  the generator of E h(t) we shall now study the

semidiscrete problem in S h defined by

duh
dt A huh + P hf for t ? 0, uh(O) = Phv

and its discretization with respect to time,

m
u h n~ = r (kA h )u h n + k I q (kA h )P h f ( tn +kTj )Uh'n+l hhn j~l +k)

Eku h~ + k(QkhPhf)t n ).

Lk Uh n
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We shall consider the error Detween the solution of the

semidiscrete and completely discrete solutions. Combined with

an e7 ,r estimate for the semidiscrete problem this would show

a complete error bound. We shall only present the discretized

version of Theorem 4.2; obviously an analogue of Theorem 4.1 can

be similarly obtained. We denote by Y0  the interpolation space

(XY) 8 , between our basic space X and its subspace Y.

We have then:

Theorem 4.3. In the present situation, assume that the scheme

(4.2) is accurate of order p, strictly accurate of order

p - 1, that (4.5) holds, and let Ekh be uniformly stable in

Xh. Then

uh(tn)-Uh ,n 1l

!5 CkP{tntlV(p+l) + tn 0 lif(P)(0)I-

n (P l) n f-l

+Of (P-l) (01I + fon(t n-s)Ilf P (s)llds

+ CFh{{IlvY + IAvily + lif M (0)1{Y ,k 0 YI-./p

To sketch the proof, we note that application of Theorem

1.3 at once implies

)Iuh(tn)-uh,n 11 : CkP{tnI o (kAh)Vh,(p+l) II

+ IP f(P-1)(0)11 + tnlp f(P)(o)II + I n  (tn-S) 1Phf(P+l)(s)llds }

n h fo
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where

: AP+I Ph v +f AP- £ Ph f (  (0).I h,Cp+l) h A~'hv A 0h h~)O

Since Ph is bounded, the terms containing f are bounded as

g stated. In order to estimate the first term on the right it

suffices to bound

I S = kP{o(kAh )v h,(p+l)- (kA)v (p+l)

or, with a.(z) = zio(z),J

I S = a (k h)A hV h - a (kA)Av + f k z((Yp_£ (kA h)P h-ap_9£(kA)f(z) (0).

This is done using a technique similar to the one used in Section

We shall make some brief comments on how to construct

schemes which satisfy our above assumptions. We first have

the following alternative conditions for accuracy of order p.

jLemma 4.3. Let m < p. Then the approximation scheme (4.2)

is of order p if and only if

(a) r(z) = e + O(z p + ) as z - 0,

(b)' yL (z) O(zp -4 ) as z - 0, for k = 0,...,m - 1,

and there are constants bl,...,b m  such that

m
( ) (t)d'i I b p(t.) V( E i Ifo 0 = I p-1



386

m
Note in particular by applying (c) to p(t) = TT (T-T.) 2

jzl

that the number m of quadrature points cannot be chosen

smaller than p/2. On the other hand, given r(z) and {T 1 m

such that (a) and (c) hold, we may determine the qj(z) such

that (b)' is satisfied, for instance by solving the system

yX(z) 0 for i 0,...,m -1,

which may be written

m L "(b)" I jq ) z£+l (r(z)- ),£:0.,ml

j~l z j=0 j

Here the right hand side is a rational function which is regular

for Re z : 0 by (a), and the matrix of the system is of Vander-

monde's type and thus nonsingular. If 2m L p we may always

choose the T. to be the Gauss poinLs of order m to satisfyJ

(c); if 2m p this is the only possible choice.

It is now natural to ask if the conditions (b)" and (c)

will in fact imply strict accuracy of order higher than m.

In this regard we have the following:

Lemma 4.4. Let m < p and assume that (b)" and (c) hold. Then

the scheme (4.2) is accurate of order p, strictly of order

m + 1 if and only if

m m - ( 1)
I z W m1

(d) r(z) = 0 where w(t) TT (t-T.).
m zm -L() (0) 5:i
I:
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Let now m : 2 and p 3 and choose the quadrature rule

0 p(t)dt 1 (0) + 3 (P( ) V(P E I

The equations for ql and q 2 are then

ql + q2

I -2 1 (r(z)-l-z),IZ
32 1

g which gives the scheme

( I-( +- -) kA) u (I--A-!( 3+1 ) 2A2)u

1 I+_ Vf 3 tn+2k)k(-AkA)f( n ) + k (1 21)kA)

+k(~- 1- nkA 2 4 n (3+ kAf t 2

I Again (4.5) holds and Theorems 4.2 and 4.3 apply.

I
I
I
I
I
I
I
I
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Lars B. Wahlbin, Cornell University

First Lecture: Quasi-optimality of the H1  projection into finite

element spaces: a brief survey with emphasis on the maximum norm.

Let R be a bounded domain in R N, N > 2, with DR suffi-

cently smooth. The case of R polygonal or polyhedral will be

commented on later. Let u denote a given function on R.

With 0 < h < 1/2 a parameter, let R = UI( )  T -i  be mesh-
h

domains partitioned into finite elements T
= Ti, and assume for

simplicity that Rh C R. Isoparametric modifications may be used

at the boundary. We assume a quasi-uniform family of partitions;

the case of a non-quasi-uniform family will be discussed later.

Demand furthermore that DRh is a uniformly Lipschitz family of

curves with dist (x,3 Rh) < Ch2 .
x E 3 R

Let Sh, 0 < h < 1/2, be finite dimensional subspaces of

W (Rh) consisting of functions X that vanish on DRh, and are such

that XI T C 2(T). Such functions can, after extension by zero, be

regarded as belonging to W,1(R). Typically, {X1T} includes all

polynomials of degree r-l, r > 2 (or isoparametric modifications

thereof).

Define uh = Phu E Sh as the H projection of u, i.e.,

Lecture in the Department of Mathematics at University of Maryland,
College Park, during their Special Year in Numerical Analysis,
1980-81.
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f VU. VX f VU(V)(

Rh Rh

=h)( f uAX + 0 u ), for all X e Sh

The question we consider is whether, giving a Banach space

B, the following estimate holds,

(2) 11 Phu 11B < C(h)lu 11B ,

with C(h) independent of u. If (2) holds it follows, upon writing

U-PhU = u-X-Ph(u-X) for X c Sh, that

(3) 1jU-P hUll B  < (l+C(h))min 11u-x11B
XESh

If C(h) = 0(1) we call Phu a "quasi-optimal" approximation, or

Ph "stable". If C(h) = C 0(h - E ) for any e > 0, we say that Phu

is "almost quasi-optimal", or that Ph is "almost stable".

1. B H I(R).

(To be exact, consider the quasi-norm 11f'1B =IlfIIL 2(R).' Here

we have stability with C(h) = 1, and the factor (l+C(h)) in (3)

can be replaced by I. Similarly, we have stability in 0l(Rh).

These results are trivial.

2. B = L2(R).

If the functions in Sh are merely continuous on Rh but not

continuously differentiable, we cannot in general expect stability or
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almost stability. A simple counterexample (in one dimension) is

given in [2, p.58].

If Sh C- CI(R), then (for u continuous) the boundary terms

in the definition of (1) drop out so that

f VUh'VX = - f uAtX , for all x c Sh
Rh i=l h

i

Hence (by density) the definition of the H1  projection makes sense

for u £ L2 (R). Correspondingly it was shown in [1, Theorem 6.3.8]

that if Sh C H
2 (R), then Ph is stable in L2 (R).

For C elements, two lines of investigation have been proposed

in order to remedy the situation. In one dimension, it is well known

that (for u continuous),

IIU-UhIIL2(R) C min IIu-X IIL2 (R)

hI1L (R) XES h 2(R

x = u at meshpoints

In [3] this result was extended to more general projections. In a

related idea, [2], the L2 -norm is replaced by a certain mesh dependent

norm. In one dimension,

ilfil h = (f IfIP + I hlf(x jIP) l1 p , 1 p < =.
Lp R x. meshpoint

Then Ph in one dimension is stable in these norms. In more than

one dimension, one knows stability for p = 2.

I
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3. B = L(Rh).

Note that the definition (1) makes sense for u continuous.

Correspondingly one has, [12], that Ph is stable for r > 3, and

almost stable (with C(h) = C in 1/h) for r = 2.

A self-contained proof of this when N = 2 and piecewise linear

functions are employed will be given in my second lecture.

4. B =  W1(R).

Assume here that Rh = R Then Ph is stable for r > 2.

For r > 3, cf. [4], [5], [6], [14], and for r = 2, see [7].

We now turn to listing some results in the maximum norm when

R is not smooth. The cases of Hl and L2 are fairly simple and

left to the audience. Except partially for iv. below, the case of

IW is also left out. We start with two results for quasi-uniform

meshes.

(i) Polygonal domain in R2, quasi-uniform mesh, Rh = R.

It is proved in [8] that Ph is stable in L. for r > 3, and

almost stable in L. for r = 2.

(ii) Convex polyhedral domain in R3 , quasi-uniform mesh, Rh = R.

By a recent result, [13], it is known that Ph is almost stable in

L. for r > 2.

We proceed to display what little is known in the maximum norm

in the case of non-quasi-uniform meshes. For the case of L2 or
01
H , cf. [1].

1
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(iii) Polygonal domain in R2, "orderly" refined mesh, Rh = R.

In [10] a guideline for constructing refined meshes is given. For

the type of meshes considered there it is possible to show, [13],

that Ph is almost stable.

(iv) Convex polygonal domain in R2 , "wilder" mesh, Rh =

The result described, which is not a true "stability" result, will

appear in [13]. The kind of less orderly meshes considered may be

of interest in connection with automatic, adaptive mesh-refinements.

To describe typical conditions on the mesh family, assume for simpli-

city that the elements are triangular. Assume either

A: Piecewise linear functions, maximum angle condition, and

(4) hmin hy for some fixed y > 1.
mi- max_

Or assume

B: Piecewise polynomials of degree r > 3, minimum angle condition,

and (4)

In (4), hmin denotes the minimal side of any triangle in the

mesh, and hmax the maximal side of any triangle.

If either A or B holds, then, [13], for any c > 0,

11 u-U hlLO < C h1-C min Iju-XII 1- L(R) _ Cmax X£Sh

We conclude this lecture by mentioning a local estimate in the

maximum norm:

Let B(d) and B(2d) be concentric balls in RN centered at

a point in R. Assume that with a positive constant c, d > chloc
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where hlo c denotes a local meshsize prevailipg, in a quasi-uniform

fashion, in B(2d) ORh. If B(2d) intersects the boundary BR

assume that B(2d) 0 3R is a smooth curve. Then, [9],

u-u(hIdLRB(d)OR

xSSh

+ Cd'N/ 2 sIlu IuUhI Hs

Here s > -1, and r = 0 for r > 3, r = 1 for r = 2.

Thus, the local error in the finite element solution is esti-

mated by two terms: The first term involves the local approxi-

mability of u. The second term takes global effects into account;

however, it measures these effects in an arbitrarily "weak" way.

For an application of this result to calculation of stress

intensity factors, see [11].
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Second Lecture: The quasi-optimality in the maximum norm of the

Hl projection into piecewise linear functions in the plane: a

complete proof.

Orientation:

The H1 projection Phu of a function u into piecewise

linear functions Sh on a quasi-uniform family of triangulations

of sizes h of a basic convex bounded demain R in R2  with smooth

boundary satisfies

flu - Phu iL Rh < C kn(l/h) min lu - X 1).

Here h a R is the meshdomain, and the constant C is independent

of h and u.

The purpose of the present lecture is to give a self-contained

proof of the result above. Note in particular that R h R and

that this fact is not assumed away; a certain amount of technical

detail ensues.

The Set-up:

Let R be a bounded convex domain in R2 , with smooth boundary

3R. Let 0 < h < 1/2 denote a parameter, and

I(h) _
R h  L) T ih

i=1

Lecture in the Department of Mathematics at University of Maryland,
College Park, during their Special Year in Numerical Analysis, 1980-81.
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a family of edge-to-edge triangulations "of R", with Rh C.

Assume that the family of triangulations is quasi-uniform, i.e.,

4r h
that there exist positive constants c and C so that Ai any

h
angle in Ti

0 <c < h, ch < diameter (T.)< Ch.

Assume also that the boundary nodes of DRh are placed on DR.

Then we have

(1) the number of boundary nodes is < Ch -

(2) dist (x,3Rh) < Ch2 , for some constant C.

xE9R

Let Sh be the space of continuous piecewise linear functions

on Rh, which furthermore vanish on Rn . After extension by zero,

such funcfions can be considered as being in W ( R ).

Let u be a given function on R , and define its H projection

uh = Phu C Sh via
l(h)

(3) f Vuh VX=f Vu.VX = u DX for all XESh
Rh Rh i=l hh,

Here Green's formula and the fact that AX 0 on each triangle

were used.

Note that uh is well defined for any function u which

is continuous on R h"

The Main Result:

Under the hypotheses above, there exists a constant C

independent of u and h such that

lu - uh 1L(Rh) < C Qn (1/h) min IIu-xIl L (Rh)
h) XESh
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Remark:

The main result is a special case of a more general result

by A.H. Schatz and myself, see Lecture 1, point 3., in particular.

In the case under consideration the proof is much simpler than in

the general case, and, it is hoped, the main ideas can be discerned

uncluttered by much technical detail. However, some trouble is

unavoidable since Rh/R

The Proof:

Writing u - uh = (u- x )- Ph(u- X ) for X Sh we see that it

suffices to show

(4) u1 Uh L (Rh) < C Zn(l/h) Ilu IL (Rh)

Let x0 be such that

luh(xo)I = h1uh 1  L (Rh)

Denote by T a triangle such that x0  r T. If T is a boundary

triangle we define T' by "quartering" the triangle; this is

described most conveniently by a figure of the two cases that

can occur. (W' is shadowed.)

or

r
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If T is not at the boundary, let T'
=  T. We collect here

two facts that will be used later.

i) There is a positive constant c' such that

(5 ) d is t T , R h  > c 'h .

This is easily seen from the geometry of the situation.

(ii) There exists a constant C such that for any X S h ,

(6) flx t ) < C h I  Ixfl L 2 (T,)

The proof of this is the same as the usual proof of an inverse

property. (Equivalence of any norms on a space of polynomials of

fixed degree, and scaling)

Comment.

The introduction of T' is made for our proof of Lemma 1

below.

We now have, by (6),

IUh(x ) < C h - 11 1 u II Lk2 T

and it thus remains to show

(7zZ ,u~lHL( < Ch zn (1/h)fIu IL Rh)
( 7 h ~ ~~Ul i l l L 2  ( T <I ( R

A duality argument is next in store. We have

(8) fluhil L2 (T,) sup f uh

VCco(r T TI

L2

I



Regard as zero outside T'. For each such fixed i, let v

be the solution of

(9) - = in R, v = 0 on .

We note that then by elliptic regularity,

'O v 2 <_ C.

S(R)

Further,

(11) v(x) f Gx(y) ,. (y)dy

T

where

G C(I + ! n x-y ), ,
(12) ID' <X(y)x { i x-yI , ,I 1,2.

01
Now with v h = h v the H projection of v,

, 0 uA Av = f u. Vu h v h

Rh h Rh

(13)

U hVVh = h u hvh  u Dv + 7 h u vh- •
Rh i ti i . 3n i 3t

i n

Here the definition of the H projection and Green's formula were

used, and also the fact that Avh - 0 over each element. Note

that we may assume that ucC (R), by a density argument. The first

sum on the right of (13) simplifies to

u av

anhand so
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I

,v ' ' ( ( h- ) 1  + I
|(14) Iu u 1 2 :-

h i h ( n

Convention.

For the remainder of the proof we use the convention that

" L (R

Lp p h

We next e~tiimate the two terms in (14).

For I We have

I 1L Iiyi
-k h ,n

We use the following lemwa, postponing its proof for the moment.

LEMMA I.

v Ch

h

We thus obtain

(15 ) I ... .

For 12. We have

1? u~ L hii

On the unit triangle T with vertices (0,0), (1,0), (0,1)

it is easily tOLlnd, by use of cutoff functions and integration

of derivatives in directiors loually non-tangential to the

boundary, that

f C ( f " I vf')
L](T) LI(T)

I



herefore, by scaling and by the quasi-uniformity of the mesh

family, since second derivatives of vh vanish,

ih- v )l : C h- V(V-Vh hl( h) +max2 ma

Hence ,

2 < (max HD v H L + h -  )"(vv2 1 , 11c,, t, 1 L h L
1 1 =2 11

We now use another lemma, the proof of which will also be postponed.

LEMMA 2.

max v I C h Qn I/h).
<,I=2 v 1 ~ -

Using this,

12, C ! ul k L (h n(l/h) 4 h - I L v_2. C (V-V1 "'h)J LI

Upon combining this estimate and (15) into (14), and (8), we

find that in order to prove (7), it remains to show that

(16) V(v-vh)I L - C h2  in(l/h),

where -Vv p in R, v = 0 on , O  (-', H , L 2 1.

(Of course, it also remains to verify Lemmas I and 2.)

Comment.

The inequality (16) can be viewed as an W estimate for a

smoothed out and scaled Green's function. For higher order

subspaces, one also need to estimate v-vh in the piecewise W2-norm;

in our particular case this reduced to Lemma 2.

We next need to introduce some notation. Set

Aj



Aj = x: 2 - I  < X-xo - 2- }
I

-j

d. 2

We have ; the lower index is assumed to be zero

j=0

for convenience. Set

j

where with C, a positive constant (more about it in a moment)

is defined by the requi rement

2 -  -1 C* h 2-

Note that J 1i 1'h). et lSo

A' = A jA L) A. A U A',' = A' nR V / "
j , .. I i +I I I'j 4 j h*

Assume thi t C, is so ' roe that with a positive constant c,

Jist(A l ) - ch.

Then with a positive constant c,

(17) dist( ) I , for jO, ,. ..

Co ien t .

We shall on ('Lcas'on, Lemma 3 et seq., need to enlarge C,.

The role of havinr C. l.)ro e is dual: one reason is to satisfy (17).

The other is to have a cert iin separation between the circular

boundary pieces of J, j and j. Basically we need that for
0-o , I .. .
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U {Th which intersect P }c ,
i j--

V{T h which intersect Q c2-

It is realized that this will be fulfilled if C, is large enough.

A similar state of affairs occurs in the proof of Lemma 3.

The following figure, which is not to scale, depicts the situa-

tion.

h" buf fa;r

Alii o l II . .. . . .. I I II ll
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Set

e = v - vh

and recall that we are hunting for (_164. We have

i
ve-ve L (,) + iv e L1 (Q)

1 j=O

Here by Cauchy's inequality, by a well-known result for the H

projection, and by (10),

eT C h 2  I V C h 2

1 L C h !I e 1 h HvH 2( C)H (R H (R

so that

(18)Ch 2  + e L 2 +

j= 0 
L

Next, again by Cauchy's inequality,

(19) e Ll1 C d elL 2 oj

We shall use the follow ing local H -estimate; as usual, we wait

a while before (giving the proof.

LEMMA 3.

As-;uve thtt % is large enough. There exists a constant

C such that the following holds: For j=0,1,...,J,

C min( V( v- i + d-
2 j Sh L 2('j i2v-',, 2

+ C d e I L

2 j

1



Taking x in Lemma 3 to be the interpolant of v, and remembering

that d. >ch, we obtain from (19) and elementary apnroximation

theory, and using also the well known result that

e L2 <v1 C h 2 (by (10)),

V , e < C h dI l
e L ( ) _ 2(R) _

jiV el Ll(Pj) < C dj iiV (v-x)II L 2 (Q-) + CIlv-X L2(01)

+ C :1e IL
2(R)

)fCd'. V + C!- el (R
3 + L

Cd . '+ Cd v , + C L R)

< Cd2 h P+ Ch

(For the last step, cf. the comment after (17).)

By the Green's function representation (11), and using

(12) and (17),

v < max sup r DxGX(y)I ¢(y)!dy

< 2  C h d 2

Therefore,

2i

e , Ll ( .<__C h2

Insertinq this into (13), and recalling that - n( /h),

elLI C h 2 n(I/h).

Ihis is the desired inequality (16).



To complete the proof of our main result it remains now to

verify Lemmas 1,2 and 3.

Proof of Lemma 1.

Recall that -Av = in R, v =0 on 1R, where

Co(x'), iII ,2=

We first consider

, Vlvv= 013VI = sup v
OR P, R 3n ILO( DRl OR

I rmC( (OR)

For each fixed n, let w denote the harmonic extension of n into

R. Then Green's second formula and Cauchy's inequality give

iR fn - ( = f w < C h II"L
R T 2 Lj)

< Ch,

where the maximum principle was used in the last step.

Hence,

(20) wv - Ch.

We need to prove the corresponding estimate with ,R replaced

by rh Let R = U.Sj, describing the linear segments S
ihh =j

making up Rh . Consider Dvi where D is a generic firsts.

derivative.

Introduce (by rotation and translation) a new coordinate system

locally so that

1



S { (x,x 2 ): 0x, < Ch, x2 =0.}

Ix

Then L., the correspondinq piece of iQ, is given by

x2  = b(x 1 ), 0 < x < Ch.

We have

b(x1 )
(21) (Dv)(xl,0) (Dv)(xl,b(xl)) - f ( 9 Dv)(xl,x 2 )dx2

0 x 2

Here, by (11) and (12), and Cauchy's inequality,

-) (Dv)(x,,x 2 D GX(y) 4, (y)dyl

C .f C h CIIIL2
diSt(T' S.) 1 L2 < C

dist(t',Sj)

in the last step we used (5). Hence from (21), since by (2) we have

b(x )<Ch 2 ,

I(Dv)(XlO)I < I(Dv)(x 1 ,b(x1 ))1 + Ch.

Integrating over S. we obtain (since b(xl) is smooth),

.i- ... .. .. ... , . . . . . n .... .. .. .... ..... . .. .. ... ... ...
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I
IDvi < C ¢[Dv + C h2

S. L.

Summing over j gives, by (1) and (20),

0 Vvj < C Vvl + C h2 < Ch.
IR h IRh h

This proves the Lemma. (Actually, the difference in the two integrals
2).

over . and ;R h  is O(h 2

Proof of Lemme 2.

With D a generic second derivative, we estimate

D 2v LI(R) Let B denote a disc around x0 of size Ch and

such that

dist(R\B, T')> ch

for some positive c. We have

{D
2 vLI LI R : !2v il 2v

D 2 B-jf D 2vi + fID 2VIIB \B

Here, by Cauchy's inequality and (10),

fD 2v Chjv)j 2 < C h.

B H (R)

For x, N\B, the Green's function representation (11) and (12)

Oive, together with Cauchy's inequality,

(D2v(X) C < Ch
dist(x,T') 2 I dist(x,T') 2



By the manner in which the radius of B was chosen,

f D2 vi < Ch dist(x,t' 2 dx< Ch Zn(l/h).

R\B \B

Hence,

I D2  L Ch zn(I/h).

This completes the proof of the 1eT, ma.

Proof of Lemma 3.

We start by noting a preliminary result, often referred to

as "superapproximation". Let w be a smooth function with

jwj < 1, let X c Sh, and let I Sh be the interpolant of .,2 X

Then for any triangle c, it is well known that

W 2  < Ch max H Dt ( 2 )H

HI(-I)- l t :2 L2 (T)

If ( A + (-2' then since X is linear,

D W ( 2 XD -- D 2 ) X + 2((D ' l D 2 + (D 2 D 1

Consequently,

(22) W I < C h (f i L TH2)Ico - I H (.) -W~o,(t)L(r

+ 11w l W1 l I r: X11 L 2(

J I I I -I .. .. .. I . . . . . . II .... . . . ..J . . .. . .. . . ... . . . . . . . .. . . . . Il . . .. . . . . I I " -CO



B Let now j be fixed for the rest of our argument, and

set A-A,'' ,=' d=d Introduce the auxiliary dodins

I
k = {x: 2 ( - 1 < 1X-XO1 < d(l + , k = 2,3,4

and

A ) Rh , so that sl 2  4 C 2

Consider first functions whC Sh which are "discrete harmonic" in

2_

2 i.e.. s .un thiat

(23) = , for L: Sh with support in .
hh

We sni ,., tI. t then

(24) w' < Cd 2

h- L Wh ' L2 ( ).

Comment.

For our proof to work, we need that d is so large that every trianle

k
intersect'; it ,iost one of the circular boundary pieces of Q, , k = 2,-,4, and

' hi, cn he arranged by taking C,, large enough. (cf. the comment after (17).)

i smooth cut-off function Ix), x R2, 0 < < 1, such that

1 on A, supp uC A4

and s~i. '

(25) < Cd , 0,1,2

- .i Iw 1



Such a f:.-,tinn is easily constructed by change of variables in one valid

for d=l,

'call our notational convention followinq (1I)),

(26), Wh ' L2 (,) 1 h  K

Here.
; 2 2

2. wh  L2 ,2 4Wh .W

Itwhh

With interpol ant of 2 I is supported in F4 for C,~h

large-. the discrete harmonic ity of wh  we have by (22) and

I IN " h w h  )

.3
C "7w 3l ( h d - 2 '  wh  ( 3 + d- 111o'vwhl
Wh 2 h 2 h L 2  dh

Usinri 'P well known inverse property that

h n C , we have upon squaring and summing
L2 ( )

over ' - ents r intersecting

Wh L2 3 ) < C Wh 2 (C. large enough).

Furt h-

F2 < C d  Wh'L Wh h2 L -)

ol Ie, t ,i(I the above estimates, since Q4 !; _ 3 .,2



i112 C d- 2  2 h 3 ) + Cd Ill Whl L 2 (Q 2 )lIvwhii L
h I h'L2(& h1 2h (Q wVW 2

2 2 1 -

< C d- 1 w 2 2 + 1  2
h'1L 2(Q ) T 1 w7 Wh 'L2

whereupon, by (26) , the desired estimate (24) obtains.

We proceed in pursuit of Lemma 3. We now employ a cut-off

function n(x) such that

2
r 1 on A2

, supp TI C_ A',

and satisfying the estimate of (26) Then

' L 2 ( ) < K (Ph(rV))IIL + iv (Ph( V) -Vh)2hIIL 2 )

< [K (nv) L 2 + I(V (Ph(nV)-Vh) k L2 ( Q)

since the projection obviously is stable in the energy (quasi) norm

over R hn Hence,

(27) 'vh C V 2 (Q' ± Cd 1 VL k 2')+"r(Ph (-v)-vh) L "

h t ( ,) +v 1L2 Q

For the third term on the right of (27), since n--1 on A'

2
Ph(r)v)vh is discrete harmonic on Q Therefore from (24)

, (Ph(Bv)-vh) ' I L2(SP) < cd- h ! riv)-vhi! L2( 2 )

< Cd- I P h(rv)-rvI L2 (Q 
2 ) + Cd- liV-VhllL ( 2 )

Combining this with (27) , using also the triangle inequality,

-
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L2 (2 )  < !IVv L 2( ) + 1IVVhIIL2(2 )  C 'V L2 , + CdL1 2 (PV L2(Q )

(28) + Cd- 1  1 eL2(Q,)

+ Cd 1I Ph(LV)- vJ L2(I, )

To handle the last term on the right we use a duality

argument:

IiPh(nv) "  TlvilL L (Q,)=  SUP f(Ph(nv)-qv)

2 ,Co(2' )

L2=1

For each such lp, let y be the solution of

= A in R , Q 0 on 3R.

Then since Ph(nv)=O on DRhGreen's formula gives

(30) f(Ph(nv)- nv)o= fV(Ph(v)- nv). V - 0 nv -n-  - I +I
Rh h Rh

Forll: By well known properties,

= I f7(Ph(nv)- 'v).V( ,' = I fV(nv).V (4 -PhY )I
Rh Rh

ii) C Iv (nv)ll L2 h II IIH 2(R

Ch(IHv(lL2(Q') + 2

For I2: Note that the term enters only if )R intersects
- 2 h

supp(n).

We have
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1121 < IrVIL2( 3 R) V IIL2 ( Rh)

Since DRh is uniformly Lipschitz (easily checked),

I fVIL2( hR C( fl 2VII k 11nvi H 1)1/2

(32)

< C (d-I/11 v IL 2 (Q, + d 112 v11 lL 2(0, )

Further,

(33) L< C( aVRh < CL 2  ii rH 2 1/2

where

(34) Ii H2  _

For the other factor in (33), we have, taking the norm over the

whole of R,

(35) if7:'H 2 = < II' I 2(I , ).L2 (R) 9

We next want to show that

(36) I FL 2(Q. )  f Cd liV]'Ilk2(R )

Since )Rh and supp(n) intersect we have the following picture,

after straightening the boundary 3R in a neighborhood, assumed

greater than d.

IA
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SN

Here the domain S is a square of side length < Cd that contains

s2'. By Poincares inequality then, since q vanishes on 9R, we obtain

H : 1L 2 (S) < Cd IIV iL(S) and thus (36).

There are only finitely many d (=d.) not covered by the above

and for these we obtain (36) from Poincare's inequality over the

whole of R (possibly increasing the constant).

From (35) and (36), IrV I1L1L < Cd, and reporting this and

(34) into (33), we get

IV IL2(aR) < C d1 / 2

2 h.
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Using this and (32),

121 < C( dI11Vv lL2 (0 ) + 11vIIL2 (0,))

By this and (31) in (30) and (29), since d > ch,

II Ph(nv)- nv 1 L2 (Q) < C(d Vv 11L 2(') + 11v L2(a))

whereupon inserting into (28), we obtain

IJ v(V-vh)lLz(Q) < C(IIVVIIL (Q) + d-l1v11L 2(Q + d- l I VhIIL (C,)).

This estimate depends only on the fact that Vh=PhV. Therefore

we may write V-Vh=V-X-Ph(v-X) for any X in Sh and obtain

I (V-Vh)llL2() <_ C min( llv(v-X)IIL 2(Q )+ d-l1!v xllL2(a))

+ Cd- v-v h ILk 2 )

This proves the lemma, and ends the lecture.

I

1



Lars B. Wahlbin, Cornell University.

Third Lecture: A brief survejof parabolic s1oothing and how it affects

a numerical solution: finite differences and finite elements.

Finite Differences.

As a suitable model problem we take the pure Cauchy problem for

the heat equation in one space variable, i.e., the problem of finding

i = u(t,x) such that

u t  =  u x x  x t - ,
()

u(Ox) = v(x)

Here v is a given function.

Define the solution operator E(t) by

(2) u(t,x) = E(t)v(x) = - 1 e(x-y /4t(y)dy.(4nt)i/ ~ ~ v

For numerical solution of (1) we choose a regular mesh. With

h a spatial steplength and k a temporal one we introduce notation

according to the following figure.

I t,n

x=jht=nk

h x,j

We demand that, as k and h vary, they obey

= k/h2  is fixed.

As a model example, consider the forward time, centered space

Lecture in the Department of Mathematics at University of Maryland,

Colleqe Park, during their Special Year in Nbmerical Analysis, 1980-81.
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approximation (FTCS). With u. the approximate solution,

un+l un un 2n +unU. - u. un  - 2u. + u.
u~ j +l i j-I

,k h 2

or

uo = Xu -+l  + ( E-2A)u n + Aunl (Ekun) j

For the moment, set uO = v. = v(jh) ; we shall return to the question
i 3

of how to choose the discrete initial data. Then, corresponding to

(2), we have the discrete solution operator

un = (E n  v)
uj kv

We shall describe some results for this set-up. Sharp theorems

for the rate of convergence in terms of smoothness of initial data

v are obtained by use of the Fourier transform, and of Besov spaces.

We have

t 2
E(t)v() e v(F)

Ek v ( ) = a(hQ)()

where, in the FTCS case,

a(0) = l-2N+2X cos(O)

In general, a(tn) is 2T-periodic, and we demand parabolicity in the

sense of John, [1], i.e., that there exists a positive constant c

such that
2

a(o) ' ec 2 , for ej 1

In the FTCS approximation, this is the case if X < 1/2 ; it is

well known that the approximation is useless for X > 1/2

We also introduce the order of accuracy, j , of the approximation

via



-e 2 2 ) as -

In the FrCS scheme, 2

We next briefly describe the Pesov spaces BpS ,B (R I
p' p

to the extent that LcI-e iudience can appreciate that they might come in

handy in a Fourier based investigation. Loosely speakivcq, d function

in BS has (almost) s derivatives in L A convenient character-
p p

isation for the present purposes is the following; cf. [2] and

references there for details.

Let

i ( ) + ( + + +

where

0 is a smooth characteristic function of the interval [-1,1],

i is a smooth characteristic function of

Then
= sup 2 F L

B p i > p Pp

For p we have,

s non-integral, B. Lip(s), the Holder class,

s integral, B., Zyg(s), the Zygmund class.

The following result characterises the rate of convergence in

terms of the smoothness of initial data v. It takes into account

all possible translations of the spatial mesh, and the error at all

time-levels nk
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THEOREM 1.[3

For 0 < s <

ii E v-E(nk)vi L < Chs J vi BS $ n = 1,2,...

Conversely, if for a fixed tI > 0

sup II En -E(nk)vH < Ch s  as hk - 0
O<nk<t kV L -

l

then v E B

This result should be compared with classical results

for trigonometric approximation, cf. [3] and references

there, and results for spline approximation, [4].

A generalization of the first part of Theorem I to more

complicated problems can be found in [5].

Example.

Let a be a small positive number and v the function

SOx<O,

(3) v (x) x 0

where w(x) is smooth function with compact support on R1 , with

w 1 in a neighborhood of the origin. Then, see e.g. [2,Prop 2.4.2],

B" but v B5  for s > a Here we have by a simple

calculation,

E(k)v)i)) c,/ 2 hY + O(e-/(lOXh) )

and, for the FTCS scheme,

EI v (O) =

Rightfully then, Theorem 1 predicts only h convergence close



I

to initial time (unless the mesh parameter I is luckily L
chosen; then shift the mesh),

However, let us now take into account the sinoothng erty

of (1), i.e., the fact that even if v is rough, E(t)v is smooth

for t , 0. Will the numerical solution take advantage of that?

Let us therefore study convergence at a fixed positive time

t 0 nk Our first theorem may come as a disappointment.

THEOREM 2. F6J.

Let 0 , s . , and let t0  = nk 0 be fixed. There exists

a function v c such that
-n

lim sup h 5  11 Ekv-E(nk)v I L > 0
h , k-~O
nk=t 0

A specific such function was exhibited in [7]; it is,

essentially, a lacunary Fourier series. It is not particularly

likely to come up in many applications. E.g., it has the property,

for s a non-zero integer, ds - 1  v/dx s - 1  is continuous, but

d Sv/dx s  is non-existent a.e.

An attempt at an inverse theorem for convergence at a fixed

time leads to the following.

THEOREM 3. 7]1.

Let 1 ,: s < , and let tO  = nk > 0 be fixed. Then if

JJEkv - E(nk)v 1L < Chs , as h,k - 0 ,

s-1
we have v c B00I

A positive counterpart to the above is as follows. I
|1
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THEOREM 4. [7].

Let 1 < s < o Then

) En < C h -1/2
Ekv -E(nk)vI L C (nk)v II vl s, Bl

Eximpl e.

Consider the function v of (3). It belongs to Bi+G and
to B, but no better. Theorem 4 predicts O(hl+o) convergence

(0 < j< - 1) for positive time, and Theorem 3 tells us that this

is sharp.

Hence, the comhination of Theorem 3 and Theorem 4 is sharp for

this type of isolated roughness.

The fact that the numerical approximation takes advantage of the

smoothing property was noted in [8].

Still better rate of convergence for positive time than predicted

by Theorem 4 can be accomplished if one employs a preliminary smoothing

of initial data, [7], [9].

Exam pl e.

We define a mean-value operator Mh

MhV( Ih/2 --y)dy = F-I(2 sin(h /2)
,hv(x) f v(xof (

We have, e.g., the following picture for v of (3)

-11 h
'i" i"



Here

0, x < -h/2

1 +1 h2< /

(4) MhV (x) 1 (x + h/2) j + l  -h/2 < x < h12

1 h(,+ll
1h+l ((x + h/2)' - (x h/2)" ), h/2 xh(c,+l )

as long as 1

THEORE'4 5. [7].

o s - , 0 < t t I  fixed

0 B

Air v:ing this result to v , while taking the difference scheme

directly on v, gives a rate of O(h I ) using it on M V results

in an Oh2) rate. Thus, for o small, we gain almost a full order.

Th: simple mean-value operator considered fits nicely with the

FTCS .:,proximation; the inherent second order in the scheme is re-

stored as long as initial data has somewhat more than one derivative,

the dc.r ,tive being measured in the weakest possible L -class, viz.,P

in L Similar results hold for higher order schemes by use of

higher -irier smoothing operators.

,iotL that if it is possible to decompose initial data v as

v = v h + V rough , then it is sufficient to apply the smoothing

operator o V roug h ' If one is lucky one might choose vrough so

that the smoothing operator on it is easily evaluated, cf. (4),

where (-- , (cruld use a smooth spline cut-off for o in (3).

The-rem 5 holds also for more complicated problems, [7].

We conclude our survey of results in the finite difference theory

by givinq a v-ery rough indication of why a smoothing operator works:



I 7

iSplit v as v l + Vhigh into "low" and "high" frequency

IIicowponents. For rough v, V high is not "small". With

to = nk =  nh 2  ,

(Env - E(nk)v) () = (a(h )n - elow
_-to 2 ^'

e vhigh

+ a(h )n V high 1  + 12 + 13

Here, I is "small" by the order of accuracy condition. Clearly,

12 is "small" for to fixed positive; this reflects the smoothing

j property of (1). However, since a(h ) = 1 for h = 2i7 i

integer, 13 will not be small.

Considering next what happens when applying Mh , in the same

sloppy manner we have

(En Mhv - E(nk)v) ()

I - a(ht,)n [sin(h /2) 1

h /2 l ow

+ (a( n  -e) low

-e Vhigh

+a(h )n sin h /2) =I + +J
+ h h/2 high 1 2 3 +

sin

Here, j is "small" since s 1 for G small. J and J

are "small" for the same reason 11 and 12 were. Finally, for

1 4 the role of the smoothing operator in damping high frequency

components is easily discerned.

Finite Elements.

jAs a suitable model problem, this time we consider the mixed

I
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initial boundary value problem

ut  =U xx , 0 < x < 1, t > 0 ,

(5) u(t,O) = u(t,l) = 0,

u(O,x) = v(x).

Let u(t) = E(t)v

For the numerical set-up, let N be a sequence of integers,

h = I/N, I. = [jh,(j+l)h], j=O,... ,N-l; let r and s be integers3

with r > 2, 0 < s < r - 2 and set

c5

Sh = tXcCS[0,1], X(O) = X(l) = O,XII polynomial of degree r-l}.

For simplicity we only consider a semi-discrete approximation to (5).
a

We seek uh(t) E Sh such that

0

((uh)tx) + ((uh) x x9 ) = 0, for all X c Sh

uh(0) = vh  given in Sh

Here (f,g) =f fg Set Eh(t)vh = uh(t)

In this situation, let us not review results of a general nature

(cf, [10], [11], [12]) but move directly to the problem of how the

choice of vh influences the "smoothing advantage". Furthermore,

the precise results we state shall only be quoted for (maximal)

O(hrj convergence.

The following very loose indication can he given. Let

()= 2 sin(jx), A = , j = 1,2,... be the eigenfunctions

and eigenvalues of the operator -d2/dx 2  on [0,1] with zero endpoint

conditions; let h and Xh, j = l,.... N , be their discrete

counterparts. They are "close" for "low" j, but unrelated for



I 29

"hi(Jh" J, although for j large, A h is large. Now,

E(t)v k 1e J S k =k

k he j e h oh

Eh (t) vh - E(t)v

E~~ ~ h t

_ kh k )e j h
310 lw 3

St ,t h ti~ - h.  jh
k (e ' *j - e k e

j low h high J

- t

I h kh e + 1 + 3 + 13 4
h hi h

dero I s sal 1" because h a and j for low j. Fo-

p1  itiv , dnd I4  are small" since and h are large.
S3 4 3f

To have 1 small, we need that k. h k. is small for low j.

it

Ik h k . - v v t h -I ow hk h k . j ) ow( V i ) ,

where the second rember on the right is "small". Thus, loosely

sneak inq we need
h

(f3) (v - v, j small, for low

viled v was suiooth; for rough v, systematic sign errors of large

,,itjde could occur, destroying (6)

Th,,, is, however, the obvious choice of setting vh to be the

prui tinn of v.
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The above can be made exact. Let Ph v denote the L 2-projection,
0defined by (Phv,x) = (v,x) for all XSh

THEOREM 6. L131.

Let t 0 > 0 and v h = Ph v  Then

' Eh(t)Phv - E(t)v L < Ch r .. - "hv L1  0-

A similar result holds in the presence of a suitable time discreti-

zation, [11], [13].

The smoothing property in parabolic finite element equations was

investigated in [14] and [15].

In the case of smoothest splines (s=r-2) there is a connection

between the Galerkin method and certain "finite difference" operators,

see [161. Then taking v h = Ph v corresponds to a smoothing operator

in the finite difference theory.

In general, numerical integration is needed to evaluate Phv

Let, cf. [17] for details, Phv denote the approximate L2-projection

given by applying an integration method which is exact, on each

subinterval, for polynomials of degree 2r-2.

THEOREM 7. [17].

Let t0 > 0 and v h = P hv Then

Eh(t)Phv - E(t)vl L

N-l
< hr, I +< ChL'11v L + Y I min(xl-x)IDr(x) dx

N -1 j =O I. 1 I

+ f IDr-lv(x)Idx} , for 0 < t O  < t
j=o I.

A similar result holds if v h is the interpolant of v; the
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result also carries over to time-discretizations, [17].

Applying Theorem 7 to functions behaving like (x-x ) locally0 +

vit have for non-integral and x0  interior, that a > r-l is

needed for O(hr) convergence. This corresponds to Theorem 4 in the

finite difference situation. For x0  = 0 or 1, or for a integer

and x0 meshpoint we have more advantageous estimates in the finite

clei-ent situation; this is because the analysis does not have to include

all possible mesh-shifts.

As in the case of preliminary smoothing in the finite difference

settingj. if v can be split as v = vsmooth + Vrough , it would

,tiffice to evaluate Ph vrough exactly.

We conclude this lecture with the following five brief remarks.

i) Take e.g. v to be the step function

S0 , x; x < 1/4 ,

) , /4 < x < 3/4

0 3/4 < x 1

!,r L2  upojection has then an oscillatory error, which gets heavily

dJ '.eJ in the approximate solution, which in this respect behaves

iilke the true solution.

i) Connected with i) is the fact that

V-P V - Chr , I
h H 2

ii i A smoothing property in the Navier-Stokes equations has

. ,ut to a somewhat similar use in [18].

1., For the Euler-Poisson-Darboux equation,

utt + = u- t t u

tr ' a smoothing property, which depends on the size of K. The

I

-- 4-...



finite element solution takes advantage of this, [19].

v) The influence of time-discretizations on the parabolic

smoothing property in finite elements has been thoroughly investigated

in [20], [21]. Certain surprises are in store for high order time-

discretizations when the equation has time dependent coefficients.
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I. Asymptotic Convergence of Boundary Element Methods

This lecture gives a survey on the asymptotic error ,tnalvsis

of boundary integral equations, in particular on joint work by M.Costabel

G. C. Hsiao, P. Kopp, E. Stephan and W. L. hendland [25,34,38,39,

41, 42, 43, 72, 79, 80].

Introduction

Nowadays the most popular numerical methods foi- solvino

elliptic boundary value problems are finite differences [22],

finite elements i1, 211 and, more recentl\', botundarly inteqr,1]

methods. The latter are numerical methods !(,r srvin intenral

equat ions (or their ceneralizations) on the bound; r':,° of the

oiven domain.

The conversion of elliptic bounda rx' value nrI.1]ems into

corresponding integral eouations for the invest i, ati n of existence

joes far back in history. For cemputat ionaIl purp oses, however,

uounuirv integral ecuiat ions of various types becameI more fashion-

able only recently. (See e.q. [44] and the proceedinu s [16, 171

and [68].) The numerical discretizations are mostly based on

collocation methods whereas mathematically alerkin's procedure

and correspondinq variational formulations provide a further

developed error analysis.

Here we shall develop a numerical implementation of Galerkin's

procedure. The resulting scheme not only provides hioh accuracy

as Galerkin's method but also is simple to be adapted to modern

computing machines. We shall terrm this method as the Galerkin

collocation method [79].



It applies to a very wide class of integral equations on

ithe boundary manifold l' as to integral equations of the second

and the first kind, to singular integral equations with Cauchy

kernels oin curves and -,iraud kernels on surfaces, i.e. Calderon

Zygmund operators [19] and also sonie integrodifferential equations

with finite part principal value operators.

The method qeneralizes the Galerkin collocation in [38] that

has been developed for Fredholm integral equations of the first

kind with the looartlrttic kernel as the principal part.

The effectiveness of the method rests on the asymptotic

convergence properties o- Glerkin's method. For finite element

methods in th, domai i .ind 'or finite differences it is well known

that strong el lipticiLv" implies the asymptotic convergence. But

Sfor th, bounci,-v "t o thoos the strong ellipticity of the

c~rtnsid) Ii . O, :i e ,nt al operators seemed not to have

I recc vk,' ti, I , tnt ion yet.

i, e ; <.: 1I I >'>i: ftwards (i) strong ellipticity,

S(ii) a tri,1 ' <:: ',<tn < -r the integral equations, and for two-

dimensinail problc:s towards (iii) convolution operators as the

principA1 piarts, ir-(i (iv) smoothness of the remaining kernels.

(i) Strong ellipt ici. t:

I Since .ichiin's fundamental work [51] and the constructive

proof o(f the Lax-Mqi lran theorem by Hildebrandt and WienholtzI
[35[ it is well known that the Carding inequality, i.e. strong

ellipticity imipi<cs asvrrmptotic convergence of Galerkin's method

ill tht, Unergy norm. This in turn gives optimal convergence rates

I
I
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in the corresponding Sobolev spaces. Using L2 or the Sobolev

space norms which are equivalent to the energy norm it turns out

that the strong ellipticity is even necessary for the convergence

of all Galerkin procedures due to Vainikko [77]. As for the

variational methods [21], the use of regular finite element

functions yields optimal order of convergence when the error is

measured in the energy norm or in Sobolev space norms of hiqher

order. (See also Stephan and Wendland [72].) Here we consider

equations which are strongly elliptic with ellipticity correspon-

ding to Agmon, Douglis and Nirenberq (see [36] p. 268) but also

with pseudodifferential operators of arbitrary real orders.

It should be pointed out that strong ellipticity is a rather

strong condition. Often serve more specific weaker properties

of the problem for satisfying the Babuska-Brezzi conditions [10].

(ii) a priori estimates:

If the integral equations are interpreted as strongly ellip-

tic pseudodifferential equations [46, 67, 76] then they provide

a priori estimates in the whole scale of Sobolev spaces in addi-
0

tion to the Garding inequality. This allows to generalize the

Aubin-Nitsche Lemma (571 from differential equations to the

general class of strongly elliptic pseudodifferential equations

as done by Hsiao and Wendland in [42]. Nitsche's trick proves

super approximation i.e. optimal order of convergence even if

the error is measured in Sobolev space norms of order lejs than

the energy norm. This super approximation implies high convergence

rates for the approximate potentials in compact subdomains away
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from the boundary manifold where the integral equation was solved

approximately. This indeed was often observed in numerical

computations.

(iii) Convolution kernels as principal part:

In any case, the principal part of a pseudodifferential

operator has convolutional character [67, 76]. But if it can be

depicted as a simple convolution in one variable, i.e. for two-

dimensional boundary value problems, then the Galerkin weights

of the principal part associated with finite element functions

on a reoular grid form a .oeplitz matrix whose elements

are qiven by a vector. This vector can (ventua2lv be expressed

by two vectors which can be evalu,-ated exactly up to the desired

accuracy once for all independent o, the boundary manifold

as well as of the meshsize h for an' ixed type of finite elements.

It should be pointed out that the accuracy:' of the numerical results

depends significantly on how to cr mpi-te the approximate principal

part.

(iv) Smooth remaininq kernels:

If the remainder of the integral operator subject to the

convolutional principal part has smooth kernel then the corres-

pondinq Galerkin weiohts can be treated numerically by suitable

quadrature formulas deperding on the particular finite elements

to be used and the consistency needed. This leads to simple

(modified) collocation formulas.

A , , , , . . . .. In . . . . . . . . .
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In this way, the computation of the coefficient matrix of

the finite dimensional algebraic system can be done in a most

efficient and simple manner. On the other hand, the solvability

of the corresponding algebraic systems as well as the asymptotic

convergence of the approximate solutions are assured by the

strong ellipticity of the integial equations.

If the consistency is of sufficiently high order then the

asymptotic convergence and even the superapproximation remain valid

for the fully discretised Galerkin collocation scheme as well.

Our replacement of the smooth part of the kernel is very

much related to spline collocations of smooth kernels in Fredholm

integral equations of the second kind due to Arthur [6], Chandler

[20], Prenter [60] and Richter [65]. But here we are interested

in an efficient approximation of the Galerkin weiqhts rather than

of the kernel due to the much wider class of equations.

Although all properties (i) - (iv) seem to restrict us to

rather specific integral equations it turns out that almost all

the integral equations of applications provide all these properties.

In particular, the systems of integral equations of stationary and

time harmonic problems of elastomechanics, thermoelasticity, of

flows (viscous and inviscid) and of electromagnetics form strongly

elliptic pseudodifferential equations. Several examples are

listed in [79].

In Section 5 we present some numerical results from [39].

These experiments show the dependence of the accuracy on the

meshwidth, i.e. the number of grid points and the smoothness of

the finite elements used. In particular it can be seen that the

doubling of the number of grid points yields an improvement of
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one decimal digit. On the other hand, the following table shows

us (for Example 5.2) that the improvement of 3 digits due to the

transition from piecewise constant trial functions to continuously

differentiable piecewise quadratic trial functions requires only

10 more time whereas the doubling of the number of grid points

requires twice the computing time.

Tabe: CPU-times for examples 5.2 (both ellipses)

m 20 grid points 40 grid points

0 4.60 sec. 9.93 sec.

1 4.71 sec. 10.48 sec.

2 6.76 sec. 10.55 sec.

'is comparison shows that for smooth data the use of higher

c - elements is more efficient than a mesh refinement.

A i-ecent result by Pr ssdorf and Schmidt [62] indicates

Lit stroni ellipticity is even necessary for the converqence

(,,ilerkin's method (with piecewise linear functions) in case

-1kn2-daimensional singular equations on a closed curve. That

w,)ulci -ein that the projection methods of Gohberg and Feldman

P,' ssdorf [61] and Silbermann [63] with classical Fourier

. ccnverke for a wider class than our strongly elliptic

-* . If one still insists on the use of finite element

VVX <,inations for elliptic but not necessarily strongly elliptic

tins then one has to use the least squares method [53, 72].



Similarly to differential equations, which have been treated by

Bramble and Schatz [15] one again finds converaence of optimal

order and super approximation [72] (for first order elliptic

boundary value problems see [811 Chap. 8).

In the second lecture we shall extend our method to mixed

boundary value problems where the singularities of the solution

require extra care and specific anproximations.

In higher dimensions, i.e. for boundary manifolds FIRn of

dimensions n-l : 2 the triangulation of the manifold creates addi-

tional difficulties and additional approximations which have been

studied by Nedelec [55] for a special intearal equation. This

was extended in [31]. In these higher dimensional cases the

Toeplitz matrix of the convolutional principal part can only be

defined in the above mentioned economical manner if one uses

tensor product finite element functions on cubic crids in the

local parametrizations. (See Michlin [521 II 9.) All this

is still to be done in detail.

Although most numerical implementations of boundary integral

methods are done with the standard collocation yet there are

known only few results on its asymptotic convergence except in

the case of Fredholm integral equations of the second kind.

Here we refer to the extensive bibliography by Ben Noble [591,

the surveys by K. Atkinson [7], C. Baker [12] and results on

super convergence [20, 34, 65, 66].

For our more general equations there are only preliminary

results available for the special case of the Fredholm integral

equation of the first kind with logarithmic kernel on the closed
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b(lundaiy curve F [1, 2, 4, 78] whereas for a singular integral

equation with Cauchy's kernel S. Pr6ssdorf and G. Schmidt have

proved recently that the collocation with piecewise linear

functions converges if and only if the singular integral equation

is strongly elliptic [62].

A more rigorous asymptotic analysis for the class of strongly

elliptic equations is yet to be done. The numerical computations

with boundary integral equations show super convergence where the

solution is smooth. This indicates that local convergence

properties also hold for the boundary integral equations.

Other open questions are uniform convergence properties and

the analysis of mesh refinements and non-uniform grids on the

boundary.

Since the boundary integral method is in concurrence with

the well established finite element methods in the whole domain,

let us make some remarks on the computational complexity for two-

and three-dimensional problems. To this end let N denote the

number of grid points on the simple closed boundary curve r of

,-n interior domain Qc-k2 and N2 the number of grid points on the

3boundary surface F if cMk

Then one has the following relations between complexity

and N in terms of orders of N. (This comparison arose from a

Jiscussion with Professor Dr. I. Babu~ka, University of

M.Xyland and Professor D. J. A. George, University of Waterloo.)

I
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Boandary inteoral
Finite Elements in llmethod on '

Number of grid points N2  N3  N 2

Stifr-ess atr-ix, sparse: fully distributed:
computation anti storaqe 2 N4 N2

Solution ot the discrete Use of band struc- Gaussian elimination
equations ture and right

orderin C:

(N2 ) 3/2 N3 (N 3 ) 2 N6  -3 2 61

Computation of the Alreacdy." known C;mute LQ'udary
solution aL ill inner i nte< 1- in all grid
irid points points of ., i.e.

N 3  N5

The above comparison shows rather clearly that the computa-

tional expense is in both cases of the same magnitude, i.e. propor-

3tional to N 3 or N, respectively. Thus the reduction of one dimension to

the boundary integral method is no reduction in computing time. However

there are several other properties of boundary integral methods

which may be very advantageous:

(i) The experiments showed very reasonable results already

for small numbers of grid points on the boundary ; .

(ii) The method is applicable to interior as well as to exterior

problems without modifications.
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, 1-',M} tertls are !iiven by boundary potentials

and hence cin be differentiated analytically away from F.

in the other hand the boundary integral method is restricted

to prohems where the fundamental solution is explicitly avail-

ble whereas the usual finite element procedures provide a

rigorous method.

1. h.>urUarv Integral Equations

For the reduction of interior or exterior boundary value

problems as well as transmission problems to equivalent boundary

inteo<ral LqaatJns on the boundary manifold F one finds many

ffei-ent methodIs, since this reiuction is by no means uniaue.

The tw-, mos. v'opular methods are called the"direct method and

the'oetho: of potentials". In all these cases one needs a

fuffiiJ-flefltdI solution, respectively, fundamental matrix y(z,r)

-7 the Iiffe-c-ilia! emiuations explicitly since it will be used

in nu'-orica] computations. Thus, the practical usefulness of

the bL'uunda int:er 4l methods hinges essentially on the simple

2 ',)'t hb~i t' I fundamental solution. This restricts these

mutir'ods ' 1i1 t11 different ial equations with constant coefficients.

i aA, atit)n let us consider the exterior plane boundary

Sal , tr oh,] fr the ,ap lacian in the form

( for z C, I I2

(- .! n the boundary 7,

:1- 7o. z! = 0(l) for .



Here 7 is a simple closed plane curve and i(denot es tho xtr i (-)I

domain with boundary P. The exterior problem (1. 1) ese , .

a charqed conductor in two dimensions 170, 1p. ]74) . The. s( Ii' W

of (1.1) can be represented via C(reen's ferITm1L!II 1 • 

(1.2) U(z) U(,> (lo ,-: ) ,+

+ - J (- lo, " Z- (i

where

(1.3) ds = B and

(1.4) W lim (U(z) - S Iol zl)

DU

Hence, if v : and w are known then (1.2) q ives the solution.

The limit z-F with the jump relation for double layer potentials

yields with the "direct method" an inte(iral equation for v and uw,

(1.5) %'(r) loq !z- ds - (o f

= a I Z7-1 d'oq.
1,

(1.6) 1 vds

Here B and f are qiven and v and (i are the unknowns.(l.5) is a

Fredholm inteqral equation of the first kind.

For the method of potentials we try to find the solution

of (1.1) in the form of a double layer potential,
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.7) U(z) = B log Iz+ If v( ) ( log Iz-CI) ds

where the double layer density v and the constant w are to be

determined. Since the last potential vanishes for constant v, we

can add the conditon

(1.8) 1 vds = 0.

Transition z-+§' yields the boundary integral equation

(1.9) v (z) - I v( ) (- log Iz-C< ) ds - : f(z)

= 2B log IzI -2(z),

(1.10) - vds 0 .

iiere f is xiven and v and e need to be determined.

Simil-ariy, the exterior and interior Neumann problems as

,.:ell ts the int-iao Dirichiet problem can be formulated in terms

Si> Cii , r :,t L r da r,. intecral equations.

The Lcv': exterior Dirichlet problem is only one very simple

example leadiing to boundary integral equations. References to

many othet e'-,OpLis can be found in [79], in particular from

cc: ] r4 mprin%, electrostatics, flow problems including slow

-L. ev-us 1- .,1 -Le and shell problems, elasticity problems in

'lenslrms, punch and crack problems, problems of

, time harmonic and stationary electromagnetic

I it ualso [44] and e.,. the conference proceedinqs [16,
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In many of these cases the integral equations become much

more complicated. However, the types of integral equations are

Fredholm integral equations of the second kind as in (1.9) or

of the first kind as in (1.5). In addition one also finds singular

integral equations on curves as

(1.11) a(z)u(z) + 1 b(z) U(C) d< + k(z,r)u()ds. = f(z) , z,
•V V

or the corresponding equations on boundary surfaces [54], or one

finds operators of the form

(1.12) - - u(C) (D - log z-¢) ds = f(z), z, ,

and the corresponding operators in hiqher dimensions. (e.g. see

[371; in [91 the operator K+ has (1.12) as principal part.)

Often the above operators also appear in systems of integral

equations.

2. Strongly Elliptic Integral Equations

Although all the above mentioned types of equations have

very different properties in classical theory of integral equations

it turns out that if they are considered as so called pseudo-

differential operators [76] they have a very strong, common pro-

perty. Namely the equations of practical interest are "strongly

elliptic". In order to formulate this property one needs the

Sobolev spaces H (F) of generalized functions on F, their inter-

polation spaces and their dual spaces. For the definitions we

.. .. .. . .... .. -. .. ... ... . .. . . . ,, M IN A
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refer to [3] (in particular p. 214). Then each of the above men-

tioned operators A defines a continuous linear mapping A : H SHs-2a

for a whole scale of real s (depending on the smoothness of F).

2a is called the order of the pseudodifferential operator A [76].

(G. Richter calls -2a in [64] "smoothing index".) For our examples

we have 2c=O in (1.9) and (1.11) , 2a = -1 in (1.5), h * e, in

(1.12). The boundary integral equation we write in short

(2.1) Au = f on r.

The announced common property is the coerciveness in form
0

of the Garding inequality:

(2.2) Re(Av,v) = Re vAv ds > y¥ v) 2 a - Ik[v,v] I
7 for all v E Hn(F)

where f>O is a constant independent of v and where k[u,v]

denotes a compact bilinear form on }Ic x Ha. In some cases k

equals zero, then inequality (2.2) corresponds to strong energy

estimates as in [56].

In order to characterize those equations or systems of

equations that provide coerciveness let us use the above mentioned

context of pseudodifferential operators and let us consider a

more general case of systems of equations in the form (2.1). Then

to A there belongs a pxp matrix-valued principal symbol a (x,)

= (q,r(x, -)q,r1,... p corresponding to the p equations of

(2.1) for the p components vq, q = 1,.. .p. As usual, the aq,r(x,)

arc assumed to be homogeneous in Rn for IW> 1 with degrees aqrEi.

I



Now we define strong ellipticity (analogously to the Agmon-

Douglis-Nirer.'erg ellipticity for differential eouations) assumina

that there is an index vector Q (R1, 1. ) such that

(2.3) r : 1 + X q,r 1..., p.
qr

A is then a continuous linear pseudodifferential operntcr nf

order 2 a, i.e. defining a continuous map

S+(t~~ P +Us-xa2.4) A: }If+ " C1 W 2  q( ) lS (' : [ 2  S ) , s

q=l 2=2

in the scale of Sobolev spaces in (2.4). (The admissible s depend

also on the smoothness of T.)

Now for the following we assume

(2.5) A is strongly elliptic

i.e. there exists a complex valued smooth matrix O(z) and a constant

y > 0 such that

(2.6) Re T (z)a o(Z, ) C >_ IC12

n P = n o

for all z, 1, all fn with I l=l and for all ,-. A strongly

elliptic system A satisfies the Gardinq inequality [46],

(2.7) Re('Avv) I 2V Ha -Ik[v,v] I for all v, II (7)(2. ) e(3A ,V L2 ) M H (7)
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For its formulation let us denote by P the L orthoqonal
a 2

projection onto H Then we recuire the approximation propertv

(3.4) lir HPhg-g1 ( 0 for any q, I.

This assumption implies with the Banach-Steinhaus theorem the

stability

(3.5) 'Jp c for all h
h 1 H,

where c is indenendent of h, and also by duality

(3.6) ,HH H .

These reauirements are satisfied for rcqular finite elements

and also for trigonometric polynomials on closed curves as well

as for spherical harmonics on closed boundary manifolds 7 in

higher dimensions,

Now w-c are in the rosition tostatoC6a's lemma.

THEOREM 3.1: Let Eqv ,j, 1) with A be a stronoly elliptic

equation with unique solution u ( 11H to any f H' <  Then

therr exists h o0 such that Equations (3.3) are uniuuuely

solvable for every 0<hh o .0 Moreover there exists a constant

c independent of h and f such that

(3.7) Iv - ul c c inf Ku - Xl a
If h If



For convenience, in the following asymptotic error jnaysis

we are always using c, c', ... as generic constants which miqh'i

change their size and meaning at different places.

As was mentioned above, Theorem 3.1 is not restricted to

our finite element approximations but applies to a rather '.,idn

class of Galerkin methods as e.g. for the projection methods

using trigonometric polynomials as in [61,63].

Proof: Although the proof is standard, let us repeat the

main arguments. The Galerkin equations (3.3) are equivalent

to finding H Hh with

(3.8) PhAPhV = PhDPhV + PhKPhV = PhAU

Since D is positive definite we have from (2.7) the stability

estimate

(3.9) Re(DPhV,PhV) > y'l PhVvl 2 2
H

which yields with the continuity of b and duality of H and

H the stability estimate

(3.10) ,(P hDPh - : C

on H h where c is independent of h. Thus we can write



.. .. P D.. . --1 _ _

(3.11) P AP h  phDPh(I + (PhDPh) PhKPh)

The sequence of operators

(PhDPh) - PhKPh

is a comnosition of inverse stable and, hence, elementwise

convergent operators (3.10), Ph and the compact operator K.

Therefore the converqence of

lir ( P -PhK - D K,( = 0
h'O

for I ii , ' is uniiori, due to 15] and we have
-i -i

lim (I + (Ph DPh) hhKPh) = (I + D 1 K)-1
h 0

for any g , 11' since A- D = (I + D- K) - exists. This implies

the uniform boundedness, i.e. stabilitv

(I + (PhDPh) PhKPh) c

for all h - 0, h h with an appropriate h0  0 where c is

independent of h. Consequently, an Hh holds stability
h

(3.12) "PhAPh) I+ (P DP-P KP-l (PDP-l

for al 0 h h° where c is independent of h. Now (3.12) implies

with the continuity of A the stability of the Galerkin projection.
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(3.13) Gh =  (PAP h)-IPh'A  i.e.

(3.14) JGhII 1 < c
Ha , H

for all 0 < h < h o  Since G = I and v Ghu, Ca's

Lemma (3.7) is an immediate consequence. This completes the

proof.

Now we specify the spaces Rh to regular (m+l,m) systems

of finite element functions [11]) They have the following

approximation property and satisfy an inverse assumption:

Approximation property:

Let the multiindices m,t,s satisfy componentwise

-m-I < t < s < m+l, -m < s, t < m. Then to any u(HS (F) and

any h 0 there exists a j. Hh such that

s -t
(3.15) <U - i'ql' <c h q q ju H (see [15].)

If t q  H q

The constant c is independent of , h and uq
The finite element functions = ),H h provide for

-m t s m i the inverse assumption

t -S
(3.16) h, tc q

II ( ) H (r)

Th. re the stability eu(nstant c is independent of n and h [58].

If we insert (3.15) into the right hand side of (3.14) we surely

find improved asymptotic orders of convergence if h - 0. Using

]Tn ieneral one uses (9 ,m) systems rather than specifying
- m+ 1. We avoid these details here.



the inverse assumption ( 3. 1 6) one cl-,n a I so :xtend the est imate

of the left hand side to ift norms with t m [72]. These

are the results which have also L>,otn , n with variational

methods as in [21]. But as was already :iitnh-oned in the

introduction, for pseudodifferentia] oper,tors o, one can even

prove sue,(,rapproximarion [42]. wCo lct tt..o r'.auns va>

find the Tol lowI n< improved conver>:en<o then r

T I IEO-RE [42_, 64 ,_72 1 :

Let A be stron JIv elliptic ai let (3.1 anr oxi ue

solution. L- t{ sat isfv (3. 13) and .16) al

(3.17) t' -m n ,o ,.

Suppose t , s , tT< o, t-

for ' I .. , p , s 0. Then we have the asyimptotic error estimate

(3.18) u - v, c h s t U
Ht +  s,

In addition, if we consider the discrete equations (3.3) in L(-)

then we find for the stibility of these eluations

p 2t'
(3.19) ' ( c h q1

Remarks: With a slmpl, analysis (1 1 A - A for 03 the

stabi I t 3 . 19) yieds the conditi n i n r umqr of (.3) to b.



of the order

h q

q=l

The stability estimate (3.19) can also be used for an

estimate of errors due to numerical noise and round off

effects in the framework of ill posed problems. This can be

found in [43].

The asymptotic estimate (3.18) includes the case

t < u, i.e. superapproximation. If t = 2a - m - 1 then one

has for sufficently smooth data the superapproximation

2m +2-2a

(3.20) !u - v-m-l+2a c h q q lull Hm+

That implies for the desired solli:'- on 6 of the boundary value

problems (1.1) inner superconvergence

2m q+2-2au
(3.21) - u ) c flu - Hm + < c' h ll m+l

I Hm-1+2 ,x H (I')

where ' is any compact subdomain in the interior, respectively,

exterior cf i' and X(,.) denotes any norm. Here c,c' depend on

lil X ( ) .

Proof of Theorem 3.2:

Since (3.38) follows for a < t immediately from C~a's

Lemma (3.7) with (3.15) and (3.16) let us here indicate the

proof only for 2,t - m - 1 t x, i.e. the case of the

Aubin-Nitn che Lemma. Moreover let us consider only the case



of one single equation (3.1) instead of a system.

Let us first note that the usual proof of the Aubin-

Nitsche Lemma, e.g. [21, p. 137], would yield only L2-estimates,

i.e. t = 0. Thus we use a slight modification.

Let us denote by

(3.22) e u - v

the error term from (3.18). Then (3.3) implies that

(3.23) (Ae,\)L (e,A*X)L = 0 for all ' h
2 - 2

From the existence of A and the stronq ellipticity it foll,.'

that the adjoint equation

(3.24) A*w

-t x-is uniquely solvable for every H-(F) with w,11

Moreover, the continuity of A*- ' implies

(3.25) flW IH2 a t < c 1f Hf
t -tt

Since H ( ') and H-t (F') form a duality with respect to the

L2 -scalar product, we have with (3.24),

flefl < sup (e,p)
lit -- t <

H-t 
<

supI (e,A*w)I supl (e,A*(w - x)) + (e,A*x)l

- supl(e,A*(w - X))I



< suplellHU lIA*(w - X)II .

< c supljell H lw - Xl1 HC for every XEHh

Inserting (3.18) for t = u (that follows from (3.7) with

(3.15)) and (3.15) in the above, we find

1ell Ht < sup c hS- Oju! H S1WH 2cx-t ha-t

if -m < 2a-t < m+l, i.e. 2x - m - - .' t < m+2cx. Finally,

we use (3.25) to find the desired estimate

ljell t < sup c h s-t IHSu s -1t H-t = c hs-tlu l S
<111 il I- t

Ht

4. The Galerkin Collocation Method

For the numerical implementation of Galerkin's procedure

(Equations (3.3)), the weights of the influence matrix,

(4.1) ajk := (Aij,i k )  , j,k = 0,... ,N

have to be evaluated. Since A is given by an integral operator

(in th2 usual or the generalized) sense, the computation of

a jk requires a double integration over fxF. If this is done

numerically, the kernels of the integral operators must be

computed at all combinations of grid points on F. In addition,

special care must be taken of the singular integrals. In order

to reduce the computing time for the evaluation of the stiffness



matrix (4.1) and in order to simplify the computation of the

singular integrals let us specify the further investigations to

two dimensional problems, i.e. F is a plane and---for brevity---

closed curve. We further assume that the principal parts of

A are given by convolutional operators. For simplicity let us

consider just one equation (3.1). The extension to systems

is of simplest technical nature (see [79]). Let T' be given

by a regular parameter representation

(4.2) F:z = z(t) , t, [0,1)

with z(t) an 1-periodic sufficiently smooth vector valued

function satisfying

dz
(4.3) f- = R(t) > 0 for all t,

where R denotes the Jacobian. Then the operator A with a

convolution operator as principal part has the form

4 p.v. I [Pl(t-T) +  loglt-TIP 2 (t-T)I(u(t)R(t))dt(4~ ~ it AUT .t-<

+ f L(r,t)(u(t)R(t))dt = f(t)

Here p1 (:) and p 2 (") for < € 0 are homogeneous functions of

degree : = -2x-1. The principal symbol a and (4.4) are

related by the Fourier transformation F,



(4.5) a () = F(pI(') + log9" p 2 (')) 1

For singular integral equations with the Cauchy kernel, the

above special form (Equation (4.4)) of A is too restrictive.

We leave this detail to [80].

From now on we consider strongly elliptic integral

equations of the form of Equation (4.4) and we further assume

that the remaining terms collected in L(T,t) define a

sufficiently smooth function of T and t. Otherwise we again

split into two terms, where the first contains the singularity

and has to be treated similarly to the principal part.

Since in Equation (4.4) only R depends on F we consider

Equation (4.4) as an integral equation over [0,1] for the

1-periodic new unknown function

(4.6) v(t) = R(t)u(t)

Note that the principal part in Equation (4.4) then becomes

independent of the special choice of the curve F. Therefore

we shall adapt numerical integration to the special integrals

in Equation (4.4).

The principal part in the standard form (Equation (4.4))

will be handled independently of the special boundary F

yieldinq a Toeplitz matrix whose elements are given by a vector.

This vector can be computed exactly up to the desired accuracy

once for all independent of F as well as of h for any fixed type

of element, i.e. shape function. It should be pointed out that



the accuracy of the numerical results depends significantly

on how to compute the approximate principal part.

The Galerkin weights due to the smooth remaining parts

will be treated numerically by appropriate quadrature formulas

depending on the particular finite elements to be used. In

them we use only grid points in a regular grid connected with

the finite elements such that the kernel functions are to be

evaluated as seldom as necessary. This leads to simple modified

collocation formulas and the computation of the corresponding

stiffness matrix is extremely fast.

In order to utilize the convolution in the principal

part we use regular finite elements on a uniform grid of

[0,1] defined with shifts and stretched variables from one

shape function ;(r). The latter we define as in [8, Chap. 4]

by suitable piecewise polynomials of order m with Cm - 1

For m 0,1,2 e.g. we have

m = 0 m 1 m 2 for

1 21 7 - , 0 _ < I

20 2 q 2 r + 3r: - 3/2 1 < }< 2

(4.7) (>) 0
1.2

0 1 3I + 9/2 2 < r < 3

0 0 0 elsewhere

With ii we define a basis of Hh by

(4.8) i(t): = -
i ) (t for hj _ t l+hj, j=0 .... N

h=i/(N I)

and their 1-periodic extensions

L ±(t + : j(t) for integer f.

. . . ._ -o . . . . lllj I
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For u in Equation (4.4) we use the approximation

N
(4.9) u h(t) : X = Y~ (t)

j=0

Remarks:

Our boundary elements have been defined by the transplanta-

tion of a regular (m+l,m) system in the parameter domain onto

F with the local parameter representation of r. For calcula-

tions, the integrals will be evaluted by using the local

coordinates. In those the finite elements appear as simple

functions over the parameter domain. This construction of

finite elements on F requires that the parameter representation

is fully available. For the two-dimensional case this is a

sensible requirement. In the space, however, the boundary

surface has also to be approximated [55].

For the computations we insert (4.9), (4.8) into Equations

(4.1) and we find for the terms due to the first expression

in Equation (4.4),

1

dJk = 1 p.v. 1 [Pl(t-T) + 1og1t-T P2(t-T)]Pj(t)R(t)dtpk(T)R(T)dT
0 It-TI< l.

{ m+l m+l
= h2 +  p.v. [pl(t'-T'+(j-k)) + P 2 .1ogjt'-T'+(j-k)l]

11=0 t =0

• o(t')O(T')dt'dT'

m+l m+l

+ log h f p.v. P 2 (t'-T'+(j-k)) (t')W(T')dt'dT'

T'=0 t'=0



(4.10) dk h 2 + L 4  + W log h} with = j - k Z.
j jk 1 + 21

Here the two vectors of weights

m+ I m+i

(4.11) W1 'v [p 1 (t'-:'+ ) + P 2log t'-T'+,I X

L 0 t'=0

xanl:1co:;ut:d f~o o l independent of and h. For

tequations to Equation (4.4) we use

numerical integration.

Since in the corresponding integjrals

m~l m~l:m±

(4.13) f f(t .. Pt)R(t)dt = f+f : j( ) ( )d , Z

supp i i

JI

the finie element functions dpendento the Foria

integrations are chosen accordingly to the respective reference

function ti such that polynomials f up to the order 2M+ are

integrated exactly. This leads to formulas like

M
(4.14) f(t)pj(t)R(t)dt hY b Qf(zjQ) +d

supp i

th fnteelmntfucios pea a acorth nmria
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where

(4.15) z : = z(h(k + m+- and zj,,: z(h(j + m + )

i -M,... ,M.

are the gridpoints subject to the boundary elements and,

correspondingly subject to the integration formula.

2M+ 2denotes the error term which is of order h The simplest

choice .= Z yields zjk = z j+ and weights b= bk as follows:

m 0 m =1 m =2

bo  b I  bo  bI  bo  b1

(4.16) M 0: 1 0 1 0 1 0

Mi 1 5 1 3 1M = 1 : 1 2 2 4 6 i-2 4 8

1
For Y, - 2 and M = 2 one has

m = I m =2

bO  bI  b2  b0  bI  b2

(4.17)

13 4 1 2 7 1
50 1 5 60 5 30 15

Instead of (4.17) one often uses Gaussian integration formulas,

then y, correspond to the Gaussian nodal points and (4.14) is

modified t-



m M
(4.18) f (t) .(t)R(t)dt Y Y B f=, R( ) +

,)=0 o=-M
supp uj

where
1

(4.19) z j+ = z(h(j + + y))

and B ,B1 are the Gaussian weights.

Using Formula (4.18) for the smooth terms of the weights

in Equation (4.4' we obtain

1M

(4.20) 0 L(rt) Ji(t)dt k(U)dT = h , bib zL(zki'zJ ) + R

T=0 T-t <

with the error term

(4.21) 'RI < hS+2c max - + max < s < 2M + 2

Now we are ready to formulate the Galerkin-collocation equations

by using Equations (4.8), (4.10) and (4.20). They read as

(4.22) Y0ahjkyj: = h2+(Wlp(ik) + log h W2 0 (jk))j= j=0[ pjk

2 M
+h bibzL(zki, zi} YjZ, i=-M

M
= h J bif(z ki) F k  k=0,... ,N

i=-M



For saving computing time, the values of L and f at the

grid points should be evaluated only once at the beginning

and then be stored for furthe use as to build up the stiffness

matrix in Equations (4.22).

This suggests a choice y. = Z or Z or 1£ , etc., in

the numerical integration formulas.

For the asymptotic error due to the Galerkin-collocation

we shall use the already established error estimates (Formula

(3.18)) for Galerkin's method. To this end we abbreviate the

Equations (4.22) by

N
(4.23) ahjky = Fk , k = 0, ,N

j=0

as mappings in 1 h If

N
(4.24) wh = j

j=O

then the mapping Ah associated with Equation (4.23),

N
(4.25) 1 = AhWh

9=0

will be defined by the linear equations for the coefficients z

N N
(4.26) Y v., (, 1k) : ahjkcLj  k=0,. .. ,N.

k j=0



Since the Gram matrix (£, k ) is regular, Ah in Equation (4.25)

is well defined. Correspondingly we define F Hh by

(4.27) (Fk) = Fk for k = 0,...,N.

Then the Galerkin Equations (3.3) and the Galerkin collocation

Equations (4.22) take the form

(4.28) PhAPhv P hf and AhV h h h "- L 2 H

respectively. One easily obtains the estimate

(4.29) 0j LV I 1 1 {f (Ah-Ph h) I L + H1 hf - J }
L 2  ~L2L2 L2 2

This estimate shows clearly that we need estimates for stability,

i.e. I!Ah'li L2L2 , consistency, i.e. 1(Ah-PhAPh)&II L2 and the

truncation error I Phf-FII L2  Let us begin with the consistency.

With Formula (4.21) one can prove the following:
THLOREM 4.1: Let the weights W lp 'W be accurate to an order ha

and let L and (AJL be continuous. Then we have the

consistency

(4.30) (Ah - ( , ) I < N(h) !f 2 I L2 for all 1,',, h

where

(4.31) A(h) _l Cllog hh a - 2 x- l + c 2 h
2M + 2



From the estimates (4.30) and (3.19) one easily obtains stability.

THEORLM 4.2: Let the assumptions of Theorem 4.1 be fulfilled and

in addition let a > 1+2(a-a'), M > -a'-l. Then we have stability,

i.e. there exists h0 > 0 such that

(4.32) Ah< ch2

h L 2L 2-L2L2

where c is independent of h for all 0 < h < h
-0

Finally, the estimation of the error term in Equation

(4.14) in connection with Equations (4.27) yields for the

truncation error:
M

Theorem 4.3: For Fk h 7 b f(zk£) in Equations (4.27)
Z -M

there holds

(4.33) !IPhf - Fjj < ch' If J with 1 < o < 2M+2

Collecting the foregoing estimates and using Formulae (4.29)

and (3.18) we find the following estimates for our Galerkin

collocation.

m-1
Theorem 4.4: For a m+2+2('-,, ) and M m' -' we find2 -

an error estimate

(4. 4) JU - Vh;L chS U s + tIf I s-2o'}
2 - H H

with 1 + 2' s -m 4- and 0 < s.

For a - 2m + 3 - 2t' and M m - a - a]' we have even the super

approximation



(4. 35) [0U - V~< ch' 't + u +}
h 11t H s 2 - -

provided 21,-m-1l t s m_ l , s-t :_1-2,t.

5.Sonic Numerical Examples

As we can see from the foregoinq error estimates, it seems

that thie Galerkin collocation (Eouations (4.22)) combines the

theoretical c:dvantages of Galerkin's metho-d with thIe practical

advantages of the collocation methods. F or illustration we

present some numer.ea. oxaimples treat-.ri in [37,38,39,791 with

, - 11 . There, the chic ri2, M1=1 and -, .=1 pro-ided

excellent numerical recsults in combination. with snort computing

times.

The boundary integral egjuations treated so far numerically

are all of the Formi

(5.1) -'lo(Z--)aU)ds + =t(z) + c

A (") ci B, Z ,

Her,- f is a ijiven n-component vector function on T, n 1 ,2,

B I is a qive n conIstant vector and u] and are the unknown

n-component vector function, respect ively, cons~ ant vector.

L is a gjiven rmooth n n matrix 'uncltion on >
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Example 5.1:

Symm's method in conformal mapping [74,75,39,79]

5.1: Interior Conformal Mapping

Let w denote the conformal mapping of Q i onto the unit

disc and let 6i = arg wl denote the angle of the boundary mapping.

Then Gaier [30] showed that Symm's integral ec-ation [74] for

the interior mapping function provides 8! as the solution.1

Then the slightly modified equations

(5.2) - f loglz-Cj u(C) dt, + w = -loglzi , z E r,

r

f u dt = 1

r

have a unique solution u = u(t), w [401 and with Theorem 12 in

[301 it can easily be shown that the unique solution is given by

1 di, = 0(5.3) u = -T d t ' = 0,

no matter whether the capacity of F is 1 or not.

Since the j(t) = p(- j) - are piecewise polynomials, the

integrals can be evaluated exactly either with explicit integration

or with appropriate most simple numerical formulas. For details

see [39].

In the tables we compare the results of our computations

with the exact values for three examples of inner mappings in [291.



Interior mapping of ellipses

(See [29, p. 264, Example 3 and p. 161, Table 14a])

F: z(t) = (cos 2nit, &sin 27t), 0 < 1 1. Computations for

6 = 0.2, 0.5, 0.83 with m=2 and 60 grid points on F in

double precision (14 decimal digits) showed the following

absolute errors:

6 0.2 0.5 0.8s

abs. errors 4 x 10- 3  7 x 10-5 3 x 10- 6

Interior mapping of reflected ellipses

(See [29, p. 264, Example 2 and pp. 102, 103])

Boundary F: z(t) = (cos 27t, 6 sin 2t)/{cos2 27t + 6 2 sin 2 2rrt}

Computing time fof each case: 1.3 sec. CPU.

Number of grids point: N+l = 36

Computations for 6 = 0.25, 0.6 and 0.65 with m=2, and in single

precision (7 decimal digits) showed the following absolute errors:

5 0.25 0.6 0.65

abs. errors 3 x 10 - 3  7 x 10-  10 - 4

Interior mapping of an excentric circle

(See [29, p. 264, Example 1])

Boundary F: z(t) = ei2t cos 27t + /b 2 - sin2 27t )
Computing time for each case: 4 sec. CPU.

Number of grid points: N+1 = 60.

Computations for b = 5 and 5/3 with m = 2 and in double precision

(14 decimal digits) showed the following maximal absolute errors:
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b I 5 5/3

abs. errors 10-7 10-6

5.1.1 Exterior Conformal Mapping:

Here we compute the conformal mapping w of the exterior

domain 0 e onto the exterior of the unit disc and again we are

interested in the boundary map given by ee = arg w I .

According to Symm [74] and Gaier [30] we now solve the again

modified equations

(5.4) - logiz - ju dtC w = 0, z E r

f u dt = 1.

Due to [40] they have a unique solution u(t), w

With Theorem 11 in [30] it immediately follows that u(t) and

w are given by

.dee

(5.5) u(t) = e d and w = -log (capacity of F) = (Robin's
constant)

Hence, the solution of (5.4) provides at the same time the

boundary mapping of the exterior mapping and Robin's constant.

We have computed one exterior mapping of an ellipse. (See [29,

p. 264, Example 3]). There the boundary curve r is chosen by

z(t) = 2(/v) cos 2rt + (i//s) sin 2nt

We chose m=2, M=l, N + 1 = 40 grid points and double precision

(14 decimal digits). The boundary mapping is in this case

explicitly known as e (t) = 2nt. The numerical results are

accurate up to 10 digits. The computed capacity is

capacity (F) = 0.8660253881
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Example 5.2:

Exterior boundary value problem for the Bilaplacian, the Stokes
problem

Here the underlying boundary value problem is the exterior

Stokes problem

A2U = 0 inQ e

VU = 0 on r

and VU - (0,-l) for jzI -

According to [40] we have the solution

U(z) = - (u (Viz-rA21oglz- !) (U0(¢),u 2 (C)) ds - xW1 - Yw2
r

where ulu 2 solve the system (5.1) with

1 (xa - a)(x 8 -

(5.6) L - a 2
a,6 a6Iz - i,2

For r we again choose the ellipses

F: z(t) = (cos 21Tt,6 sin 21t)

Computations for 6 = 0.6, 0.9 with m = 0,1,2 and 20 and 40

grid points on r in double precision (14 decimal digits)

showed the following absolute errors for u 2 :

1'
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60.6 0.9

h 1/20 1/40 1/20 1/40

m=O lo Xl-4 o 2 x 10- 5

=1 2 x10-6  10- 10o-5 lo

=2 2 x10- 6 10 7 lo 10-

More details and a further example can be found in [39].
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II Integral Equation Methods for Mixed Boundary Value
Problems

This lecture gives a survey on joint work by M. Costabel,

G. C. Hsiao, U. Lamp, T. Schleicher, E. Stephan and

W. L. Wendland [24,25,49,50,71,82,83].

Introduction

The application of the boundary element method in

the form of Galerkin collocation to mixed boundary value

iroblems requires some modifications. This is due to the

singularities of the solution's gradient at the collision

points in two dimensional problems and, respectively,

at the collision curve in three dimensional problems where

the two different boundary conditions are adjoining.

Since Fichera's fundamental work on the Zaremba

problem [28], it is well known that these singularities

are unavoidable unless the data satisfy specific side

conditions. These singularities generate corresponding

singularities of the boundary charges in the boundary

integral method. They pollute namerical computations

unless they are handled separately. Here we shall show

how the boundary integral method can be improved by

augmenting the appropriate singularity functions to the

finite element scheme. This is based on a local analysis

of the solution to the mixed boundary value problem due

to Grisvard [33] and ct the integral equations [24,25,83].
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Then we apply Galerkin's method to the modified integral

equations. A similar method but with collocation has been

used by J. Blue [14]. Since our system of integral

equations is strongly elliptic in the sense of (1.2.5 ff.) we

find convergence in the corresponding energy norm. This

estimate corresponds to [23) and [27]. In order to improve

the convergence of the approximation we use local analysis

for better regularity in connection with modified coerciveness

on one hand and a priori estimates for the corresponding

pseudo differential operators on the other hand. We find

improved asymptotic convergence and also super approximation

which cannot be obtained by variational methods and

coerciveness alone. Moreover we approximate the stress

intensity factors besides the desired charges and give

corresponding error estimates.

In this lecture we shall restrict our presentation

mainly to a review on the case of the mixed boundary value

problem in a smooth domain following [83] and the corresponding

Galerkin collocation which has been worked out in [49,50].

The generalization of the whole method to polygonal domains

is here only sketched. It involves much deeper analysis

and will be presented in [24,25]. Eventually we shall

indicate a formulation of a system of boundary integral

equations that governs a three-dimensional mixed boundary

value problem [821.
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Mixed boundary value problems in two and three

dimensions describe many problems of classical mathematical

physics as crack and punch problems, contact problems in

thermoelasticity, heat conduction in space science,

electrostatics and flow and infiltration problems---to

name a few. Some of these examples can be found in

(69,83].

References to the first lecture are denoted by

(I1.1) etc.

§1 The Plane Mixed Problem

Let us consider the plane mixed problem with the

Laplacian,

(1.1) AU = 0 in Q c 2(or in I2\7)

U = gl on P1 ,

au on_
T- on 2 ,

(and an appropriate condition at infinity for exterior

problems). is a simple connected bounded domain in

1 2 with a smooth boundary curve r = r1Ur 2UZ 1UZ2 where

F1 and r2 are two (for simplicity) disjoint parts of P

with endpoints Z1 and Z2 . For brevity we restrict us

to the case of interior mixed problems; the appropriate

modifications for exterior problems are easily formulated.

We omit the details.
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As in (I1.1)(I1.2) we formulate the boundary

integral equations via the "direct method," i.e. via the

Green formula with the fundamental solution representing

the variational solution U within the domain S2 by

1
U(Z) u() w (log Iz-CI) ds

(1.2)

1 f ( C)  loglz-CJ ds,

r

Here s denotes the arc length at C c r and denotes

the normal derivative at C E P in direction of the
aU

exterior normal. Replacing U on r1 by g, and 5 on r2

by g2 and passing z to the boundary F, one obtains with the

well known jump relations for the double layer potential

the following equations on the corresponding parts of the

boundary:

on 'A(U ):= U(z) - U() [ loglz-CI) ds,

2 1 2

1 f (au ) d+ r v( ) l o g i z Cs
F1

(1.3)

1 gl() log Z- J ds,

IT J

Tr 9(IogzC s
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+U ) - - (C)[, Ioglz-cl Ids

on rI: A2 (UIF , : ~f( 2()joz- ds

2

(1.4)

g (z) 1 , - -(l glz-Cl) dsc

F1

1 jgN(C)loglz- i dsc
r"2

These two equations now serve as integral equations for

the unknown boundary data U and 2 . As soon as

these are known (1.2) gives the desired solution in the

whole of Q. The analysis of the integral equations

(1.3)(1.4) will be presented in the following.

The validity of the above steps must be justified

and depends on the behaviour and regularity of U and 3- at

the boundary. To this end and for the further analysis

we need also Sobolev spaces on the boundary parts r.J

defined as

Hr (F) {f F Ir with F E Hr(r) and
(1.5) j

IIfllHr(F inf[IFflHr(r)
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and

r ) : {f H (F) with supp f c r

(1.6)

and Ilfljjr(j : =  iIfIHr(F)}

Nov- let us assume that the data are given with

(1.7) glH (3/2)+a U ) and H (1/2)+a( ,Jul <

Then for the boundary value problem (1.1) we have the

following theorem.

Theorem 1.1 [83]: To every g1EH(
3/2 )+0( 1 ) , 2EH (I/2)+a(U2 )

with oul < 1/2 there exists exactly one solution u of the

mixed boundary value problem (1.1) of the form

2 1/2 1
(1.8) U(z) = . i sin ' 0i +  v(z)

i=l1 - +vz

with a smooth function v - H2+O (2) 11 <1

Here H 2+ a (') denotes the Sobolev space over the domain Q,

Pi = fz-Zil denote the distances to the corresponding

collision points Zi and 0i denote the respective angles

between the tangent vectors at Zi in the direction of F1

and the rays z - Z i .

The special form (1.8) of the solution provides

the validity of the Green theorem (1.2) and the jump

relations (see references in [83]). According to (1.8)
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the desired quantities in (1.3), (1.4) can be written as

2 Ui (1/2)
(1.9) U =F2  i=l

and

( 0 1 2 (-1/2)+
0 -17 2 i= i i + g 2 

+  o

21

where gl H 2(F2) and H2 HI(F 1 ) are arbitrarily chosen

functions satisfying the transition conditions

(1.11) l(Zi) = gl(Zi) for i = 1,2

and
1

g2(Zi) = g2 (Zi) if 0 < o < or

g2 (z) for z E F2  1 1
(1.12) g9 2 (z) for z c F1

if < a<0 , i = 1,2

Then these functions w 0 H(3/2)+a(F2) n AI(F2) and

o E H(1/2)+ (F1 ) represent new unknown smooth densities

whereas ai , i = 1,2 are the unknown stress intensity

factors. X, i = 1,2 are two cut-off functions with

xi = 1 in some neighborhood of Zi which will be specified

later on.

•~~~~~~~~~ .... .......- I" o. i - I --
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Since the system (1.3), (1.4) admits an eigen-

solution if r has conformal radius 1 we further enforce

the compatibility condition

aU ds a U ds + ds = 0

r2

as an additional equation whilst introducing a real constant

w i as a new unknown that must vanish for the solution of

(1.3), (1.4). Inserting (1.9), (1.10) and incorporating

the preceding remarks, we find for the system (1.3),

(1.4) the final form

(I-K 2 2 )w o + R i' o )  W (Z) = f o w) d6

r2

Tr 0o( ) loglz-Cl ds,1

2 2 1 f 1/2
+ c i i Xi - T J i  Xi dO

i~l F2

- Xi loglz-cl ds

(1.13)

= * g1 de + Tf g1 de -4(z)

1 2

g g logjz-CI ds -

F1 (z) - w for z E r2
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a i 4 -1a 2 xi) 1/2

i~l i=l

d + %ip Xj (1
2 12 i o ipi  Xi(C)]loglz-Cj ds,

I 0 2 I1 1/2 dO+ w Wo + Ot Ti 0 i Xi
71 2 0 2

(1.14)

= gl(z) - O g -

F2

+ I g x logiz-I ds + W

= F 2(z) + w for z c F1

and

(1.15) 1 a P pi1/2 Xj ds = - g2ds= B
1

In (1.13), (1.14) we denote by dO the kernel of the double

layer potential,

(1.16) dO () (loglZ-0) ds

Note that dO is the total differential of the angle

arg (C-z).
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The mapping properties of the system of integral

equations (1.13) - (1.15) are essentially based on the

mapping properties of the logarithmic integral operator on

a part of F, namely on F1 . We find that this operator is

bijective in suitable pairs of function spaces.

Besides the explicit knowledge of the exceptional

functions we shall also need properties of the logarithmic

integral operators on other parts of r. To this end we

define

(1.17) V(z):= - f l ogjz- i ds for z E r
F

and

(1.18) VjkP( ): - I logjz- j ds for z e rk; jk = 1,2
F.

For Vll we already have the following coerciveness inequality

[41].

Lemma 4.1: There exists a constant v > 0 such that

(1.19) (VII1,")L2(F1) > hjp1 1p-1 /2

holds for every I c 1 / 2 (F1 )

We further need the mapping properties of Vjk applied to

the exceptional functions



(1.20) u =1/2 sin i  i =1,2

Explicit calculationswith the harmonic functions (1.20)

yield the following lemma [83, Lemma A.4]:
1 -1/2Lemma 4.2: Let < 1. With u in (1.20) and p X1

let us define

1 -1/2 Ul
2 1 + (1 - X2 ) on

0 on F2

2 :=0 on F1 l

(1 - X2 ) on F2

Then Hi2 ' (F). Furthermore

(1.21) Vi 1 11/2 1 + H(Fi), i = 1,2
i~ u  X2) THI+D (i i X2 an

(1.22) Vi -- (- X H 1+U i 1,2 and

(1.23) VII(XlPl I / 2) Hl+P(r 1)

The same properties hold for u2  1 -1/2 correspondingly.

___~ ~~ ~~ ________ I_ P X2 crepnigy
With the preceding preliminary results we prove in [83] the

following theorem.
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Theorem 4.2: Let us assume that diameter (r') < 1. For

jai < 1/2 let

(P(/2 1a ( { {a11cs21ip0} al11 2 E It and

Then the mapping V1  : z(11 2)+a (r) H(3/2)+a (r) with

a2 P-1/2 +

is bijective and continuous. Moreover, for -2 < s < 0,

s-1, the mapping V11 : H( 1 ) H8 l) sas

continuous and bijective.

This theorem enables us to apply the approach of

1§2 to our more general situation. Since V12 is continuous

but not comact, the principal symbol of (1.13), (1.14)

has the form

1 , 1 2

(1.25) a= with a =(0,-1/2)

Now it is easily seen that a (1.25) is strongly elliptic

(see (12.6)) since for K > 1+4 max Ial2(z,&)I

z r



4 9 0

one finds the inequality

(1.2)aRet7 = Re{KI12 + ° C 2 + al 2 (Zi)(l 2}

3 2 2

>l + I ) for j 1 and 2

As in (12.7) we find coerciveness.

Lemma 1.3: To AIA 2 (1.3), (1.4) and the above choice of K

there exists a constant ¥o > 0 such that the Garding inequality

(A (U, ) ,U)L2(F2) + (A2 (U M) )L ( I)

(1.27)

> Y ( + 11a U/2 } Ik[(U, p), (Uip)]o UIL2 (F2 )  -1/2 (r)

holds for all (U,W) c L2 (F2 ) x f-1/2(FI) where k is a

suitable compact bilinear form on L2 (F2) x ftI/2(rI)

As we have seen in (I§3), the coerciveness (1.27) provides

C6a's lemma, Theorem 1.3.1 and Theorem 1.3.2 for the

immediate Galerkin approximation of (1.3),(1.4) with finite

elements. According to the smoothness of UI2 (1.9) and

aU (1.10) we find the following lemma corresponding

to (23] and (271.

Lemma 1.4: Let uh , 4h denote the Galerkin solutions with

regular finite elements, m > 0, to (1.3), (1.4). Then one

finds asymptotic convergence as
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(1.28) fJU - UhIL au) + -

< cc {hlEI lE (il'2), + h- (t+2e) ' fC 1 1 }H (.r2) f r e (r 1)

with any c > 0 and -1 < t < -1/2. The constant cE is

independent of U, h, u h I and h but may depend on c.

Without special treatment of the singularities

this estimate cannot be improved. Thus we need to use a

finer analysis of the integral equations (1.13) - (1.15).

Defining the space of new unknowns by

(1.29) W(1/ 2 )+o o { i, loWo} }iER, ER, Oo ( (/2)+a(FI),

W oEH(3/2)+o (r 1) , i=1,2 I

we have the following theorem [83, Theorem 2.3 and Theorem

2.41.

Theorem 1.3: The mapping defined §j the left hand sides of

(1.13) - (1.15) is an isomorphism

W(1/2) + a . H(3/2)+(2 x H(3 ( :(3/2)+a (r x F

for any oi < 1/2.

The proof in [831 is rather involved using (1.27), Fredholm

theory and classical potential theory.
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Restricting Theorem 1.3 to subspaces one easily finds the

following theorem:

Theorem 1.4: (1.13) - (1.15) defines an isomorphism

(1/2)+u , F (3/2)+ o whereo 0

(1.30) W 0  {{ifWio.wo} - Wjwo(Z 0 . = 1,2}

(1.31) F 0~ {{FF 2 1 B1 FIF 1(Z i) + F 2 (Z) = 0}-

In order to apply the Aubin-Nitsche lemma to the

system of integral equations (1.13) - (1.15) one needs a

formulation which takes care of the stress intensity

factors also in the case that the singularity functions are

contained in the respective Sobolev space. To this end

we multiply equation (1.14) by V11 assuming (without loss

of generality) that diameter (r) < 1. Then the equations

(1.13) - (1.15) take the form

(1.32) (I - K2 2 )w 0 + R1 2 {aLi,} = F1 - ,

(1.33) 21 2 -1/2 - 2 a(.3 o - 2 [ iPij Xi + Vll1K 21(W 0 ip 2i xi)
2 i-- i=l1

V1- (F2 + W)

12 -1/2
: i= Xi + 0
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(1.34) 1 2 LCi1/2 x ds = B.(1 3 ) r. 1 - 2 i i i

With the function spaces

for O<T

(1.35) Z' : t i I 0 0 {1(i,r}l 1)[ 1 z 2 -1/2 fo 0J

0 0 i II)o ili xill T(r)

the desired shift theormem takes the form [83, Theorem 2.5]:

Theorem 1.5: Let -1 < t < T + 1 < 2, T i -1, T # 0. Then

the system (1.32) - (1.34) defines an isomorphism in

Ht(r 2 ) X FT(rI) x Ik.

The proof rests on Theorem 1.2 and the mapping properties

of RI2 and K2j .

§2 Improved Galerkin's Method and Galerkin Collocation with

Piecewise Quadratic Functions

For Galerkin's procedure we use the finite elements

(14.7),(14.8) with m = 2 for the smooth parts w0 and 0 in

(1.13) - (1.15). For the collision points Zi we require

(2.1) Z. {z(j.h)lj = 0,1,2,...,N}

For convenience let us introduce the following two sets of

indices:



,4 ' 4

(2.2) 1  {iIO < j < N ijIF1 / 01

12 {jj0 < j < N /jr 1 0}

Now we are in the position to define the subspaces on

r by

(2.3) Hh(F) = = yj~j(t)IF } £ = 1,2,
jtIz

and

(2.4) ( Z = A'Z i = 0, i = 1,21,

Z= 1,2

In order to formulate the modified Galerkin method for

(1.13)-(l.15) we first approximate the given functions

gz bY gkh - Hh(F), Z = 1,2, requiring

(2.5) (ghJ)L2(r ) = (gz,1J)L 2 (FZ) for all j c I

Then gZh I Hh(Fk+l) with 1F3 := F1 are chosen arbitrarily

satisfying

4ZH(Zi) = g~h(Zi) , i = 1,2 ,

e.g. by linear functions of t.
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For the smooth parts of the desired solutions

we choose the approximations

(2.6) Woh I i jj(t) with w oh(Z i ) 0, i 1,2
jEI 2

Toh I jlj(t) with (Z = 0, i 1,2
oh jE1 1 j j oh(Zi

Now the Galerkin equations for (1.13)-(1.15) read as

- oh d6z + oh loglz- j ds,

oh df +- 7

2 1

2 1  1/2
+ i  Tp Xi d6

2

1 1/ log Iz j ds dsz

2. f Pil 2 xi z- I h dSz
F1

(2.7)

f d6 + lf dI 1

F1

- g lglz- j ds - WX ds for allh E h(R2)

2 h
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2~ ip 1/2 iC og -jd
7 ohi=l CjQ 8 E S

21  1/1 2

+ Wo do + i Pi Xi do = dSz

F2  P2

(2.8)

I ~I() ~hdo - if 91h do

F1 l F2

+ §2hlogIz-j ds

P1

+ - h logiz- I ds W n w}Bh ds

12

for all t Hh(Fl) and -1/2 i i = 1,2

(2.9) 1oh - aii 1/2 - g2h ds - 2hB

1  I  2

For an asymptotic error analysis of the improved

method (2.7)-(2.9) we need the approximation properties

(13.15) for u c HS (.), E Hh(), j = 1,2, m = 2 as

well as for u c Hs (r) n HI(Pj) and V E fth(hj) and also

the corresponding inverse assumptions (1.3.16). In addition

we need for
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2
Th = Oh +  iPi Xi ' oh f h(I )

the inverse assumption

_<I Mh - - I hII zr(2.10) '1J'h'' < hszs hI

z z

with -2 < r < s < 2 and c > 0 if s < 0 and r > 0, otherwise

= 0. The proof in (83, Lemma A.51 is not complete.

The complete proof can be found in [25].

With (2.10) available, a simple modification of

the results in [83] yields the following error estimates

[501:

Theorem 2.1: There exists a meshwidth h > 0 such that the

Galerkin equations (2.7)-(2.9) are uniquelysolvable for any h,

0 < h < h . For decreasing meshsize h - 0 we have the

asymptotic error estimates

2
x Ii-0xiI + 110oh- oI t-1 + lIVoh- vO l t  + I - I

i=l (r 1 ) H (r 2 )
(2.11)

< ch r - t -  lg Hr (Fl)+ 2  l

for 1 < t < r < 2 and any c > 0



and

2
11 12.(2.12) 11 oh- o -il (ai- i) P i X Ht - I  +  II-

2 1/2
IVoh-Vo + i-i)Pi <i t

i H (F 2 )

c hr - t -£ Igl l Hr ) + 211 l (F 2 )

for -1 < t < r < 2, t < 1 and any c - 0 if 1/2 < t < 1

and c = 0 if -1 < t < 1/2 . The constant c is independent of

h, to v 0 ri I oh I Voh and ai but may depend on c.

Remark 2.1: (2.12) provides an explicit error estimate of

order hI - with any c > 0 for the stress intensity factors

if g1 ,g2 are given smooth enough, e.g. glc (FI ) ,

g2 t- HI(P2) . On the other hand, the highest possible order

3-cin (2.12) is h , that is two orders higher. Then

t = -1 + c and the corresponding norms on the left hand

side of (2.12) are rather weak. However, the estimate

(2.12) yields inner local estimates for the corresponding

generated potentials (1.2) in Q with respect to any local

norm, i.e. local super approximation of order h 3 -c in Q

(see [50]). This result suggests to improve the accuracy

of the stress intensity factors by an additional fitting

within Q. Instead of fitting, the computation of the
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J-integrals via our approximation of u also promises an

h 3- E approximation of the stress intensity factors.

For the numerical treatment of the Galerkin

equations (2.7)-(2.9) one has to evaluate the entries of the

stiffness matrix on the left hand sides and the weights on

the right hand sides as well as of (2.5) by the use of

appropriate numerical integrations. Note that in

(2.7)-(2.9) on both sides appear the same double integrals

if g,, are replaced by gth'gZh according to (2.5).

In the following we indicate our choices of the

quadrature formulas. More details can be found in [50].

We consider first the cases Zi / (supp j)O u (supp k'

i.e. away from the collision points Z..1

2.1 The Logarithmic Standard Terms

For these terms we follow (1.4.22) and use

f ft -
(2.13) logit- I  11(j -i ) (T - k) dt dT

= h2 (log h + W
Q (j ,k)

with p(j,k) = lIj-kl the weights W in [37, Table 1] for

m = 2. They are accurate up to 10 decimal digits.
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2.2 The Regular Double Layer Weights

Because of (1.16) we integrate the corresponding

weights by parts obtaining

-) t dO
(2.14) (' - k) - j) dt dT

h ( - I( k) - j)Oz( )(t) dt dT

Since i is piecewise linear, i.e., a finite element function

in the sense of [37, (2.14)] with m = 1, we use the

corresponding three point integration formula with m = 1,

[37, (5.15)] for the inner integral, i.e.

(2.15) 0 (j) 1 (z - z (Zj))

+ (0 (z ) -)
+ z j+3 z j+2

where £. = z(j-h), j = 0,1,... and whereJ

(2.16) 0 z(i j+l) - z() = arg Kj

For the outer integration in (2.14) we use the three point

integration formula [37, (5.21)] for m = 2 obtaining
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(2.17) I k(Z) f Pj (C) d6 z(C) ds z

h{10 j + 3 0(j) +1 E) (1
(8 h Zkl 4 z + 0Z k+l

Note that all angles in (2.17), respectively (2.15) can

be evaluated explicitly via trigonometric functions.

2.3 Smooth Remaining Terms

The weights due to smooth remainders are of the form

(2.18) j A(Z,0) j k(z) dsC dsz

ogI~z Z(t)j P( - j) P(T - k) dt dT

For the corresponding numerical integrations we have used

four point Gaussian formulas (14.20) although one also could

apply the three point formulas with m = 2 as in [37].

2.4 Weights Involving the Singular Elements

It remains to evaluate the weights if Zi is in

the domain of integration or if the singular elements

Pil/2xi are involved. In case of regular finite elements

some of the integrals in (2.13), (2.14), (2.18) are

integrated only over regions corresponding to one of
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the parts r1 or P2  In all these cases we have used

four point Gaussian integration either without or with

logarithmic weight function. Let us omit these details,

they can be found in [50].

In case of the singular elements let us consider

only one of the typical cases, for the others we again

refer to [50]. Let us consider

(2.19) 1 Pj~z) I -1i/z2 (r €  ds r dsz
F1  F

The cut-off function X, we define by a combination of a

piecewise polynomial and the square root function, namely

by

1 for t < ,

(2.20) Xl((t))1 /Ev(t) for < t < 6,V/1 ¢t) I

0 otherwise

where v(t) is given by

(2.21) v(t) := - + 8 2t - 2

Note that with X1 respectively v the whole method depends

on the parameter 6 > 0, i.e. the support of X, . As one

of our experiments indicates, 6 > 0 should be chosen not
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too small in size. With (2.20), (2.21) the integral

(2.19) takes the form

(j+£+l)h 6
(22) , = 1 1(2.22) I3 -0(+£h 0 Xl(t) log z (t) -z(T) 1

i(t)j dt jj( T - I

2 (j+Z+l)h{i/
2 f 6/ - loglz(t)-z(T)Idt

Z0 f 0f r.
£=0 (j+£)h 0 /t

6

+ .6/2 logIz(t)-z(T)Ilv(t) dt dT

In order to regularize the first integral in (2.22) we

introduce there the new variable t = x2 arriving at

2 (j++l)h 61/ 2(2.23) I- f 2[ loglzx -z l dx -j) d,

(j+Z)h

(j+Z+l)h 6
+ f v(t) logIz(t)-z(T), dt ( - j) dT

(j+Z)h 6/2

All outer integrations with respect to T in (2.23) have been

executed with the regular four point Gaussian formula. For

the inner integrations we have distinguished the cases j > 7

!



and j 7. In case j 7 we aqain used four point Gaussian

formulas. For j 7 we use weiqhted Gaussian cormulas with

the locarithmic weiqht and 20 n(ial points (see for such

formulas in [731).

2.5 Error Estimates for the Galerkin Collocation

In order to fi nd the (-,)nsistency estimates for our

Galerkin collocation we collect all eiror terms corresponding

to the foreqoinn numerical inteqjrations.

For (2.1 1; let us assume that the W are available

as accurate as rctiird-, the ;,rosented results they are

accurate up to l0( d(eci]L dCqits. Thus we neglect

correspondiniq error terms.

For the double laye- r we i :t s (2.17) we can use the

error estimates [37, (5.13)] with m = 1 and m = 2,

correspondincly, and find an error ut order h 6 for each weight

similarly to 137, (5.20)1.

Fir the smooth remainder terms we find an error of

order h8 for each weiqht correspondinq to the four point

Gaussian formula. Analot7ously, the errors belonqinci to

(2.23), i.e. to the weicihts involvinq singular elements,

are of the same order h8 each.

In order the formulate the consistency estimates let

us abbreviate the Gilerkin equaticns (2.7)-(2.9) by

(2.24) (AVh,Wh) (:,Wh)

for all Wh h 1h 2)  ( i i Xi; i = 1,21)

-A*
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and the corresponding equations defined with the above

numerical integrations by

(2,25) (AVhWh) = ($,Wh)

Then we find as in [35, Theorem 6,21 the consistency

estimate

(2 .26) ( Uh ,Wh ) - (AUh 'Wh) < h - (h ) IlUhI L  lWh I1
L2

with

3(2.27) E (h) < c h

where c denotes a constant independent of h, Uh and Wh

This consistency in connection with the estimates (2.11),

(2.12) implies the following error estimates for the

solution €oh ' Voh I W
' ai of the numerically integrated

Galerkin equations (2.7)-(2.9).

Theorem 2.2 [50]: There exists a meshwidth h > 0 such

that the numerically integrated Galerkin equations

corresponding to (2.7)-(2.9;are uniquely solvable for any

h with 0 < h < h °  For h - 0 we have the asymptotic

error estimates

I



5 lt]

2
(2.28) ' I + Ioh- oh

i=l L2 (1')

< ch { H
2
U'

1  
+ Ig 2 11

and

(2.29) flVoh-VohH + w-OI _ ch2 {jqll + g192 1o oh L 2  ( 12 
)  

H 2 ( I  H I1( F 2 )

with any c > 0. The constants are independent of h, the

data gl 1 g2 and the solutions but c ay depend on c.

§ 3 Numerical Results

The following numerical experiments have been carried out

on the IBM 370-168 computer at the Technische Hochschule Darmstadt.

For Q we choose the unit disc with

i = z= cos 27t + i sin 2itl < t < 1

F = {z = cos 27t + i sin 27t <

24 4}

Z1 Z2 = +i
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Example 1:

(3.1) U = Im V'Z- =-p21/ 2 sin 1 E

withp 2 cos0 2 =x, P2 sin 02 =1 - y, P2 2 + (1

Here

(3.2) Ui , = 1

The given data are

U P1/2 sin 02 0 < 02fI -2 2 2 2

and

aU 1 (x sin 2 + y 1

2 2 2

Largest absolute errors, case 6 = 0.2;

Number of Gridpoints N-I: 40 80 160

error of U1, 210- 2  310- 3  310- 42
error of ol,: 10-l 2.10 - j 2"10

error of ai : 6"10
-  3"10 - 3 1.5"10 -

As expected, the errors of a. show an order hI -E of1

convergence.I
I
I



For this example we also experimented with different

=, 2 Ti 2 z 0.08.
in case of N+1 = 80 gridpoints, i.e. !ij+l - = 80.0

0.2 0.15 0.1 0.075 0.05 0.01 0.001

S- i : 5.106 3.10-6 2.10- 10-5 10- 3"10- 10-

2 - 2 : 3"0- 3"10- 203 5.10-2 10-1 10-3 7.10-1
I _ _ _ _ i _ _ _ _ _ _ _ _ _ _ _

The table shows increasingT errors for decreasing .

Correspondingly The plots of error curves show that the

biggest errors are located between the boundary points

corresponding to ,/2 and I in (2.20). These also increase

with decreasing

Example 2:

(3.3) U Re t2 (x+iy)2+1 -- x+iy" x+iy+l l-+x+ly0

Here

(3.4) x2 = 22 =2.8284

The qiven data are

S(x+iy) +1 -l-x+iy
U = Re /2 x+iy+l iT~xTiy

'1 F1
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and - = 0

Largest absolute errors, case 6 = 0.2:

Number of grid points N+1: 40 80 160

error of UI2 7.10 10-2 10 - 3

2

error of 4o1P2 1.5.10- 1 7 10- 2  4-10 - 2

error of ai: 7.10-2 310-2 2-10-2

Example 3:

(3.5) U =y 2  2

For this smooth solution we have

(3.6) i 2 = 0

and the given data are

U I = 2 x2  2 co 2
y - .2 sin 2rt - cos 27t for < t <

1 1

2y 2(si2213

U 2 x2 2 I 2(sin 2iit - cos 2 21t) for < t <

2 2
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i 1 1 -- L ./t I '

Example 2 with 6 0.2 and 40 grid points, plots of error curves.I
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Example 2 with 6 0.2 and 160 grid points, plots of error curves.
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Largest absolute errors, case 4 = 0.2:

Number of grid pointb N+l: 40 80 160

error of U 1  : 210- 4  3-10 - 5  210- 5
.2

er o f 1 : 510 - 4  6-10 - 5  10 - 3

error of 5 46 -4
1

error of ii = 1,2: 610 -  6.106 410 -

In this case the errors for 160 grid points are unexpectedly

too large. The reason is that the integrals (2.23) are not

evaluated accurately enough. In this case the choice of

6 = 0.01 improved the results significantly to 4.10 - 6 for U,

10- 5 for ¢o and 2.10 - 8 for oi , i = 1,2.

§4 Plane Mixed Problems in Polygonal Domains

M. Costabel and E. Stephan extended in [24,25] the

results of [83] to polygonal curves 1'.

If the smooth curve V is replaced by a polygonal,

then it turns out that Lemma 1.3 is not valid anymore for

(1.3), (1.4). Instead one has to eliminate K21w ° from

(1.14) first and then to solve the modified system

(4.1) (I + K2 2 )U 1  - V 11 (qg2

21

11 -K 21V 12 ) 2] + K21 22U 2 B2 (gq 2 )(vi- ~V2)[%1 2 r



For (4.1) they prove also Garding's inequality corresponding

to (1.27) with respect to L2 (F2 ) × <-I/2(F I ) where H-I/2(PI)

needs to be modified at corner points in the interior of

F1 (see (4.2)). The proof is rather involved and needs in

particular the Mellin transformation and a local analysis

at every corner point Z. I

1) If Zi is a collision point of the two different boundary

conditions on F1 and F2 (with or without corner) then

the kernel of K22 vanishes identically on the adjacent

straight part of F2  Here the Mellin symbol of

V11 - K21V 12 is positive. The set of indices for such

Zi let us denote by Ic

2) If Zi is an interior corner point of r1 with interior

corner angle wi , then let us denote by Fi+ and Fi_ the

two straight parts of F1 adjacent to Zi  If is any

generalized function on F then let +(Pi) denote the

"value" of at the point on Fi+ with distance Pi from

Zi; 4)_is defined correspondingly. Let R+ {x E Rx > 0).

Now they define

(4.2) H-I/ 2 ( zi) 4 H-1 / 2 (R+) ^ i' + _ - /2(+)}



Then K21V12 is compact and V1 1 is positive definite on
1-/2 (~i) .

Using a partition of unity on 1 and pasting

together A-i/2 (rZi) for all Zi one defines

The set of indices belonging to the interior corner

points of F1 let us denote by I1

3) If Zi is an interior corner point of -2 then K21K22

becomes compact in L2 and 11K2211L2,L 2 < 1, i.e. I + K22

becomes positive definite in L2  The corresponding indices

let us denote by 12

For an improvement of Galerkin's method one again expands the

solution about the points Zi and incorporates the stress

intensity factors and singular functions into the integral

equations (4.1) as well as into the augmented trial and

test functions. Here Grisvard's representation [33] yields

for the solution of (1.1) the following form:

U = i,7T/2Wi sin(Cii /2wi) + a Re{(z-zi)log z-zi)}
iLI i cI

c 3

(4.3) + a i T/i sin (O7/wi) + i o

T 3 7 3wi 2 T 2W i = T *TI

+i 7i COS(Oi7/w i )  + a ni -i i

Wi2  2TT 3 TT 3_wi T 2 (O ,

+ W
0
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where w0 is smooth. Costabel and Stephan find error estimates

similar to (2.4) and (2.12). In particular for smooth

enough g11g2 they also find convergence of order h
I- C for

the stress intensity factors and a maximal order h3- E with

any £ > 0 in appropriate weak norms.

For the details we refer to [24,25].

§5 The Mixed Boundary Value Problem for the Three-Dimensional
Laplacian

Let Q be a bounded simple connected domain in R3

whose boundary F is a sufficiently smooth simple closed

surface (at least C 4), i.e. r is topologically equivalent

to the unit sphere. F is divided into two disjoint pieces

F1 and F2 such that T1 n 72 = r2 = y defines a simple

closed smooth C4 curve on F. Note that the curve y now

replaces the former two collision points Z. Let us consider

the classical Zaremba problem:

(5.1) AU = 0 in Q, U = g on r and au 0 on 2

In contrary to the two-dimensional problems, the asymptotic

behaviour of U near the collision curve y was not known yet.

Only for half space problems with Q = I3 one obtains the

local behaviour for y being a circle from the work of Sneddon

and Lowengrub, see [69], for y being a straight line it is

given by Eskin [26]. Eskin's local asymptotic of U is



obtained via Fourier transform and Wiener-Hoof technique

using distributions in weiqhted Sobolev spaces. For the

above much more general problem Eskin's approach has been

carried over by E. Stephan in [711. Based on the formulation

of the Neumann problem in [31], Baldino formulated a varia-

tional approach for the integral equations [13]. Using

copplex function theory Johnson investigated in [451 for

the special case of a sphere an integral equation for the
U r

smooth parts of U and - on L. Based on [26], E. Stephan

showed in [71] the following local behaviour of U:

Theorem 5.1: If g is smooth enough, e.g. g-H 3 (F1)____ CL1)then

the variational solution U , Hl (Q) of (5.1) has the form

1/2 0
(5.2) U = (s)lp (sin -)x(o) + v

with v , H(5/ 2 )-L (Q) and a _ H(5/2)- (Y) and any c > 0.

Here s denotes the arc length on y and o, 0 denote the

local polar coordinates in the plane normal to y and F

at y(s).

Near y, the transformation from E3 to (s,p,e) is

regular for p > 0. X(p) is a suitable C cut-off function

with x - 1 for P small enough. For the further analysis

we suppose without loss of generality that g is given on

the whole surface f, g E H3 (). Corresponding to (5.2)

the Cauchy data of U are of the form
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U = a(s)p 1/2X(P) + wo + g on r2

(5.3)

au- s) 1/2 (P) +  on

With W E -(2) and Ho E (rI)

Using Green's third identity and a suitable analysis

of the jump condition in the frame work of Kral [47,48] and

Burago, Mazja, Sapozhnikova [18] one finds the system of

integral equations:

(5.4) w (Z) + w ( ) lvdo

F2

1 4 -1/2 do 1 0
+ as p x___ 1__TT l -1 rZ- lj

= -g z) -7- -1 f9)[1Tr do,

for z F 2



(5.5) do 1 21 ' do

i 'o z-JI j 7 z-,-,

2 __ 1/2 ' + do

+(Z) - do2 
z -

: (z) + 7) K + 1 do-

for z 1

Since these are two inteqral equations with the three

unknowns w , ';o and ,- we multiply (5.5) by r (z)-1/2 and

integrate for fixed s(z) with respect to j obtaining the

third eqution:

1 do-

(5.6) - - o7 ,s
T=O Iz1 s)-

1
1f T-/2 r- do 1 12

271 (i/((X (S - (is) x+W 0 L)

1 do d

= f 1/2x g(z) + 1 g( a 1 do, d
0 tV c Iz-

on the curve
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The analysis of this system of integral equations together

with appropriate finite element approximations for w , 1o

and a again yields an improved boundary integral method.

These will be presented in [71].
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Defect Correction, Multigrid, and Selected Applications
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1. Defect Correction

Defect correction is one of those deceptively simple ideas which

has been around for a long time, sometimes in disguise. Mary numerical

algorithms use this principle, which attests its obviousness as well as its

Ipower. A definitive survey has been written by H. Stetter [20] which has
aroused and renewed interest in the method of defect correction. I am going

Ito emphasize certain formal aspects of the method, and show some applica-

tions.

]The most basic defect correction algorithm is known as iterative

improvement for linear systems (Forsythe and Moler [9]). Suppose that in

attempting to solve the linear system Ax=b we obtain an approximation x0

which is the solution of some other system A x0 =b. For example, A might be

the approximate LU decomposition of A obtained by Gaussian elimination. We

would like to use the inform-ation contained in x0 to improve x0  This can be

done by defining a new approximation x1 by

(1) A xI = b + (Ax - Ax0 )

]A more common way to write this is to introduce the residual

r =b -Ax
0 0

and the correction

do 2 xi -x

so that eq. (1) becomes

Ad =r0 0 0

The iteration is r 1 =b-Axi , Aodiri, xi+l xi+di • However, the practical

-1 529



value of this procedure is not as an iteration but as a way to reduce the

error in one or two steps. Such a reduction can occur because we have the

identity

(2) A - -A

Then for any ccrslsten = rrm

(3) lix. -xl[ < I-A -Al Ilx-x il

Thas, if A and x are within S of A and x, in the sense thato 0

!II- A-1A0 < lix-x 1I < E, th.n
0 0

lx. xll i a

and we can expect x to be a better approximation than x..
Generalizations of the identity eq. (2) are the basis of Just

about every successful application of defect correction.

An important step forward was taken in (Pereyra [18], where the method
is called deferred correction. Suppose that we wish to solve the differential

equation

Lu = f

using a finite difference operator M to approximate the differential operator

L. If
Mu = fMU f

then the analogue of (1) would be

Mul = f + Mu Lu

However, uo , being a grid function, is not in the domain of L. What we can

do is replace 7 by another finite difference operator N which is more accurate

than M. If we define u1 by

(4) Mu1 = f + Mu 0 Nu0
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we have instead of eq. (2) the identity

(5) M(ul-u) = (M-N)(uo -u) + (L-N)u

Suppose that for some representative grid size h, and smooth u,

M = Lu + 0(hp ) and Nu Lu + 0(h q ) , q > p
U

Then if u = u + 0(h p ) , formally,0

MWu - u) = 0(hmi n(2pq))

and if q > 2p we can expect u, to be an approximation of order 2p. For this

to actually work there must be an error expansion of the form u -u 1 h e,

where e is a smooth function. In the example studied by Pereyra such an

asymptotic error expansion did exist, and the indicated improvement did occur.

Note that one way to obtain a higher order operator is to set

N = LI, where I is an operator defining a smooth function by interpolation

from the grid function. This allows greater flexibility, and is discussed in

(Frank and Ueberhuber [10]). An early application of this idea to neutron

transport can be found in [161. There, instead of increasing the order of

approximation, certain poor qualitative features of u0 are improved in u 1 .

The obviously attractive feature of defect correction is that with

two passes through a program to solve Mu = f, with different f's, the0

accuracy can be increased from 0(h p ) to 0(h 2 P). Apparently, only the accuracy

requirement need be considered when constructing N; stability and ease of in-

version do not play a role. One question which does arise is the following:

Is this the best way to achieve accuracy 0(h2p)? If we eliminate u from the

equation defining ul, we find

- :M-1 (2- N- 1 ) f

Let

M 14-1 (2 -NM
-

Then the question is, is there an operator N1 , with the same accuracy as

MI. which in this case is 0(h2p), such that it is better to solve
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(6) NlV f

rather than

(7) Mlul f ?

Pereyra attempts a partial answer to this very difficult question

by solving a problem which was also done elsewhere by a finite element method.

He correctly warns the reader not to draw too strong a conclusion from the

outcome; he claims only that the comparison shows that deferred correction can

be competitive. The actual problem was

U + u = u 3 + (-2 + (l-2x)2)(ey( I -Y) - 1 + u)

+ (-2 + (1-2y)2 )(ex(l -x)- 1 + u) - (eX(l-X)-l)3(eY(l-Y)-l)3,

(exact solution is u(x,y) = (eX ( l - x ) -1)(eY(1-Y)-l))

on the unit square, with u = 0 on the boundary. For M, Pereyra used the

standard five point Laplacian, while N was a fourth order accurate difference

operator. This was also solved in (Herbold [131) using piecewise cubic finite

elements to define N1 . Taking into account machine differences, eq. (7) seemed

to be 100 times faster than eq. (6). The reasons that the comparison is not

valid are: different iterations were used to solve the nonlinear equations; an

inefficient linear system solver was used by Herbold; and the error was mea-

sured differently - at the grid points by Pereyra (apparently), and by Herbold

using a much finer grid and the cubic interpolant to define intermediate points.

Before moving on to other uses of the concept of defect correction,

one warning must be given. Boundary conditions and accuracy at the boundary

must be given careful consideration. If this is not done the correction step

will not improve the answer. An example of this can be found in (Pereyra

et al. [291).

2 The Multigrid Method

A very interesting and powerful application of defect correction

can be found in the multigrid method for solving the differential equation

Lu = f



by means of some discretization

(8) Lhuh= f

defined on a grid Gh, with mesh size h. There are two parts to the idea;

first, since uh approximates u up to some truncation error, say O(hp ), there

is no point to solving eq. (8) to any better accuracy. Second, coarser grids,

on which computation is relatively cheap, can be used to help with the solu-

tion of eq. (8). We will concentrate on the latter.

One starts with some relaxation procedure. For example, if L

is the Laplacian and Lh is the standard five-point difference operator, then

SOR might be the relaxation. After several iterations one observes that the

high frequency components of the initial residual are smoothed, but then con-

vergence slows down. The idea is to continue solving the equations on a

coarser grid, 0 2h* The crucial part is to do a defect correction on the coarse
grid, that is, solve L2 hu 2 h = f + L2hu- Lhu , where u is the fine grid

approximation. However, the domains and ranges of these operators are vrong.

So we have to choose an ooerator J 2 h u(g-) u(G2 h), and then we can write

(9) L2 2  = J2h f + (L J 2 h o - J2h 0)
h 2hhuh h h

.2h .2h o
h is the residual transfer operator. The grid function u 2h - h is the

correction to be added to u; before doing that we must define an interpola-

tion operator h u(G2 h) U(Gh) Then the new fine grid approximation istincprto 2h' h

(10) V, = o h 0 2h o(10) V J2h(U2h - Jh

It is not necessary to obtain u2h exactly, instead eq. (9) is solved by the

same procedure - do several relaxation sweeps, then transfer the defect to

grid Ghh, and so on. Only on the coarsest grid is an exact solution possibly

obtained. Now we work back up through successively finer grids, using eq.

(10) and additional relaxations.

Let us change notation, calling G0 the coarsest grid, G1 the next finer

one, etc. The basic cycling algorithm 1) represented by the sequence CN, where

CN = GGN Go 1 ... GN

N NN-~" o



The fulI multigrid algorithm would start on the coarsest grid, as follows:

Co,C 1,C2,... ,C 1 . The sequence must be terminated according to some error test.

Brandt uses higher order interpolation (cubic if Lh is 0(h 2 ) accurate) each

time a new fine grid is started.

How good is this? We can measure this by defining the relative

efficiency as follows: Let p be the error reduction or spectral radius of

one iteration, and let W be the work of one iteration. Define r = w The

larger r the better the scheme. Suppose we measure W in units of the cost of

one relaxation on the finest grid. In one (admittedly easy) example Brandt

observes

Itn.25'
Basic cycle: r = .52

In the same example the full algorithm reduces the error from .25 on the

zoarsest grid to .001 on the finest grid in 5.33 work units. This means

Full algorithm: r = 1.67

That is, in this case at least, the full algorithm is 3 times as efficient as

the basic cycle. On the other hand

SOR: r = 1 n( - (h2

The remarkable thing is that while rsoR  0 as Zn - 0, rMG is asymptotically
independent of h. This is proved in varying degrees of generality in [7], [12],

[3], and [21.
The proper formulation of multigrid seems to be due to Fedorenko

[61 and Bakhvalov [2], going back to 1961 and 1966.

Multigrid works as an acceleration of the original relaxation, and

it is instructive to re-formulate it this way. I need to simplify and change

the notation. First let

j = .2h = residual transfer
h

= Jh 0 coarse to fine interpolation
2h

Q =L 2h = coarse grid operators
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The relaxation sweeps are based on some splitting of Lh, say Lh = A-B.
0

If we start with some w and do m relaxation sweeps, according to

Aw = Bwi - 1 + f , i = 1,...,m

Then

w -- A 2 H2f

where

H1  (A- B)m

H2  [(A-1 B)m-i + ... + I]A - 1

Now then, let

(11) vI = HlV0 + H2F v arbitrary

On the coarse grid we have the intermmediate step

Qa = Jf + (Qjv1 - J,, 1 )

or
Q-if jv 1  Q-j 1
u ^ Jf+Q-ijQ hvh

Then we set V-1  vI + J(u - Jv1 ) = v' + (Q-Jf QJLhv)

7 + Q-lj(f - L
1

)

This new value of v- then starts the next sequence at relaxation sweeps.

Thus, the complete iteration is, assuming exact solution on the coarse grid,

is

(12) Vi+l = H1 [Vi + jQ- 1ij(f LhVi) + H2f

Note that this is consistent: if Lv = f then v = Hlv + H f-nLV f. This1 H2 fLv=i.Ts
also shows the absolute necessity of transfering the defect to the coarse

grid. Let

C = H I [I - i - , h ..



3ecall t-at the efficiency is r n where P(C) = spectral radius of C.

-. has been proved in varying degrees of generality that there exists 5 in-

dependent of h such that O(C) < a < 1, even for the completely recursive

algorithm. A very neat heuristic estimate of r has been given by Brandt [31,

as fol-lows: Let L be the smoothing factor of one relaxation swee. Then after

all the grids have been visited all the frequency components have been reduced

by u , i.e. p(C) =  In two dimensions the work, relative to the work of

one relaxation sweep is

,W (+ 2 + )+ IM
2' 2

So r = ' . This has proved to be very reliable in practice.

3. Higher Order and M,,ltigrid

Brandt has also shown how one can combine multigrid with the use of

defect correction to get higher order accuracy. If Nh is the higher order

difference operator then the coarse grid difference equation becomes

2h 2h o .2h o
L0hU2 h = Jh f + L2hJhun h , h,

Brandt uses

2h Vh 4 2h 1 2h
h h 3 h h3 32h h

This is formally fourth order accurate if Lh is 2n d order accurate. This is
called tau-extrapolations. The coarse grid equation becomes

(114) L =u 2h f + L L j 2ho - 2h o

2h2h Jh 3 2 h h uh h Lhh

Here is a sample computation. The test problem is poisson's equation

on a rect&,-!le with Dirichlet data. L is the standard five-point operator,

J is injection, and J is linear interpolation except when beginning a new

fine grid, at which point cubic interpolation is used (with or without tau-

extrapolation). The only change in strategy is to use eq. (14) instead of
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eq. (9) the first time the fine grid residual is transferred to the next

coarse grid. This is schematized below and the errors are shown.

Error
Grid Usual Tau Ratio

0
1 e e

Start 2 with cubic interpolation

from 1

2 relax

(15)

1 (9)

0
12 .32e .2e 1.6

Start 3 with cubic interpolation

from 2
3 relax

(15)

(9)
1

1

2
3 .72e .02e 3.6

.017e .0019e 8.9

5

5 oo4e .0002e 20



Although the accuracy is :onsiderably enhanced by tau-extrapolation

it is not fourth order, since the latter wo.i3 roduce ratios increasing by

factors of four. The reason for the icss Df accuracy I's tat eq. (1a) is

not solved exactly, that is, instead sf inver-in n . t:.e m'ltigrid

algcritz_- inver-s -r.e .7, 2r x7.tcn. e.

... ;~ i - + - .

+ 2h- h)Ju

-- e l % -e.rm :an ze r?:,ced to O,h 2 ) only ty increasing the nu.-ter of

m.it rl yes

-hatis neeiei - J- a go> test of, for example, the icomplete

t au-ex\_ ::rolation J':st described, the more accurate tau-exrapolation, and

sclvni .,.u = f as efficiently as possible.
.. n

The Coarse 3rid J'cerat Dr

Nicclaides _17 -.and Hackbusoh '111 have observed that if instead

of using = L-,., we set

(15)

then - J. arnihilates the range of J. In addition, the residual of

the corrected solution vanishes when transferred to the coarse grid, that is,

[. i "- i F

S(u i+ J,-ij(f -L, u i ) ] - = 0I n

Alcouffe et al. [1] found that (15) was necessary in order to obtain the

predicted convergence rate in a problem in which the coefficients were dis-

continuous and Jumped by orders of magnitude.

The mappings J and J and the relaxation splitting must be properly

chosen for all this to work. This still seems to be an art, as can be seen

in some of the applications to physical problems described in [11, and 5

which will be presented later. Here is a simple example. Take
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(Lhu) i  h-2 (ui+l -2u, + ui-1 )

Let the even points be the coarse grid, and let J be linear interpolation.

Thus

i even
(Ju) 1

u )i odd

Let the residual weighting operator J be defined by

1 1 1

(Ju)i = - ui_ + I u + 1 ui 1  , i even

Then it is easy to see that

L2 h 'h3

and

(15a) J = J= ( J)

if (a,b)h = Zaibih

The reader might turn to section 6 to see how the averaging in

eq. (15) arises naturally in a problem with variable coefficients. Eqs. (15)

and (15a) are also theoretically useful, as in [12].

5. As Application to Fluid Dynamics

The multigrid method has the ability, in principle, to take an

existing finite difference code in which relaxation iterations use a large

fraction of the running time, and speed it up considerably without making a

major revision of the code. To see if this were really true in practice, my

colleagues Joel Dendy and Hans Ruppel, together with Achi Brandt, incorporated

the multigrid algorithm into the SOLA code.

Some of the results of this work, reported in [1], are given here,

together with scme additional information given me by Joel Dendy. SOLA solves

the incompressible Navier-Stokes equations, which are



u x +V =Q
x Y

S(u+p)x + (uv) x + ['x + u]

V

""r + (v.o l =) s-"

4 X /X

2 , = 2

F igur e 1

with boundary conditions shown in Fig. 1. The difference equations are

semi-implicit, as follows:

(16) 1 (U~ n~l j) + ~ ! ' 1 _) 0

Ax i, j + i ,j P g i'j ,ij-

(T) n+l At I n+l n+l n

) i J+P - P J = ni ,J

n "I
The quantities ai and b contain all the information from the previous

time step; their exact form is irrelevant to this discussion. The grid

structure is shown in Figire 2.



V.

U J P uij Ay

V. f

2. ,J.-1

AX

Figure 2

Note that by using eq. (17) and eq. (18) to eliminate the

12+1 n+1lvelocities un  and v from eq. (16) we have

Lhp = c

where L. is the five point Laplacian. SOLA solves this by an iteration on

p,u, and v which is equivalent to successive over-relaxation for eq. (19).

This iterative procedure was maintained in the multigrid implementation,

the only change being that a residual appears in eq. (16) on the coarse

grids. To keep the proper relationship between velocities and pressure, no

residuals are introduced in eq. (17) or eq. (18), and these equations are

used to define the corrected fine grid velocities once the pressure has

been corrected. The grid structure and the relation between coarse and fine

grids is shown in Figure 3.
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"I. V

•7 4

-'

:2i re B

.e r e s -9.12of e. 1' i64s Loc ated a: e saP e zr a-c r.-.s a s :.The res-
4ual weighting ithe -n-er oaticn J) .s o::ained ie ...n4 :e coarse grid

residal as the eauaLy weeizte. average :f the f:r ne*inZhrn;Z fine grid

residuals excent at the ounid--: .here a srecial weighting vas used wnhch is

discussed below. The operator j (oerating :o-ly on the mressires) was de-

fined by bilinear inter-)clation. The efficiency _oreli oted b-y e. was

achieved. The procedure was non-adaptive, that is, th,'! iteraticn was started

:n the finest grid.

The boundary conditions on u, v, a Pn recudre that a,. andn:

vanish at the sides and top respectively. This insures that the sur over

the grid of -i. is zero, which is necessary for (l9) to have a solution.

Because of the unequal residual weighting this consstency condit*cn is

not satisfied on the coarse grids, except in the lii. This 2auses no pro-

blem since exact solutions are not sought on the coarse grids.

Equal weights at the boundaries caused a 1.4C loss in the efficiency

predicted by eq. (13). The success of the unequal weights used brings ic sone

irteresting points, although we car-not provide a clean arguzent for that

success. 7he actual weights are shown in Figure 4.
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4/9 1/3 1/3 1/3

1/3 1/4 1/4 1/4

1/3 1/4 i/4 1/4

Figure h

Note that the weights in the coarse cells at the boundary do not add to

one.

Let Jo be the local sum of the residual weights; in Figure 3, J 0

is 1 at interior coarse cells, 1.35 at corners, and 1.17 at the edges. In

[3,5] a heuristic argument is given to show that the effect of the iteration

matrix C of (12a) is approximately l-j 01 when applied to the smoothest grid

functicns, therefore if Jo = 1, C will surely reduce the smoothest part of

the error. It seems that all that is really necessary is that 1l-J 0 1 not

be too large.

The weights are a bit mysterious, but they can be obtained by a

more or less convincing argument which we present for the one-dimensional

case. Suppose the differential equation is pxx f, with Px = 0 at the

boundaries.

bdry fine coarse

h/l 1 h 2 3

Figure 5



Referring to Figure C, let

S -2o. +r.

i = 2,3,.

and

:r ' - - - -i I- Pi P-+ ) 2

: >" x, 1+1 -. 2h , "=2
<.. +I)

K-n-

and

C-

.. ..~ H> -)iscl aewih

This means that i4f >rY is iven we4ght I then h shoul have weight
4h1

The analogous ar -ument in two dimensions gives the indicated weights.

The authors of a: ilso implemented muitigrid into the SOLA-ICE

code, which is a -ompressible flow version of SOLA. This was not straight-

:orward. Difficulties were encou'tered on the coarsest grid which could not

be overcome by icing a Erect solution because of the peculiar nature of the

SOLA-:CE alwor±:*-=, the latter having been dictated by a desire to maintain

an iteration -'milar to SOLA. The authors finally hit upon a technique of

shift'n I .,hich improved beth toe origiznal alorithm and the multigrid

version to the -oint that the correct convergence rate was obtained.

We should zolnt out that it is possible to take a more natural

approach (from the point of view of a numerical analyst) to the solution of

semi-imnlioit difference schemes. The nonlinear difference equations can be

solved by Neton's method, however, it is important to make the right choice

of variables about which to linearize. For many problems p =  (0-a ), s< i.0
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In this case linearization around p produces an ill-conditioned Jacobian,

so that one should linearize around p. This procedure is followed in [151

where a difficult two-phase flow problem is solved. Since the method also

involves relaxation oscillations it should be possible to apply the multi-

grid concept there also.

6. Neutron Diffusion

A difficult neutron diffusion problem was done successfully by

the multigrid method in [1]. The problem is

- V • (DVu) + u = f .

Some sample configurations and boundary conditions are shown in Figure 6.

-1 -1

Uy- - u U -

D D D 103  D

U- -1 u0 ____ ___0
0i L.. 2 U-i 0

D =1 D -10 3

u - U: =0

(a) D2/D1 ranged from 10
-
4 to .10 (b) Four Corners

fl-I

- .

(c) Staircase

Figure 6



Because of the large jumps in the coefficient D there is no easy

way to define the coarser grid operators, therefore the authors used eq. (l).

This, together with eq. (15a), at least reduces the variability of the problem

to the choice of J. It was observed that with J taken to be the bilinear

interpolation operator the multigrid iteration either failed to accelerate

the lexicographic SOR iteration, or even failed to converge at all. We can

gain some insight into this problem by considering the one-dimensiinal

problem

where D is a step function with jumps at the fine grid points, as in

Figure 7.

D 2i - 1/2 D 2i + 1/2

2i-1 2i 2i+l

Figure 7

The fine grid difference operator (away from the boundaries) is defined

by

(h2 iu) = Di+l/ 2 (ui+l-Ui) - D il/ 2 (ui-u il)

Let the coarse grid consist of the even-indexed grid points. Consider the

following method for solving

0 0

First, choose anything for the even indices, say u2 i, and define u2 i l by

relaxation; thus,

(Lh u) 21  f2 i +ri

L hU0) 2i+l f f2i+l
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Next, eliminate the odd variables. If we define L2h by

(L 2 hU)i -  D-1 /2 u +hu)+ 1+1/2
Di+l/2 +Di+3/2

for i even only, then

(20) Lu0i = r. + Di_ D/2 fi-1 + fi +  D+/2

(~~- 2h -/ D1-/ +/ Di3/2 1 +1

and the left side involves only even indices. Now, solve exactly the coarse

grid correction equations

(L2hV) i = - ri  , i even

Then if

= (u 0 +v) , i even

and if ui, i odd, is defined by relaxation, we will have obtained the exact

solution.

The following is easily verified. Let the bracketed terms in

eq. (20) define the residual transfer J. The relaxation at the odd points
A AT L

defines an interpolation operator J, and J = and L = JLhJ

This can be summarized by the statement that the appropriate choice

of relaxation strategy and interpolation J produces the exact solution in one

iteration, assuming exact solution on the coarse grid. Since the coarse grid

can be treated in the same way, exact solution can be obtained in one full

cycle. Furthermore,

2 Du) i+ /2 D i+ 3/2 Di-/2Di-3/2
hL 2h i D +D (Ui+2 - ui) -D D (ui -u

i+1/2 i+3/2 i-1/2 i-3/2 ui-2)

Apart from a missing factor of 2, the coefficients are the harmonic averages

of the D's, which are well-known to be the precisely correct averages to use.

While none of this carries over to two dimensions, it would seem reasonable to

try to stay close to this formulation without constructing an algorithm that is

too complicated. The method arrived at in [1] does Just that.



Consider Figure 8. Suppose the coarse grid points A,B,C,D, have

been found. A feasible procedure would be to define the interpolant at

1,2,3,4,5, by relaxation of the fine grid difference operator centered at

each point. Instead, the authors chose to lump the operator centered at 1

into a 3-point operator involving A,l, and D and then used that to define

the interpolant at 1. That is, if the operator becomes auA - bul + cuD,

then they set u, = (auA + cu9)/b. The corresponding interpolations are done

at 2,3, and 4. The full difference operator centered at 5 is then used to

efine ul. With this definition of J the authors then took J = J', and

L = J'L J, where L4, is the fine grid operator which will in general itself

have been defined in this way from still finer grids.

The computational results are quite impressive. For some of the

fairly hard problems the error reduction (spectral radius) of one cycle is .1

with an efficiency matching the efficiency of the standard multigrid

algorithm for the constant coefficient Laplacian.

5 3

0~0
Figure 8

The method of interpolating from the coarse to fine grid described

above recognizes that an elliptic difference operator defines a natural inter-

polation. Elliptic interpolation has been shown by J. M. Hyman [l] to be a

practical way to advance from coarse to fine grids when solving Poisson's

equation. A very efficient checkered relaxation form of multigrid, presented

in [16] also exploits elliptic interpolation. However, this would not work

here because we are not dealing with the five-point Laplacian.
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1. Introduction

The generalized Galerkiri method for thle solution of cvolu-

t ion probi ii;; consists of thu fol].owi ng steps; 1) We formulate

the given prohieni inl a variational formi. 2) Weo d iscretize thle

problem in ~;a~,i.e. we consider a family I V' 0 < h1 < 1

of finfite diwei 'I5joia Isu~bspadces of -the baiS1c IBalich spjee V

such that lrn dist ('t ,v)hO V V and in V 1 we define a

sernidi&;cretu solution by means of a discrete analog of the va-

rit jofid fort mu1 at.ion dote. ii ntg thle exact !;oI ii tion. 3) To com...

pute this soluition meiins to solve a system of or-(inflr-y diffe-

rentijal equtat ions.* lin t his sVst(i-i n'JmCX'IC> lv ge t a

co:.i"plet ' J ] di isc±et izod approx i.::kl tc solut ion. T11 Case ok' nonl i-

ne.'r proble'rs flt._ appli~cation of linecar intilt istep i ethods has

adva-ita.rc in that %ye are oftcn able to linearize the resulting

V~i~ic~ ltOt 1 )..'eri n!- thle ilCCut1i.scv rest ri1ct otirse I-A-

a n:i i- ci as of li iwr iiijt tstp etlds: to As bemtos

TheitrCth.- It OdIC twe.n~ .0o1.K] IN. st'H s1;>u fi:1illing,

cortaIn 'tivi . i i"a1 it. Pot h pr rt ic('S1 lc

the nt, t.r fo ~:a .' r th, lu eny ,;i of :iorini

ie rcr ' it~

First vc~ r r c of 11 nc;tr ruit se ut beds- con-

side ted 11 ih,, .'eql"' %, (1 . %iiIl Ildeu 'x h wi-, .;i n h a

III hot 10N l-t 6L o.(ii. 'jthtI,~ 'r1I1,' tUIL

i llo - e t I' ': tc I k: Iid , , t1nilv ll



11. t~-zt;0lbc Linear N i I C tIlOdS

1 he cha~racteriist ic pol ynornit s of olii-stcp conistent 1e

thaCds are

As is well. known (see La.ibort [1) this e i cthod is A-s table

if r the o! al(t.:,)o is of ordtvr 1. E) g i vei the t ra-

puzoical rule %which is of order 2. Lahlqui t [ 2 ] proved that

A-.stjble muithocls c~trirnot be of grcatier order- than 2-. Therefore,

coric-Anirng k-st p .- stitle met iods with k >1I we res, trict our-

selves to ti~o-step mthiois of order 2 wvith G having rno

co!-.mnn roo t. Thest! othdS*norn.-- Iizcd I irungh A are

given by

C4, cko + Do

0

C4

iu o



Remark 1. Among A-stable rtethods, those which aro strongly

stable at infinity (i.c.such that the roots of G( lio In

the interior of the unit disc) are i)reIerable when, solving

stiff equations. In Zla:nal [4] there is introduced a sub-class

of (3) given by

arcL

a n ri v n , '! VO1 . & 1 0 t IL M.a l I S t , L v " a t i i if i i t % - F o r w e, *, h o d s ( 4

absolute -:!,u' s o f" t heu error co n,t mit and of t hec roots of Q

Vie . h t .sim!iltat, eotul- . A reason,-
C'v O:Tl:O c t ,:£ : r, I ;I ."Cll S Y ']

L.t u s Ct..., ' k .. ) . .A, C -r,.,tho,'!., i '. to mthods

(1) 'ith 0 * Let. V Le a vector spate and b(u v)

V a t'i 1 i:> r :'' trit ;'oern , V V 'C assulm that

:iN IIn o n!.': it- '' 1 (e,

(4) OA - , 1 - V.

* , II I I i I I Iv I I !
C 2 -I! ~ :r



x X

If e ai;:plv thle 0 -methlod to the solution ef

(9) CL 7

Ve t't for the dl-,cr", te -o1ut i fi-o:', (5) ( V ,

b(x, : , v

m 0

The s1- T;roi,, rt,; his tt . c:_ct soltlti l: t) < 'It x2 for

t >U. 1h'e inr.v :nq ~ z r ) 'with V 1. 'S1 ) bt 1, v -- ( , V)L 2(g )

was 1.,d v !I :nb yi t al ori to der i%, [ t Lund.i for the error of ap-

proxi t sol't ,i ,rto c i or ,s

]h' P : ' iA e e,"-u p VV', i l'. ,. V C' 1 t2 e s(h ' ( (3) lt

'' sct

I: t 1'; 1r 1 I I in a litt e... . .. ct or ..

if, Set

rot.- ~ ~ *K >0



An eCtsv corlptttdt ion g"ivcs

lherefore

ZI2> A(c CFJ

i1t afjont orm
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Let

(14) .- iZ ) -s

where

(0 =- A_- 0% E I 4 if k=l,
(15)

0(1 r ,, if k-2

Then it holds

(16 ) M ac) l~~

here CI,C 2 are positive con;;tants dcpuridinj on the coefficients

c4- only.
F'roii (16) it followS tlhit the all'proxii.iate solution of (9)

satisfies the inequality

x,$ <c 2 x , ,-r r

Another applic.ition of (16) concerns tlh problem

(17/) ++ x xL 0L x(0) /ko x1,O =consi td 0.

We write (17) as a system

%e p) cLt (5 O rn- -

we np 1} thb r~t !,:i :d C 5) on'1 n Itti ply the fiv' t cq(*dti(,nl by
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,o an d the second by / Af+ -Using (16) we ob-

tain

Remark 2. It is easy to see that. if a linear muIltistep

scheme with an arbitrary number of steps anti of arbitrary or-

der of accuracy has the property (16) then the method is A-sta-

ble (in fact, one proves that the method is A-stable in the sen-

se of definition by CrouzeiX-Iaviart [6] . p.4 0 ; however this

definition is equivalent %ith the classical Lahlquist defini-

tion - see [6; p.41).

III. Nonlinear Heat Equation

1. Let c .N be a bounded domain with a boundary <-R

and ik j(x't'u)hq.4 be a uniformly positive

definite matrix. Further, the coefficients kij (x,t,u) are sup-

posed to be uniformly Lipscitz continuous functions of te [OT]

and of u (-C. ,o) and thu, righ.-hazi side f(x,t, u) a uniforPly

Lipschitz continuous function of ue (-ooo ) 1*. consider the

probler.

+ tt+ t n x (0,T)

4-A ,t) 0 r) on x (oIT'] O< T < c

,0 = (Y ) U ( I , S .



More genecral e uhdi ionis adi boun~fdaryV con1 it ionIs can1 he t ruated

in th IIvS die wva), wl .i 1 flov dlescr I b

If the exact solutionl is smioothi enough then it holds

(21) (0 v%+ r GU OtA tA,' C r F(ot4% It, VnLj V- 44(

ILA kA AA (ky~) AJix

11m(51 is the Sobolev spave u e ',A G\~ V 0o(\

with thc us;ual SCal,11 prodUCt (A ~ ~ (~M-)y n

the norin l ,AK tqa Ml k" ( NXSV) A

Let us corizider a faxnLly of Fin~ite elcur.-~nt spaces such

thAta ) , 'o( ' he ( ,ilk!rk i a r- tw vie ds a sc~iilI iscret c.

Solution Lix,t) wilchi rr each t E <0,1'> is a futiction frota

vh L(x,t) is uzli.iuely deterniied to, a discrete analog of (21):

(22) (U'l v-)O + au(t'u, utt) (jx'tj':))j 1 ,)o V CY V)

U('K '

u (.) 3s a sulitiable approximation of u Wx from V' (22) re-

presents a .Ys tevi of ordn iv~y diffv£rvtit ial equations. Apply-

ing the niethod (15) wve obtairt

(23)
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The scheme (23) being nonlinear has little practical valuc. We

linearize it as follows;

(. L ur' , v" ) At. t.Ct , U U' ,.V) = At(

(24) Oi.a 

i )4o

for k=l
tV 4j V< 0- O e

(2) , / U'> =3/

(see Douglas and I~upont [7])A

for k=2

(26) t, \t , ' dYt U-  +)U+, ,-)u'

(see Zldiral [51). The order of accuracy q of the method (24)

is equal, I if k=1 and &e , and 2 if k-.,, E) or k=2.

Notice that whereas (23) with k::l and E- is a one-step

scheme the correspon(ding 3chome (24) is a two-step scheme.

Remark .. Even YAen (24) represents a linear alebraic

system at every ti;:e step it i-s not the finial scheme in prilc-

tical compti t at i1ons In ge sc r yt* we hiivc to co,..ider fr nite
element s %,c'V which ar e suispitexs or II (

(best krno'.n cx~a;ple; curved i: oar',arw tric c lement ) Iti addi-

tion, we have to c owi'mte mxi;s and .tjffn;,s matri ces i1ttmeri-



call1)' Let 'is denfote 13y 01., W16,iu a~ h w i, the apdproximaIte

Va Itles of

respecti ye lv C01111uted bya sutt a b (1 ad rat ure rule . Tile fi-

nal sche!iie is

(27)

When ps leW'. 11S, for the cwr',pllatiotl of a quaraur

formu'la such that the (rrats ) ratr z, correspurv ing to ~**hbe

diiigoc-i. The p i n'ik .o'oW Iwuvj'in (sve '('Iellv.iewiCz

2.We out Ii :ic tim %N-y h-w to (ILrivo e~rror 1)oiiwl~ Vic assu-

me t hatI the fu v{ hJ 0 <h ~.11,h t he fo 1 1owi n, approx 1-

m~at iowi proporty ,iirk- by I'i n it' t' it sibspac ,s :to any

&A ~~r-) . ti't cXi-.tS 11 E 11 such that

() (A - LA kA A i

(ii the scql! I , 'vno t - a ('Uti ', nu. tot ]N.r>-;r t Ile Same~

at any tw'o plaict.:. wf.j cli wnay depe:nd oil il) Vteifet)l- tile exact



53

solution in + + where GV is the H1itz approxima-

tion defined by

(29) o(t 4A 4A . t-L 4A ') Vu V .

Under some assumptions one can prove that

(30) 0 C,'L4I' ] V t1 4(oT]

(see Wheeler 91 and Dupont, Fairweather, Johnson C103 ). Hence,

it is sufficient to estimate e-= - U ( (tn.). One de-

rives (see Zanmal [5)) that

( 31) (3 e + hta.,(t,:,- I"~ /3er-4~iy)LtL"~,)
%1 0  %0

( 32) ffl4 C(I" O

(again, q=1,2 is the order of accuracy). lWe choose Vr.

in (31) and use the uniform 1 1 (a)-ellipticity of the fain

a(t,w;u.v) following froma the uniformly positive definiteness

of the initri*. Lk 1 V"X. t,w'I , i.e. a (t,w; V*.v)' V e ~AL )

Estimating thc right-hand side of (31) by

~+ VIr' 11,' with a suitable and

taking into accourt (32) we get (b(u v)=(uv),)

in ~~a 1 +n ms th u0fr lS)elptet £tefr

(16) gives

0 0



The discrete Gronwal iiequal i y (see Lk,,es nil) i p ies

0

from which using (30) one gets easily the final result

IV. Time Dependent Navier-Stokes Equations

1. Whereas in the preceding section we did inot precise, the

variationaI formulation of the problem we want to do it here.

To this end we introduce some spaces of functiors valucd in a

Banach space, we define the weak or gencralizcd derivative of

such functions and consider a certain space suitable to the so-

lution of "t ine dependent problems,

Let X he a Bartach spsce nor,.m,,d by I RIl[ and let

04T< D

For p > I we denoLe by LP(o.T;X) the spaice of stronigly mesurable

functions f:(. T)- X (see, ,.g.Kufner+John-ru ik [1.21. p.107)

such that

kmo,_ = (t dtV> O i iL

t e (ort)



o m

By C( [1O.T);X) we dunoto the space of continuous functions

f: [OTj --* X normed by

To define the weak or generalized derivative of a function

valued in a Banach space we introduce the following

Lemma 1. Let X be a given Banach space, X' its dual and

let u and g be two functions belonging to L (o,T;X). Then the

following three conditions are equivalent:

i) u is a.e. equal to a primitive function of g,

t

(all integrals with respect to the time are Bochner integrals;

see. e.g., Kufner+John+Fudik [12], sect.2.19),

T T

ii) -j (4 t- )
00

iii) for all

CL

where <.,. > is the scalar product in the duality between X

and X. In addition, in each o1 these cases u is a.e. equal tG

a functionl of C[O),T;X).

The proof of Lk,ri.a 1 can ) c fomi-i1 in Term~in C131, p. 2 50.

The funct ,ion g (,f thi- l - tie wel or generalized deriva-

tive of u-.o denoted by u or C&t



If u e L) (0,T,X) is it soIti on o f an evo I"t ion uq iition

which should satisfy the iniitial condition ti(O)=zu and] if we

find ouit that from tile equation it follows u'EL1 (O,T;X) then

according to lemc~ia 1 it holds ur- C( [0,T] ;X) and thc initial con-

ditiozi makes sLense if u 0 c X itnd if w ve t a ke i t a s &-x v~( -4,AJ1 0.

0+

Oft en, we have a different situaion. Let us con i dcr the

simple problem 0n 4 ), rrtxO (Io (x) i .

as atn operator equation. Taking -A"t in the distributional

sense wve have <(-A4A > I ti 6 I rit thlen thle

right-luind side is hounded by JJAJ4 j H~\ A~T ( ,ence, focr
u E L-(O,T ;If,~ f )-\u maps LV(O ,T;.ti"' into L(0.1 ;H 11-

(H .) is the dud-) of' 114 (Q.) Frc,pj the eqjuation it fel lows

that E L (O(T -) Q) HA-W 0ore gencrally, let us assume that

there are gi ven a Ili ibfert space 11 ith a scal ar product(

and norm I. iandi a refle(xive [lanach space 11 with a norm It kI

which is dense anid continuously imbudded in If (in case of thle

heat equat ion IIL- (9 Q ly(. e ident ify 11 with its dual
0

space by means of its scalar product. Then If can he identified

with a sub :pace of V arid we hadve inclusions

(V31)H V1

where each space is dense in tile fol lowing one and thle injec-

t ions atre Cc nt it-IuOu', . FurL he'rfuore , t he sca I o pro~duc t

between V and V is an exteni~on of (*.No'v, let us consider

an operaitor Vqiuation 11 +A(lu)=f with thlt, initial cotndition

u( 0) =u * AhOu is -,upposed to h(! it rmnl inear ope-rator frm

L 11 (O,T;V) into L1p ((O.T;V~ )) ± " -L. arid f c LP) (0,T, V )

Looh i it,- fo r it c- Lp 04;- V ) we sev f7 ruc tlire e(Itl t i on t hat
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ue L1 C (O,T'V )o The foIIowing Iima guaranttes that th initial

condition U(tJ)zu 0 makes sense if we assume U 0e and if we take

it as 1,nIu(t)-,, =0
t-tOt o

Lemma 2, I.,t 11 be a Ilil1 ert space and V a roflexive Banach

space which is dense and continuously imbedded in 11. Let W be

the B aach space W= fvjveLp(O.T;V): v'ELP' (OT;V\)}- 1 'p

W CC( [OT;I{) amd the imbedding is continuous, Furthermore, for

any 11,VE' It holds the formula of integration by parts

4.

0

The lwma is true cven in a somrewhat more general forw

and the proof can. be foutid in Ga[wski+GrogeriZacharias £133,

p. 14 7

2. The c ,. c. forni ,lation of Jhe initial bo:;ndarv value

prullv to th, ,;,, wudtiO:S ls the following: Find

vector u , . , (T)written as a su-

perscript den'ts tr. ]',, t :) of a vc-ctor or of i rtitrix) and

a s', li: fu tc ,n P x t) . , t I, , i t

4

(s') di U2,

(n n C) IT)

3 11 0



In these e(4Uatl 15 Q_ C. is a bo~ :ied doralin w% tlh the

boundary x = . .x I x thu vector function tl is

thi, ve1locity of the \-dimc,.slondl IAoI tlo of a viscous im-

conpresst)1, f I uid , p is the kh irI.i r Ic prcssur, V > 0 as-

SUrnCt to I, constant is the ih11I : t ic viscosi tv, st represrnts

a dc nsit v of btodv fo 'e,c s per unit Ina.-s atIt 3 is tie initial

velocity. W! ritrict oursel'es to t%%(, ;,Z , thlree d ilt'nslonls:

N =2,3.

Ev i& tal~V, ivu havc tt) ctmtl dv tJi' i t. hr sp,,-:s (L 2 k

and (11 a A.)" l tjp. usual ,cal, 1r pro&4,,ct a 10 nor wjich We

denote as in cose .%-I ksee scti.] I):

Let V be t.-u 'pace (w.thout toplelo ,y)

2, N N1 e p c

tiely', arI basIc ,sI CU in th, suay Ii Vt. ofavIr-etokesc

vqlj'tL Ion . It lS I, ' , t;: n -A, , - 1 31 1.lI a1! IS, th'it " f
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L- { t( u4 C )". c u=0

ere 'A I a  and ) is the unit exterior normal toa_

As IA I1 It 4A 14  V is dense and continuously i,-.edded in H.

hence ! and V are examplus of abstract npulces introduced in pa-

ragraph 1, we have inclusions (34) and the scalar.product (.,. >

betwecn V and V is an exte rsion of (,,o)

7o givo a variational fornnulation of the problem (36)-(39)

let us first consider siifficiently smooth functions u,p say

g ( . ,vOC 4 ( xOT]J') satisfying the equations

(36),(37) and (35). Certainly, it belongs to L2 (O1;V). Further.,

multiplying (36) by a function v. " and integrating we get

where

Usin-t Green *s theorim we obtain -V (&&A% l =C tMt) with

V CU

a:n,

C ,..' p v) :0
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(due to VL'- o 0) Be io t in g

(42) a(w;uv) = a 0 (U.,v) a

we see that

By continuity this equation is true for each v cV.

The preceding lines suggest the following variational

formulation of the problem (36)-(39): For a givent right-hand

side 13L(OT;(11 ( ))N) and a given initial value uoalI

find u eL-%O,T;V) such that

(44) u(O) = u0 .

It is proved in Girault-Raviairt [15) (chap.V, theorem 1,4-

1.2 and 1.5) that there is a function u satisfying (43) which

lies even in a smSller space: u eL 2(0T;V)nCL (0,T.H). In ad-

dition, u EL (OT;V') if N=2 and ut'fL3(OT;V') if N=3. The-

refore, the initial condition (44) makes sense and is sa-

tisfied in the following forn: lim llu(t)-u 11o =0 andt-O* a

rolim U1(t)-uo llV- =0, respectively. Finally, if N=2 such a so-
t 60. -

lution is unique.

3. We dlefine it semid1;crete solution of the problem (43),

(44) applying the scheme (2.)-(2G) dnd derive error lhounds by
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means of the inequality (16). These results belong to Girault

+R1aviart [15] (chap.V, S3).

We remind the reader that the method (24)-(26) is of or-
4 4

der q-l iff k=1 and ()'c and of order q=2 iff k=l and e=

or k=2. The approximate value of u(tIt)=un( tn=nAt) is denoted

by Un and recurrently defined as follows:

(4r 5) and U"" ar Ueie by~ (25 zn (>)_0=~~ti

UEVV

Here tii and Uare defined by (25) and (26), f~i=f(x~t~)

Uo=u(O) is now supposed to lie in V and u,-V is given. Of

course, u should be an enough accurate approximation of u(t 1 )"

We can taku for i the valui U1 compute'J by the F -method

with E)

Given tho st4rting values the equation (45) defines a

unique set t , To see it ,,e remark that the function

Un+k is the solution in V of the linear boundary value problem

(47) dI ,/'h C. U- S

where is a :known c1n,;,zt of V'. The trilinear form

_. I conlrous on (Y) N ! 1 (see letimia 2.1, p. 114 in

[15) ). AIso, it is (unifo:'rmly) V-ol Liptic as a bilinear form

in u, y:
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We have namely

N

Therefore

AIl

Applying Friedrichs inequality we get (48)(of course, c is

a. multiple of V )..As o I* are positive the form

Y 11y) +/& At ( AA k is V-elliptic. This proves exi-M

stence and uniqueness of 
Ut

Let us now introduce the regularity conditions for the

exact solution u. We assurI:

(49) *-C( [0,T]:; (L (!R ) )

uI.2(OT;V)It IL(O.T;V ) if q=l,

(51) u"&L2 (.0,T;V), u a L (O.T;V' ) if q=2.

In view of lenma I and 2 the condition (50) inptis that

ueC(O,T];V) arid ueC{(O,T] ;II), As a consequence,

Sou (t)*u1t),!) C(.(U ,%t), )1M t)I )e eC(EC09J) hence

, due to (43) 4f(t),> e C(LO,T]) and

(52) (U'(0,0 0 a(u(t);.,(t).) 0 v(t' v> in [01 6'V.V.
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We want to estimate

n = U(tn).Un= un'-un'

We define the truncation error by

N6V.

From (45) and (53) it easily follows

Before applying tho inequality (16) we have to estimate the

terras on the right-hand side of (54). Choosing suitably S

in the inequality 0 ) we have

(f.I1 ) ill,.!'rC (and ia the sequel of this section) C depend

on u. Further, for tht truncation error one derives using

Taylor :i formula and (52)(see [153, lermna 2.6, p.17S and lem-

ma 3.2, p. 1t; the case O< G < is not covered but can

bc proved in the same uray) that

M) h AQ 4 -
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Concerning the form a1 we csilv got u.sing lemmzi 2.2 from

[15], p.114 thftt

duo to the regularity condition (49). 11U nco,

Now, choosing b(uv)z(4A1Y)0 (see section II), putting

S~. /e in (54) and using (48),(55),(57) we get

lso

From (16) it follows in case q=l (notice that e= 0)

lfw0  C%%t,-A W" 4 I - 4 AL~tI.

Thus by (56)

11 e C At 4 C, N e

and by the discrete Gronwal ine(qualLty

(59) nvN 0 - U" 110 k U t.
Ai I.x M



If q=2 we get in the same way

From (58) we can also derive bounds for

which are of interest in case of the Euler implicit scheme (the

e -method with e o ) and of the schemae (3) with 0 I

/ .= (then /0. f% 0 ). Those schemes are the only two

members of tile backward differentiation schemes (see Lambert

[i1), p.242) which are A-stable. We easily derive

N

and

(62) &t ~t 11 4AI 0~~~C LI d~-j

Remark 4. It is'proved in [153 (see theorem 2.2, p.179)

that in case of the Culer implicit method the bounds (59) and

(61) are true without a.suming (49). Girault and Raviart apply

a different way of estiriating tlc form a1 for which the only

regularity condition (50) is sufficient. In fact, the same trick

can be used in case of the other backward differentiation sche-

me nentioned abovc and (60) and (62) are tit |e under the regu-

ari ty cond1 t ic r-; (50) and (51) only.
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V. Nonlinear iqasistatxonary Magnetic Field

1. In recent ye:,.rs attention has been paid in electrical

enginecring journals to the computation of nonlinear quasista-

tionary mague tic field. This problui occurs, e.g., In designing

the magnet systems for fusion reactors and in rotating machi-

nery. In two dimensions it can be forrulated in the following

model tray: There is given a two-dimensional bounded dcanain S1

and an open nonempty set P,. c We are looking for a func-
tion u~u(xlx 2 ,t)(magnetic vector potential) such that

I)

(64) Y.,I X% L

2)

(65) 6xe

3) u satisfies a boundary condition on

4) u satisfies thc conditions

(60) A1 V). 0 on I- Z P,

Ifere the condCuctivity T'oT(Xy.%is a Iositi"e function on

R, thc reluctivity 9a . U)l * 4 t)*,

is a positive function on 5 nxOo )jd=dJ(x3,x 2 ,t) is a givon

current density, uo(Xlx,) is a given function defined on R

and n is tho normal oriented in a unique way.

I -
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The problem 1) - 4) can be easily formfilated in a varia-

tional form. Let us, for simplicity, consider the Virichlet

boundary condition

(67) u = 0 on b.

We multiply (63) and (65) by a function vrIlf' (5) we integrate,
0

we use Green's formula and (66) and we sum. The result is

(68) T +-,

where

(69) OQ. 4 v)u S cix,

(68) is taken in Melkes+Zli-al 1163 as the starting point for

the construction of the appro:i-nate solution.

Ilere we outline main results of the paper [171 We give

two equivalent ab.tact formulations of the above problem. One

of thee, is a variational formulation generalizing the special

case (68). 1,'a introduce at) existence and uniqueness theorem.

We define a completely dizicretized approxiriate solution. The

discretization in time is ci.rried ouit 1,y two mernbers of the

backw.ird dxffere:tition bCh icms mentioned at the end of sect.'lV.

We close this section bN introducing results concerning conver-

gence of the aprt'z xi .itc solution and error esti,,ates.

2. To for.ailatc the pjroblv:m 1) - 1) in a gencrAl way we

introoiice ,;cverjl notatio:, ; and hypotieses.

1) Let . M! i -R, S ,,- tN, o (rc;i1) llilb ,rt ,spaces wi th sca-

lar pi'otucts (...) M thie ilduced nol'ri. iore dciotcd by i' 'H

I
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and lot the Ifilbert space 11-:111 1 (lIth ele:ment [VRV:3

vR "a ! vS c- I) have the scalar product (.,.) !Mch that thO

norm Ivlr(v.v)t satisfies

C- lI ky AY + ~

(C her. and in the sequel denotes a poiitive constant not ne-

cessarily the same at an), two places). Further, let Vc. l be a

separable reflexive Banach space normed by I11 o1 Finally,

the vector sipace %= 4 , V (M=R,S) and

V4 £oI[u -IYP, I VaVIVS-O1 should posses the following properties:

VM are subspaces of reflexive Blanach spaces N IC"m norined by

I [ it holds

vR' the closure of V in 13., is continuously imbedded in HR,

i~e.

IWl CIlU.,j~p VWCO VR

0

and VR is dense in In.

Example. Let , R and S be domains from section I with

Lipschtz boundaries. We choose IIit=L(M), (u,v)R(6 u, V) L2(R )

where G L (R) t '-o 0) (u~v)S=(1, V)L 2 (S), IIL( ) (uM is

thc restriction of u to M), V-lrI (a), \'--0 U) VR. [Luj. E

B~E~~ B Pp ~, 11 ;tR' IlUH(R 5 "IS. tuCia :
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Remark 5. We set H=IIR if 11s= tot. The assumption 1) is to

be understoodas follows: There is a separable reflexive Banach

space V normed by it I which is dense and continuously imbed-

ded in I.

Remark 6. It is easy to see that V11R is a closed subspace

of BR* Further V.R VR and VS. being closed subspaces of refle-

xive 13anacii spaces B R and BS, respectively, are reflexive Ba-

nach spaces, and V R is denso in IfR because VRC VR*

We identify H11R with its dual by means of its scalar pro-

duct (.,.)R" Then H. can be identified with subspaces of V)and R'

and" anti we have inclusions

V C Hn 1 .

VRCHRCVR R V

where each space is dense in the following one and the injec-

tions are continuous. Furthermore, the scalar product (.,. >S
in the duality between V R and VR is an extension of ( .. R

i.e.

<u,v>R = (u~v) R  if uOIuI, VeVR .

We denote the scalar product between Vand V by

(. ).>

and bctween V .. and V by.

M.Let A 0i), m:.R,S be two, in gtai-u'a1, noralirncar operators from

from V to V N with the followirig propcrtics:

2) 1 (u) are h.-:,icorrtinuus, i.e. V-' < A (v4 - >M

are contint :,oti fujnctxons on tht interval (-oo A V A %%- X- e



3) It holds

where <i <\A I ~CI~~~ ~VM!
4) A. (u) are monotono, i.e.

<A i(u)- M(V),u-v> 0 \ u.v f

and AS(u) is strictly monotone in the following sense:

(11~) -AS(v) ,u- v > > 0 u,v S u +V, u6- v _S

S

where V. = - -

The first of the above ren tiottod formulations is the fol-

1oi ng:

Problea P. Given

fM LP(OTV) :,-,S, and u o HR

find u aWR [uju r.Lp% 0T;V); u) aLP> 0,T;VR) such that

(70)~ R~~ p

(71) A S(Us) = fS

Remark 7. If 1I=11 R then we denote A (u) by Au) and the

assumptions 2,3,4 are to be uudc;rstood as follows: A(u) is

hemicontinuous, m.onotone and botunded, i.e. C -I(tkk-

The formulaton of the problem i" reads: Given feLL')(O.T; V )

and u st fiLnd ueW =[ujueL)(0T;V): u'eL1'(0,T;V') } suchf 0



du

du + A(u) = f, u(O) = uO .

Remark 8. We could leave tho requirement ui-L p0(OT; I )

because due to (70) it is automaticaly satisfied. From u(W R

it follows e [WU.J)4L J(OL T , w)Lc LOtTr' I . By lemma 2

uRe C(tO.T] ;1 R ) and the initial condition u(O)R'U o0 makes sense.

We introduce an equivalent variational formulation of prob-

lem P. To this end we define a form a(u.v) on VxV which is li-

near in v and, in general, nonlinear in u and a functional f

from Lp' (O,T;V'):

(72) a(u,v) = <A (R Ul),V R > R +<A S(us) Vs > S V u,v V.

(73) <f,v> =<fRv R R  + <fS vs> 3  V veV.

The form a(u,v) possesses the follow'ing properties:

a) it is hemicontinuous on VxV, i.e. - a(u .vw)

is a contintous function on the interval (-oo CC,& V &A voliqy V.

b) Ct(m v) ~t kA ILA'e

c) a(u,v) is monotone on V xV. i.e.

a(u~n-v) - a(vu-v) 1 0 u.v V.

= "I At th. place we add th1 last assumiption which we shall

later ncU:

5)0 11v- O~7l or 0.(, - 3t VV
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Here C. is a sumitiora on V such that

Problcin 1". Givcn fW-RLP*(oT;V1 ) , M -RS, and uoeIIII find

U FW such that

(74) k + (.,'. ,. > in @'((oV) V .eV,

(75) u(O)R U 0

Here a(u,v) and f are defined by (72) arid (7J), respectively.

Remark 9. If 1=lR then the problh, ! P" reads: Given

f Lp (O°T;V') arid u eH find ueWV such that in

d
df (u,z) + a(u,z) = <f,z > z eV. u(O)=u o .

Theoremi 1. Let the assumptions 1) and 3) be satisfied.

Then tht probl ecs P and P" are equivalent.

Proof. If u is a solution of problem P then (70). (71),(72)

and (73) ir:;.ly

All terms in this equation belong to LP1(0,T) and for hI(t) aT) .OT))

we have < c t by lemma 2
o 0

asx lh6L" (O,T;-V'). Therefore, it hold (74).

Let u be a solution of problem P. Choose AM=Cwo) we
in (74). Thcn by (72) and (73)
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The function G(t)=(u(t)ReLt) R is continuous on [0,T3 because

uR EC([O.T1;I! R ) and the function g(t)= <f -AR("R) -W > be-

longs to LPI(oT) (due to fR,,,Rlu.-aLP)(o'-r;V") ) . Hence,
t 

I P

F(t)= ST (CLT is an absolutely continuous function on 10,T3,
o

consequently F=ga.e. and the distributional derivative of G-F

is equal to zero (due to the above equation). Thus G(t)= CO'

4- 0 JOcL and evidently Co=G(O)=(Uo.u))R. We have proved that

t

0
As u(t)R6I!R~t to.?], UoCI! andV is dense and continuously

imbedded in 11 it follows

t

M (t) 4+ t taken as elemtents of Hn.
0

Further, P-1 (u1 ) E6 and H is dense and continuously imbed-

dod in VW" Hence

t

J4 (4.) AA t " )& taken as elements of flno
0

and by i) of lernma I it follows (70). Finally, as C-Ct

.I<Ak1% the equtionvb (714),(72) and (73) imply (71).

3. Now we define it corpltel) discretized approximate so-

lution of I'rJblcn: P Tht discretizatij.n in sp~ire is carried out

by meins of i geheralt/.d GaltrL|in miethod (see Nr.as £18],



p.4 7 ). in time we use the backward differentiation s i ct:"s ,nef-

tioned in par.l. Written for the scalar equation yf these are

(76) PA L. At t

whern

(77) it .

We assume that there exists a family fvht, h r(0, h)

hO, of finite dimensional subs.ji-ces of V, such that

(79) lie di.tCYh v) = 0 veV.

We have three important rer, ,ark.;:

1) If a family [Y'L"' ~ n1,2,...,h I  h2 > =0,

with lim dist(V'=v)0- V vrV exists, then defining Vh=V
jVL 4 oQ

for he (hn-Ihn) we have a family with the above property.

2) A family Vh with the property (79) alway exists under

the assumption that V is a separable Banach space. In this case

there exi-its a sequi nc-,' [T0 (R V, -ii that for all. nzl.

2,... the eluemnts ff1 tft... are linearly independent and

the finite linear combinations of ' S are dense in V.
4

Vie take for V ,h n  M . the space of all linear combi-

nations of L L * ... vv

3) In case that V is a Hilbert spacqo 114(Q ) C VC 11 )

and Q' is a polyhedron, all in practice used finite elemcnt

spacos have the property (79). We consider the boundary value

problem: find z eV such that ao(Z.4 )::a 0 (V. ) . V

where u*IA F 4 jaanil v is a given element

i~ ~ ~~ 0 Y.... - ... i
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of V (of course, z=v). If vh is the finite element approximate

solution and the finite element spaces satisfy certain requi-

rements then 0+ 2 VVhII H4(a)=O (see" Ciarlet (19), Theorem

3.23, p.13 4 ); h is the maximum diameter of all elements.

We introduce &t t- , r being a natural ntimhor and consi-

der the partition of the interval [O.T] with nodes

t i - iAt, i=O,...r*

We set

t.-4

and define Uxi. i=l,...,r by

(t o) d.T- P4 ., u . ,X,),L + &aw( u, ,I-at <. V.,> .

Remark 10. Instead of u0 we can take any approximation

u hof u such that Iuo-u o l -.

In 1173 it is pzoed that (SO) is equivalent to a nonli-

near systc'tF( ) =0. Pere F: pd-('here dh is the di-

mension of Vh1) is contihnuous, coercive and strictly monotone

from which existence and uniquencss of U i follows (see Ortega

Rheinbold 01 , 6ot.2, 6.4.3). Ve extenJ the approximate

solution on the interval (O,T]. The exttnded approximatc solu-

tion U" 6. 6, tt) is the step function

(ISI) u U t. . t I.... h-, t)
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In t17] it is provvd the following

Theorem 2. Let the assumptions 1) - 5) be fulfilled, let

f M LP'(oT;V*), .%I=R.S, l< p<oo ) 4t - 4 and uo'Gl -

Then there exists a unique function u cz Vin= j ufueLP(o.T;V);

1) LP)(o.T;V j) I satisfying (74) and (75). Further, the ap-

proximate solution Or defined by (SO) and (81) exists, is uni-

que and

(82) U - in LP(O,T;V) weakly if S --. 0.

If ueC(CO,Tj;V) and the form a(uv) is uniformily monotone,

i.e.

a (u.u-v) - a (v,u-v) ~ 4 ~ V~ Y.V

where 3 is a strictly increasing fun:tion on the interval

LOICK) with (0)-0. then

T

(83) LI54 .0 - 1 11 =01 MA~~ ~~ - U ")CL 0.F'.,, 0 ..,

Remark 11. It H=H R then the assumptions 1) - 5) are the

same as those of theorem 1.2 and 1.2 bis in Lions £211. p.162-16 3 .

4. We apply theorem 2 to the problem (63)-(67). Let

wc'. L90'ca " o

and let ZQ 'dR be polygon.. We choose the spaces fit. I'

etc. as in the example introdoiced at the beginning of para-

graph 2. Then the as.umption 1) is sati:ied. We consider a

regular fiLmiiy of triangulations 7 (see Ciarlut [191. p.132)

covering S1 and satimfying the asmumptions of theorem 3.2.3
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from L191. Then the ftmily [ satisfies the condition (79).

The operators A M(un) (in the sequel the subscript M=R,S means

restriction to M and will be often left out) and the form

a(uov) are:

Concerning the function 9(x 1 ,x 2 , ) we assume:

a) 1V ~,t~~) the function (x 9x 2 ) -4'3 Xl20

is measurable on 51 and for almost all (xlx 2 ) Q the func-

tion Q xi 9(, 1 is continuous in COo,) (Carath~odory' s

property);

b) [ 0, o and for almost all (xIx 2 )E ' ) X 4X , X

is bounded from aboo and satisfies for almost all (x 1 x2 )

(84) xxjVtxx" 1V k dC( 4) 0 O OouCO4t > 0.

Then the azssumptior; 2)--) art satisfied with p=2 (see Gajew-

ski+GrFr-Zaar1 'ris t , p.6S-71). (84) implies that

9 X,%Xj C > 0 for almost all (x1 ~ 2  a ri ad L ac

Therefore the asSUTption -5) is also sa tisafied with p=2 acid,

in addiLiouti

J a L(OT;L (n))) u0 L2 (R).
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The equation (80) can be written as follows:

185f  4 0

. i

t4-where. I(. i " ) t ) CLt.

Theorem 3. Under the above introduced assumptions there

exists a unique function uQVw which is the solution of the

problem (63)-(67). Further, the approximate solution U de-

fined by (55) and (S1) exists, is unique and

U -bu in L2 (0,T;Io1 )) 4 weakly if (-F 0.
'0

If u.C(tO,T];1 4 (S1)) then
0

E,4. ",(Tr L'(.') - ) 0 ll*0..U(IL oTH 0 O.

Now we introduce error bounds under assumption thlat the

solution u is enougl smooth. We restrict ourselves to trian-

gular elements and to piecewise linear trial functions which

are mostly applied in practise. We take into account only

triangulations which consist of triangles belonging either to

A or to S and which formi a regular family.

In applications, the coefficient V (xl 1 X2 0 ) is a piece-

wise continuous function of x=(x,x 2 )o Every discontinuity in

x along a. boundary of a subdomairi leads to a natural boundary

condition of the form (66). We consider a model problevi as.su-
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mining %) to be continuous in R and inS for all [ 0oQ)

with discont'inuity along z rs. we add two more assump-

tions:

and investigate first the approximate solution constructed by

means of tet scheme (76) (77). The right-hand side of the de-

fining equation will not be the same as in (85). Ui is now de-

fined by

where Ui= V U l and i

The initial condition is

(67) U(O) =h
U0

whero u (1u1C1 = vR,V eVi) is any approximation of uo

such that

o h

Remiark 12. If u o-H 2(R) we can take for uo  the interpo-

late of *0. If u satisf es (SS) then u must belong to If %R)

and theort!,ogonal projection of u in 1,{R) onto the subspace

V1 has th" required propcrt'.

Th',arem 4. Let. thr above asunptions be satisfied and let

tt- exact, s-olutiotit tic so sonioth th,t

W IN=. . .. l - - .. . . . . . . • .
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Ak~~ tT (044 )

Then for the approximate solution defined uniquely by (WO and

(87) it holds

(89) .t -Ui .
*.s4

Now we define U by means of the scheme (76),(78):

(90)

(91). U. U computed from (S6).

Theorem 5. Let the exact solution fulfill (SS) and

SN -C( [0,T] 1. 2(R})) u 11 c-L 2(OT;V')
UR  R •t

Then for the approximiate solution U1 defined uniqulcy by (90)

and (91) it holds

(92)~- ,L ......(Lhi

k
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V1. A damped nonlinear wave equation

Lot S C R be a bounded domain with a boundary Z. and

{ o.: (c)1." ~be a uniformly positive definite matrix. Let

d(x,tu,z) and g(x,t.u,z) be piecewise continuous with res-

pect to x and uniformly Lipschitz continuous with respect to

t~u and z for (x.t*E 1 x[OjT) and ujzE(-Oo)ao). Further,

we assume

(98) d(x.t~u~z) 0 0.

We consider the equation

(94) 2i ~ + 4xI u,' u Xt~%' ina

where

14

with the boundary and initial conditions

(95) 1A.0 on x (O,T) t Ax, 0) 4A Q , . 4"(j) in

We write the problem (94).(95) in a variational form.

We sot

(96) u z



so that z'- -d(x.tgu.z)z + Lu + g(xt~u,z). If the exact solu-

tion is smooth enough then it follows

where

O4A 1 T ~ QjO
l" . 4 Y ) x

The equations (96).(97) will serve as the starting point for

the construction of the fully discrete approximate solution.

First, we define a semidiscrete solution. As in section

III let iV h) , (< h(h, be a family of finite dimensional sub-

,spaces of HI(S) possessing the approximation property (28).

By a semidiscrete Galerkin solution we mean a couple of func-

tions U(x,t), Z(Y,)tE V 1 it attwfying In (0..T1

)I e"o-r =~ityn in (OTX) 0

u' z 1 -- (cLxIt, U 7 (U I4r +

(98)

Here U°,Z Vh are suitable approximations of u° z°  The dis-

cretization in time is carried out by linear one or two-step

A-stable methods defined byF (15) and by the linearization pro-

cedure introduced in section III:

(99)

ht C1 U "t + N
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and tipU n and in the same way Z , are given by (25).(26).

Lot us show that the fully discrete approximate solution

exists and is unique. Assuming that we have already computed

ukOz .un ,'Zn  i let us compute XZun k.Y=Zn+k. An U

Zi , i=0.l,... belong to Vh we may assume X and Y in the form

XUYX vW.x), ¥ ¥v x) where [vj(x)I are basis functions

of the finite dimensional space Vh . Denoting

x (, ..r Y (¥,Y41Y ... ), M. .,,-o i

we easily find out that X and Y are solutions of the following

system of linear algebraic equations:

(100) c,*( At~' + a.. ., o NY aAt Ak b y- At /5. X

Here a.b are known vectors, the matrices M and K are positiXe

definite whereas Dis positive indefinite due to (93). From

(100) we get

(101) [ckM+A f /, ) S

(c is again a known vector). Evidently, the matrix dLk +

&t A , t &to(' is positive definite %hich pruves the above

assertion.



The energy inequality (16)(used twice with b(uv)=(uv)0

as well as with b(u.v)=a(u.v)) can be again succesfully applied

for deriving error estimates. We state the result for the case

of 0-method with O< I which is of order one (q=l). Besi-

des the hypotheses introduced above and besides some regularity

conditions which we do not introduce we assume that U° is the

Ritz projection of u
0 i*e. a(UO 

and tha t 1 Z0 -& 0 0,A0 1 (e.g., we can take the interpolate

of z0 in Vh for Z°). Then

Iir~"'-Urii ~C- 4 ih~
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