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, SUMMARY

\ INTRODUCTION

7 \Work peorjme4-at-the University of Denver under the sponsorship of the Naval
_Ai -$ys4e -Coimmand (referernce--)-' has shown that improvements in both strength
and ductility of nickel-base alloys can be achieved by shockwave deformation
(shock hardening). Such deformation is produced by impact of a driver plate on

a flat sample. The driver plate is driven by an explosive pressure pulse.
Specifically, the University of Denver work showed shock-aging Udimet 700 sheet
at 527 kbar pressure could lead to ductility increases of 200 to 400%, together
with substantial increases-jn strength at both room temperature and 649*C (1200*F).
Stress rupture life at 6490C (1200-F) could be increased as high as 50-fold.
This report contains the results of an attempt to achieve similar improvements
in mechanical properties of 7050 aluminum alloy plate by shock hardening.

RESULTS

Shock hardening produced no significant change in the tensile or fatigue pro-
perties of the 7050 plate. Exfoliation resistance was also found to be un-
changed.'

CO NCLUOS NS

'-hock hardening of 7050-T73651 aluminum plate produces no significant change in
its properties. y

FUTURE PLANS

A quantity of solution treated and preconditioned 7050 plate will be shock
hardened and evaluated, as material in this condition has greater potential
for improvement of mechanical properties by shock hardening than does the
material in the T-73651 temper.

COpy .....-
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EXPERIMENTAL PROCEDURE

MATERIAL

The material used in this investigation was 1/2 in. (12.7 mm) thick 7050-T73651
aluminum plate obtained from Alcoa by the Naval Air Systems Command (NAVAIRSYSCOM).

SHOCK HARDENING

A 5 in. (12.7 riv) by 8 in. (20.3 mm) piece of plate was pretreated at 121°C
(250°F) for 4 hours and shock hardened at the Denver Research Institute with
loading conditions and calculated shock wave parameters as follows (reference (b)):

Tooling: 1-1/2 in. wide Al spall rails;
1/2 in. thick Al spall plate;
I in. thick Al anvil;
Al foil cover to protect impact surface.

Driver Plate: 1/4 in. thick Al;
7.6° inclination angle

Explosive Loading: 4 sheets of Detasheet C-2
(2 g/in 2 areal density;

total of 8 g/in 2);
Oblique detonation

Driver Plate Velocity at Impact: 960 m/s

Particle Velocity: 480 m/sec.

Shock Velocity: 5,730 m/sec.

Peak Pressure: 80 + 3 kbar

Peak Pressure Duration: Front face - 2.11 Ws
Back face - 1.90 ps

(can be considered a 2 ps pulse).

Transient Strain: 4/3 In V/Vo = 8.8%
(can be quoted as 9%).

Transient Temperature: 83*C (2 ps duration).

Residual Temperature: 300C (shot into water and quenched).

Initial Hardness: 143 BHN

As-Shocked Hardness: Front Face - 155 BHN
Back Face - 154 BHN

- 1-
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After the plate was shock hardened a sample was aged at 163"C (325'F) for 4 hours.
This treatment resulted in severe overaging with attendant loss of tensile
properties. Consequently the balance of the material was aged at 121 0 C (250*F)
for 4 hours.

TEST METHODS

1. Tensile Tests

Tests of 0.252 inch (6.40 mm) diameter tensile specimens (ASTM
Standard E-8, Type R-3) were performed on a 10,000 pound (44,500N) capacity
Tinius Olsen mechanical universal testing machine equipped with an extensometer.

2. Metallography

Metallographic examinations were performed on longitudinal and trans-
verse sections of the shock hardened plate.

3. Fatigue Tests

R. R. Moore type rotating beam fatigue tests (R=-l) were performed on
smooth (unnotched) specimens. The axis of the specimen was parallel to the
final roll direction of the plate (longitudinal).

4. Fatigue Crack Growth and Fracture Toughness Tests

Fatigue crack growth rate measurements were made on compact tension

specimens (ASTM Standard E-399, W=2 inches (50.8mm)). The specimens were cycled
on a 5000 pound (22,200 N) capacity Krouse direct stress fatigue machine between
loads of 100 pounds (445 N) minimum and 1500 pounds (6680 N) maximum (R-O.07)
until crack initiation was observed. At this point the maximum load was
reduced to 1100 pounds (4900 N) (R-O.09), and crack length measurements were
made at 1000 cycle intervals until the crack propagated to a point approximately
I inch (2.5 mm) from the back surface. The specimens were then pulled to
destruction for determination of fracture toughness (KQ on an Instron universal
testing machine equipped with a crack opening displacement gage.

5. Exfoliation Tests

Exfoliation tests were performed on broken ends of compact tension
specimens machined to expose one-tenth thickness and one-half thickness planes
in accordance with ASTM Standard G-34.

; RESULTS

TENSILE PROPERTIES

Table I shows results of tensile tests of the 7050 plate as-received and
after preconditioning at 121°C (250*F) for 4 hours. The tensile properties
were as expected for 7050-T73651 material and were unaffected by the pre-
conditioning treatment.

-2-
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Table II shows results of tensile tests on the material after shock hardening
and after shock hardening plus aging. The effect of shock hardening was to
increase yield strength with a corresponding decrease in elongation and
reduction of area. Subsequent aging at 163C (325°F) caused drastic reduction
in yield and tensile strengths; consequently that treatment was eliminated
from further evaluation. Aging at 121°C (250*F) restored a portion of the
ductility lost in shock hardening while producing a minimal loss in yield

strength.

MICROSTRUCTURE

Montages of the three planes of the shock hardened plus 121*C (250'F) four

hours material at IOOX and 40OX are shown in Figures Ia and lb. Longitudinal
sections of the as-shock hardened and shock hardened plus 163'C (325°F) four
hours are shown in Figures 2 and 3. All microstructures are similar except
that the material aged at 163C (325'F) showed more precipitate.

FATIGUE PROPERTIES

The results of the rotating beam fatigue tests are shown in Table 3 and plotted
in Figure 4. A scatter band for all 7075-T6 products (reference (c)) is shown
on Figure 4 for comparison. Note that the 7050 shock hardened data falls in
the upper portion of the band in the high cycle region. This is to be expected
with the higher degree of cleanliness of 7050 relative to the usual grade of
7075 alloy and is probably not attributable to the shock hardening treatment.

FATIGUE CRACK GROWTH RATE

Fatigue crack growth rate test results are plotted in Figure 5. A scatter band
of 7050 data from reference (d) is superimposed on the plot. The shock hardened
data fall well within the scatter band except at very low AK values.

After the specimens were pulled to distruction in accordance with ASTM Standard
E-399, it was determined that the ratio of the maximum 'ad to the 5 per cent
secant offset load (Pmax/PQ) exceeded 1.10. Thus the tests were not valid for
determination of KIc or KQ. Accordingly, the specimen strength ratio (Rsc)
was calculated instead. Its value was 1.235 for the LT oriented specimen and
0.916 for the TL oriented specimen.

EXFOLIATION TEST

After exposure the rating of the one-tenth thickness plane was P (pitting) and
the one-half thickness plane EA (superficial) in accordance with ASTM Standard
G-34. The exposed specimens are shown in Figures 6 and 7. The ratings are
not significantly differert from 7050-T73651.

-4-



NADC-81251 -60

cu o r- r- co o LA
L- r- C O 0 0 6 o

-0 >

4cc

z

0-

V) ~C4
LUJ

I-C

CL

I4-
4:n N. r CN LA09~LL A L

-1 )- CL 0*1 Ln '~ - -N-4 N -C

-4-
CID > ~ LA N.-

00

- r 4- 4-. %0 r LA r% -Z NNN %%D
- - C7*1L - ~ . A AAA L

LU r: C1 C
V) 

O'E

04-

0- m)-. 0V - .
0fO~f c4)cc )L

0U Z-;~G 0 Ln (n7~'~ -0
*- LA '4- 'a'- I- A L 'D O.0'.

A 0 (. 4

o - N LA - '_ ' A N-
0~0. N 0 0 - .7 - 04

4) +4A D +LL

'a U: 0 0
c 00A r
0 =4o)A

L) .- in U)U).



NADC-81251-60

Keller's Reagent

Short Transverse

ongi tudi nab

Long Transverse

Figure la. Microstructural Montage of 7050 Al, Shock
Hardened plus 250°F - 4 hour Age

-6-



- - -~ -"PIP

NADC-8 125i-60

40OKeller's Reagent

i Short Transverse

Lon'i Transverse Longitudinal

Figure 1b. Microstructural Montage of 7050 Al, Shock
Hardened plus 250'F -4 hour Age
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lOOX Keller's Reagent

400X Keller's Reagent

Figure 2. Microstructure of Shock Hardened 7050 Al

-8-



NADC-8 125i-60

lOOX Keller's Reagent

4%

4~0OX Keller's Reagent

Figure 3. Microstructure of 7050 Al, Shock Hardened
plus 325'F -4 hour Aqe
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TABLE III

ROTATING BEAM FATIGUE PROPERTIES OF 7050 ALUMINUM ALLOY PLATE
AFTER SHOCK HARDENING PLUS 250OF - 4 HOUR AGE

Stress

Specimen No. MPa (ksi) Cycles to Failure

1 287 (40) 143,000

2 207 (30) 3,213,000

3 186 (27) 7,089,000

4 165 (24) 20,156,000

* Threaded grip failure

410

B. -0
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T/10 plane
(rating: pitting)

T/2 plane
(rating: superficial)

Figure 6.Broken End of LT Oriented Compact Tension Specimen

after Exfoliation Testing
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T/10 plane
(rating: pitting)

* T/2 plane
(rating: Su~perficial)

Figure 7.Broken End of TL Oriented Compact Tension Specimen
after Exfoliation Testing

14i.



NADC-80251-60

DISCUSSION

Of the tests performed in this investigation none showed any evidence of improve-

ment or deterioration in the properties of 7050 aluminum plate as a result of

shock hardening. However, it should be noted that the material before shock

hardening was already overaged (T73651 condition). Thus, shock hardening and

subsequent aging probably had little effect on the morphology and distri-

bution of the precipitate. It is recommended that the shock hardening

experiment be repeated on material that is solution-treated, but not aged, as

the shock hardening should have a greater effect on material in this condition.
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APPENDIX A

COMPARISON OF DATA ANALYSIS METHODS
FOR FATIGUE CRACK PROPAGATION TESTS
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APPENDIX A

COMPARISON OF DATA ANALYSIS METHODS
FOR FATIGUE CRACK PROPAGATION TESTS

The fatigue crack growth rate test data described in the main body of the report
and plotted in Figure 5 were reduced by the incremental polynomial method de-
scribed in ASTM Standard E647-78T, "Tentative Test Method for Constant-Load-
Amplitude Fatigue Crack Growth Rates Above 10-8 m/cycle." For comparative
purposes several other data analysis methods were applied to the same test
results.

Figures A-la and A-lb show crack growth rates calculated from a derived
expression of the Paris form:

da/dN = C (AK)m

where C and m are constants determined by regression.

The incremental polynomial data from Figure 5 are shown for comparison. It is
evident from examination of Figures A-la and A-lb that the Paris expression will
yield reasonably good predictions of crack growth rates for this particular
material except at very low stress intensity amplitude levels.

Figures A-2a and A-2b are similar to Figures A-la and A-lb except that the
derived expression is of the Foreman form:

da/dN CAKm
(1-R)Kc-AK

where C and m are regression constants, R is the ratio of minimum to maximum
load, and Kc is the critical stress intensity factor.

For this test data there is little difference between the Paris and Foreman
expressions. Actually, the simpler Paris expression fit the data slightly
better than did the Foreman expression. It should be noted, however, that in
these tests there were no data points gathered at stress intensity amplitudes
close to KIC It is test data that include high stress intensity values that
the Foreman expression is designed to fit best.

Figures A-3a and A-3b show crack growth rates determined by a single fourth
degree polynomial curve fit together withthose determined by the incremental
polynomial method. By comparison the fourth degree polynomial tends to under-
estimate crack growth rates at high stress intensity levels. It is by nature
less sensitive to variations in the data than the incremental method, but is
convenient to use.

Figures A-4a and A-4b show a comparison of crack growth rates determined by
the secant method described in ASTM E647-78T (actual Aa/AN) with those de-
termined by the incremental polynomial method. It is evident that the former
method allows considerably more data scatter; its chief advantage is that

-A-2-
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unlike the incremental polynomial method it does not result in the loss of 3
data points from either end of the observed crack length readings.

In spite of the difference in appearance of the growth data determined by the
two methods, expressions derived from the data are almost the same. Figures
A-5a and A-Sb show derived expressions of the Paris form for both data reduction
methods.

-A-3-
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