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The application of psr-ammid-like data structures to multi-

dizensional queries has been explored in three recent zazers

(BS-77, Lu-78, ",i-78). It will be sho'wn here that man- of the

earlier results (including some of our own can be improved b.

a factor of log N with a slightly modified data strtcture that

enables k-dimensional searches to be zerforned in O(log:7) tize.

The new revised pyramid stx-act"re can be m=ade sufficie.tlY efficient

in a d;,amic environment to have an O(logk-l1T) record-insertlon c.nd

deletion runti-e. Queries for the special two-dimensional version

of the proposed pyramid will have the sare combination of C( loz :)

retrieval, insertion and deletion _,=u4ties that -'.as tradittion _l

been associated vrith one-dimensi-rnal sorted lists. Cur h-dimsnsiona!

pyramid data btructure ,:ill occuy O( log-lN) space. The

i.!



ABSTRACT-2
'J1illard

coefficient associated with its mecrox srace utilJz.io,. -il only

be aPproxi~tely 505' larger than that of th e oter.*vize ccnfet'ly

less ef ficieizt Dyr~ids of BS-77, ILu-78 and V-*i-78. A'so, it wl

be shown here how the combination o-f the concert's o-' thi4s ncamer

along -with Be-75, Ri-76, Ml-78 and 7ii-78a caun be used to develop

very usefLul partial match data stxucttzres.



NEW DATA STRUCTU-S FCR ORTHO1JQTA1 C'R!ES

By Dan E. Willard

Harvard University

There has long been an apparent need for an efficient data

structure which supports retrievals on a conjunction of ran.-e

predicates similar to

alKEY.l<b I & a2 <=-Y.2(b 2  & ... ak<EY.k<bk

Following Knuth's suggestion (Kn-73), a series of articles has

appeared within the last five years discussing this problem

in the context of a data structure w'hich occupies C(Nd) space

(FB-74, BS-75, Be-75, 171-77, Wi-78a). ..:ore recently, several

papers have begn to appear which discuss the improved retrieval

time resulting from an allocation of O(N log - ' emory 3ace

(BS-77, Wi-78, Lu-78). This article will show how a subtle

change produces a dramatic improvement in the pyramid-like

data structure of the latter series of articles.

In our discussion, L will denote the initial list of elements,

Lv the subset of L that descends from tree-node v, and P (k,-_)
0

the k-dimensional pyramid structure that was advocated in the

previous articles. This p-ramid will be inductively defined

according to the value of k as follows:
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1) If k=-l, then the corresponding 0 (k, L) pyramid will be

defined as a tree reresentation of list L that has

an O(log 1) height and has sorted its records b7

increasing 72Y.l value.

2) Given that k-I dimensional pyramids are previously

defined, Po(k,L) will be inductively defined as a

tree with O(log N) height that has the records of 7

sorted by increasing I.2Y.k value and which additicnal!--

associates each interior node v _ith an auxi&.r
P (k-1, i n) p;-id. This audliary pyramid was

called an SDS field in 71i-78.

Por a query q of the canonical foz
a., .... < b &- a2<=Y.2 b . a,-<12Y.k bil

& 2 2

the following tei--inology -wll be used:

i) SET(q) will denote the subset of the

initial file that satisfies q

ii) COUITT(q) will denote the number of

records belonging to SZT(q)

iii) given a previously defined function F,

SUI(q) will denote the sum of the

F-values of those records belonging

to SET(q)

The "locate-and-copy" time of a specified retrieval al-crithm.

rill be defined as the amount of runtime needed by the trocedure
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to find and transfer the members of SET(q) into the user's aor-

space. This conce-t is not ver-y useful, because the degenerate

case where COU1.7(q) = N forces all procedures to have an O()

worst-case locate-and-copy tine. Consequently, another notion

will be necessary in our worst-case analysis, and this paper

will rely on the following two measurements:

i) the "locate" retrieval time of a search procedure

will be defined as the difference obtained when

subtracting CCUITT(q) from the locate-and-copy -- me

(worst-case analysis of locate rum.ime is meaningful

because this quantity has been automatically adjusted

to avoid the trivial degeneration that results when

COUNT(q) is a large quantity)

ii) the aggregate-scan tine of a retrieval algorithm- is

defined as the amount of time needed to scan the

SET(q) collection of records for the ourpose of

calculating one of its aggregate values, such as

SU;Y( q) CCU'T (q).

The application of the above tw'€o cncets to P (k)

pyramids was discussed in BS-77, Lu-78 and Wi-78. Some of

the results obtained in these papers were quite similar, since

they were written during overlapping time zeriods. Wrhat Vas

knovm about pyremids previous to this article is given below:

1) SUM(c) and CCU(q) can be calculated in 0(lolf.)

worst-case aggregate-scar. time (BS-77, Lu-78, "i-78).

bL
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2) SET(q) can be calculated in O(log i-) worst-case locate

time (observed in -7i-78 -s a- straightfo_,ard generalization

of item 1).

3) If L is initially the empty set, and if a sequence of :T

insertion and deletion commands are subsecuen !y given,

then the total time needed to dynamically adjust Po (1.L)

in response to this command sequence vil. have a worst-

case O(N loe-) iag.itude. (Tirst proposed :n .7f-78.

Several months later an indeendent derivaticn of - bascaii.-

similar rrocedture vwas presented in a conference as :_.-, .

4) The above result can be strengthened to indicate the

existence of a procedure that executes individual

insertion and deletion connands in C(logk. ) -rorst-case

time (,Wi-78 ; alsoin "i-78b).

5) Several of the above results can have their rtine

reduced by a factor of log N in a batch er~iror-ent

where -7 oreraticns are simultaneously- perfoied.

Such batch zrocedures include:

5a) an algorithm that constructs an entire o

data structure in 1I logk-lN -ime (-S-77. 1:-78)

5b) a procedure that calculates ECDF statistics in

N logk-11 time (BS-77)
5c) riven n queries of a1 q2 ""n a procedure

that calculates their sUL:(c) and CCUNT (q) valueS

in N logk-lN time (Wi-78)

Sa-
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The discussicn in this paper will focus on topics 1 through

4 rather tnan the batch algorithms of tozic I. It -rill be snown

here that the runtimes associated with topics 1-4 can almost be

reduced by a factor of log N, thus deriving the new magritude of

O(logk-lT) .'e say "almost" because the criterion used for
measuring r-atire here is slightly weaker than that in ;i-78

and the previous references. The distinction is that the

earlier racers discussed worst-case o-tinization in a ds~i c

environment, whereas the improved results of tahfs maer are

either expected xnantines in a d,.-namic cnvirornent or worst-case

runtimes in a static environment. O new algorithm can be

controlled to ensu7re that its worst-case perfor-ance will

always be at least as efficient as that of 74i-78.

The symbols Fe("), Ps(k) and Fd(k) will denote the three

modified versions of the Pc() pyranid proposed in this article.

All three will occupy the sane C(:T lo, :) quantity of -emory

space previcusly assoc!:ated with Po(k, and each ill solve n

slightly different te Of opti=i zation problem. Below are

listed the three main results that ;ll be rroven in this ra~er:

Theorem 1: 2he Ps(k) pyramid (of definitions 2 and 5/'

will rrovide a static environment where SD,(q), CC- (q)

Z- 1
and SET(q) can be evaluated in C(log"- T) wor.ut-case tine.

Theorem 2: The Pe(k) p:yramid (of definitions 1 and 5)

wmill rovide a artially dy-amic envirorment where SET(-

can be located in C(lo-I T worst-case time -and where records

can be inserted or deleted in O(log,-! 1) e:xected time.
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Theorem 3: The P (k) pyramid (of de:-finitions 3 through 5)

will provide a fully d -emPic environment ,.here record

insertions, record deletions, and retrievals of SET(-)

can be ezecuted in O(logk.T) ecektm n Olg

worst-case runtime. (A commarison of theorems 2 and 3

indicates that Pd~k) has better update and worse retri"eval

time than P e k)

In additiLon to discussing tUhe above three classes of yias

thi~s .;a-er w7ill also make briof =ention of a new tye o-P zart4 al

match and partial region query data structure ahi~ch is quite

similar to these pyramids. This new data structu1re (discussed

in section 2) will enable the user to izi-rove retrieval time b

allocatingt C(:1T log I-) additi. onal units ofZ s! ace.



Willard - 7

PART 1

The algorithms in this paper will make frequent subroutine-

calls to the super-B-tree procedure introduced in Wi-78 (soon to

be widely disseminated in Wi-78b). Because of its importance,

the next several paragraphs will summarize the nature of this

super-B-tree procedure.

In the forthcoming discussion as ell as throughout this

paper, it will be assumed that our trees have been structured

so that there exists a one-to-one correspondence between the

leaves of the tree and the record of the list it represents

(as opposed to a pairing between general nodes and records).

An SDS field will be defined as any auxiliary data structure

which the user has created for the purpose of describing z-he

descendants of a given interior node. A tree (which is a

representation of a sorted lijt with C(log TT) height) ill

be called an augmented tree if it assigns an SDS -ield to

each of its interior nodes. For instance, the Po (k) py-mids

(whose definitions were given in the second zaragra-h of this

paper) are examples of an augmented tree.

The super-B-tree theorem describes the worst-case anount

of runtime needed to insert and delete a record in augmented

trees, in terms of a parameter w that denotes the amount of
ruti-e needed to insert or delete a single record in an S$S

field. The theorem states that arbitrary insertion and deletion
operations eerored "e "r l sa. s

operations can be -e'-_ .e wihi Oz . .(v log N) xorst-case .te
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This result is significant because the super-B-tree procedu..re

si--ultaneously ensures that the augmented tree will have OC(log N)

worst-case height, and that no insertion or deletion conan.d can

cause the zantine involved in adjusting SDS fields to exceed

the O(w log N) worst-case upper bound. (A traditional 3-tree

algorithm (AVL-62, DR-73, A-HU-74) will not satisfy this condition

because O(w1) worst-case time will be spent adjusting the SDS

fields when "rebalancing" is perforned.)

This paper's discussion of prramids will begin -.ith the

Pe(2,L) because it is the siplest of car various . ra-ids.

The definition of Pe(2,L) is given below:

Definition 1: A -e(2,L) pyranid will be defined as a

two-part data structure consisting of a dictionary D and

an augmented tree T. The former will be defined as a B-tree

which has its records sorted by 1Y.1 and which possesses

pointers that map each record of the dictionary onto the

location where the record is stored in the SDS field of

the root of T. Here T will be defined as a tree which has

its records sorted by EY.2 and which uses the folloving

rules to define the SDS fields of each of its nodes v:

A) SDS(v) will be a doubly-chained sorted list which has

taken v's descendants (in T) and arranged then by

order of increasing Y.1 value.

B) In addition to containing its nane, the ent-r for

record R in SDS(v) will contain the following i.fomaticn:
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i) pointers to the predecessor and successor of R

in this SDS field

ii) a "IEIT.LOVZ7.PO:ZT3R" that contains the address

of the least record in the SDS field of v's left

son whose MY.1 value is greater than or e tual to

that of R

iii) a "RIGEIT.DO0W.PCIITTER" that sizilarly contains the

address of theleast record in the SDS field of

v's right son whose 1127.1 value is grea~er -than

ov' equal to that of R

Our first lerza will discuss retrieval oierations in Pe (2,L)

pyramids. in that discussion, as well as elsewhere in this Erer,

it will be necessary to s-eak of the nodes which are .cri.tcaI

with respect to a range predicate such as aZ=Y<b. --n interior

node v of a specified tree will be defined as critical ahenever

the following two conditions hold:

i) all leafrecords that descend fro= v satisfy this range

conditi on;

ii) the sane is not true for v's father (in other .ords, one
of the father's descendants does not satisfy the range

condition).

Lemma 1: let q denote a two-dinensional query of the forn

al Yl & a 2 <IEY.2<b.. In the context of the (4.z)
2ye(2 d

pyrzi d:
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A) search operations for SET(q) can be executed in C(log :,)

worst-case locate tire

B) insertions and deletions can be executed in O(log N)

expected run.time

Proof: Only proposition A requires verification, since 3

is rendered trivial by the fact that it discusses only ex.=ected

runtize. in our proof of A, the symbol I:NF(al,v) will denote the

least record in SDS(v) whose ZEY.l_>a I . The search -rocedure

that A needs to locate SET(q) -ill consist of the followig

three stems:

1) Find the address of I277(al, root of T) in log .T time

(by using dictionary D).

2) Let INF(al, critical) denote the union of the INP(al,v)

elements of those nodes v in T that are critical with

respect to a 2 <ZEY.2 <b 2. This step will construct the

1F(a,, critical) set in C(log 2) tine by using the

binary tree that is rooted at T7'(a,, root of 7) and

generated by the LE.D'VmT and RIGT.DC7T -pointers.

3) Construct the sought-after SBT(q) in COMTT(c) .a.ntime

by making the obvious walk dorm the list of "successor"

pointers that is generated by IN7(al, critical).

The above algoritlm obviously performs locate-and-copy

operations for SET(q) in 0(log N1 + CCMIT(q)) tine. Subtractingz

C0tf.T(q) from this quantity, we obtain the result that SZT(q)

has an C(log N) locate ru-ntime. fED

_ - .- e,-,+ ?L .
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The next objective of this paper will be to design and stdr

a new pyramid that is capable of efficiently calculatoing SLZ(q)

and CCU.77(q) values. This pyramid will be called P s(2'.W) and

is defined below:

Definition 2: The P a(2,L) pyramid will be defined as contairning

all the information of P e(2,L) plu-,s two additional fields for ea.-'-

record R stored in SflS(v). These fields .-ill be denoted as

and COMITT(R). In the context of v's SDS field, these fields will.

specify the resp ectlve SUL: and C017'IT of the subset of SDS(v) w ,27ose

KEY.l'value is greater than or equal tothe XZZY.l value of" R.

Lemma 2: In addition to -aif-i~ ar- of LerrnaP 1 the

P 8 (2,L) pyramids will enable SU."(q) and COL=, (q) to be calcul-at.ed

in O(log 11) worst-case aggregate-scan tine.

ProofO: Using reasoning similar' to Le =-a 1, it cz- be verif :iad

that all the me--bers of the I:7"(a 1 , critical)% and "b critical,

sets can be found in log X. tin-.e. Mhe present eafollcwis :-'ron

this observation and the fact that

SUMq = riI SUTT(x) - LC(r
XE 17-(a,, criti cal) VYIF (b if critial

COIT (q )= Cou1inT(X) C i"riIII~ CC71';r
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The next goal of this section will be to design a zyranid

that optimizes on worst-case insertion and dele-tion tine in

addition to the exected -tine optinization mentioned in Ler-a 13.

The proposed pyramid will be called Pa(2,L). Our discussion

commences with the following preli:ninary definition:

Definition 3: Let s denote an intero noeo n u ne

tree hat i conained in a P5 (2,1) zyr,-i-d, y a record in SDS(s),

x the mredecessor of y in this SDS field, and v -the fat I,-er- of s.

The symbol ASSC((s,y) will denote the sabset of SDS(v) w.hose

records R satisfy- t.-ie inecuality =-Y.l(x) <MY.l(R) :K~Y.l1(y".

Definiti-on 4: A _Pd(2,Z) pyranid wrill be defined as havinE a

data structure identical to ?, (2,1) in all res-:ects but one.

The distinct14ion is -that the Pd2) pyaidwl nthv n

I. :: or RIG: .FO:723 fields. Instead, each

mener f a SD fild f F(2,L) w-ill contain two nrevi fieds

called LE7.flrm and RIG= .1ZC71T . -1712 such that.,

i) each record 7 belonging to the SDS field off the left

son of v will be associat-ed writh a 2-3 tree whose

leaves are the I32".O'N_.IEAVES of the ASSOC 2et-cr t v,

set and whose root points to y;
ii) each record y belonging to* the QD il f h i

scn of v -till be associated with S siz,.ilar 2-3 tree

whose leaves are the RII O~ 2VSof

ASSOC Cright son of' v), J
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The above 2-3 trees of the rd(2,L) pyramid will' henceforzh

be called mapping trees. The runtime characteristics of this

pyramid will be discussed in the next le-a. The proof of th-at

lemma assumes that the reader is familiar with the characteristics

of 2-3 trees that were discussed in A:iU-74.

Lemma 3: Each of the follovring operations can be perform.ed

in O(log 1T) expected and O(log 2IT) worst-case tine with the use

of a Pd(2,L) pyramid:

A) searches for SET(q);

B) insertions and deletions

Proof of A: The algorithm for _cerfo_=_ing searches i-n -
pyramids is identical to that of Pe(2,I), excet that the forer

will traverse a path fro a DC .',!.,'-F to the root of the associated

mapping tree on those occasions when the latter would si:-ly

advance to the position indicated b:- the correszondinz _- or

RIGHT. C;C.P. 0-:': 1. This difference cannot increase :e :'.tine

of the I-(2,L) procedure by a factor of mcre than log :T (since

2-3 trees have log :, worst-case heights). :trtherzore, e::7ected

retrieval tine should not increase at all, since the =sping

trees in the present application will have an C(l) e::ected heigzht.
Thus the previous Lezra 1 implies that P (2,.) will have C(og :, )

expected and C(lo-2:T) worst-case retrieval tines.

Q E
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Proof of 3: It is sufficient to confirm the proposition onl.

for the deletion algorithm, since the insertion procedure is

similar. Upon the user's commarid to delete a record R, the

following three-step procedure will be executed.

1) Utilize dictionary D (of Definition 1) and the mapping

trees to perform a straightforward search that finds

all the entries for record R in the SDS fields of the

Pd(2,L) pyramid.

2) Repeatedly execute the following three substeps in ordfer

to nC.'e R from each of the above SS fields:

a) Delete the TZ IZ'.O,' =nd ?3.GH'TO7.' leav-es Cf 7

from their mapping trees;

) erge the old nzDinzg tree whcse roots zcinred 7o -

into the mapping tree whose roots point to 's

immediate zredecessor (in the relevan-t SDS field);

c) Deallocate 2's memory s-pace in the 'SS field a d

make the predecessor and successor fields cf' its

predecessor and successor point to each o-her.

3) Remove record 1 from Pd(2,L)'s augmented tree and use

the super-B-tree algorithm to rebalance the augmented
tree (so that it retains its C(log "j height).

The C(log 2 .T) ,vorst-case rx.Lti-e of steps 1 and 2 can be

understocd given -he observation that the ti-e-cons.ing parts

of these steps consisted of O(Iog .T) invocations of certain

specific 2-3 tree manipulation algorithms for which A'U-74

% I- 4 -. ,-,,.-
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has verif4ied an O(log 'N) worst-case runtine. T-he super-B-tree

theorem indicates that z~he amount of t.ine needed by step- 31s

rebalancing _,proceduro must have the sa-e magnitude as th e sZ S

field updating which takes place in step 2. Thus the coroined

runtime off all. three ste-s of our deletion algorit.hn= has t-he

O(log Y,) wors-t-case magnitude which Le~a 3 attributed to it.

Similar reasoning can be used to conffi- the Ov(log -N)

ex-.ected z~zieoff deletion operatiLons. 7n essence, this

runtime -.ollovs fro= the 0(1) exnected he&-:q'.s of t1e =aizng

trees.QE

The final goal of this section will bCe to g-encralize :e~as

.1 through 3 for h'-dizensiona2. 3arlld. 2ow is cur deffzzt-cn

of k-dimensional pyrzaids:

Definition 5: :et P., denote one o.-" th.e s--mbols off ' or

I d and let 14denote the subset off list L that is a_ descendan-t

of v. The symbol ?P (kC,L) wrill deno-te a t,-zical '-d4-ension~'a"

pyra~id r-ezresentation of L. If k >3, then the associated

Pi(k,L) pyramid -.,ill be iLnductively7 def_ ined as zx. au-zinented

tree sorted b-- =-~ vhose SflS field equals Pi(:%-l, I,.

Claim 1: The portions of Theorems 1 through 3 that discuss

retrieval tL:es of zk-dimensional pcyramtds ars vaJ-id. h e

statlement of" these t'heorems can be fCound in teintroductory

portion off tihis -a-er.)
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Proof: For k-L3, consider a retrieval procedure hat ocaes

the nodeb which are critical with respect to akIY.i<b.o an-d

that recursively Calls itself to search the SDS fields cf these

nodes. It is trivial to verify that such a procedure will cause

Pi(k) pyramids to have a retrieval time that exceeds Pi(k-1) by

a factor of log N. his fact, combined wi_"th Len-as 1 thro'ugh 3,

easily inductively verifies the claim.

Claim 2: The portions of Theorems 1 through 3 that discuss

insertion and deletion :nztize are also valid.

Proof: The super-B-tree theorem iMplies that the u-date tine

of a Pi(k) pyramid -will exceed that of Pi(-1) by a factor of

log N. The claim follows fro= the conjunction of this fact.

the principle of induction, and Le.a-as 1 through 3.

Although the discussicn in tis sectizn -,as centered

measurenents of CPU _uitine, the prorosed data strt.ctues are

also useful in minimizi.g disc accesses. z illustrate this

point, we consider the Pe(2) a r-d.

In a paging enviro.-ment, the SDS fields of P5 (2) pz-2-ids

should be arraz.n-ed so that consecutive records in 'heir sorted

lists arpear on the sone rage. Let k denote te'-e-verc-re n- 'Thr

of rocords stored On a t;-ica 2;e, ald r t.e fraction of he
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file's total records that satisf c< Y.2<d. A full locate-

and-copy operation to retrieve the records satisfying

a<=IY.l<b ;ai c<.rY.2-Cd fro= a P (2) pyramid wi1 requiree

Slog N +COU( worst-case zage accesses (for some small

constant C1 ). in contrast, The same query- would require

C2  logN +C expected zage accesses 7:dth a C .l-scrted) B-tee

or some other conven.tional method of organizing a f.e. .s r

is alw.s less than one and usuall- very salal, the Pe (2) pn.mds

produce a clear gain in efficiency.

Ii
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Note Added February 
15

At the time when the November draft of this paper was com-

pleted, I was aware of the possibility of slightly modifying the

structure of the Pd pyramids by giving them mapping trees with a

"multiway" rather than 2-3 structure. Multiway trees have been

described in Kn-73, and they are the generalization of 2-3 trees

that assign each interior mode between 2M and 2M-1 sons (for some

fixed M). The employment of multiway mapping trees in the con-

text of Pd pyramids would produce an improvement in the coefficient

associated with retrieval time at the expense of the update runtime

coefficient. Such a modification of the runtime coefficient was

not mentioned in my entire draft because I did not consider it

expecially subtle.

I now realize that multiway mapping trees are more important.

than I previously expected because they can be used to define new

magnitudes of runtime. This can be done if M is treated as a

variable rather than a constant. For instance, if M is defined

as the least integer such that M M >n then the multiway mapping

trees will produce a log log N improvement in retrieval time at
2

the expense of an log N/(log log N) worsenning of update runtime.

Hence, a logk N/ log log N retrieval and log k + 1 N/(log logfl worst-

case update can be associated with K dimensional pyramids. This

change in worst-case runtime is produced without alterning the
k-i

basic log N expected runtime that is associated with Pd(k)

pyramids. It appears that many users may desire to empty this

technique since a high priority is usually assigned to optimizing

retrieval runtime. Further improvemorts in the magnitude of

retrieval runtime do not appear possible without seriously

damaging tile vorst-case update runtimc associated with Fd(k)

Pyramids.
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PART 2

One serious disadvantage to t:-e datta stzc ture s of --he

pre cedincr a!ecti.on is that the:- consume 0( 1g 1) s~ace. ---14s

allocation of' memory smace will generally- be 70rohibitively

exaensive when k is greater than 3.

To save =ernor smace, it is often usefiU1 to conbine 'Uhe

theory ofIL tartial. =ntch data structu-res vith the suzer-E-7-tre=es

of '.,'-78. A discussion. of zartia. r-atch data strtzctur-es can "--

f ound in --e-7 5, R-76 a-nd ;v""i-78a. These data srttesar-e

rezresemltatio.s of .:-di-ensicnp-1 files that occut-y 0(:72 spa:--ce

and asZscciate CT jretrieval tivit.h .-rc'ests of.[ the -;c=z:

~Y~i 0E& . i =C KEY i.;~2 2 d
The d -Ls tin ct -:orn.- tevie ez te e- 7 5 Ri7 6n .i7 ~~-~

is rather tIec.hn-ical. 214-76 relies on. hfashing- and conseq1.entI?:

associates an 0(1) rz-ntime with insertion and deletion c-tera-:i.-ns.
Be7 utilizes tree re--esentatic-s for t- ata.nthfls

whose advantag-e is +.hat the-- additionally- enabl-,e sea=.chez -to be

done on a conj=nction of r-ang-e cueries s:ch as

a~f~ 1< b1 2 2aALYi.

(discussed indetail r,'I,'-77/'. ;v'i-78a describtes a dy ;.zsic

generalization Of 2e-75 designed to guarantee an 0C(log 2 . iors-.-case

insertion and CeletL-ion t;ie.

Let A(.2'EY.1 0, .') de.-o-7e an -ug--ented tree .,hic'

i) has its records sortUed by -'2Y.0

ii) has SDS Fields that consist of rarti4al match ',,- t tzc*-

describin.:r the ' iKe;-s o'f IMlY.2 -E.
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iii) satisfies the 1,i4evergelt-Reinmzold 233( a) condit.4Jor ( -:-e

nature of which can te exnlaimed if t-he ratio of v's

left son's descer-dar-?-tVs cver V's- descendants 4s denote-

as plkv): here B3(ok) requires that all nodes of the

tree satisfoy c4m(v)-Zl -c )

Let LMab den.ote the cardmnality- of th1,e subset of our it4al

file tha sat"isfies a4ZZY.O<b. T~he theorens of 3e-75, Ri-'6

and 71-78a can 'be easily generali-zed to show that A(Z=Y. 0.

associates an0: b worst-case retrieval ti-ze thcueries

of the fo=~:

a < =Y. 0<b =Y i'' l & =.. Y. .&

In cont rast, the sanme quer- in tradit-lional --artial =atch f4'e

wiould require 10 (T l-i) ot-case -ctie (-,-here entst'i

fl's cardfmalit;K-. Thus the A(MEY.0, k, 4- ) data tutr

will~~~ haeas-if n1-- mn.oroved retrieval tin-e, 'Zroduced

through an allocation of Tlog NT additional umits of mencrv-

space.

The Point of t.his e~asn-le is t.hat t;he su7,er-'=-tree a~o

has =an-,: si ificam_ azz&ications beyond t-'-e -t:yr=sids of the las'.

section. in the -presen~t context, subrou-.-.-:-calls 1 the

super-B-tree alz-oritlhm will guaraztee that any record can bce

inserted into and deleted -_ro= .43(IMY.0,, d)in C(log "T) ti=e

if Rivest-like 'as', s;-stems are used to define the SDS fields,

and in 0(log T) worst-case rntie if" t.h'^e otherwise =ore flexible

k-d trees of Be-75 and ;7-78a are emrl eyed. Several other usef-642

applications of th^e su~er-3-t-rce rrocedurc are discuosed iLn '::-*-7.
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CONCLUSICIT

Our goal in this paper was to i-prove the runtize of =ulti-

dirensional sy'stems b-- emplo-i~ng data str-uctur which require

more than C(N1) space. It was shown here that this could be

done with data structures that occupy as little as (I log Z )

or O(N log2 T) space. This result could be quite significant

if the cost of computer mezory. continues to drop at the sate

rate as it has in the rast.

lI
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