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PREFACE

This report contains all findings of the acousto-optic

technology study for feature extraction conducted by Deft

Laboratories Inc. for the U.S. Army Engineer Topographic

Laboratories. The work reported here was funded under Contract

DAAK 70-79-C-0160. The work was conducted during the period
of October 1979 through February 1981. The Contracting Office's

Techn ical Rep res entat ive was Mr. Joseph F. Hann igan.
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SUMMARY

The objective of this program was to develop, analyze and

evaluate theoretical concepts and strategies for topographic

feature extraction and image analysis using acousto-optic (A-0)

technology.

A conclusion of this study was that A-O devices are

potentially capable of implementing the feature extraction

prefilter function very efficiently. Since the prefilter is

the most computational intensive portion of the feature

extraction process this is a significant result. The best

application of A-0 devices is in the implementation of trans-

form-based prefilter algorithms. Under this contract transform-

based algorithms were identified and developed which are

invariant to feature translation, rotation and scale. This

invariance is highly desirable since it reduces the number of

distinct feature signatures which must be processed by the

decision processor.

Some preliminary experiments were conducted using the

Fourier-based algorithms, test images and an A-O device which

was a Deft sensor. This combination of algorithms and sensor

was able to distinguish between three test patterns which were

presented in arbitrary orientation and scale. The success

rate was 80%. In spite of these promising results, present

Deft sensors are not capable of distinguishing realistic

features in aerial photographs. New Deft sensors are presently

under development which will significantly improve the capability

of this sensor in feature extraction applications.
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I. INTRODUCTION

A. Project Overview

The objective of this program was to develop, analyze and

evaluate theoretical concepts and strategies for topographic

feature extraction and image analysis using acousto-optic (A-0)

technology. In addition, functional block diagrams were to be

prepared for the most promising concepts and strategies for the

purpose of identifying essential and/or critical A-0 elements and

components.

During the execution of the program it became evident that

the evaluation of theoretical concepts was sufficiently advanced

so that additional effort, not required in the original contract,

could be undertaken. This effort involved programming a group

of promising feature extraction algorithms and performing experi-

ments using an A-0 device. The device used in these experiments

was a Deft sensor.

The tasks which were executed during this program are listed

below.

1. The open literature was searched in the areas of image

processing, feature extraction and acousto-optic technology.

2. A survey was conducted and determination made of device

capability and limitations of present A-0 technology.

3. Theoretical concepts and strategies were analyzed and

evaluated for topographic feature extraction and for implemen-

tation using A-0 technology.

4. The most promising concepts and strategies were selected

for further evaluation.

5. For these strategies algorithms were developed and programmed

for a microprocessor-based experimental system. Experiments were

conducted using this system and a Deft sensor. These experiments

involved feature recognition using a small set of test images.

6. Functional block diagrams were developed for the most



promising strategies. Essential and/or critical A-0 elements

were identified.

7. For these A-0 elements state-of-the-art capabilities were

compared with required capabilities. Required improvements were

determined as well as indication of the probability of obtaining

such improvements.

This report details all findings of this study program.

B. Genei-al Feature Extraction System Model

The term 'feature extraction" comes under the heading of

pattern recognition. Large volumes of material have been written

under this heading. The specific problem addressed by this study

is how can A-0 devices be used to find objects or "features' in

aerial photographs? The emphasis, then, is on what functions

A-0 devices can perform and how these functions can be used to

achieve the stated objective. In this context, only certain

portions of the literature under pattern recognition has bearing

on the problem to he solved.

It was felt at the beginning of this study that the only

way to achieve meaningful results was to determine a model for

a feature extraction system which has the general functional

capability required. From this general model, more specific

systems could be developed which utilize functions which can be

efficiently performed by A-0 devices. Concepts and strategies

could then be chosen from the literature under pattern recognition

which fit into these specific system models.

In order to provide a frame of reference, feature extraction

will be considered in the context of the pattern-recognition

system model shown in Figure 1. The transducer transforms the

information content of the input (photolight intensity pattern)

into a format suitable for further processing (electrical signal).

The amount of information available in the photo image is enor-

mous. A single video image may contain 10 4 10 8bits of

-2-



information, while a photographic image can contain orders of

magnitude more. However, the amount of information required to

make a decision may be just a few tens of numbers. The purpose

of the preprocessor is to reduce the information content of the

image to a more manageable size. This process has also been

termed filtering, prefiltering, feature or measurement extraction

or dimensionality reduction. The output of the preprocessor is

then passed to the decision processor where this information is

used to classify the photo image. The decision processor may

also control the transducer and preprocessor via feedback. In

this manner the preprocessor function may be changed during the

decision process. In like manner the transducer may be commanded

to look at a different portion of the photo or perhaps change

scale.

Figure I is a functional block diagram. These functions may

be distributed over hardware subsystems in a number of ways. For

example, the transducer might be a vidicon or CCD imager. Its

function then is primarily bandwidth reduction and format con-

version. The preprocessor and decision processor might then be

implemented in software in a digital computer.

Another alternative configuration is considered in some detail

in this report. In this configuration the transducer and pre-

processor functions are performed in an acousto-optic device. The

decision process is then carried out in a digital processor. In an

all digital implementation the preprocessor function requires the

bulk of the processing time since a large data base (image) must

be operated on. The potential advantage of the acousto-optic

implementation is that this time-consuming preprocessing function

can be performed in whole or in part in the sensor itself.

A third configuration should be mentioned. In this configuration

the transducer and preprocessor functions are performed by an

optical processor. Many of the prefilter functions which can be

computed in an optical processor can also be computed by acousto-

-3-



optic devices. As a result, the large literature which deals with

applications of optical processors can be utilized to develop

preprocessing techniques for acousto-optic devices. The development

of both optical processors and acousto-optic devices is currently

receiving support because of their potential application in such

areas as image preprocessing. At this time, optical processors

are in a more advanced state of development than acousto-optic

devices. However, acousto-optic devices offer the potential

advantages of being cheaper, more rugged and not requiring precise

optical alignment when compared to optical processors. In certain

applications they may also prove to be more flexible since the

function performed can be controlled electrically.

Photo I

1I1n|)U-t Transducer reprocessor Decision Classi-
I Irocessor fication

k. ..J

Ac()Us1 o-Opt ic Device -

1
Figure I - Pattern Recognition System Model
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II. ACOUSTO-OPTIC DEVICES

A. Introduction

In this section three acousto-optic devices are briefly

described. Both physical and functional descriptions are provided.

From these descriptions it will then be possible to determine which

feature extraction algorithms are best suited for implementation

using one or more of these devices. More detailed descriptions

can be found in the references. The devices to be described are

the following: the Deft sensor manufactured by Deft Laboratories

Inc., an elastobirefringent light valve and a device developed by

Thomson-CSF, France. Both the Deft sensor and the elastobire-

fringent light valve were developed by Drs. Kowel and Kornreich

of Deft Laboratories. As a result we are more familiar with the

present limitations and future potential of these devices. Section

V is devoted to a discussion of this topic.

B. The Deft Sensor

The Deft sensor is a solid state device which utilizes the

interaction of surface acoustic waves (SAW), a photoconducting

film and an impged light pattern to produce an electrical signal

from which can be derived the magnitude and phase of the two-

dimensional Fourier transform of the image pattern. The sensor

may also be used to produce other useful image functions.

The operation of the sensor can be explained with the aid

of Figure 2. The sensor is fabricated on a LiNbO3 substrate

which is a piezoelectric material. On this substrate is deposited

a photoconducting film of CdS. An interdigital metal pattern is

evaporated onto the CdS for the purpose of detecting and inte-

grating the photocurrent. This pattern has the added function of

sampling the image in one direction. Image sampling is required

if base-band Fourier transform components are desired. The SAW

are limited to high spatial frequencies. The spatial spectrum

of the image must be translated into this band. To achieve a

-5-
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spatial sampling in the orthogonal direction the CdS can be over-

layed with an Al shadow mask. As an alternative which has been

used in more recent devices, only squares of CdS with the proper

sample spacing are deposited. Interdigital transducers are used

to generate two orthogonal surface acoustic waves in the substrate.

The figure shows a number of transducers. However, only two are

used to launch the orthogonal SAW's. The other transducers are

redundant and not used.

To describe the operation of the sensor let g(t) and h(t)

be the transducer input signals. Since LiNbO3 is piezoelectric

an electrical field is produced across the sensor. In the x

direction the field is proportional to g(t-x/v x). In the y

direction the field is proportional to h(t-y/v y). The parameters

v and v are the SAW velocities of propagation in the x and y

directions. At the same time, an image is focused on the grid of

CdS squares. A current is generated in each square proportional

to the average light intensity over that square, and these currents

are modulated by the product, g(t-x/v x ) h(t-y/v y), created by

nonlinear mixing in the CdS film. The metal finger pattern sums

each of the modulated current components over the grid. The

resulting output current is o(t). It is given by

o(t) = ffi(x,Y)g(t-x/vx)h(t-y/vy)dxdy (1)

The image I(x,y) is the image focused on the sensor, I(xy)

modified by the grid sampling. The functions g(t), h(t) can be

any arbitrary waveforms who's spectrum is within that of the

interdigital transducers. This equation defines the function

of the Deft sensor in its most general form.

A number of specific functions which can be realized by the

sensor may have application in feature extraction. These will be

discussed in the next section. A specific function which may

have application in feature extraction is the two-dimensional

Fourier transform. Since the performance of the Deft sensor in

general applications can best be described in terms of its spectral

response, computation of the two-dimensional Fourier transform

using the sensor will be described here.

-7-
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If g(t) and h(t) are sinusoids then o(t) yields components

of the two-dimensional Fourier transform.

F(,, , ,) = ffl(x,y)e x y dxdy

By varying the frequencies of the sinusoids different spatial

frequencies can be probed. Let x 1 be the grid spacing inx' y

the x and y direction respectively in meters/cycle. Then the

temporal frequency which corresponds to the origin of the spatial

transform is given by f o,X, fo,y where

f x = /, I f = v /9Y (2)
o,x x x' o' y yy

For example, if = 0.1 mm/cycle, v = 3800 m/s then f = 38 MHz.
X X O,x

The number of spatial frequencies which can be probed by the

sensor depends on the bandwidths of the two SAW transducers and

the size of the CdS grid area. Let n and n be the number ofx y
('CdS squares in the x and y direction respectively. Then for

two spatial frequencies to be resolvable by the sensor, the

total number of cycles of one frequency across the sensor must

differ from the total number of cycles of the other by at least

one cycle. For example, consider two x-directed spatial

frequencies which differ by one cycle across the sensor. If nx

is the number of squares of CdS in the x direction then the

difference in spatial frequency is 1/(n xx). The difference in

temporal frequency is then v x/(n x). Comparing this to equation

(2) shows that the difference frequency, Af is
x

Af = f /nx  (3)fx ox (3

Now let Vf be the temporal bandwidth of the x transducer. Thenx
the number of resolvable frequencies in the x-direction is

vf vf f(4
r= x = x =n x (4)

X f 7f /n X
x o,xnx o,x

That is, the number of resolvable components in the x direction

is n times the percentage bandwidth of the x transducer. For

example, if Vf x/fo X = 0.1 and nx = 200 then there will be 20

-8-

I,
' . . . . .. . . . . . . ' p



resolvable Fourier components in the x direction. For . = 0.1

mm/cycle this corresponds to a length of 20mm for the CdS

portion of the sensor. In like manner, the number of resolvable

frequencies in the y direction is given by

ry = ny fy(5
Y flyv

o,y

The number of resolvable Fourier components is an important

parameter in applications such as feature extraction. It is used

to characterize the operation of the Deft sensor even when a

function other than the Fourier transform is being computed. For

example, consider the more general function

u = ffI(x,y)g(x)h(y) dxdy (6)

to be computed by the sensor. Because of the limits of inte-

gration g and h can be replaced by their periodic extensions

[g] and [h]. These functions will be defined by an example.

Assume that g(x) = x and that the x limits of integration are

from -1 to '1. Then the periodic extension of g(x) is shown in

Figure 3.

[~g ( x)

x

Figure 3 - Periodic Extension of g(x) = x

The function rh(y)] is likewise defined with respect to the

limits of integration in the y direction. Because 1gJ and [h]

are periodic they may be expanded in complex Fourier series.

[g] = T Cg,k e(jknx/2 ) (7)

-9-
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[h = ,h k e(jklTy/ 2 ) (8)

k =

where j = /-. Substituting these series in equation (6) and

interchanging the order of integration and summation yields

=1 1hk jr(ix + ky)/2 dxdy

i= k= gi hk
(9)

= - c h  F(i/2 kr/2) (10)i . .. k = - '  g i ,

where F is the two-dimensional Fourier transform of I. Since

the Deft sensor transducer bandwidths are limited, u can be

approximated by the truncated series

u = E c c F(i7/2, kn/2) (11)
i= -n k=-n g,i ,k

x y

where n +I n +1 are the number of resolvable Fourier componentsx ' y

along the ,, and w axis respectively. The error in computing u

with the sensor is

u-_u = x I c ch F(iu/2, kv/2) (12)jil>n x kl>n y g'i h,k

This error depends on n x , ny and on the high frequency content

of the image I and of the kernal g(x)h(y). Hence, given a

sensor with parameters nx, ny it is possible to determine which

kinds of images may be viewed and which kinds of kernals may be

utilized.

Thp Deft sensor is further described in a number of
2,3,4

references

C. Elastobirefringent Light Valve

A two-dimensional acoustic processor utilizing an elasto-

birefringent light valve has been constructed and experiments

conducted 5,6 The experimental setup is shown in Figure 4.

The light valve consists of a fused quartz cell. On the edges

of this cell are attached two orthogonal transducers. When

-10-
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these transducers are excited strain waves travel through the

bulk of the cell. The total strain is the linear superposition

of the two traveling strain waves. An image is focused on the

region of the quartz where the two waves are superimposed.

Image Holder

Light Valve Polarizer

Analyzer Beam Expander

Output Ietet%/

EEG S-20 Detectov 0 HeNe Lasera
x-input y-input

Figuri 4 - Elastobirefringent Light Valve: Experimental
Set-Up

Due to the strain induced birefringence, each ray of light

split. into two orthogonally polarized phase velocities. It

can be shown that the intensity modulation of each polarized

wave has a component proportional to the strain squared. The

image is produced by illuminating a transparency containing the

image information with a well-collimated beam which has been

polarized. The output of the light valve will have a desired

component polarized orthogonal to the orientation of the input

polarizer. This component is passed by the analyzer which is

just another polarizer. The undesirable direct component is

blocked by the analyzer. The desired component is then detected

by a photodetector which performs an integration over the entire

image. A chromium sampling grid is placed on the quartz cell to

sample the image and translate its spatial spectrum into the

passband of the transducers.

The function which can be computed by this processor can be

described by equation (1) which is also used to describe the

-11-
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Deft sensor. Hence, functionally this processor is equivalent

to the Deft sensor. The differences between the two are primarily

in implementation and in present and projected future performance.

Concerning implementation, the light valve is a larger physical

structure than the Deft sensor. The image source must be a

transparency. By contrast, the Deft sensor can view either a

transparency, a photograph or a real-world image since it operates

much like a conventional camera. The elastobirefringent light

valves which have been built to date exhibit a strong standing

wave pattern which is a function of transducer frequency. This

effect has limited their usefulness. Potential solutions to

this problem are presented in Section V.

This light valve does have a couple of potential advantages

compared with the Deft sensor. In the bulk mode devices it is

not necessary to physically attach a metal pick-up grid. In

the Deft sensor this grid has an undesirable effect of damping

the SAW. This limits the practical size of Deft sensors since

larger sensors would suffer a large, undesirable SAW attenuation

across the sensor surface. Hence, the bulk devices could

potentially be larger resulting in a greater number of resolvable

Fourier components. A second advantage is that electrical feed-

through is not a problem with the bulk devices. With the Deft

sensor feed-through from the input transducer drive to the

integrating metal grid is a problem.

However, the bulk device has a number of disadvantages when

compared with the Deft sensor. Since bulk mode operation is

required, the image must be focused with sufficient depth-of-

focus so that the image is in focus throughout the 1-2mm thick-

ness of the quartz cell. Higher acoustic fields are required

to operate the bulk device. The light valves built to date

use glued-on transducers. This is not desirable, particularly

at higher frequencies where the transducers are smaller and

more brittle. Finally, the physical non-linearity which is

utilized in the bulk light valve is a much smaller effect than

-12-



that used in the Deft sensor. There is a large, undesirable

unmodulated signal which feeds through the light valve. The

purpose of the analyzer is to block this signal. However, it

is difficult to fabricatu sheet polarizers which are uniform

enough over the 1 cm. illuminated length of the quartz cell.

Hence, some of this feed-through signal will pass the analyzer

and could saturate the detector. (This feed-through signal is

analogous to the electrical feed-through encountered in the

Deft sensor.)

D. Thomson - CSF Sensor

The Thomson - CSF sensor is a SAW device and has features

in common with the Deft sensor. The device can be described as

a two-dimensional separated media semiconductor convolver. It

employes two pairs of SAW transducers deposited on a LiNbO 3

substrate. An 8 x 8 mm2 matrix of p-n vidicon type diodes is

pressed on 3000 A high randomly distributed posts. Output

signals are picked up between the back electrode of the semi-

conductor and a semi-transparent ground electrode deposited on

the bottom face of the piezoelectric medium. The device is

shown in Figure 5. The x and y center frequencies are fO,x

and f . The useful output frequency then appears at frequencyopy

2(f + f Y)2o,x o~ "
h+(y)

LiNbO3

g +(x) D e g(x)
Array

h-(y)

Figure 5 - Thomson - CSF Sensor
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To generate the two-dimensional Fourier transform of an

image focused on the diode array, the x input signals are

chosen to be FM ramps of opposite slopes w = tut. The

y input signals are chosen to be CW signals with frequencies

S=W ±1/2 Aw . (That is, one x orientated transducer getsy y Y * '
wx+ and the other x orientated transducer gets w The same

is true for y orientated transducers.) The instantaneous

frequencies of these waveforms are shown in Figure 6 (solid
W -

lines). Y

t

tW +

x

Figure 6 - Transducer Instantaneous Frequencies

With these inputs, the output signal component at 2(wx + wi )

can be shown to have a modulation of the form

o(t) = HI (x,y) eJ( 2 utX/Vx +A/v)dxdy (13)

where v, v are the SAW velocities of propagation. During ax'y

sweep of the x, FM ramps an entire row of the transform is

read from the sensor. This sweep time need be no more than

twice the propagation time across the sensor. Hence, data

can be outputed potentially much faster than can be achieved

using the Deft sensor. In the Deft sensor the x and y input

waves must be CW signals which must propagate across the

sensor before a single transform component is outputted. The

frequencies of these waves are then stepped to output another

component, etc. The Thomson - CSF sensor approach would be

most useful if a raster-scan of the transform is desired. This

is shown in Figure 7 (solid lines).

-14-
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f
,y

f f

Figure 7 - Raster Scan of Transform Plane

If instead of stepping the y frequencies, the y frequencies are

also ramps (dashed lines, Figure 6) then the transformed plane

can also be raster-scanned along oblique lines with variable

tilt angle (Figure 7, dashed lines). For example, it would

be possible to scan the transform along radial lines passing

through the transform origin. This is shown in Figure 8.

f
y

J fx

Figure 8 - Radial-Scanned Transform

This method of scanning will be shown in Section III to have

application in feature extraction.

The primary difference between the Deft sensor and the

Thomson - CSF sensor is the use of four vs. two transducers

and the choice of waveforms leading to a fast scan of the

transform. If random samples or samples at only a few spatial

frequencies are all that is required then the Deft sensor would

function just as rapidly as the Thomson - CSF sensor. It would

be possible to operate a Deft sensor in the same manner as the

Thomson - CSF sensor by also using four transducers and

inputting FM ramp waveforms. Speed performance would then

-15-
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equal the Thomson - CSF device. This modification has not been

attempted to date. Note that the method used to speed-up data

output is not applicable to the computation of the more general

operator of equation (1).

The Thomson - CSF sensor is described in reference 7.

-16-
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III. FEATURE EXTRACTION TECHNIQUES FOR
ACOUSTO-OPTIC TECHNOLOGY

'A. Introduction

During the execution of this contract a survey of techniques

for feature extraction was carried out. The purpose of this

survey was to determine techniques suitable for implementation

using acousto-optic devices. The results of this survey are

detailed in this chapter. From the techniques surveyed, two

methods appear to offer promise both from an algorithmic stand-

point and also because of suitability of implementation. These

methods will be termed the method of invariant Fourier signatures

(IFS) and the method of invariant moment signatures (IMS).

Because of their promise, additional algorithmic development

was carried out during the course of this contract. This work

is reported in this section.

This sect ion is divided into two parts. The first part

is a general discussion of feature extraction. The second part

is a comparison of some methods for feature extraction.

B. General Concepts

A general model for a feature extraction system is presented

in Section lB. This model is showvn in Figure 1. Briefly, the

transducer converts the image input light pattern to electrical

signals. The preprocessor reduces the inforrns~i n coe'..-" of

the image to a more manageable size. The output of the pre-

processor is then passed to the decision processor where this

information is used to classify the photo image.

In Section II the operation and function of three A-0

devices were considered. The general function performed by

these devices is given by equation (1). This equation implies

that the two-dimensional image information is processed by the

sensor in such a way to result in a one-dimensional signal of

reduced complexity. Hence, these devices could be potentially

used to implement the combined function of transducer and

preprocessor. Therefore, it is important to consider specific
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examples of equation (1) and determine their utility in pre-

processing. This will be done in this section.

The A-0 devices considered do not seem useful for imple-

menting the decision processor. There are a number of reasons

for this. First of all, the output of the preprocessor will be

an electrical signal. The A-0 devices require an image input.

Hence, the data format is not compatible. A survey of the types

of algorithms commonly used for classification reveals that

most of these cannot be implemented efficiently using A-0 devices.

In addition, they require greater accuracy than can be achieved

with A-0 devices. But most importantly, it is not necessary to

use A-0 devices for classification since the image information

content has been reduced by the preprocessor to the point where

a modest digital processor can handle this function. A survey

of conventional classification methods is given in reference 8.

An application of classification in aircraft identification is

given in reference 9.

Before developing specific preprocessor functions some

desirable properties of the transducer plus preprocessor will

be discussed.

The first desirable property is feature isolation. Con-

sider a typical aerial image of natural terrain in which may

be located one or more man-made features to be detected. The

natural terrain can be considered to be "noise" while the

feature is a "signal". One of the functions of the prepro-

cessor is to filter this signal from the noise. Now in a

typical aerial photograph, most of the photo will be noise. If

the transducer were to view the entire photograph then the

signal-to-noise ratio would be small and the preprocessor

function would be more difficult to implement. A simple but

effective way to improve the signal-to-noise ratio would be

to limit the field of view of the transducer to only a portion

of the photo and then scan the photo to search for features.

Limiting the field of view has the effect of reducing the noise

without reducing the signal as long as the feature to be

detected remains completely within the field of view.

-18-
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By scanning the photo is meant that the transducer views

a portion of the photo and that portion is preprocessed. The

transducer then views another portion of the photo and prepro-

cessing is repeated for that portion. This sequence of steps

is continued until all portions of the image have been viewed.

Scanning may or may not involve overlapping views. Scanning

a square photo with a square aperture and no overlapping is

shown in Figure 9. The same scan but with 50% overlap in

both directions is shown in Figure 10. To simplify presentation

the views for the overlap case are shown in four parts. These

parts would overlap each other. The boundary of the photo is

shown dashed. Now consider a feature which is completely

enclosed by the circle shown in Figure 9. (The angular

orientation of the feature is arbitrary.) Then if the photo

was scanned as in Figure 9 the feature would lie across the

boundary of four views and its detection would be difficult.

However, if 50% overlapping of views is used as in Figure 10

then the feature lies totally within one view (in this case,

view 48). As long as the radius of the circle was less than

or equal to one quarter of the length of the square comprising

each view and overlap was 50% the circle would lie completely

within one view. Note that (neglecting missing squares at

the edges of the photo) the number of views has increased by

a factor of four.

These comments can be generalized. Let r be the radius

of the smallest circle which completely encloses the feature.

Obviously, r is independent of the angular orientation of the

feature in the plane of the image. Assume that the aperture

of the transducer imaged on the photo is square with length R.

Figure 11 shows on~e such aperture (large square). In the

middle of this square is a smaller square. The area enclosed

by this square is the locus of points of all circles of radius

r which lie completely within the large square. Each view

has such a small square associated with it. In order that the

-19-



Ih TT
S5 6 7 8

IT 9 -o i 12
II

L. . I

Figure 9 - Image Scanning: No Overlap
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Figure 10- Image Scanning: 50% Overlap
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feature lie totally within a view regardless of the position

of the feature within the image, the views must overlap in

such a way that the entire area of the photo is covered by

the union of all these small squares. In that case, the total

number of views must equal at least

total number of views = T 2 /(k -.2r)2  (14)

where ZT is the length of the square photo. That is, the

total number if views is greater or equal to the total area

of the photo divided by the area of a square of length . -2r.

NN

Figure 11 - Overlap Geometry

The signal-to-noise ratio (SNR) of the view will be

defined to equal the area of the feature divided by the area

of the view, Hence,

SNR - 2nr 2 /, 2 (15)

with maximum occuring when = 2r. However, in that case the

total number of views required is infinite. Hence, there must

be a tradeoff between SNR and total number of views to be

processed. If the ratio r/i T is very small (small features)

then a large number of views are required to achieve good SNR.

For example, assume that 2r = QT/50 and that £ = 12r then

SNR 4 n/72 and the total number of views is 100.

In practice, the total number of views can be reduced

somewhat by allowing some of the feature to be masked by the
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transducer aperture. That is, r is chosen to be somewhat

smaller than the value implied from the dimensions of the

feature. To develop a general formula let t. = k 1r. Now

reduce r to k 2r. Then the total number of views is reduced by

a factor of (k 1-1)
2 /(k 1-k 2). In the previous example k 1 =

12. Let k2= 0.8. That is, overlap will be reduced so that, in

the worst case, only 80% of the largest feature dimension will

be within a view. In this case the total number of views

required is reduced by a factor of 0.9646. For a fixed value

of kthis reduction will be greater for smaller values ofk

>2. For example, if ki = 4 and k 2=0.8 then the total number

of views is reduced by a factor of 0.8789.

In terms of implementation, a single transducer and pre-

filter could be used to scan the photo in a number of steps.

If high-speed operation was required more than one transducer

and prefilter could view seperate views of the photo concurrently.

Another desirable property of the prefilter will now be

discussed. By definition, the prefilter takes the large amount

of information of the photo encoded as pixels and reduces it

to a much smaller set of numbers. This process can be termed

"dimensionality reduction". Ideally, the prefilter output

should have the following properties:

1) Members of each feature class should show less

variability than was the case before the prefilter.

2) The relative separation of each feature class

should be increased.

3) There should be dimensionality reduction.

Consider first property 1). As an example of a feature

class let the class include all square buildings in the photo.

In this case, a square building is in the feature class regard-

less of its angular orientation or scale (size). It would be

desirable for the prefilter to have the property that if the

photo contains a square building in any position, orientation

or scale then the prefilter output will contain a signal or
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signature which is invariant to position, orientation or scale.

Such a prefilter will be said to implement a position, rotation

and scale invariant transformation. In certain cases it may be

desirable that the transformation is only position and rotation

invariant. (Example: small buildings are to be discriminated

from large buildings.)

The best-known invariant transformation is the autocor-

relation function. The first-order autocorrelation function

defined in one dimension is

g (A) = fg(x)g(x+A) dx (16)

this function is invariant to translation.

Consider now property 2). As an example, assume that the

prefilter input is a photo containing a square building. This

building may be in any position, orientation and scale. The

set of all outputs constitutes a class at the prefilter output.

In this idealized situation, if the prefilter is invariant to

translation, rotation and scale then this class contains but one

output or signature. A more realistic consideration would have

to include such effects as variation of building materials and

color and lighting. Another class could be determined by con-

sidering all outputs for all possible orientations of "round

storage tanks" in a photo. Now if the differences in all signa-

tures of one class from all signatures in the other class is

increased by prefiltering then relative separation has increased.

This might be the case, for example, if noise, such as natural

features, is filtered out by the prefilter.

However, in some cases relative separation may decrease.

For example, consider the autocorrelation function. It is well-

known that

F fo) = IF{glj2  (17)

where F{} is the Fourier transform. Hence, two functions who's

Fourier transforms have the same magnitude cannot be separated

by using the autocorrelation functions. Functions which cannot

-23-
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be separated include not only those which differ by a linear

phase term (i.e., the translated versions of the same function)

but also those which . Lffer by a nonlinear phase term.

A function which avoids this difficulty is the higher-

order autocorrelation function

ong (A 1 ,A2 ,..Ln) = fg(x)g(x+A 1 )g(x+A2 )...g(x+A'n) dx (18)

which can be shown to be unique for n. 2 except for translation 1 0

However, note that the dimensionality has been increased. This

conflicts with the third desirable property that there should

be a dimensionality reduction.

In general, it is not possible to satisfy all three desir-

able features of a prefilter at the same time. It would seem

to be important that there be a dimensionality reduction since,

otherwise, the amount of information presented to the decision

processor would be enormous.

Later in this chapter two classes of algorithms are

presented which satisfy properties 1) and 3) but violate property

2). This would seem to be the lesser evil since the decision

processor receives less information which has been formatted

in such a way that the decision process is simplified. Since

property 2) is violated, a square building, for example, may

be mistaken for a round storage tank. However, this is less

important than not detecting the feature. It is always possible

to refine the decision process by human intervention. A

feature extractor which signals the presence of a feature and

indicates with some certainty what that feature is could be

very useful for automatic aerial photo screening.

C. Transform Methods

Because of the scope of this project, this section will

concentrate on prefilters which utilize transforms which can

be implemented as a special case of equation (1). Transforms

which will be considered are the two-dimensional Fourier

transform, the two-dimensional image moments and the two-
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dimensional Hadamard transform. Applications of the Fourier

and Hadamard transform to image processing is surveyed by
11Pickholtz The application of moments to image processing

9,12,13
is discussed in a number of papers

1. Hadamard Transform

The Hadamard transform of an image which has been sampled

and represented by the nxn matrix of pixel values I(xi,Y ) is1
F(i,j) = 1 Hn IHn (19)

the nKn matrix Hn consists of elements which are either +1 or

-1. The Hadamard transform is orthonormal. As a result, the

image is decomposed into basis images which are the two-dimen-

sional Walsh functions. The rows and columns of the matrix Hn

(which is symmetric) consists of the one-dimensional Walsh

functions of order n. For n = 8 these Walsh functions are shown

in Figure 12.
Sequency

wal (o,t) ........ 0

wal (l,t) ++++---- 1

wal (2,t) -------- 1

wal (3,t) ++--++--- 2

wal (4,t) +--++--+ 2

wal (5,t) +--+-++- 3

wal (6,t) +-+--+-+ 3
wal (7,t) +-+-+-+- 4

Figure 12 - First Eight Walsh Functions

The notation + means +1 while - means -1. These functions are

defined on the interval 0 t l and may be periodically extended

to span the real line. The \Walsh functions may be thought of

as square waves. Wal (6,t) is shown in Figure 13 a). For each

of these functions, every occurrance of a transition from + to

- or from - to + is called a zero crossing. One half the

number of zero crossings of these functions is termed the

sequency of the function. Sequency is analogous to frequency

of sine and cosine functions.
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The transform F(i,j) is a decomposition of the image

into its orthonormal Walsh basis images. The potential

advantage of this representation is that it may be possible

to accurately approximate the image by using only a limited

number of its Hadamard transform components. If so, this

would facilitate feature extraction since the output of the

Hadamard prefilter would be of lower dimensionality than the

input.

The Hadamard transform also appears useful because of its

ease of implementation. Because 11n only consists of +1 or -1

entries the matrix product represented by equation (19) can

be computed without any multiplies. This is particularly

useful in a digital processor where multiplications require

more computation than do adds and subtracts. A high-speed

digital processor which computes the Hadaward transform of an

image for feature extraction is described in reference 14.

One potential disadvantage of the Hadamard transform is

that it is not invariant to translation, rotation or scale of

a feature in the image.

Consider now the computation of the Hadamard transform

using acousto-optic devices. The potential application of the

Deft sensor to computing the Hadamard transform has previously

been discussed 3 . Consider the general function performed by

A-0 devices as defined by equation (1). Because the image

I(x,y) has been sampled by the sampling grid to produce I(x,y),

the functions g and h must be shifted in frequency into the

band occupied by the image. Hence, g and h cannot be base-

band Walsh functions. The appropriate choice is

g(t) = sin o', t wal(i,t) (20)

h(t) = sin ,, y t wal(j,t) (21)

where w i and w, are the frequencies which will produceOX o,y

SAW's with wavelengths equal to the metal grid pattern in the

x and y directions, respectively. These waveforms are shown

in Figure 13.
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wal (i,t)

+1 

1 F

-1

o)
g(t) or h(t)

b)

Figure 13 - Modulation of Sinusoid by a Walsh Function

a) Walsh function, b) Modulated Sinusoid
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However, to be realistic, it is important to consider

the limitations imposed by the bandwidth of the A-O device

transducers. Since the Walsh functions are square waves

they require unlimited bandwidth for exact representation.

However, most of the spectral energy of these waveforms will

lie below some maximum frequency. As long as the transducers

pass frequencies within this bandwidth the A-O device can

function as a Hadamard transformer. Walsh function spectrums
15

have been derived in the form of recursive formulas In

order to present these formulas some additional notation is

required. First, define the cal and sal functions

cal (n/2,t) = wal (n,t); n even. (22)

sal((n+l)/2,t) = wal (n,t); n odd. (23)

Now define the Fourier transforms of these functions to be
C(n,f) = +12jwt

_1/2cal (n,t) e dt(24)

S~~)=f1 /2 e w

S(n,f) = f-1/2sal (n,t) e- 
At dt (25)

The interval -1/2<t<1/2 can be thought of as the time that the

Walsh function acoustic wave will be on the active sensor area.

With these definitions the recursive formulas for C (n,f)

and S (n,f) are given by

C(nf) (-I 1 )n/l.1 cos (,f/2) C(n/2,f/2); n even
n (-1) In / 21 sin (7f/2) S((n+l)/2, f/2); n odd

f n-1i (26)

S(n,f) = - )-2 cos (7f/2) S(n/2,f/2); n even
t,(-)in-1 sin (rf/2) C((n-l)/2,f/2); n odd

(27)

where [n/2] means the largest integer equal to or smaller

than n/2.

Using these formulas the Fourier transform of the Walsh

functions can be easily computed. The first few of these are

shown in Tables 1 and 2. Each of these functions is a product

of sines and cosines multiplied by a term of the form

sin 2 (7f/k)/(if/k). The bandwidth of the Walsh functions is

-28-
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n j S( n,f)

0 -

1 sin 2 ('f/2)
Tf /2

2 -cos(fff/2) sin 2 Uf/4)
IT f/4

3 sin(l7f/2) sin (7~f/4) sin 2(-,Tf/8)
3 7Tf /8

4 -cos(1Tf/2) cos(lnf/4) sin 2 (Tf/8)
Tf /8

5 -sin (7f/2) cos(7ft/4) sin(7'f/8) sin 2(7ff/16)
7 f /16

2
6 cos( 7Tf /2) sin( rf /4) sin( IT8 sin (-Rf/16)

'ff/16

7 sin(7f/2) sin(fff/4) cos(IT/8 sin 2(Iyf/16)
T'f /16

8 cs(lf/2) cos(lrf/4) cos(lrf/8) sin 2(7Tf/16)
if/ 16

Table 1 -S(n,f) vs. n
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n C( ni f)

0 sin(rf)
7T f

I si n(rf/2) sin 2( f/4)
'f f/4

2 -cos(irf/2) sinflTf/4) sin 2( "f/8)

3 sin( TTf/2) cos( 71'/4 ) sin 2 rf /8)

4 -cos(7if/2) cos(lTf/4) sin(Tf/8) sin2 (rrf/16)
f /16

5 -sin( iTf/2) sin(T if/4) sin( 7,f/8) Sill2 ( f/16)
TTf /16

6 -cos(nf/2) sin(7tf/2) cos(Tf/8) sin 2( Tf /16,)

7 -sin(fff/2) cos(rrf/4) cos(7f/8) sin 2(l~f/16)
f /16

8 -cos(naf/2) cos(-,f/4) cos(if/S) sin(Trf/16) sin 2(irf/32)
nf /32

Table 2 - C(n,f) vs. n
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determined by this term. In general, sal transforms from
S(2 n+lf) through S( 2n+l ,f) contain a term of the form sin

2

(lrf/ 2 n+2 )/(rf/ 2 n+
2 ) while cal transforms from C(2n,f) through

C(2 nl-l,f) contain a term of the form sin2 (7f/2 n+2)/(rf/2 n+).

The half power point of this envelope function occurs at

f112 = .5816 x 2
n + 2  (28)

22n+2 .2n+2

(that is sin 2(ifl/ 2/2 )/(,fl/,/ 2  ) = l/V/s.) If the number

of Hadamard transform components along one axis is doubled

then the corresponding transducer bandwidth must also be

doubled. An identical statement can be made concerning band-

width requirements for an A-O Fourier transformer.

Consider now the bandwidth required to excite Walsh
n+ 1

functions on the A-O sensor. The sequency of S(2 ,f) and
n~l n+l

C(2 n+l'f) is 2 n
. A sine or cosine wave defined on the same

interval (i.e., Ox l) also has a sequency (i.e., number of

zero crossings). For example, a sine or cosine wave with
n+l

sequency 2 has frequency

fFo = .5 x 2 n+2 (29)

From the discussion above, the frequency of this sinusoid is

slightly lower than the half power point of S(2n+lf) and

C(2n+l f) The maximum of the envelope occurs at f = .3711 x

2n+2 while the first zero of this function which is not at the
• 2n + 2

origin occurs at f = .6366 x 2  This is shown in Figure 14.

(sin2x)2

s fl/2

Figure 14 - Walsh/Fourier Bandwidth Relationship
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However, because of the energy contained in the sidelobes of

the envelope function it would seem advisable to require a

bandwidth at least 2 or 3 times that required for sinusoids of

the same sequency.

Because of the requirement of extra bandwidth, the use of

A-0 devices to compute Hadamard transforms is not as attractive

as using these same devices to compute Fourier transforms. The

utility of the Hadamard transform becomes important in imple-

mentations where it is costly to include multiplications.

However, the A-O devices discussed in Section I are ideally

suited for functional multiplication. Hence, using these

devices to compute Hadamard transforms is probably not their

best application.

2. Matched Filtering

The matched filter has long been used in communications

systems as a means to filter a signal corrupted by additive

noise. The extension of the matched filter to a two-dimensional
16,17

signal (image) was first proposed by Vander Lugt 1
' Briefly,

consider an image I(x,y) consisting of signal s plus noise n.

I(x,y) = s(x,y) +n(x,y) (30)

The matched filter is a linear filter with impulse response

h(x,y) which filters the image in such a way to maximize the

signal-to-noise ratio at the output. Let F(w x Wy), S(,x ,,y),

N(x,,f y ) and H(w ,,x , y ) be the two-dimensional Fourier transforms

of I, s, n and h respectively. The noise is usually characterized

by its power spectrum NN*. The signal-to-noise ratio is defined

to be

signal-to-noise =IYfSHe
'i ( 'Jxx+ y Y) dw d1 2

x y

ffNN* HH* dw dI(x y (31)

The signal-to-noise ratio is maximized over the filter output

space if

H(x, ) S*(. x , Wyx y NN* (32)
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the filter output is

m(x,y) =ffFHe j(Wx X+W vy) d y(3

If the noise is white, (NN*, a constant), then the matched

filter output is simply the correlation between the image and

the desired object to be detected.

Now if the image contains the signal but offset to position

Ax,Ay then the correlation in the output will be shifted to

-Ax, -Ay. There will be a peak in the output at this position.

If the image contains multiple signals at various positions

within the image then the output will also contain a number of

correlation peaks. The matched filter is translation invariant

in a limited sense. If the image contains a signal (feature)

then the output will contain a correlation peak. However, if

the signal is translated then the output peak is also trans-

lated. Strictly speaking, the output would be different (i.e.,

translated) so that the matched filter is not translation

invariant. However, it is invariant in the sense that the

correlation peak will occur somewhere only if the image

contains the signal. Another way of looking at it is to say

that the matched filter preserves the positional information

about the signal. There is no dimensionality reduction

since the matched filter output is a function of x and y.

However, signal detection is improved.

Referring back to Section III A, if the image

is scanned and broken into a number of views it may not be

required to locate the position of a feature within a view.

Rather,, the detection of a feature somewhere in the view

may be adequate. Hence, the matched filter may preserve

too much information. Perhaps by discarding this information

a simpler implementation may result.

Now consider implementation of the matched filter using

A-0 devices. When the two-dimensional matched filter was

first discussed by Vander Lugt he proposed implementing it

using coherent optics. In this implementation the image is
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first transformed using aFourier transformer lens. The matched

filter is then implemented in the Fourier domain by a spatial

filter. The filtered transform is then passed through a

second Fourier transformer lens. The output image contains

bright spots corresponding to signals in the input image.

This is a rather natural implementation for an optical processor

since the various lenses and filters can be lined up on an

optical bench and the information passes through the system in

a parallel fashion. That is, the data stream is a two-dimen-

sional light pattern throughout the processor.

Because A-0 devices can compute two-dimensional Fourier

transforms, an analogous system could be built using these

devices. A block diagr'am of such a system is shown in Figure

15. The image is viewed by an A-0 device such as a Deft

sensor. The sensor is used to compute .the two-dimensional

Fourier transform of the image. The transform is raster

scanned by properly addressing A-0 sensor No. 1. This sensor

will have two outputs which are the real and the imaginary

part of the Fourier transform. These transform components

are multiplied by the corresponding components of the matched

filter which are stored in a memory. A complex multiplication

operation consisting of four real multiplies is required. The

weighted transform components are then input to two CRT's.

Since the transforms are raster scanned, the data stream is

in the correct format for the CRT. The real and imaginary

parts of the Fourier transform, weighted by the matched filter,

are displayed on CRT No. 1 and No. 2 respectively. These

functions are then viewed by A-0 devices No. 2 and No. 3. it

may be possible to directly attach these sensors to fiber

optic faceplate CRT's. Since the functions on the CRT's must

remain constant for the period of time required to scan out

the inverse transforms from the A-0 devices, storage CRT's

are required. The output of A-0 devices Nos. 2 and 3 are then

A/0 converted and input to the decision processor. The

decision processor searches for correlation peaks in the
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matched filter output and compares these peaks with a threshold

valve in order to determine if the feature is contained in the

image.

real Complex Decision
#1 image Multiply Processor

Image Hr  H
Sine WaveW

Generators [D/A

Generators

address Digital address

Controller

Figure 15 - Matched Filter: A-0 Implementation

A disadvantage of this implementation is the require-

ment of three A-0 devices and the need to generate a pictorial

representation of the weighted image transform in order to

utilize the second two A-0 devices.

In order to avoid this complexity, consider the alter-

native of computing the matched filter in the image domain

rather than the transform domain. The matched filter output

is the convolution of I(x,y) with h(x,y). That is,

m(x,y) =  ffI(a,B)h(a-x,a-y)dada (34)
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In order to compute this function by use of an A-0 device

which implements equation (1) the function h(x,y) must be

decomposable into

h(x,y) = g(x)h(y) (35)

However, this will not generally be the case for arbitrary

features to be detected. Hence, this approach cannot be

taken.

In order to avoid the requirement for an inverse

transform a third approach can be taken. As has been pointed

out, the matched filter output preserves positional infor-

mation which may not be required. Perhaps some implementation

advantage can be gained by dispensing with this information.

To this end, consider the matched filter for the autocor-

relation function of I(x,y). The transform of this function

is given by

FF* = (S+N)(S+N)* = SS*+SN*+S*N+NN* (36)

If the signal and the noise can be considered uncorrelated

then SN* = S*N = 0 and

FF* = SS* +NN* (37)

In this case the signal is the autocorrelation function

and the noise is NN*. The function FF* consists of signal

plus added noise. Hence, the matched filter can be used to

filter the signal from the noise. In this case the matched

filter is given by

H(W W = (SS*)* - (SS*)*
'Y) -N)(NN*)* ,2NN* (38)

The filter output is
m(x y) =ffFFHej(W x+W y), = x y dwxdwy (39)

However since F has been replaced by FF*, any correlation

peak indicating the signal or feature with transform SS*

will occur at x = y = 0 at the matched filter output. Hence,

it is only necessary to compute

m(o,o) = ffFF*Hd x dw y (40)
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This function is simpler to implement using A-0 devices. A

functional block diagram is shown in Figure 16. The image is

viewed by an A-0 device. The device again is used to compute

the two-dimensional Fourier transform of the image. The

sensor electronics are designed to output the magnitude of

the Fourier transform rather than the real and imaginary parts.

Computing the magnitude actually required less electronics

than computing the real and imaginary part. This is because,

in the second case, phase information must be preserved and

a synchronous detector is required. Such a detector for a

Deft sensor is described in reference 18, Section 11. In the

matched filter application the A-0 device is scanned over

the range of spatial frequencies of interest. The sensor

output is squared and multiplied by the corresponding values

of the matched filter H. Both the sensor output and H values

are real which simplifies this computation. The output of

the second multiplier is then integrated over all spatial

frequencies. The integrator output is compared with a thres-

hold value to determine if the signal (feature) is present.

A-0O£3mag H
Image

Sine Wave D/A
Generators

address

dre Digital

Controller

Figure 16 - FF* Matched Filter A-O Implementation
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The simplification in implementation when F is replaced

by FF* is obvious from a comparison of Figure 15 with Figure

16. In the second case no CRT's are required. In addition,

one rather than three A-0 devices are required. The matched

filter for SS* has some functional advantages and disadvantages

when compared with the matched filter for S. The advantages

are the following. First, there is a dimensionality reduction

from input to output. This simplifies the decision processor.

(A two-dimensional search is not required.) Second, the

matched filter for SS* is invariant to translation which also

simplifies the decision processor. The disadvantage of this

matched filter is that the detection of a signal with trans-

form SS* does not imply that the image contained the signal

with transform S. All signals with transforms JSleJ4)(wx'wy)

will produce the same result at the matched filter output. 4
is an arbitrary phase function. Hence, this matched filter

can be used to correctly detect features with transform S but

will produce false alarms when certain other images are viewed.

This disadvantage may be acceptable if the purpose of the

feature extractor is to screen photos with a final decision on

feature content being made by another means such as human

observations.

As a final comment, neither types of matched filters

considered here are invariant to feature rotation or scale

change.

3. Method of Invariant Fourier Signatures

In this section some prefilter algorithms will be

developed which compute feature signatures which are invariant

to feature translation, rotation and scale. These algorithms

are refinements of the matched filter of the image autocor-

relation function which was developed in the previous section.

Referring to equation (38), H can be thought of as a weight

function which is directly proportional to SS* and inversely
2

proportional to (NN*) .The matched filter output at ';(o,o)

is simply the integral over all spatial frequencies of the
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product of this weight function with FF*. As a result, all

of the information contained in the fine structure of FF* is

lost and not available to the decision processor. In fact,

all the decision processor gets is a single number on which

the decision is to be based.

There are some obvious drawbacks to this type of pre-

processor. First, this matched filter is rather insensitive

to the shape of the transform FF*. That is, there may be two

dissimilar images I1 and 12 with transforms F1 and F2 such that

F 1 FI * 4F 2 F 2 * (41)

and yet

ffF1Fl*Hdw dw =ffF F *IHdw dw (42)11 x y 2 x y

This would lead to additional, undesirable false alarms. A

second drawback which has been mentioned is that the matched

filter is not invariant to either rotation or scale changes.

Hence, to use matched filters for feature extraction a number

of filters must be implemented for different angular orien-

tations and scale factors. Matched filter degradation due to

rotation and scale mismatch is discussed in reference 19.

Poor sensitivity of the preprocessor transform shape

results because the two-dimensional image is reduced to a

scaler. Better sensitivity may be obtainable if the prepro-

cessor is modified so that its output is a vector rather than

a scaler. A promising approach first taken hy Lendaris and
20Stanley is to replace the double integral in equation (40)

with n line integrals. That is, the product FF*H is integrated

along n contours. These integrals are then the components of

a n-vector which is the prefilter output. Two of the contours

used by Lendaris and Stanley are shown in Figure 17.
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Concentric. Circles Radial Lines

Figure 17 - Integration Contours

In their work they only used the magnitude of the Fourier

transform. They did not implement the matched filter H.

They were concerned with computing prefilter outputs which

are invariant to translation and rotation or to translation

and scale but not both. In this section, a more general

type of prefilter will be developed which can be invariant to

translation, rotation and scale and also allow noise filtering

which is analogous to matched filtering. However, to clarify

the presentation some algorithms of Lendaris and Stanley will

first be developed. These will then be generalized.

To begin, assume that either 1FJ or FF* is available from

an A-O sensor. Also assume for now that F = S. That is, there

is no noise and the image consists of only the feature to be

detected. Now if the feature is translated by Ax,Ay then the

transform changes to FeAx x y V Hence both IFland FF*

do not change and these functions are said to be invariant to

translation. We will now consider the two sets of contours of

Figure 17 separately.

Consider first the set of concentric circles. Let the i-th

circle have radius r i. The difference ri -r i_ need not be a

constant. There are n contours. Let FF* or IFIbe integrated

around any of these contours. Now if the feature were to

rotate through angle e then this integral would not change.

-40-
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This is because FF* or IFI would only rotate around the trans-

form origin by the same angle. This will be true for all

contours. Hence, the n-vector whose components are the n line

integrals is invariant to rotation.

Now consider the second set of contours. Let the i-th

radial line be at an angle 0. from the w -axis. The difference1 x

0 i-0 i_1 need not be a constant. There are n contours. Let FF*

ot' IFI be integrated along any of these contours. Now if the

feature were to be scaled in size by a then JFl and FF* would

be scaled in size by 1/a. As long as the radial lines extended

far enough from the origin so that all the significant energy

of the transform will be included in the contour integration

for both scaled and unscaled feature, then in both these cases

the line integration will remain approximately the same. This

will be true for all contours. Hence, the n-vector who's

components are the n line integrals is (approximately) invariant

to scale.

Prefilters based on these algorithms can be implemented

easily using A-O sensors. The sensor spatial frequency address

would be incremented along a contour. The sensor output would

then be integrated along the contour. A simple integration

formula such as the trapezoidal rule

F,-J(xi)-'(f'(a)+f(b))] : r- f(x)dx (43)
51

where hs = xi -x i-I would probably be adequate. (Note that

the Thomson - CSF sensor would be limited to scanning along

radial lines. For a discussion refer to Section II D.)

The invariant properties of these algorithms appear to be

very useful. They are also noteworthy because only a single

Fourier transform is required and, therefore, they can be

naturally implemented using a single A-0 device. These algo-

rithms were successfully used by Lendaris and Stanley to

detect features in aerial photographs. They have also been

used by Pernick, et al, in the screening of cervical cytological
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samples 1 However, these algorithms have some disadvantages.

The first disadvantage is that they do not consider the

effect of noise. In the matched filter the output is enhanced

by multiplying FF* by the weight function I. If the image

contains signal plus noise then it is not possible to weight

FF* by 11 before integrating along the contours because the

feature is assumed to be either rotated or scaled by some

unknown factor. Since H is not invariant to these changes

in the feature, the required weighting function is not known.

The proper place to apply filtering is after the line inte-

grations. Assume that signal and noise are uncorrelated so

that equation (37) is satisfied. Since the integral of a sum

equals the sum of the integrals then signal and noise will

still he additive at the output of the contour integrations.

(This implies that FF* is used. If JFJ is used, signal and

noise are no longer additive.) That is,

9F"* = OSS* + ONN* (44)
i i i

where 0 is the i-th contour integral. Hence, the matched

filteri principle can be applied at the prefilter output after

line integration. Let the weight to be applied to the output

of the i-th line integral be w. , Then from equation (32)
OSS*

W= 2 (45)
(OCNN* )

i

To be specific, consider the case of concentric circles for

contours. The feature to be detected has transform S. Since

the algorithm has been shown to be invariant to feature rotation,

w i will also be invariant to feature rotation. (The noise does

not change with feature rotation since feature and noise are

assumed uncorrelated.) Hence, the set of weights is a constant

n-vector which only depends on the noise and on the feature

but not on the angular orientation of the feature. That is,

the weight vector can be computed apriori. This will ai.io be

-42-
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the case when the contours consist of radial lines. In this

case the feature has an arbitrary scale. However, the algo-

rithm is invariant to scale so that OSS* is constant. Hence

the weight vector is again constant and can be computed apriori

using equation (45)

In general, let the i-th component of the measurement

vector be m. where1

m. = OFF* (46)1

then the prefilter output n-vector is given by V where

VT = IW ml, w2m2 , 'nM (47)

Given that matched filtering can be applied to these

algorithms they still suffer a disadvantage in the case that

the feature may have arbitrary positionrotation and scale.

These algorithms are invariant to translation and rotation

or translation and scale but not to all three. If the feature

is present but suffers all three changes with respect to the

reference feature with spectrum S then the output n-vector

will not correspond to the reference output and detection may

not be possible. It is, however, possible to generalize these

algorithms so that the prefilter can be made invariant to all

three feature changes.

To develop the more general algorithm, begin with the

image I(x,y) with transform ( Form either JFl or FF*

which has been shown to be invariant to translation. (If

matched filtering is to be applied later then rF* should be

used.) Then form the function

G(0 ,e) = lF(epcosO, epsino)l (48)

or if FF* was formed,

G(p,O) = F(e0 cosO, epsinO) F*(epcose, e0 sino) (49)

That is, G is JFl or FF* distorted exponentially in radius and

expressed in polar coordinates. The function G is periodic in

o) with period r. Assume now that the image consists of signal
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with no noise. Consider now the change in G when the signal or

feature inl(x,y) suffers an arbitrar:,, rotation and scale change.

Let (r,y) be the location of an arbitrary component of JF1 or

FF* before rotation and scale change. The location of the

corresponding component in G is (In r,y). After rotation of

the feature through angle ,and scaling by c the component in JFl

or FF* will move to (r/ri,y+¢). The location of the correspondinv

component in G is (ln r -lna, (y(+.f)mod,). That is, G will be

translated by -ln,, along the o direction and by ¢ along the e

direction (modulo r). Since JFl or FF* is invariant to trans-

lation, any combination of translation, rotation and scale

change of the feature will result in only a translation in G.

( G will also suffer a gain change to lIa- 2G but this is not

important. )

Since the only change in G is a translation, by taking a

second two-dimensional Fourier transform, this time of G(P,O),

and then forming the magnitude or magnitude squared of this

second transform, a function is formed which is invariant to

translation in G. Hence, this last function is invariant to

translation, rotation and scale of the feature. This function

is ( m /2 - to O+e 6)
1i( l )=I max f G(P,)e* &%.de (50)

The functions lqand{HH*are invariant to translation of G.

Strictly spearing, this is true only along the lines parallel

to the wp-axis defined by

= 2n; n an integer (51)

This is because G is periodic in .> and should be expanded in

a Fourier series rather than a Fourier integral in the 0-

direction. The Fourier integral evaluated on the above lines

reduces to the Fourier series.

Although IH(W P I n/n)l or 1I(w ,n/n)H* (w ,n/n) is a two-

dimensional invariant function it is probably not necessary

(and certainly not desirable from a computational standpoint)

to compute this function. To develop more easily computable
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invariant signatures, recourse is made to the Fourier trans-

form projection theorem. Let P [G(P,O)] be the projection of

G onto a line at angle ¢ from the r-axis. The projection

theorem states that the one-dimensional Fourier transform of

P 0 [G] equals H(t 0 ) restricted to a line through the origin
22

of (wpw e ) - space and at an angle ¢ to the wo-axis This

line is shown dashed in Figure 18. Since G(p,e) is periodic

in e, P [G] will also be periodic for €O. Hence. Pc [G]

should be expanded in a Fourier series rather than a Fourier

transform. Let FTP [GI ) be the Fourier series expansion

of P [G]. The terms of this series equal H(w .) evaluated

at the intersection of the dashed line with the horizontal

lines (,,=2n.

w
i /

6
/
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Figure 18 - - Space and F {P Line
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Since I If and 1111* are invariant, so is IF{ P 0f and F{P }F*IP }.

Now F{P } contains only some of the information contained in H.

It is conjectured that by properly choosing € values experi-

mentally, a set of invariant signatures could be developed which

contain most of the useful information in H. The signature or

signatures to be used may depend 6n the set of features to be

recognized.

Because of the way this development has been carried out,

it may not be clear how the invariant signatures are to be

computed from the first Fourier transform F(wx ,wy ). This can

be clarified with the aid of Figures 19 and 20. In the following

it will be assumed that all processing after computation of the

Fourier transform of the image will be done digitally. Hence,

continuous functions must be sampled to get discrete samples

for digital processing.

Figure 19 shows the domain of the pertinent part of F in

(Wx Wy) - space. F has been restricted to spatial frequencies

Wxvwhere pmin - . pmax. Because of the mapping

p='e p , F will be only sampled on the concentric circles shown
k 2k

in Figure 19. There are n circles and their radii are e , e
3k nk

e , ..., e where

k = lnomin (52)

Pmax enk (53)

Because of the mapping from F to G, these circles in (wxw Y)

-space will map to the dashed, equally spaced vertical lines

shown in Figure 20 in (p,O) - space. Since the image is a

real intensity function

F(wX, y) = F(-wx, -Wy) (54)

so that G is periodic in the 6-direction with period n.

Consider now the formation of the projection P [G]. PC

is a function of a single variable p where

r cosec 0 (55)
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The domain of P is the line through the origin of (p,6)

- space at angle 0 to the p-axis. This line is labeled

in Figure 20. P will only be computed at a discrete set of

points. Let p i be one of these points. To determine P (Wi)

a straight line is drawn which passes through the point Oi

and is at right angles to Z]. This line is labeled z 2 in

Figure 20. Now, to find P (pi), simply integrate G along "

Since G is only available along the vertical, dashed lines

of Figure 20, a numerical integration is performed using

sample points which are the intersection of z 2 with the

vertical dashed lines. The values of G at this set of points

is simply the function JFI or FF* evaluated ata set of points

which is defined by the intersection of the n, concentric

circles in Figure 19 with the curve which is the mapping of

k2 from (p,O) - space to (wx, y) - space. This curve is

labeled c2 in Figure 19. Note that c is a spiral. This is

always the case unless ¢= 00 or 4= 90 9 . If 4= 00 then k2 is
parallel to the vertical, dashed lines in Figure 20. In that

case p i s chosen so that k 2 coincides with one of these

vertical lines. That is, c2 will be a concentric circle. This

implies the JFl or FF* be integrated around a circle in order

to compute P (Ii). If '= 900 then 2 is parallel to the p-axis.

In (w ,y ) - space the corresponding c2 will be a radial line.

The intersection of this line with the n, concentric circles

defines the sample points used to compute the numerical inte-

gration. These special cases where 4= 00 or 900 result in

contours which are similiar to the contours of Figure 17. The

only difference is the exponentially distorted spacing of

circles. For any other value of 00< 900 the integration

contours are spirals. Hence, this algorithm is more general

than the previously considered one.

Now for whatever ¢ angle used, the above procedure is

repeated for each of the sample points oi" In this way, P¢[G]

is computed at a set of sample values. To increase efficiency
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of the remaining computation, the number of sample values of

P is chosen to be a power of two. Now recall that the one-

dimensional Fourier series of P,[G] equals H(w Pe) restricted

to a line through the origin of (w ,W) -space and at an angle

€ to the w-axis. Hence, the final step in the algorithm is

to compute the Fourier series of P Since PC is only

computed at a set of equally spaced samples, pi, a discrete

Fourier transform (DFT) rather than a continuous Fourier

series is computed. As long as the sample spacing is suf-

ficiently fine to prevent significant aliasing, the substitution

of the discrete Fourier transform for the Fourier series is

acceptable. Since P 0 has been sampled at 2m points, the DFT

can be computed using an FFT algorithm.

In the above development, the functions F, G and H

have been defined. However, in the actual calculations of

the invariant signature F{P4[GI} only the function F need be

considered. In review, to compute the signature the following

steps are required:

1) A set of radii defined by

r.• = e ik (56)

for some constant k is chosen. These radii define the n,

concentric circles. (For the special case that 4= 00, n is

chosen to be a power of two.)

2) A projection angle

0
° - €_ 9 0O is chosen.

3) An integer m is chosen to define the FFT length as 2
m

4) If 0<900 then the following step is performed:

For each 0- il 2m-1 JFl or FF* is integrated along

the contour c2 using samples with (polar) coordinates

Zk m <<(e~k  (L-1)€+ii/2 m ) 1-t n (57)

The result is a vector of length 2m with each element of

the vector corresponding to a difference value of i.

5) If, instead, O= 900 then the following step is performed:

For each Oi-n JF) or FF* is integrated around each of the n,
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concentric circles. A discrete integration is performed by

only sampling F discretely around each circle. n is chosen

to be 2 so that the resulting vector is of length 2 Each

element corresponds to a different value of i.

6) An FFT is performed on the 2m -vector,

7) Either the magnitude or the magnitude squared of the

FFT output samples are computed.

The resulting 2 m -vector of real numbers is the desired

signature. The above series of steps can be repeated for

other values of , if so desired. The above algorithm will

be termed the method of invariant Fourier signatures (IFS).

Elements of this algorithm are developed in a series of
23 24, 25, 26, 27

papers The procedure of exponentially

distorting a function and then computing its Fourier trans-
23

form can be shown to be equivalent to the Mellin transform

MT() = f-f(x)x - j v- dx (58)

In the above development the question of noise corruption

was not considered. The invariant signatures which can be

computed from tY, algorithm are only invariant in the noise-

free case. We have a eady considered the application of the

matched filter to the output of the prefilter defined by

equation (47). Consider now the extension of this development

to the more general prefilters developed above.

To begin, assume that the image I(x,y) consists of signal

plus noise. That is, I is defined by equation (30). Assume

also that signal and noise are uncorrelated so that equation

(37) holds. Now let $ FF* be the result of integrating FF*
i

along the i-th contour which may be a radial line, circle

or spiral. Then with the above assumptions equation (44)

still holds. That is, the exponential distortion of the

radius does not effect this result. Define signal and

noise to be S(p) and '(p) where
1n

(Si ) = -SS* - SS* (59)
i n k=l k
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in
= A - -- E fNN* (60)

i n k=l k

That is (i) equals the result of the line integral at p,

with the mean value over all i removed. The same applies

to n(ui). (Removal of the mean has not been considered to

this point.) Define the transforms of s and n to be and

respectively. That is

= F{} (61)

= F{I} (62)

and define

P(P G] } = (63)

(P{P I is simply F{P } with the zero frequency term set to

zero.) Now matched filtering can be applied since signal

and noise are additive which follows from equation (44).

However, to avoid another transform, we make the further

assumption that and N are uncorrelated so that
P{P P*{P = I * + * (64)

The removal of the means was necessary to make this assumption

a possibility. The corresponding matched filter weight

function is
-i * (65)

The matched filter output is

M(o) = fP{P] V*{P I}dv (66)

where v is the frequency variable.

Notice that the result is a scaler rather than a 2m vector.

What has happened is that by adding matched filtering, the

decision processor algorithm has been included with the pre-

processor algorithm. The only additional computation required

is to compare m(o) with a threshold. Note the form of i. It
is the output which would occur if only the signal (feature)

were present divided by the square of the output due to the

-51_
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noise alone. Hence, where a large noise contribution was

expected the output would be de-emphasized. M(o) is simply

the inner product of the prefilter output with the matched

filter weight.

Finally, consider the implementation of any of these

algorithms using A-O devices. A block diagram is shown in

Figure 21.

A- D/A Digital

I- C/ 
I Processor

Image T

Sine Wave address

Generator

Figure 21 - Invariant Fourier Signatures: Implementation

The block diagram is rather simple. The A-O device is used

to produce components of the two-dimensional Fourier transform

of the image. The sample points are controlled by addressing

the sensor. The remainder of the processing takes place in

the digital processor. The amount of data memory required is

2m + l words to hold the complex 2 vector. Spatial frequency

addresses can either be computed using a cordic algorithm
2 8

or precomputed and stored in ROM. It can be seen that these

algorithms are well-suited for implementation with A-0

devices since the two-dimensional image information is immed-

iately reduced to a much smaller set of numbers which can be

post-processed in the digital processor.

In summary, a flexible class of algorithms has been

developed which can be used as a feature extractor prefilter.

These algorithms can be translation, rotation and scale

-52-

* . * * **2L ,



invariant. This is strictly true only in the case where no

noise is present. However, matched filtering can be used

to minimize the noise at the prefilter output. The parameter

0 can be used to optimize the prefilter for the particular

feature or class of features to be identified in the image

set. The parameter € can be arbitrarily chosen because A-0

devices can be addressed at arbitrary spatial frequencies.

Finally, these algorithms are well-suited for implementation

using an A-O device for a Fourier transformer and a mini-

computer as a post-processor.

4. Method of Invariant Moment Signatures

The method of moments is used in a number of disciplines.

The utility of moments in feature extraction was first

pointed out by Hu 1 2 . It can be shown that algebraic com-

binations of image moments are invariant to translation,

rotation and scale. This section is a discussion of image

moments and how they can be computed using A-0 devices.

The two-dimensional (p+q)-th moments of an image

intensity function I(x,y) are defined by

mpq = ffxPyq I(x,y) dxdy (67)

It can be shown that the double sequence of moments {mp,q

is uniquely determined by I(x,y) and conversely, I(x,y) is

uniquely determined by fm } as long as I(x,y) satisfies
P'q 12

certain conditions which are always met with real images

A method of reconstructing I(x,y) from {m } is given inp,q
reference 13.

The purpose of computing image moments is two-fold.

First, the invariant functions of moments are desirable for

feature extraction. Second, the possibility exists of

replacing the image, which contains a large amount of

information represented by its pixel values, with a much
< 

'c

smaller set of moments {m such that P-Pmax and q-qx.
p,q max

This is analogous to computing the two-dimensional Fourier
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transform for the purpose of reducing the image information

to a much smaller set of spatial frequencies.

Consider now the central moments which are defined by

p = )P(y- ) q I(x,y)d(x-x)d(y-y) (68)
P,q

where

x= m1 0 /mO O  (69)

= m0 ,1 /'0 0  (70)

It is well known that the central moments are invariant under

translation of coordinates. Hence, the central moments are

translation invariant. The central moments can be expressed

in terms of the ordinary moments. For example

0,0 = 1 0 , 0  (71)

1,O =P0, 1 0 (72)

-2
P2, 0  = M2, 0  - 0,0  x (73)

-2
P 0 2 =to 2 -in 0 0 y (74)

Pl' l  = m], 1  - mo, OO x(75)

Similar expressions are easily derived for all higher order

moments with the use of equation (68). If, for example, the

ordinary moments could be computed using an A-0 device then

the central moments could be formed in a digital post processor.

Consider the information contained in the first few moments

{PO,O,"'l,O,'O,l,'22,0, O,2,'l ,1 }

OO = mo 0, = ffI(x,y)dxdy (76)

represents the total image power. Both pl,O and vO, 1 are zero.

However, the ordinary moments

m,0 =ffxl(x,y)dxdy (77)

mOnl =ffyl(x,y)dxdy (78)
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locate the image centroid which is (x,y) where i and j have

already been defined.

The above set of moments characterize the size, gross

shape and orientation of the image. If only these moments

are considered then the image moments are identical to the

moments of an image consisting of the ellipse shown in

Figure 2213 The parameters of this ellipse are given by

y

y x

a/

Figure 22 - Equivalent Image Ellipse

a 112,0 + P'O,2 +[( -PO 2 +112]/2 1/2 (79-,

/2

b =~2 + P2 -[", -"0,2 ) +41j,2 1/2)1/2 (80)

*= (1/2) tan-1  2~~,, 2) (81)

Hence, if only these moments are known then only very general

information about the image shape is available. However, even

in this case enough information may be available to achieve

some feature extraction. For example, it should be possible to

distinguish long, thin features such as roads, airport runways
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and shorelines from compact features such as buildings and

vehicles. Long, thin objects are characterized by a>b or

b>>a while compact features are characterized by anb.

Rotating the image results in change in the angle 0. However,

image rotation will not change a or b. Hence, a and b are

invariant to rotation. Because they are formed from central

moments they are also invariant to translation. And, finally,

because of the PO,0 term in the denominator they re invar-

iant to intensity changes.

Since a and b are invariant to translation and rotation

so are

a2 + b2 = 2(w20 +10,2) (82)

i10,0/2

*2 _ b2 = 2[(p 0 VI,2 +412111/2 (83)- 2-( 2,0 -0,2 1 ( 3
1OO/2

These last two moment invariants were used by Hu to distinguish
12

between letters of the alphabet

Moments can be modified to be invariant to scale. Consider

the scale change x' = ax, y' = ay. Then it is straightforward

to show that the unprimed central moments v pq will change to

the primed central moments p", where

a (p+q+2) (84)
p,q P~q

To achieve invariance to scale first make use of the relationship

1 2 , 0 (85)

so that

(p+q+2) =-O l+(p+q)/2 (86)

Substituting this expression into equation (84) and separating

primed from unprimed terms yields

P1 p,q =Up,q (87)

l+(p+q)/2
l+s(p+q)/2 "0,0
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Hence,
- /0l+(p+q)/2

"I P p,q'Th,O (88)

is invariant to scale. The moments i p'q will be termed scale-

normalized moments.

The direct substitution of P moments for P moments in the

expressions for a,b, a2+b2 and a2 -b2 yields invariants a, ,

a and a 2b respectively. These invariants are trans-

lation, rotation and scale invariant. Note, although a,b and
2+ 2 2a -b are invariant to intensity variation, a, and a - are

not. To see this, let I(x,y) change to kI(x,y) then a,b and2+b2 -l
a b do not change while a and b change to k- a and k-1/2

and a 22 changes to k-1(a 2+2). This is not necessarily a

problem, it should be kept in mind when applying these formulas,

however. It should be noted that the normalization given in

equation (88) is not the only one possible. Another scale-

normalized set of moments is given by 9,13

Ppq = 1jp,q/(2, 0 +P0, 2 )(
2+p+ q)/4  (89)

Up to this point moments and central moments have been

defined. A few scalers have been given which are invariant

to translation, rotation and scale. These results can be
generalized. In references 12 and 13 it is shown that by

including higher order moments, additional invariant scalers

can be derived which are translation, rotation and scale

invariant. Higher order moments contain more information

about the image. In his paper 1 2 Hu was able to differentiate

long, slender letters such as I or L from compact letters
2+ 2

such as N or M using only a2-b However, he was not able to

differenciate between letters which have about the same shape

such as the pairs (W,M), (E,F) or (B,R). In a more recent

paper 1 3 Teague has shown that moments up to at least the lth

or 12th order are needed to distinguish an E from an F.
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Assume now that a sufficiently high number of moments are

available so that m, invariant scaler functions of these

moments could be computed. Then the m-vector of these scalers

could serve as an invariant feature signature. This m-vector

would then be the output of the prefilter. This approach has

been used to identify aircraft, for example.
9

Consider now the computation of image moments using A-0

devices. Two approaches to this problem will be considered.

They are the following:

1. Computing image moments from the two-dimensional

Fourier transform. The Fourier transform is computed by the

A-0 device.

2. Computing image moments directly by modifying the

A-O device input signals g(x) and h(x) in equation 1.

First, consider the approach requiring the Fourier

transform. Some of the results in this development will be

applicable to the second approach. Given that the two-

dimensional Fourier transform is available, it is possible

to compute image moments from samples of the Fourier transform.

Two methods of accomplishing this will be considered.

The first method can be developed as follows. Start

with the Fourier transform of the image.
F( ) ://I~ y~e j (  + .y)

= , x fI,') N y dxdy (90)

Now expand the exponential in a power series and integrate

term by term. The result is

) = , w (-j)plq m p q
F p=0 q=O p'q' p,q x y (91)

so that

mp = (-j)- (P+q)[(- )P )q F( Wy)] (92)

pv W W x y ~y

Hence, m can he derived from the partial derivatives of Fp,q
evaluated at the origin. This approach has been considered

29
by Teague Since F(w x1 y) and not its partial derivatives
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are available, the partial derivates must be approximated by

numerical differentiation. Partial derivatives are replaced

by finite differences

)p (- )q F(,x,U )  p q)P (3)q)awx 3 y ×X Y

where

AWx F(w ,w ) = F(wx+h'wy) -F(x-h,w y) (94)S X 2h

and

A F(ux, )= F(w xW_+h) -F(w Y (95)=yyX (2h
92h

It can be shown 2 9 that in order to measure all moments
< 2of order n or less (i.e., p+q -n) requires 2n + 2n+l

distinct samples of the transform. The location of these

samples is shown in Figure 23. In order to compute moments

of order n or less, the required samples (which are the dots)

are all located on or within the square labeled n.

W

x 7  ,

Figure 23 .Transform Sampling: Finite Differences
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The only control on accuracy is the step size h. For

high accuracy, h may be so small that all the samples are

restricted to the area of the transform occupied by the d.c.

sine function. (The Fourier transform of an image will

always contain a term centered at = w y = 0 due to the

average light intensity of the image. This term is a square,

two-dimensional sine function because the A-0 sensor is

assumed to have a square aperture.) If this is the case

then higher frequency components of the transform will not

be utilized in the computation of the moments. While it is

true that if the Fourier transform were known with infinite

precision then decreasing h will always result in greater

accuracy. The exact Fourier transform is an analytic

function and so the entire transform can be reconstructed from

the partial derivatives evaluated at w = w = 0. However,x y

in practical A-0 sensors, greater measurement accuracy can

be achieved by utilizing Fourier transform data over the

entire region of Fourier space which is available. The small

effect of a high spatial frequency component on the partial

derivatives at the origin will be error-prone whereas an

accurate measurement at the high spatial frequency is possible.

Hence, this method of computing moments does not appear well-

suited for implementation using A-0 devices since there is

no practical means available for controlling accuracy of

computation.

Because of this problem an alternative method was

developed under this contract. This method also uses samples

of the Fourier transform. However, the sample spacing is

fixed and the accuracy of the method is adjusted by adjusting

the number of samples. In this method, higher accuracy

requires higher spatial frequency components. The method

seems well-suited for A-0 device implementation and it will

now be developed.

The starting point in this development is the defining
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equation for two-dimensional moments, equation (67). Now

the A-O device has a finite aperture. This aperture will

be considered square. Because of this, the weight functions

xP,y q are only required to have this form within the device

aperture. Let these functions be periodically extended

beyond the device aperture. This is shown for the one-dimen-

sional case in Figure 24. The extension to two dimensions

is straightforward. The device aperture is considered to

be centered at x = 0 and to extend from x = -1 to x = +1.

Four cases are shown in the figure. These are : a) p even

and period = 2; b) p even and period = 4; c) p odd and

period = 2; d) p odd and period = 8. The periodic extension
of xp is indicated with the notation LxP1 . The periodic

extension of yq is [y q . Over a single period, centered

around x = 0, the functional definition of Exp I for the four

cases shown in the figure are as follows:

p even and

p e r i o d 2=x 
p  x p  < <

period = 2: = ; -l-x- (96)

p even and 2-(x+2) p; -2-x---l

period = 4: [xp] = xp ; -1-x-+l (97){ ~< <
2-(x-2) p ; +1-x-+2

p odd and
p e r o d " x p ]  = x p  < <

period = 2: ; -l-x- (98)
< <

-(x+4) p  "-4-x--3
< <

-2-(x+2)p •-3-x--2

p odd and -2+(x+2)p ; -2-x--l

period =8: [x = xp , -l-x-+l (99)

; +1-x-+2

;+2-x-+3
< <

-(x-4) p •+3-x-+4
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E[P EX11

A -- ,A,,--A-j x

-4 -3 -2 -71 1 2 3 4 -4 -3 -2 -1 1 2 3 4

a. p even and period = 2 b. p even and period =4

OX x x

-4 -3 -2 -1 1 2 3 4 -4 -3-2 -1 1 23 4

c. p odd and period =2 d. p odd and period =8

Figure 24 -Periodic Extensions of x
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Since [xP1 is periodic, it can be approximated by a finite

sum of complex exponentials. There are a number of ways of

achieving such an approximation. For example, the finite sum

will be "best" in a mean squares sense if a truncated Fourier

series is used.

An alternative method, the method of trigonometric inter-
30polation, will be developed here 0 . This method has the

advantage that simple formulas are available for determining

the coefficients of the expansion. The method can therefore

be easily modified to produce exponential sum approximations

to any periodically extended function for which a closed form

formula exists without the need for an integration. (An

integration is usually required to determine Fourier series

coefficients.) The method is, therefore, well-suited for

computer generation of the required coefficients. Although

the method is very general, the following development will

be restricted to the special case of interest, namely the

expansion of [xPl

The method has the property that the approximation to

I xP1 will exactly equal [xP1 on a set of grid points

x.= iL/n; i = 0, ±1,±2,...,±n (100)

where L is one half the period of [xP]. The number of points,

n, is a parameter which can be set to achieve the required

accuracy.

The approximations to Ixp ] and [yq1 will be denoted by

gp(x) and hq(y) respectively where
n (k-,kTx/L) (101)

g (x) = ck(p)e
P k=-n

hq(y) = q- j(kny/L) (102)q E c k(q)e
k=-n

The notation ck(p), Ck(q) for the coefficients is used to

indicate that these are functions of the powers p and q.
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Tne notation 2 means

n - n
ak = ak - 1/2(an+an) (103)

k=-n k n

Now refer back to Figure 24. The function [xp] has

different properties depending on whether p is even or odd and

the period 2, 4 or 8. If p is even and period = 2 then Lx"]

is continuous but the first derivative is discontinuous. If

p is even and period = 4 then both [xp ] and its first derivative

are continuous. If p is odd and period = 2 then [xP]is dis-

continuous. If p is odd and period = 8 then both [xP]and its

derivative are continuous. If either Jxp ] or its derivative

is discontinuous at x =±l the error in the approximation near

these points will be rather large unless n is large. Therefore,

it appears better to use the periodic extensions shown in

Figure 24 b. and c. These extensions will be exclusively used

throughout the remainder of this development. Notice that if

p is odd the period must be twice as long as when p is even.

To account for this, L in equations (101) and (102) will

henceforth be denoted, when necessary, by Le or L for the

even or odd case respectively. If the normalization of Figure

24 is used then L = 2 and L = 4.e 0

The formula for finding ck(P) givenlxp] is given in

reference 30. First, express the complex coefficient ck(p)

in terms of its real and imaginary parts
k (p) - B k (P)

.k( p ) = 2 (104)

where
In

a k(P) = n Y gp(x,)cos(knx2 /L) (105)
£=-n

8kP) = n F gp (x,)sin(knx /L) (106)

Z=-n

and x. = kL/n. The formulas for ck(q), ck(q) and Bk(q) are

the same except that p is replaced by q, x is replaced by y
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and gp is replaced by hq everywhere they occur. Since the

following development is identical for both gP and h only

the case for g will be shown.

The function gp(x) equals [xp ] at all of the 2n+l points

x (and also at all periodic extensions of these points).

There will generally be some error between the mesh points.

This will be investigated later.

Now gp is either an even or an odd function depending on

whether p is even or odd. For p even

c k(p) = 1/2 a k(p) (107)

for p odd

ck(p) = -1/2j (108)

For p even or odd L or L is used. To obtain equivalent
e o

accuracy, the mesh space should be the same in both cases.

Since L = 2L the number, n, of mesh points will be different0 e
in each case. Denote them as n and n for even and odd cases

e o
respectively. The formula for ck(p) and p even is then given by

1 ne
p even: ck (p) = 2n = g-(x,)cos(knx/L e ) (109)

e

1; p = 0 and k =0

= 0; p = 0 and k 0 (110)

1 ne.n = gp(x,)cos(k~ix,/Le) >

and for p odd, n

p odd: ck(P) = -- X gp(X)sin(knx,/Lo) (111)
k=-n

0

n

n £l (Xx,)sin(krx./L) (112)
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where the notation E here means

n, n
t a = a - 1/2 a (113)

If p is even then gp(xt)cos(kvxk/Le) is an even function.

Likewise, if p is odd then p(x,)sin(knx, 0o) is an odd

function. Because of this

ck(P) = C_k(p); p even (114)

ck(p) = -c_k(p); p odd (115)

These expressions reduce the number of multiplies required

to compute gp(x) from equation (101) by a factor of two.

There is an additional symmetry present in [xp] which

reduces the number of multiplies still further. The cases

of p even and odd must be considered separately.

First, consider the case where p is even and p>0. Con-

sider the function

gp(x) = gp(x-l) -I; p>O and even (116)

in the interval -lxf+l the function gp (x) is an odd function

while the function cos(kn(x-l)/Le) is even in this same inter-

val for k even and k>0. Hence, there will be no contri-

bution to ck(P) from the points in this interval when k>0 and

even. An examination of the function

gp(x) = gp(x+l)-l; p>0 and even (117)

in the interval -l xf+l leads to the same result. Hence, for

p>0 and even and k>0 and even c k(p) = 0.

Now consider the case the p is odd. Consider the function

gp(x) = g p(x-2); p odd (118)

in the interval -2fxf+2. The function p(x) is even in this

interval while the function sin(kv(x-2)/Lo) is odd in this

same interval for k even and k>O. Hence, there will be no

contribution to ck(P) from points in this interval when k>O
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and even. An examination of the function

p (x) = gp(x+2); p odd (119)

in the interval -2.x +2 leads to the same result. Hence, for

p odd and k>O and evenck(p) = 0. In summary:

ck(P) = c-k(p); p even (120)

ck(p) = C_k(p) ; p odd (121)

ck(P) = 0; p even and k>O and even (122)

ck(p) = 0; p odd and k>O and even (123)

Now consider the generalization to two-dimensions of the

results to this point. Let ExP]fy q] be the periodic extension

of xP y outside the square with corners (-1,-1), (-1,1),

(1,-i), (1,1). Then [xP]lyqj can be approximated by

g (x)h q(y) where
g n j(ix/L+ky/L) (124)

gp(X)hq(y) = c(Pkqe

i=-n k=-n

where the various L's and n's are to be replaced by L Le' o0
ne, n - whichever is appropriate. Now consider the defining

equation for mp,q equation (67). If the limits of integration

are restricted to -l~x,y-+1 then the kernal xPy q can be

replaced by [xP][yq ] without effecting the result. That is,

m = f1 fl[xpl[yq]I(xy)dxdy (125)
P'q -1 -1

Now approximate [x p [yq] by gp(x)hq(y)

-
1 

1

pq -f gp.(x)hq(y)I(x,y)dxdy 
(126)

Now substitute the defining trigonmetric formulas for gp and

h and interchange integration and summation. The result is
q n n

m n c( fl fi y)e j (ix/L+ky/L) dxdy
p,q i=-n k=-n ' -1 -1 (127)
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n n _ k'nS Y' c(P)Ck(q)F(---
= 17 17(128)

i=-n k=-n

Since I(x,y) is real F(uxwy) =F*(-,,ix,-y

so that
n~ n k.

mpq E 7 1 c (p)c (q)F*(ir
' =-n i=-n 1 (129)

this is the desired result. It states that if xPyq are

approximated over the aperture -15x,y-+l by the trigonometric

series gp(x)hq(y) with coefficients ci(p) and ck(q) then mp,q

is approximated by the weighted double sum of two-dimensional

Fourier transform samples with the same coefficients c(p) and

c k(q). Notice that when a larger value of n is used in order

to increase accuracy then the Fourier transform must be

sampled over a larger region of Fourier space.

Now, taking into account the symmetries present in the

coefficients ci(p) and ck(q) and in the two-dimensional

Fourier transform equation (129) can be simplified. First of

all, define the notation
n. n
E a. = Z a. - 1/2(ao+a n ) (130)

i=O i=O

then the summation approximating m can be broken into fourp,q

parts.
n n iff kT

p,q ' i=O k=O I k LL

n ,-n , -n - n - -n -n

+ E E (same) + Z 7(same) + Z E(same) (131)
i=O k=O i=0 k=0 i=O k=0

Since I(x,y) is real F(wx Wy) =iF*(-wx ,-y)_'k _ so that

p,q ^i=0 k=O

,n.n i TT -kiT in -k (12

+ E, n [ci(P)C-k(q)F* -t,-)+c i(P)ck(q)F(- --- (132)

i=O k=O

-68-

" - -- . ..... ... ' ., ", , %. x,,,",.,-." .. b,--." - -- ,, , .---, -"" 'i i
in m.2i7.-lir = '.--.. .. '



Now F+F* = 2 real (F), F.-F* = 2j imag(F) and taking

advantage of the symmetries equations (120), (121), (122)

and (123) the formula for m pq can be broken into four pieces

for the four cases

1. p and q even

2. p even and q odd

3. p odd and q even

4. p and qodd

These cases are the following:

case 1: p and q even

n e n e

m =2 Z' Z'c.(p) c()real F(inr/Le e~/
p,q i=O k=O 1 k~q kr/ )

+real F(iir/L ,y-k7r/L )] (133)

case 2: p even and q odd

n e no0

m p ='2.j E' E' c.i(pck(q i F( iT/Lk7r/L o)

p =q k=0 1 )c([ia k/ )
-imag F(iff/L kii/L )](134)

case 3: p odd and q even

n 0ne

m p =-2j E E 7c.i(pk(q ia F(iir/L0,,/ e)
pq i=O k=O 1 c()[iakr/)

+imag F(iff/Lo,-kn/Le) (135)

case 4: p and q odd
n n

0 0

m =2(Z'cE( C [real F(iir/L0 , kn/L 0 )
p,q i~ i=l (ckq

-real F(iir/L 0,-kir/0) (136)

In all four cases, approximately three quarters of the

combined coefficients c i(p)ck (q) are zero since c.i(p) =0

when i>0 and even and c k(q) =0 when k>0 and even. In all

cases, m pqis a real number. If p is even and q is odd or
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p is odd and q is even then ci(P)ck(q) is imaginary and

jc i(P)ck (q) is real. Sample spacing in the (w xWy) - plane

for the four cases above is shown in Figure 25. The dashed

half square is the first zero of the two-dimensional sinc

function which results from the average light intensity of

the image. The transform is to be sampled at the inter-

section of all solid lines including the w and w -axis. Thex y

total number of samples depends on ne and n . Notice thate
real or imaginary parts of the transform for samples which

have the same w - coordinate but opposite w - coordinates

are added or subtracted before being multiplied by
c i(P)Ck(q).

Two Fortran computer programs have been written to compute

the ci(p), ck(q) coefficients as defined by equations (105),

(106), 107) and (108). These programs are listed in Appendix C.

The final topic which must be considered is how ne and no

are chosen to achieve a required accuracy in the approximations

for [xP1, [Yqj. To this end,two additional Fortran computer

programs were written to analyze the error function

epn(x) = [xPj-gp(x) (137)

This is a function of x, the power p and the number of terms,

2n+l, in the summation defining gp(x), equation (101). Now

because of the form of gp(x)

e p,n(x i ) = 0 i = 0, ±1 ±2 ... ±n; xi = i/n (138)

Because of the symmetries present it is easy to see that

lepn(x)l = lepn(-x)I (139)

Hence, it is only necessary to examine epn for positive values

of x. If p is even then we are only interested in ep,n over

the interval 0<x!xn/2 which is right-half of the sensor

aperture (normalized). If p is odd then we are, instead,

interested in ep,n over the interval Ox<x n The Fortran
-0n/4
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Figure 25 - Fourier Transform Sample Spacing for
Moment Computation
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programs allow the user to enter p, n/2 or n/4 and a mesh

divisor m. The program then computes all the ci(p) coef-

ficients and evaluates epn(x) at the points

x = iL/nm; i= 0,1,..., nm/np (140)

where n = 2 if p is even and n 4 if p is odd. That is,
< << p

the interval x. -xx is divided into m parts.

Using these Fortran programs a study was conducted to

determine the effect of n on the maximum error observed at

the l+nm/np grid points. The mesh divisor was fixed at m

10 for all cases. Then p and n were varied and the maximum

error overall the grid points observed and tabulated. For

the cases p = I and n/4 = 1,2 and 4 the error function is

shown in Figure 26. Notice that the maximum error decreases

by at least a factor of two for every doubling of n. The

tabulation of maximum error for the cases of llp 8 and n/np

1,2,4 -.nd 8 is given in Table 3. From this table it is seen

that the maximum error increases for n/np fixed and increasing

p. Likewise, if p is held constant then the maximum error

decreases with increasing n/np. Now n/np is the number of

points in the interval 0<x 1 l for which epn(x) = 0. Notice

that (approximately) the maximum error decreases by a factor

of two when n/np is doubled and p held fixed. To investigate

further, addition data was generated and tabulated in Table 4.

From this table it is seen that the maximum error epnl will

remain approximately the same if when p is doubled n/np is also

doubled. (More accurately, the maximum error is increasing

slightly as p and n/np are progressively doubled.) Also note

that for (approximately) the same error, n/np should be the

same for p even and p odd. Since n p= 2 for p even and np= 4

for p odd this implies that

n = 2n (141)

for (approximately) the same error. A maximum lep,nl = .03

is an error of 3% of the full-scale value of xP! in the

interval Ox<I which is 1.0.
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p IP1 2 4 8

1 .1173166 .0353821 .0098962 .0026195

2 .0560095 .0172765 .0045921 .0011702

3 .2697230 .0526488 .0138003 .0035090

4 .3059095 .1007140 .0273291 .0070052

5 .4319005 .1697540 .0457383 .0116845

6 .4288390 .2163066 .0656872 .03.73221

7 .5176162 .2795536 .0905453 .0241607

8 .5232109 .3136496 .1143713 .0317055

Table 3 Maximum Iep~n(x)I vs. p and n/np
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Now refer to Figure 25 in order to relate n/np, and n

to the spatial frequency bandwidth of the acousto-optic

sensor. The first zero of the average intensity sinc

function is the location of spatial frequencies of one line

pair per aperture. The intersection of this zero with the

Wx and w y - axis is

"x= "y = 7 (142)

A sensor with bandwidth of nb line pairs per aperture has

usable bandwidth
< <

O-W -n b

< <

-nb- bw nbT

Now n = 2n/n and no = 4n/n The bandwidth required for
e p p

gp(x) is

p odd: no 0/8 = (4n/np )T/8 = (n/np )7/2 (143)

p even: n e/4 = (2n/n p)n/4 = (n/np )7/2 (144)pve pnp

Equating with nb 7 yields

n/np = 2nb  (145)

Referring to Table 4, in order to compute up to 16th order

moments with maximum le I <.0 336 requires n/np = 16.p,np
Equation (145) then implies that the sensor bandwidth must

be at least 32 line pairs per aperture along both the w and w

-axis. Continuing with this example, if the sensor bandwidth

was 16 line pairs per aperture then only 8th order moments

could be computed with the same maximum le ,n. However, if

the error criteria was relaxed to maximum n wev6rtif
e,n .0672 then

16th order moments could be computed with a 16 line pair per

aperture device. Table 3 and 4 or the computer programs of

Appendix C can be used to determine the bandwidth required
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Pn/no maxlep fli -/p malpn

I 2 2 .0172765 1 2 .0353821

4 4 .0273291 3 4 .0138003

9 8 .0317055 7 8 .0241607

16 16 .0335946 15 16 .0296186

a . p even b. p odd 
I

Table 4 -Maximum ep~n(xI vs. p n/flp or p n/n~ -
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given the highest order moments to be computed along with

the largest allowable error. This analysis has assumed

that the Fourier transform can be computed with perfect

accuracy. Errors in the transform will lead to additional

errors in the computed moments.

Since the two-dimensional moments are computed as

weighted sums of two-dimensional Fourier transform components,

the implementation of a preprocessor using an A-0 device can

take the form of Figure 21. The A-0 device is used to compute

Fourier components and the weighting and summation is carried

out in the digital processor. The digital processor is also

used to compute the moment invariants. An advantage of this

method of computing moment invariants is that the same hard-

ware configuration can be used to compute moment invariants

as well as to compute the invariant signatures developed in

Section I1. 3.C. This would be desirable in appli-

cations where a decision is to be made based on prefilter

outputs derived from more than one algorithm.

The algorithm for computing moments from the Fourier

transform can be modified to provide some noise filtering.

In aerial images it is often the case that the features of a

signal that permit discrimination generally have significant high
17

spatial frequency content in some frequency band . The noise

contributes primarily to spatial frequencies outside this band. It

may be desirable to weight the Fourier transform components

to emphasize signal and de-emphasize noise. The algorithm

permits a weight function of the form

W(Wx W y) = Wx x)Wy (W y) (146)

to be applied to the Fourier transform components prior to

summation. These weights should be combined with the coeffic-

ients ci(p), ck(q). The composite coefficients are

ci(P) = Wx(i-n/L)ci(p) (147)

ck(q) = Wy(kn/L)ck(q) (148)

-77-[ ,i
ii



These multiplications can be precomputed and stored. Hence,

noise reduction can be added to the algorithm without the

need for any additional on-line computations. Examples of

W functions are
x

wx( x x< c (149)

which is a high-pass filter and

Wx(Wx) = Wx (150)

which is a derivative filter. It should be noted however that

two-dimensional filters such as

W Wy = W (151)xy xy

have a directional bias. This is not totally consistant with

the desire to compute invariant signatures. This topic needs

further investigation.

Next, an alternative approach to computing image moments

will be considered. This approach utilizes the development

based on the method of trigonometric interpolation which was

derived above.

The A-0 devices which have been considered in this report

which compute the function given by equation 1 are linear in

g and h so that
n n

ffl(x,y) E E gi(t-x/v x)hi(t-y/V y) dxdy f

i=O k=O

Z ffI(x,Y)gi(t-x/vx)hi(t-y/vy) dxdy (152)
i=O k=O

This property allows an alternative means of computing moments.

Rather than weighting and summing Fourier components in the

frequency domain, the eigenfunctions can be weighted and

summed in the time domain. The composite function is then

applied to the A-O device. The A-0 device output is then the
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desired moment. The weighted eigenfunctions are given by

equations (101) and (102). However, these are just the

bandlimited approximations to [xp ] and [yq derived from the

method of trigonometric interpolation. Hence, if the A-0

device electrical inputs are the approximations to [xp ] and

[yq] then the device output will approximate mp,q. This

statement needs two qualifications. First, the device

output will only equal m at the time instant when the SAW orP,q

BAW are aligned as shown in Figure 24. That is, there is

only one instant per period when the acoustic waves line up

on the sensor to give the correct weighting function. The

second qualification arises because of the image sampling

caused by the metal grid pattern on the sensor. This was

discussed in Section II. The origin of Fourier space is

translated by fo'x and f oy" To likewise translate the

spectra of g p(x) and h q(y) they must be multiplied by

ej2 tfx,o and eJ21Tfy,o respectively. In an actual implemen-

tation, the complex exponentials would be replaced with real

sinusoids and a synchronous detector used to preserve the

phase information. Such a circuit is described in reference

18. Hence, the sensor drive signals should be of the form

g(t) = g p(t)sin2nf xot (153)

h(t) = h q(t)sin21f yot (154)

Now since g p and hq have been designed to be bandlimited, g

and h will also be bandlimited and n can be chosen to achieve

maximum accuracy given the A-0 device bandwidth. Hence, all

the previous analysis can be applied to this implementation

also. The functions, equations (153) and (154) can be

generated either by performing an analog multiplication of gp

or h with sin2vft or by precomputing time samplesof g(t) andq

h(t) and storing these samples in a fast digital memory. The

memory would then be read, D/A converted and the analog

samples smoothed and applied to the A-0 sensor. The sensor
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output should be sampled in synchronism with the input so

that this output is sampled and held at the instant when the

correct portion of g p(x)hq(y) is on the active sensor area.

The implementation of such a preprocessor is shown in Figure

27.

image

t Digital

MemoryProcessor

Figure 27 -Implementation: Method of Moments

D. Summary

This section began with a general discussion of prefilters.

It was shown that the desirable property of feature isolation

could be achieved by breaking the image into a number of

smaller, overlapping views. By this means signal-to-noise

ratio can be improved. Since A-0 sensors cannot match the

accuracy of a digital processor, feature isolation is useful

since it relaxes the noise filtering requirements of the

prefilter algorithm. However, the price paid is the need to

process a number of views rather than a single aerial image.

The concept of feature invariance was introduced. A

prefilter which is invariant to changes in the feature such
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as translation or rotation or scale is very desirable. This

is because the number of distinct signals at the prefilter

output is greatly reduced which simplifies the decision

processor. However, invariance usually leads to an undesir-

able reduction in separation between feature classes.

Because of the function performed by A-0 sensors they

are best suited to implement prefilters which utilize a

separable transformation of the image of the form of equation

(1.Anumber of such transformations were investigated.

The Hadamard transform is characterized as an ortho-

normal transform for which all the elements of the n x n

transformation matrix H are either + or -1. Because ofn
this property, it is well-suited for digital implementation

since additions rather than multiplications are required.

Since the A-0 sensors performs general multiplications as

easily as multiplications by -1, this special property of Hn
is of no advantage in an A-0 implementation. Since A-0

devices are bandlimited whereas Walsh functions are not

bandlimited, A-0 devices do not appear to be the most optimum

means for computing Hadamard transforms.

A classical means for feature extraction is the matched

filter. However, the A-0 implementation of the matched filter

is not desirable since both forward and inverse Fourier trans-

forms are required. The matched filter for the image auto-

correlation function leads to a much simpler A-0 implementation

since only a forward transform is required. This version of

the matched filter is invariant to feature translation but not

rotation or scale.

More complex algorithms were developed which utilize

Fourier transform samples to compute feature signatures which

are invariant to translation, rotation and scale. Since the

transform is sampled, the amount of information in the image is

reduced to the point where a modest digital processor can

compute the remaining steps in the algorithm. These algorithms

are well suited for an A-0 device implementation consisting of
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an A-0 sensor and a digital post processor.

Image two-dimensional moments were introduced. Certain

combinations of these moments can be invariant to feature

translation, rotation and scale change. Two methods of

computing these moments from the Fourier transform were

presented. The second method is more accurate for A-0

implementation since it utilizes Fourier samples over the

entire bandwidth of the sensor. An alternative method of

computing moments by time-weighting the electrical inputs to

the A-0 sensor was developed. Using this method, moments can

be computed potentially much faster than by the Fourier trans-

form method. However, a more complex hardware configuration

is required.

In summary, there appear to be a number of potentially

useful feature extraction algorithms which can be effectively

implemented using A-0O sensors.
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IV. FEATURE EXTRACTION EXPERIMENTS WITH DEFT SENSORS

A. Introduction

For the purpose of sensor and algorithm evaluation, Deft

Laboratories Inc. has developed a microprocessor-based Deft

sensor operating system. This system consists of a MC6800-

based microprocessor system, two digitally controllable sine

wave generators, a Deft sensor and an electronics module for

signal filtering and amplification. The system can interface

with a tape recorder, teletype, storage CRT and an X-Y plotter.

Assembly language programs can be written to implement signal

processing algorithms. In addition, some resident software

is available to make measurements of the Deft sensor output

and to make pseudo-three dimensional plots of the magnitude

of the Fourier transform.

Since this facility is available, it was decided to

program one or more of the prefilter algorithms under study

in order to make a preliminary evalution of the concept of

implementation developed in Section III. The present experi-

mental set-up has two limitations. First, the system is

limited to evaluating Deft sensors. Second, the sensor drive

functions g(t) and h(t) are limited to sinusoids. Because of

this second limitation experiments were restricted to those

algorithms which characterize the image by its two-dimensional

Fourier transform. Algorithms which were programmed are the

method of invariant Fourier signatures and the method of

invariant moment signatures. However, because of a short-

coming of the Deft sensors which were available during this

study, it was not possible to compute image moments with any

accuracy. This shortcoming is presently being eliminated in

a new sensor design. More will be said about present short-

comings in the next section. The method of invariant Fourier

signatures is less sensitive to this problem so that a series

of experiments were conducted. The results of these experi-

ments are detailed here.
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First, however, the computer programs which were written

will be described. This will be followed by a description of

the experiments which were conducted and the results of these

experiments. The section closes with some conclusions.

B. Feature Extraction Experimental Computer Programs

1. Method of Invariant Moment Signatures

The flow diagram of this program is rather straight-

forward and is shown in Figure 28. When the program is entered

it requests that the sensor view a uniform image for cali-

bration. When this image is in place the user types "C" and

the program makes a series of measurements near the transform

origin for the purpose of removing a linear phase term which

is present in the Deft sensor output. This phase function is

approximately of the form

O( , ) =k xw x kyw y+k 0(155)

The computed Fourier transform is

P(dW W) =F(wx'W )e jowX, y (156)

where F is the desired Fourier transform.

This phase function is undesirable. The constant k0

is measured at the Fourier origin and removed from all data

points. The linear phase also must be measured and its effects

removed from each data point. The method of trigonometric

interpolation is implemented in this program. Refer to Figure

teaperture of the sensor out of the normalized aperture

centered at x = y = 0 and extending to x =+l,y =+I. The

iaewill then, in effect, be multiplied by [xj [yq1 outside

the interval where these functions equal x, ,y q. The result

will no longer be the image moment. To remove the linear phase,

k xand k yare measured by sampling the transform at two points on

the w -_axis and two points on the w y-axis near the Fourier

origin where the transform has a large magnitude. Since a
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ENTER

INPUT "C"

EVALUATE SENSOR LINEAR PHASE FUNCTIONr INPUT EXPONENT FOR SAMPLE AVERAGE
INPUT LIMIT

INPUT "M"

DO K = 0, LIMIT - 1

DO I = 1,N

DO J = 1,N

COMPUTE SPATIAL FREQUENCY ADDRESS

SET FREQUENCY SYNTHESIZERS

READ DEFT SENSOR

CORRECT FOR LINEAR PHASE USING CORDIC

MULTIPLY DATA BY COFFFICIENTS

ACCUMULATE MOMENT PAR'IiAL SUMS

mp,q = rp,q/too,0

COMPUTE X,Y

PRINT MOMENTS AND X AND Y

PRINT "CONTINUE?"

INPUT CHARACTER

YES HRCE

NO=Y >

STOP

Figure 28 - Flow Diagram: Invariant Moment
Signatures
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uniform image has a transform which is a real function, any

linear phase measured is due to the sensor and its associated

electronics and should be removed. For example, if the

sensor is measured at (o,o), (WxO) and (owy) with result

P(0,0) A(0,0)e i$(0,O) (157)

('6( ,0) = A( x I ,O)e Js( xy0 )  (158)

jb (O, ) (159)
Ny) = A(O, y )e y

then

k = (0,0) (160)
0

0x= W l)- (0 O) (161)
kx __( ___x'_

x

ky = (o,w) - (0,0) (162)

y

The program automatically makes these measurements and

stores the corrections ko, kx , and ky . The computed linear

phase is then removed from each transform sample during the

course of the measurements when the test image is in place.

The samples which are available to the microprocessor from

the sensor are in the form of the real and imaginary components

of the transform. To remove linear phase, these samples must

be converted to a magnitude and phase representation, the

phase correction computed and applied and then the result

converted back to real and imaginary format. The conversion

is accomplished using the CORDIC algorithm. The total time

involved per correction is about the same as the time required

to compute two multiplies.

Once the parameters k? k and k have been measured

the program request a sample average which is a power of two

(2**S). The user then inputs the exponent Subsequent

transform values will be sampled 2**S times per spatial

frequency and averaged to improve the signal-to-noise ratio.
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The program in its present form is capable of computing

all image moments from mn o to mS,8. To save time, if not

all these are required, the user can specify a limit f8.

Then only moments from me, ° to mlimit-l,limit_ 1 will be

computed.

Next the program requests the user to position the test

image and type "M". The program then computes the two-dimen-

sional moments using equations (133), (134), (135) and (136).

These moments are then normalized by m ,. It is easy to see

that

m - m (163)o,o p,q

for any p and q. Hence,

m <
p,q 1 (164)

moo

Then two moment invariants are computed. These are

X = a2 +b2  (165)

Y = a2 -b2  (166)

where a 2b 2 are defined by equations (82) and (83). The

computed moments and X and Y are then printed out. The

program then asks the user if he would like to continue. If

he types a "Y" the program loops back and asks for a new

sample average. If any other character is typed the program

jumps to the monitor program and displays "*". A sample run

of the program is shown in Figure 29. The notation 2**±(integer)

means that the fixed point number to the left is to be multi-

plied by 2**±(integer). This is floating point using powers

of two rather than ten. In the figure the case LIMIT = 3 is

shown. If this parameter were larger then a larger table

(up to 8 x 8) would be printed out.
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POSITION UNIFORM IMAGE. THEN TYPE C C
COMPUTES M(P,Q) MOMENTS FROM TRANSFORM

SAMPLE AVERAGE IS 2**3
LIMIT - 3
POSITION TEST IMAGE. THEN TYPE M M
M(PQ)

0 1 2 3 4 5 6 7
0 +.9999 +.0055 +.1848

1 -. 1204 -.0181 -.0707
2 +.1851 -.0468 +.0183

X = +.7109 2**-0l Y = +.6048 2**-04

CONTINUE? Y

Figure 29 - Moments for Feature Extraction:
Sample Run

For the particular implementation of the algorithm given

in the program listed in Appendix B, the parameters n e and n0

were set to be ne 20, no = 40 independent of p or q. This

simplifies the computer program but results in run times which

are longer than necessary because lower order moments can be

accurately computed with much smaller values for ne, no. The

coefficients which were used in the program are listed in

Tables 5 and 6. These coefficients can be utilized by a Deft

sensor with bandwidth of 10 line pair along the w -axis andx
±10 line pairs alrng the w -axis. (See Section III. C.4y
for a discussion.) Since the sensor which was available had

a resolution of at least 20 line pairs along the wx-axis and

±10 line pairs along the w -axis, the available bandiwdth wasy

sufficient for this application. Since ne and n0 were too

large for the lower power p and q, most of the coefficients

in these cases are very small except for a few which are

associated with transform samples near the Fourier origin.

For example, consider ck( 2 ). In this case only the first two

or three coefficients are significant. Hence, lower order

moments are insensitive to high spatial frequencies, as would
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k ck(0) ck(2 ) ck( 4 ) ck( 6 )

0 1.0000000 1.0000000 1.0000000 1.0000000

1 0.0 -0.5160232 -0.5864970 -0.6093051

3 0.0 0.0191080 0.1043204 0.1456567

5 0.0 -0.0041213 -0.0239249 -0.0501646

7 0.0 0.0014943 0.0088168 0.0202132

9 0.0 -0.0006940 -0.0041216 -0.0097799

11 0.0 0.0003693 0.0022002 0.0053087

13 0.0 -0.0002108 -0.0012579 -0.0030627

15 0.0 0.0001213 0.0007249 0.0017742

17 0.0 -0.0000636 1.0003796 -0.0009316

19 0.0 0.0000198 J0.0001184 0.0002910

Table 5 -Program Coefficients for p,q Even
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k c k(l) c k(3 ) ck (5) c k(7 )

1 -0.8109863 -0.8729509 -0.8872015 -0.8926364

3 0.0904811 0.2270004 0.2633326 0.2780638

5 -0.0328427 0.0826661 0.1262836 0.1463572

7 0.0169653 -0.0288055 -0.0660045 -0.0868873

9 -0.0104343 -0.0107975 -0.0356715 -0.0539768

11 0.0071316 0.0060242 0.0202588 0.0345133

13 -0.0052356 0.0042429 0.0124037 0.0227422

15 0.0040498 -0.0027277 -0.0081753 -0.0155041

17 -0.0032614 -0.0016602 -0.0056615 -0.0109329

19 0.0027129 0.0011839 0.0040415 0.0079358

21 -0.0023181 0.0009504 0.0029583 0.0058911

23 0.0020269 -0.0007069 -0.0022143 -0.0044456

25 -0.0018081 -0.0004914 -0.0016811 -0.0033913

27 0.0016420 0.0003742 0.0012820 0.0025989

29 -0.0015157 0.0003088 0.0009746 0.0019850

31 0.0014201 -0.0002323 -0.0007317 -0.0014942

33 -0.0013495 -0.0001532 -0.0005325 -0.0010885

35 0.0012995 0.0001024 0.0003619 0.0007408

37 -0.0012675 0.0000703 0.0002099 0.0004306

39 0.0012520 -0.0000271 -0.0000687 -0.0001412

Table 6 -Program Coefficients for p,q Odd
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be expected. The coefficients in Tables 5 and 6 are stored

in the computer program in Tables with labels C0l, C23, C45

and C67. For example, C45 holds the coefficients for c k(4 )

and c k(5).

2. Method of Invariant Fourier Signatures

Since this algorithm uses the magnitude (or magnitude

squared) of the Fourier transform, the phase correction

described in the preceeding section is not required.

The overall flow diagram for the computer program is

shown in Figure 30. A detailed flow diagram of projection

computation is shown in Figure 31. The program contains a

number of parameters which can be set to control the algo-

rithm used. Projections can be computed which are the result

of integration of the Fourier transform magnitude along radial

lines, around (semi) circles or along spirals.

When the program is entered, the user is asked to specify

a sample average as a power of two, S. Then all Fourier

samples will be taken 2**S times and averages to improve

signal-to-noise ratio. The user is then asked to specify

circles or not circles. ("Circles" is a special case which

requires different logic in the program.) If circles are

chosen then the projection to be computed will contain 2**5

samples because the program always uses 32 radius values

which are precomputed and stored in Table RVECT. The values

of these radii satisfy the relationship given in equations

(52) and (53). The projection results from integrating around

the 2**5 semicircles.

If circles are not chosen the user can choose the para-

meter M in which case the projection will consist of 2**M

samples. M should not be chosen larger than 6. M=5 is a good

value to adequately sample the Fourier transform. If M=5

running time of the program is under one minute per image. The

projection results from integrating the transform magnitude

along 2**M radial lines or spirals.
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JINPUT CHAR. IF "Y" THEN CIR =1. OTHERWISE CIR 01O
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FFT AND MAGNITUDE (INVARIANT SIGNATURE)
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The program then asks for the parameter A6. Ae has

two functions depending on whether circles are chosen or

not chosen. Consider "circles" first. In that case Ae

gives the angular spacing between samples along each semi-

circle. It also determines the number of samples which will

be integrated along each semicircle. The finer the angle,

the more the number of samples and the program running time.

Again, Ae = -7/2**5 gives good sampling of the transform

with a run time of under one minute. The polar coordinate of

the kth sample along the i-th semicircle is given by

(rj) = (ri,(Tr+kAe) mod) (167)

where r. is the i-th radius. Angles are modw because thei

transform is symmetric across the origin.

Now consider the case of "not circles". In that case

Ae gives the amount of skew for the spirals. Each spiral

consists of 32 samples (one for each of the 32 radii.) The

polar coordinates of the i-th sample along the k-th spiral

is given by

(r,W) = (ri, (u+iAe +kA ) mod 7) (168)

where

A6= -l/2**M (169)

If Ae= 0 then the contours of integration will be radial

lines rather than spirals. To get A6 = 0, input "Z" when

the program prints "DELTA THETA = -PI/2**". To get Ae0 0

enter the exponent instead. Ae = 0 will not be accepted by

the program when "circles" since this would result in an

infinite loop.

Next the program requests a reference tag. The user

responds by entering an integer from 0 to 8. This is stored

in variable TAG. If TAG>O then after the invariant signature

is computed it will be stored in a table in position TAG. Up

to 8 references can be stored in the table. References can

be replaced at any time by a new reference. The purpose of
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these references is to provide a means of performing some

simple feature recognition experiments. The user can set up

a number of reference images consisting of distinct features.

The program then computes the invariant signatures and stores

them in the table. Then the user can uise the system to view

new images which might be translated, rotated or scaled

versions of the references. In that case the user enters 0

for the reference tag. If TAG=O the signature is then cor-

related against all the reference signatures. Let {r.} be

the 2**M samples of a reference and fx .} be the samples of a

new signature. Then the correlation is defined by

r.x.

correlation = 1 l

2 2 2 2 (170)

This correlation is the basis for a simple decision processor.

The signature is correlated with all reference signatures.

These correlation coefficients are printed out by the program.

The user can then observe these values and decide if the new

image is a translated, rotated or scaled version of one of the

references. A simple decision rule is to look for the largest

correlation. If it is bigger than some threshold then the

test image is considered to contain the feature corresponding

to the reference signature at which maximum correlation occurred.

Returning to the discussion of the program, once the user

enters the reference tag the program then computes the invar-

iant signature. Sampling of the transform and integration of

samples occurs in that portion of the program shown in Figure

31. There are two nested loops, one for each Fourier sample

and one for each contour. The transform spatial frequency

address is first computed ir polar coordinates and then

converted to rectangular co( Ainates using the CORDIC algo-

rithm. The sensor is addressed and data read. The sensor

output is converted to magnitude and phase using the CORDIC
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algorithm. The magnitude is then integrated using the

trapezoidal rule. At the end of each contour, the resulting

integration is stored by being pushed onto the microprocessor

stack. At the end of the last contour there will be 2**M

samples in the stack.

Next, the program computes the mean of these samples and

substracts the mean from each sample. This improves the

accuracy of the FFT algorithm which is applied to these samples.

The algorithm uses fixed point arithmetic with a block floating

point scaling scheme. If the mean is not removed the FFT

output will have a large component in the zero frequency bin.

This leads to poor scaling for the remainder of the FFT bins

which are, typically, much smaller in magnitude. Removing

the mean corrects for this problem.

The FFT output samples are then converted to magnitude

and phase representation using the CORDIC algorithm. The

resulting 2**M-vector of real numbers is the desired invariant

signature.

The program then prints "SIGNATURE?". If the user enters

"Y" the invariant signature is printed out. If instead "N"

is entered, this is skipped. The program then stores the

signature of TAG-,O. It then correlates with all reference

signatures and prints out the correlation coefficients.

The program then prints "CONTINUE?" Entering a "Y"

causes the program to ask for new parameters for another run.

Entering an "N" causes a jump to the monitor and a "*" is

displayed.

A sample run of the program is shown in Figure 32. The

algorithm used in this run was 2**5 radial lines. There was

no sample averaging. The first three correlation tables

represent three references. The fourth table gives the

correlation of a misaligned feature with the three references.

In the case shown, correlation with reference 1 was largest.

The test object was reference 1 scaled by a factor of 0.9

in size.
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FEATURE RECOGNITION
DEFT/PROJECTION/FFT

SAMPLE AVERAGE IS 2**0
CIRCLES?N
REFERENCE LENGTH=2**5
DELTA THETA=PI/2**Z
REFERENCE TAG=3
SIGNATURE? N

CORRELATION
1) 0.0000 2) 0.0000 3) 0.9999 4) 0.0000
5) 0.0000 6) 0.0000 7) 0.0000 8) 0.0000

CONTINUE? Y
CIRCLES?N
DELTA THETA=-PI/2**Z
REFERENCE TAG=2
SIGNATURE? N

CORRELATION
1) 0.0000 2) 0.9999 3) 0.7623 4) 0.0000
5) 0.0000 6) 0.0000 7) 0.0000 8) 0.0000
CONTINUE? Y
CIRCLES?N
DELTA THETA=-PI/2**Z
REFERENCE TAG=l
SIGNATURE? N

CORRELATION
1) 0.9999 2) 0.8576 3) 0.8727 4) 0.0000
5) 0.0000 6) 0.0000 7) 0.0000 8) 0.0000
CONTINUE?

y
CIRCLES?N
DELTA THETA=-PI/2**Z
REFERENCE TAG=O
SIGNATURE? N

CORRELATION
1) 0.9795 2) 0.9364 3) 0.8578 4) 0.0000
5) 0.0000 6) 0.0000 7) 0.0000 8) 0.0000

Figure 32 - Invariant Fourier Signatures: Sample Run
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C. Feature Extraction Experiments

The two computer programs which are described in the previous

section were written for the purpose of performing some pre-

liminary feature extraction experiments utilizing the algorithms

developed in Section III and the hardware system described in

this section. It was not the intent of these experiments to

show detection of real features in aerial imagery. Rather, the

purpose was to verify feasibility of both the algorithms and the

sensor technology to detect features from a small set of con-

trolled text patterns. In this way, directions for further

improvements in both algorithms and sensors could be determined.

It was originally intended to perform experiments using the

method of invariant Fourier signatures (IFS) and the method of

invariant moment signatures (IMS). However, the program which

computes moments from the Fourier transform gave poor results.

The reasons for this were identified. It was determined that

the program computes moments with large errors because of two

shortcomings of the Deft sensors which were used in the experi-

ment. Since being identified, steps are being taken to correct

this problem in future Deft sensors. More will be said about

this in Section V. Briefly, however, the two sensor short-

comings were the following:

1. Because of the current collecting metal bars used in

the present sensor design strong reflections will occur in the

surface acoustic wave propagating orthogonal to these bars.

(Refer to Figure 2.) This is because the periodic structure
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of these bars reinforces the small reflections which occur at

each bar. The effect of these reflections on the Fourier trans-

form is to multiply the transform by a weight function of, say

W x That is, the function which is available is F where

.F (w 0'W~ W(W,() F(wf) (171)

Visually, JFl is a rippled version of IFl. This can be seen in

any of the transform plots which are given in Section V. one

problem caused by these ripples is that it is not possible to

accurately determine the origin of the Fourier transform. The

origin will always be located at the peak of the zero frequency

sinc function. However, because of the ripples on this peak,

the true maximum cannot be determined. It can be approximately

determined by plotting the peak and visually determining the

center.

The second problem with ripples is that the transform

will contain errors because of W(w x). Refer to Tables 5 and 6

Notice that for the lower order moments the coefficients Ck

are largest for small indices k. This implies that components

of the transform nearest the origin will be most heavily

weighted in computing these moments. Refer, for example to C k(2 ).

It can be seen that the computed moment will depend primarily

on the value of the transform at the origin minus the weighted

value of the transform at w = wT/4 (See Figure 25) If the peak

of a ripple occurs at w =0 and the trough of the ripple occurs

at w = n/4l then the computed moment will be larger than the

correct value. Other situations leading to other types of

errors can be envisioned.
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By examining the transform plots in Section V it is obvious

that the large ripples shown there would lead to large errors in

computing image moments. This proved to be the case in attempts

to perform experiments. For example, in some cases moments m pq

where both p and q were even were computed to have negative

values. However, these moments must always be positive.

The solution to this problem is to redesign the Deft sensor

to eliminate the reflections. This is presently being done as

will be detailed in the next section.

2. The second shortcoming arises from other inaccuracies in

computing the Fourier transform. These will be disccused in

Sectlion V. As mentioned, when viewing a completely uniform

image, the Deft sensor output contains a linear phase term

which must be removed to compute moments. However, because

the transform is computed with some error, the assumption of

linear phase in only an approximation. In attempting to use

the computer program it was determined that the assumption of

linear phase was only approximately true. Hence, the undesirable

phase function can only be approximately corrected for. This

is not a serious problem in the computation of low-order moments

since they depend primarily on transform samples near the Fourier

origin where on accurate phase correction can be made. However,

the accurate computation of moments above the first few would

require much better phase corrections. It is difficult to

presently make such corrections for two reasons. First, the

uniform, white image used as a text pattern has a transform

whose magnitude is large over only a limited region of Fourier
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space. It is only possible to measure phase in this region with

this test pattern. Accuract phase measurement over the entire

transform would require a large number of accurately positioned

test patterns. Secondly, the Fourier transform output of the sen-

sor is only an approximately linear function of light intensity.

Hence, phase corrections measured at one intensity may be in error

when the image to be analyzed has another average intensity.

Efforts are underway to improve the accuracy of the computed

transform. This should lead to more predictable and accurate

phase measurement and correction. These efforts are discussed

in the next section.

An alternative solution would be to compute the moments of

the image autocorrelation function rather than of the image.

That is, use the magnitude of the Fourier transform rather than

the real and imaginary parts. This solution circumvents the

phase problem but may be undesirable in that some image infor-

mation is lost.

The remainder of this section is a discussion of the ex-

periments conducted using the method of invariant Fourier

signatures. In Part B.2 of this section the flexibility

of the computer program was described . The algorithm developed in

Section III can be configured in a number of ways using con-

stants entered into the program. These constants control the

sample averaging of the data, the angle * of the projection PO

and the number projections computed. In application, these

parameters can be chosen to optimize the invariant signatures

which are computed given a class of features to be detected.

However, because of the scope of this program, only a limited
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numnber of algorithm configurations were utilized. To be specific,

two forms of the algorithm were used in all tests. These are

integration along 32 radial lines and integration around 32

circles. No sample averaging was used in the experiments

after it was determined that averaging did not affect the results.

This was desirable since averaging increases program run time.

In all experiments, three reference objects were used.

These references are shown in Figure 32. The images consisted

of a dark background with white features.

X 0

a. "Crossroads" b. "Road" C. "Storage Tank"

Figure 33 Test Reference Features

These features are simple geometric objects. However, they re-

semble some important realistic features and were chosen on this

basis. These features are a crossroads, a road and a compact,

round structure such as a storage tank. The reference objects

are meant to only be idealizations of these features. In parti-

cular, the images contain no background noise. A Viewlex pro-

jector with a rotating barrel was used to project the images

which were in the form of slides. The 60 degree tilt of the

images is a result of the Viewlex. The rotating barrel had a

stop at which the slides were tilted 60 degrees. Rotation of

images was then measured with respect to this stop. This 60
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degree tilt has no significance.

The experimental set-ups which were used shown in Figure 33.

Sensor

- ~ Screen Sensor Projector

Proj ector

a. Indirect Projection b. Direct Projection

Figure 34 Experimental Set-Ups

In some experiments the image was projected on a screen and the

sensor viewed the projected image. The angle G between projector

and sensor was minimized to prevent image distortion. This set-

up was used in the experiments where image scale was to be varied.

This was accomplished by moving the projector along the dashed

line and refocusing. The size of the image was measured on the

screen using a ruler. In the other experiments the lens on the

Deft sensor module was removed and the projector was placed in

line with the sensor. The image was then focused directly, at

close range, onto the Deft sensor. To do this it was necessary

to stop down the projector lens using the :F-stop adjustment. The

module was mounted on a triangular rail so that it could be ac-

curately translated at right angles to the dashed line in Figure
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33b. This was used in the experiments where the feature to be

detected was a translated version of the reference. The lens

barrel was rotated in experiments where the feature to be

detected was a rotated version of the reference.

During the period of time when experiments were conducted,

two Deft sensors were available for test. These will be labeled

sensor #1 and #2. The experiments will now be described. In

all experiments the first step was to compute the three reference

signatures using the images of Figure 32 in their reference

positions. Then the system was presented with the same images

but either rotated, scaled or translated or a combination of these.

The signature was then computed and correlated against the three

reference signatures. The reference at which the highest cor-

relation occured was then considered to be the detected feature.

If this was the correct feature then the system "passed". If

not, the system "failed". The specific experiments conducted

were the following:

Image Rotation

Reference signatures were computed. The system was then pre-

sented with the same images but with the projector barrel rotated

from 0 to 25 degrees in 5 degree steps.

Image Translation

Reference signatures were computed. The system was then

presented with the same images but the sensor module was trans-

lated from 0 to 8 mm in 1 mm steps. The width of the active

sensor area is 12.7 mm. Generally, translations of greater than

8 mm resulted in a significant part of some of the images falling

outside the sensor active area.
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Image Scale

Reference signatures were computed. The projector was then

moved closer to the screen and refocused so that a dimension on

one of the references was reduced by a factor of k. This was

repeated for k = {.9, .8, .7, .6, .5}. The system was presented

with the same three images at each position of the projector.

Image Translation with 5 Degree Offset

Reference signatures were computed. The projector lens

barrel was then rotated 5 degrees. The system was then presented

with the same images but with the sensor module translated from

0 to 8 mm in 1 mm steps.

Image Translation with 10 Degree Offset

Same as above but with a 10 degree offset after the reference

signatures have been computed.

Image Translation with 15 Degree Offset

Same as above but with a 15 degree offset.

Image Rotation with k = .7 Scale Offset

Reference signatures were computed. The projector was then

moved toward the screen until all image dimensions were reduced

by a factor of 0.7. The system was then presented with the same

images but with the projector barrel rotated from 0 to 25 degrees

in 5 degree steps.

The results of these experiments are given in Tables 7, 8,

9, and 10. These tables give the number of passes and fails as

a function of sensor, algorithm, experiment and reference pattern.

Both algorithms performed approximately equally.
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number of passes
success rate 10

number of passes + number of failures Xl00%

(172)

If only the experiments of rotation, translation and scale are

considered then the success rate for all experiments and patterns

are as follows:

Sensor #1, 32 radial lines: 81.7% success rate

Sensor #1, 32 circles: 81.7% success rate

Sensor #2, 32 radial lines: 86.7% success rate

Sensor #2, 32 circles: 80.0% success rate

As can be noted, both sensor performed approximately equally.

Reference Pattern

1 2 3 Total

Experiment P F P F P F P F

Rotation 4 2 5 1 6 0 15 3

Translation 7 2 9 0 6 3 22 5

Scale 5 0 5 0 2 3 12 3

Translation with 5 degree 2 7 9 0 8 1 19 8
offset

Rotation with k=0.7 scale 4 2 6 0 4 2 14 4
offset

Total: all experiments 22 13 34 1 26 9 82 23

Table 7 - Feature Extraction Experimental Results:
Sensor #1, 32 Radial Lines
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Reference Pattern

1 2 3 Total

Experiment P F P F P F P F

Rotation 6 0 6 0 6 0 18 0

Translation 7 2 6 3 7 2 20 7

Scale 3 2 5 0 3 2 11 4

Translation with 5 degree 5 4 6 3 8 1 19 8
off s'i.

Rotatr,,n win k=0.7 scale 6 0 5 1 3 3 14 4
offsr 1-

Total; ail experiments 27 8 28 7 27 8 82 23

Table 8 - Feature Extraction Experimental Results:
Sensor #1, 32 Circles
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Reference Pattern

1 2 3 Total

Experiment P F P P P F P F

Rotation 6 0 6 0 6 0 18 0

Translation 9 0 9 0 8 1 26 1

Scale 3 2 5 0 0 5 8 7

Total: all experiments 18 2 20 0 14 6 52 8

Table 9 - Feature Extraction Experimental Results:
Sensor #2, 32 Radial Lines

I
Reference Pattern

1 2 2 Total

Experiment P F P F P F P F

Rotation 6 0 6 0 6 0 18 0

Translation 9 0 2 7 9 0 20 7

Scale 3 2 5 0 2 3 10 5

Total: all experiments 18 2 13 7 17 3 48 12

Table 10 - Feature Extraction Experimental Results:
Sensor #2, 32 Circles
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It was observed during the experiments that failure occurred

more frequently where there was either a large translation, rota-

tion or scale offset between references and test patterns. It

has been determined that this is because of certain errors in

the Deft sensor output. More will be said about these errors in

Section V.

Some additional, more challenging experiments were performed

using sensor #1. These experiments involved offsets of either

translation and rotation of rotation and scale between reference

and test images. The results of these experiments are also

tabulated in Tables 7 and 8. For these experiments only, the

success rates were the following:

Sensor #1, 32 radial lines: 73% success rate

Sensor #1, 32 circles: 73% success rate

as can be seen, the additional misalignment reduced the success

rate somewhat. This is a consequence of the same Deft sensor

errors alluded to above.

These experiments verify the premise of invariance to trans-

lation, rotation and scale. However, the success rates must be

described as modest. Part of the difficulty can be traced to

sensor performance, but another part may result form the

algorithms which were used. One of the features of an ideal

prefilter mentioned in Section IIIisthat the prefilter increases

the between-class seperation of the feature classes. For the

present experiments between-class seperation is measured by the

crosscorrelation of signatures of each of the reference patterns.
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Table 11 Reference Pattern Correlations

Reference Pattern

23

Reference Pattern 2 0.9225 0.9961 --

3 0.8151 0.7508 P.9749

a. Sensor #1, 32 Radial lines

Reference Pattern

12 3

1 0.9991 -----

Reference Pattern 2 0.9877 0.9989 --

3 0.9495 0.9751 0.9970

b. Sensor #1, 32 Circles

Reference Pattern

1 2 3

[1 0.9943 -----
Reference Pattern 2 0.8551 0.9982 --

{3. 10.7819 0.9218 0.9696

c. Sensor #2, 32 Radial Lines

Reference Pattern

1 2 3

1 0.9994-----

Reference Pattern 2 0.9891 0.9996 --

3. 0.9522 0.9827 0.9990

d. Sensor #2, 32 Cizcles
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The crosscorrelations and auto correlations of the reference

signatures are given in Table 11 for sensors #1 and #2 and for

both algorithms. The entries represent the average of all

values which were obtained in all the experiments tabulated

in Tables 7 through 10. Notice that the crosscorrelation terms

were not significantly smaller than the autocorrelation terms.

This was particularly the case for the "circles" algorithm.

Hence, between-class separation was not as large as might be

desired. This drawback cannot be blamed on the sensor. Rather

it is a consequence of the algorithms used. It is the feeling

of this Author that the requirement of the second transform (FFT)

tends to smooth the data in such a way that there are not large

differences between the signatures of different reference patterns.

It appears that by designing invariance into these algorithms

and thereby decreasing the in-class seperation, the between-

class seperation also decreases.

The experiments which were conducted used noise-free,

idealized features. Since the performance reported here is

only modestly successful it is evident that the present Deft

sensor is not capable of detecting features in realistic aerial

images making use of the algorithms developed in this report.

It is possible that present sensors could be useful in more

limited applications such as the detection of man-made vs.

natural features. The utility of the Fourier transform in

this application has been verified by Lendaris and Stanley.
2 0

Their algorithms do not require a second transform and exhibit

greater between-class seperation. However, they are not in-

variant to translation rotation and scale.
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In order to take advantage of the more powerful algorithms

developed in this report, a sensor which faithfully produces

the Fourier transform is required. The basic requirements

of the sensor output are the following:

1. The magnitude of the sensor transform should be invariant

to feature translation.

2. If the feature rotates then the magnitude of the trans-

form must also rotate.

3. In order to include filtering against additive noise the

sensor must be linear. That is, if image I~ has transform F1 and

image 12has tasomF2then the combined image 1 1+1 2 has trans-

form P1F2
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V. ACOUSTO-OPTIC SENSOR CAPABILITIES:

PRESENT AND PROJECTED

A. Introduction

This section deals with the present capabilities and

limitations of the A-0 devices considered in this study.

Capabilities and limitations are considered in the context

of feature extraction. Also considered are projected improve-

ments and the probability of success.

Since the Deft sensor is presently receiving active

development support by Deft Laboratories Inc., more detailed

information can be provided on this sensor than the others

which were discussed in Chapter 2. Recent and present Deft

sensor development has been funded by NASA and by internal

Deft Laboratories Inc. funds. The level of NASA funding for

Deft sensor development in the last year is $130,000.

This chapter begins with the elastobirefringent light

valve. The Deft sensor is covered in the following section.

The Thomson - CSF sensor can bethought of as a specialized

Deft sensor so that it will not receive a separate discussion.

B. Elastobirefringent Light Valve

This sensor is not presently receiving development

support. Devices which have been developed to date should be

considered experimental. In order to apply this sensor to

feature extraction present device limitations must bp overcome

and manufacturing procedures developed. 7J,, 'ears Gi ,dditional

development are required for this sensor to be compatible in

performance with presently available Deft sensors.

Some aspects of current Deft sensor development could be

utilized in improving the performance of the bulk acoustic

wave (BAW) light valve. For example, a segmented transducer

is currently under development which will produce wider trans-

ducer bandwidths. This new design could be used to increase

the bandwidth of the BAW device also.

Other developments would have to be undertaken however,

which are specifically required for the BAW sensor. In order
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to achieve wider transducer bandwidths, small transducers with

higher center frequencies are required. In the experimental

BAW sensors, transducers were glued onto the quartz cell. The

smaller transducers would be thinner and more brittle so that

it would be necessary to sputter transducers directly onto the

quartz cell.

Standing waves in the sensor have been mentioned as a

current problem. These waves result from the reflection of

the BAW from the cell boundaries. A number of techniques could

be used to absorb the unwanted acoustic energy. For example,

a larger cell could be used with only part of the cell serving

as the active sensor volumn. The remainder of the cell would

then be used as an absorbing volumn for the BAW. The edges

of the cell could be joined with an absorbing material. The

edges might also be sandblasted or made jagged to trap the

acoustic energy. Another technique would be to drill small,

random holes in the non-active volumn of the cell to scatter

the BAW. This could be done using a laser.

Present sensors exhibit a number of other problems which

are discussed in Section II . Two to three years are required

to produce a device suitable for feature extraction application.

Since this work is developmental, the probability of success is

perhaps 0.5

C. Deft Sensor

The experimental results of Section IV indicate that

presently available Deft sensors are capable of limited feature

recognition. These sensors are being improved through a pro-

gram of active support. Hence, the probability is good that

improvedsensors will be available which will have a realistic

and signlfieCAnt featurq recognition capability. This section

will detail the current limitations and the steps being taken

to correct these limitations.

The magnitude of the Fourier transform of the three

reference features shown in Figure 32 as computed by a Deft
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sensor are shown in Figures 34, 35 and 36. Figures 34 and 35

show the transform of two reference features in two different

angular orientations. It can be seen that the transforms are

(approximately) rotated versions of each other. Figure 36

shows the transform of a circle which was positioned at two

locations on the sensor. These transforms are also (approxi-

mately) the same. The properties of translation invariance

and transform rotatation are required for all the algorithms

developed in this report. Hence, the Deft sensor is potent-

ially very useful for feature extraction. However, these

properties are only approximately true for present sensors.

Deviations in these properties as well as some other limitations

restrict the usefullness of present Deft sensors in feature

extraction. Limitations exist in the following categories:

1. spatial bandwidth

2. acoustic reflections

3. Cd8 uniformity

4. transform phase accuracy

5. output signal level

These categories will now be discussed one-by-one.

Present Deft sensors have spatial frequency bandwidths

of +10 line pairs along one transform axis and +20 line pairs

along the other axis. A larger bandwidth is desirable for

the following three reasons:

1. To distinguish between features which are only

subtly different from each other, high frequency information

is required since the transforms may only differ in high

frequency content.

2. Since the Fourier transform scales as the inverse

of the feature scale, small features have large transforms.

Large spatial bandwidths are needed to "see" large transforms.

If bandwidth is limited then the image must be magnified.

This requires breaking the photograph into a large number of

views thereby increasing processing time.

3. If the scene contains "noise" which corrupts portions
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of the transform, a larger bandwidth may be required in order

to have sufficient, useable transform components.

Deft sensors which will have larger bandwidths are under

development. A sensor will be available by June 1981 which

will have spatial frequency bandwidths of +25 line pairs

along one transform axis and +28 line pairs along the other

axis. This sensor will be able to "see" approximately four

times the number of spatial frequency components as do current

devices. This will be termed a "medium resolution" sensor.

A "high resolution" sensor is also planned which should be

available by January 1982. This sensor will have a fourfold

increase in resolvable spatial frequencies over the medium

resolut ion sensor.

In order to improve resolution, the medium resolution

sensor will be fabricated on 41.5 0 rotated z-cut LiNO 3. The

transducer center frequencies will also be increased from the

present 35-40 MHz range to about 60 MHz. Increasing trans-

ducer center frequencies will result in a greater absolute

bandwidth from a given percentage bandwidth. This is an

attractive approach up to about 60MHz. Beyond this frequency,

the mechanical loading of the metal grid pattern on the sub-

strate leads to significant and undesirable damping of the SAW.

There are three advantages to using the new, 41.5 0 rotated

z-cut LiNO First, the coupling constants are larger than for

the old cut. This means that more acoustic energy can be

introduced into the sensor resulting in a larger output signal.

Secondly, the spurious response of the sensor to a uniform

image is smaller and further away from the main response peak

than was the case for the old cut. A discussion of spurious

acoustic modes in Deft sensors is found in Reference 31. If

the sensor bandwidth were increased then the spurious would be

within the bandwidth. Hence, it is important that the spurious

is as small as possible. The third advantage is that with

the rotated cut of LiNO 3the number of transducer finger pairs

required for optimum energy coupling decreased from 8 to 6 in



one direction and from 8 to 4.5 in the other direction. Fewer

finger pairs mean a larger percentage bandwidth.

The high resolution sensor will include these improvements.

This sensor will also include an improved transducer design.

The new transducers will be segmented in order to reduce their

capacitance. Reduced capacitance allows wider transducer

bandwidths. The resulting bandwidth leads to a significantly

greater utility of Deft sensors in feature extraction.

One of the limitations of current Deft sensors is that

these devices exhibit acoustic reflections from the regularly-

spaced metal pick-up fingers. These reflections lead to a

scalloping of the transform magnitude. This is evident in

Figures 34, 35 and 36. The ripples which can be seen make

feature extraction more difficult. For example, in Figure 37

by moving the circle from the center to the edge of the sensor

the shape and the number of ripples changes. The feature has

remained the same but the transform is really not invariant

to translation which is a requirement for the preprocessor

algorithms. Now refer to Figures 35 and 36. Notice that when

the feature is in two different angular orientations the

ripples may or may not appear on the "arms" of the transform.

Hence, the transform is really not just rotated when the image

rotates. There is also a shape change which is not desired.

A third problem with these ripples occurs in the computation

of image moments. The lower order moments are sensitive to

the partial derivatives of the transform at the origin.

Because of the ripples, these derivatives are drastically

altered. In addition, they also become a function of feature

position. In summary, ripples caused by reflections are very

undesirable.

The medium resolution sensor will incorporate a new metal

finger pattern spacing which will eliminate the reflections.

This new spacing causes reflections from metal lines to add

distructively. An important advantage of this spacing is

that critical metal-to-metal dimensions are not reduced. In
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general, device yield goes down as metal-to-metal dimensions

are reduced because it is then more likely that contaminates

will cause shorts across the metal lines.

A problem with current Deft sensors is that the CdS

squares on the sensor do not conduct uniformly. Measurements

have been made showing up to 2:1 variation in light conduc-

tivity over a sensor. This variation weights the image function.

In the transform domain the image transform is convolved with

the transform of the weight function. This tends to broaden

spectral peaks and reduce or eliminate sidelobes. We typically

observe peaks which are twice as wide as theory predicts. CdS

variation leads to another problem. The computed transform

may not be invariant to translation or rotate as the image

rotates. This is evident in Figures 34, 35 and 36.

It has been determined that film variation is a result

of the method used to deposit CdS on the substrate. The

material, in the form of a gas, is passed over the substrate

in a furnace. The substrate is almost as large as the furnace

tube so that flow rates near the substrate edges are faster

than at the middle. We presently have on order a new furnace

tube with a larger inner diameter. Uniform flow rates should

give uniform CdS film. An additional solution is to reduce

the .flow rate into the furnace in order to reduce turbulance.

The success of these changes will be measured when the new

equipment is in-place.

Another problem which was discussed in Section IV is the

inaccuracy of the transform phase computed by the sensor. This

is important in the method of moments. Part of the phase error

must come from the same sources which produce errors in the

transform magnitude. However, the sensor contains a phase term

which is a function of the electronics (amplifiers, filters)

and not the transform. These electronics were not originally

designed to provide a linear phase response. Some recent

measurements have been made which show that, indeed, the phase

is nonlinear. Since these filters must be redesigned to
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accomodate the new medium resolution sensor, they will be

redesigned to exhibit approximate linear phase response.

The final item to be considered is output signal level.

Present output signals are of the order of a microamp. In

order to amplify this signal and achieve a good signal-to-

noise ratio at the amplifier output, a rather narrow amplifier

bandwidth is required. This narrow bandwidth affects the

rate at which the sensor drive frequencies can be changed. If

signal-to-noise ratio was not a problem then drive frequencies

could be stepped every two microseconds which is the time

required to propagate the SAW across the sensor. This would

allow 5 x 105 Fourier components to be addressed every second.

But because of the need to narrow the output bandwidth, this

rate is reduced to about 103 components per second. If the

sensor output signal could be increased by a factor of 10

then 104 components per second would be possible.

The new medium resolution sensor will have an output

signal approximately eight times as large as current sensors.

This is because the 41.50 rotated z-cut LiNO3 results in

better coupling of energy into the SAW.

All the factors which have been identified as limiting

the performance of the Deft sensor in feature extraction

applications have been listed and improvements under develop-

ment discussed. In a number of cases, expected improvements

can be stated with high probability of success. In other

cases, improvements must be determined after new devices are

fabricated and tested. The medium resolution sensor will be

available by June 1981. The high resolution sensor will be

available by January 1982. These sensors should allow signi-

ficant improvements in feature extraction capability. It is

suggested that these new sensors be examined for their appli-

cability to feature extraction at the time they they are avail-

able. This could be done with little cost by simply repeating

the feature extraction experiments using the presently available

computer programs and the new design sensors.
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VI. SUMMARY AND CONCLUSIONS

The objective of this program was to develop, anaize

and evaluate theoretical concepts and strategies for top -

graphic feature extraction and image analysis using acousto-

optic (A-O) technology. To provide a frame of reference, a

general feature extraction system model was developed in

Section I. The most computation-intensive portion of the

feature extraction process is the prefilter function. The

purpose of this function is to reduce the large information

content of the image to a much smaller set of values which

can then be input to the decision processor. An important

conclusion of this study was that A-O devices are potentially

capable of implementing the prefilter function very efficiently.

The input/output function of these devices is defined by

equation (1). The device input is an image which is then trans-

formed, using equation(l), into an electrical signal which can

be input to a digital decision processor. The A-0 devices

have a number of desirable properties in this application. First

of all, the device input/output format is ideal for the appli-

cation. Secondly, lasers or precise optical alignments are not

required. Third, these devices are rugged and potentially

inexpensive. Finally, the function defined by equation(1)is

central to a number of promising prefilter algorithms.

Transform-based prefilter algorithms were examined in

Section III. Algorithms were developed there which are invariant

to feature translation, rotation and scale. This invariance

is highly desirable since it reduces the number of distinct

feature signatures which must be processed by the decision

processor. These algorithms require, as input, either the

image two-dimensional Fourier transform or the image two-

dimensional moments. Either of these functions can be computed

efficiently using A-O devices.

Some preliminary experiments were conducted using the

Fourier-based algorithms, test images and an A-0 device which
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was a Deft sensor. These experiments verified the invariance

properties of the algorithms. The microcomputer-based Deft

system was able to distinguish between three test patterns

which were presented to the system in arbitrary orientation

and scale. The success rate was 80%.

In spite of these promising results, present Deft sensors

are not capable of distinguishing realistic features in aerial

photographs. Present sensor limitations are identified and

discussed in Section V. New Deft sensors are presently under

development which will significantly improve the capability

of this sensor in feature extraction applications. The

expected improvements in a n~umber of parameters can be predicted

fairly accurately. However, other parameters must be measured

after the new devices are available. It is suggested that the

best way of determining the applicability of new sensors to

feature extraction is to rerun the experiments reported here

using the already written computer programs but using the new

sensors. Since the microprocessor-based Deft system is already

in-place and the computer programs written, these investigations

could be accomplished with only a few man-weeks of effort.
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APPENDIX A - Method of Invariant Fourier Signatures
Assembly Code Listing

This Appendix consists of a listing of the assembly

language program which computes invariant Fourier signatures.

This program was written to run on the Deft Laboratories'

microprocessor-based test bed. All addresses and opcodes are

hexadecimal. In the operand column of the statements the

following symbols are used:

$ Hexadecimal Prefix

% Binary Prefix

H Hexadecimal Postfix

D Decimal Postfix

B Binary Postfix

# Denotes Immediate Addressing Mode

The entry address for this program is $2000.

A-ii. I'



'w - -lw

METHOD OF INVARIANT FOURIER SIGNATURES

1800 ORO $1900
01900 TEMPi RMB 1

1901 TEMP2 RMB 1
1902 TEMP3 MB 1

*1803 TEMP4 RMS 1
*1904 __TEMP5 RMB 1

-1905 - TEMP6 RMD 1
01806 BCD1 RMS 1

1907 BCD2 RMD 1
1824 aR a 1824
1824 CORi RMB 1
1825 COR2 RMS 1I _____ __ __ ___

1827 COR4 RMB 3
182A COR9 RMB 1
1823 CORlO RMlD 5

*1830 UIl RMB 1
1831 U12 RMD 1

*1932 VJ1 RMB I
1933 VJ2 RMB 2

211835 DTINE RMD 1
1183D ORG $183D.

183D NSAM' RMB 1

163E LOGS RMB 18__
1850 PUT--RMBD - f -
1933 ORG $183

2 1933 FFTN RMB 2
IBEO ORG $18E0
18E0 REF RMB 8
1BES FIRST RMD 1

18EA Mh RMB 1
I8B N RMB 1
18----EC I RMB 1
iSED P RMD 1
18EE TAG RMB 1 _____________

I;- --- BEF THETA- RMhB- 2 ______________

* iF1 DTHETA RMI 2
18F3 PHI RMB 2

185DPHI RMB 2
18F7 STACKS RMB 2

18F9D RUNI RHB 2

19FD STOP RMB 2
19FF INT RMB 4

K!1903 51 RMB a
1903 92 RMB 8

___ 1913 S_ 3 RMS 8a _____

-fv IJB AVGT - M-- R6H

1921 P09 RIID 3
1924 NEG RMS 3
2A3F PASC EOU 6ZA;3F

A7IDEX EQU $2A17
1395 ROT15 EOU $1385 __ ___ _________

1376 VJEC 5 OU It*J- 1376-
29AE qIsBCD EOU *29AE
2A4C RDDEFT EQU $2A4C
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METHOD OF INVARIANT FOURIER SIGNATURES

29FE TUNE EQU 629FE
2999 DELAY1 EOU $2999
292F TRAPIN EOU *292F
2960 TRAPFX EQU $2960

* 1000 FFT EQU $1000
2A2A WRITE EQU $2A2A
B000 MATH -EU $8000

* 290C PUSH42 EOU 6290C
28EF PUSH41 EQU $28EF

*28A3 PULL4 EQU 628A3
* 2700 RCORR1 EOU $2700

277F RCORR2 EOU $277F
OFFF FFTVT EOU . FFF
0000 RO EQU so
0000 ORO $O
0000 39 FCB $39

2000 ORG $2000

: FEATURE EXTRACTION PROGRAM

• . DEFT/PROJECTION/FFT METHOD

2000 CE 18 EO FEAT.1 LDX .REF CLEAR REF(I)

Fi 2003 C6 08 LDAB #8
2005 6F 00 FE1 CLR OrX

"2007 08 INX
2008 5A DECb I
2009 26 FA BNE FE1
2003 7F 18 ES CLR FIRST

S 200E 3O FD A6 JSR SFDA6
2 011 CE 25 7D LDX #LINE1
2014 C6 13 LDA9 $19D
2016 DO 2A 3F JSR PASC

* 2019 D FD A6 JSR SFDA6
201C CE 25 90 LDX *LINE2
201F C6 13 LDAB #19D
2021 3D 2A 3F JSR PASC
2024 D FD A6 JSR $FDA6

*202A CE 25 A3 LDX #LINE3
202D C6 15 LDA3 -#21D _________________

. 202F BD 2A 3F JSR PASC
* 2032 BD FD 36 JSR $FD36 INCH

2035 84 OF ANDA #$OF
2037 -07 I8 3t- STAA LOGS

* 203A C6 01 LDAB 01
203C 4A FE2 DECA
203D 20 03 BLT FE3

* * 203F 58 ASLB
2040 20 FA BRA FE2
2042 "-TCTAU -N3A0P

* 2045 3D FD A& FE4 JSR $FDA6
2049 CE 25 38 LOX #LINE4
H243 C6 08 LOAD #
204D DO 2A 3F JSR PASC
2050 3D FD 36 JSR $FD36 INCH

2054 81 59 CHPA #$59
2056 26 01 BNE FE5
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METHOD OF INVARIANT FOURIER SIGNATURESU
2058 3C INCB YES

* 2059 F7 19 E9 FE5 STAB CIR
205C 7D 18 ES TST FIRST
205F 27 02 BEG FE6
2061 20 46 BRA FEll
2063 7D 18 E9 FE6 TST CIR

7 -2066 27 12 -- BEG FE7
2068 BD FD A6 JSR SFDA6

:- 206D CE 25 CO LDX $LINE6
206E C6 15 LDAB #210D
2070 BD 2A 3F JSR PASC
2073 86 05 LDAA #5

02 2088 818 5A STAR -M
2078 20 19 BRA FES

,:"207A 90 FD Ad FE7 JSR $FDA6
0; 27D CE 25 CO LDX .LINE6

2080 C6 14 LDAB 20D, 2082 BD 2A 3F JSR P ASC
,, 2085 BD FD 36 JSR $FD36 INCH
:: 2088 81 54 CMPA $$5A

208A 27 EE BEG FE7208C 84 OF ANDA #$F

20SE 27 EA BEG FE7

2090 B7 18 EA STAA H
, , 2093-36 F .. PSHA ...

2094 86 80 LDAA #$80
2096 5F CLRB
2097 30 TSX

* 2098 6D 00 FE9 TST OrX
209A 27 06 BEG FEIO
209C 6A 00 DEC OX

: 209E 47 ASRA.
209F 56 RORe
20Ao 20 F6 BRA FE9

*i 20A2 B7 18 F5 FE1O STAA DPHI
20A5 F7 18 F6 STAB DPHI+I

20A~-32......PULA-

* 20A9 BD FD A6 FEll JSR $FDA6
20AC CE 25 DS LDX *LINE7
2OAF C6 13 LDAB #19D
2091 BD 2A 3F JSR PASC
2034 D FD 36 JSR $FD36 INCH
20 -C7PA ....
2099 27 14 BEG FE12A
20DB 84 OF ANDA $$F
20BD B7 18 ED STAA N
20C0 36 PSHA

____ 20C1 86 80 LDAA t$80
, -20C3 5F CIRB--

* 20C4 30 TSX
20C5 6D 00 FE12 TST OX
20C7 27 OE BEG FE13
20C9 6A 00 DEC OX
20CB 47 ASRA

ROAR----------

" 20CD 20 F6 BRA FE12
20CF 70 18 E? FE12A TST CIR
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METHOD OF INVARIANT FOURIER SIGNATURES

(1 2002 2E D5 SGT FEll

*'b 20D4 36 PSHA
2005 4F CLRA
2006 5F CLRB

* 2007 07 18 Fl FE13 STAA DTHETA

20DA F7 18F2 .STAB DTHETA+.
200D 32 PULA

* 20DE 8D FD A6 JSR SFDA6
20E1 CE 25 ES LDX #LINE8
20E4 C6 OE LDAB 014D

* ' 20E6 &D 2A 3F JSR PASC
20E9 BD FD 36 JSR $FD36 INCH
20EC 84 OF ANDA #$F

* . 20EE 37 18 EE STAA TAG

20F1 7F 18 F3 CLR PHI PHI=O
20F4 7F 18 F4 CLR PHI+1
20F7 CE CO 00 LDX #$COOO
20FA FF 18 EF STX THETA THETA=-PI/2
20FD 7F 18 EC CLR I
2100 CE 00 00 LDX #0

2103 FF 19 13 STX AVG
2106 FF 19 1D STX AVG+2

* 2109 FF 19 IF STX AYG+4
"C 2 oCSF 19 F7 STS STACKS

21oF sE OF FF LIs *FSTVT
2112 CE 00 00 FE14 LDX 10 LOOP: EACH CONTOUR
2115 FF 18 FF STX INT
2118 FF 19 01 STX ZNT+2
2113 7FI18ED CLR P
211E 7F 18 ES CLR__ FIRST
121 F6 18 EC Ff15--LDAB LOOPS EACHSA HPLE

2124 4F CLRA
2125 58 ASLB

34 26 49 ROLA
2127 CE 26 1A LDX ORVECT

212A BD 2A 17 JSR IDEX
2-120 X6 00 LDAA ' G£"-?AUB

* 212F B7 18 24 STAA CORI

2132 A6 01 LDAA llX
2134 57 19 25 STAA COR2
2137 36 18 EF LDAA THETA ANGLE

213A F6 18 FO LDAS THETA+_
---- 3V F8 18-F4 ADDB- PH --

* 2140 39 18 F3 ADCA PHI

2143 83 40 ADDA #S40 ADJUST QUADRANT
4 -2145 25 10 BM1 FE16

2147 37 18 00 STAA TEMPI

214A F7 18 01 STAB TEMP2
4F LR

* 214E 5F CLRB

214F FO 19 01 SUBs TEHP2
.6 2152 92 18 00 SBCA TEMPI

2155 20 09 BRA FE17

2157 5D FE16 TSTB

2156 26 06 INE FE17
* 215A 81 80 CMPA #$80

21 C 26 02 BNE FE17
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METHOD OF INVARIANT FOURIER SIGNATURES

215E 4F CLRA
215F 5F CLRB
2160 83 CO FE17 ADDA #$CO
2162 B7 18 2A STAA COR9
2165 F7 18 23 STAB CORIO
2168 7F 18 26 CLR COR3
14 i67Fi1 27 CLR COR4

Coll 216E BD 13 85 JSR ROT15 POLAR TO RECTANGULAR
2171 36 18 24 LDAA CORI
2174 F6 18 25 LDAB COR2
2177 CE 00 05 LDX #5
217A 47 FE18 ASRA
2179 56 -fOR--- .
217C 09 DEX
217D 26 F9 BNE FE18
217F FB 26 17 ADDB XZERO+1
2182 B9 26 16 ADCA XZERO
2185 B7 18 02 STAA TEMP3
2188 F7 18 03 STAB TENP4
218B BD 29 AE JSR BISBCD
218E FE 18 06 LDX BCD1
2191 FF 18 30 STX UII
2194 B6 18 26 LDAA COR3
2197 F6 19 27 LDAB COR4

2W 219A CE 00 05-
2c 219D 47 FE19 ASRR

219E 56 RORB
219F 09 DEX
21A0 26 FB BNE FE19
21A2 FB 26 19 ADDB YZERO+1

, 21A5 B9 26 18 DCAY zrRO
3: 21A8 B7 18 02 STAA TEMP3

21AB F7 18 03 STAB TENP4
A21E BD 29 AE JSR BISBCD

!J13 21B1 FE 18 06 LDX BCD1
2134 FF 18 32 STX VJi

B217 7D 18 E---FIRST
213A 27 OE BEG FE19A
21BC BD 2A 4C JSR RDDEFT
21BF BD 13 76 JSR VECT15 MAO
21C2 BD 29 2F JSR TRAPIN INTEGRATE
21C5 20 06 BRA FE19B
21C7 7E 21 21 FE19c JmP -FE15
21CA 7C 18 ES FE19A INC FIRST
21CD BD 29 FE FE193 JSR TUNE
21D0 86 00 LDAA #0

* 21D2 37 18 35 STAA DTINE
21D5 8D 29 99 JSR DELAY1
21DB 7D1 -E9 TST- CIR
21DB 27 44 BEG FE20
21DD 36 18 EF LDAA THETA CIR-i
21E0 F6 18 FO LDAB THETA+I
21E3 FS 18 F2 ADDB DTHETA+1
21E6 B9 18 F1 ADCA DTHETA
21E9 37 18 EF STAA-- THETA
21EC F7 18 FO STAB THETA+1 THETA-THETA+DTHETA
21EF 7D 18 FO TST THETA+1
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METHOD OF INVARIANT FOURIER SIGNATURES

21F2 26 D3 BNE FE19C
21F4 36 18 EF LDAA THETA
21F7 8B CO ADDA *$co
21F9 26 CC BNE FE19C
21FB BD 29 60 JSR TRAPFX THETA=+PI/2
21FE B6 19 02 LDAA INT+3 .
2201 36 PSHA
2202 36 19 01 LDAA INT+2
2205 36 PSHA
2206 86 19 00 LDAA INT+
2209 36 PSHA
220A B6 18 FF LDAA INT
220D 36 PSHA
220E 36 19 EC LDAA 1
2211 81 IF CMPA #31D
2213 27 6A BEQ FE23
2215 7C 18 EC INC I
2218 CE CO 00 LDX #$CT

2219 FF 18 EF STX THETA
* 221E 7E 21 12 JmP FE14

2221 B6 18 EC FE20 LDAA I
aI 2224 81 IF CMPA #31D

2226 27 18 BEG FE21
2228 7C 18 EC INC I
2223 B6 18 EF LDAA THETA
222E F6 18 FO LDAB THETA+I
2231 FD 18 F2 ADDD DTHETA+1
2234 B9 18 Fl ADCA DTHETA
2237 B7 18 EF STAA THETA
223A F7 18 FO STAB THETA+I
223D 7E 21 21 JmP FE15

* 2240 BD 29 60 FE21 JSR TRAPFX 1=31
2243 36 19 02 LDAA INT+3

4 2246 36 PSHA
2247 36 19 01 LDAA INT+2
224A 36 PSHA

• 2243 36 19 00 LDAA INT+I
224E 36 PSHA____
224F 6 18 FF LDAA INT
2252 36 PSHA
2253 36 18 F3 LDAA PHI

- i F4 . .LDAb9'- PHI+I-
* 2259 FS 18 F6 ADDB DPHI+I

225C 39 18 F5 ADCA DPHI
225F 37 18 F3 STAA PHI PHX=PHI+DPHI
2262 F7 18 F4 STAB PHI+I
2265 7D 18 F4 TST PHI+I
2268 26 -FM22

* 226A 96 18 F3 LDAA PHI
226D 80 80 SUBA #$80
226F 26 02 BNE FE22
2271 20 10 BRA FE24
2273 CE CO 00 FE22 LDX #ecooo

E2276 FF 15 T. THETA.
2279 7F 19 EC CLR I
227C 7E 21 12 JNP FE14

0A-7
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METHOD OF INVARIANT FOURIER SIGNATURES

227F 86 05 FE23 LDAA 65
2281 20 03 BRA FE25
2283 B6 18 EA FE24 LDAA H
2286 B7 18 50 FE25 STAA PUSHST

* 2289 F6 19 1B FE25A LDAB AVG AVG=AVG/2**M
228C 57 ASRB
228D F719 i --  STAB AVG
2290 F6 19 1C LDAB AVG+1

- 2293 56 RORB
2294 F7 19 1C STAB AVG+
2297 F6 19 10 LDAB AVG+2
229A 56 RORD

3-- 229B F7 1 l-D -STAB AVG+2
229E F6 19 1E LDAB AVG+3
22A1 56 RORB
22A2 F7 19 1E STAB AVG+3
22A5 F6 19 IF LDAB AVG+4
22A8 56 RORB
22A9 F7 19 IF STAB AVG+4
22AC F6 19 20 LDAB AVG 5
22AF 56 RORB
2290 F7 19 20 STAB AVG+5

O3 22B3 4A DECA
22B4 26 D3 BNE FE25A

* 22B7 7F 19 21 CLR Pas
22BA 7F 19 22 CLR POS+1
22BD 7F 19 23 CLR POS+2
22C0 86 FF LDAA tSFF
22C2 B7 19 24 STAA NEG

22C5 B7 19 25 STAA NEa+
* 22C8 B7 19 26 STAA NEG 2

22CO A6 03 FE259 LDAA 3,X REMOVE MEAN
22CD BO 19 20 SUBA AYG+5
22D0 A7 03 STAA 39X
22D2 A6 02 LDAA 2,X
22)4 2 9 F AQ- AU4

* 2217 A7 02 STAA 2PX
22D9 A6 01 LDAA l1X
22DB B2 19 1E SBCA AVG+3

0 22DE A7 01 STAA 1,X

__ 22E0 A6 00 LDAA OIX
2-2E2- - #--I- SDCA-- AVG+2---
22E5 A7 00 STAA OvX
22E7 23 18 BI FE25C FIND SCALE FACTOR
22E9 BA 19 21 ORAA P0s

22EC B7 19 21 STAA P0s
__ 22EF A6 01 LDAA 1,X

22F A 19 22 ORA- POS.+. .
22F4 37 19 22 STAA POS+I
22F7 A6 02 LDAA 2,X
22F9 BA 19 23 ORAA POS+2
22FC 97 19 23 STAA POS+2
22FF 20 16 BRA FE25D
2301 -4-19 24--FE2SC ANDA NEG

* 2304 97 19 24 STAA NEG
2307 A6 01 LDAA lX
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HETHOD OF INVARIANT FOURIER SIGNATURES

V 2309 34 19 25 ANDA NEG+I
3 230C 37 19 25 STAA NEG+

230F A6 02 LDAA 2,X
2311 34 19 26 ANDA NEO+2
2314 37 19 26 STAA NEG+2
2317 09 FE25D___ INX . ..
2319 b INX
2319 Os INX
231A 08 INX
2313 SC 10 00 CPX OFFTVT+1
231E 26 AD DNE FE259
2320 36 19 24 LDAA NEG
2323 F6 19 25 .LDAB NEG+l
2326 78 19 26 ASL NEO+2
2329 CE 00 00 LDX #0
232C 59 FE25E ROLB
232D 49 ROLA
232E 24 04 BCC FE25F
2330 08 INX
2331 OC CLC
2332 20 FS BRA FE25E

I 2334 FF 19 24 FE25F STX NEG
* 2337 36 19 21 LDAA POS

233A F6 19 22 LDAB POS+I
233D 79 19 23 ASL POS+2

S 2340 CE 00 00 LDX 0O
2343 59 FE250 ROLD

* 2344 49 ROLA
2345 25 04 BCS FE25H
2347 08 INX
2348 OD SEC

* 2349 20 FS BRA FE256
2349 FF 19 21 FE25H STX Pas
234E 36 19 22 LDAA POS+1
2351 D0 19 25 SUBA NEG+I
2354 2B 06 BI FE251

--- -19-25 . . . LDAA NEG+I
• 2359 97 19 22 STAA POS+1

235C 96 11 FE251 LDAA 017D
235E DO 19 22 SUBA POS+t

* 2361 2F 27 BLE FE25L
1 2363 37 19 22 STAA POS+1 I

2366"' 30 -TSX
* 2367 F6 19 22 FE25J LDAD POS+1 SCALE DOWN

236A A6 00 FE25K LDAA OoX
236C 47 ASRA

' 236D A7 00 STAA O,X
236F A6 01 LDAA 1 1PX
2 1371 46 RORA

* 2372 A7 01 STAA lx
2374 A6 02 LDAA 2PX
2376 46 RORA
2377 A7 02 STAA 2,X
2379 A6 03 LDAA 3,X
2373 46 RORA

* 237C A7 03 STAA 3PX
237E 5A DEC3

I A-9



METHOD OF INVARIANT FOURIER SIGNATURES

2381 08 INX
2382 08 INX
2383 08 INX
2384 08 INX
2385 8C 10 00 CPX #FFTVT+l
238a-26 DD BNE FE25J
238A 36 18 50 FE25L LDAA PUSHST
238D 5F CLRD
238E 3D 10 00 JSR FFT FFT
2391 D6 18 93 LDAA FFTN
2394 F6 18 34 LDAB .- FFTN+
2397 47 ASRA

* 2398 56 RORD
4 2399 CE 00 00 LDX ORO
4 239C 3D 2A 17 JSR IDEX

239F FF 18 FD STX STOP
23A2 CE 00 00 LDX ORO
23A5 FF 18 F9 STX RUN
23A8 CE 18 24 FE26 LDX OCOR1 PULL FFT/MAG/STORE
23AB 32 PULA
23AC A7 00 STAA OX
23AE 32 PULA
23AF A7 01 STAA 1,X
23B1 32 PUL_-
2332 A7 02 STAA 2PX

2723B4 32 PULA
21 23B5 A7 03 STAA 3,X

23B7 3D 13 76 JSR VECT15
23BA FE 18 F9 LDX RUN

37 - 2391) 96 18 24 L-----COR[-

23C0 A7 00 STAA OX
I3 23C2 36 18 25 LDAA COR2

23C5 A7 01 STAA 1IX
23C7 08 INX
23C8 08 INX
23C9 FF 18 F9 STX. RU..
23CC BC 18 FD CPX STOP

_____23CF 26 D7 BNE FE26
27D - BE 18 F7 LDS STACKS
23D4 3D FD A6 JSR $FDA6
23D7 CE 25 F6 LDX #LINE9

ca3DC OB LDAD .. WD
23DC 3D 2A 3F JSR PASC

t23DF 3D FD 36 JSR $FD36 INCH
I.t 3E2 91 59 CMPA ..U59

23E4 26 50 3NE FE29
-- 23E6 CE 00 00 LOX ORO __

23Ef---Fr--Ff-- ... ST)- RUN

0 23EC 86 01 LDAA 01
23EE 37 18 EC STAA I
23F1 3D FD A6 JSR SFDA6
23F4 3D FD A6 JSR SFDA6
23F7 FE 18 F9 FE27 LDX RUN PRINT SIGNATURE
23FA-- A6 0 . LDAA 0,X . . .. .. . .

23FC 37 18 02 STAA TEMP3
23FF A6 01 LDAA liX
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METHOD OF INVARIANT FOURIER SIGNATURES

2401 B7 18 03 STAA TEMP4
2404 08 INX
2405 08 INX
2406 FF 18 F9 STX RUN
2409 BD 29 AE JSR 3ISBCD
240C CE 18 06 . .. LDX . BCD1
240F BD 2A 2A JSR WRITE
2412 CE 18 07 LDX #BCD2
2415 BD 2A 2A JSR WRITE
2418 86 20 LDAA **20
241A BD FD 80 JSR $FDO BLANK
241D BD FD 80 JSR $FD8O
2420 B6 18 EC .LDAA I
2423 48 ASLA
2424 24 05 BCC FE28
2426 3D FD A6 JSR $FDA6
2429 86 01 LDAA 8 $1

{ 2423 B7 18 EC FE28 STAA I
242E FE 18 F9 LDX RUN
2431 BC 18 FD CPX STOP
2434 26 Cl 9NE FE27
2436 BD FD A6 FE29 JSR $FDA6

'I 2439 3D FD A6 JSR $FDA6
243C CE 26 01 LDX *LINE1O
243F C6 03 LDAB #11D
2441 BD 2A 3F JSR PASC
2444 BD FD A6 JSR tFDA6
2447 86 01 LDAA #1
2449 B7 18 EC STAA I
244C B6 18 EC FE30 LDAA I
244F 31 18 EE CMPA TAG
2452 26 53 BNE FE33
2454 16 TAB
2455 8D 02 9SR FE30A
2457 20 20 BRA FE32
2459 36 18 EA FE30A LDAA M
245C 37 18 00 STAA TEMPI
245F 4F CLRA
2460 58 FE31 ASLB
2461 49 ROLA
2462 7A 18 00 DEC TEMPI
2465 26 F9 BNE FE31
24661 -8 ASLV .........
2468 49 ROLA
2469 CE 00 00 LDX .RO
246C 3D 2A 17 JSR IDEX X-RO+*2*(M+)
246F FF 18 FD STX RUNi
2472 CE 00 00 LDX O RO_____ _____

2478 39 RTS
2479 FE 18 F9 FE32 LDX RUN STORE NEW SIGNATURE IN R(U
247C A6 00 LDAA OX
247E E6 01 LDAB lx
2480 08 INX
2481 09 INX. .
2482 FF 18 F9 STX RUN
2485 FE 18 FB LDX RUN1

A-I 1'
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METHOD OF INVARIANT FOURIER SIGNATURES

2488 A7 00 STAA OX
* 248A E7 01 STAB 1X

249C 08 INX
* 248D 08 INX

248E FF 18 FB STX RUN1
2491 FE 18 F9 LDX RUN
2494 BC 1B . .. CPX STOP

2497 26 EO ONE FE32
2499 CE 18 OF *LDX OREF-1

I 249C F6 18 EC LDAB I
249F 4F CLRA
24AO BD 2A 17 JSR IDEX

01 LDAA--- 41

24A5 A7 00 STAA OX SET REF(I)=1
24A7 F6 18 EC FE33 LDAB I
24AA 4F CLRA' 24AD CE 18 DF LOX #REF-1
24AE BD 2A 17 JSR IDEX

24B1 A6 00 LDAA OX
... 24B3 81 01 CMPA #1

2415 2 09 BEG FE34

24B7 7F 18 06 CLR BCD1
24BA 7F 18 07 CLR BCD2
24BD 7E 25 14 JiP FE37
24C0 FA 18 EC FE34 LDAB I REF(I)-1
24C3 8D 94 BSR FE30A
24C5 4F CLRA
24C6 C6 18 LDAR #24D
24C8 CE 19 03 LDX #$1
24CB A7 00 FE35 STAA 0,X S1,S 2 ,S3 NFPZ

r 24CD 08 INX
24CE 5A DECD

', 24CF 26 FA BNE FE35
24D1 86 80 LDAA #SO
24D3 B7 19 OA STAA S1+7
24D6 B7 19 12 STAA S2+7

~DW~DrlYA-- TAA S3+7
* 24DC FE 18 F9 FE36 LDX RUN CORRELATE R(O) WITH R(I)

24DF A6 00 LDAA OiX
24E1 B7 18 02 STAA TEMP3

. 24E4 A6 01 LDAA 1,x
24E6 B7 18 03 STAA TEMP4
. 24-9---08IN'

* 24EA 08 INX
24EB FF 18 F9 STX RUN
24EE FE 18 FB LDX RUNI
24F1 A6 00 LDAA O,X

I 24F3 97 18 04 STAA TEMPS
241e- AS--- 6- -- LDAA-- 1 ,X _(

@1 24F8 B7 18 05 STAA TEMP6
24F3 08 INX
24FC 08 INX
24FD FF 18 FB STX RUN1
2500 CE 18 02 LDX #TEMP3
2501--AD-27 00 JSR... RCORRf A-CCUMULAW-I'E

" 2506 FE 18 F9 LDX RUN
2509 BC 18 FD CPX STOP

* A-12
*1
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METHOD OF INVARIANT FLetR:ER SIGNATURES

0

7_ 250C 26 CE BNE FE36
250E 3D 27 7F JSR RCORR2 81/(S2*S3)**05
2511 3D 29 AE JSR BISBCD

* 2514 96 18 EC FE37 LDAA I
2517 BA 30 ORAA #$30

" ____2519 RD FD 80 JSR SFD80 PRINT I
251C 96 29 LDAA #$29
251E BD FD 80 JSR SFD80 PRINT ")o
2521 86 20 LDAA #$20
2523 BD FD 80-- JSR SFD80 BLANK
2526 86 30 LDAA 0*30
2528 BD FD 80 JSR $FD80 PRINT 0
2523 86 2E LDAA #52E
252D BD FD 80 JSR SFDBO PRINT %*
2530 CE 18 06 LDX #BCD1

8 2533 BD 2A 2A JSR WRITE CORR
2536 CE 18 07 LDX OBCD2

"! 2539 BD 2A 2A JSR WRITE
253C 86 20 LDAA #$20

0 253E BD FD 80 JSR SFDO BLANK
2541 BD FD 80 JSR $FD80
2544 B6 18 EC LDAA I
2547 81 04 CMPA #4
2549 26 03 BNE FE38254b BD FD A6 JSR FDA6
254E 7C 18 EC FE38 INC I
2551 36 18 EC LDAA I

41 2554 81 09 CHPA #9
2556 26 1F BNE FE39
2558 BD FD A6 JSR $FDA6_
2553 CE 26 OC LDX #LINE11

• 255E C6 OA LDAB #10D
2560 BD 2A 3F JSR PASC
2563 BD FD 36 JSR $FD36 INCH

* - 2566 81 59 CMPA #$59
2568 26 10 BNE FE4056A-- --- -LDAA H

* 256D 81 05 CMPA #5
256F 27 03 BEG FE38A
2571 7E 20 A9 JP FEll
2574 7E 20 45 FE38A JMP FE4
2577 7E 24 4C FE39 JmP FE30
25A7----E--E2D FE40 .FE2D F NTON
257D LINE1 EOU
257D 46 45 41 FCC 'FEATURE
2585 52 45 43 FCC 'RECOGNITION'

2590 LINE2 EQU *
2590 44 45 46 FCC 'DEFT/PROJECTION/'
25A0 46 46 54 FCC 'FFT'
25A3 LINE3 EQU $
25A3 53 41 4D FCC 'SAMPLE AVERAGE'
25B1 20 49 53 FCC ' TS 2**'
259 LINE4 EQU *

_ 2598 43 49 52 -- FCC 'CIRCLES?'-.

25C0 LINE6 EOU *

25C0 52 45 46 FCC 'REFERENCE LENGTH'
25D0 3D 32 2A FCC '=25*5'

A-13
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METHOD OF INVARIANT FOURIER SIGNATURES

I 25D5 LINE7 EOU
25D5 44 45 4C FCC 'DELTA THETA--P/'

'i25E5 32 2A 2A FCC *2*
25E8 LINES EDU t

* 25E8 52 45 46 FCC 'REFERENCE TAG-'
25F6 LINE9 EOU

-53 25P65349-4T . FCC 'SIGNATURE? -"
2601 LINE1O EQU *

, 2601 43 4F 52 FCC 'CORRELATION'
*260C LINE11 EOU

260C 43 4F 4E FCC 'CONTINUE?
_,2616 XZERO EOU *

OF 11 -FCB- *F'-l-/ -3857
* 2618 YZERO EOU *

2618 OD AA FCB SDPSAA 3498
'I 261A RVECT EQU *

261A 07 28 07 FC8 $T7$2BP67P$CSvSges72P$9,$2B
m, 2622 09 F4 OA FCB $9PSF4,SAvSCEP$BSBASCP$BB

262A OD Dl OE FC9 *Di$Dl $EPFFP$109*47Y*11P$AB
2632 13 2E 14 FCB $13p$2E#414ySDlvi#6v$99PSl8$87
263A 1A AO 1C FCD $lAtSAOt1Ct0E6uS1Fp,5FP$22vSD
2642 24 F6 28 FCB $24,$F6,$28,$lEvS2BP$SC,$2F,$45

• 264A 33 4F 37 FCB "33,$4FPS37,SBl,$3C,$74,$41,$9E
2652 47 3A 4D FCB 147P$3API4Dv*50PS53,SEBP$5B,$17
265A END

* .STATEMENTS =710

FREE BYTES =16551

0'I NO ERRORS DETECTED

A-14
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METHOD OF INVARIANT FOURIER SIGNATURES

I

1880 ORG $1886
1830 BLKSF RMB 1
18B1 RMB
1832 TFLAG RMB 1

* 1833 N RMB 2
18B5 LE RMS 2
18B7 ANGLE RMB 2
1839 L RMB 1
18BA LE1 RHB 2
18BC THETA RMB 2
18BE J RHB 2
l CO I RMB 2 . .. . . . .
18C2 BUTIR RMB 2

* 18C4 DUTlIZ RM 2
18C6 BUT2R RMB 2

_18C8 BUT2I RMB 2
• 18CA IP RMB 2

' __19CC II RMB 2
1CE NV2 RMB 2
IBDO NMI RMB 2
18D2 K RMB 2
18D4 JJ RMB 2

* i 1BD6 BSN RMB 2

18D8 Pas RMD 2
18DA MEG RMD 2
1 I8DC BSN1 RMB 2
1824 ORO $1824
1824 CORI RMB 1
1825 COR2 RMB 1
1826 COR3 RMB 1
.827 .. ... . . . COR4 RMB ..... 1

* 1828 DNUP1 RMB 1
1829 DNUP2 RMB 1
182A .COR ,---R 1

* 182B COR1O RMB 1
1800 ORG $1800
1800 CORS RMB I

* 1801 COR6 RMB 1
1802 COR7 RMB 1
1803 CORS RMB 1

* 1804 COR1l RMB I
1805 COR12 RMB 1
1806 COR13 RMB 1

* 1807 COR14 RMD I
1808 COR15 RMD 1
1-909.. CoRfI - A ---- I-
180A COR17 RMB 1
1803 CORIS RMB 1

.. 8OC. CFLAO RMB 1
* 180D COR19 RMB 2

ISOF ITER RMB 1
30O $1000

*, SUBROUTINE FFT
p REALP IMAG ALTERNATE IN STACK

ENTER WITH A ACCUM-MFOR-_

•* 2**M FFTI B-0 FOR FORWARD FFTP

* D -1FOR INVERSE FFT

, QA-15
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METHOD OF INVARIANT FOURIER SIGNATURES

1000 iF 183O FFT CLR LK SF

* 1003 CE 18 91 LDX #M
1006 A7 00 STAA 0,X
1008 E7 01 STAB lIX TFLA8
100A C6 01 LDAD #1

100C 4C INCA
"00D -4C -INCA
100E OC CLC
1OOF 6F 02 CLR 2,X
1011 59 Fl ROLD

* 1012 24 04 BCC F2
1014 6F 03 CLR 39X
016- 09 DEX
1017 5C INCB
1018 4A F2 DECA
1019 26 F6 BNE Fl
1018 E7 03 STAB 3PX N=2**(M+2)
101D CE 18 D1 LDX #M
1020 A6 02 LDAA 2PX
1022 E6 03 LDAB 3rX

____1024 58 ASL9
-102 49 ROLA
1026 A7 04 STAA 4PX LE=2**(M+3)
1028 E7 05 STAB 5px
102A A6 00 DAA0.. OX
102C C6 80 LDAB $80
102E 6F 07 CLR 7PX
1030 OC CLC
1031 56 F3 RORS

__ 1032 24 04 BCC F4
1034 6F 06 CLR- 6,X
1036 08 XNX
1037 56 ROR3
1038 4A F4 DECA
1039 26 F6 BNE F3

___. _ 1033 E7 06 STAB 6,X ANGLE-2**(15-M)

-03D--CE 19 [ f- LDX ..
1040 6D 01 TST lX
1042 2E OA BGT F4A
1044 4F cLRA FORWARD FFT
1045 5F CLRB
1046 EO 07 SUBS 7FX
10I8-A206 03C-
104A A7 06 STAA 6uX ANGLE--ANGLE
104C E7 07 STAB 71 X
104E 86 01 F4A LDAA #1
1050 A7 08 STAA BX
1052 FE 18 33 F5 LDX N MAIN LOOP
10.IO5--* --2 AC ...... JSR -BSCALr .....

1058 3e 19 30 ADDA 9LKSF
1053 37 18 30 STAA BLKSF BLOCK FLOAT POINT SCALE Fi
103E CE 18 B5 LDX #LE
1061 A6 00 LDAA OX

__ 1063 E6 01 LDAB lIX
1065-- 44 ..... LSRA . . . .. .. ..
1066 56 RORB
1067 A7 00 STAA OrX LEaLE/2
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METHOD OF INVARIANT FOURIER SIGNATURES

10619 E7 01 STAB 1,X
1063 44 LSRA
106C 56 RORD
106D A7 05SA v

*106F E7 06 STAB 67X LE1ZLE/2
1071_.A6 02_ - -__ - _LDAA 2,K -

1073 Ed 03 LOD 3PX
1075 58 ASLD
1076 49 ROLA
177 A7 02 STAA 2,X ANGLE-2WANGLE

*179 C7 03 STAB 3PX
* 1073 6F 07 CIR 7PX ___ THETA=0_________

107F 6F 09 CLR 9,X
1081 86 04 LDAA #

K1083 A7 OA STAA 100,X J-4
1085 30 F6 TSX

a1086 09 DEX
1087 09 DEX

51088 FF 18 C2 STX BUTIR
*1093 CE 18 BE LOX #

0SE A6 00 LDAA 0,X
pt1090 E6 01 LDAB I1,X

1 1 92_A7 OE_ __ STAA 14DvX 11=J ____

10 f4E £IO TA 5.
*1096 ED 05 AD 5,X

1098 A9 04 ADCA 4oX
'I109A A7 02 STAA 2,X I-J+STKPTR-1

109OC E7 03 STAB 39X
109E CE 18 BA F7 LOX #LE1 ____

IOAI A6 00 LDAA 0,x
*10A3 ES 01 LDAB 1,X

10AS ED 07 ADDB 7,X
10A7 A9 O6 ADCA 6,X

*10A9 A7 10 STAA 16DVX IP=I+LEI
l0AD E7 11 __STAB 17DoX __________

*1030 A6 00 LDAA 0,X
1002 B7 18 C2 STAA DIJTlR
1035 A6 01 LDAA 1,X

*1037 37 16 C3 STAA BUT1R+1
106A Ad 02 LDAA 2, X______

T0C 3719 C4 S__TAA_ BUT11i _ _
p109F A6 03 LDAA 3#X

IOCI B7 18 C5 STAA BUT11+1
110C4 FEi18CA LDX XP

10C7 A6 00 LDAA oX
10CP 37 18 CS STAA BUT2R __ ___

*10CE 37 18 C7 STAA BUT2R+l
1001 AS 02 LDAA 2vX
1003 37 18 CS STAA BUT21
00D6 AS 03 LDAA 3,X

3OS 7 18 C9 STAA BUT21+1____________
10DS CE 18 C2 - LX *UT1R _ _
10lDE AS 00 LDAA 0,X
1E0 ES 01 LOAD 1,X

~~. * *- 17 - *- -T W



rHOD OF INVARIANT FOURIER SIGNATURES

*6 10ZE2 5Q D U i
10E4 A9 04 ADCA 4pXS. 1Ed 37 18 24 STAA COR1

JOE E603LDAB 3px
10F2 A9 06 . ADCA dXe.10F4 37 18 26 STAA CR

lOFA 7F 18 2A CLR CORYSj10FD 7F 18 23 CLR __COR101To4_DBF~_S3_ __8
JSR R ROT15'-1103 FE 18 Co LDX I1106 36 18 24 LDAA CORI

1108 86 18 25 LDAA COR2110OE A7 01 STAA 1,X

111 A702STAA 2,X1115 36 1892 LDAA COR411_8A7 "03TA ,111A CE 18 C2 LDX *BUTlR111D A6 00 _ LDAA 0,x

111EO 05~ SUB, t

*1123 A6 02 LDAA 2vX

112F EO 07 SUBB 71,X*1131 A2 06 SICA - X

11136 F7 18 27 STAB COR41139 FE 18 BC LX THETAF13C F7- UU29~---~ STX __'CORV--- 
-113F 3D 13 85 JSR ROT15*1142 FEI18CA 

LDX IP
1149 A7 00 STAA Ox*114A 06 18 25 LDAA COR2

- fI:4D-Ar STAA L I X114F 06 18 26 LDAA COR3*1152 A7 02 STAA 2PX115 8i 6 18 27- IDAA CR1157 A7 03 STAA 3iX541159 CE 18 B3 -- LDX O N ____I M -46 -02 LDAA- 4X115E E6 03 LDAP 3uX*1160 ED OE ADDB 14DPX1162 AV OD ADCA 1.3DX1164 A7 OD STAA 13DPX I:X+LE1166 E7 OE STAB 14DPX116 A4 0 LDAA_ 2iX116A E6 03 LDAR 3vX*116C__El lA ADDI 26DPX

* ~A-1 8 
*- -0 

w, v 
-. W . --. US..



METHOD OF INVARIANT FOURIER SIGNATURES

H 116E AV 19 ADCA 25DX

1170 A7 19 STAA 25DPX 11-1X+LE
1172 E7 1A STAB 26DPX
1174 EO 01 SUBS 1,X Zl-N

* 1176 A2 00 SBCA OX

1178 20 07 BLT F7A
117A 2E 08 BOT F8

* 117C 3D TSTB
117D 27 02 BEC F7A
117F 20 03 BRA F8
1181 7E 10 9E F7A JNP F7

1184 A6 09 FS LDAA 9,X

1186 E6 OA LDAB 1ODPX
1188 ED 05 ADDB 5,X
118A AV 04 ADCA 4vX
118C A7 09 STAA 99X THETA=THETA ANGLE
11SE E7 OA STAB ODVX
1190 A6 03 LDAA 11DPX
1192 EA OC LDAB 12DFX
1194 CB 04 ADDS $4
1196 89 00 ADCA #0
1198 A7 03 STAA 11DYX J=J+4

* i 119A E7 OC STAB 12DX
119C EO 08 SUBS 8,X J-LEI
119E A2 07 SBCA 7,X

* IIAO 2D 07 BLT F8A
11A2 2E 08 DOT F9
11A4 5D TSTB

* 11A5 27 02 BEG FSA
11A7 20 03 BRA F9
-11A--7E-85~-F8A- JNP . F6

* 11AC 6C 06 F? INC 6,X L-L+1
11AE A6 06 LDAA 6,X
1130B DO 18 D SUBA N L-N

, 11B3 2E 03 BOT F9A
11B5 7E 10 52 JmP F5
IIBS--A600 .... Fg9A ... LDAAF- Ox D1TREVERgA

11A E6 01 LDAB lox
I1BC 47 ASRA
11B9D56 RORD
lBE A7 13 STAA 27DPX NV2=N/2
11CO E7 IC STAB 28DX
-lC2 A6 00 .. LDAA- OX .

* 11C4 E6 01 LDAD lx
11C6 CO 04 SUBS 04
ii € 2oo SDCA #0

* 11CA A7 1D STAA 29D,X NNI=N-4
11CC E7 1E STAB 30DPX

- 1iCE '6F 2 -'...... ..... CLR . 33D,X

1100 86 04 LDAA #4
11D2 A7 22 STAA 34DPX JJ-4
llD4 6F 19 CLR 25DX
1ID6 A7 1A STAA 26D8X 11X4
11D8 30 TSX

11DA 08 INX
___11D FF 18 CO STX I InSTKPTR+3

A-19 ., .



METHOD OF INVARIANT FOURIER SIGNATURES

I

IIDE FF 18 IE STX J-1
11E1 CE 18 BA FIO LDX .LE1
11E4 A6 06 LDAA 6pX
11E6 E6 07 LDAB 7rX

S,11ES EO 05 SUBD 5,X I-J
11EA A2 04 SBCA 4,X
1iEC 2C 4A W.E Fl .
1lEE FE 18 BE LDX J
ilFi A6 00 LDAA 0,X
11F3 37 18 C2 STAA BUTIR
11F6 A6 01 LDAA 1,X
11F8 B7 18 C3 STAA BUT1R+
1F 46 02 LDA- 2,X
11FD 97 18 C4 STAA BUTI
1200 A6 03 LDAA 3#X

* 1202 37 18 C5 STAA BUTl1 1
1205 FE 18 CO LDX I

I! 1208 A6 00 LDAA O,X
120A E6 01 LPAD 1,X
120C FE 18 BE LDX J
120F A7 00 STAA OX
1211 E7 01 STAB 1,X
1213 FE 18 CO LDX I
1216 A6 02 LDAA 2PX
1218 -6 LDAD 3,X
121A FE 18 BE LDX J
1210 A7 02 STAA 2vX
121F E7 03 STAB 3PX

@ 1221 FE 18 CO LDX I
1224 36 18 C2 LDAA BUTIR

' 1227 A7 00 SaTA Orx
S:1229 96 18 C3 LDAA BUTIR I

122C A7 01 STAA lvX
122E 36 18 C4 LDAA BUTir

1231 A7 02 STAA 2,X
1233 B6 18 C5 2LDA5 BUTI_
12 A26-A 7- 0 . . STAA 36X
1238 CE 18 BA Fll LDX LE1

123B A6 14 LDAA 20DsX
i-23D E6 15 LDAD 21D X
123F A7 18 STAA 24DPX K-NV20.j 1241 E7 19 STAB 25DX-- I2-4X"-- EJ--f ----Fr'f --  SUBB 27DX K 3Jj-

0 1245 A2 1A SOCA 26D:X
,1247 2C 24 DOE F13

1249 A6 04 LDAA 4PX
1247 E6 05 LDAD 5X
1249 EO 19 SUBB 25DvX
125 -218 - SBCA- 24D X -

O 1251 A7 04 STAA 4X J-J-K
1253 E7 05 STAB 52X

125A61 L A 20DlX

1257 E6 18 LDA- 27DX
1259 EO 19 SUBB 25DPX

... .. 125 - 42 - ... ..... SBCA - 24DPX .. . .... . . ..
•125D A7 1A STAA 26DPX JJ-JJ-K

--__ .125F -E7 19 STAB 27Dvx

• ~A2o0, ~

4%A-[
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METHOD OF INVARIANT FOURIER SIGNATURES

0

1261 A& 10 LDAA 24DvX
1263 E6 19 LDAB 25DPX1263 47 ASRA
1266 56 RORD

S1267 A7 18 STAR 24DPX K-K/2
1269 E7 19 STAB 25DPX

1269- 20 D6 O. BRA ... F12
126D A6 04 F13 LDAA 4PX
126F E605 LDAB 5rX
-271-ES 19 ADDS 25D,X

* 1273 A9 18 ADCA 24DX
1275 A7 04 STAA 4rX J=J+K
1277- E O-5 STAB 5X,

1279 A6 06 LDAA 6uX
1273 E6 07 LDAS 7PX
127D CS 04 ADDS *4
127F 89 00 ADCA #0
1281 A7 06 STAA 6,X 1=I+4
1283 E7 07 STAB 7,X
1285 A6 1A LDAA 26DPX
1287 E6 19 LDAD 27D,X
1289 ED 19 ADDS 25DvX
1283 A9 18 ADCA 24DX
128D A7 1A STAA 26DPX JJ=JJ+K
128F E7 19 STAB 27DX

* 1291 A6 12 LDAA IDeX
1293 E6 13 LDRB 19DPX
1295 CB 04 ADDS 04

0 1297 89 0 ADCA #0
l 299 A7 12 STAA 18DpX P= 11=11+4

129B--E- 13 STAB 19D,X
* 129D EO 17 SUBS 23DPX II-NMI

129F A2 16 SBCA 22DX
12A1 2D 06 BLT F1S

0' 12A3 2E 03 DOT F14
12A5 5D TSTB
12 j-2-T"6-1EO BEG~~ F15

• 12A8 39 F14 RTS
12A9 7E 11 El F15 JP FIO

A-21,

0i
,.1 . . ,1 . + .



METHOD OF INVARIANT FOURIER SIGNATURES

S5UIROUTIIE NSCALE
* BFP SCALING OF DATA IN STACK
O VECTOR CONSISTS OF N/2# 2 BYTE

NUMBERS. ENTER WITH N IN X REG.
$ RETURNS BLOCK SCALE FACTOR IN A REDo

O 12AC FF 18 D6 BSCALE STX BSN
* -2AF ---FFIG DC7 STX BSN1 ---

1232 CE 00 00 LDX #0
12B5 FF 18 DO STX P0s
1298 CE FF FF LDX *SFFFF
12BB FF 18 DA STX NED
12BE 30 BSl TSX
12DF'-- 08IX-

12C0 08 INX
12C1 08 BSlA INX

S12C2 09 NX

12C3 E6 01 LDAB lrx
12C5 A6 00 LDAA OX
1 2C7 2B QE BMI D$2

* 12C9 BA 19 DO ORAA POs
12CC FA 18 D9 ORAB P0S+1
2CF 7 18 DO STAA Pas

• 12D2 F7 18 D9 STAB POS+
12D5 20 OC BRA Bso
-2D7--4-IB- ABS- AND--- NEG ..........
12DA F4 18 DO ANDS NEG+l
12DD B7 18 DA STAA NED
12E0 F7 18 DB STAB NEG+I
12E3 B6 18 D6 BSO LDAA BSN
12E6 F6 18 D7 LDAB BSN+

--sUBB- 72
12E1 82 00 SBCA 0
12ED B7 18 D6 STAA BSN
12F0 F7 18 D7 STAB BSN+l
12F3 2E CC BOT BSIA
12F5 5D TSTB
TI2 -26-C9 BNE BS1A

* 12FB 96 18 DA LDAA NEG
12FB F6 19 DB LDAB NEO+1

• , --- CE 000 LDX----0
1301 58 BS4 ASLB
1302 49 ROLA

* - [30 4 O3 BCC... S-

1305 08 INX
1306 20 F? BRA 3S4
1308 09 BS5 DEX
1309 09 DEX
130A FF 18 DA STX NED

- 1 8 fD5LDAA- P08
1310 F6 18 D9 LDAB POS+1
1313 CE 00 00 LDX #0

1316 D SEC
ebl 1317 59 ROLB

1318 20 01 BRA BS6A
131-k 5 .9 1.. 96 ASLi ..-.

* 1319 49 BS6A ROLA
131C 25 03 BCS BS7

O ,A-22.. ...... . . .- _|"' ]



MFTHOD OF INVARIANT FOURIER SIGNATURES
p

(. 131E 00 INX
* 131F 20 F9 BRA BS6

1321 09 S7 DEX
1322 09 DEX
1323 FF 18 D8 STX P0s
1326 CE 18 D8. . LDX #POS .

1329 E6 01 LDAS 1,X
* 1329 EO 03 SUBS 3,X

132D 29 04 BHM BS8
132F A6 03 LDAA 3,X
1331 A7 01 STAA 1,X
1333 6D 01 BSs TST lX _ POS+1-SCALE FACTOR

1335--26 02 BNE S9
. 1337 4F CLRA

1338 39 RTS BLOCK S.F.=O
1339 30 BS9 TSX
133A 08 INX
1339 09 INX
133C 08 BS9A INX SCALE DATA

* 133D 08 INX
133E 36 18 D9 LDAA POS+1

j 1341 23 10 BM BS1l
, 1343 37 18 DS STAA Pas

1346 A6 00 LDAA OX
134S-E6 01 LDAB 1 .. .. .... . ..... . ....

, 134A 58 9S10 ASLB
1349 49 ROLA
1i4C 7A 18 D8 DEC POS

* 134F 2E F9 BOT BS10

__ 1351 20 06 BRA B512
-1353-6 00 ... 1- LDAA O,X

I 1355 E6 01 LDAB 1,X
1357 47 ASRA

• Ei 358 56 RORD
1359 A7 00 BS12 STAA O,X
1353 E7 01 STAB 1,X
135D-- 6 N DC... LDAA-- BSNI
1360 F6 18 DD LDAB BSN1+1
1363 CO 02 SUBS #2

, 1367 97 18 DC STAA BSN1
* 136A F7 18 DD STAB BSN+11

136D -2E CD BOT . DS9A .
136F 5D TST9
1370 26 CA BNE BS9A
1 372--Bif- - LDAA 'P- + 1

* 41375 39 RTS

I

P'I

A-23
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METHOD tJF INVARIANT FOURIER SIGNATURES

* *
* CORDIC ALGORITHN ITER ITERATIONS

1374 86 OF VECT15 LDAA #15D VECTOR? 15 ITERATIONS
* 1370 B7 18 OF STAA ITER

137' 7F 18 2A VECT CLR COR9 VECTOR: ITER ITERATIONS
1370 -7F 18 23- CLR CORIO
1384 86 01 LDAA #1
1384 20 07 BRA LCORO
138! 86 OF ROT15 LDAA #150 ROTATION: 15 ITERATIONS
138) 97 18 OF STAA ITER
1384 96 80 ROT LDAA #$S80 ROTATION: ITER ITERATIONS
1389 CE 14 19 LCO-RO LDX #DLO -__

1380 FF 18 OD STX COR19
- 1391 CE 18 00 LDX OCOR5

1394-" A7 OC STAA *CX
139? A6 2A LDAA $2AvX
1399 A7 OA STAA $AX
1398 6F 08 CLR $BX
139w A6 24 LDAA $24sX

, 139P E6 25 LDAB S25,X
BD 13A1 B 14 91 JSR SCALE

9 13A4 A7 00 STAA OX
13A4 A6 26 LDAA $26PX
1 A - 6 27---- -LDA - $27,X ......
13A4 BD 14 91 JSR SCALE
13Aq A7 01 STAA leX
13AF A6 00 LDAA OvX
13BA A4 01 ANDA 1,X

__ 13B4 A7 01 STAA 1,X

• 13B) 46 25 LDAA $25.X
1399 A7 24 STAA $24PX

1394 6F 25 CLR ' Sl5tX
13BO A6 27 LDAA $27,X
13BF A7 26 STAA $26,X
13CA --6F-27 -CLR -- 27,X

O 13CA 6F 02 LCOR1 CLR 21X
13CA 6F 03 CLR 3,X
13c? 6F 0 CLR 8pX
13C9 6F 09 CLR 9,X
13CR 6F 28 CLR $289X
I3CO -- 2-4- LDAA- ... 624iXi
13CP 84 EO ANDA W$EO
13DA 2C 01 DOE LCOR2
1393l 43 COMA

13D4 E6 26 LCOR2 LDAB $26,X
-- ___ 13D4 C4 EO ANDS f$EO

3Dm --2C-O 3GE- -LCOR3
13D4 53 COMS
13DO E7 29 LCOR3 STAB $29PX

C1O C6 01 LDAB #I
D13F E7 00 STAB OvX

13E1 AA 29 ORAA $29oX
13EI 27 05----... BE-- LCOR3A
13E4 3D 14 BC JSR DOWN2
13Eq 6A 00 DEC OpX

@ A-24
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METHOD OF INVARIANT FOURIER SIGNATURES

T 13A 6F 04 LCOR3A CLR 4,X
13EC A6 OF LDAA *FX
13EE A7 05 STAA 5,X
13F0 CE 15 32 LDX #CTABLE
13F3 FF 18 06 STX COR13
13F6 FE 18 06 LCOR4 LDX COR13 MAIN LOOP
13F9 A6 00 LDAA OX
13F3 E6 01 LDAB 1,X
13FD 08 INX
13FE 08 INX
13FF FF 18 06 STX COR13
1402 FE 18 0D ... LOX COR19
1405 08 - ]NX

* 1406 08 INX
* 1407 FF 18 OD STX COR19

140A CE 16 00 LDX *COR5
140D 3D 14 AD JSR TSTCFL
1410 2C 03 DOE LCOR5
1412 3D 14 A4 JSR COMP
1415 ED 2B LCOR5 ADDS $2BoX
1417 A9 2A ADCA $2AX
1419 A7 2A STAA $2APX

* 1419 E7 2B STAB $2B,X THETA DONE
141D A6 26 LDAA $26,X _141F ES 27 LDAB $27eX

* 1421 D 14 AD JSR TSTCFL
1424 2C 03 DOE LCOR6
1426 3D 14 A4 JSR COMP
1429 D 14 D5 LCOR6 JSR DOWN
142C CE la BO LDx00-
142F ED 03-- .ADDI 3,X

• 1431 A9 02 ADCA 2PX
1433 A7 02 STAA 2PX
1435 E7 03 STAB 3,X X DONE
1437 A6 24 LDAA $24,X

4 .1439 E6 25 LDAB $25PX
1439- .D-4A- JSR . TSTCFL?

* 143E 2D 03 BLT LCOR7
1440 DO 14 A4 JSR COMP

1443 BD 1 DLCOR7 _JSR _DOWN
• 1446 CE 18 00 LDX SCOR5

1449 ED 09 ADDS 9,X
O44 --A9 ........... ADCA. 8, |

1440 A7 26 STAA $26oX
144F E7 27 STAB *27,X Y DONE

-1451 A6_ lA _- LDAA 2A 9,X
1453 A7 OA STAA $APX
1455 6A 05 DEC 5PX
.1457"-E L 2 OZ- -LDX...... 2-X ........

* 1459 FF 18 24 STX CORI
145C FE 1B 26 LOX COR3

., T1SF FF 18 08 STX COR15
1462 36 18 05 LDAA COR12
1465 26 OF ONE LCOR4

* 146A 6D 00 TST Orx
146C 27 03 BEG LCORS

0 A-25
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METHOD OF INVARIANT FOURIER SIGNATURES

146E ED 14 BC JSR DOWN2
1 1471 6D 01 LCOR8 TST 1,X
1473 27 13 BEG LCOR12
1475 A6 24 LDAA $24PX

* 1477 A7 25 STAA $25rX
1479 2A 06 BPL LCOR9
1-473 86 FF . LDAA #$FF
147D A7 24 STAA $24PX
147F 20 02 BRA LCORIO
1481 6F 24 LCOR9 CLR 024PX
1483 A6 26 LCOR1O LDAA S26,X
1485 A7 27 STAA S27PX
1487 2A 05 RPL LC-OR11

- 1489 86 FF LDAA #$FF
148B A7 26 STAA $26PX
148D 39 RTS
148E 6F 26 LCORl CLR $26rX
1490 39 LCOR12 RTS

1 S

II S RETURNS RESCALE FACTOR IN A

1491 4D SCALE- TSTA
R3 1492 27 07 BEG LSC3

1494 43 COMA
1495 2703 -DEf-- -- LsC2

* !& 1497 86 00 LSCI LDAA #0
2 1499 39 RTS

149A 50 LSC2 NEGB
1498 C4 80 LSC3 ANDB #$80
149D 27 02 BEG LSC4
149F 20 F6 BpR----SC1
14A1 B6 01 LSC4 LDAA #1
14A3 39 RTS

-RETURNS 2'S COMP IN AB
T--4A -50 CGHP---NEGB .. .
14A5 25 02 BCS LCP1

S 14A7 40 NEGA
...- ----3 RTS
14A9 43 LCP1 COMA

'1 14AA 39 RTS
i$

* RETURNS CONDITION CODE REGISTOR STATE
14A 6D OC TSTCFL TST SCvX
14AD 2E OA DOT LT2

___14AF 6D OA TST SAPX
71431 2C 03 DOE . LT1

1433 6D 03 TST $8,X
1435 39 RTS
1436 6D OC LT1 TST $CpX
148 39 RTS
1439 6D 26 LT2 TST $26,X
149i 39 RTS

A -

. . .. . . ... .. . . . . .. . . .. . . . ."



METHOD OF INVARIANT FOURIER SIGNATURES

149C A6 24 DOWN2 LDAA $24,X
O 14BE E6 25 LDAB $25oX

I 14C0 47 ASRA
14C1 6RR

* 14C2 47 ASRA
14C3 56 RORB
14C4 A7 24 STAA $24,X

• 14C6 E7 25 STAB $25vX
14C8 A6 26 LDAA $26PX
14CA -- E6 27 LDAB *27,X
14CC 47 ASRA

__ 14CD _56 RORB

' 14CE 47 ASRA
14CF 56 RORB
14D0 A7 26 - ~ STAA $26PX
14D2 E7 27 STAB $27vX

O 14D4 39 RTS

i_, * RETURNS APB SCALED DOWN 2**-(I-2) BITS
14D5 EE OD DOWN LDX $DoX
14D7 6E 00 JmP OX

_____ 14D9 20 2E DLO BRA DL8
14DB 39 RTS

* 14DC 39 RTS
14DD 39 RTS

F) 14DE 39 RTS
* 14DF 20 26 BRA DL7

14E1 20 22 BRA DL6
14E3-20 1E BRA DL5
14E5 20 IA BRA DL4
14E7 20 16 BRA DL3

,l i4E9 20 12 BRA DL2
14EB 20 OE BRA DLI
14ED 20 1B BRA DL9

f4EF 20 IC BRA - Dill
* 14F1 20 IE BRA DL12

14F3 20 20 BRA DL13 _ _ _ _ _

.4F5- 20 22 BRA .DL14
14F7 20 24 BRA DL15
14F9 20 26 BRA DL16
14FB 47 DLI ASRA-

• 14FC 56 RORB
14FD 47 DL2 ASRA
; 14FE 56 RORD
14FF 47 DL3 ASRA
1500 56 RORB

.... .150i -47. . DL - ASRA -
O 1502 56 RORB

1503 47 DL5 ASRA! 1=3 --5 ORB

1505 47 DL6 ASRA
1506 56 RORB
1507 47 DL7 ASRA

* 1508 56 RORD
S. 1509 39 DLS RTS

A-27
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METHOD OF INVARIANT FOURIER SIGNATURES

(f 150A" 8 Eb DL9 BSR SWITCH
* 150C 39 DL1O RTS

150D SD 18 DL11 BSR SWITCH
150F 20 17 BRA DL22
1511 8D 17 DL12 BSR SWITCH
1513 20 12 BRA DL211515 8D 13 DL13 BSR SWITCH

1517 20 OD BRA DL20
'1519 8D OF DL14 BSR SWITCH

151820 08 BRA DL19
* 151D 8D 08 DL15 BSR SWITCH

151F 20 03 BRA DL18
1521 8D 07 DL16 BSR SWITCH

* 1523 57 ASRB
1524 57 DL18 ASRB

'- 1525 57 DL19 ASRB
1526 57 DL20 ASRB

' 1527 57 DL21 ASRB
1528 57 DL22 ASRB

* 1529 39 RTS

2-- 152A 16 SWITCH TAB
152B 2A 03 BPL swi
152D 86 FF LDAA #$FF ___

152F 39.. RTS
1530 4F SW1 CLRA
1531 39 RTS

1532 CTABLE EQU *
1532 40 00 FCB $40,0
1534-20 00 -FC- S2044-

• 1536 12 E4 FC9 $129SE4
1538 09 FB FCB 9vSFB

A 153A 05 11 FCB 5,$i1
* 153C 02 8B FCB 2,68B

153E 01 46 FCB 1t$46
1540 00 A3 FCB 0,$A3.. ..

• 1542 00 51 FCB 0,$51
1544 00 29 FCB -0,$29

4 0FCB -0-i4
* 1548 00 OA FCB OPSA

154A 00 05 FCB 0,5
-54C-0 0 3 - FCB 0, 3

- 154E 00 01 FCB 0,1
1550 00 01 FCB Ol

,4 1552 ENW
e . .. .... .. ... . .. . ... . ... .. .. .

0

STATEMENTS =762

FR E BYTES =i6495 -

__DETECTED

* A-28
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METHOD OF INVARIANT FOURIER SIGNATURES

1800 ORG $1800
* 1800 TEMP1 RNS II 1801 TEMP2 RMB 1

1802 TEMP3 RMB 1
* 1803 TEMP4 RNB 1

... 1804 TEMP5 RMB 1
1805 TEMP6 RMB 1

• 1806 BCD1 RHB 1
1807 BCD2 RMB 1
1808 CTR RHB I
1809 CTRI RMB 1

___1824 ORG $1824
1824 - CORI RMB 1

• 1825 COR2 RMB 1
1826 COR3 RMB 1
1' 1827- CORW4 - RNB 3-

182A COR9 RMB 1
1828 COR1O RMB 5
1830 UZI RMB 1

* 1831 U12 RMB 1
1832 V1 RMB 1
1833 VJ2 RMB 2

5. 1835 DTIME RMB 8
,__ 183D NSAMP RMB 1

183E LOGS RMB 16
* 184E STACKI RMS 1

184F STACK2 RMB 1
1850 PUSHST RMB 1

* 18A1 ORG $18A1
IeA1 SIGNI RMN 1
18A2 . . SING RMB. I

* 18EC ORG $18EC
18EC I RMB 1
ED P R 2

18EF THETA RMB 4
18F3 PHI RMB 2
.SFF- ORG *18FF

* 18FF INT RMN 4
1903 52 RMB 8
1-.. . 90 -.. .. . .. .S2 . . . ..RMB a...

* 1913 S3 RMB 8
1918 AVG RMB 6
-o .... MATH EOU $8000

• 330F SYNDET EOU $330F
3338 MUXSEL EOU $3338

A1376 -VEZT1f-T f-1376
* 2700 ORG $2700

$ SSUBROUTINE RCORR
CORRELATION OF TWO'REAL SEQUENCES .

• * CLEAR S1,$2,S3 FLOAT PT NS,
, ACCUMULATE IN EXTERNAL LOOPI ENTER AT RCORR1

¥-POX I-T'-D-URRENT SAMPLE
, ENTER AT RCORR2 TO COMPUTE S1/(S2*5S3)**0o5

2700 FF 18 00 RCORR1 STX TEMPI
o. LDAA-- O;X .

* 2705 E6 01 LDAD IX
2707 BD 28 7E JSR PUSH82

A-29



METHOD OF INVARIANT FOURIER SIGNATURES
6

270A FE 1n 00 LDX TEJIPZ
0 270D A6 02 LDAA 2rX

270F E603 LDAB 3PX
2711 BD 28 7E JSR PUSH82
2714 8601 LDAA #1

* 2716 DD 2A ED JSR MATHI X(I)*Y(I)
2-719 -CE 19 03- LDX s$
271C DD 28 64 JSR PUSH8s
271F 86 06 LDAA #6

L2721 DD 80 00 JSR MIATH 51=51+X(I)$Y(I)
* 2724 CE 19 03 LDX *Si

2727 BD 28 4A JSR PULLS
.t 273 FE1W O0 LDX TENP _

272D A6 00 LDAA ox
272F E6 01 LDAB 1,X
2731 BD 28 7E JSR PUSH82
2734 FE 19 00 LDX TEMPI
2737 A6 00 LDAA OvX
29 Ed 01 LA 1X

273B BD 28 7E JSR PUSH82
273E 86 01 LDAA 1
2740 BD 2A ED JSR MATH1 X()*X(I)
2743 CE 19 0 LDX #S2
2746 BD 28 64 JSR PUSH8B
274W57 06 - LDAA - 06

*2741 BD 80 00 JSR MATH S2-S2+X(X)*X(I)
274E CE 19 01 LDX S2
2751 BD 28 4A JSR PULLS
2754 FE 18 00 LDX TEMPI
2757 A6 02 LDAA 2,X
-1759-6 t E603 LDAS 3 X
2753 DD 28 7E JSR PUSH82
275E FE 18 00 LDX TEMPI

2761 DA6 02 - LDAA 2AX
2763 E6 03 LDAD 3vX

,__ 2765 BD 28 7E JSR PUSH82
LDAA #I-

276A BD 2A ED JSR MATHI Y(I)*Y(I)
, 276D CE 19 13 LDX #S3
O 2770 BD 28 64 JSR PUSHBS
02773 86 06 LDAA #6
.,.1 _2775 BD 80 00 JSR MATH S3-Y(I)*Y(r)

277U-CE 19 13 -LX #~Sl3
2779 DD 28 4A JSR PULLS
277E 39 RTS
277F CE 19 01 RCORR2 LDX #S2
2782 ID 28 64 JSR PUSH8s
2785 CE 19 13 LDX #S3
,.i I -- D- 64 . ...... JS9-- -...PUSH8

2783 86 01 LDAA #1
278D ID 2A ED JSR MATH1 92*S3
2790 CE 19 0 LDX #52
2793 BD 28 4A JSR PULLS
2796 FE 19 01 LDX S2 COPY

279C FE 19 OD LDX S2+2
279F FF 19 15 STX S3+2

O A-30
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METHOD OF INVARIANT FOURIER SINATURES

S

27A2 FE 19 OF LD S2+4
* 27A5 FF 19 17 STX S3+4

27A8 FE 19 11 LDX 92+6
27AD FF 19 19 STX S3+6
27AE 36 19 IA LD44 S3+7 EXP

__ D279l 47 ASF4
* 2732 3719 .A ST S . 3+7 S3-4NTzAL iTERATE

* 2735 86 OA LD4 #10D
2737 37 18 00 STA4 TEMPI

1 27BACE 19 08B RCI LDY #S
* 27BD 3D 28 64 JSw PUSH8

27C0 CE 19 13 LDY #S3

27C3 BD 28 64 JSF PUSH88.
* 27C6 86 02 LDr4 #2

27C8 BD 80 00 JSt_ MATH X-92/83
.... 27C3 CE 19 13 LD #$3

* 27CE BD 28 64 JSF PUSH88
___ 27D1 86 06 LDA #6

S 27D3 3D 800 0 JSIR MATH X-X+S3

27D6 30 TSY
27D7 6A 07 DEC 7PX X=O,5X
27D9 CE 19 13 LDY #S3

* , 27DC 3D 28 4A JSp PULLS
!___27DF 7A 18 00 DEC TEMPI

27E2 26-D6 BNE RC1
* 27E4 CE 19 03 LDY #S SQUARE ROOT DONE

27E7 3D 28 64 JSi PUSH88
27EA CE 19 13 LDY #S3

* * 27ED BD 28 64 JS* PUSH88
27FO0 86 02 LDO 02
27F2 D 80 00 .... MATH

* 27F5 CE 19 03 LDY #81
27F8 BD 28 4A JSp PULLS- S1=$1/($2*S3)**0.5
27F3 F6 19 OA LDq Si47

27FE 2E 43 BT RC4
2800 50 NEtq
2801 CE'19 03 - . LD? -- #81 .

* 2804 5D RC2 TS'j FLOAT TO FIX

2805 27 17 BEG RC3
2807 ..A6 00 LDf* .

* 2809 47 A51
21 280A A7 00 STs. Ox

... 280C -A6 Of . LDo -- l -X

* 280E 46 ROE,
280F A7 01 ST5 11X
2811 A6 02 LD* 2,X
2813 46 ROfs

. _ 2814 A7 02 STsa 2vX
2816 -03 LDfo 3,X

• 2818 46 ROE,
2819 A7 03 STr* 3,X
29 218 5A DEj -
281C 20 E6 WR RC2
281E CE 19 03 RC3 LD, *91

.282 1- 4F . . . . . CLA .....
• 2822 3D 28 C9 J% PUSH44

2825 86 DC LDs *$DC

A-31
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MIE IHUI UP~ INVAKI#4NI rUurlAELK~~es~~

2827 3&6_ PSNA
*.1 2828 86 46 LDAA #$46

I 282A 36 PSNA
2823 86 03 LDAA #$03
282D 36 PSHA
282E 4F CLRA
282F 36 PSHA SF=65536*32768/10000
2830 86 09 LDAA #9
2932 BD 80 00 JSR MATH SCALE FOR BCD
2835 CE 19 03 LDX #S1

* 2838 4F CLRA
2839 BD 28 A3 JSR PULL4
2B3C--FE 1 05DX .... -- __ __ _ __ __ _

I2

283F FF 18 02 STX TEMP3
* 2842 39 RTS

2843 CE 27 OF RC4 LDX #$270F EXP>O
2846 FF 18 02 STX TEMP3

J 2849 39 RTS

~* SUBROUTINE PULLS
* PULLS FLOATING PT N
Sx POINTS TO MsB

284A 33 PULLS PULB
41 2849 F7 18 4E STAB STACK1

284[---33 PULB
• 284F F7 18 4F STAB STACK2

2852 C6 08 LDAB 08
2854 32 PS PULA
2855 A7 00 STAA O,X
2857 08 zNX
2058 5A DECw-
2859 26 F9 BNE P8
2859 F6 18 4F LDAB STACK2
285E 37 PSHB
285F F6 18 4E LDAB STACK1
2862 37 PSHB

~2863W RTS ......... _

S SUBROUTINE PUSH88
PUgHES FLOATNG PT N ON STACK

* X POINTS TO MS3
.2, 2864 33 PUSHeS PULB
,, _265--F7-1-4E -STAB---- STACK[

* 2868 33 PULB
2869 F7 1S 4F STAB STACK2
286C C6 08 LVAB 08
296E A6 07 Pas LDAA 7,X
2870 36 PSHA

• 92 71-09 - EK' ........

* 2872 5A DECO
2873 26 F9 BNE P8

__2875 F6 18"4F LDAW STACK2
* _ 2878 37 PSHD

2879 F6 18 4E LDAB STACK1
2 8 7 C 3 7 . P S H ...

* 287D 39 RT8
w

,- ' i



METHOD OF INVARIANT FOURIER SIGNATURES

0

i * SUBROUTINE PUSH82
!* * PUSHES 2 BYTE NUMBER ON STACK

9 CONVERTS TO FLOAT
S SB IN A, LSB IN B

287E F7 18 50 PUSH82 STAB PUSHST
-_ 2881 33 PULe

f _ --2882 _7F718 4E STAB-- SfAK
2885 33 PULe
2886-7 .18 STAB STACK2

_2989 5F CLRB
288A 37 PSHB

____2888 37 PSHB
288C 37 -PSB PU

* 289D 37 PSHB
288E 37 PSNB
289F 37 PSHB
2890 F6 18 50 LDAB PUSHST
2893 37 PSHB

• 2894 36 PSHA
2895 86 07 LDAA #

. 2897 BD 0 00 JSR MATH NFPN
289A F6 18 4F LDAB STACK2

*289D 37 PSHB
29E F6 19 4E LDAB STACK1 ______ ____

*28A2 39 T

, SUBROUTINE PULL4
* PULLS 4 BYTES OFF STACK
_STORES MSB IN X+A

28A3 33 . PULL4 PULD
0 28A4 F7 18 4E STAB STACK1

28A7 33 PULe
-I-- 28A8 F7 18 4F STAB STACK2

28AB 4D TSTA
28AC 27 06 BEG LP42
28AE 08 -. LP41- INX

o 28AF 4A DECA
28B0 27 02 BEG LP42
2832-20 FA RA LP41
2884 32 LP42 PULA
28B5 A7 00 STAA 0,X
28B7-32 .PULA
288 A7 01 STAA 1,X
283A 32 - .PULA
29BBA 02 A--2,X

• 28BD 32 PULA
28BE A7 03 STAA 39X
2uCr--S iF 4F LDAB STACK2

• 28C3 37 PSHB
28C4 F6 18 4E - LDA9 STACK1
2C7--37 P H
28C8 39 RTS

. SU1ROUTINE PUSR-4- .
* 5 PUSHES 4 BYTE NUMBER ONTO STACK
..... S MS IN X+A

* A.-33 ,'
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METHOD OF INVARIANT FOURIER SIGNATURES

2C9" 33 PUSH44 PULD
* ' 28CA F7 18 4E STAB STACKI

28CD 33 PULP
28CE F7 18 4F STAB STACK2

* 28D1 4D TSTA
2812 27 06 BEG LP442
28D4-08 LP441 - rNX

0 289D5 4A DECA
* 2896 27 02 BEG LP442

28D8 20 FA BRA LP441
28DA A6 03 LP442 LDAA 3,X
28DC 36 PSHA
9bDD A6 02 2

- 28DF 36 PSHA
28E0 A6 01 LDAA lvX
28E2 36 PSHA
28E3 A6 00 LDAA OX
78E5 36 PSHA
28E6 F6 18 4F LDAB STACK2

* 28E9 37 PSHB
2!, _ 2SEA F6 18 4E LDAB STACK1

2228ED 37 PSHB
2SEE 39 RTS

s SU9BRtfT THE-PUSH4f
. PUSHES 4 BYTE NUMBER ONTO STACK
.* 3 MS BYTES ARE SIGN BITS
*' ENTER WITH LS BYTE IN A REG

28EF 33 PUSH41 PULB
l 28F0 F7 18 4E STAB STACK1
0 2F3 33 PULB
- 28F4 F7 1S 4F STAB STACK2

28F7 36 PSHA
' 28F8 48 ASLA
A 28F9 24 04 aCC LP411

__ 28FB 86 FF LDAA #$FF NEGATIVE
2 F- 20- ... ERA - LP412 .... .. . . ...

* 28FF 4F LP411 CLRA POSITIVE
2900 36 LP412 PSHA

.2 01 36 PSHA
2902 36 PSHA
2903 F6 18 4F LDAB STACK2
-2906---37 PSHB ..... ......9. 2907 F6 19 4E LDAB STACKI
290A 37 PSHB
-2900 39 RTS

___ SUBROUTINE PUSH42
. PUSHES 4 BYTE- NUNEVR-ONTO STACK

2 MS BYTER ARE SIGN BITS
S ENTER WITH LS BYTE IN Bp NEXT LS BYTER IN A

-2OC F7 19 50 PUSH42_ STAB PUSMST
290F 33 PULP

Fl 2910 F7 19 4E STAB STACK1
-33 ... PULP .

, 2914 F7 18 4F STAB STACK2
* 2917 F6 18 50 LDAB PUSHST

O A-34
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METHOD OF INVARIANT FOURIER SIGNATURES

S

291A 37 PSHB
* 2913 36 PSHA

291C 48 ASLA
291D 24 04 aCC LP421

* 291F 86 FF LDAA 95FF NEGATIVE
_ 2921 20 01 BRA LP422

,I 2923 4F LP421 CLRA. POSITIVE
• 2924 36 LP422 PSHA

2925 36 PSHA
2926 F6 18 4F LDAB STACK2

• 2929 37 PSHB
__ 292A F6 18 4E LDAB - STACK1_

* 292D 37 PSHB
292E 39 RTS

$ SUBROUTINE TRAPIN
$ TRAPEZOIDAL INTEGRATION

292F F6 18 ED TRAPIN LDAB P
2932 36 19 02 TI LDAA INT+3

O 2935 BB 18 25 ADDA COR2
2938 B7 19 02 STAA INT+3
2933 06 19 01 LDAA INTf2
293E 09 18 24 ADCA COR1

O" 2941 B7 19 01 STAA INT+2
/> 29436 19 00 LDAA INT+1

• 2947 89 00 ADCA to
2949 B7 19 00 STAA ZNT+
294C 86 18 FF LDAA INT

* 294F 89 00 ADCA #O
- 2951 87 18 FF STAA INT

2954 SD TSTB
* 2955 27 03 BEG T2

2957 5A DECB
-F---2958 20 D8 BRA TI

295A 86 01 T2 LDAA 01
__295C 87 18 ED STAA P

295F 39. RTS

S -SUBROUTINE TRAPFX
... FINAL-SAPLE: TRAP INT

2960 86 02 TRAPFX LDAA #2
2962 9D 29 99 JSR DELAY1
2965-D 2A-4C JSR RDDEFT

0, 2968 BD 13 76 JSR VECT15
2963 7F 18 ED CLR P

., 296E BD 29 2F JSR TRAPIN
2971 CE 18 FF LDX #INT

;" _ 2974 A6 21 LDAA S21sX
.. 2976- AD 03-. ADDA 3PX

* 2978 A7 21 STAA $219X
297A A6 20 LDAA S20,X

p1 297C A9 02 ADCA 2PX
h , 297E A7 20 STAA $20,X

2980 A6 1F LDAA *1F,X
2982 A9 01 AC. iX

• 2984 A7 1F STAA 1FPX
2986 A6 1E LDAA $1EsX

V) A-35
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METHOD OF INVARIANT FOURIER SIGNATURES

K 7291a A9 00 ADCA OrX
298A A7 1E STAA S1EPX

___299C A6 110 LDAA S1DX
298E 89 00 ADCA 0

• 2990 A7 1D STAA $1DPX
2992 A6 1C LDAA $1CX

-2994 89 0 ADCA 00
2996 A7 1C STAA $1CvX
2998 39 RTS

O* SUBROUTINE DELAY1
O, * 9.996MS*DTIME DELAY

2999 B6--3S--DEL-AYi LDAA ... DTIM. . ..
* 299C 4D Dl TSTA

299D 27 05 BEG D2
S 299F BD 04 BSR DELAY

2941 4A DECA

29A2 20 F9 BRA Dl
29A4 39 D2 RTS

12 - *SUBROUTINE DELAY
29A5 CE 02 CA DELAY LDX #$2CA
29A8 09 LDYI DEX
29A9 27 02 BEG LDY2

29AD 39 LDY2 RTS

SUBROUTINE BISBCD
S* POSITIVE BINARY IN TEMP3PTEMP4

• _ RETURNS BCD IN BCD1,BCD2

29B1 7F 18 07 CLR BCD2
______ 29B4 86 10 LDAA 016D

29B& B7 18 09 STAA CTR1
0 29B9 BF 18 04 STS TEMPS

___-29BC SE 18 01 LDS #TEMP3-1
29BF- -O ---- -LB1 I .LDAA- #O-

• 29C1 B7 18 08 STAA CTR
29C4 33 PULB
29C5-50 LBIB2 ASLB
29C6 24 12 BCC LBIB3
29C8 86 01 LDAA 41
29CA Bg-IT-07 ADDA- ... BCD2

* 29CD 19 DAA
29CE 37 18 07 STAA BCD2
29D1 36 1806 LDAA BCD1
29D4 89 00 ADCA 0
29D6 19 DAA
2967 78 -. ST-A 3CDI

* 29DA 7A 18 09 L8193 DEC CTR1
29DD 27 13 BEG LB3B4
29DF 36 18 07 LDAA BCD2

O 29E2 33 18 07 ADDA BCD2
29E5 19 DAA
29E&--§ -- - STAA---- C

• 29E9 36 18 06 LDAA BCD1
29EC B9 18 06 ADCA BCD1

- -. - A-36 -!
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METHOD OF INVARIANT FOURIER SIGNATURESS

29EF 19 DAA
*29F0 97 18 06 8TAA BD

29F3 7A 1B 08 DEC CTR
29F6 27 C7 BE LBIBI

5 29F8 20 CB BRA LBIB2

__29FA_ RE_18 04 LBXB4_ LDS_ TEMPS_
29FD 39 RTS

*; SUBROUTINE TUNE
29FE 96 18 30 TUNE LDAA Ul

"  2A01 97 EE 21 STAA $EE21
_ 2A04 B6 18 31 _ LDAA U12

2AO7 97 EE 20 STAA SEE20
. 2AOA 96 18 32 LDAA VJ1

2AOD 97 EE 11 STAA SEEll
2A10 B6 18 33 LDAA VJ2

| 2A13 97 EE 10 STAA SEE1O
2A16 39 RTS

SUBROUTINES IDEX

2A17 FF 18 00 IDEX STX TEMP1
V 2AIA FB 18 01 ADDD TEMP2

* 2AID B9 18 00 ADCA TEMP1
2A20 B7 18 00 STAA TEMP1
2A23 F7 18 01 STAB TEIIP2
2A26 FE 18 00 LDX TEMP1
2A29 39 RTSi*

* SUBROUTINE WRITE
'4 2A2A A6 00 WRITE LDAA OX

2A2C 44 LSRA
2A2D 44 LSRA

2A2F 44 LSRA
' 2A30 8A 30 ORAA #$30

2A32 BD FD 80 JSR SFD8O0
2A35--A6-O0- . . LDAA. OX
2A37 84 OF ANDA #$OF
2A39 BA 30 ORAA 0$30
2A3B BD FD 80 JSR $FDBO

* 2A3E 39 RTS

___-__............ SUBROUTINr PASC

p 2A3F 5D PASC TSTB
2A40 27 09 BEQ PAS

2A44 BD FD 80 JSR $FDBO
___2A47 08 I NX

D74 B 4.. . ...C
* 2A49 20 F4 BRA PASC

2A4B 39 PAS RTS

*$ SUBROUTINE RDDEFT

2A4C B6 18 3D RDDEFT LDAA NSAMP

* 2A52 CE 00 00 LDX #0
2A55 FF 18 24 STX COR1

A- 37
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2Z8 FF 13 26 STX COR3
*2A59 FF 19 26 STX COR4+1

2A5E 7D 18 01 RDI TST CTR
2A61 27 2D BED RD2

*2A63 SD 63 BSR READSN
2A65 CE 18 00 LDX #S1800
2468 -'A6 2& LDAA 2P-
2AAA AD 01 ADDA 1,X
2A6C A7 26 SA 2P

*2A6E A6 25 LDAA 2 X
*2A70 A9 00 ADCA v

2A72 A7 25 STAA $25rX__________

72474 A6 24 LDAA $24PX*2A76 A9 Al ADCA $A~vX
2A78 A7 24 STAA $24.X
2A7A A6 29 LDAA $29PX
2A7C AD 03 ADDA 3PX
WAE A7 29 STAA $29PX
2A80 A6 26 LDAA $28vX

*2A82 A9 02 ADCA P
2A84 A7 28 STAA $28PX
2A86 A6 27 LDAA $27,X
2A89 A9 A2 ADCA *A2vX
2AGA A7 27 STAA S27PX ________

2ASC 6A 08 ~ DEC- ar
2ASE 20OCE BRA RD1
2A90 A6 3E RD2 LDAA $3EPX
2A92 A7 08 STAA eX
2A94 6D 08 RD3 TST 6,X

30 2A96 27 23 BEG RD4________ ______

2A9 A6 24 -L 040A - ________ ______

*2A9A 47 ASRA
2A99 A7 24 STAA *24,X
2A9D A6 25 LDAA S25,X

*2A9F 46 RR
2AAO A7 25 STAA _________ _

2AA2 A6 26 -- LDAN $2 -
2AA4 46 RORA
2AA5 A7 26 STAA *26PX
2AA7 46 27 LDAA $27oX
2AA9 47 ASRA
2AAA A7 27 STAA $279X __

7'AACA&6 28 -- LDAA-
£2AAE 46 RORA

2AAF A7 29 STAA *28PX
IL~ 2A31 A6 29 LDAA $29cX

2AB3 46 RORA
2A34 A7 29 STAA $299X

-2AU- 74V 1fW489 DEC - CTR -

2A39 20 D9 BRA RD3
2ABD FE 18 25 RD4 LDX COR2
2ABE FF 19 24 STX COR1
2AC1 FE 19 29 LDX COR4+122AC4 FF 18 26 -STX COR3 - - - ____

S SUBROUTINE READSN

*A- 38
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METHOD OF INVARIANT FOURIER SIGNATURES

2ACS 86 03 READSN LDAA #
2ACA 37 33 38 STAA MUXSEL
2ACD CE 18 00 LDX #TEMP1I:2ADO BD 33 OF JSR SYNDET

*2AD3 7D 18 00 TST TEMPI
2AD6 SD OC __BSR __ SNE
2A68 D7 18 Al- STA0A SIGNI

02AD9 7D 18 02 TST TEMP3

-2ADE_81) 04 BSR SGNSET

*2AE3 39 RTS

- 2E4 A 0 ScNSE BP - SETPOS__
*2AE6 86 FF LDAA #F

2AEB 39 RTS
*2409 4F SETPOS CIRA

2AEA 39 RTS

2AEB 33 MATH1 PULD
*2AEC F7 18 4E STAB STACKI

____2AEF 33 PULB
2AFO F7 IS 4F STAB STACK2
2AF3 30 TSX

24__ 2AF4__E6 OF LDAD _ 15DuX ____________--

*2AF6 Cl 80 CMPBso6
*2AFS 27 05 BEG Mil
*2AFA__BD 80 00 JSR MATH

' 2 4#1. 20 06 BRA M13
2AFF 86 09 Mil LDAA #8
2B01 33 M12 PULB.___

2002 4ADECA
*2B03 26 FC BNE M1

2B05 F6 18 4F M13 LDAB* STACK2
_ 2B306 37 PSHB

*2309 F6 16 4E LDAB STACK1
2B0C 37 PB-
2B0D 39 T

02BOE _ D_PDA6 PRINT JSR $FDA6
2311i CE 18 _ECtLX

*2B14 C6 01 LDAB #1
__ 2316 RD PD 74 __JSR SFD74

-2B 198 20- LDAO52
*2313 BD FD 80 JSR SF080

2B1E CE 19 30 LDX --*Uzi
2321 3D 2A 2A JSR WRITE

012B24 CE 18 31 LDX #U12
__2B27 3D 2A 2A JSR WRITE
292A 66 267 - LDAA #$20

*292C BD FD 80 JSR *FDSO
2B2F CE 18 32 LOX _____________________

2332 RD 2A 2A JSW WRITE
* '2035 CE 19 33 LDX #VJ2

2B38 BO 2A 2A------JSR -- WR ITE _
233 86 20 LDAA #$20

*230 BD FD 80 JSR $F080
2340 CE 18 EF LOX #THETA

A -39



METHOD OF INVARIANT FOURIER SIGNATURES

2343 C6 02 LDAI 0
*2345 9D FD 74 JSR SFD74

2348 86 20 LDAA #620
*23B4A BD FD 80 JSR $FD80

*2B4D CE 18 F3 LDX #H
2 250 _C6 02 LDAB 2

952 91 F 4JSR SFD74
2355 39 RTS
2B56 END

STATEMENTS =637

aj FREE-BYTES =17972

* NO ERRORS DETECTED

A04



APPENDIX B - Method of Invariant Moments Assembly
Code Listing

This Appendix consists of a listing of the assembly

language program which computes invariant Fourier signatures.

This program was written to run on the Deft Laboratories'

microprocessor-based test bed. All addresses and opcodes are

hexadecimal. In the operand column of the statements the

following symbols are used:

$ Hexadecimal Prefix

% Binary Prefix

H Hexadecimal Postfix

D Decimal Postfix

B Binary Postfix

# Denotes Immediate Addressing Mode

The entry address for this program is $2000.

B-1
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U METHOD Of INVARIANT uIOiNTS

I 1802 ORG $1802
*1802 TEMP3 RMI 1
r 1803 TEMP4 RMD 3

1806 DCD1 RMB 1
1907 BCD2 RMB 1
182A -RG $182A
1 82A COR9 RMB 1
1823 COR10 RMB 5
1930 -Uzi RMB 1

i91U12 RMB 1
1632 VJI RMB I

I1833- VJ2 RMS. 2
1835 DTIME RMB 1
1836 1 RMB 1

~~1837 J RMB 1
188K RMB I

1839 XST RMB 2

j.~I 183B _____VYi RMB I
183C -- VVJ2 RMB 1

*183D NSAMP RMB 1
183E LOGS RMB 1
183F DX RMB 2

01841 DY RMB 2
_ ,_ -1,843- DDY __ RMB 2-

1845 Po RMB 2
*1847 PX RMB 2

1849 PY RMS 2
1843 SIGN RMB 3

*184E STACK1 RMB 4
___184F -STACK2 RMB_ 1 __ __

185() PUSHST RMB 1
*1851 LIMIT RMB 1

18E0 __ ___ ORO $SEL

1 80 PX RMB 2
18E2 IPY RMB 2

-) 18E4 X RMB __8

ieEt --- Y -- RMB ---- __ ___

*1B50 ORG $1350
1B50 moo RMB _$200

*29EC MATHI EQU $29EC
2AF0 O BI$BCD EOU $2AF0__
2800-- _FL$BCD EOU_ $2800 -__ __ __

*281F FL2 EOU 21
2961 ___ SAMP EQU $2961
2976 ---- AML OU~ $2976

*2AOF FZERO EQU $2AOF
29D7 INCX EQU $29D7__
2872- ACCUN EOU__ 62872---__

*295A PUSH89 EOU 62D5A
2340 PULLS EQU $2340
2A 2A SOROT OEU_ * 2A

*2C17 PASC EOU $21
:CO: WRITE EQU $2C02
:rr2 COl Eou $2CC2 -

*C23 LOU $21
C45 ElOU 62D62 _____________



METHOD OF INVARIANT MOMENTS

2DB2 C67 EOU $2D12
2000 ORO $2000
2000 BD FD A6 CALIB JSR *FDA6
2003 CE 24 97 LDX *LINEI
2006 C6 24 LDAB #36D
2008 BD 2C 17 JSR PASC

-200B BD FD 36 .. CB1 JSR SFD36- INCH
200E 81 43 CMPA 0$43
2010 26 F9 BNE C91
2012 FE 25 77 LDX XZERO MEASURE POPPXPY
2015 FF 18 30 STX U11
2018 FE 25 79 LDX YZERO
201B FF 18 32 STX VJI
201E 86 80 LDAA #$80
2020 17 18 3D STAA NSAMP
2023 86 07 LDAA #7
2025 B7 18 3E STAA LOGS
2028 86 02 LDAA 02
202A 17 18 35 STAA DTIME
202D BD 29 61 JSR SAMP

V 2030 17 18 45 STAA PO
2033 F7 18 46 STAB PO+I

2036 CE 99 93 LDX #$9993
i 2039 FF 18 3F STX ... DX .

203C CE O007 LDX #7
203F, FF 18 41 STX DY

" 2042 BD 29 D7 JSR INCX
2045 ID 29 61 JSR SAMP
2048 FO 18 46 SUBS PO+I

___2049 12 18 45 SBCA PO
204E 171847 STAA PX
2051 F7 18 48 STAB- PX+I
2054 FE 25 77 LDX XZERO
2057 FF 18 30 STX U11

- 205A BD 24 48 JSR INCY
__ 205D BD 29 61 JSR SAMP

2063 32 18 45 SBCA PO
2066 B7 18 49 STAA PY _

, 2069 F7 18 4A STAB PY+1
• 206C BD FD A6 FEAT#2 JSR SFDA6 ENTER TO SKIP CALIBRATIO1

___ 206F CE 24 BB LDX #LINE2
207!--C6-N LDAB - 38D
2074 BD 2C 17 JSR PASC
2077 9D FD A6 JSR $FDA6
207A BD FD A6 FEl JSR SFDA6
207D CE 24 El LDX #LINE3
2080 C6 15 LDAB 021D
2082- 8D-2C17 JSR PASC
2085 BD FD 36 JSR $FD36
2088 84 OF ANDA f#OF
2 -7 18 3E STAA LOGS
208D C6 01 LDAB #1
208F 4A FE2 DECA ____
2090 2D 03 ...... . Lt .. FE3""I9L-r
2092 58 ASLB
2093 20 FA BRA FE2

B-3 -.
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METHOD OF INVARIANT MOMENTS

2095 F7 18 3D FE3 STAB NSAMP
* 2098 BD FD Ad JSR $FDA6

209B CE 25 71 LDX #LXNE11
* 209E C6 06 LDAB #6

* 20AO BD 2C 17 JSR PASC
. 20A3 3D FD 36 . JSR $FD36__ _

20A6 84 OF ANDA #$OF
2 20A8 37 18 51 STAA LIMIT

20AB 3D FD AS FE3A JSR SFDA6
• 2OAE CE 24 F6 LDX #LIME4

2031 C6 21 LDAB #33D
12033 3D 2C 17 -JSR PASC

2006 3D FD 36 FE4 JSR $FD36

2039 81 4D CMPA #$4D
. 20B3 26 F9 BNE FE4

20BD FE 25 79 LDX YZERO
20C0 FF 18 32 STX VJ1

20C3 FF 18 3D STX VVJI
O 20C6 CE 99 93 LDX #$9993

20C9 FF 18 3F STX DX
20CC FF 18 43 STX DDY

• 20CF CE 00 07 LDX #$7
20D2 FF 18 41 STX DY
20D5 86 02 LDAA #2

B 20D7 B7 18 35 STAA DTIME
20DA CE 00 00 LDX #0
2ODD FF 18 E2 STX ZPY
20EO CE 13 50 LDX #MOO
20E3 86 40 LDAA #64
20E5 3D 2A OF FE5 JSR FZERO INITIALIZE M(PrO)

• 20E8 4A DECA
20E9 26 FA BNE FE5
20E3 7F 18 37 CLR J
20EE 36 18 37 FE6 LDAA J WY LOOP
20F1 27 04 ___ BEG FE7
20F3 84 03 ANDA *3

* 20F5 27 4F BEG FE13A
20F7 FE 25 77 FE7 LDX XZERO INITIALIZE WX LOOP
20FA FF 18 30 STX UXl
20FD CE 00 00 LDX #0
2100 FF 18 EO STX IPX
2103 7F 18 36 CLR I
2106 36 18 36 FES LDAA I WX LOOP
2109 27 07 BEG FE9
210B 84 03 ANDA #3
210D 27 39 BEG FE13B

21044 LSRA
* 2110 25 0D BCS FEIO

- 2112 3D 29 76 FE9 JSR SAMPLE X**P EVEN
2115 36 18 37 LDAA J
2118 27 12 BEG FEll
211A 44 LSRA
211B 25 31 .. BCs. FE14

* 211D 20 OD BRA FEll
211F 3D 29 76 FEIO JSR SAMPLE X**P ODD

0 B-4



METHOD OF INVARIANT MOMENTS

2122 86"18 37' LDAA J
2125 27 43 BEG FE17
2127 44 LSRA

-2128 25 5D BCS FE20
212A 20 3E BRA FE17

_ 212C CE 18 50 FEll LDX @1O0 X**P EVEN# Y**Q EVEN
212F 7F 18 38 CLR K
2132 B6 18 38 FE12 LDAA K
2135 5F CLRB
2136 84 09 ANDA #9
2138 26 01 BNE FE13

_ 213A 5C INC .
2130---4F- FE13 CLRA
213C BD 28 72 JSR ACCUN
213F BC 1D 50 CPX SMOO+512D
2142 26 EE BNE FE12
2144 20 5C BRA FE23
2146 20 6A FE13A BRA FE24
2148 20 58 FE13B BRA FE23
214A 20 A2 FE13C BRA FE6
214C 20 88 FE13D BRA FES
214E CE 10 50 FE14 LDX #MOO X**P EVENP Y**0 ODD
2151 7F 18 38 CLR K

B2154 6 16 38 FE15 LDAA K
.2157 -84-09 ... .. ANDA 09
2159 5F CLRB
215A 4A DECA
2150 26 01 ONE FE16
215D 5C INCB
215E 86 01 FE16 LDAA #1
2166--D 2872 ....- JS ACCU-
2163 BC 1D 50 CPX MOO+512D
2166 26 EC BNE FE15
2168 20 38 BRA FE23
216A CE 1B 50 FE17 LDX #m0 X**P ODDP Y**Q EVEN

216D 7F 18 38 CLR K
217-86-1 3---FE1S --LDA4 K--
2173 84 09 ANDA @9
2175 5F CLRB
2 -i-i ----- 
2178 26 01 BNE FE19
217A 5C INCB
2179 86-02 . --P9 LDAA #2
217D BD 28 72 JSR ACCUM
2180 SC ID 5o cPx MOO*512D

. 2183--26- B B-N
2185 20 13 BRA FE23
2187 CE 1B 50 FE20 LDX #moo X**P ODD, Y**Q ODD
218A 7F 19 38 CLR - K
218D 86 18 38 FE21 LDAA K

2190 84 09 ANDA #9
2192 SF CLRD

2193 81 09 CMPA #9
2195 26 01 ONE FE22
2197 5C I NCt.
2198 86 03 FE22 LDAA 03
219A BD 28 72 JSR ACCUM
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METHOD OF INVARIANT MOMENTS

219D SC 1D 50 CPX #MOO+512D
21A0 26 ED ONE FE21
21A2 7C 18 36 FE23 INC 1

. 21A5 3D 24 71 JSR INCXP
21A8 RD 29 D7 JSR INCX2lA3 B6 18 36 L.DAA ... I _- - -

21AE 81 28 CMPA #40D
2130 26 9A ONE FE13D
2132 7C 18 37 FE24 INC
2135 3D 24 84 JSR ZNCYP
21B8 3D 24 48 JSR INCY
21BB 36 18 37 LDAA J
21BE 81 28 CMPA i40D
21C0 26 88 ONE FE13C
21C2 CE 1B 58 LDX #MOO+8 NORMALIZE MOMENTS
21C5 FF 18 39 STX XST
21C8 FE 18 39 FE25 LDX XST
21CB 3D 2B 5A JSR PUSHB8
21CE CE 1B 50 LDX #MOO
21D1 3D 23 5A JSR PUSH88
21D4 86 02 LDAA #2

L, 21D6 BD 80 00 JSR MATH M(Pvo)/M(OO)

21D9 FE 18 39 LDX XST
2IDC BD 2B 40 JSR PULLS
21DF FF 18 39 sTx XST
21E2 SC ID 50 CPX #MOO+512D
21E5 26 El ONE FE25
21E7 CE 1B 60 LDX #MOO+16D M(O,2)
21EA 9D 29 SA JSR PUSHS8
21ED CE 1B DO LDX #MOO+128D M(290)

IJ PUHe
21F3 86 06 LDAA #6
21F5 3D 80 00 JSR MATH

i-F 21F8 CE 1B 58 LDX -MOO+8 M(O,1)
s; 21FB 3D 2B 5A JSR PUSHSS

21FE CE IB 58 LDX #MOO+8
2 -- f-D 23 5A - JSR ..... PUSHS.
2204 86 01 LDAA #1
2206 3D 29 EC JSR MATH1
2209 9605
220B 3D 80 00 JSR MATH
220E CE 13 90 LDX #MOO+64D M(lpO)

2 1 J - - 2 S A J S R .. .. P U S H 8 . .. .
2214 CE 1B 90 LDX #MOO+64D
2217 3D 2B 5A JSR PUSHe
221A 86 01 LDAA #1
221C 3D 29 EC JSR MATH1
221F 86 05 LDAA #5
2221 D 0 . .. JSR-- MAT -

2224 CE 13 50 LDX #MOO
2227 3D 23 SA JSR PUSHB8
222A 86 02 LDAA "-)2
222C 3D 80 00 JSR MATH
222F CE 18 E4 LDX x

12731 M -21-4- 0S .. PULL 8 -X MOMENT INVARIANT .....
' 2235 CE 13 98 LDX #MOO+72D M(11)

2238 3D 23 SA JSR PUSHS8
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METHOD OF INVARIANT MOMENTS
6

2239 CE 1B 58 LDX #MO0+8 1(O,1)
223E 3D 23 5A JDR PUSH88
2241 CE 13 90 LDX *MOO+640 MI(11,0)
2244 9D 29 3A JSR PUSH88
2247 86 01 LDAA #1
2249 3D 29 EC JSR MATH1
224C 86 05 LDAA #5
224E 3D 80 00 JSR MATH
2251 CE 18 EC LDX OY
2254 RD 23 40 JSR PULLS
2257 CE IS EC LDX #Y

2 _ 225A 3D 23 5A JSR PUSH8S
225D CE18 EC -LDX . #V .
2260 3D 23 5A JSR PUSH88
2263 86 01 LDAA '1
2265 RD 29 EC JSR MATH1
2268 30 TSX

'A 2269 6C 07 INC 7PX
2263 6C 07 INC 7oX
226D CE 19 58 LDX #O00+8 M(00,1)
2270 3D 23 5A JSR PUSHBS
2273 CE 1B 58 LDX @0oo+8
2276 3D 23 5A JSR PUSH88
2279 8601 - LDAA # 1 .. .
2279 D 29 EC JSR MATHt
227E CE 13 90 LDX #MOO+64D M(IrO)
2281 BD 28 5A JSR PUSH88
2284 CE 19 90 LDX #MOO+64D

f- 2287 3D 23 5A JSR PUSH88
228A 86 01 LDAA 01
228C -BD 29EC . JSR.. MATH!
228F 86 05 LDAA 05
2291 3D 80 00 JSR MATH
2294 CE 19 D0 LDX #MOO+128D M(2O)
2297 3D 29 5A JSR PUSH88
229A 86 06 LDAA #6

-229 C --- 9W- -00- .... . . .. JSR MATH ......... ...
229F CE 13 60 LDX #M00+16D N(Ov2)
22A2 ID 29 5A JSR PUSH88
22A5--- 6-05- DAA 5
22A7 3D 80 00 JSR MATH
22AA CE 18 EC LDX #Y
22AD-- 9 2B 40- JR ..... PULLS
2290 CE 18 EC LDX OY
2233 3D 29 5A JSR PUSHB8.- 6-CE 18 EC LDX lY
2239 3D 23 5A JSR PUSHSS

.4 22BC 86 01 LDAA #1
229V 90 2f CC. JSR . MAT[H
22C1 86 06 LDAA #6
22C3 9 80 00 JSR MATH Y**2
22CZ UW2A 2A JSR SOROOT
22C9 CE 13 50 LDX *mOo
22CC 3D 29 5A JSR PUSH8s
22CF--86-07 LDAA- #2
22D1 30 80 00 JSR MATH
22D4 CE 18 EC LDX #Y
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METHOD OF INVARIANT MOMENTS

22D7 3D 23 40 JSR PULLS Y MOMENT INVARIANT
22DA CE 13 50 LDX #MOO
22DD 86 40 LDAA #$40
22DF A7 00 STAA O,X
22E1 6F 01 CLR lvX
22E3 6F 02 CLR 2PX
22!E5 AF 03CLR 3rX
22E7 6F 04 CLR 4,X
22E9 6F 05 CLR 5,X
22EB 6F 06 CLR 6,X
22ED 86 01 LDAA #1
22EF A7 07 STAA 7vX
22F1 bD FD A6 JSR $FDA6
22F4 CE 25 17 LDX #LINE5 PRINT MOMENTS
22F7 C6 06 LDAB 06
22F9 3D 2C 17 JSR PASC
22FC BD FD A6 JSR SFDA6
22FF CE 25 1D LDX #LINE6
2302 C6 3E LDAD #62D
2304 9D 2C 17 JSR PASC
2307 7F 18 36 CLR I

230A CE 1B 50 LDX #MOO
* I 230D FF 18 39 STX XST

2310 3D FD A6 FE26 JSR *FDA6
2313 36 1936 LA

*2316 BA 30 ORAA #$30
2318 BD FD 80 JSR $FDSO
2313 7F 19 37 CLR J

z 231E 36 18 37 FE27 LDAA J
2321 31 18 51 CMPA LIMIT
2324 2A25 - PL..FE28

* 2326 CE 25 1D LDX OLINE6

2329 C6 02 LDAjD 02
232B BD 2C 17 JSR PASC

* 232E FE 19 39 LDX XST
2331 BD 28 00 JSR FLSDCD
2334 B6 18 43 LDAA SION

• 2337 BD FD 80 JSR SFD0
_ 233A_ 86 2E LDAA .#2E

233C BD FD 80 JSR SFD8O
* 233F CE 18 06 LDX SBCD1

2342 BD 2C 02 JSR WRITE
-345.CE 18 07. LDX #BCD2

* 2348 BD 2C 02 JSR WRITE
2343 FE 18 39 FE28 LDX XST
234E 08 NX
234F 08 INX
2350 08 _NX

.231 . .. INX
. 2352 08 XNX

2353 08 INX
2354 01 INX

* 2355 08 INX
2356 FF 18 39 STX XST
2359 7c 18 37 tNC J

* 235C B6 18 37 LDAA J
235F 81 06 CMPA 08

* B-8
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METHOD OF INVARIANT MOMENTS

2361 26 83 ENE FE27
• 2363 7C 10 36 INC I

_ 2366 36 18 36 LDAA I
IS l23-618T8 51 CMPA LIMIT
236C 29 A2 BDI FE26
236E 3D FD A6 JSR SFDA6
2371 3D FO A,6- JSR SFDA6-
2374 CE 25 5B LDX SLINE7
2377 C6 03 LDAB #3
2 3 BD 2C 17 JSR PASC

* 237C CE 18 E4 LDX #X
237F BD 28 1F JSR FL2
2392 961-9-4W LDAA - SIGW ..

* 2385 BD FD 80 JSR SFD80
2388 86 2E LDAA 0$2E
238A RD FD 80 JSR SFD80

0 238D CE 18 06 LDX #BCD1
___2390 3D 2C 02 JSR WRITE

93 E1 07 LD--#BCD2
* 2396 3D 2C 02 JSR WRITE

__ 2399 CE 25 5E LDX #LINES
239C C6 04 LDAR #4

0 239E BD 2C 17 JSR PASC
23A1 7D 18 EB TST X+7

23A4 .. A . .. ...... .B .. £ 0. . ....

* 23A6 4F CLRA
__ 23A7 5F CLR9

3A SUBB X7

* 23AB 82 FF SBCA *$FF
23AD B7 18 02 STAA TEMP3
23B0--F7 - .STAB-'-- TtMP4

* 2303 86 2D LDAA #$2D
2385 20 08 BRA FE31

2337 36 18 ED FE30 LDAA X+7
* 23BA B7 18 03 STAA TEMP4

238D 7F 18 02 CLR TEMP3
S 23C0 --9&-28 . . . LDAA- *$2.

* 23C2 BD FD 80 FE31 JSR SFD80
23C5 BD 2A FO JSR BI$DCD
23C8 CE 18g T 0LDX -BYD2
23CB RD 2C 02 JSR WRITE

.. 23CE CE 25 62 LDX #LINE9
230f- -C6--05 --- LDAR . #5 ......

• 23D3 BD 2C 17 JSR PASC
23D6 CE 18 EC LDX _Y

23D9 3D28 1F JSR FL2
* 23DC 86 18 49 LDAA SIGN

• . 23DF RD FD 80 JSR SFD80
23E2 86 2E LDAA *$2E

* 23E4 RD FD 80 JSR SFDSO
23E7 CE 19 06 LDX SBCD1
23EA 9D 2C 02 JSR MATTE

* 23ED CE 18 07 LDX #BCD2
23F0 RD 2C 02 JSR WRITE
23F3 CE 25-5E .......- LDX LINES .

• 23F6 C6 04 LDAD #4
23F9 BD 2C 17 JSR PASC
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METHOD OF INVARIANT MOMENTS

23F& 7D 18 F3 TST Y+7
23FE 2A 11 DPL FE34

2400 4F CLRA
2401 5F CLRD
2402 FO 18 F3 SUBB Y+7
2405 82 FF SBCA.. t F - -........
2407 B7 18 02 STAA TEMP3
240A F7 18 03 STAB TEMP4
240D 86 2D LDAA #$2D
240F 20 05 BRA FE35
2411 B6 18 F3 FE34 LDAA Y+7
2414 B7 18 03 STAA TEMP4
2417 7F 18 02 CLR TEMP3
241A 86 23 LDAA #$2B
241C BD FD 80 FE35 JSR $FD80
241F BD 2A FO JSR BISBCD
2422 CE 18 07 LDX #BCD2
2425 BD 2C 02 JSR WRITE

or 2428 BD FD A6 JSR *FDA6
2429 BD FD A6 JSR $FDA6
242E 86 07 LDAA W$07
2430 BD FD 90 JSR FD80
2433 CE 25 67 LDX #LINE1O
2436 C6 OA LDAD #10D __ ____________

2439 BD 2C 17 JSR PASC
2439 BD FD 36 JSR $FD36
243E 81 59 CMPA #$59
2440 26 03 BNE FE36
2442 7E 20 AD imp FE3A
2445 7E FE 2D FE36 JmP $FE2D FANTOM

2448 36 18 33 INCY LDAA VJ2
2443 BB 18 42 ADDA DYfI

S244E 19 DAA
244F 37 18 33 STAA VJ2
245---W31 32 LDAA-- VJI
2455 B9 18 41 ADCA DY

, 2458 19 DA
2456-7 19 33 STA- VJ
245C 36 18 3C LDAA IPJ2
245F BB 18 44 ADDA DDYI+
2462 19 -- AA- -'-... ..

,, 2463 97 18 3C STAR VVJ2

2466 B6 18 3 LDAA VXJ1
2469 B9 18 43 ADCA DDY

•246C 19 DAA
246D 97 18 3B STAR VJ1

247D397 18 EO STAA P

B-10



METHOD OF INVARIANT MOMENTS

2483 39 RTS
*

2484 96 18 E2 INCYP LDAA IPY
2487 F6 18 E3 LDAB IPY+I
248A FB 18 4A ADDO PY+1
-248D -9 1849 ADCA PY
2490 37 18 E2 STAA IPY
2493 F7 18 E3 STAB IPY+1
2496 39 RTS

*

2497 LINE1 EOU *
2497 50 4F 53 FCC 'POSITION UNIFORM IMAGE.'
24AE 20 54 48 FCC " THEN TYPE C "
249B LINE2 EQU *
24B 43 4F 4D FCC 'COMPUTES M(PrQ) MOMENTS'
24D2 20 46 52 FCC " FROM TRANSFORM'
24E1 LINE3 EOU S
24E1 53 41 4D FCC 'SAMPLE AVERAGE 19 2*'
24F6 LINE4 EQU $
24F6 50 4F 53 FCC 'POSITION TEST IMAGE.'
250A 20 54 48 FCC ' THEN TYPE N "
2517 LINE5 EQU 8
2517 40 28 50 FCC 'm(PuO)"
251D LINE6 EQU *

__ 251D 20 20 20 FCC " 0 1 2'
2533 20 20 20 FCC " 3 4 5 6 7'
2559 LINE7 EOU *
255B 58 3D 20 FCC "X= _

255E LINE8 EOU *
255E 20 32 2A FCC " 2**'
2562 LINE9 EQU W
2562 20 20 59 FCC " Y= '

2567 LINEIO EQU *
2567 43 4F 4E FCC 'CONTINUE? '
2571 ---I-ElU *....
2571 4C 49 4D FCC 'LIMIT-'
2577 XZERO EQU *
2577-1857 FCB $38, 557
2579 YZERO EQU *
2579 34 98 FCB $34P$98
2571 END

STATEMENTS -557

FREE BYTES :18705

NO ERRORS DETECTED
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METHOD OF INVARIANT MOMENTS

1800 ORG $1800
1800 TEMP1 RMB 1
1801 TEMP2 RMB 1
1802 TEMP3 RMB 1
1803 TEMP4 RMB 1
1804 TEMP5 RMB 1
1805 TEMP6 RMB 1
1806 BCD1 RMB 1
1807 BCD2 RMH 1
1808 CTR RMB 1
1809 CTR1 RMB 1
1824 ORG $1824
1824 COR1 RMB 1
1825 COR2 RMB 1
1826 COR3 RHO 1
1827 COR4 RMB 3
182A COR9 RMB 1
1823 COR1O RMB 5
1830 UzI RHB 1
1831 U12 RMB 1
1832 VJI RMB 1

?2, 1833 VJ2 RMB 2

1835 DTIME RMB 1
1836 1 RH 1
1837 J RHO 1
1838 K RMB 1
1839 XST RM 2
1830 VVJi RMB 1
183C VVJ2 RHD 1

, _183D NSAMP RMB 1
183E LOGS RHO 1
183F DX RMB 2
1841 DY RMB 2
1843 DDY RMB 2
1845 Po RM 2
1847 PX RMB 21849 PY- RMB 2

• 1840 SIGN RMB 3
184E STACK1 RMB 1
184F STACK2 RMB 1

0 1850 PUSHST RMB 1
1851 LIMIT RMB 1
18A1 ORG 1A1.

*1A1 5ISNI RMB 1
18A2 SIGNO RM 1
1SEO ORO $18Eo

0 18E0 IPX RMB 2
19E2 IPY RMB 2

* 15E4 x RM 8
18EC Y RM a
o 18F4 REAL1 RU - 2--2
19F6 REAL2 RMB 2
18F IHA01 RHO 2
18FA .HAG2 RM 2--

* 8000 MATH EOU $58000

B-1
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METHOD OF INVARIANT MOMENTS

1385 ROTI EUU 1385
1376 VECT15 EQU $1376
330F SYNDET EQU $330F
33B MUXSEL EOU $33DB
2800 ORO $2800

* CONVERTS FLPN TO BCD
-- X POINTS TO FLPN
* NORMAL ENTRY REQUIRES MAG<l, IF NOTP BCD SET TO 9999

2800 E6 07 FL$BCD LDAB 79X NORMAL ENTRY
2802 2E 57 BOT FL5
2804 50 NEOD
2805 5D FLI TSTB___
2804-27 17 -EG ... FL-
2808 A6 00 LDAA OX
280A 47 ASRA
f809 A7 00 STAA OX
280D A6 01 LDAA IrX
280F 46 RORA
2810 A7 01 STAA IX
2812 A6 02 LDAA 2vX
2814 46 RORA
2815 A7 02 STAA 2,X
2817 A6 03 LDAA 3PX
2819 46 RORA

72f014 A7 03 STA--X
281C 5A DECO
281D 20 E6 BRA FL1
281F 6D 00 FL2 TST OX FRACTION ONLY
2821 2A 14 BPL FL3
2823 4F CLRA
2624 D 29 E5 JSR PUSH41
2827 4F CLRA
2828 BD 23 BF JSR PUSH44

282B 86 OC LDAA #12D
282D BD 80 00 JSR MATH
2830 -6-2 . . .LDAA--- .2D ....
2832 37 18 43 STAA SIGN
2835 20 09 BRA L4
2837 4F FL3 CLRA
2838 BD 2B BF JSR PUSH44
2838 86 23 LDAA $$23
2830 - 7--g- 4" ".
2840 86 DC FL4 LDAA #DC
2842 36 PSHA
2843 86 46 LDAA #$46
2845 36 PSHA
2846 86 03 LDAA #$03
2846- 36 . . PSHA-
2849 4F CLRA
284A 36 PSHA
2843 86 09 LDAA 09
284D 9D 80 00 JSR MATH
2850 CE 18 00 LDX #TEMP1
2853 4F CLRA
2854 3D 23 99 JSR PULL4
2857 BD 2A FO JSR BIBCD is
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METHOD OF INVARIANT MOMENTS

0

215A 39 RTS
, 2853 6D 00 FL5 TST OX

285D 2A 07 UPI FL6
285F 86 2D LDAA #$2D
2861 37 18 43 STAA SIGN
2864 20 05 . . BRA FL7 .......... .
2866 86 2B FL6 LDAA #$23

* 2868 7 18 43 STAA SIGN

2863 CE 99 99 FL7 LDX $9999
286E FF 18 06 STX BCDI
2871 39 RTS

2872 5D ACCUM TSTB
2873 26 03 BNE ACO
2875 7E 29 55 ACOA JmP AC13
2878 F6 18 38 ACO LDAB K
287B C4 07 ANDB #7
287D Fl 18 51 CMPB LIMIT

'- 2880 2A F3 BPL ACOA
2882 F6 18 38 LDAB K

, 2885 C4 38 ANDB #$38
2 ! 2887 57 ASRB

2888 57 ASRD

* 2889 57 ASRB
288A Fl 18 51 CMPB LIMIT
288D 2A E6 BPL ACOA

* 288F FF 18 39 STX XST
__ 2892 16 TAB

2893 27 14 Rd ACI
2895 5A DECB
2896 27 1F BEg AC2

H 2898 5A DECD
2899 27 2A BEG AC3
2898 B6 18 F6 LDAA REAL2
289E F6 18 F7 -LDAB ... REAL2+1---
28A1 FO 18 F5 SUBB REAL1+1
28A4 32 18 F4 SBCA REALI

,of 28A7 20 28 BRA AC4
28A9 B6 18 F4 AC1 LDAA REALI

____28AC F6 18 F5 LDAB REAL1+1
8A--Fl----F-- ADD#---- REAL2+F - _

2832 B9 18 F6 ADCA REAL2
28B5 20 1A BRA AC4

2837 36 18 F8 AC2 LDAA IMAGi
28BA F6 18 F9 LDAB IMAGI+1

,,f " P --- 1--FW- -- -- SUBB-- IHA02+U-
28C0 92 18 FA SBCA IMAG2
28C3 20 OC BRA AC4
28C5 B6 18 F8 AC3 LDAA IMA01
28C8 F6 18 F9 LDAB IMAGI+I
28CB__F9 18 F9 __ADD3 IMA02+1

-rCE-V 39 18 FA - -- --- ADC-A- IIHAG2-
28D1 BD 23 74 AC4 JSR PUSH82
28D4 P6 18 38 LDAA K
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METHOD OF INVARrANT MOMENTS

28D7 84 07 ANDA 07
2 28D 47 ASRA

28DA 27 03 BED AC5
29DC 4A DECA
28DD 27 OD BEQ AC6
28DF 4A DECA

,, -28E0 --27- 6V BEG AC7
- 28E2 CE 2D B2 LDX #C67

2SE3 20 D BRA ACS
I'! - 4E7 CE 2C C2 AC5 LDX #coi

o 28EA 20 08 BRA ACS
2 __28EC CE 2D 12 AC6 LDX #C23

28EF 20 03 . . BRA- AC -
28F1 CE 2D 62 AC7 LDX #C45
28F4 4F ACS CLRA
28F5 F6 18 37 LDAB J

* 28F8 58 ASLB
28F9 49 ROLA
28FA BD 2A CS JSR IDEX
28FD A6 00 LDAA OrX
28FF E6 01 LDAB 1fX
2901 BD 2B 74 JSR PUSH82 CJ(Q)

5 2904 86 01 LDAA #1
2906 BD 29 EC JSR MATH1L -2--90 -86 _-__--_-____ -

5 290C 84 38 ANDA #$38
_ 290E 47 ASRA
29OF 47 ASRA

.4 2910 47 ASRA
I 2911 47 ASRA

292-27-09. BEQ-- AC9.
2914 4A DECA
2915 27 OD BEG AC1O
2917 4A DECA

p 2918 27 OF BEG AC11
291A CE 2D B2 LDX #C67
-291D_ 20 0D_ BRA AC12
291F CE 2C C2 AC9 LDX #CO1
2922 20 08 BRA AC12
2F92-4 C- -- -AC1 DX- C23

. 2927 20 03 BRA AC12
2929 CE 20 62 AC11 LDX #C45
292C 4F _ ACT - -CLRA .......... .
292D F6 18 36 LDAB I
2930 58 ASLB
2931 49 ROLA

' 2932 BD 2A CS JSR IDEX
2935 A6 00 LDAA OX
2937- E6 0f LDAB' 1 X
2939 BD 2B 74 JSR PUSH82 CI(P)
293C 86 01 LDAA #1

B293E D 29 EC JSR MATH1
* 2941 FE 18 39 LDX XST

'" 2944 BD 23 SA JSR PUSH88 M(Po)
2947-- 86 06 ..... LDAA #6
2949 BD 80 00 JSR MATH
294C FE 18 39 LDX XST
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METHOD OF INVARIANT MOMENTS

294F BD 23 40 JSR PULLS
2952 FE 18 39 LDX XST
2955 08 ACI3 INX
2956 08 INX
2937 08 INXii 2958 08 ... NX

•2959 08 INX
295A 08 INX

S295C 08 INX
295D 7C 18 38 INC K

2960 39 RTS

~S

2961 3D 2A 96 SAMP JSR TUNE
2964 BD 2A DO JSR DELAY1
2967 BD 2C 24 JSR RDDEFT
296A 3D 13 76 JSR VECT15
296D 4F CLRA
296E 5F CLRD
296F FO 18 29 SUBB CORIO
2972 82 18 2A SBCA COR9
2975 39 RTS

! 2-976 BD 2A 96 SAMPLE JSR TUNE 1ST QUAD
2979 BD 2A DO JSR DELAY1
297C BD 2C 24 JSR RDDEFT
297F 36 18 45 LDAA PO
2982 F6 18 46 LDAD PO+1
2985 FR 18 El ADDB " PX+I
2988 B9 18 EO ADCA IPX

* 2983 FR 18 E3 ADDB ZPY+1
m _ 29SE 39 18 E2 ADCA rPY

29D7 2A STAA CORe
2994 F7 18 28 STAB COR1O
2997 3D 13 85 JSR ROTI5
299A FE 18 24 LDX CORI

* 299D FF 18 F4 STX REALl
_______29A0 FE 18 26 LDX COR3

2-A3 -F -- W- F-F TX -IMAGI
* 29A6 3D 2A AF JSR TUNE1 4TH QUAD

29A9 BD 2A DO JSR DELAYI
- 29AC DD 2C 24 JSR fRlDDFT

29AF 36 18 45 LDAA Po
2932 F6 18 46 LDAD PO+I
2935- -FU---i AODU-- IPX+fU

* 2938 89 18 EO ADCA IPX
2933 FO 18 E3 SUes IPY+1
29BE B2 18 E2 SBCA IPY
29C1 37 18 2A STAA COR9
29C4 F7 18 23 STAB CRIO
29C7 D 3 45 JSR--- ROTiS"

* 29CA FE 18 24 LDX CORI
29CD FF 18 F6 STX REAL2
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METHOD OF INVARIANT MOMENTS

29D0 FE 18 26 LDX COR3
29D3 FF 18 FA STX IMA82
29116 39 RTS

2917 96 19-31-1-NCX - LDAA- U12 '.
29DA B 18 40 ADDA DX I
29D0 19 DAA
ZYDE B7 10 31 STAA UI2
29E1 B6 18 30 LDAA U!1
29E4 B9 18 3F ADCA DX

29E8 B7 19 30 STAA Ult
29ED 39 RTS

K 29EC 33 MATHI PULD

* 29ED F7 18 4E STAB STACK1
S29F0 33 PULD

29FI F 4F STAB STACK2
29F4 30 TSX
29F5 E6 OF LDAB 15DPX
29F7 Cl 80 CMPS #80
29F9 27 05 BEG Mil
29FB BD 80 00 JSR MATH
29FE 20 06 BRA M13

A 2AO0 86 08 Hi LDAA to
2A02 33 M12 PULD
26A-03 4A . DECA

0 2A04 26 FC ONE M12
2A06 F6 18 4F M13 LDAB STACK2
2A09 37 PSHB

O 2AOA F6 18 4E LDAB STACK1
2AOD 37 PS-

* *

- 2AOF 6F 00 F7R6 CLR Orx
2A11 6F 01 CLR lsX
2A13 6F 02 CLR 2,X7A15 6F 03 CLR----3pX

* 2A17 6F 04 CLR 4:X
2A19 6F 05 CLR 5,X
2AIB 6F 06 CLR 6,X

• 2A1D C6 80 LDAB #$80
2AIF E7 07 STAB- 7PX
2A21 0. INX

* 2A22 08 INX
2A23 08 INX
2A24 08 INX

2A25 08 ZNX
2A26 08 INX
2A27 08 INX

* 2A29 09 INX
2A29 39 RTS

O B-17
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METHOD OF INVARIANT MOMENTS

* SQUARE ROOT OF FLPTN IN STACK
2A2A 33 SOROOT PUL3

* 2A2B F7 18 4E STAB STACKt
2A2E 33 PULD -. ..
2A2F F7 18 4F STAD STACK2

* 2A32 30 TSX
2A33 C6 18 LOAD #24D
2A35 09 $01 DEX
2A36 5A DECD
2A37 26 FC DNE Sol
1639 FF 18 39 STX X
2A3C C6 08 LOAD #8B
2A3E A6 1F S02 LDAA 31DPX

4f 2A40 36 PSHA
2A41 09 flEX
2A42 5A DECD
2A43 26 F9 BNE S02
2A45 A6 1F LDAA 31DX

Oi 2A47 47 ASRA
, 2A48 A7 1F STAA 31DX
* 2A4A 86 OA LDAA trOD

2A4C B7 18 08 STAA CTR
2A4F FE 18 39 S03 LDX XST HI OOP

* 2A52 C6 10 LDAD #16D
2A54 A6 1F S4 LDAA 31DX
2A56 36 PSHA
2A57 09 DEX
2A58 5A DECD

_, 2A59 26 F9 DNE 904
* 2A5D 86 02 LDAA #2

2A5D BD 80 00 JSR MATH Y-X/IT
2A60 FE 18 39 LDX XST
2A63 C6 08 LOAD #8
2A65 A6 17 SO5 LDAA 230uX
2A67- U PSHA..
2A68 09 DEX
2A69 5A DECB
2A6A 26 F9 S05
2A6C 86 06 LDAA #6
2A6E 3D 80 00 JSR MATH Y-Y+IT
A71--FE- 39 . .LDX XST

* 2A74 6A OF DEC 13DPX
2A76 C6 06 LOAD #8
2A78 32 S06 PULA
2A79 A7 10 STAA 16DX
2A7B 08 INX

DECD ..
* 2A7D 26 F9 BNE S06

2A7F 7A 18 08 DEC CTR
2A82 26 C5 BNE S3
2A84 C6 08 LOAD t8
2A6 _32 907 PULA __

A67 W A10 STA B7
* 2A89 08 XNX

2A8A 5A DECD

*B-18
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METHOD OF INVARIANT MOMENTS

f.2ABB 26 FV BNC 807
*2AGD F& 19 4F LDAD STACK2

2A90 37 PSMD
*2A91 F& 19 4f LDAD STACK1jo2AV4 37 P9

2A95 39 RTS_

2A9& 16 10 30 TUNE LDAA Uzi
2A99 37 EE 11 STAA SEEII
2A9C 96 18 31 __ LDAA U12 __________

2A#9F 37 CrE 10 81SAA i_*EIO_ _ _
*2AA2 96 19 32 LDAA vil

2AA5 37 EE 21 STAA SEE21
2AA B36 18 33 LDAA VJ2

*2AAD B7 CE 20 STAA $EE20
2AAE 39 RTS

2AAF 96 18 30 TUNE1 LDAA Uzi
@22A92 07 EE 11 STAA SEEll

2ARS 36 19 31 LDAA U12__________________
2A3 07 E 10 S1fAA tfI
2AB3 36 18 33 LDAA Vi
2AIE 37 EE 21 STAA SEE21
2ACI 36 19 3C LDAA VVJ2

*2AC4 B7 EE 20 STAA E2
I_____ 2AC7__39 RTS _______

_2AC8 FF 1900 IDEX TTEP
2ACD FD 19 01 ADDS TEMP2

A2ACE 39 18 00 ADCA TEMPi
--- 2ADf-27 19 00- - SA# TEMPI-----

*2AD4 F7 18 01 STAB TEMP2
-- 2AD7 FE 19 00 LDX TEMP1

_2AVV 39 RTS

*i 2AD3 36 18 35 DELAY1 LDAA DTIME
* ___2ADE 4D ol TSTA

2AE1 SD 04 9SR DELAY
2AE3 4A DECA --- __l

*2AE 4f-20 rB BRA D
*2AE6 39 D2 RTS

2AE7 CE 02 CA DELAY LDX 062CA
2AEA_09 - tDY' DEX-
2AEB 27 02 KOG LDY2
2AED 20 FS BRA LDY1
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METHOD OF INVARIANT MOMENTS

2AEF 39 LDY2 RTS

*2AFO 7F 19 06 DIS3CD CLR BCD1
2AF3 7F 18 07- _ CLR _ DCD2
2AF6 86 10 LDAA *16D

*2AF8 37 18 09 STAA CTR1
2AF9 OF 18 04 STS TEMP5
2AFE BE 18 01 LDS *TEMP3-1

*2301 86 08 L3131 LDAA #SD

2303 97 18 08 STAA CTR______ _____

2306 33 PULi-
*2307 58 1932 AShD

2308 24 12 acc L3133
2B0A 86 01 LDAA #
230C BB 19 07 ADDA BCD2
2DOF 19 DAA
2310 37 19 07 STAA DCD2
2313 36 18 06 LDAA BCD1
2316 89 00 ADCA 0
2B~IS 19 DAA
2B19 07 18 06 STAA BCD1
2B1C 7A 19 09 L13 DEC CYRI __ __

2B1F 27 13 BEG 33
*2321 36 18 07 LDAA VCD2
:12324 BB 18 07 ADDA ICD2

2327 19 DAA
2328937 18 07 STAA DCD2j 2323 36 19 06 ____LDAA 3CD1 ______________

282E B9 18 06 -AD CD
*2331 19 DAA

2332 37 18 06 STAA 3CDI
42835 *7A 19 09 DEC CTR

239 27 C7 BEG L9I1
____233A 20 CB ____ BRA L192___

2399 118 04 L33 DSB- TEMPS
*233F 39 RTS

2340 33 PULLS PULl ____ _____

. - 324F7 -1 l 4E - 9-TA3- STACKUI-- -

2344 33 PUL3
*23 F7 1S 4F STAB STACK2

2348 C6 08 LDA3 t8
234A 32 PS PULA

__ _2343 A7 00 STAA 0,X - -

~IN TAK

231 F& 19 4F DB SAK
*2354 37 PH

23 F6 184E___ LDA3 STACKI _______________

20 7 -PSNTY - -I__________

2959 39RTS
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235A 33 PUSH8 PULe
F59 F7 18 4f STAB STACKI

' 235E 33 PULe
___ 235F F7 18 4F STAB STACK2

2362 C6 08.. .. LDAB #.
2364 A6 07 Pe LDAA 7,X

_____2366 36 PSHA
2367 09 DEX

* 2B68 5A DECB
2369 26 F9 ONE Pea
236- F6 4F LAn STACK2-..
236E 37 PSHB
236F F6 18 4E LDAB STACK1

12B72 37 PSHO
- 2B73 39 RTS

2374 F7 18 50 PUSH82 STAB PUSHST
~2 77 33 PULD

2378 F7 19 4E STAB STACK1
2373 33 PULD
297C F7 19 4FSTB SC2-
237F 5F CLRB
2B80 37 PSHB
2381 37 PSHB

* 2382 37 PSHB
2383 37 PSHB

• 2385 37 PSHB.
2386 F6 18 50 LDAB PUSHST

*2389 37 PSHB
* 2B8A 36 PSHA

2B8 86 07 LDAA 07
2B8-Df- O- .. . . JSRB . . H ..... - LPTN

* 2390 F6 18 4F LDAB STACK2
2393 37 PSHB
2094 F618 4E LDAB STACKI
2397 37 PSHB
2B98 39 RTS . .... . ... ...

299-3 PULL4 PULD
* 2B9A F7 18 4E STAB STACKI

' 2B90 33 PULD
2B91- Fl M .4F- . STAB-- STACK2.. ..

* 2BA1 40 TSTA
2BA2 27 06 BEG LP42

_ 2 BA4 08 LP41 INX
S23A5 4A DECA

2BA6 27 02 BEG LP42
29A8 20 FA BRA-**-- LP41.
23AA 32 LP42 PULAI *2 A3 A7 00 STAA 0,X
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METHOD OF INVARIANT MOMENTS

0
2BAD 32 PULA
2DAE A7 01 BTAA 1,X
2130 32 PULA
2391 A7 02 STAA 2uX

* 293 32 PULA
23B4 A7 03 __STAA 3,X
296 F6 18 4F LDAB STACK2
2999 37 PSHB
290A F6 10 4E LDAD STACK1
2BBD 37 PSHB
2BBE 39 RTS

299F 33 PUSH44 PULD
2BCO F7 18 4E STAB STACK1
23C3 33 PULD
23C4 F7 18 4F STAB STACK2
23C7 4D TSTA

" 29C8 27 06 BEG LP442
2BCA 08 LP441 INX
2BCB 4A DECA
2BCC 27 02 DEG LP442
2BCE 20 FA BRA LP441

i~ 2DO A63 LP442 LDAA 3,X

29112 36 PSHA
29D3 A6 02 LDAA 2,X
23D5 36 PSHA

• 23D6 A6 01 LDAA irx
2BD8 36 PSHA
2B9 A6O0 LDAA OtX
23DB 36 PSHA
23DC F6 18 4F LDAB STACK2
2BDF 37 PSH3
2BE0 F6 18 4E LDA3 STACK1

_ _23E3 37 PSHB
2 94- 3-f RTS-_ _ _

• . S

. 23E5 33 PUSH41 PULD
____23E6 F7 18 4E 'STAB STACK1-

PULl
' 23EA F7 18 4F STAB STACK2

2BED 36 PSHA
2BEE 48 ASLA
2BEF 24 04 BCC LP411
29F1 86 FF LDAA #$FF

F3 20 01 BRA . P412....
* 23F5 4F LP411 CLRA

29F6 36 LP412 PSMA
2BF7 36 PSHA
2lF8 36 PSHA
2BFD F6 18 4F LDA3 STACK2

23FD F6 18 4E LDA3 STACKI
2C00 37 PSHO

B-22

-.L 7~.7



METHOD OF INVARIANT MOMENTS

2C&2 A7 27 STAA $279X
*2C64 6A 08 DEC 19

2966 20 CE BRA RD1
-2C60 A6 3E RD2 LDAA $3E.X
2C6A A7 08 STAA ax

I.2CAC -6D_0 OS _ RD3 TST. BX-
2C6E 27 22 BEG RD4

e l 2C70 A6 24 LDAA $24#X
*2C72 47 A9RA

2C73 A7 24 STAA $24vX
2C75 A6 25 LDAA $25,X
2C77 46 RORA
2C7 A7 255 TAA *25(
2C7A A6 26 LDAA $26PX
2C7C 46 RORA
2C7D A7 26 STAA $26,X
2C7F A6 27 LDAA $27vX

or2CS1 47 ASRA
2C92 A7 27 STAA *27uX

*2C84 A6 29 LDAA 61p
* ___2C86 46 RORA

I ~2C87 A7 29 STAA S28PX
**2C89 A6 29 LDAA 2 X

__ 2C83 46 - RORA-
2 CA7 29 STAA $29PX

*2C9E 6A 08 DEC OgX
2C990_ 20DA BRA RD3
2C92 FE 11 5 RD4 LDX COR2

* ~ 2C95 FF 18 24 SrX CORI
2C98 FE 18 28 LDX -COR4+1

---2C93 FF -1 8 26 - STX- COR3
*2C9E 39 T

2C9F 86 03 READSN LDAA 03
-- 2CA1 -- D 31--Ni-- JSR MUXSEL-

*2CA4 CE 18 00 LDX SEP
___2CA7 9D 33 OF JSR SYNDET

* 2CAA 7D 1it 00TS -TEI

*2CAD 8D OC DSR SONSET
2CAF 87 18 Al STAA SIGN!

-2C92 70D18 02 - TST - TEMP3
di2C35 9D 04 BSR SONSET

2C97 37 18 A2 _____STAA SIONG

*2CB3 2A 03 SONSET 3PL STO
2C3D 86 FF LDAA **FF

72CJF'3Y
. h 2CCO 4F SETPOS CLRA

2CC1 39 RTS __

B- 23



METHOD OF INVARIANT MOMENTS

I,2CC2 col Eau
*2CC2 40 00 96 FCI S40,O,198pS33

2CC6 00 00 03 FC9 o,0,,I,*95
*2CCA 00 00 F9 FC9 Orv*F§P$CD

2CCE 00 00 02 FC9 0v0,2vS2C
*2CD2 00 00 FE PCI 0P0P$FEr*A9 _

eD6OC9 0 rC 0 ve0MSEA
2CDA 00 00 FP PC9 0,0,*FFP$55
2CDE 00 00 00 FCI opoporeas
2CE2 00 00 PP FC9 OPOPF,96
2CEd 00 00 00 PCI 0,0,OS59
2CEA 00 00 FF PCI__ OPOP$FFrv*15 ___

gCere 0 00 00 -Ptg v-6t4
*2CF2 00 00 FF PC9 IPFtC

2CF6 00 00 00 PCI 0,0P0u936
2CFA 00 00 FF FC9 0OOPFFP$CF
2CFE 00 00 00 PC9 0r0tO03D
2D02 00 00 FF FCI 0,0,PPF,*D5H D06 00 00 00 FC9 0,0,Ou*22
211OA 00 00 FF FC9 0,0,SFFeSD7
2DOE 00 00 00 FCI OPOPOtS29

2D12 C23 EGU
2D12 40 00 P0 FC9 *40,Ou$90v*44

2DA 00 00 OA
2111E 02 72 FC FC3 2P$72vSFCP$51
21122 00 00 FE FC2 OrO,$FEr*9F
21126 PP 7A 00 FED $FFP67AOwSC5
2D2A 00 00 00 FC9 oropor.ai
2D2E 00 31 PP PCI 0v131p*FP$AS
2D~i 32 00 00 PP PCi- 6vO 0,0, $C

*2D36 PP EA 00 FCB *F*EAvOP$27
2D3A 00 00 00 PC9 OPoPO~P
2D3E 00 OC FF PCD 0,SCSFFP$EA
2042 00 00 PP PC9 0,PPFPF
2D46 PP PA 00 ____ CI $FFP$PuOP$C___ ___

2D4E 00 04 PP PCI 0p4,$FFP$F9
2D52 00 00 PP FC9 OPOP$SFPuPC

~7 2D56 FF PP 00 PCI $FFuPFOP3
2D5A 00 00 00 PCI 0,0,0,2

___2D5E 00 01 00 PCI 0,1,Oro
202- -SEau- 9-

*2D62 40 00 BE PCI 4PPBP7
21166 14 EF 21 FP $94PSEPS2196IS

.' 2D6A 00 00 10 PCI 0vati$109474A
2D6E OD 5A F7 PCI $DP95Av$P7,*SE

____2D72 00 00 F9 PCI 0v0iSFIS70
:2676 ~F C '$FC,P1 2v 696
207A 00 00 01 PCI ppr9

*2117E 01 21 FE PCD lt621o6PEePF5
*2DS2 00 00 PP FCI 0OiSFP$,47

2086 PP 7A 00 PCI SFP$,7A,0,*84
208A 00 00 00 PCI 0e0,0p$61

2D~~f~rW-c oC* v0u4I,$P-6U --

2D92 00 00 PP PCI 0,0,$FPiSCA
21096 PP DO 00 PCI $FPDSPO02A
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METHOD OF INVARIANT MOMENTS

2109A 00 00 00 FC2 OP,0$20
2D9E 00 18 FF FC3 0P$i8v$FFP*E9
2DA2 00 00 FF FC3 0i~uSFFP$F0

*2DA6 FF F5 00 FC9 SFFv*F5p0,$C
2DAA 00 00 00 FCD 0,0,0,7

_ 2DAE 00 04 FF FCB 0,4,SFFP$FF
2D92 C67 EQU
2DD2 40 00 SD FC9 $40P0P*8DP$9F

____2D36 32 03 23 FCD $82p3r*23t*9U
2DDOO00 12 FD OvO.*12v$DC

2DDE 12 A5 F4 FCD $129$A5v$F4,SE2
:___2DC2 00 00 F9 FC9 OPO,*F9pv S

2DC6 F9 95 0 4 FCD $F9t*95,4p$69 -- -

2DCA 00 00 02 FC9 0v0,2v$E9
___2DCE 02 96 FE FC9 2PS96v$FEP$3

2DD2 00 00 FE FC9 0,0,SFES93
2DD6 FE Cl 01 FCD $FEv*Clelv4

-- 2DDA 00 00 00 FCD OOpOSCi
2DDE 00 AE FF FC3 Ov$AEv$FFSEF
2DE2 00 00 FF FC9 0,0,SFFv$92
2DE6 FF 9D 00 FC3 $FFr$9Dr0P5
2DEA 00 00 00 FC9 0,0,0,541
2DEE 00 3A FF FCB 0,$3A,$FF,$DO
2DF2 00 00 FF FC9 0,0,SFFSDD
2DFA FF E2 00 -- FC3 $FFP$E2p0.$lS
2DFA 00 00 00 FC9 0P0,0,SE
2DFE 00 OA FF FC9 0,*APSFFP$FC
2E02 CE 40 00 DUMMY LDX #$4000
2E05 FF 18 24 STX COR1
2E08 CE 00 00 LDX #0 C
2E00 FF 18 26- STX CORI--
2EOE 39 RTS

ZEOF END

StATEHENTS9 =832 -- __-___ __-

FREE _BYTES =16585

NO ERRORS DETECTED
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APPENDIX C - Fortran Code Listings

This Appendix consists of listings of Fortran programs

which can be used to compute the coefficients c k(p) which

are defined by equations (104), (105) and (106). These

coefficients are used to compute image moments from the image

Fourier transform. The program PEVEN computes the coeffic-

ients for the case that p is even. The program PODD computes

the coefficients for the case that p is odd.

This Appendix also contains listings of the programs

EVENER and ODDER. These programs were used to obtain the

data which is presented in Figure 26 and Tables 3 and 4.

EVENER evaluates equation (137) for the case of p even. ODDER

evaluates the same equation for the case of p odd.
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/ PEVEN

,PI-391415927____ __________ ______

~TYPE I0 -______________-___________ _____

10 FORMAT(' COMPUTES CK(P); P EVEN')
TYPE 20

20 FORIIAT(
TYPE 30

30 FORMAT(' INPUT N/2, P(MAX)) ___________________

TYPE 20
:1 ACCEPT 40PN

ACCEPT 40PNPM
__0 FORIIAT(m3

N=N+N

-TYPE 20

50 FORMAT(' COEFFICIENTS (REAL)')

TYPE 20

60 FORMAT(' K P CK(P) OCTAL')

DO 100 N=rNPMP

C=0.
IF(NP.EO.0) C=.5

__D0O90 LzlNvl _
X=2.*FLOAT(L)/FLOAT(N)
IF(XGT.1.) 60 TO 70
FX=X**FLOAT (NP)
GO TO 80

70 FX=2-(X-2)**FLOAT(NP) _____

80 ARG=FLOAT(K)*PI*X/2,
XF(L.EO.N) C=C-.5*FX*COs(ARG)

90 C=C+FX*COS(ARG)
C=C/FLOAT(N)
NC=.5+32768.*C
IF(NC.LT.0) NC=65536+NC

100 TYPE !I0,KPNPPCPNC
105 TYPE 20
110 FORMAT(13v15p' .PF11.7p' OP06) ______________

STOP - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

END
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PODD

P1=3.1415927 __________________

I.TYPE- --6
10 FORMAT(' COMPUTES CK(P)l P ODD'):1 -- TYPE 20

0FORMAT(''
TYPE 30

30 FORMAT( INPUT N/4, P(MAX)')
TYPE 20
ACCEPT 40PN

I ___ACCEPT 40PNPM
1740F FORMATTI3)_

N=N+N+N+N
TYPE 20 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

50 FORMAT( COEFFICIENTS (IMAGINARY)')
______TYPE 20 ____ ______________________

60 FORMAT( K P CK(P) OCTAL')
______DO 140 NP=1vNPMP2_____ ____________

_______DO 120 L=IvNvl
XU*FLUAT(LY/FLOAT(N -

* IF(X.GT.1.) GO TO 70
FX=X**FLOAT (NP)
GO TO 110

70 IF(X.GT.2.) GO TO 90
so8 FX=2.+(X-2.)**FLOAT(NP)_____

90 IF(X.GT.3.) GO TO 100
* ____ FX=29-(X-2*)*FLOAT(NP)

~OTO 110
100 FX=-(X-4.)**FLOAT(NP)

j 110 ARG=FLOAT(K)*PI*X/4.

120 C=C+FX*SIN(ARG)
C=-C/FLOAT(N)___ ___________________

* IF(NC.LT.0) NC=65536+NC
-130 TYPE 150, K9NPrCNC ___

150 FORMAT (13,15t' ',F11.7,' 'fP06)
___ STOP
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/ EVENER

- -DIMENSION CFF(50)_____ ___________

P1=3#1415927
TYPE 10

10 FORMAT(' COMPUTES ERCPrX)f P EVEN')
15 TYPE 20
20 FORMAT(' '

* TYPE 30 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4 30 FORMT('INPUT N129 P')
TYPE 20
ACCEPT 40PN
ACCEP~T i,NP - . . . .. . .

40 FORMAT(13)
N-Nf N _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

TYPE 20
DO 100 K=09Nrl

IF(W .Efa.0 f-- 5
DO 90 L=1,N,1

-X=29*FLOAT(L)/FLOATCN)
- IFX.OT1.)00 TO 70
FX=X**FLOAT(NP)
0O TO 80

70 F)Xzr2-(X -2) *iFLoAT,(NP)..........- .--

80 ARG=FLOAT (K) *PI*X/2*
__ IF(L.EO.N) C-C-.5*FX*COS(ARO)

90 C=C+FX*CfOS (ARO)
C =C/FL OAT(CN)

100 CFF(K+1)=C __

-- -110TP~ io
110 FORMAT(' INPUT MESH DIVISOR=M')

TYPE 20 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-- ACCEPT-409.
TYPE 20
TYPE 120 RP20M)-

120 -FORMAT Co 0 - RP2/M)) -

NQS-.5*FLOAT(N*M)
DO 140 NGOPNGSr1____ _______________

x=rLOAfT2*NCFi/FLOTATh
ARG=PI*X/29
ER=0.
DO 130 K=i ,~....~. -----. .

ARGK=ARG*FLOAT (K)
130 ER=ER-CFF(K+1)*COS(ARGK)

ER=ER-#5*CtFFVITCFFN+)*Co5'AR5Im
ER=2.*ER+X**FLOAT(NP)

140 TYPE 1509NOPER
150 FORMAT T4i''F'i7)--

TYPE 160
160 FORMAT ('TO CONTINUE TYPE l')

ACCEPT 40FN
IF(N-1)l70,15,170

170 STOP~~-..* ..-

END
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S / ODDER- ________ ____

DIMENSION CFF(50) _______ ___ ________

TYPE 10
1 10 FORMAT(' COMPUTES ER(PoX)9 P ODD')
15 TYPE 20

4 20 FORMAT(' '

TYPE 30 ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

'FDRK-GRATHP-TUTN 4-,P7 T-- -
TYPE 20

__ACCEPT 40PN
---- ACCEPT-44ONP
40 FORMAT (13)

N=Nf HfN+N
- TY~r-20

DO 130 K1,vNvl
C=00 _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

X-4.*FLOAT(L)/FLOAT(N)
___ IF(X.OT.1*) GO TO 70

GO TO 110
S70 IF(X.GT.2.) 0O TO 90

SO-- X2fX7**FLOAT (NP)
0O TO 110

90- IF(X.GT.3*) 0O TO 100
FX=2.-(X-2. )**FLOAT(NP)
0O TO 110

100 FX=-(X-4. )**FLOAT(NP)
11-0- AltGTJlAT(KY*P*X/f4. - __

XF(L.EG.N) C=C-.5*FX*SINCARG)
120 C=C+FXSSIN(ARG)

130 CFF(K+1)=C
TYPE 140

~40PORKATV2NPUT MESH DZVISOR=1')
TYPE 20
ACCEPT 40PM __ _____________________

TYPE 150
150 FORMAT( 0 ER(PP2*0/MN)')__

NQS-.25*FLOAT(N*MF --

DO 170 NGONQS,1
X=FLOAT(C4*NG )/FLOAT(CM*N) __ _____________________

ER=0.
DO 160 K=1,N,1

-ARG-K=ARU*FOAT (K)
160 ER=ER-CFF(K 1 )*SIN(ARGK)

ER=2**ER+X**FLOAT(NP)
170 TYPE 180PNOPER
180 FORMAT(I4u' ',F11.7)

TYPE 190
190 FORMAT(' TO CONTINUE TYPE 1')

TYPE 20
ACCEPT 40PN _________________________

200 STOP
END
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