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PREFACE

This report contains all findings of the acousto-optic

- technology study for feature extraction conducted by Deft
Laboratories Inc. for the U,S. Army Engineer Topographic
Laboratories. The work reported here was funded under Contract
DAAK 70-79-C-0160. The work was conducted during the period
of October 1979 through February 1981. The Contracting Office's

Technical Representative was Mr. Joseph F. Hannigan,
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SUMMARY

The objective of this program was to develop, analyze and
evaluate theoretical concepts and strategies for topographic
feature extraction and image analysis using acousto-optic (A-0)
technology.

A conclusion of this study was that A-O devices are
potentially capable of implementing the feature extraction
prefilter function very efficiently. Since the prefilter is
the most computational intensive portion of the feature
extraction process this is a significant result. The best
application of A-0 devices is in the implementation of trans-
form-based prefilter algorithms. Under this contract transform-
based algorithms were identified and developed which are
invariant to feature translation, rotation and scale. This
invariance is highly desirable since it reduces the number of
distinct feature signatures which must be processed by the
decision processor.

Some preliminary experiments were conducted using the
Fourier-based algorithms, test images and an A-0 device which
was a Deft sensor. This combination of algorithms and sensor
was able to distinguish between three test patterns which were
presented in arbitrary orientation and scale. The success
rate was 80%. In spite of these promising results, present
Deft sensors are not capable of distinguishing realistic
features in aerial photographs. New Deft sensors are presently
under development which will significantly improve the capability
of this sensor in feature extraction applications,.
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I. INTRODUCTION

A. Project Overview

The objective of this program was to develop, analyze and
evaluate theoretical concepts and strategies for topographic
feature extraction and image analysis using acousto-optic (A-0)
technology. In addition, functional block diagrams were tc be
prepared for the most promising concepts and strategies for the
purpose of identifving essential and/or critical A-0 elements and

components.

During the execution of the program it became evident that
the evaluation of theoretical concepts was sufficiently advanced
so that additional effort, not required in the original contract,
could be undertaken. This effort involved programming a group
of promising feature extraction algorithms and performing experi-
ments using an A-O0 device. The device used in these experiments

was a Deft sensor.

The tasks which were executed during this program are listed

below,

1. The open literature was searched in the areas of image
processing, feature extraction and acousto-optic technology.

2. A survey was conducted and determination made of device
capability and limitations of present A-O technology.

3. Theoretical concepts and strategies were analyzed and
evaluated for topographic feature extraction and for implemen-
tation using A-0 technology.

4, The most promising concepts and strategies were selected

for further evaluation.

5. For these strategies algorithms were developed and programmed
for a microprocessor-based experimental system. Experiments were
conducted using this system and a Deft sensor. These experiments

involved feature recognition using a small set of test images.

6. Functional block diagrams were developed for the most




promising stratepgies, Essential and/or critical A-0 elements
were identified.

7. For these A-0 elements state-of-the-art capabilities were
compared with required capabilities. Required improvements were
determined as well as indication of the probability of obtaining

such improvements.

This report details all findings of this study program.

B. General Feature Extraction System Model

The term ''feature extraction’ comes under the heading of
pattern recognition. Large volumes of material have been written
under this heading. The specific problem addressed by this study
is how can A-0 devices be used to find objects or '"features" in
aerial photographs? The emphasis, then, is on what functions
A-0Q devices can perform and how these functions can be used to
achieve the stated objective. In this context, only certain
portions of the literature under pattern recognition has bearing

on the problem to he solved.

It was felt at the beginning of this study that the only
way to achieve meaningful results was to determine a model for
a feature extraction system which has the general functional
capability required. From this general model, more specific
systems could be developed which utilize functions which can be
efficiently performed by A-0 devices. Concepts and strategies
could then be chosen from the literature under pattern recognition

which fit into these specific system models.

In order to provide a frame of reference, feature extraction
will be considered in the context of the pattern-recognition
system model shown in Figure 1. The transducer transforms the
information content of the input (photolight intensity pattern)
into a format suitable for further processing (electrical signal).

The amount of information available in the photo image is enor-

mous. A single video image may contain 104 - 108 bits of




information, while a photographic¢ image can contain orders of
magnitude more. However, the amount of information required to
make a decision may be just a few tens of numbers. The purpose
of the preprocessor is to reduce the information content of the
image to a more manageable size. This process has also been
termed filtering, prefiltering, feature or measurement extraction
or dimensionality reduction. The output of the preprocessor is
then passed to the decision processor where this information is
used to classify the photo image. The decision processor may
also control the transducer and preprocessor via feedback. In
this manner the preprocessor function may be changed during the
decision process. In like manner the transducer may be commanded
to look at a different portion of the photo or perhaps change

scale.,

Figure 1 is a functional block diagram. These functions may
be distributed over hardware subsystems in a number of ways. For t
example, the transducer might be a vidicon or CCD imager. Its
function then is primarily bandwidth reduction and format con-
version. The preprocessor and decision processor might then be

implemented in software in a digital computer.

Another alternative configuration is considered in some detail
in this report. In this configuration the transducer and pre-
processor functions are performed in an acousto-optic device. The
decision process is then carried out in a digital processor. In an
all digital implementation the preprocessor function requires the
bulk of the processing time since a large data base (image) must w
be operated on, The potential advantage of the acousto-optic
implementation is that this time-consuming preprocessing function

can be performed in whole or in part in the sensor itself.

A third configuration should be mentioned. 1In this configuration
the transducer and preprocessor functions are performed by an

optical processor. Many of the prefilter functions which can be

computed in an optical processor can also be computed by acousto-




optic devices. As a result, the large literature which deals with
applications of optical processors can be utilized to develop
preprocessing techniques for acousto-optic devices. The development
of both optical processors and acousto-optic devices is currently
receiving support because of their potential application in such
areas as image preprocessing. At this time, optical processors
are in a more advanced state of development than acousto-optic
devices. However, acousto-optic devices offer the potential
advantages of being cheaper, more rugged and not requiring precise
optical alignment when compared to optical processors. In certain
applications they may also prove to be more flexible since the

function performed can be controlled electrically.

N .

Photo : :
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Figurc 1 - Pattern Recognition Svstem Model
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IT. ACOUSTO-OPTIC DEVICES

A, Introduction

In this section three acousto-optic devices are briefly
described. Both physical and functional descriptions are provided.
From these descriptions it will then be possible to determine which
feature extraction algorithms are best suited for implementation
using one or more of these devices, More detailed descriptions
can be found in the references. The devices to be described are
the following: the Deft sensor manufactured by Deft Laboratories
Inc., an elastobirefringent light valve and a device developed by
Thomson-CSF, France. Both the Deft sensor and the elastobire-
fringent light valve were developed by Drs. Kowel and Kornreich
of Deft Laboratories. As a result we are more familiar with the
present limitations and future potential of these devices. Section

V is devoted to a discussion of this topic. {
B. The Deft Sensor

The Deft scensor is a solid state device which utilizes the
interaction of surface acoustic waves (SAW), a photoconducting
film and an ima~ed light pattern to produce an electrical signal
from which can be derived the magnitude and phase of the two-
dimensional Fourier transform of the image pattern. The sensor

may also be used to produce other useful image functions.

The operation of the sensor can be explained with the aid
of Figure 2. The sensor is fabricated on a LiNbO3 substrate
which is a piezoelectric material, On this substrate is deposited
a photoconducting film of CdS. An interdigital metal pattern is
evaporated onto the CdS for the purpose of detecting and inte-
grating the photocurrent. This pattern has the added function of
sampling the image in one direction. Image sampling is required
if base~band Fourier transform components are desired. The SAW
are limited to high spatial frequencies. The spatial spectrum
of the image must be translated into this band. To achieve a
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spatial sampling in the orthogonal direction the CdS can be over-
layed with an Al shadow mask. As an alternative which has been
used in more recent devices, only squares of CdS with the proper
sample spacing are deposited. Interdigital transducers are used
to generate two orthogonal surface acoustic waves in the substrate.
The figure shows a number of transducers. However, only two are
used to launch the orthogonal SAW's. The other transducers are

redundant and not used.

To describe the operation of the sensor let g(t) and h(t)
be the transducer input signals. Since LiNbO3 is piezoelectric
an electrical field is produced across the sensor. In the x
direction the field is proportional to g(t-x/vx). In the y
direction the field is proportional to h(t—y/vy). The parameters
Ve and vy are the SAW velocities of propagation in the x and vy
directions. At the same time, an image is focused on the grid of
CdS squares. A current is generated in each square proportional {
to the average light intensity over that square, and these currents
are modulated by the product, g(t—x/vx) h(t—y/vy), created by
nonlinear mixing in the CdS film. The metal finger pattern sums
each of the modulated current components over the grid. The
resulting output current is o(t). 1t is given by

o(t) = IfI(x y)g(t- x/v Yh(t-~ y/v )Ydxdy (1)

The image I(x y) is the 1mage focuqed on the sensor, I(x.y)
modified by the grid sampling. The functions g(t), h(t) can be
any arbitrary waveforms who's spectrum is within that of the
interdigital transducers. This equation defines the function
of the Deft sensor in its most general form,

A number of specific functions which can be realized by the
sensor may have application in feature extraction. These will be
discussed in the next section., A specific function which may
have application in feature extraction is the two-dimensional
Fourier transform. Since the performance of the Deft sensor in
general applications can best be described in terms of its spectral
response, computation of the two-dimensional Fourier transform

using the sensor will be described here.




If g(t) and h{t) are sinusoids then o(t) yields components

of the two-dimensional Fourier transform.

F(. ) = rri(x,yde ICRXT YY) dxay

Al
X’ y

By varying the frequencies of the sinusoids different spatial
frequencies can be probed. Let ?x' fy be the grid spacing in
the x and y direction respectively in meters/cycle. Then the
temporal frequency which corresponds to the origin of the spatial

transform is given by f , f where
0,X o,V

’ LIR

Tox = Y/ % Toy = Vylly (2)

For example, if V‘ = 0.1 mm/cycle, v 3800 m/s then fO x = 38 MHz.

The number of spatial frequencies which can be probed by the
sensor depends on the bandwidths of the two SAW transducers and
the size of the (CdS grid area. Let n and ny be the number of
CdS squares in the x and y direction respectively. Then for
two spatial frequencies to be resolvable by the sensor, the
total number of cvcles of one frequency across the sensor must
differ from the total number of cycles of the other by at least
one cycle. For example, consider two x-directed spatial
frequencies which differ by one cycle across the sensor. If n,
is the number of squares of CdS in the x direction then the
difference in spatial frequency is l/(nxvx). The difference in
temporal frequency is then vx/(nx? ). Comparing this to equation

X
(2) shows that thc difference frequency, Afx is

8, = £ /0 (3)

Now let fo be the temporal bandwidth of the x transducer. Then
the number of resolvable frequencies in the x-direction is

Vi vf

Afx fo,x/n

= n fo (4)
T
X 0, X

T
X

That is, the number of resolvable components in the x direction
is n, times the percentage bandwidth of the x transducer. For

example, if fo/fn x = 0.1 and n, = 200 then there will be 20




resolvable Fourier components in the x direction. For Qx = 0.1
mm/cycle this corresponds to a length of 20mm for the CdS
portion of the sensor. In like manner, the number of resolvable
frequencies in the y direction is given by

r =n ZEX

vy "3 (5)
o,y

The number of resolvable Fourier components is an important
parameter in applications such as feature extraction. It is used
to characterize the operation of the Deft sensor even when a
function other than the Fourier transform is being computed. For
example, consider the more general function

u = /f1(x,y)g(x)h(y) dxdy (6)

to be computed by the sensor. Because of the limits of inte-
gration g and h can be replaced by their periodic extensions
[g] and B]]. These functions will be defined by an example.
Assume that g(x) = x and that the x limits of integration are
from -1 to +1. Then the periodic extension of g(x) is shown in

Figure 3.

[g(x)]

-;////l 1.2 3

Figure 3 - Periodic Extension of g(x) = x

The function [}(y)] is likewise defined with respect to the
limits of integration in the y direction. Because [g] and [h]
are periodic they may be expanded in complex Fourier series.

(jkmx/2)
o g,k © (7)

(6] =

w18

kb iy e e e
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o(Jk1y/2)

“h,k (8)

where j = /~1. Substituting these series in equation (6) and
interchanging the order of integration and summation yields

X + ky)/2

=¥ B . : in(i '
WS el Smai Spx TITORw) e dxdy
(9)

= §= ) ;z . cg,l Ch,k F(in/2, kn/2) (10)

where F is the two-dimensional Fourier transform of I, Since )
the Deft sensor transducer bandwidths are limited, u can be

approximated by the truncated series
n n

; X Y :
u =z LY c, . cC F(in/2, kn/2) (11)
i= —n k= -n g,i "h,k
X y
where n_+1, ny+l are the number of resolvable Fourier components 1

along the . and by axis respectively., The error in computing u

with the sensor is
u -u = ¥

, » F(in/2, kn/2) (12)
ii|>nx |k|>nV

€z.i °h,k
This error depends on n ., ny and on the high frequency content
of the image 1 and of the kernal g(x)h(y). Hence, given a

sensor with parameters n, ny it is possible to determine which
kinds of images may be viewed and which kinds of kernals may be

utilized.

The Deft sensor is further described in a number of

2,3,4
references .

C. Elastobirefringent Light Valve

A two-dimensional acoustic processor utilizing an elasto-
birefringent light valve has been constructed and experiments
conducted 5’6. The experimental setup is shown in Figure 4.
The light valve consists of a fused quartz cell. On the edges

of this cell are attached two orthogonal transducers. When

-10- o




these transducers are excited strain waves travel through the
bulk of the cell. The total strain is the linear superposition
of the two traveling strain waves. An image is focused on the

region of the quartz where the two waves are superimposed.

1 Image Holder

Light Valve Polarizer
Analyzer ’// Beam Expander
Output
EEG S-20 Detecto HeNe Laser
X- 1nput y input

Figur« 4 - Elastobirefringent Light Valve: Experimental {
B Set-Up 3

Due to the strain induced birefringence, each ray of light
splite into two orthogonally polarized phase velocities. It
can be shown that the intensity modulation of each polarized
wave has a component proportional to the strain squared. The
image is produced by illuminating a transparency containing the

image information with a well-collimated beam which has been

polarized. The output of the light valve will have a desired
component polarized orthogonal to the orientation of the input
polarizer. This component is passed by the analyzer which is
just another polarizer. The undesirable direct component is

blocked by the analyzer. The desired component is then detected
by a photodetector which performs an integration over the entire
image. A chromium sampling grid is placed on the quartz cell to
sample the image and translate its spatial spectrum into the
passband of the transducers.

The function which can be computed by this processor can be
described by equation (1) which is also used to describe the

- -11- g




Deft sensor. Hence, functionally this processor is equivalent

to the Deft sensor. The differences between the two are primarily
in implementation and in present and projected future performance.
Concerning implementation, the light valve is a larger physical
structure than the Deft sensor. The image source must be a
transparency. By contrast, the Deft sensor can view either a
transparency, a photograph or a real-world image since it operates
much like a conventional camera. The elastobirefringent light
valves which have been built to date exhibit a strong standing
wave pattern which is a function of transducer frequency. This
effect has limited their usefulness. Potential solutions to

this problem are presented in Section V.

This light valve does have a couple of potential advantages
compared with the Deft sensor. In the bulk mode devices it is
not necessary to physically attach a metal pick-up grid. In
the Deft sensor this grid has an undesirable effect of damping
the SAW. This limits the practical size of Deft sensors since
larger sensors would suffer a large, undesirable SAW attenuation
across the sensor surface. Hence, the bulk devices could
potentially be larger resulting in a greater number of resolvable
Fourier components., A second advantage is that electrical feed-
through is not a problem with the bulk devices. With the Deft
sensor feed-through from the input transducer drive to the
integrating metal grid is a problem,.

However, the bulk device has a number of disadvantages when
compared with the Deft sensor. Since bulk mode operation is
required, the image must be focused with sufficient depth-of-
focus so that the image is in focus throughout the 1-2mm thick-
ness of the quartz cell., Higher acoustic fields are required
to operate the bulk device. The light valves built to date
use glued-on transducers. This is not desirable, particularly
at higher frequencies where the transducers are smaller and
more brittle. Finally, the physical non-linearity which is
utilized in the bulk light valve is a much smaller effect than

-12-
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that used in the Deft sensor. There is a large, undesirable
unmodulated signal which feeds through the light valve. The
purpose of the analyzer is to block this signal. However, it
is difficult to fabricate sheet polarizers which are uniform
enough over the 1 cm., illuminated length of the quartz cell.
Hence, some of this feed-through signal will pass the analyzer
and could saturate the detector. (This feed-through signal is
analogous to the electrical feed-through encountered in the

Deft sensor.)
D. Thomson - CSF Sensor

The Thomson - CSF sensor is a SAW device and has features
in common with the Deft sensor. The device can be described as
a two-dimensional separated media semiconductor convolver. It
employes two pairs of SAW transducers deposited on a LiNbO3
substrate. An 8 x 8 mm2 matrix of p-n vidicon type diodes is
pressed on 3000 A high randomly distributed posts. Output
signals are picked up between the back electrode of the semi-
conductor and a semi-transparent ground electrode deposited on
the bottom face of the piezoelectric medium. The device is
shown in Figure 5. The x and y center frequencies are fo,x
and fo' . The useful output frequency then appears at frequency
2(fO + f ).

, X 0,Y¥
h*(y)

/ LiNbO,

Diode g7 (x)

2+(x)

Array

h™ (y)

Figure 5 - Thomson ~ CSF Sensor




To generate tihe two-dimensional Fourier transform of an
image focused on the diode array, the x input signals are
chosen to be FM ramps of opposite slopes w ; = u, +ut. The
y input signals are chosen to be CW signals with frequencies
W i:wy +1/2 Awy. (That is, one X orientated transducer gets
w + and the other x orientated transducer gets wx—‘ The same
is true for y orientated transducers.) The instantaneous

frequencies of these waveforms are shown in Figure 6 (solid

lines). y-ri__=;f"‘3_:ﬁj_

w + t
wx-l-‘/‘ t
X I t

Figure 6 - Transducer Instantaneous Frequencies
With these inputs, the output signal component at Z(wx + my)
can be shown to have a modulation of the form

o(t) = £71 (x,y) eI TAUEK/Vy TV axay (13)

where Ver V are the SAW velocities of propagation. During a
sweep of the x, FM ramps an entire row of the transform is

read from the sensor. This sweep time need be no more than

twice the propagation time across the sensor. Hence, data

can be outputed potentially much faster than can be achieved
using the Deft sensor. In the Deft sensor the x and y input
waves must be CW signals which must propagate across the

sensor before a single transform component is outputted. The
frequencies of these waves are then stepped to output another
component, etc. The Thomson - CSF sensor approachwould be

most useful if a raster-scan of the transform is desired. This

is shown in Figure 7 (solid lines).
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Figure 7 - Raster Scan of Transform Plane

If instead of stepping the y frequencies, the y frequencies are
also ramps (dashed lines, Figure 6) then the transformed plane
can also be raster-scanned along oblique lines with variable
tilt angle (Figure 7, dashed lines). For example, it would
be possible to scan the transform along radial lines passing

through the transform origin. This is shown in Figure 8.

Figure 8 - Radial-Scanned Transform

This method of scanning will be shown in Section III to have
application in feature extraction.

The primary difference between the Deft sensor and the
Thomson - CSF sensor is the use of four vs. two transducers
and the choice of waveforms leading to a fast scan of the
transform. If random samples or samples at only a few spatial
frequencies are all that is required then the Deft sensor would
function just as rapidly as the Thomson - CSF sensor. It would
be possible to operate a Deft sensor in the same manner as the
Thomson - CSF sensor by also using four transducers and
inputting FM ramp waveforms. Speed performance would then




equal the Thomson - CSF device. This modification has not been
attempted to date. Note that the method used to speed-up data
output is not applicable to the computation of the more general

operator of equation (1).

The Thomson - CSF sensor is described in reference 7.
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I1I. FEATURE EXTRACTION TECHNIQUES FOR
ACOUSTO-OPTIC TECHNOLOGY

A Introduction

During the execution of this contract a survey of techniques
for feature extraction was carried out. The purpose of this
survey was to determine techniques suitable for implementation
using acousto-optic devices. The results of this survey are
detailed in this chapter. From the techniques surveyed, two
methods appear to offer promise both from an algorithmic stand-
point and also because of suitability of implementation. These
methods will be termed the method of invariant Fourier signatures
(IFS) and the method of invariant moment signatures (IMS).
Because of their promise, additional algorithmic development
was carried out during the course of this contract. This work
is reported in this section.

This section is divided into two parts. The first part
is a general discussion of feature extraction. The second part

is a comparison of some methods for feature extraction.

B. General Concepts

A general model for a feature extraction system is presented
in Section 1B, This model is shown in Figure 1. Briefly, the
transducer converts the image input light pattern *to electrical
signals. The preprocessor reduces the informaiin coai st of
the image to a more manageable size. The output of the pre-
processor is then passed to the decision processor where this
information is used to classify the photo image.

In Section II the operation and function of three A-O
devices were considered. The general function performed by
these devices is given by equation (1). This equation implies
that the two-dimensional image information is processed by the
sensor in such a way to result in a one-dimensional signal of
reduced complexity. Hence, these devices could be potentially
used to implement the combined function of transducer and

preprocessor. Therefore, it is important to consider specific




examples of equation (1) and determine their utility in pre-
processing. This will be done in this section.

The A-0 devices considered do not seem useful for imple-
menting the decision processor. There are a number of reasons
for this. First of all, the cutput of the preprocessor will be
an electrical signal. The A-0 devices require an image input.
Hence, the data format is not compatible. A survey of the types
of algorithms commonly used for classification reveals that
most of these cannot be implemented efficiently using A-0 devices.
In addition, they require greater accuracy than can be achieved
with A-0 devices. But most importantly, it is not necessary to
use A-0 devices for classification since the image information
content has been reduced by the preprocessor to the point where
a modest digital processor can handle this function. A survey
of conventional classification methods is given in reference 8.
An application of classification in aircraft identification is
given in reference 9.

Before developing specific preprocessor functions some
desirable properties of the transducer plus preprocessor will
be discussed.

The first desirable property is feature isolation. Con-
sider a typical aerial image of natural terrain in which may
be located one or more man-made features to be detected. The
natural terrain can be considered to be '"noise'" while the
feature is a '"signal'". One of the functions of the prepro-
cessor is to filter this signal from the noise. Now in a
typical aerial photograph, most of the photo will be noise. If
the transducer were to view the entire photograph then the
signal-to-noise ratio would be small and the preprocessor
function would be more difficult to implement. A simple but
effective way to improve the signal-to-noise ratio would be
to limit the field of view of the transducer to only a portion
of the photo and then scan the photo to search for features.
Limiting the field of view has the effect of reducing the noise
without reducing the signal as long as the feature to be
detected remains completely within the field of view.
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By scanning the photo is meant that the transducer views
a portion of the photo and that portion is preprocessed. The
transducer then views another portion of the photo and prepro-
cessing is repeated for that portion. This sequence of steps
is continued until all portions of the image have been viewed.
Scanning may or may not involve overlapping views. Scanning
a square photo with a square aperture and no overlapping is
shown in Figure 9. The same scan but with 50% overlap in
both directions is shown in Figure 10. To simplify presentation
the views for the overlap case are shown in four parts. These
parts would overlap each other. The boundary of the photo is
shown dashed. Now consider a feature which is completely
enclosed by the circle shown in Figure 9. (The angular
orientation of the feature is arbitrary.) Then if the photo
was scanned as in Figure 9 the feature would lie across the
boundary of four views and its detection would be difficult. {
However, if 50% overlapping of views is used as in Figure 10
then the feature lies totally within one view (in this case,
view 48). As long as the radius of the circle was less than
or equal to one quarter of the length of the square comprising
each view and overlap was 50% the circle would lie completely
within one view, Note that (neglecting missing squares at
the edges of the photo) the number of views has increased by
a factor of four.

These comments can be generalized. Let r be the radius
of the smallest circle which completely encloses the feature.
Obviously, r is independent of the angular orientation of the
feature in the plane of the image. Assume that the aperture
of the transducer imaged on the photo is square with length £.
Figure 11 shows ore such aperture (large square). In the
middle of this square is a smaller square., The area enclosed

by this square is the locus of points of all circles of radius
r which lie completely within the large square. Each view
has such a small square associated with it. In order that the
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feature lie totally within a view regardless of the position
of the feature within the image, the views must overlap in
such a way that the entire area of the photo is covered by

the union of all these small squares., In that case, the total

number of views must equal at least
total number of views = QTz/(i ~2r)2 (14)

where ET is the length of the square photo. That is, the
total number if views is greater or equal to the total area
of the photo divided by the area of a square of length & -2r.

Figure 11 - Overlap Geometry

The signal-to-noise ratio (SNR) of the view will be
defined to equal the area of the feature divided by the area

of the view, Hence,
SNR S 2nr2/.2 (15)

with maximum occuring when ¢ = 2r. However, in that case the
total number of views required is infinite. Hence, there must
be a tradeoff between SNR and total number of views to be
processed. If the ratio r/zT is very small (small features)
then a large number of views are required to achieve good SNR.
For example, assume that 2r = OT/SO and that & = 12r then
SNR < /72 and the total number of views is 100.

In practice, the total number of views can be reduced

somewhat by allowing some of the feature to be masked by the




transducer aperture. That is, r is chosen to be somewhat
smaller than the value implied from the dimensions of the
feature, To develop a general formula let 1 = klr. Now
reduce r to kzr.Then the total number of views is reduced by
a factor of (k1-1)2/(k1-k2)2. In the previous example kl =
12. Let k2 = 0.8. That is, overlap will be reduced so that, in
the worst case, only 80% of the largest feature dimension will
be within a view. 1In this case the total number of views
required is reduced by a factor of 0.9646. For a fixed value
of k2 this reduction will be greater for smaller values of kl
>2. For example, if kl = 4 and k2 = 0.8 then the total number
of views is reduced by a factor of 0.8789.

In terms of implementation, a single transducer and pre-
filter could be used to scan the photo in a number of steps.

If high-speed operation was required more than one transducer

and prefilter could view seperate views of the photo concurrently.

~ Another desirable property of the prefilter will now be
discussed. By definition, the prefilter takes the large amount
of information of the photo encoded as pixels and reduces it
to a much smaller set of numbers. This process can be termed
"dimensionality reduction'. Ideally, the prefilter output
should have the following properties:

1) Members of each feature class should show less

variability than was the case before the prefilter.

2) The relative separation of each feature class

should be increased.

3) There should be dimensionality reduction.

Consider first property 1). As an example of a feature
class let the class include all square buildings in the photo.
In this case, a square building is in the feature class regard-
less of its angular orientation or scale (size). It would be
desirable for the prefilter to have the property that if the
photo contains a square building in any position, orientation
or scale then the prefilter output will contain a signal or
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signature which is invariant to position, orientation or scale.

Such a prefilter will be said to implement a position, rotation

and scale invariant transformation., In certain cases it may be

desirable that the transformation is only position and rotation
invariant. (Example: small buildings are to be discriminated
from large buildings.)

The best-known invariant transformation is the autocor-
relation function. The first-order autocorrelation function

defined in one dimension is

0,0 (8) = Je(x)R(x+s) dx (16)
this function is invariant to translation. |
Consider now property 2). As an example, assume that the
prefilter input is a photo containing a square building. This
building may be in any position, orientation and scale. The
set of all outputs constitutes a class at the prefilter output.
In this idealized situation, if the prefilter is invariant to 1
translation, rotation and scale then this class contains but one
output or signature. A more realistic consideration would have
to include such effects as variation of building materials and

color and lighting. Another class could be determined by con-

sidering all outputs for all possible orientations of 'round
storage tanks'" in a photo. Now if the differences in all signa-

tures of one class from all signatures in the other class is

increased by prefiltering then relative separation has increased.
This might be the case, for example, if noise, such as natural
features, is filtered out by the prefilter.

However, in some cases relative separation may decrease.
For example, consider the autocorrelation function. It is well-
known that

F {0) = |Fig}|? (17)
where F{} is the Fourier transform. Hence, two functions who's
Fourier transforms have the same magnitude cannot be separated
by using the autocorrelation functions. Functions which cannot
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be separated include not only those which differ by a linear
phase term (i.e., the translated versions of the same function)
but also those which .. .ffer by a nonlinear phase term.

A function which avoids this difficulty is the higher-
order autocorrelation function

‘Dng (B8 emt ) = JE(X)g(x+a)E(X+A ) g(x+d ) dx  (18)

which can be shown to be unique for nZ2 except for traﬁslationlo.

However, note that the dimensionality has been increased. This
conflicts with the third desirable property that there should
be a dimensionality reduction.

In general, it is not possible to satisfy all three desir-
able features of a prefilter at the same time. It would seem
to be important that there be a dimensionality reduction since,
otherwise, the amount of information presented to the decision
processor would be enormous.

Later in this chapter two classes of algorithms are
presented which satisfy properties 1) and 3) but violate property
2). This would seem to be the lesser evil since the decision
processor receives less information which has been formatted
in such a way that the decision process is simplified. Since
property 2) is violated, a square building, for example, may
be mistaken for a round storage tank. However, this is less
important than not detecting the feature. It is always possible
to refine the decision process by human intervention. A
feature extractor which signals the presence of a feature and
indicates with some certainty what that feature is could be

very useful for automatic aerial photo screening.
C. Transform Methods

Because of the scope of this project, this section will
concentrate on pfefilters which utilize transforms which can
be implemented as a special case of equation (1). Transforms
which will be considered are the two-dimensional Fourier
transform, the two-dimensional image moments and the two-
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dimensional Hadamard transform. Applications of the Fourier
and Hadamard transform to image processing is surveyed by

Pickholtz'l,
is discussed in a number of papers

The application ¢f moments to image processing
9,12,13.

1. Hadamard Transform

The Hadamard transform of an image which has been sampled
and represented by the nxn matrix of pixel values I(xi,yj) is
F(i,j) = 7 H IH, (19)
the nxn matrix Hn consists of elements which are either +1 or
-1. The Hadamard transform is orthonormal. As a result, the
image is decomposed into basis images which are the two-dimen-
sional Walsh functions., The rows and columns of the matrix Hn
(which is symmetric) consists of the one-dimensional Walsh
functions of order n., For n = 8 these Walsh functions are shown

in Figure 12,

Sequency
wal (o,t) +++++++4 0
wal (1,t) bt~ 1
wal (2,t) et 1
wal (3,t) et b= 2
wal (4,t) ottt 2
wal (5,t) ottt 3
wal (6,t) -ttt 3
wal (7,t) Foet—tat 4

Figure 12 - First Eight Walsh Functions

The notation + means +1 while - means -1. These functions are
defined on the interval 03tZ1 and may be periodically extended
to span the real line. The {alsh functions may be thought of
as square waves. Wal (6,t) is shown in Figure 13 a). For each
of these functions, every occurrance of a transition from + to
- or from - to + is called a zero crossing. One half the
number of zero crossings of these functions is termed the
sequency of the function. Sequency is analogous to frequency

of sine and cosine functions.
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The transform F(1i,}) is a decomposition of the image
into its orthonormal Walsh basis images. The potential
advantage of this representation is that it may be possible
to accurately approximate the image by using only a limited
number of its Hadamard transform components. If so, this
would facilitate feature extraction since the output of the
Hadamard prefilter would be of lower dimensionality than the
input.

The Hadamard transform also appears useful because of its
ease of implementation. Because Hn only consists of +1 or -1
entries the matrix product represented by equation (19) can
be computed without any multiplies. This is particularly
useful in a digital processor where multiplications require j
more computation than do adds and subtracts. A high-speed
digital processor which computes the Hadaward transform of an
image for feature extraction is_described in reference 14,

One potential disadvantage of the Hadamard transform is
that it is not invariant to translation, rotation or scale of
a teature in the image.

Consider now the computation of the Hadamard transform

using acousto-optic devices. The potential application of the

Deft sensor to computing the Hadamard transform has previously
been discussedB. Consider the general function performed by
A-0 devices as defined by equation (1). Because the image
1(x,y) has been sampled by the sampling grid to produce i(x,y),
the functions g and h must be shifted in frequency into the
band occupied by the image. Hence, g and h cannot be base-
band Walsh functions. The appropriate choice is

g(t) = sin “o,xt wal(i,t) (20)
h(t) = sin W yt wal(j,t) (21)
where “o « and o are the frequencies which will produce

SAW's wiéh waveleﬁgths equal to the metal grid pattern in the
x and y directions, respectively. These waveforms are shown

in Figure 13.
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g(t) or h(t)
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Figure 13 - Modulation of Sinusoid by a Walsh Function

a) Walsh function, b) Modulated Sinusoid




However, to be realistic, it is important to consider
the limitations imposed by the bandwidth of the A-0 device
transducers. Since the Walsh functions are square waves
they require unlimited bandwidth for exact representation.
However, most of the spectral energy of these waveforms will
lie below some maximum frequency. As long as the transducers
pass frequencies within this bandwidth the A-0 device can
function as a Hadamard transformer. Walsh function spectrums
have been derived in the form of recursive formulasls. In
order to present these formulas some additional notation is

required. First, define the cal and sal functions

cal (n/2,t) = wal (n,t); n even, (22
sal((n+1)/2,t) = wal (n,t); n odd,. (23)
Now define the F?ugier transforms of these functions to be
C(n,f) = ftljzcal (n,t) e It gt (24)
1,2 i
S(n,f) = f-lfzsal (n,t) e It gt (25) !

The interval —1/2:ti1/2 can be thought of as the time that the
Walsh function acoustic wave will be on the active sensor area.
With these definitions the recursive formulas for C (n, f)

and S (n,f) are given by

Cn f) = { (-1)%:;;% cos (n£/2) C(n/2,£/2); n even
j(-1) “ sin (nf/2) S((n+1)/2, £/2); n odd
[n—l] (26)
S(n,f) =<{-(-1)- 2 4 cos (nf/2) S(n/2,f/2); n even
-j(-lﬁﬁéll sin (nf/2) C((n-1)/2,£/2); n odd
(27)
where [n/2] means the largest integer equal to or smaller
than n/2,

Using these formulas the Fourier transform of the Walsh
functions can be easily computed. The first few of these are
shown in Tables 1 and 2. Each of these functions is a product

of sines and cosines multiplied by a term of the form
Sin2 (nf/k)/(nf/k). The bandwidth of the Walsh functions is




|-}

j S(n,f)

sinz(ﬂf{2)
nf/2

-cos(rf/2) sinz(ﬂflg)
nf/4

_sin(7f/2) sin (7£/4) sin>(7f/8)
/8

—cos(T£/2) cos(Tf/4) sin®(7f/8)
178

_sin (7£/2) cos(7f/4) sin(7f/8) sin>(7f/16)
"T716

cos("f/2) sin(7f/4) sin(7/8) sin>(7f/16)
TT/16

sin(7f/2) sin(71/4) cos(Tt/8) sinZ(Tf/16)
TT/16

—cos(1£/2) cos(7£/4) cos(Tf/8) sin(7f/16)
T£/16

Table 1 - Sfn f) vs. n
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n C(n,f)
sin(nf)
0 nf
| sin(nf/2) sin®(af/4)
T/4
,  —cos(nf/2) sin(2£/4) sin(1/8)
nf/8
4 sin(nf/2) cos(rf/4) sin®(11/8)
“f/8
4 =cos(nf/2) cos(vf/4) sin(vf/8) sin*(1f/16)
nf/16
. -sin(nf/2) sin(7f/4) sin(=£/8) sin>(nf/16)
° nf/16
6  -cos(nf/2) sin(nf/2) cos(nf/8) sin’(nf/16)
nf/16
7 -sin(wf/2) cos(nf/4) cos(nf/8) sinz(nf/16)
/16
¢ -cos(nf/2) cos(sf/4) cos(af/8) sin(sf/16) sinZ(nf/32)

nf /32

Table 2 - C(n,f) vs. n
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determined by this term. In general, sal transforms from
S(2n+1,f) through S(2n+1,f) contain a term of the form sin2
(nf/2n+2)/(nf/2n+2) while cal transforms from C(2n,f) through

c(2™1.1 f) contain a term of the form sin®(nf/2%%2)/(nt/2"*2y .
The half power point of this envelope function occurs at
£,,, = .5816 x 2"*2 (28)

(that is sin2(nf, ,,/2%*2)/(at,,,/2"%2) = 1//Z.) If the number
of Hadamard transform components along one axis is doubled
then the corresponding transducer bandwidth must also be
doubled. An identical statement can be made concerning band-
width requirements for an A-O Fourier transformer.

Consider now the bandwidth required to excite Walsh
functions on the A-0 sensor. The sequency of S(2n+1,f) and
C(2n+1’f) is 2n+1. A sine or cosine wave defined on the same
interval (i.e., 0<x11) also has a sequency (i.e., number of 3
zero crossings). For example, a sine or cosine wave with ‘g
sequency 2™l has frequency

£ = .5 x gn*2 (29)

From the discussion above, the frequency of this sinusoid is

slightly lower than the half power point of S(2n+1,f) and

C(2n+1,f). The maximum of the envelope occurs at f = .3711 x
2"+2 while the first zero of this function which is not at the
origin occurs at f = .6366 x 2n+2. This is shown in Figure 14.

Figure 14 - Walsh/Fourier Bandwidth Relationship
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However, because of the energy contained in the sidelobes of
the envelope function it would seem advisable to require a
bandwidth at least 2 or 3 times that required for sinusoids of
the same sequency.

Because of the requirement of extra bandwidth, the use of
A-0 devices to compute Hadamard transforms is not as attractive
as using these same devices to compute Fourier transforms. The
utility of the Hadamard transform becomes important in imple-
mentations where it is costly to include multiplications.
However, the A-0 devices discussed in Section Il are ideally
suited for functional multiplication. Hence, using these
devices to compute Hadamard transforms is probably not their

best application.

2. Matched Filtering
The matched filter has long been used in communications

systems as a means to filter a signal corrupted by additive {
noise. The extension of the matched filter to a two-dimensional

16’17. Briefly,

signal (image) was first proposed by Vander Lugt

consider an image I(xX,y) consisting of signal s plus noise n.
I(x,y) = s(x,yv) +n(x,y) (30)

The matched filter is a linear filter with impulse response

h(x,y) which filters the image in such a way to maximize the

signal-to-noise ratio at the output. Let F(wx,wy), S(wx,my),

N(wx,wy) and H(mx,mY) be the two-dimensional Fourier transforms

of I, s, n and h respectively. The noise is usually characterized

by its power spectrum NN*, The signal-to-noise ratio is defined

to be

signal-to-noise =IffSHej(mXX+”yY) dmxdexlz
J/NN* HH* dwxdmy (31)

The signal-to-noise ratio is maximized over the filter output
space if

H(w_,w ) = S*(mx wy)
Xy NN* (32)
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the filter output is
m(x,y) = frFued (O TOyY)du du (33)

I1f the noise is white, (NN*, a constant), then the matched
filter output is simply the correlation between the image and
the desired object to be detected.

Now if the image contains the signal but offset to position
Ax,Ay then the correlation in the output will be shifted to
-Ax, -Ay. There will be a peak in the output at this position.
If the image contains multiple signals at various positions
within the image then the output will also contain a number of
correlation peaks. The matched filter is translation invariant
in a limited sense. If the image contains a signal (feature)
then the output will contain a correlation peak. However, if
the signal is translated then the output peak is also trans-
lated. Strictly speaking, the output would be different (i.e.,
translated) so that the matched filter is not translation {
invariant. However, it is invariant in the sense that the
correlation peak will occur somewhere only if the image
contains the signal. Another way of looking at it is to say
that the matched filter preserves the positional information
about the signal. There is no dimensionality reduction
since the matched filter output is a function of x and y.
However, signal detection is improved.

Referring back to Section III A, if the image
is scanned and broken into a number of views it may not be
required to locate the position of a feature within a view.
Rather,, the detection of a feature somewhere in the view
may be adequate. Hence, the matched filter may preserve
too much information. Perhaps by discarding this information

a simpler implementation may result.

Now consider implementation of the matched filter using
A-0 devices. When the two-dimensional matched filter was
first discussed by Vander Lugt he proposed implementing it
using coherent optics., In this implementation the image is




first transformed using a Fourier transformer lens. The matched
filter is then implemented in the Fourier domain by a spatial
filter. The filtered transform is then passed through a

second Fourier transformer lens. The output image contains
bright spots corresponding to signals in the input image.

This is a rather natural implementation for an optical processor
since the various lenses and filters can be lined up on an
optical bench and the information passes through the system in

a parallel fashion. That is, the data stream is a two-dimen-
sional light pattern throughout the processor.

Because A-0 devices can compute two-dimensional Fourier
transforms, an analogous system could be built using these
devices. A block diagram of such a system is shown in Figure
15. The image is viewed by an A-0 device such as a Deft
sensor. The sensor is used to compute the two-dimensional
Fourier transform of the image. The transform is raster
scanned by properly addressing A-0 sensor No. 1. This sensor
will have two outputs which are the real and the imaginary
part of the Fourier transform. These transform components
are multiplied by the corresponding components of the matched
filter which are stored in a memory. A complex multiplication
operation consisting of four real multiplies is required. The
weighted transform components are then input to two CRT's.
Since the transforms are raster scanned, the data stream is
in the correct format for the CRT. The real and imaginary
parts of the Fourier transform, weighted by the matched filter,
are displayed on CRT No. 1 and No. 2 respectively. These
functions are then viewed by A-0 devices No. 2 and No. 3. It
may be possible to directly attach these sensors to fiber
optic faceplate CRT's. Since the functions on the CRT's must
remain constant for the period of time required to scan out
the inverse transforms from the A-0 devices, storage CRT's
are required. The output of A-0 devices Nos. 2 and 3 are then
A/0 converted and input to the decision processor. The
decision processor searches for correlation peaks in the



T Y

matched filter output and compares these peaks with a threshold
valve in order to determine if the feature is contained in the
image.
|
CRT E A-0 ?
[ a0 ?eal Complex #1 #2 A/D Decision
#1 image | Multiply 41 Processor
—™ CRT EA-O > i
4 #2 #3 |
Image Hr Hj i
Sine Wave j
Generators D/A
]
Sine Wave
Generators
address Digital address {
Controller

Figure 15 - Matched Filter: A-O0 Implementation

A disadvantage of this implementation is the require-
ment of three A-0 devices and the need to generate a pictorial
representation of the weighted image transform in order to
utilize the second two A-0 devices.

In order to avoid this complexity, consider the alter-
native of computing the matched filter in the image domain
rather than the transform domain. The matched filter output
is the convolution of I(x,y) with h(x,y). That is,

m(x,y) = //I(a,B)h(a-x,B-y)dadB (34)




In order to compute this function by use of an A-0 device
which implements equation (1) the function h(x,y) must be
decomposable into

h(x,y) = g(x)h(y) (35)

However, this will not generally be the case for arbitrary
features to be detected. Hence, this approach cannot be
taken.

In order to avoid the requirement for an inverse
transform a third approach can be taken. As has been pointed
out, the matched filter output preserves positional infor-
mation which may not be required. Perhaps some implementation
advantage can be gained by dispensing with this information.
To this end, consider the matched filter for the autocor-
relation function of I(x,y). The transform of this function
is given by

FF* = (S+N)(S+N)* = SS*+SN*+S*N+NN* (36)
If the signal and the noise can be considered uncorrelated
then SN* = S*N = 0 and

FF* = SS* +NN* (37)
In this case the signal is the autocorrelation function
and the noise is NN¥. The function FF* consists of signal
plus added noise. Hence, the matched filter can be used to
filter the signal from the noise. In this case the matched
filter is given by

= * = *) %
H(wx,wy) (SS*) {SS*) 2

(NN¥) (NN*)* (NN*) (38)
The filter output is
- ~ 3 +
m(x,y) = [/FF*Hed (“x**0yY) duxduy (39)

However since F has been replaced by FF* 6 any correlation
peak indicating the signal or feature with transform SS*
will occur at x = y = 0 at the matched filter output. Hence,
it is only necessary to compute

m(0,0) = //FF*Hdu, du (40)

-36-




This function is simpler to implement using A-0O devices. A

functional block diagram is shown in Figure 16. The image is

viewed by an A-0 device. The device again is used to compute

the two-dimensional Fourier transform of the image. The

sensor electronics are designed to output the magnitude of
the Fourier transform rather than the real and imaginary parts.

Computing the magnitude actually required less electronics

than computing the real and imaginary part. This is because,

in the second case, phase information must be preserved and

a synchronous detector is required. Such a detector for a

Deft sensor is described in reference 18, Section II. In the

matched filter application the A-O device is scanned over

the range of spatial frequencies of interest. The sensor

output is squared and multiplied by the corresponding values
of the matched filter H. Both the sensor output and H values

are real which simplifies this computation. The output of

the second multiplier is then integrated over all spatial

frequencies. The integrator output is compared with a thres-

hold value to determine if the signal (feature) is present.

mag

Image

Sine Wave
Generators

address

—

—0

j=siis

D/A

Figure 16 - FF*
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Matched Filter : A-O Implementation
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The simplification in implementation when F is replaced
by FF* is obvious from a comparison of Figure 15 with Figure
16. In the second case no CRT's are required. In addition,
one rather than three A-0 devices are required. The matched
filter for SS* has some functional advantages and disadvantages
when compared with the matched filter for S. The advantages
are the following. First, there is a dimensionality reduction
from input to output. This simplifies the decision processor.
(A two-dimensional search is not required.) Second, the
matched filter for SS* is invariant to translation which also
simplifies the decision processor. The disadvantage of this
matched filter is that the detection of a signal with trans-
form SS* does not imply that the image contained the signal
with transform S. All signals with transforms lSIej¢(“x'my)
will produce the same result at the matched filter output. ¢
is an arbitrary phase function. Hence, this matched filter
can be used to correctly detect features with transform S but !
will produce false alarms when certain other images are viewed.
This disadvantage may be acceptable if the purpose of the
feature extractor is to screen photos with a final decision on
feature content being made by another means such as human
observations.

As a final comment, neither types of matched filters

considered here are invariant to feature rotation or scale
change.

3. Method of Invariant Fourier Signatures

In this section some prefilter algorithms will be
developed which compute feature signatures which are invariant
to feature translation, rotation and scale. These algorithms
are refinements of the matched filter of the image autocor-
relation function which was developed in the previous section.

Referring to equation (38), H can be thought of as a weight

function which is directly proportional to SS* and inversely
proportional to (NN*)2. The matched filter output at m(o,0)
is simply the integral over all spatial frequencies of the




product of this weight function with FF*, As a result, all
of the information contained in the fine structure of FF* is
lost and not available to the decision processor. In fact,
all the decision processor gets is a single number on which
the decision is to bhe based.

There are some obvious drawbacks to this type of pre-
processor. First, this matched filter is rather insensitive
to the shape of the transform FF*., That is, there may be two
dissimilar images I1 and I2 with transforms F1 and F2 such that

F F* 1=F2F2* (41)
and yet
ffFlFl*Hdmxdmy =ffF2F2*Hdwxdwy (42)

This would lead to additional, undesirable false alarms. A
second drawback which has been mentioned is that the matched
filter is not invariant to either rotation or scale changes. !
Hence, to use matched filters for feature extraction a number
of filters must be implemented for different angular orien-
tations and scale factors. Matched filter degradation due to
rotation and scale mismatch is discussed in reference 19.

Poor sensitivity of the preprocessor transform shape
results because the two-dimensional image is reduced to a
scaler. Better sensitivity may be obtainable if the prepro-
cessor is modified so that its output is a vector rather than
a scaler. A promising approach first taken by Lendaris and
Stanley20 is to replace the double integral in equation (40)
with n line integrals. That is, the product FF*ﬁ is integrated
along n contours. These integrals are then the components of
a n-vector which is the prefilter output. Two of the contours

used by Lendaris and Stanley are shown in Figure 17.
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Figure 17 - Integration Contours

In their work they only used the magnitude of the Fourier
transform. They did not implement the matched filter ﬁ.
They were concerned with computing prefilter outputs which
are invariant to translation and rotation or to translation
and scale but not both. In this section, a more general
type of prefilter will be developed which can be invariant to
translation, rotation and scale and also allow noise filtering
f which is analogous to matched filtering. However, to clarify
‘ the presentation some algorithms of Lendaris and Stanley will
first be developed. These will then be generalized.
To begin, assume that either |F| or FF* is available from

an A-0 sensor. Also assume for now that F = S, That is, there
is no noise and the image consists of only the feature to be
detected., Now if the feature is translated by Ax,Ay then the
transform changes to Fe'j(Axwx+Aywy). Hence both |F|and FF*

do not change and these functions are said to be invariant to

translation. We will now consider the two sets of contours of

Figure 17 separately,
Consider first the set of concentric circles. Let the i-th

circle have radius ri. The difference ri -Ti 1 need not be a

constant. There are n contours. Let FF* or |F|be integrated ﬁ
around any of these contours. Now if the feature were to
rotate through angle 8 then this integral would not change.

-40-
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This is because FF* or |F| would only rotate around the trans-
form origin by the same angle. This will be true for all
contours. Hence, the n-vector whose components are the n line
integrals is invariant to rotation.

Now consider the second set of contours. Let the i-th
radial line be at an angle ei from the wx—axis. The difference
64-05_1 need not be a constant. There are n contours. Let FF*
or |F| be integrated along any of these contours. Now if the
feature were to be scaled in size by o then |F| and FF* would
be scaled in size by 1/a. As long as the radial lines extended
far enough from the origin so that all the significant energy
of the transform will be included in the contour integration
for both scaled and unscaled feature, then in both these cases
the line integration will remain approximately the same. This
will be true for all contours. Hence, the n-vector who's
components are the n line integrals is (approximately) invariant
to scale.

Prefilters based on these algorithms can be implemented
easily using A-0 sensors. The sensor spatial frequency address
would be incremented along a contour. The sensor output would
then be integrated along the contour. A simple integration

formula such as the trapezoidal rule

b

% Er(xi)—%(f(a)+f(b))]: fa f(x)dx (43)
s1

where hS = X, -Ny would probably be adequate. (Note that
the Thomson - CSF sensor would be limited to scanning along
radial lines. Tor a discussion refer to Section II D.)

The invariant properties of these algorithms appear to be
very useful. They are also noteworthy because only a single
Fourier transform is required and, therefore, they can be
naturally implemented using a single A-O0 device. These algo-
rithms were successfully used by Lendaris and Stanley to
detect features in aerial photographs. They have also been

used by Pernick, et al, in the screening of cervical cytological
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sumplesgl. However, these algorithms have some disadvantages.
The first disadvantage is that they do not consider the
effect of noise. In the matched filter the output is enhanced
by multiplving FF* by the weight function ﬁ. 1f the image
contains signal plus noise then it is not possible to weight
FF* by ﬁ before intcgratinﬁ along the contours because the
feature is assumed to be either rotated or scaled by some
unknown factor. Since ﬁ is not invariant to these changes
in the feature, the required weighting function 1is not known.

The proper place to apply filtering is after the line inte-

grations. Assume that signal and noise are uncorrelated so
that equation (37) is satisfied. Since the integral of a sum
equals the sum of the integrals then signal and noise will
still be additive at the output of the contour integrations.
(This implies that FF* is used. If |[F| is used, signal and
noise are no longer additive.) That is,
S$FF* = ¢8S* + FNN* (44)
i i i
where ¢ is the i-th contour integral. Hence, the matched
filtcriprinciple can bhe applied at the prefilter output after
line integration., Let the weight to be applied to the output

of the i-th line integral be w,. Then from equation (32)
$SS*

i
To be specific, consider the case of concentric circles for
contours. The feature to be detected has transform S. Since

the algorithm has been shown to be invariant to feature rotation,
W, will also be invariant to feature rotation. (The noise does
not change with feature rotation since feature and noise are
assumed uncorrelated.) Hence, the set of weights is a constant
n-vector which only depends on the noise and on the feature

but not on the angular orientation of the feature. That is,

the weight vector can be computed apriori. This will al:o be
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the case when the contours consist of radial lines. In this
case the feature has an arbitrarv scale. However, the algo-
rithm is invariant to scale so that ¢SS* 1s constant. Hence
the weight vector is again constant %nd can be computed apriori
using equation (45)

In general, let the i-th component of the measurement

vector be mi where

m, = $rEF* (46)
i
then the prefilter output n-vector is given by V where
vT = | w.m Wom —_——wom_| (47)
171 7272 nn'

Given that matched filtering can be applied to these
algorithms they still suffer a disadvantage in the case that
the feature may have arbitrary position rotation and scale.
These algorithms are invariant to translation and rotation
or translation and scale but not to all three. If the feature
is present but suffers all three changes with respect to the
reference feature with spectrum S then the output n-vector
will not correspond to the reference output and detection may
not be possible. It is, however, possible to generalize these
algorithms so that the prefilter can be made invariant to all
three feature changes.

To develop the more general algorithm, begin with the

image I(x,y) with transform F(.,.»,). Form either |F| or FF*

il _V
which has been shown to be invariant to translation. (If
matched filtering is to be applied later then rF* should be

used.) Then form the function

G(p,6) = lF(epcose, ePsing) | (48)

or if FF* was formed,

p P

G(p,0) = F(eocose, e sind) F*(epcose, e sing) (49)
That is, G is |F| or IF* distorted exponentially in radius and

expressed in polar coordinates. The function G is periodic in

pn with period r. Assume now that the image consists of signal




with no noise. Consider now the change in G when the signal or
feature inl(x,y) suffers an arbitrary rotation and scale change.
Let (r,y) be the location of an arbitrary component of |F| or

FF* before rotation and scale change. The location of the
corresponding component in G is (In r,y). After rotation of

the feature through angle ¢ and scaling by @ the component in |F|
or FF*¥ will move to {(r/a,y+¢). The location of the corresponding
modn)' That is, G will be

transtated by -~1lnu along the p direction and by ¢ along the #

component in G is (In r -lna, (y+:)

direction (modulo n). Since |F| or FF* is invariant to trans-
lation, any combination of translation, rotation and scale
change of the feature will result in only a translation in G.
( G will also suffer a gain change to la{'zG but this is not
important.)

Since the only change in G is a translation,by taking a
second two-dimensional Fourier transform, this time of G(o,6),
and then forming the magnitude or magnitude squared of this
second transform, a function is formed which is invariant to
translation in G. Hence, this last function is invariant to
translation, rotation and scale of the feature. This function
” H(up,wn)=f;max {:;7 G(o, e X, 0% 8o a0 (50)

min
The functions |[Hand H#*are invariant to translation of G.
Strictly speaking, this is true only along the lines parallel

to the wp-axis defined by

w,= 2n; n an integer (51)

This is because G is periodic in © and should be expanded in
a Fourier series rather than a Fourier integral in the 8-
direction. The Fourier integral evaluated on the above lines
reduces to the Fourier series.

Although IH(wp, n/n)| or H(mp,n/n)H* (mp,n/ﬂ) is a two-
dimensional invariant function it is probably not necessary
(and certainly not desirable from a computational standpoint)
to compute this function. To develop more easily computable
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invariant signatures, recourse is made to the Fourier trans-
form projection theorem. Let P@[G(o,ﬁﬂ be the projection of
G onto a line at angle ¢ from the ~axis. The projection

theorem states that the one~dimensional Fourier transform of

P¢[G] equals H(wp,we) restricted to a line through ;ge origin
of (wo,we) - space and at an angle ¢ to the wp-axis™ . This

line is shown dashed in Figure 18, Since G(p,8) is periodic

in o, P¢[G] will also be periodic for ¢#0. Hence, P@[G]

should be expanded in a Fourier series rather than a Fourier !
transform. Let F{P¢[G]} be the Fourier series expansion !
of P¢[G]. The terms of this series equal H(mo,up) evaluated !
at the intersection of the dashed line with the horizontal

lines mg=2n.
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Figure 18 - (w,,wy) - Space and F {P¢} Line




Since |H| and HH* are invariant, so is |F{ P¢)|and F{P¢}F*{P¢}.
Now F{P@} contains only some of the information contained in H.
It is conjectured that by properly choosing ¢ values experi-
mentally, a set of invariant signatures could be developed which
contain most of the useful information in H. The signature or
signatures to be used may depend on the set of features to be
recognized.

Because of the way this development has been carried out,
it may not be clear how the invariant signatures are to be
computed from the first Fourier transform F(wx,“v)‘ This can
be clarified with the aid of Figures 19 and 20. In the following
it will be assumed that all processing after computation of the
Fourier transform of the image will be done digitally. Hence,
continuous functions must be sampled to get discrete samples
for digital processing,

Figure 19 shows the domain of the pertinent part of F in
(mx,wy) -~ space. <F has beeg restricted to spatial frequencies
wy Wy where pmin -/wx +wy - pmax. Because of the mapping
p= eo , F will be only sampled on the concentric circles shown
in Figure 19. There are n circles and their radii are ek, ezk,

eSk, ey enk where

k = 1np . (52)

_ nk
Pmax -~ € (53)

Because of the mapping from F to G, these circles in (mx mv)
-space will map to the dashed, equally spaced vertical lines
shown in Figure 20 in (p,6) - space. Since the image is a

real intensity function

F(wx’mV) = F(-mxy -wy) (54)
so that G is periodic in the 6-direction with period .

Consider now the formation of the projection PQ[G]. P¢
is a function of a single variable p where

u = pcosec 6 (55)
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The domain of P¢ is the line throuch the origin of (p,6)

- space at angle 6 to the p-axis. This line is labeled 21

in Figure 20, P¢ will only be computed at a discrete set of
points. Let My be one of these points., To determine P¢(ui)

4 straight line is drawn which passes through the point My

and is at right angles to 21. This line is labeled 22 in
Figure 20. Now, to find P¢(pi), simply integrate G along 22.
Since G is only available along the vertical, dashed lines

of Figure 20, a numerical integration is performed using

sample points which are the intersection of 22 with the
vertical dashed lines. The values of G at this set of points
is simply the function |F| or FF* evaluated at a set of points
which is defined by the intersection of the n, concentric
circles in Figure 19 with the curve which is the mapping of

Lo from (p,08) - space to (wx,my) - space. This curve is
labeled ¢, in Figure 19. Note that c, is a spiral. This is
always th; case unless ¢= 0° or ¢= 908. If ¢= 00 then 12 is
parallel to the vertical, dashed lines in Figure 20. 1In that
case iy is chosen so that 22 coincides with one of these
vertical lines. That is, Coy will be a concentric circle. This
implies the |F| or FF* be integrated around a circle in order
to compute P¢ (ui). If ¢= 90° then 22 is parallel to the p-~axis.
In (wx,mv) - space the corresponding c, will be a radial line.
The intersection of this line with the n, concentric circles
defines the sample points used to compute the numerical inte-
gration. These special cases where ¢= 0° or 90° result in
contours which are similiar to the contours of Figure 17. The
only difference is the exponentially distorted spacing of
circles., For any other value of 00<¢<90O the integration

contours are spirals. Hence, this algorithm is more general

than the previously considered one.

Now for whatever ¢ angle used, the above procedure is
repeated for each of the sample points Wy In this way, P¢[G]
is computed at a set of sample values. To increase efficiency




of the remaining computation, the number of sample values of
P¢ is chosen to be a power of two. Now recall that the one-
dimensional Fourier series of P¢[G]equa1s H(mp,me) restricted
to a line through the origin of (wﬁ,we) -space and at an angle
¢ to the wp-axis. Hence, the final step in the algorithm is
to compute the Fourier series of P¢ . Since P¢ is only
computed at a set of equally spaced samples, My, 2 discrete
Fourier transform (DFT) rather than a continuous Fourier
series is computed. As long as the sample spacing is suf-
ficiently fine to prevent significant aliasing, the substitution
of the discrete Fourier transform for the Fourier series is
acceptable. Since P¢ has been sampled at o™ points, the DFT
can be computed using an FFT algorithm.

In the above development, the functions F, G and H
have been defined. However, in the actual calculations of

the invariant signature F{P¢[G]} only the function F need be

considered. In review, to compute the signature the following
steps are required:

1) A set of radii defined by
ro = ek (56)
for some constant k is chosen. These radii define the n,
concentric circles. (For the special case that ¢= 00, n is
chosen to be a power of two.)

2) A projection angle

0°: ¢:900 is chosen.
3) An integer m is chosen to define the FFT length as 2
4) If ¢<90o then the following step is performed:

For each 0= i- 2™-1 |F| or FF* is integrated along

m

the contour C, using samples with (polar) coordinates

f (e*® (a-1yp+in/2™ 155 n (57)

The result is a vector of length 2™ with each element of

the vector corresponding to a difference value of i, ,
5) 1f, instead, ¢= 90o then the following step is performed:
For each 02iin |F| or FF* is integrated around each of the n,




concentric circles. A discrete integration is performed by
only sampling F discretely around each circle. n is chosen
to be 2™ so that the resulting vector is of length Zm. Each
element corresponds to a different value of 1i.

6) An FFT is performed on the 2 -vector,

7) Either the magnitude or the magnitude squared of the
FFT output samples are computed.

The resulting 2™ _vector of real numbers is the desired
signature., The above series of steps can be repeated for
other values of ¢, if so desired. The above algorithm will

be termed the method of invariant Fourier signatures (IFS).

Elements of this algorithm are developed in a series of

papers 23, 24, 25, 26, 27. The procedure of exponentially

distorting a function and then computing its Fourier trans-

tform can be shown to be equivalent to the Mellin transform23
MTG) = £TEoxTIV T ax (58)

In the above development the question of noise corruption
was not considered. The invariant signatures which can be
computed from t!&» algorithm are only invariant in the noise-
tree case. We have al eady considered the application of the
matched filter to the output of the prefilter defined by
equation (47). Consider now the extension of this development
to the more general prefilters developed above.

i To begin, assume that the image I(x,y) consists of signal
‘ plus noise. That is, I is defined by equation (30). Assume
; also that signal and noise are uncorrelated so that equation
i (37) holds. Now let ¢ FF* be the result of integrating FF*

% along the i-th contou% which may be a radial line, circle

i or spiral. Then with the above assumptions equation (44)

. still holds. That is, the exponential distortion of the

; radius does not effect this result, Define signal and

noise to be %(u) and R(U) where

n 4
S(u.) = gs8% - 1§ sssH (59)
1 i N og=1 k




R(u,) = # NN* - 2 T snNw (60)
i k=1 k
That is g(ui) equals the result of the line integral at My
with the mean value over all i removed. The same applies
to g(ui). (Removal of the mean has not been considered to
this point.) Define the transforms of $ and n to be & and N

respectively. That is
8 = F(s) (61)
N = F{n} (62)

and define

%{p¢[cj} = S+ (63)

(%{P¢} is simply F{P¢} with the zero frequency term set to
zero.) Now matched filtering can be applied since signal
and noise are additive which follows from equation (44).
However, to avoid another transform, we make the further
assumption that % and N are uncorrelated so that

%{p¢}%*{p¢1 = 33 + NNx (64)
The removal of the means was necessary to make this assumption
a possibility. The corresponding matched filter weight
function is

- S8 (65)

(Aivx)2

The matched filter output is

m(o) = f%{p¢] %*{p¢}ﬁdv (66)
where v is the frequency variable,

Notice that the result is a scaler rather than a 2™ vector.
What has happened is that by adding matched filtering, the
decision processor algorithm has been included with the pre-
processor algorithm. The only additional computation required
is to compare %(o) with a threshold. Note the form of H. It
is the output which would occur if only the signal (feature)
were present divided by the square of the output due to the




; noise alone., Hence, where a large noise contribution was
expected the output would be de-emphasized. m(o) is simply
the inner product of the prefilter output with the matched
filter weight.
Finally, consider the implementation of any of these

algorithms using A-O0 devices. A block diagram is shown in !

Figure 21.
Digital j
A-0 D/A
Processor
Image I
Sine Wave address
Generator |
{
Figure 21 - Invariant Fourier Signatures: Implementation

The block diagram is rather simple. The A-0 device is used
to produce components of the two-dimensional Fourier transform
of the image. The sample points are controlled by addressing

the sensor. The remainder of the processing takes place in

the digital processor. The amount of data memory required is

2m+1 words to hold the complex o™ vector. Spatial frequency

addresses can either be computed using a cordic a1gorithm28
or precomputed and stored in ROM. It can be seen that these
algorithms are well-suited for implementation with A-0
devices since the two-dimensional image information is immed-
iately reduced to a much smaller set of numbers which can be
‘; post-processed in the digital processor.

‘ In summary, a flexible class of algorithms has been

developed which can be used as a feature extractor prefilter.

These algorithms can be translation, rotation and scale




invariant. This is strictly true only in the case where no
noise is present. However, matched filtering can be used

to minimize the noise at the prefilter output. The parameter
¢ can be used to optimize the prefilter for the particular
feature or class of features to be identified in the image
set. The parameter ¢ can be arbitrarily chosen because A-0
devices can be addressed at arbitrary spatial frequencies.
Finally, these algorithms are well-suited for implementation
using an A-0 device for a Fourier transformer and a mini-

computer as a post-processor,

4, Method of Invariant Moment Signatures

The method of moments is used in a number of disciplines.
The utility of moments in feature extraction was first
pointed out by Hulz. It can be shown that algebraic com-
binations of image moments are invariant to translation,
rotation and scale. This section is a discussion of image
moments and how they can be computed using A-0 devices.

The two-dimensional (p+¢)-th moments of an image

intensity function I(x,y) are defined by

mp q = ffxpyq [(x,y) dxdy (67)

It can be shown that the double sequence of moments {mp,q}
is uniquely determined by I(x,y) and conversely, I(x,y) is
uniquely determined by {mp'q} as long as I(x,y) satisfiei2
certain conditions which are always met with real images™ ~.
A method of reconstructing I(x,y) from {mp q} is given in
reference 13.

The purpose of computing image moments is two-fold.
First, the invariant functions of moments are desirable for
feature extraction. Second, the possibility exists of
replacing the image, which contains a large amount of
information represented by its pixel values, with a much

and q<q }

max’ ’

<
smaller set of moments {mp such that P=Ppay

This is analogous to compufing the two-dimensional Fourier




. b m e Ty

transform for the purpose of reducing the image information
to a much smaller set of spatial frequencies.
Consider now the central moments which are defined by

iy o = Te=RPa-DT 1y aG-R)A(y-T) (68)
where

X = ml,O/m0,0 (69)

v = mO,l/m0,0 (70)

It is well known that the central moments are invariant under
translation of coordinates. Hence, the central moments are
translation invariant. The central moments can be expressed

in terms of the ordinary moments. For example

UO,O = m0,0 (71)
10 Ho,1 T © (72)
= m m. . %2 (73)
Ko 0 2,0 70,0
—m. . - m. . §2 (74)
Yo,2 0,2 0,07
Mp 1T ™1 " Mg,0 XY (75)

Similar expressions are easily derived for all higher order
moments with the use of equation (68), If, for example, the
ordinary moments could be computed using an A-0 device then

the central moments could be formed in a digital post processor,

Consider the information contained in the first few moments
t0,0,"1,0,"0,1,"2,0,"0,2,"1,1"

“0.,0 = m0,0 =/f1(x,y)dxdy (76)

represents the total image power. Both "1 o and bg 1 are zero.

However, the ordinary moments

m =ffxI(x,y)dxdy (77)

1,0

m =//yl(x,y)dxdy (78)

0,1
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locate the image centroid which is (x,y) where X and y have
already been defined,.

The above set of moments characterize the size, gross
shape and orientation of the image. If only these moments
are considered then the image moments are identical to the
moments of an image consisting of the ellipse shown in
Figure 2213. The parameters of this ellipse are given by

s
s
\
\
\
Figure 22 - Equivalent Image Ellipse
2 2 .
a=("20"%VY,2 +[(u2 0 ~¥o0,2) +4u121]1/2 1/ (79;
( Mo, 0/2
= 2 2 ,1/2 1/2
b = UZ’O + Uo’z _[(u2’o _UOLz) +4U1’1] (80)
]-—‘0,0/2
} o = (1/2) tan~! (211 ) (81)
Y2 07Y0,2

Hence, if only these moments are known then only very general
information about the image shape is available. However, even
in this case enough information may be available to achieve
some feature extraction. For example, it should be possible to
distinguish long, thin features such as roads, airport runways




and shorelines from compact features such as buildings and
vehicles. Long, thin objects are characterized by a>>b or
b>>a while compact features are characterized by anb.
Rotating the image results in change in the angle ¢. However,
image rotation will not change a or b. Hence, a and b are
invariant to rotation. Because they are formed from central
moments they are also invariant to translation. 4rd, finally,
because of the “0,0 term in the denominator they .re invar-
iant to intensity changes.

Since a and b are invariant to translation and rotation

SO are
a? + b7 = 20, 4 *ug o) (82)
uo,o/z
2
a® - b% = 2[(uy o -uy ) +4u131]1/2 (83)
¥o,0/2

These last two moment invariants were used by Hu to distinguish

between letters of the alphabetlz.

Moments can be modified to be invariant to scale, Consider

the scale change x“ = ax, y° = ay. Then it is straightforward
to show that the unprimed central moments ”p-q will change to
the primed central moments “ﬁ i where
. = (ptq*2) 84
Yp,q ~ ° “p.a (84)

To achieve invariamce to scale first make use of the relationship

. 2
Moo T % ¥o,0 (85)
so that
a(p+q+2) = CJ‘O!()) 1+(p+q)/2 (86)
¥0,0

Substituting this expression into equation (84) and separating

primed from unprimed terms yields

" b.q = " (87)

P,q
1+(p+q) /2 ho o TPO/E

(UO,‘O)




Hence,
W 1+(p+q)/2
“p,c - ¥p,q’¥0,0 (88)

is invariant to scale. The moments ﬁp q will be termed scale-

normalized moments.

The direct substitution of ﬁ moments for ¥ moments in the

expressions for a,b, a2+b2 and a2-b2 yields invariants 3,%,

32+g2 and 32—%2 respectively. These invariants are trans-

lation, rotation and scale invariant. Note, although a,b and
+ ) . . . . . +

az-b2 are invariant to intensity variation, 3,% and 52—32 are

not. To see this, let I(x,y) change to kI(x,y) then a,b and

azib2 do not change while a and b change to k-1/2§ and k—1/2%
and gztgz changes to k—1(§2+32). This is not necessarily a

problem, it should be kept in mind when applying these formulas,

however. It should be noted that the normalization given in

equation (88) is not the only one possible. Another scale-

normalized set of moments is given by 9,13
~ _ (2+p+q)/4
p,a = ¥p,q/{¥2,0%v0,2) (89)

Up to this point moments and central moments have been
defined. A few scalers have been given which are invariant
to translation, rotation and scale. These results can be
generalized. In references 12 and 13 it is shown that by
including higher order moments, additional invariant scalers
can be derived which are translation, rotation and scale
invariant. Higher order moments contain more information
about the image. In his paper12 Hu was able to differentiate
long, slender letters such as I or L from compact letters
such as N or M using only aztbz. However, he was not able to
differenciate between letters which have about the same shape
such as the pairs (W,M), (E,F) or (B,R). In a more recent
paper13 Teague has shown that moments up to at least the 11th

or 12th order are needed to distinguish an E from an F,
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Assume now that a sufficiently high number of moments are
available so that m, invariant scaler functions of these
moments could be computed. Then the m-vector of these scalers
could serve as an invariant feature signature. This m-vector
would then be the output of the prefilter., This approach has
been used to identify aircraft, for example.9

Consider now the computation of image moments using A-0
devices. Two approaches to this problem will be considered.
They are the following:

1. Computing image moments from the two-dimensional
Fourier transform. The Fourier transform is computed by the
A-0 device,

2. Computing image moments directly bv modifying the
A-0 device input sipgnals g(x) and h(x) in equation 1.

First, consider the approach requiring the Fourier
transform. Some of the results in this development will be
applicable to the second approach. Given that the two-

dimensicnal Fourier transform is available, it is possible

to compute image moments from samples of the Fourier transform.

Two methods of accomplishing this will be considered.
The first method can be developed as follows., Start

with the Fourier transform of the image.
Flug o) = J710x,p)e 3 oY) gxay (90)

Now expand the exponential in a power series and integrate

term by term. The result is

. ® 0w N | P, q
Flo ,w ) = & X (-—J)p m W, w,
X'y p=0 q=0 prqrl p,.a X "y (91)
so that
- y=(p+q) 3_\p 3 \q (92)
my g = (=) [(—~an> (awv) Fluy o)) wo,= 0

Hence, mp can he derived from the partial derivatives of F
evaluated'at the origin. This approach has been considered
by Teague 29. Since F(mx,my) and not its partial derivatives

~-5R8~




are available, the partial derivates must be approximated bv
numerical differentiation. Partial derivatives are replaced
by finite differences

3 _\p 3 \q o P q
=) ()" Flu_,w ) ~(& )" (& }* Flu,,w,) (93)
wa amy X'y w ., wy Xy
where
_ F(w_+h,w ) -F(w_-h,w )
Amx F(mx,wy) = X y X y (94)
2h
and

F(wx,my+h) —F(wx,wy—h)

Awy F(wx,my) -

(95)

It can be shown29 that in order to measure all moments

of order n or less (i.e., p+q fn) requires 2n2 + 2n+1

distinct samples of the transform. The location of these

samples is shown in Figure 23. 1In order to compute moments {
of order n or less, the required samples (which are the dots)
are all located on or within the square labeled n.

W

37

Figure 23 - Transform Sampling: Finite Differences
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The only control on accuracy is the step size h. For
high accuracy, h may be so small that all the samples are
restricted to the area of the transform occupied by the d.c,
sinc¢ function. (The Fourier transform of an image will
always contain a term centered at w T wy = 0 due to the
average light intensity of the image. This term is a square,
two-dimensional sinc function because the A-O sensor is
assumed to have a square aperture.) If this is the case
then higher frequency components of the transform will not
be utilized in the computation of the moments. While it is
true that if the Fourier transform were known with infinite
precision then decreasing h will always result in greater
accuracy. The exact Fourier transform is an analytic
function and so the entire transform can be reconstructed from
the partial derivatives evaluated at o, = wy = 0. However,
in practical A-0 sensors, greater measurement accuracy can (
be achieved by utilizing Fourier transform data over the
entire region of Fourier space which is available. The small i
effect of a high spatial frequency component on the partial
derivatives at the origin will be error-prone whereas an
accurate measurement at the high spatial frequency is possible.
Hence, this method of computing moments does not appear well- i
suited for implementation using A-0 devices since there is
no practical means available for controlling accuracy of
computation.

Because of this problem an alternative method was
developed under this contract. This method also uses samples
of the Fourier transform, However, the sample spacing is
fixed and the accuracy of the method is adjusted by adjusting

the number of samples. In this method, higher accuracy 1
requires higher spatial frequency components. The method

seems well-suited for A-0 device implementation and it will

now be developed. i
The starting point in this development is the defining




equation for two-dimensional moments, equation (67). Now
the A-O0 device has a finite aperture. This aperture will

be considered square. Because of this, the weight functions
xp,yq are only required to have this form within the device
aperture. Let these functions be periodically extended
beyond the device aperkure. This is shown for the one-dimen-
sional case in Figure 24. The extension to two dimensions
is straightforward. The device aperture is considered to

be centered at x = 0 and to extend from x = -1 to x = +1.
Four cases are shown in the figure. These are : a) p even
and period = 2; b) p even and period = 4; c¢) p odd and
period = 2; d) p odd and period = 8. The periodic extension
of xP is indicated with the notation [xpl . The periodic
extension of yq is [yq] . Over a single period, centered

around x = 0, the functional definition of [xpl for the four
cases shown in the figure are as follows:

p even and

period = 2: [xP] = xP. _13x31 (96)
p even and 2—(x+2)p; —Zixi-l
period = 4: [pr = xp; —1ixi+1 (97)

2-(x-2)P. +12xl+2

p odd and

period = 2: [xp] = xp; —lixil (98)
(-(x+a)P ; _aixIo3
—2-(x+2)P ; _3ixi_2

p odd and —2+(x+2)P . —23xi1

period = 8: [xp] - «P ; _1jxj+1 (99)

2+(x-2)P . +15x540

p < <
2-(x~-2)" ; +2-x-+3

p < <
\ -(x-4)" ; +3-x-+4
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a. p even and period = 2
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p odd and period = 2

Figure 24 - Periodic Extensions of x
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d. p odd and period = 8
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Since [xpl is periodic, 1t can be approximated by a finite

sum of complex exponentials. There are a number of ways of
achieving such an approximation. For example, the finite sum
will be "best" in a mean squares sense if a truncated Fourier !
series is used.

An alternative method, the method of trigonometric inter-
polation, will be developed here30. This method has the
advantage that simple formulas are available for determining

the coefficients of the expansion. The method can therefore

be easily modified to produce exponential sum approximations
to any periodically extended function for which a closed form

formula exists without the need for an integration. (An

integration is usually required to determine Fourier series
coefficients.) The method is, therefore, well-suited for
computer generation of the required coefficients, Although
the method is very general, the following development will
be restricted to the special case of interest, namely the
expansion of [xP] .

The method has the property that the approximation to
[ xP] will exactly equal [xP] on a set of grid points

x;= il/n; i = 0, +1,#2,...,4n (100)

where L is one half the period of [xp]. The number of points,
n, is a parameter which can be set to achieve the required
accuracy.

The approximations to [xP] and [y%] will be denoted by
gp(x) and hq(y) respectively where

n - .
g (x) =% c (ple J(knx/L) (101)
P =-n
_n . .
ho(y) = 7 e (@e j(kmy/L) (102)
k=-n

The notation ck(p), ck(q) for the coefficients is used to
indicate that these are functions of the powers p and q.
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Tne notation £ means

n . n
I a, = L a, - 1/2(a_+a ) (103)
k=-n k k=-n k no-n

Now refer back to Figure 24. The function [xP] has
different properties depending on whether p is even or odd and
the period 2, 4 or 8. If p is even and period = 2 then [xp]
is continuous but the first derivative is discontinuous. If
p is even and period = 4 then both [xp] and its first derivative
are continuous. If p is odd and period = 2 then [xp]is dis-
continuous. If p is odd and period = 8 then both [xP]and its
derivative are continuous. If either [xP] or its derivative
is discontinuous at x =t1 the error in the approximation near
these points will be rather large unless n is large. Therefore,
it appears better to use the periodic extensions shown in
Figure 24 b. and c¢c. These extensions will be exclusively used
throughout the remainder of this development. Notice that if
p is odd the period must be twice as long as when p is even.

To account for this, L in equations (101) and (102) will
henceforth be denoted, when necessary, by Le or LO for the
even or odd case respectively. If the normalization of Figure
24 is used then Le = 2 and L0 = 4,

The formula for finding ck(p) given[xp] is given in
reference 30. First, express the complex coefficient ck(p)

in terms of its real and imaginary parts

u (P)=38 (D)

ﬂk(D) = 2 (104)
where
1n .
ak(p) = n i_ . gp(xz)cos(knxg/L) (105)
1" .
B (p) = = i=_n gp(x¢)sin(knx /L) (106)
and x, = L/n. The formulas for ck(q), “k(Q) and Bk(q) are

the same except that p is replaced by q, x is replaced by y




and g is replaced by hq everywhere they occur. Since the

following development is identical for both g

P and hq, only

» the case for gp will be shown.
h The function gp(x) equals [xp] at all of the 2n+l1 points
xz (and also at all periodic extensions of these points).
There will generally be some error between the mesh points.
This will be investigated later.

Now gp is either an even or an odd function depending on

whether p is even or odd. For p even

c(p) = 1/2 o (p) (107)
for p odd
¢ (p) = -1/25 8 L (p) (108)

For p even or odd Le or LO is used. To obtain equivalent
accuracy, the mesh space should be the same in both cases.
Since L0 = 2Le the number, n, of mesh points will be different
in each case. Denote them as n, and n for even and odd cases

respectively. The formula for ck(p) and p even is then given by

1 e .
. - B b ;
p even: ck(p) 2n 2=—ne gb(xl)cos(knxg/Le) (109)
1; p=0and k =0
= O; p=0and k# 0 (110)
1 ne .
= 5 .
L n oo gp(xl)cos(knxg/Le), p>0
and for p odd, n
. o .
) - _d .
p odd: ck(p) 5n R=En gp(xQ)s1n(knx2/Lo) (111)
o
n

. o
- 8 (xp)sin(knxg/Ly) (112)
=




where the notation ¢ here means

a, = a - 1/2 a (113)
1 n

n
)
P78

(¥~

2

If p is even then gp(xz)cos(anQ/Le) is an even function,
Likewise, if p is odd then gp(xl)sin(knxx uo) is an odd
function. Because of this

¢ (P) = c_,(p); p even (114)

ck(p) = -c—k(p); p odd (115)

These expressions reduce the number of multiplies required
to compute gp(x) from equation (101) by a factor of two.
There is an additional symmetry present in [xp] which
reduces the number of multiplies still further. The cases
of p even and odd must be considered separately.
First, consider the case where p is even and p>0. Con-

sider the function
ép(x) = g(x-1) -1; p>0 and even (116)

in the interval -13x3+1 the function ép(x) is an odd function
while the function cos(kn(x—l)/Le) is even in this same inter-
val for k even and k>0. Hence, there will be no contri-
bution to ck(p) from the points in this interval when k>0 and
even. An examination of the function

Ep(x) = gy(x+1)-1; p>0 and even (117)

in the interval -12x2+1 leads to the same result. Hence, for
p>0 and even and k>0 and even ck(p) = 0,

Now consider the case the p is odd. Consider the function
gp(x) = gy(x-2); p odd (118)

in the interval -25x3+2. The function gp(x) is even in this
interval while the function sin(kn(x—Z)/Lo) is odd in this
same interval for k even and k>0. Hence, there will be no
contribution to ck(p) from points in this interval when k>0
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and even., An examination of the function
ép(x) = g(x+2); p odd (119)

in the interval -23x3+2 leads to the same result. Hence, for
p odd and k>0 and even,ck(p) = 0, In summary:

c(p) = c_,(p); p even (120)
¢ (p) = c_,(p); p odd (121)
ck(p) = 0; p even and k>0 and even (122)
ck(p) = 0; p odd and k>0 and even (123)

” Now consider the generalization to two-dimensions of the
results to this point. Let [xP][y%] be the periodic extension
of xpyé outside the square with corners (-1,-1), (-1,1),
(1,-1), (1,1). Then [x°]|y%] can be approximated by

g (x)h (y) where
p q n n,
gp(X)hq(y) = §=_n i=_nci(p)ck(q)e

Jn(ix/L+ky/L) (124)

where the various L's and n's are to be replaced by Le’ Lo’

n,, n, - whichever is appropriate. Now consider the defining

equation for m q equation (67). If the limits of integration
: | e

are restricted to -lfx,yf+1 then the kernal x"y* can be
replaced by [xP][y?] without effecting the result. That is,

m o= - [Py 1(x,y)dxdy (125)
p,q 1

Now approximate [xP][y%] by &p (x)hy (¥)
1

1
. 126
my g % _{ _{ gy (X)hg (y)I(x,y)dxdy (126)

Now substitute the defining trigonmetric formulas for €p and
hq and interchange integration and summation. The result is
n n

m n g s c.(ple.(a)
P9 “j=_p k=-n * k -1

A A ix,y)ed TEX/LARY /L) gyqy
-1 (127)




r—

= e e Fgt
j=-n K=-n k L (128)

Since I(x,y) is real F(mx,my) =F*(-mx,-wy)

so that

n. n.
z T c. (p)c (q)F*(yl T')

P.q4 “j=_p i=-n (129)
this is the desired result. It states that if xpyq are
approximated over the aperture -15x,y=+1 by the trigonometric
series gp(x)hq(y) with coefficients c, (p) and c (q) then mp q
is approximated by the weighted double sum of two d1mens1ona1
Fourier transform samples with the same coefficients ci(p) and
ck(q). Notice that when a larger value of n is used in order
to increase accuracy then the Fourier transform must be
sampled over a larger region of Fourier space.

Now, taking into account the symmetries present in the
coefficients ci(p) and ck(q) and in the two-dimensional
Fourier transform equation (129) can be simplified. First of

all, define the notation
n. n
I a, = I a, - 1/2(a +a ) 130
jo0 1 j=0 1 o “n ( )

then the summation approximating mp q can be broken into four

parts.
n .n - im kT
Y .—-._
™S q ml(X)R(Z)C(p)c (q)F*(= T )
n ,-n ., -n . n . -n .-n .
+ T L (same) + z Z (same) + b I (same) (131)
i=0 k=0 i=0 k=0 i=0 k=0

Since I(x,y) is real F(w ,wy) = F*(~w ,-wy) so that

m w2 1o[e (e (OF (e (pre_ (OFATED)]
P,a4 Yi=0 k= 0
n n in -km in -km
+ 17 17fey(pre_ (FF(—p =) +e; (PIe (F(Sp»=—)]  (132)
i=0 k=0
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Now F+F* = 2 real (F), F-F* = 2j imag(F) and taking
advantage of the symmetries equations (120), (121), (122)

and (123) the formula for mp,q can be broken into four pieces
for the four cases

1. p and q even

2. p even and g odd

3. p odd and q even

4., p and q odd

These cases are the following:

case 1: p and q even

LI =Zi§6 kgéci(p)ck(q)[real F(in/L,,kn/L.) . j
+real F(in/Le,—kn/Le)] (133)
case 2: p even and q odd
n, nj !
mp,q=2jiié kié ci(p)ck(q)[imag F(in/L,,~kmn/L_)
-imag F(in/Le,kn/Lo)] (134)
case 3: p odd and q even
o e
mp‘q=-2jiié kié ci(p)ck(q) [imag F(in/Lo,kn/Le)
+imag F(in/L_,-kv/L,)] (135)

case 4: p and q odd

n
z

3

il

N
| B -
~ O
= v O

. c;(p)e, (q) [real F(in/L_,kn/L )

-real F(in/L_,-km/L)] (136)

In all four cases, approximately three quarters of the
combined coefficients ci(p)ck(q) are zero since Ci(p) =0
when i>0 and even and ck(q) =0 when k>0 and even, 1In all

cases, mp q is a real number. If p is even and q is odd or

r
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p is odd and q is even then ci(p)ck(q) is imaginary and
jci(p)ck(q) is real. Sample spacing in the (wx,my) - plane
for the four cases above is shown in Figure 25. The dashed
half square is the first zero of the two-dimensional sinc
function which results from the average light intensity of
the image. The transform is to be sampled at the inter-
section of all solid lines including the wxand my-axis. The
total number of samples depends on ne and no. Notice that
real or imaginary parts of the transform for samples which
have the same W - coordinate but opposite wy— coordinates
are added or subtracted before being multiplied by
c;(pey(a).

Two Fortran computer programs have been written to compute
the ci(p), ck(q) coefficients as defined by equations (105),
(106), 107) and (108). These programs are listed in Appendix C.

The final topic which must be considered is how n, and n,
are chosen to achieve a required accuracy in the approximations
for [xp], [yql. To this end,two additional Fortran ccmputer

programs were written to analyze the error function

- p
ep n(X) = [x J-gp(x) (137)
This is a function of x, the power p and the number of terms,
2n+1, in the summation defining gp(x), equation (101). Now

because of the form of gp(x)

ep,n(xi) =0 i=0, 21,+2,...+n; x, = iL/n (138)

Because of the symmetries present it is easy to see that

|ep,n(x)| = Iep’n(-x)| (139)

Hence, it is only necessary to examine ep’n for positive values
of x. If p is even then we are only interested in €p,n Over
the interval O-<-x§xn/2 which is right-half of the sensor
aperture (normalized). If p is odd then we are, instead,

interested in e over the interval Ofxfxn/4. The Fortran

p,n
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programs allow the user to enter p, n/2 or n/4 and a mesh
divisor m. The program then computes all the ci(p) coef-

ficients and evaluates e (x) at the points

p,n

X; = iL/nm; i= 0,1,..., nm/np (140)

where np = 2 if p is even and np = 4 if p is odd. That is,

the interval x. =xix. is divided into m parts.

Using thesé Fort;;; programs a studv was conducted to
determine the effect of n on the maximum error observed at
the 1+nm/np grid points. The mesh divisor was fixed at m =
10 for all cases. Then p and n were varied and the maximum
error overall the grid points observed and tabulated. For
the cases p =1 and n/4 = 1,2 and 4 the error function is
shown in Figure 26. Notice that the maximum error decreases
by at least a factor of two for every doubling of n. The
tabulation of maximum error for the cases of 15p§8 and n/np =
1,2,4 ~nd 8 is given in Table 3. From this table it is seen
that the maximum error increases for n/np fixed and increasing
p. Likewise, if p is held constant then the maximum error
decreases with increasing n/np. Now n/np is the number of
points in the interval 0°x31 for which ep,n(x) = 0. Notice
that (approximately) the maximum error decreases by a factor
of two when n/np is doubled and p held fixed. To investigate
further, addition data was generated and tabulated in Table 4.
From this table it is seen that the maximum error Iep,nl will
remain approximately the same if when p is doubled n/np is also
doubled. (More accurately, the maximum error is increasing
slightly as p and n/np are progressively doubled.) Also note
that for (approximately) the same error, n/np should be the
same for p even and p odd. Since np = 2 for p even and nn = 4
for p odd this implies that

n, = 2ne (141)

for (approximately) the same error. A maximum |ep nl= .03
is an error of 3% of the full-scale value of (xp[ in the

interval 05xZ1 which is 1.0.
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pn/"p 1 2 4 8
1 1173166 | .0353821 | .0098962 | .0026195
2 .0560095 | .0172765 | .0045921 | .0011702
3 .2697230 | .0526488 | .0138003 | .0035090
4 .3059095 | .1007140 | .0273201 | .0070052
5 .4319005 | .1697540 | .0457383 | .0116845
6 .4288390 | .2163066 | .0656872 | .0173221
7 5176162 | .2795536 | .0905453 | .0241607
8 .5232109 | .3136496 | .1143713 | .0317055

Table 3 Maximum Iep,n(x)l vs. p and n/np

b m e e s




Now refer to Figure 25 in order to relate n/n,, and n
to the spatial frequency bandwidth of the acousto-optic
sensor. The first zero of the average intensity sinc
function is the location of spatial frequencies of one line
pair per aperture. The intersection of this zero with the
W and W= axis is

w_o=T (142)

W =
X y
A sensor with bandwidth of n, line pairs per aperture has

usable bandwidth

b

o< < -
—-W =n
X b
< <
N, Tew —-n, 7

b y b

Now n, = 2n/np and n, = 4n/np. The bandwidth required for

gp(x) is
p odd: n _7/8 = (4n/np)"/8 = (n/np)ﬂ/z (143)
p even: neﬂ/4 = (2n/np)ﬂ/4 = (n/np)ﬂ/z (144)
Equating with nbTT vields
n/n_ = 2n (145)

P b

Referring to Table 4, in order to compute up to 16th order
moments with maximum |e nl i.0336 requires n/np = 16.
Equation (145) then implies that the sensor bandwidth must
be at least 32 line pairs per aperture along both the wx and wy
-axis. Continuing with this example, if the sensor bandwidth
was 16 line pairs per aperture then only 8th order moments
could be computed with the same maximum |e ol. However, if
the error criteria was relaxed to maximum Yén’nli.0672 then
16th order moments could be computed with a 16 line pair per
aperture device. Table 3 and 4 or the computer programs of
Appendix C can be used to determine the bandwidth required
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p|n/ng maxlep’nl
2 2 .0172765
4 4 .0273291
8 8 .0317055
16 16 .0335946

a. p even

Table 4 - Maximum]ep,n(xﬂ vs. p = n/np or p
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p | n/np max[ep,n[
1 2 .0353821
3 4 .0138003
7 8 .0241607
15 16 .0296186
b. p odd {

= n/np -1
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given the highest order moments to be computed along with
the largest allowable error. This analysis has assumed
that the Fourier transform can be computed with perfect
accuracy. Errors in the transform will lead to additional
errors in the computed moments.

Since the two-dimensional moments are computed as
weighted sums of two-dimensional Fourier transform components,
the implementation of a preprocessor using an A-0 device can
take the form of Figure 21. The A-0 device is used to compute
Fourier components and the weighting and summation is carried
out in the digital processor. The digital processor is also
used to compute the moment invariants. An advantage of this
method of computing moment invariants is that the same hard-
ware configuration can be used to compute moment invariants
as well as to compute the invariant signatures developed in
Section 1II. 3.C. This would be desirable in appli-
cations where a decision is to be made based on prefilter
outputs derived from more than one algorithm,

The algorithm for computing moments from the Fourier
transform can be modified to provide some noise filtering.

In aerial images it is often the case that the features of a
signal that permit discrimination generally have significant high
spatial frequency content in some frequency band17. The noise
contributes primarily to spatial frequencies outside this band. It
may be desirable to weight the Fourier transform components

to emphasize signal and de-emphasize noise, The algorithm

permits a weight function of the form
W(oy,0,) = ¥ (0 )W (o) (146)
to be applied to the Fourier transform components prior to

summation. These weights should be combined with the coeffic-
ients ci(p), ck(q). The composite coefficients are

]
~
kel
~

i

wx(i'n/L)ci(p) (147)

[¢}
w
~
£
~
]

W (kn/Lyey (q) (148)
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These multiplications can be precomputed and stored. Hence,
noise reduction can be added to the algorithm without the

need for any additional on-line computations. Examples of

Wx functions are

_J0; w__w
W loy) ‘{1, x< e (149)
3 u)x-wc

which is a high-pass filter and

Wy (150)

wX( u)X)

which is a derivative filter. It should be noted however that

two-dimensional filters such as

Wny = wxwy (151)
have a directional bias. This is not totally consistant with
the desire to compute invariant signatures. This topic needs
further investigation.

Next, an alternative approach to computing image moments
will be considered. This approach utilizes the development
based on the method of trigonometric interpolation which was
derived above.

The A-0 devices which have been considered in this report
which compute the function given by equation 1 are linear in

g and h so that

. n n
I L b (t- h,(t- dxdy =
JI1(x%,y) o ko g (t=x/v )h,(t-y/v ) dxdy
n n .
z z ffI(x,y)gi(t-x/vx)hi(t-y/vy) dxdy (152)
i=0 k=0

This property allows an alternative means of computing moments.
Rather than weighting and summing Fourier components in the
frequency domain, the eigenfunctions can be weighted and

summed in the time domain. The composite function is then
applied to the A-0 device. The A-0 device output is then the




desired moment. The weighted eigenfunctions are given by
| equations (101) and (102). However, these are just the
; bandlimited approximations to [xP] and [y%] derived from the
method of trigonometric interpolation. Hence, if the A-O
device electrical inputs are the approximations to [xp] and
[yq] then the device output will approximate mp’q. This
statement needs two qualifications. First, the device

output will only equal mp q at the time instant when the SAW or
BAW are aligned as shown in Figure 24, That is, there is
only one instant per period when the acoustic waves line up

on the sensor to give the correct weighting function. The
‘ second qualification arises because of the image sampling
; caused by the metal grid pattern on the sensor. This was
; discussed in Section II. The origin of Fourier space is

translated by fo,x ’
spectra of gp(x) and hq(y) they must be multiplied by

j“Z“f'y,o respectively. In an actual implemen- !

and fo . To likewise translate the

ej2"fx,o and e
tation, the complex exponentials would be replaced with real
sinusoids and a synchronous detector used to preserve the

phase information. Such a circuit is described in reference

18. Hence, the sensor drive signals should be of the form

g(t) = gp(t)sin2nfx ot (153)

h(t) hq(t)sin2nfy t (154)

, 0

Now since g_ and hq have been designed to be bandlimited, g
and h will also be bandlimited and n can be chosen to achieve
maximum accuracy given the A-0O device bandwidth. Hence, all
the previous analysis can be applied to this implementation
also. The functions, equations (153) and (154) can be
generated either by performing an analog multiplication of g

p
or hq with sin27ft or by precomputing time samplesof g(t) and

h(t) and storing these samples in a fast digital memory. The
memory would then be read, D/A converted and the analog
samples smoothed and applied to the A-O sensor. The sensor




output should be sampled in synchronism with the input so
that this output is sampled and held at the instant when the
correct portion of gp(x)hq(y) is on the active sensor area.
The implementation of such a preprocessor is shown in Figure

217.
Sample m
A-0 P b, a
and Hold
Image
Filter
D/A
o
’ Digital
Memory |e Processor
{

Figure 27 - Implementation: Method of Moments

D, Summary

This section began with a general discussion of prefilters,
It was shown that the desirable property of feature isolation
could be achieved by breaking the image into a number of
smaller, overlapping views. By this means signal-to-noise
ratio can be improved. Since A-0 sensors cannot match the
accuracy of a digital processor, feature isolation is useful
since it relaxes the noise filtering requirements of the ]
prefilter algorithm. However, the price paid is the need to
process a number of views rather than a single aerial image.

The concept of feature invariance was introduced. A

prefilter which is invariant to changes in the feature such




as translation or rotation or scale is very desirable. This
is because the number of distinct signals at the prefilter
output is greatly reduced which simplifies the decision
processor. However, invariance usually leads to an undesir-
able reduction in separation between feature classes.

Because of the function performed by A-O sensors they
are best suited to implement prefilters which utilize a
separable transformation of the image of the form of equation
(1). Anumber of such transformations were investigated.

The Hadamard transform is characterized as an ortho-
normal transform for which all the elements of the n x n
transformation matrix Hn are either + or -1. Because of
this property, it is well-suited for digital implementation
since additions rather than multiplications are required.
Since the A-0 sensors performs general multiplications as
easily as multiplications by tl, this special property of Hn
is of no advantage in an A-O implementation. Since A-0O
devices are bandlimited whereas Walsh functions are not
bandlimited, A~0 devices do not appear to be the most optimum
means for computing Hadamard transforms,.

A classical means for feature extraction is the matched
filter. However, the A-0 implementation of the matched filter
is not desirable since both forward and inverse Fourier trans-
forms are required. The matched filter for the image auto-
correlation function leads to a much simpler A-0 implementation
since only a forward transform is required. This version of
the matched filter is invariant to feature translation but not
rotation or scale.

More complex algorithms were developed which utilize
Fourier transform samples to compute feature signatures which
are invariant to translation, rotation and scale. Since the
transform is sampled, the amount of information in the image is
reduced to the point where a modest digital processor can
compute the remaining steps in the algorithm. These algorithms
are well suited for an A-0 device implementation consisting of
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an A-0 sensor and a digital post processor.

Image two-dimensional moments were introduced. Certain
combinations of these moments can be invariant to feature
translation, rotation and scale change. Two methods of
computing these moments from the Fourier transform were
presented. The second method is more accurate for A-0
implementation since it utilizes Fourier samples over the
entire bandwidth of the sensor. An alternative method of
computing moments by time-weighting the electrical inputs to
the A-O0 sensor was developed, Using this method, moments can
be computed potentially much faster than by the Fourier trans-
form method. However, a more complex hardware configuration
is required. i

In summary, there appear to be a number of potentially
useful feature extraction algorithms which can be effectively

implemented using A-0 sensors.




IV. FEATURE EXTRACTION EXPERIMENTS WITH DEFT SENSORS
A, Introduction

For the purpose of sensor and algorithm evaluation, Deft
Laboratories Inc. has developed a microprocessor-based Deft
sensor operating system. This system consists of a MC6800-
based microprocessor system, two digitally controllable sine
wave generators, a Deft sensor and an electronics module for
signal filtering and amplification., The system can interface
with a tape recorder, teletype, storage CRT and an X-Y plotter.
Assembly language programs can be written to implement signal
processing algorithms. In addition, some resident software

is available to make measurements of the Deft sensor output
and to make pseudo-three dimensional plots of the magnitude
of the Fourier transform.

Since this facility is available, it was decided to
program one or more of the prefilter algorithms under study
in order to make a preliminary evalution of the concept of
implementation developed in Section III., The present experi-
mental set-up has two limitations., First, the system is
limited to evaluating Daft sensors. Second, the sensor drive
functions g(t) and h(t) are limited to sinusoids. Because of
this second limitation experiments were restricted to those
algorithms which characterize the image by its two-dimensional
Fourier transform. Algorithms which were programmed are the
method of invariant Fourier signatures and the method of
invariant moment signatures., However, because of a short-
coming of the Deft sensors which were available during this
study, it was not possible to compute image moments with any
accuracy. This shortcoming is presently being eliminated in
a new sensor design., More will be said about present short-
comings in the next section. The method of invariant Fourier
signatures is less sensitive to this problem so that a series
of experiments were conducted. The results of these experi-

ments are detailed here.
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First, however, the computer programs which were written
will be described. This will be followed by a description of
the experiments which were conducted and the results of these

experiments. The section closes with some conclusions.
B. Feature Extraction Experimental Computer Programs
1. Method of Invariant Moment Signatures

The flow diagram of this program is rather straight-
forward and is shown in Figure 28. When the program is entered
it requests that the sensor view a uniform image for cali-
bration. When this image is in place the user types '"C" and
the program makes a series of measurements near the transform
origin for the purpose of removing a linear phase term which
is present in the Deft sensor output. This phase function is

approximately of the form

¢(wx,wy) = kxmx+kymy+ko (155)

The computed Fourier transform is

)

%(m w ) = F(wx

Je(uw, w_ )
x,%y my)e X, ¥ (156)

where F is the desired Fourier transform.

This phase function is undesirable. The constant ko
is measured at the Fourier origin and removed from all data
points. The linear phase also must be measured and its effects
removed from each data point. The method of trigonometric
interpolation is implemented in this program. Refer to Figure
24. If linear phase is not removed then the effect is to shift
the aperture of the sensor out of the normalized aperture
centered at x = y = 0 and extending to x =t+1l,y =+1. The
image will then, in effect, be multiplied by [xpl, [yql outside
the interval where these functions equal xp,yq. The result
will no longer be the image moment. To remove the linear phase,
kx and ky are measured by sampling the transform at two points on
the wx~axis and two points on the wy—axis near the Fourier

origin where the transform has a large magnitude. Since a
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ENTER
4

INPUT "C"

EVALUATE SENSOR LINEAR PHASE FUNCTION
INPUT EXPONENT FOR SAMPLE AVERAGE
INPUT LIMIT

INPUT "M
DO K = O, LIMIT - 1
DO I = 1,N
DO J = 1,N

COMPUTE SPATITAL FREQUENCY ADDRESS
SET FREQUENCY SYNTHESIZERS

READ DEFT SENSOR

CORRECT FOR LINEAR PHASE USING CORDIC '
MULTIPLY DATA BY COFFFICIENTS
ACCUMULATE MOMENT PAR1.:AL SUMS

/m

0,0

m m
p,q = p.,q

3

COMPUTE X,Y

PRINT MOMENTS AND X AND Y
PRINT "CONTINUE?"

INPUT CHARACTER

YES

STOP

Figure 28 - Flow Diagram: Invariant Moment
Signatures




uniform image has a transform which is a real function, any
linear phase measured is due to the sensor and its associated
electronics and should be removed. For example, if the

sensor is measured at (o0,0), (ax,O) and (o,ﬁy) with result

¥(0,0) = A(0,0)e 1¢(0,0) (157)
. n,
B ,0) = AS,00e I*(¥x0) (158)
N vy 60,8 ) (159)
%‘(o,wy) A0, v ye y
then
kO = $(0,0) (160)
k, = #(5,,0)-¢(0,0) (161)
#
X
ky = ¢'(0’“’y) -¢(0,0) (162)
48&

The program automatically makes these measurements and

stores the corrections ko, k and ky‘ The computed linear

phase is then removed from e:ch transform sample during the
course of the measurements when the test image is in place.
The samples which are available to the microprocessor from
the sensor are in the form of the real and imaginary components
of the transform. To remove linear phase, these samples must
be converted to a magnitude and phase representation, the
phase correction computed and applied and then the result
converted back to real and imaginary format. The conversion
is accomplished using the CORDIC algorithm. The total time
involved per correction is about the same as the time required
to compute two multiplies,

Once the parameters ko’ kX and ky have been measured
the program request a sample average which is a power of two
(2**S), The user then inputs the exponent Subsequent
transform values will be sampled 2**S times per spatial
frequency and averaged to improve the signal-to-noise ratio.
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The program in its present form is capable of computing
all image moments from "o to mg g- To save time, if not

all these are required, the user can specify a limit 8.

Then only moments from m oo to m will be

limit-1’'1imit-1
computed.

Next the program requests the user to position the test
image and type '"M". The program then computes the two-dimen-
sional moments using equations (133), (134), (135) and (136).
These moments are then normalized by mo,o. It is easy to see
that

m I m (163)

™,q =1 (164)
mo,o
Then two moment invariants are computed. These are {
X = al+b? (165)
Y = a%-p? (166)

where aztb2 are defined by equations (82) and (83). The

computed moments and X and Y are then printed out. The

program then asks the user if he would 1like to continue. If

he types a "Y" the program loops back and asks for a new

sample average. If any other character is typed the program
jumps to the monitor program and displays '"*'. A sample run

of the program is shown in Figure 29. The notation 2**i(integer)
means that the fixed point number to the left is to be multi-
plied by 2**:(integer). This is floating point using powers

of two rather than ten. In the figure the case LIMIT = 3 is
shown, If this parameter were larger then a larger table

(up to 8 x 8) would be printed out.




e em——

POSITION UNIFORM IMAGE. THEN TYPE C C
COMPUTES M(P,Q) MOMENTS FROM TRANSFORM

SAMPLE AVERAGE IS 2%*3

LIMIT = 3
POSITION TEST IMAGE. THEN TYPE M M
M(P,Q)
0 1 2 3 4 5 6 7

0 +.,9999 +.,0055 +,1848
1 -.1204 -.0181 -.0707
2 +.1851 -.0468 +.0183

X = +.7109 2*%*-01 Y = +.6048 2**_04

CONTINUE? Y

Figure 29 - Moments for Feature Extraction:
Sample Run

For the particular implementation of the algorithm given
in the program listed in Appendix B, the parameters n, and ng
were set to be n, = 20, n, = 40 independent of p or q. This
simplifies the computer program but results in run times which
are longer than necessary because lower order moments can be
accurately computed with much smaller values for n,, ng. The
coefficients which were used in the program are listed in
Tables 5 and 6. These coefficients can be utilized by a Deft
sensor with bandwidth of 10 line pair along the wx—axis and
+10 line pairs aleng the wy-axis. (See Section III, C.4
for a discussion.) Since the sensor which was available had
a resolution of at least 20 line pairs along the wx—axis and
$10 line pairs along the my—axis, the available bandiwdth was
sufficient for this application. Since n, and n, were too
large for the lower power p and q, most of the coefficients
in these cases are very small except for a few which are
associated with transform samples near the Fourier origin.

For example, consider ck(2). In this case only the first two
or three coefficients are significant. Hence, lower order
moments are insensitive to high spatial frequencies, as would
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k ck(O) ck(Z) ck(4) ck(6)
0 | 1.0000000 1.0000000 1.0000000 1.0000000
1|0.0 -0.5160232 -0.5864970 -0.6093051
3)0.0 0.0191080 0.1043204 0.1456567
5]0.0 -0.0041213 -0.0239249 -0.0501646
710.0 0.0014943 0.0088168 0.0202132
910.0 -0.0006940 -0.0041216 -0.0097799
11 0.0 0.0003693 0.0022002 0.0053087
13 (0.0 -0.0002108 -0.0012579 -0.0030627
1510.0 0.0001213 0.0007249 0.0017742
1710.0 -0.0000636 -0.0003796 -0.0009316
1910.0 0.00N0198 0.0001184 0.0002910
Table 5 - Program Coefficients for p,q Even
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k ck(l) ck(3) ck(5) ck(7)

1 ]-0.8109863 -0.8729509 -0.8872015 -0.8926364
3 0.0904811 0.2270004 0.2633326 0.2780638
5 | -0.0328427 0.0826661 0.1262836 0.1463572
7 0.0169653 -0.0288055 ~-0.0660045 -0.0868873
9 1-0.0104343 -0.0107975 -0.0356715 -0.0539768
11 0.0071316 0.0060242 0.0202588 0.0345133
13 | -0.0052356 0.0042429 0.0124037 0.0227422
15 0.0040498 -0.0027277 -0.0081753 -0.0155041
17 [ -0.0032614 -0.0016602 -0.0056615 -0.0109329
19 0.0027129 0.0011839 0.0040415 0.0079358
21 | -0.0023181 0.0009504 0.0029583 0.0058911
23 0.0020269 -0,0007069 -0.0022143 -0.0044456
25 |1 -0.0018081 -0.0004914 -0.0016811 -0.0033913
27 0.0016420 0.0003742 0.0012820 0.0025989
29 | -0.0015157 0.0003088 0.0009746 0.0019850
31 0.0014201 -0.0002323 -0.0007317 -0.0014942
33 [ -0.0013495 -0.0001532 -0.0005325 -0.0010885
35 0.0012995 0.0001024 0.0003619 0.0007408
37 | -0.0012675 0.0000703 0.0002099 0.0004306
39 0.0012520 -0.0000271 -0,0000687 -0.0001412

Table 6 - Program Coefficients for p,q 0dd
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be expected. The coefficients in Tables 5 and 6 are stored
in the computer program in Tables with labels C01, C23, C45
and C67. For example, C45 holds the coefficients for ck(4)
and ck(5).

2. Method of Invariant Fourier Signatures

Since this algorithm uses the magnitude (or magnitude
squared) of the Fourier transform, the phase correction
described in the preceeding section is not required.

The overall flow diagram for the computer program is
shown in Figure 30. A detailed flow diagram of projection
computation is shown in Figure 31. The program contains a
number of parameters which can be set to control the algo-
rithm used. Projections can be computed which are the result
of integration of the Fourier transform magnitude along radial
lines, around (semi) circles or along spirals. (

When the program is entered, the user is asked to specify
a sample average as a power of two, S. Then all Fourier
samples will be taken 2**S times and averages to improve
signal-to-noise ratio. The user is then asked to specify
circles or not circles. ('Circles" is a special case which
requires different logic in the program.) If circles are

chosen then the projection to be computed will contain 2**5
samples because the program always uses 32 radius values

which are precomputed and stored in Table RVECT. The values
of these radii satisfy the relationship given in equations
(52) and (53). The projection results from integrating around
the 2**5 semicircles.

If circles are not chosen the user can choose the para-
meter M in which case the projection will consist of 2%*M
samples. M should not be chosen larger than 6. M=5 is a good
value to adequately sample the Fourier transform. If M=5
running time of the program is under one minute per image. The
projection results from integrating the transform magnitude
along 2**M radial lines or spirals.
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EﬂzER

FIRST = 0

l INPUT EXPONENT FOR_SAMPLE AVERAGE

L INPUT CHAR. IF "Y" THEN CIR = 1, OTHERWISE CIR = 0]

INPUT EXPONENT FOR | M =25 »
REFERENCE LENGTH, M PRINT "REFERENCE LENGTH = 2**5"
'3

PRINT "DELTA THETA = -PI/2%*"

INPUT N

IF N AN INTEGER THEN A6 = —n/2%*N

IF N = "Z" THEN Ae = O (NOT ALLOWED IF CIR = 1)
INPUT REFERENCE EAG (0 TO 8)

COMPUTE PROJECTION !
(DETAIL IN FIGURE 31 )
¥
COMPUTE AND REMOVE MEAN
FFT AND MAGNITUDE (INVARIANT SIGNATURE)
IF 0 < TAG, STORE NEW REFERENCE
PRINT "SIGNATURE?"
INPUT CHAR. IF "Y', PRINT INVARIANT SIGNATURE
CORRELATE NEW SIGNATURE WITH THE (UP TO 8) STORED
REFERENCES

PRINT CORRELATIONS

FIRST = 1
PRINT "CONTINUE?"

INPUT CHAR,

YES

STOP

Figure 30 - Flow Diagram: Invariant Fourier Signatures
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r—-?:: L 2 !
R =r(l), |6] = (6+¢) modm

R, |9] >uy s wy (CORDIC)

SET FREQUENCY SYNTHESIZERS
READ DEFT SENSOR

COMPUTE MAGNITUDE USING CORDIC
INTEGRATE SAMPLE

YES NO i
CIR = 1%
1
YES NO
8 = 6+ A6
3 {
, STORE INTEGRATION I = I+1
NO \YES 6 = ¢+Ad ¢ = ¢+AB
= 0 | I

i

STORE INTEGRATION

-

i
[}
(@R ]

wae LU ]

CONTINUE

CONTINUE

Figure 31 - Flow Diagram Detail: Projection Computation
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The program then asks for the parameter 46, A8 has
two functions depending on whether circles are chosen or
not chosen. Consider "circles" first. In that case A8
givea the angular spacing between samples along each semi-
circle. It also determines the number of samples which will
be integrated along each semicircle. The finer the angle,
the more the number of samples and the program running time.
Again, A6 = -7n/2*%*5 pgives good sampling of the transform
with a run time of under one minute. The polar coordinate of

the kth sample along the i-th semicircle is given by

(r,¥) = (ry,(v+kae) ) (167)

modr

where r, is the i-th radius. Angles are modr because the
transform is symmetric across the origin.

Now consider the case of ''not circles'"., In that case
486 gives the amount of skew for the spirals, Each spiral
consists of 32 samples (one for each of the 32 radii.) The
polar coordinates of the i-th sample along the k-th spiral
is given by

(r,8) = (ry, (n+i86 +kA¢) ) (168)

mod =

where
AD= -m J2%*M (169)

If Ae= O then the contours of integration will be radial
lines rather than spirals. To get A6 = 0, input "Z'" when
the program prints "DELTA THETA = -PI/2*%*'", To get A8# O
enter the exponent instead. A6 = 0 will not be accepted by
the program when 'circles'" since this would result in an
infinite loop.

Next the program requests a reference tag. The user
responds by entering an integer from O to 8. This is stored
in variable TAG. 1If TAG>0 then after the invariant signature
is computed it will be stored in a table in position TAG. Up
to 8 references can be stored in the table. References can
be replaced at any time by a new reference. The purpose of
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these references is to provide a means of performing some
simple feature recognition experiments. The user can set up
a number of reference images consisting of distinct features.
The program then computes the invariant signatures and stores
them in the table. Then the user can use the system to view
new images which might be translated, rotated or scaled
versions of the references. In that case the user enters O
for the reference tag. If TAG=0 the signature is then cor-
related against all the reference signatures. Let {ri} be
the 2**M samples of a reference and {xi} be the samples of a

new signature. Then the correlation is defined by

2m
s z r.X.
f i=1 1
correlation = iR
2 2 2 2 |
pX ry X X. (170) |
i=1 i=1 1

This correlation is the basis for a simple decision processor.
The signature is correlated with all reference signatures.

These correlation coefficients are printed out by the program.

The user can then observe these values and decide if the new
image is a translated, rotated or scaled version of one of the
references. A simple decision rule is to look for the largest

correlation. 1If it is bigger than some threshold then the

test image is considered to contain the feature corresponding
to the reference signature at which maximum correlation occurred.
Returning to the discussion of the program, once the user
enters the reference tag the program then computes the invar-
iant signature., Sampling of the transform and integration of
samples occurs in that portion of the program shown in Figure
31. There are two nested loops, one for each Fourier sample
and one for each contour. The transform spatial frequency
address is first computed ir polar coordinates and then
converted to rectangular coc Jinapes using the CORDIC algo-
rithm. The sensor is addressed and data read. The sensor
output is converted to magnitude and phase using the CORDIC
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algorithm. The magnitude is then integrated using the
trapezoidal rule. At the end of each contour, the resulting
integration is stored by being pushed onto the microprocessor
stack. At the end of the last contour there will be 2%*M
samples in the stack.

Next, the program computes the mean of these samples and
substracts the mean from each sample. This improves the
accuracy of the FFT algorithm which is applied to these samples.
The algorithm uses fixed point arithmetic with a block floating
point scaling scheme. If the mean is not removed the FFT
output wili have a large component in the zero frequency bin.
This leads to poor scaling for the remainder of the FFT bins
which are, typically, much smaller in magnitude. Removing
the mean corrects for this problem.

The FFT output samples are then converted to magnitude
and phase representation using the CORDIC algorithm. The
resulting 2**M-vector of real numbers is the desired invariant
signature.

The program then prints "SIGNATURE?". 1If the user enters
"Y" the invariant signature is printed out. If instead "N"
is entered, this is skipped. The program then stores the
signature of TAG>0. It then correlates with all reference
signatures and prints out the correlation coefficients,

The program then prints "CONTINUE?" Entering a "Y"
causes the program to ask for new parameters for another run,
Entering an "N" causes a jump to the monitor and a "*" is
displayed.

A sample run of the program is shown in Figure 32. The
algorithm used in this run was 2**5 radial lines. There was
no sample averaging. The first three correlation tables
represent three references. The fourth table gives the
correlation of a misaligned feature with the three references.
In the case shown, correlation with reference 1 was largest.
The test object was reference 1 scaled by a factor of 0.9

in size.




FEATURE RECOGNITION
DEFT /PROJECTION/FFT

‘ SAMPLE AVERAGE IS 2%**Q
CIRCLES?N

REFERENCE LENGTH=2**5

DELTA THETA=PI/2%**Z

REFERENCE TAG=3

SIGNATURE? N

! CORRELATION
5 1) 0.0000 2) 0.0000 3) 0.9999 4) 0.0000
5) 0.0000 6) 0.0000 7) 0.0000 8) 0.0000

; CONTINUE? Y

! CIRCLES?N

: DELTA THETA=-PI/2%*%Z
REFERENCE TAG=2
SIGNATURE? N

CORRELATION

1) 0.0000 2) 0.9999 3) 0.7623 4) 0.0000

5) 0.0000 6) 0.0000 7) 0.0000 8) 0.0000

CONTINUE? Y {
CIRCLES?N

DELTA THETA=-PI/2%**Z

REFERENCE TAG=1

SIGNATURE? N

{

§ CORRELATION

! 1) 0.9999 2) 0.8576 3) 0.8727 4) 0.0000

» 5) 0.0000 6) 0.0000 7) 0.0000 8) 0.0000
CONTINUE?

i

| Y
CIRCLES?N

DELTA THETA=-PI/2%*Z i
REFERENCE TAG=0 :
SIGNATURE? N

CORRELATION

1) 0.9795 2) 0.9364 3) 0.8578 4) 0.0000
5) 0.0000 6) 0.0000 7) 0.0000 8) 0.0000

Figure 32 - Invariant Fourier Signatures: Sample Run
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C. Feature Extraction Experiments

The two computer programs which are described in the previous
section were written for the purpose of performing some pre-
liminary feature extraction experiments utilizing the algorithms
developed in Section III1 and the hardware system described in
this section. It was not the intent of these experiments to
show detection of real features in aerial imagery. Rather, the
purpose was to verify feasibility of both the algorithms and the
sensor technology to detect features from a small set of con-
trolled text patterns. In this way, directions for further
improvements in both algorithms and sensors could be determined.

It was originally intended to perform experiments using the
method of invariant Fourier signatures (IFS) and the method of
invariant moment signatures (IMS). However, the program which
computes moments from the Fourier transform gave poor results.
The reasons for this were identified. It was determined that
the program computes moments with large errors because of two
shortcomings of the Deft sensors which were used in the experi-
ment. Since being identified, steps are being taken to correct
this problem in future Deft sensors. More will be said about
this in Section V. Briefly, however, the two sensor short-
comings were the following:

1. Because of the current collecting metal bars used in
the present sensor design strong reflections will occur in the

surface acoustic wave propagating orthogonal to these bars.

(Refer to Fiqgure 2.) This is because the periodic structure




of these bars reinforces the small reflections which occur at
each bar. The effect of these reflections on the Fourier trans-
form is to multiply the transform by a weight function of, say

wx‘ That is, the function which is available is F where

23 (wx'wy) = W(wx) F(wx,wy) (171)

. This can be seen in

Visually, |§| is a rippled version of |F
any of the transform plots which are given in Section V. One
problem caused by these ripples is that it is not possible to
accurately determine the origin of the Fourier transform. The
origin will always be located at the peak of the zero frequency
sinc function. However, because of the ripples on this peak,
the true maximum cannot be determined. It can be approximately
determined by plotting the peak and visually determining the
center.

The second problem with ripples is that the transform
will contain errors because of W(wx). Refer to Tables 5 and 6
Notice that for the lower order moments the coefficients Cy
are largest for small indices k. This implies that components
of the transform nearest the origin will be most heavily
weighted in computing these moments. Refer, for example to Ck(2).
It can be seen that the computed moment will depend primarily
on the value of the transform at the origin minus the weighted
value of the transform at w = /U4 (See Figure 25) If the peak
of a ripple occurs at w =0 and the trough of the ripple occurs
at w = n/4 then the computed moment will be larger than the
correct value. Other situations leading to other types of

errors can be envisioned.
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By examining the transform plots in Section V it is obvious
that the large ripples shown there would lead to large errors in
computing image moments. This proved to be the case in attempts
to perform experiments. For example, in some cases moments mp'q
where both p and g were even were computed to have negative
values. However, these moments must always be positive.

The solution to this problem is to redesign the Deft sensor
to eliminate the reflections. This is presently being done as
will be detailed in the next section,

2. The second shortcoming arises from other inaccuracies in
computing the Fourier transform. These will be disccused in
Section V. aAs mentioned, when viewing a completely uniform
image, the Deft sensor output contains a linear phase term
which must be removed to compute moments. However, because
the transform is computed with some error, the assumption of
lirear phase in only an approximation. In attempting to use
the computer program it was determined that the assumption of
linear phase was only approximately true. Hence, the undesirable
phase function can only be approximately corrected for. This
is not a serious problem in the computation of low-order moments
since they depend primarily on transform samples near the Fourier
origin where on accurate phase correction can be made. However,
the accurate computation of moments above the first few would
require much better phase corrections. It is difficult to
presently make such corrections for two reasons. First, the
uniform, white image used as a text pattern has a transform

whose magnitude is large over only a limited region of Fourier

-100~




space, It is only possible to measure phase in this region with
this test pattern. Accuract phase measurement over the entire
transform would require a large number of accurately positioned
test patterns. Secondly, the Fourier transform output of the sen-
sor is only an approximately linear function of light intensity.
Hence, phase corrections measured at one intensity may be in error

when the image to be analyzed has another average intensity.

Efforts are underway to improve the accuracy of the computed
transform, This should lead to more predictable and accurate
phase measurement and correction. These efforts are discussed
in the next section,

An alternative solution would be to compute the moments of
the image autocorrelation function rather than of the image.

That is, use the magnitude of the Fourier transform rather than
the real and imaginary parts. This solution circumvents the
phase problem but may be undesirable in that some image infor-
mation is lost,.

The remainder of this section is a discussion of the ex-
periments conducted using the method of invariant Fourier
signatures. In Part B.2 of this section the flexibility
of the computer program was described . The algorithm developed in
Section I11 can be configured in a number of ways using con-
stants entered into the program. These constants control the
sample averaging of the data, the angle ¢ of the projection P#%
and the number projections computed. 1In application, these
parameters can be chosen to optimize the invariant signatures
which are computed given a class of features to be detected.

However, because of the scope of this program, only a limited

-101-~




number of algorithm configurations were utilized. To be specific,
two forms of the algorithm were used 1in all tests. These are
integration along 32 radial lines and integration around 32
circles. No sample averaging was used in the experiments
after it was determined that averaging did not affect the results.
This was desirable since averaging increases program run time.

In all experiments, three reference objects were used.
These references are shown in Figure 32. The images consisted

of a dark background with white features.

O

a. "Crossroads"” b. "Road" c. "Storage Tank"

Figure 33 Test Reference Features

These features are simple geometric objects. However, they re-
semble some important realistic features and were chosen on this
basis. These features are a crossroads, a road and a compact,
round structure such as a storage tank. The reference objects
are meant to only be idealizations of these features. 1In parti-
cular, the images contain no background noise. A Viewlex pro-
jector with a rotating barrel was used to project the images
which were in the form of slides. The 60 degree tilt of the
images is a result of the Viewlex. The rotating barrel had a
stop at which the slides were tilted 60 degrees. Rotation of

images was then measured with respect to this stop. This 60
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degree tilt has no significance.

The experimental set-ups which were used shown in Figure 33.

Sensor
-~y
~
~
=~ Screen .
~ - Sensor Projector
S
! Sl
B ~ J_..
P =
Projector _
/”
/”‘ ’
|
':
a. Indirect Projection b. Direct Projection

Figure 33 Experimental Set-Ups

In some experiments the image was projected on a screen and the
sensor viewed the projected image. The angle 6 between projector
and sensor was minimized to prevent image distortion. This set-
up was used in the experiments where image scale was to be varied.
This was accomplished by moving the projector along the dashed
line and refocusing. The size of the image was measured on the
screen using a ruler. In the other experiments the lens cn the

Deft sensor module was removed and the projector was placed in

line with the sensor. The image was then focused directly, at
close range, onto the Deft sensor. To do this it was necessary
to stop down the projector lens using the f-stop adjustment. The

module was mounted on a triangular rail so that it could be ac-

curately translated at right angles to the dashed line in Figure
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33b. This was used in the experiments where the feature to be
detected was a translated version of the reference. The lens
barrel was rotated in experiments where the feature to be
detected was a rotated version of the reference,

During the period of time when experiments were conducted,
two Deft sensors were available for test. These will be labeled
sensor #1 and #2. The experiments will now be described. 1In
all experiments the first step was to compute the three reference
signatures using the images of Figure 32 in their reference
positions. Then the system was presented with the same images
but either rotated, scaled or translated or a combination of these.
The signature was then computed and correlated against the three
reference signatures. The reference at which the highest cor-
relation occured was then considered to be the detected feature.
If this was the correct feature then the system "passed"., If
not, the system "failed". The specific experiments conducted
were the following:

Image Rotation

Reference signatures were computed. The system was then pre-
sented with the same images but with the projector barrel rotated
from 0 to 25 degrees in 5 degree steps.

Image Translation

Reference signatures were computed. The system was then
presented with the same images but the sensor module was trans-
lated from 0 to 8 mm in 1 mm steps. The width of the active
sensor area is 12.7 mm. Generally, translations of greater than
8 mm resulted in a significant part of some of the images falling

outside the sensor active area.
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Image Scale

Reference signatures were computed. The projector was then

moved closer to the screen and refocused so that a dimension on
one of the references was reduced by a factor of k., This was
repeated for kx = {.9, .8, .7, .6, .5}. The system was presented
with the same three images at each position of the projector.

Image Translation with 5 Degree Offset

Reference signatures were computed. The projector lens

barrel was then rotated 5 degrees. The system was then presented
with the same images but with the sensor module translated from
0 to 8 mm in 1 mm steps.

Image Translation with 10 Degree Offset

Same as above but with a 10 degree offset after the reference !
signatures have been computed.

Image Translation with 15 Degree Offset

Same as above but with a 15 degree offset.

Image Rotation with k = .7 Scale Offset

Reference signatures were computed. The projector was then
moved toward the screen until all image dimensions were reduced
by a factor of 0.7. The system was then presented with the same
images but with the projector barrel rotated from 0 to 25 degrees
in 5 degree steps.

The results of these experiments are given in Tables 7, 8,
9, and 10. These tables give the number of passes and fails as

a function of sensor, algorithm, experiment and reference pattern.

Both algorithms performed approximately equally.




» R = e B

number of passes iloox
number of passes + number of failures

success rate =

(172)
If only the experiments of rotation, translation and scale are

considered then the success rate for all experiments and patterns
are as follows:

Sensor #1, 32 radial lines: B81.7% success rate

Sensor #1, 32 circles: B81.7% success rate

Sensor #2, 32 radial lines: 86.7% success rate

Sensor #2, 32 circles: 80.0% success rate

As can be noted, both sensor performed approximately equally.

Reference Pattern (

1 2 3 Total

Experiment P F P F P F P F

Rotation 4 2 5 1 6 0 115 3

Translation 7 2 9 0 6 3 |22 5

Scale 5 0 5 0 2 3 112 3

Translation with 5 degree| 2 7 9 0 8 1 {19 8
offset

Rotation with k=0.7 scale| 4 2 6 0 4 2 |14 4
offset

Total: all experiments 22 {13 (34 1 |26 | 9 {82 |23

Table 7 - Feature Extraction Experimental Results:
Sensor #1, 32 Radial Lines
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Reference Pattern
1 2 3 Total f
i
Experiment P F P F P F P F i
Rotation 6 0 6 0 6 0 |18 0
Translation 7 2 6 3 7 2 |20 7
Scale 3 2 5 0 3 2 |11 4
Transliation with 5 degreel 5 4 6 3 8 1119 8
offsc
Rotatiun wi-h k=0.7 scalel 6 0 5 1 3 3 114 4
offset (
Totxl:. 2il experiments 27 8 |28 7 127 8 |82 [23

Table 8 - Feature Extraction Experimental Results:
Sensor #1, 32 Circles
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Reference Pattern
2 3 Total
Experiment P F P F LI P F p F
Rotation 6 0 6 0 6 0 |18 0
Translation 9 0 9 0 8 1 (26 1
Scale 3 2 5 0 0 5 8 7
Total: all experiments 18 2 {20 0 114 6 |52 8

Table 9 - Feature Extraction Experimental Results:
Sensor #2, 32 Radial Lines

B nt it S f e T <

Reference Pattern
2 2 Total
Experiment p F 1% F b F P F
Rotation 6 0 6 0 6 0 118 0
Translation 9 0 2 7 9 0 {20 7
Scale 3 2 5 0 2 3 |10 5
Total: all experiments 18 2 |13 7 117 3 148 |12

Table 10 - Feature Extraction Experimental Results:
Sensor #2, 32 Circles
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It was observed during the experiments that failure occurred
more frequently where there was either a large translation, rota-
tion or scale offset between references and test patterns. It
has been determined that this is because of certain errors in
the Deft sensor output. More will be said about these errors in
Section V.

Some additional, more challenging experiments were performed
using sensor #l. These experiments involved offsets of either
translation and rotation or rotation and scale between reference
and test images. The results of these experiments are also
tabulated in Tables 7 and 8. For these experiments only, the
success rates were the following:

Sensor #1, 32 radial lines: 73% success rate

Sensor #1, 32 circles: 73% success rate
as can be seen, the additional misalignment reduced the success
rate somewhat. This is a consequence of the same Deft sensor
errors alluded to above.

These experiments verify the premise of invariance to trans-
lation, rotation and scale. However, the success rates must be
described as modest. Part of the difficulty can be traced to
sensor performance, but another part mav result form the
algorithmus which were used. Cne of the features of an ideal
prefilter mentioned in Section III isthat the prefilter increases
the between-class geperation of the feature classes. For the

present experiments between-class seperation is measured by the

crosscorrelation of signatures of each of the reference patterns.




Table 11

Reference Pattern

Reference Pattern

Reference Pattern

Reference Pattern

Reference Pattern Correlations

Reference Pattern

1 2 k]
1 0.9754 ———— prppnes
2 0.9225 0.9961 ————
3 0.8151 0.7508 0.9749

a. Sensor #1,

32 Radial lines

Reference Pattern

1 2 3
1 0.9991 ——— ————
2 0.9877 0.9989 ———
3 0.9495 0.9751 0.9970

b. Sensor #1,

32 Circles

Reference Pattern

1 2 3
1 0.9943 ———— ——
2 | 0.8551 0.9982 ———
3.] 0.7819 0.9218 0.9696

c. Sensor #2,

32 Radial Lines

Reference Pattern

-110-

1 2 3
1| 0.9994 ——-- ———-
2 0.9891 0.9996 ————
3.1 0.9522 0.9827 0.9990
d. Sensor #2, 32 Ciicles
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The crosscorrelations and auto correlations of the reference
signatures are given in Table 11 for sensors #1 and #2 and for
both algorithms. The entries represent the average of all
values which were obtained in all the experiments tabulated

in Tables 7 through 16. Notice that the crosscorrelation terms
were not significantly smaller than the autocorrelation terms.
This was particularly the case for the "circles” algorithm.
Hence, between-class separation was not as large as might be

desired. This drawback cannot be blamed on the sensor. Rather

it is a consequence of the algorithms used. It is the feeling

of this Author that the requirement of the second transform (FFT)

tends to smooth the data in such a way that there are not lapnge
differences between the signatures of different reference patterns.
It appears that by designing invariance into these algorithms
and thereby decreasing the in-class seperation, the between-
class seperation also decreases.

The experiments which were conducted used noise-free,
jdealized features. Since the performance reported here is
only modestly successful it is evident that the present Deft
sensor is not capable of detecting features in realistic aerial
images making use of the algorithms developed in this report.
It is possible that present sensors could be useful in more
limited applications such as the detection of man-made vs.
natural features. The utility of the Fourier transform in
this application has been verified by Lendaris and Stanley.20
Their algorithms do not require a second transform and exhibit

greater between-class seperation. However, they are not in-

variant to translation rotation and scale.
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In order to take advantage of the more powerful algorithms
developed in this report, a sensor which faithfully produces
the Fourier transform is required. The basic requirements
of the sensor output are the following:

l. The magnitude of the sensor transform should be invariant
to feature translation.

2. If the feature rotates then the magnitude of the trans-
form must also rotate.

3. In order to include filtering against additive noise the
sensor muft be linear. That is, if image I1 has transform Fl and
image I, has transform F2 then the combined image I1+I2 has trans-

2

form F1+F2.
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V. ACOUSTO-OPTIC SENSOR CAPABILITIES:
PRESENT AND PROJECTED

A. Introduction

This section deals with the present capabilities and
limitations of the A-0 devices considered in this study.
Capabilities and limitations are considered in the context
of feature extraction. Also considered are projected improve-
ments and the probability of success.

Since the Deft sensor is presently receiving active
development support by Deft Laboratories Inc., more detailed
information can be provided on this sensor than the others
which were discussed in Chapter 2. Recent and present Deft
sensor development has been funded by NASA and by internal
Deft Laboratories Inc. funds. The level of NASA funding for
Deft sensor development in the last yvear is $130,000.

This chapter begins with the elastobirefringent light {
valve. The Deft sensor is covered in the following section.
The Thomson - CSF sensor can be thought of as a specialized

Deft sensor so that it will not receive a separate discussion.

.

B. Elastobirefringent Light Valve

This sensor is not presently receiving development
support. Devices which have been developed to date should be
considered experimental. In order to apply this sensor to
feature extraction present device limitations must be overcome
and manufacturing procedures developed. Tww :2ars o1 z2dditional
development are required for this sensor to be compatible in
performance with presently available Deft sensors.

Some aspects of current Deft sensor development could be
utilized in improving the performance of the bulk acoustic
wave (BAW) light valve. For example, a segmented transducer
is currently under development which will produce wider trans-
ducer bandwidths. This new design could be used to increase
the bandwidth of the BAW device also.

Other developments would have to be undertaken however,
which are specifically required for the BAW sensor. In order
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to achieve wider transducer bandwidths, small transducers with
higher center frequencies are required. In the experimental
BAW sensors, transducers were glued onto the quartz cell. The
smaller transducers would be thinner and more brittle so that
it would be necessary to sputter transducers directly onto the
quartz cell.

Standing waves in the sensor have been mentioned as a
current problem. These waves result from the reflection of
the BAW from the cell boundaries. A number of techniques could
be used to absorb the unwanted acoustic energy. For example,
a larger cell could be used with only part of the cell serving
as the active sensor volumn. The remainder of the cell would
then be used as an absorbing volumn for the BAW. The edges
of the cell could be joined with an absorbing material. The
edges might also be sandblasted or made jagged to trap the
acoustic energy. Another technique would be to drill small,
random holes in the non-active volumn of the cell to scatter
the BAW. This could be done using a laser,

Present sensors exhibit a number of other problems which
are discussed in Section II. Two to three years are required
to produce a device suitable for feature extraction application.
Since this work is developmental, the probability of success is

perhaps 0.5
C. Deft Sensor

The experimental results of Section IV indicate that
presently available Deft sensors are capable of limited feature
recognition. These sensors are being improved through a pro-
gram of active support. Hence, the probability is good that
improved®sensors will be available which will have a realistic
and signgkféhnt feature¢ recognition capability. This section
will detail the current limitations and the steps being taken
to correét these limitations.

The magnitude of the Fourier transform of the three
reference features shown in Figure 32 as computed by a Deft
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sensor are shown in Figures 34, 35 and 36. Figures 34 and 35
show the transform of two reference features in two different
angular orientations. It can be seen that the transforms are
(approximately) rotated versions of each other. Figure 36
shows the transform of a circle which was positioned at two
locations on the sensor. These transforms are also (approxi-
mately) the same. The properties of translation invariance
and transform rotatation are required for all the algorithms
developed in this report. Hence, the Deft sensor is potent-
ially very useful for feature extraction. However, these
properties are only approximately true for present sensors.
Deviations in these properties as well as some other limitations
restrict the usefullness of present Deft sensors in feature
extraction., Limitations exist in the following categories:

1. spatial bandwidth
acoustic reflections
CdS uniformity {
transform phase accuracy

g W N

output signal level
These categories will now be discussed one-by-one,

Present Deft sensors have spatial frequency bandwidths
of +10 line pairs along one transform axis and +20 line pairs
along the other axis. A larger bandwidth is desirable for
the following three reasons:

1. To distinguish between features which are only
subtly different from each other, high frequency information
is required since the transforms may only differ in high
frequency content.

2. Since the Fourier transform scales as the inverse
of the feature scale, small features have large transforms.
Large spatial bandwidths are needed to 'see" large transforms.
If bandwidth is limited then the image must be magnified.

This requires breaking the photograph into a large number of
views thereby increasing processing time.

3. If the scene contains '"noise' which corrupts portions
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Figure 35 - Deft Transform of 'Crossroads" Feature
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b. Circle at Edge of Sensor

Figure 37 - Deft Transform of Small Circle Feature
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of the transform, a larger bandwidth may be required in order
to have sufficient, useable transform components,

Deft sensors which will have larger bandwidths are under
development. A sensor will be available by June 1981 which
will have spatial frequency bandwidths of +25 line pairs
along one transform axis and +28 line pairs along the other
axis. This sensor will be able to ''see' approximately four
times the number of spatial frequency components as do current
devices. This will be termed a ''medium resolution' sensor.

A "high resolution" sensor is also planned which should be
available by January 1982. This sensor will have a fourfold
increase in resolvable spatial frequencies over the medium
resolution sensor.

In order to improve resolution, the medium resolution
sensor will be fabricated on 41.5° rotated z-cut LiNOB. The
transducer center frequencies will also be increased from the
present 35-40 MHz range to about 60 MHz. Increasing trans-
ducer center frequencies will result in a greater absolute
bandwidth from a given percentage bandwidth. This is an
attractive approach up to about 60MHz., Beyond this frequency,
the mechanical loading of the metal grid pattern on the sub-
strate leads to significant and undesirable damping of the SAW.

There are three advantages to using the new, 41.5° rotated
z-cut LiNOS. First, the coupling constants are larger than for
the 0ld cut. This means that more acoustic energy can be
introduced into the sensor resulting in a larger output signal.
Secondly, the spurious response of the sensor to a uniform
image is smaller and further away from the main response peak
than was the case for the old cut. A discussion of spurious
acoustic modes in Deft sensors is found in Reference 31. If
the sensor bandwidth were increased then the spurious would be
within the bandwidth. Hence, it is important that the spurious
is as small as possible. The third advantage is that with

the rotated cut of LiNO, the number of transducer finger pairs

3

required for optimum energy coupling decreased from 8 to 6 in




one direction and from 8 to 4.5 in the other direction. Fewer
finger pairs mean a larger percentage bandwidth.

The high resolution sensor will include these improvements.
This sensor will also include an improved transducer design.

The new transducers will be segmented in order to reduce their
capacitance. Reduced capacitance allows wider transducer
bandwidths. The resulting bandwidth leads to a significantly
greater utility of Deft sensors in feature extraction.

One of the limitations of current Deft sensors is that !
these devices exhibit acoustic reflections from the regularly-
spaced metal pick-up fingers. These reflections lead to a
scalloping of the transform magnitude. This is evident in
Figures 34, 35 and 36. The ripples which can be seen make
feature extraction more difficult. For example, in Figure 37
by moving the circle from the center to the edge of the sensor
the shape and the number of ripples changes. The feature has
remained the same but the transform is really not invariant
to translation which is a requirement for the preprocessor
algorithms. Now refer to Figures 35 and 36. Notice that when
the feature is in two different angular orientations the
ripples may or may not appear on the "arms" of the transform.

Hence, the transform is really not just rotated when the image
rotates. There is also a shape change which is not desired.

A third problem with these ripples occurs in the computation
of image moments. The lower order moments are sensitive to
the partial derivatives of the transform at the origin.
Because of the ripples, these derivatives are drastically
altered. In addition, they also become a function of feature

position., In summary, ripples caused by reflections are very
undesirable. '

The medium resolution sensor will incorporate a new metal
finger pattern spacing which will eliminate the reflections. o

This new spacing causes reflections from metal lines to add
distructively. An important advantage of this spacing is
that critical metal-to-metal dimensions are not reduced, In




general, device yield goes down as metal-to-metal dimensions
are reduced because it is then more likely that contaminates
will cause shorts across the metal lines.

A problem with current Deft sensors is that the CdS

squares on the sensor do not conduct uniformly. Measurements

have been made showing up to 2:1 variation in light conduc-
tivity over a sensor. This variation weights the image function.
In the transform domain the image transform is convolved with
the transform of the weight function. This tends to broaden
spectral peaks and reduce or eliminate sidelobes. We typically
observe peaks which are twice as wide as theory predicts. CdS
variation leads to another problem. The computed transform
may not be invariant to translation or rotate as the image
rotates. This is evident in Figures 34, 35 and 36.

It has been determined that film variation is a result
of the method used to deposit CdS on the substrate. The !
material, in the form of a gas, is passed over the substrate
in a furnace. The substrate is almost as large as the furnace
tube so that flow rates near the substrate edges are faster
than at the middle. We presently have on order a new furnace
tube with a larger inner diameter. Uniform flow rates should
give uniform CdS film. An additional solution is to reduce
the flow rate into the furnace in order to reduce turbulance.

The success of these changes will be measured when the new
equipment is in-place.

Another problem which was discussed in Section IV is the
inaccuracy of the transform phase computed by the sensor. This
is important in the method of moments. Part of the phase error
must come from the same sources which produce errors in the
transform magnitude. However, the sensor contains a phase term
which is a function of the electronics (amplifiers, filters)
and not the transform. These electronics were not originally
designed to provide a linear phase response. Some recent

measurements have been made which show that, indeed, the phase
is nonlinear. Since these filters must be redesigned to
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accomodate the new medium resolution sensor, they will be
redesigned to exhibit approximate linear phase response.

The final item to be considered is output signal level.
Present output signals are of the order of a microamp. In
order to amplify this signal and achieve a good signal-to-
noise ratio at the amplifier output, a rather narrow amplifier
bandwidth is required. This narrow bandwidth affects the
rate at which the sensor drive frequencies can be changed. If
signal-to~noise ratio was not a problem then drive frequencies
could be stepped every two microseconds which is the time
required to propagate the SAW across the sensor. This would
allow 5 x 105 Fourier components to be addressed every second,.
But because of the need to narrow the output bandwidth, this
rate is reduced to about 103 components per second. If the
sensor output signal could be increased by a factor of 10
then 104 components per second would be possible.

The new medium resolution sensor will have an output
signal approximately eight times as large as current sensors.
This is because the 41.5° rotated z-cut LiN03 results in
better coupling of energy into the SAW,

All the factors which have been identified as limiting
the performance of the Deft sensor in feature extraction
applications have been listed and improvements under develop-
ment discussed. 1In a number of cases, expected improvements
can be stated with high probability of success. In other
cases, improvements must be determined after new devices are
fabricated and tested. The medium resolution sensor will be
available by June 1981, The high resolution sensor will be
available by January 1982, These sensors should allow signi-
ficant improvements in feature extraction capability. It is
suggested that these new sensors be examined for their appli-
cability to feature extraction at the time they they are avail-
able. This could be done with little cost by simply repeating
the feature extraction experiments using the presently available
computer programs and the new design sensors.
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VI. SUMMARY AND CONCLUSIONS

The objective of this program was to develop, analigze
and evaluate theoretical concepts and strategies for tops-
graphic feature extraction and image analysis using accusto-
optic (A-0) technology. To provide a frame of reference, a
general feature extraction system model was developed in
Section I. The most computation-intensive portion of the
feature extraction process is the prefilter function. The 1
purpose of this function is to reduce the large information '
content of the image to a much smaller set of values which
can then be input to the decision processor, An important
conclusion of this study was that A-O0 devices are potentially
capable of implementing the prefilter function very efficiently.

The input/output function of these devices is defined by
equation (1). The device input is an image which is then trans-
formed, using equation (1), into an electrical signal which can i
be input to a digital decision processor. The A-0 devices
have a number of desirable properties in this application. First
of all, the device input/output format is ideal for the appli-
cation. Secondly, lasers or precise optical alignments are not
required. Third, these devices are rugged and potentially
inexpensive. Finally, the function defined by equation (1) is
central to a number of promising prefilter algorithms.

Transform-based prefilter algorithms were examined in
Section III. Algorithms were developed there which are invariant
to feature translation, rotation and scale. This invariance
is highly desirable since it reduces the number of distinct
feature signatures which must be processed by the decision
processor. These algorithms require, as input, either the
image two-dimensional Fourier transform or the image two-
dimensional moments, Either of these functions can be computed
efficiently using A-O devices.

Some preliminary experiments were conducted using the
Fourier-based algorithms, test images and an A-O0 device which
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was a Deft sensor. These experiments verified the invariance
properties of the algorithms. The microcomputer-based Deft
system was able to distinguish between three test patterns
which were presented to the system in arbitrary orientation
and scale. The success rate was 80%.

In spite of these promising results, present Deft sensors
are not capable of distinguishing realistic features in aerial
photographs. Present sensor limitations are identified and
discussed in Section V. New Deft sensors are presently under
development which will significantly improve the capability
of this sensor in feature extraction applications. The
expected improvements in a pumber of parameters can be predicted
fairly accurately. However, other parameters must be measured
after the new devices are available, It is suggested that the
best way of determining the applicability of new sensors to
feature extraction is to rerun the experiments reported here
using the already written computer programs but using the new
sensors. Since the microprocessor-based Deft system is already

in-place and the computer programs written, these investigations

could be accomplished with only a few man-weeks of effort.
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APPENDIX A - Method of Invariant Fourier Signatures
Assembly Code Listing

This Appendix consists of a listing of the assembly
language program which computes invariant Fourier signatures.
This program was written to run on the Deft Laboratories'
microprocessor-based test bed. All addresses and opcodes are
hexadecimal, In the operand column of the statements the
following symbols are used:

3 Hexadecimal Prefix

% Binary Prefix

H Hexadecimal Postfix

D Decimal Postfix

B Binary Postfix

# Denotes Immediate Addressing Mode

The entry address for this program is $2000.
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METHOD OF INVARIANT FOURIER SIGNATURES

@
[]
. 1800 ‘ ORG 31800
e 1800 TEMP1  RMB 1
) 1801 TEMP2 RMB 1
. 1802 TENFIS  RMB 1
o 1803 TEMPA  RMB 1
) 1804 TEMPS  RMB 1
; 1808 T T T TEMP4 RMB 1
: @ 1804 BCD1 RMB 1
. 1807 BCD2 RMB 1
¥ 1824 ORB $1824
o 1824 COR1 RMB 1
- 1825 COR2 RMB 1
1826 COR3 ~ RMB 1 -
o 1827 COR4 RMB 3
’ 1824 COR? RMB 1
y 1828 COR10  RMB 5
Y 1830 uIL RMB 1
o 1831 uI2 RMB 1
ol 1832 vJ1 RMB i
Q: 1833 vJ2 RMB 2
1833 DTIME  RMB 1
* 183D ORG $183D.
@ 183D NSAMP  RMB 1
F 183E LOGS RMB 18
s 1850 PUSHST ~ RMB E T T —
@ 18B3 ORG $18E3
- 1883 FFTN RMB 2
. 18E0 ORG $18E0
@ - 18E0 REF RMB 8
. 18E8 FIRST RMB 1
b 18E7 CIR ~ RMP i
i 18EB N RMB 1
» 18EC I RHE 1
.*:* 18ED P RMB 1
18EE TAG RMB 1
s 1BEF THETA —~RMB—~ ~ 2~
o 18F1 DTHETA RMB 2
18F3 PHI RMB 2
18FS~ DPAT RNE z
- 168F7 STACKS RMB 2
RUN RMB 2
“RONT " RMB ~ ~ I
STOP RMB 2
INT RMB 4
51 RAE — 8
s2 RMB 8
s3 RMB 8
AVG "~ RMB T & A
POS RMB 3
NEG RMB 3
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METHOD OF INVARIANT FOURIER SIGNATURES
@
e
(1 29FE TUNE  EQU $29FE
P 2999 DELAYL EQU $2999
) 292F TRAPIN _EQU $292F
‘ 2960 TRAPFX EQU $2940
o 1000 FFT EQU $1000
. 2A24 . WRITE _EQU__ $2A2A o
d 8000 MATH  EQU $8000
@ 290C PUSH42 EQU $290C
v 28EF PUSH41 _EQU $28EF
& 28A3 PULL4 EQU $28A3
e 2700 RCORR1 EQU $2700
& 277F RCORR2 EQU _ $277F
g OFFF FFTVT  EQU $FFF
@ 0000 RO EQU $0
b 0000 ORG $0
e 0000 39 FCB $39
FYs 2000 ORG $2000
he ‘
3 X FEATURE EXTRACTION PROGRAM
@ X DEFT/PROJECTION/FFT METHOD
2000 CE 18 EO FEAT#1 LDX SREF CLEAR REF(I)
Ll 2003 Cé 08 LDAB 48
o 2005 6F 00 FE1 CLR 0sX
al 2007 08 INX B
i 2008 SA DECB
'Y 2009 26 FA BNE FE1
i 200B _7F 18 ES CLR FIRST
i 200E BD FD A6 JSR $FDAS
Y 2011 CE 25 7D LDX $LINEL
L 2014 C6 13 LDAB __ #19D
b 2016 BD 2A 3F J5R FASC
Q. 2019 BD FD Aé JSR . $FDAS
201C CE 25 90 LDX SLINE2
P 201F Cé 13 LDAB _ #19D
@ 2021 BD 2A 3F JSR PASC
W 2024 BDFDAS  JUSR___ $FDA& ~
2027 “BD FD A6 JSR $FDAS
@ 202A CE 25 A3 LDX $LINE3
202D Cé 15 LDAB _ $21D
- 202F BD 2A 3F JSR PASC
'Y 2032 BD FD 36 JSR $FD36 INCH
o 2035 84 OF ANDA  #$0F S
: 2037 B7 18 3E STAA  LOGS
@ 203A C6 01 LDAB o1
203C__ 44 FE2 DECA
' 203D 2D 03 BLT FES
® ] 203F sa ASLB
; 2040 BRA FE2
- AT+ 7 16 30 FET STAF — NSAWP
® 2045 BD FD A6 FE4 JSR $FDAS
: 2048 CE 25 BS LDX SLINE4
L [DAB — ¥#5
Y 204D BD 2A 3F JSR PASC
s 2050 BD FD 36 ____JsR $FD34 ~ INCH _
5 AR e MM
o 2054 81 59 CHPA #8539
¢! 2056 26 01 BNE FES
@ A-3
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METHOD OF INVARIANT FOURIER SIGNATURES

[}
(‘ 2058 ST T INCE YES
. 2059 F7 18 E9 FES STAB  CIR
; 205C 7D 18 E8 18T FIRST
. 27 02 BEQ FES
. 2061 20 46 BRA FE11
‘ 2043 7D 18 E9 FEé ST CIR
TTTTTT2066 27 12T BEQ FE?7
i 2068 BD FD A JSR $FDAS
o 206B CE 25 CO LDX $LINES
- 206 T8 15 LDAB — #21D
2070 BD 2A 3F JSR PASC
| 2073 86 05 __LDAA_ 45 o
} 2075 B7 18 EA T STAATT M
g 2078 20 19 BRA FES
[y 2074 BD FD A6 FE7 JSR $FDAS
‘ 207D CE 25 CO LDX SLINES
X 2080 Cé 14 LDAB  #20D
y 2082 BD 2A 3F JSR PASC
% 2085 BD FD 36 JSR $FD34 INCH
N 2088 81 SA CMPA #3854
X 2084 27 EE BEQ FE7
. 208C 84 OF ANDA — ¥$F
’ 208E 27 EA BEQ FE?
2 2090 B7 18 EA STAA M
. 2093 34 FEB ~ PSHA T T T T
; 2094 86 80 LDAA  #$80
¥ 2096 SF CLRB
q' 2097 30 TSX
: 2098 4D 00 FE9 TST 0rX
d 209A 27 06 __BEQ FE10
2T 209C  6A 00 DEC 05X
g 209E 47 ASRA .
o 209F 56 RORB
" 20A0 20 Fé ERA FES
s 2042 B7 18 FS FE10  STAA  DPHI
P 2045 F7 18 Fé STAB  DPHI+1
. 20A8 32 TTUPULA
20A9 BD FD A6 FE11  JSR $FDAS
20AC_ CE 25 DS LDX SLINE?
20AF Cé 13 LDAR  #19D
. 20B1 BD 2A 3F JSR PASC
¥ 2084 BD FD 36 _JSR  $FD34 INCH
<2087 BT SA CHPA ™ T#$5A
¥ 20B9 27 14 BEQ FE12A
. 20BB 84 OF ANDA _ #¢F
|4 208D B7 18 EB STAA N
o 200 36 PSHA
' ___=20C1 86 80 .. LDAA__ 8380 - -
o 20C3 SF CLRB
! 20c4 30 TSX
20CS 6D 00 FE12 _ TST 0sX
E 20C7 27 OF BEQ FE13
20C9 6A 00 DEC 0sX
M 20CB 47 L ASRA L -
K 20cC 54 RORB
: 20CD 20 Fé BRA FE12
N 20CF 7D 18 E9 FE12A  TST CIR
A-4
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METHOD OF INVARIANT FOURIER SIGNATURES
o . | |
rf 2002 2E DS BGT FE11
@ 2004 34 PSHA
2005 __4F CLRA
‘ 2006 SF CLRB
o 2007 B7 18 F1 FE13 STAA DTHETA
. 200A _F?7 18 F2 STAB _ DTHETA$X . _ _ ... __
: 200D 32 PULA
Qo 20DE BD FD Aé JSR $FDAS
: 20€1 CE 25 E8 LDX SLINES
d 20E4 Cé OE LDAB $14D T
o 20E6 BD 2A 3F JSR PASC
: 20E9 BD FD 36 JSR _$FD36 INCH
A 50EC 84 OF ANDA §SF
Q! 20€EE B7 18 EE STAA TAG
.. 20FL 7F 18 F3 CLR PHI PHI=0
W 20F4 7F 18 F4 T CLR PHI+1
Qo 20F7? CE CO 00 LDX $$C000
e 20FA FF 18 EF STX THETA THETA=-P1/2
. 20FD 7F 18 EC CLR I
@ 2100 CE 00 00 LDX 20
L 2103 FF 19 1B STX AVG
L 2106 FF 19 1D STX AVG+2
'Y 2109 FF 19 1F STX AVG+4
’ 210C BF 18 F7? STS STACKS
,""""""910F BE OF FF LDS SFFTVT -
.i'i 2112 CE 00 00 FE14 LDX 20 LOOP$ EACH CONTOUR
L 2115 FF 18 FF STX INT
W 2118 FF 19 01 §TX INT+2
".. 211B 7F 18 ED CLR P
o 211E 7F 18 E8 3 CLR FIRST
2121 F6 18 EC FEIS LDAB X LOOP? E©ACH SANPLE
o 2124 4F CLRA .
Ly 2125 58 ASLB
W 21286 49 ROLA
@ 2127 CE 26 1A LDX $RVECT
I 2124 BD 24 17 JSR IDEX |
| ————3120 A& 00 LDAA — O0yX ~ T T GET R(1) RADIUS
.'.._ 212F B7 18 24 STAA COR1
2132 A6 01 LDAA  1+X
L2134 B7 i8 25 STAA COR2
.'. 2137 Bé 18 EF LDAA THETA ANGLE
o 2134 Fé 18 FO LDAB__ THETA+1 L
L3130 FB 18 F4 ADDB PHI+1 -
o 2140 B9 18 F3 ADCA PHI
. 2143 6B 40 ADDA #3840 ADJUST QUADRANT
; 2145 2P 10 BMI FE14
."4 2147 B7 18 00 STAA TEMP1
|‘ 214A F7 18 01 STAB TEMP2
2140 aF CLRA
® 214E SF CLRB
. 214F FO 18 01 SUBB TEMP2
b 2182 B2 18 00 SBCA TEMP1
" Ya 2188 20 09 BRA FE17
r, 2187 _SD FER6 __TSTB o L
S 2158 26 06 BNE FE17 R
® 2154 81 80 CMPA #9580
o 218C 24 02 BNE FE1?7
. A-5
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[
” ZISE aF CLRA
® 215F SF CLRB
, 2140 8B CO FE17 ADDA $3CO
. 2142 B7 18 2A STAA CORY
@ 2165 F7 18 2B STAB COR10
. 2148 7F 18 26 -  CLR COR3
T 214B 7F 18 27 CLR COR4
o 216E BD 13 85 JSR ROT1S POLAR TO RECTANGULAR
. 2171 Bé 18 24 LDAA COR1
" 2174 Fé6 18 25 LDAB COR2
o 2177 CE 00 05 LDX 5
¥ 2174 47 FE18  ASRA ]
s 2178 S8 TRORB T
Q- 217C 09 DEX
s 217D 26 FB BNE FE18
o 217F FB 26 17 ADDB XZERO+1
T 1% 2182 B9 26 16 ADCA XZERO
e 2185 B7 18 02 STAA TEMP3
" 2188 F7 18 03 STAB TENP4
@ 218B BD 29 AE JSR BISBCD
218E FE 18 06 LDX BCD1
2 2191 FF 18 30 STX UIt
‘zjj 2194 B6 18 26 LDAA COR3
2 2197 Fé 18 27 LDAB_ COR4
s Z19A CE 00 05 LDX 5
@ 219D 47 FE19 ASRA !
b 219E 56 RORB
e 219F 09 DEX i
@ 21A0 26 FB BNE FE19
& 21A2 FB 26 19 ADDB YZERO+1
i 21A% B9 26 18 ADCA YZERO
Qo 2148 B7 18 02 STAA TEMP3
i 21AB F7 18 03 STAB TEMPA
W 21AE BD 29 AE JSR BISECD
'Y 21B1 FE 18 04 LDX BCD1
e 21B4 FF 18 32 STX vJ1
T 2IB7 7D 18 E® TST FIRST
°- 21BA 27 OE BEQ FE19A
g 21BC BD 2A 4C JSR RDDEFT
- 2IBF BD 13 75 JSR UECTIS MNAG
¥ X 21C2 BD 29 2F JSR TRAPIN INTEGRATE
fe 21C5 20 06 BRA FE19B
. “FEIS
¥ Y 21CA 7C 18 E8 FE19A INC FIRST
21CD BD 29 FE FE19B  JSR TUNE
ld 2100 86 00 LDAA ¥0
X 21D2 B7 18 35 STAA DTIME
21D5 BD 29 99 JSR  DELAY1
w  21ib8 /D I8 EY ~— ~— 1sT (IR - -
.' 21DB 27 44 BEQG FE20
: 21DD B 18 EF LDAA THETA CIR=1
E LDAB TRETAF]
o 21E3 FB 18 F2 ADDB DTHETA+1
'»- 21E4 B9 18 F1 __ADCA  DTHETA
i T STAAT THETA
"W 21EC F7 18 FO STAB THETA+1 THETA=THETA+DTHETA
g, 21EF 7D 18 FO TST THETA+1
o A-6 |
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. [
i 21F2 26 D3 BNE FE19C
e 21F4 B6 18 EF LDAA THETA
v 21F7? 8B €O ADDA #3CO
k 21F9 26 CC BNE FE19C
e 21FB BD 29 60 JSR TRAFFX THETA=+P1/2
J| _____21FE B6 19 02  _ LDAA INT#3
2201 36 PSHA T
® 2202 B6 19 01 LDAA INT+2
: 2205 36 PSHA
9 2206 B6 19 00 LDAA INT+1 B
0 2209 36 PSHA
& 220A B& 18 FF LDAA  INT
. 220D 36 PSHA
o 220E Bé 18 EC LA I
: 2211 81 iF CHPA 231D
g 2213 27 6A BEQ FE23
" 13 2215 7C 18 EC INC I
. 2218 CE €O 00 LDX #3C000
g 221B FF 18 EF STX THETA
® 221E 7E 21 12 JMP FE14
2221 B6 18 EC_FE20 LDAA 1
4 2224 81 IF CMPA #31D
o 2224 27 18 BEQ FE21
2 2228 7C 18 EC INC 1
222B B6 18 EF LDAA THETA
® 222E Fé6 18 FO LDAB THETA+1 P
i 2231 FB 18 F2 ADDB DTHETA+1
& 2234 BY 18 F1 ADCA DTHETA
Q- 2237 B7 18 EF STAA THETA
E 223A F7 18 FO STAB _ THETA+1
: 2230 7€ 21 21 JMP FE1S
® 2240 BD 29 60 FE21 JSR TRAPFX 1=31
. 2243 B6 19 02 LDAA INT+3
g 2246 36 PSHA
o 2247 B6 19 01 LDAA INT+2
g 224 36 __PSHA o o
® 224B B6 19 00 LDAA INTH1
224 36 PSHA
« 224F B4 18 FF LDAA INT
@ 2252 36 PSHA
o 2253 B6 18 F3 ~ LDAA PRI .
LT 2256 F& 18 F4 T LDAR T PHI+)
@ 2259 FB 18 Fé ADDB DPHI+1
! 225C B9 18 FS ADCA DPHI
“ 225F B7 18 F3 STAA PHT PHI=PHI+DPHI
'y 2262 F7 18 F4 STAB PHI+1
" 2265 7D 18 F4 TST PHI+1 B
' 09 T 7 BNET  FE22T T
® 226A B6 18 F3 LDAA PHI
224D 80 80 SUBA $$80
t[ 296F 26 02 —BNE  FE22
' Yo 2271 20 10 BRA FE24
5 2273 CE CO 00 FE22  LDX #9C000 L
: EF ~7 77 T8TX T T THETA
@ 2279 7F 18 EC CLR ¢
Bt 227C 7E 21 12 Jup FE14
o A-7
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’
.‘ 2281 20 03 BRA FE2S
) 2283 B& 18 EA FE24  LDAA M
‘ 2286 B7 18 S50 FE2S STAA PUSHST
o 2289 Fé 19 1B FE25A LDAB AVG AVG=AVG/2X %M
gt __228c 57 ASRB
T T "228p F7 19 iB STAB AVG
'Y 2290 Fé 19 1C LDAB AVG+1
L 2293 54 RORB
4 2294 F7 19 IC STAB  AUGHL
o 2297 Fé6 19 1D LDAB AVG+2
g 2294 56 RORB
E 2298 F7 19 iD T T8TAB . AVGH2Z T T T T T T T
o . 229€E Fé 19 1E LDAB AVG+3
: 22A1 56 RORB
Y 2242 F7 19 1E STAB AVGH3
Qo 22A5 Fé 19 IF LDAB AVG+4
t 2248 56 RORB
g 22A9 F7 19 iF STAB AVGH4
@ 22AC F6 19 20 LDAB AVG+S
1 22AF  Sé RORB
22B0 F7 19 20 STAB AVG+S
o 22B3 4A DECA
2 22B4 26 D3 BNE FE25A
o 22846 30 TSX T ““
® 22B7 7F 19 21 CLR POS
5 22BA 7F 19 22 CLR POS+1
o 228D 7F 19 23 CLR FOS¥2
®- 22C0 86 FF LDAA $SFF
el 22C2 B7 19 24 __STAA_ NEG
! 22C5 B7 19 23 "STAA  NEG+I
@ 22C8 B7 19 26 STAA NEG+2
22CB A4 03 FE25B  LDAA 39X - REMOVE MEAN
o 22CD BO 19 20 SUBA AVGHS
® 22D0 A7 03 STAA 39X
: 22D2 A4 02 LDAA 25X
| 2204 B2 19 iF ~ ~ "SBCA  AVG+HA
® 22D7 A7 02 STAA 29X
| 22D9 A 01 LDAA 19X
22DB B2 19 1E SBCA AVG+3
@ 22DE A7 01 STAA 19X
22E0 Aé 00 LDAA 0rX
A 22E2 B2 19 1D BBCA™  AVGHZ
o 22ES A7 00 STAA 0rX
L 22E7 2B 18 BMI FE25C FIND SCALE FACTOR
Ld 22E9 BA 19 21 ORAA _ POS
e 22EC B7 19 21 STAA POS
,1'-‘ 22EF A6 01 LDAA  1yX
. 22F1 BA 19 22 ORAA POS+1
@ 22F4 B7 19 22 STAA POS+1
i 22F7 A6 02 LDAA 2sX
: 22F9 BA 19 23 ORAA POS+2
o 22FC B7 19 23 STAA POS+2
P 22FF 20 16 BRA  FE25D ) o
2301 B4 19 24 FE25C ANDA NEG —-
'Y 2304 B7 19 24 STAA NEG
. 2307 A4 01 LDAA 19X
A-8
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METHOD OF INVARIANT FOURIER SIGNATURES

b
[ ]
( T 2309 B4 19 25 ANDA NEG+1
» 230C B7 19 25 STAA NEG+1
230F _Aé 02 LDAA 29X
}~ 2311 B4 19 26 ANDA NEG+2
» 2314 B7 19 26 STAA NEG+2
X 2317 08 _ _ FE25D__INX_ . - _ ) .
2318 08 INX T
» 2319 08 INX
: 231A_ 08 INX
[ 2318 8C 10 00 CPX FFFTUTHI
® 231E 24 AB BNE FE25B
" 2320 Bé 19 24 LDAA  NEG
L 2323 F6 19 25 .LDAE NEG#1
9 2326 78 19 26 ASL NEG+2
: 2329 CE 00 00 LDX 20
o 232C 59 FE2SE  ROLD
" ¥ 232D 49 ROLA ,
;- 232E 24 04 BCC FE2SF
! 2330 08 INX ;
o 2331 oC cLe !
; 2332 20 F8 BRA FE2SE
o 2334 FF 19 24 FE2S5F  STX NEG
o 2337 B6 19 21 LDAA  POS
i») 233A F6 19 22 LDAB POS+1
& 233D 78 19 23 ASL FOS+2
® 2340 CE 00 00 LDX 20 !
s 2343 59 FE256 ROLB
| 2324 49 ROLA
(X 2345 25 04 BCS FE2SH
:] 2347 08 INX
. 2348 0D SEC
® 2349 20 F8 BRA = FE25G
: 234B FF 19 21 FE25H  STX POS
; »‘ 234E Bé 19 22 LDAA FOS+1
o 2351 BO 19 25 SUBA NEG+1
| 2354 2B 06 BNI FE251
T T23%8 Bé 19 25 T LDAA NEGHI ) ;
) 2359 B7 19 22 STAA POS+1
235C 86 11 FE25I  LDAA 217D
4 235E BO 19 22 SUBA POS+1
| 2381 2F 27 BLE FE2SL
. 2363 B7 19 22 STAA  POS+1
2356 30 TSX
® 2367 F6 19 22 FE25J LDAB POS+1 SCALE DOWN
l 23464 A6 00 FE25K LDAA 0rX
; 2346C 47 ASRA
' X 234D A7 00 STAA 0rX
j 236F Abé 01 __LDAA 19X
' 2371 46 RORA -
® 2372 A7 01 STAA 1:X
2374 A4 02 LDAA 29X
Lr 2376 44 RORA
' Y 2377 A7 02 STAA 29X
| 2379 A6 03 __LDAA__ 3ex o
\ 2378 46 RORA
® 237C A7 03 STAA 3,X
N 2376 SA DECB
® A-9
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METHOD OF INVARIANT FOURIER SIGNATURES

[ ]
d Z237F 28 EV BNE FE25K
: 2381 08 INX
, 2382 08 INX
‘ 2383 08 INX
. 2384 08 INX
. 2385 8C 10 00 - CPX $FFTUTH1 B
- —2388 24 DD BNE FE25J
2384 Bé 18 50 FE25L LDAA  PUSHST
. 238D SF CLRB
4 238E BD 10 00 JSR FFT FFT
., 2391 Bé 18 B3 LDAA  FFTN
¥ 2394 Fé 18 B4 'LDAB__ FFTN#1
; 2397 47 T ASRA~ T T -
) 2398 S6 RORB
. 2399 CE 00 00 LDX #RO
’ 239C BD 2A 17 JSR T0EX
y 239F FF 18 FD STX STOP
o 23A2 CE 00 O LDX #RO
. 23A5”‘?F‘T§’F§’ STX RON
L 2348 CE 18 24 FE26  LDX $COR1 PULL FFT/MAG/STORE
P 23AB 32 PULA :
23AC A7 00 STAA 07X
N 23AE 32 PULA
N 23AF A7 01 STAA 11X
2381 32 PULA
) 232 A7 02 STAA  2»X f
, - 23B4 32 PULA !
N 2385 A7 03 STAA 37X
. 2387 BB 13 76 JSR VECT1S
. 23BA 18 F9 LDX RUN
mj“—‘"”§3§n—‘§a 19 24 [DAA ~ CORT
N 23C0 A7 00 STAA  0sX
o 23c2 Bé 18 25 LDAA  COR2
235 A7 01 STAA 7 X
i 23c7 08 INX
23C8 08 INX
! 2309 FF I F9 — “8TX~~ RUN- ~—— —— " T Tt
L 23CC BC 18 FD CPX STOP
23CF 26 D7 BNE FE26
w2301 BE I8 F7  LDS STACKS
. 23D4 BD FD A6 JSR $SFDAG
o 23D7 CE 25 Fé LDX SLINE?

. 23DA C& OB CDAB — “#1ID™

. 23DC BD 2A 3F JSR PASC

L 23DF BD FD 36 JSR $FD36 INCH

|4 2362 81 59 CMPA 9859

o 23E4 26 S0 BNE FE29

g 2366 CE_00 00 LDX RO ]

T 23E9 FF 18 FY STX RUN T Tt e T

; 23EC 84 01 LDAA 'Y

5 23EE B7 18 EC STAA 1

E 23F1 BD FD Aé JSR SFDAS

, 23F4 BD FD A& JSR $FDAS

} 23F7 FE 18 F9 FE2?  LDX _ RUN PRINT SIGNATURE
" 23FA_ A& 00 LDAA 0rX T TS e

! 23FC B7 18 02 STAA TEMP3

Q 23FF A6 01 LDAA 1,X
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METHOD OF INVARIANT FOURIER SIGNATURES

' 2401

B7 18 03 STAA  TEMP4
2404 08 INX
2405 08 INX
2406 FF 18 F9 STX RUN
2409 BD 29 AE JSR BISBCD
240C _CE 18 06 LDX _ #BCD1 -
240F BD 2A 2A JSR WRITE — T
2412 CE 18 07 LDX #BCD2
2415 BD 2A 2A JSR WRITE
: 2418 84 20 LDAA_ #$20
‘ 241A BD FD 80 JSR $FD8O BLANK
) 2410 BD FD 80 JSR _ $FD8O
- 2420 B& 18 EC LDAA I -
2423 48 ASLA
2424 24 05 BCC FE28
| 2426 BD FD Aé — JSR $FDAG
2429 84 01 LDAA . #1
242B__B7? 18 EC_FE28  STAA I
242E FE 18 F9 LDX RUN
2431 BC 18 FD CPX STOP
' 2434 26 Ci BNE FE2?
| 24346 BD FD Aé FE29  JSR $FDAG
| 2439 BD FD Aé JSR $FDAS
‘ 243C__CE 26 01 LDX $LINE10 |
243F Cé OB LDAB  #1iD
2441 BD 2A 3F JSR PASC
2444 BD FD Aé JSR $FDAS
i 2447 84 O1 LDAA  #1
i 2449 B? 18 EC STAA I
4 244C_B6 18 EC_FE30  LDAA I
- 244F B1 18 EE CMPA  TAG
2452 26 53 BNE FE33
) 2454 16 TAB
2455 8D 02 BSR FE30A
» 2457 20 20 BRA FE32
4 2459 B6 18 EA FE30A LDAA M .
245C “B7 18 00 STAA TEMP1
245F 4F CLRA
2460 S8 FE31 ASLB
2441 49 ROLA
: 2462 7A 18 00 DEC TEMP1 .
" 2485 26 F9 BNE FE31
- 24647 S8 7 7 asLB -
2468 49 ROLA
2469 CE 00 00 LDX #RO -
244C BD 2A 17 JSR IDEX X=RO+IX2XR(N+1)
246F FF 18 FB STX RUN1
: 2472 CE 00 00 LDX #RO
- 2475 FF 18 F9 STX T RUNT -
2478 39 RTS
, 2479 FE 18 F? FE32  LDX RUN STORE NEW SIGNATURE IN R(]
m 247C A& 00 LDAA 0sX
a 247E E6 O1 LDAR  1,X
z 2480 08 INX
2481 08 INX
L 2482 FF 18 F9 STX RUN
- 2483 FE 18 FB LDX RUN1




METHOD OF INVARIANT FOURIER SIGNATURES

'™
: [ ]
o 7380 A7 00 BTAA O0sX
Py 248A E? 01 STAB  1sX
. 248C 08 INX
. 248D 08 INX
Py 248 FF 18 FB STX RUN1
Ny 2491 FE 18 F9_ LDX RUN
2494 BC 18 FD CPX STOP —
e 2497 26 EO BNE FE32
. 2499 CE 18 DF -LDX SREF-1
i, 249C Fé 18 EC LDAB I
'Y 249F 4F CLRA
' 24A0 BD 2A 17 JSR IDEX
; 74A3 86 01 TTLDAATT ¥ - T e
Py 2445 A7 00  STAA  0sX SET REF(I)=1
, 2447 Fé 18 EC FE33  LDAB I B
N 24AA  AF T CLRA
Py 24AB CE 18 DF LDX #REF-1
ho 24AE BD 2A 17 JSR IDEX
¥ 24B1  Aé 00 LDAA OrsX
e 243 81 01 CHPA  #1
t 24BS 27 09 BEG FE34
F 2487 7F 18 06 CLR BCD1
'Y 24BA 7F 18 07 CLR BCD2
: 24BD 7E 25 14 JHP FE37
i 24C0 F& 18 EC FE34  LDAB 1 REF(I)=1
Q- 24C3 8D 94 BSR FE30A f
s 24CS5  4F CLRA
I 24C6 Cé 18 LDAB 924D
- 24C8 CE 19 03 LDX #51
= 24CB__ A7 00 FE3S STAA  OsX 81,652,853 NFPZ
3 24CD 08 INX
e 24CE  SA DECB
N 24CF 26 FA BNE FE3S
» 2aDi 84 80 LDAA  #980
o 24D3 B7 19 0A STAA  S1+47
R s :
D
® 24DC FE 1B F9 FE36  LDX RUN CORRELATE R(0) WITH R(I)
24DF A& 00 LDAA  OsX
w 24E1 B7 18 02 STAA  TENMF3
@ 24E4 A6 O% LDAA 1,X
- 24E4 B?7 18 03 STAA TEMPA
. 24E9 08 INX
e 24EA 08 INX
; 24EB FF 18 F9 STX RUN
¥ 24EE FE 18 FB LDX RUN1
o 24F1 A& 00 LDAA  OsX
ol 24F3 B? 18 04 ___ STAA_ TEMPS B
TTT24F8 A& 01 LDAA  1,X T T T -
o 24F8 B? 18 05 STAA  TEMP6
- 24FB 08 INX
E 24FC 08 INX
® 24FD FF 18 FB 8TX RUN1
o 2500 CE 18 02 _ LDX__ eTEMP3
. 2503 BD 27 00 JSR RCORRL™  — 77 7 ACCUMOLATE T
o 2506 FE 18 F9 LDX RUN
3 2509 BC 18 FD cPX sSTOP
- @ A-12 '
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[
a 250C 24 CE BNE FE35
® 250E BD 27 7F JSR RCORR2 81/(52%83)8%0,5
y 2511 BD 29 AE JSR BISBCD
. 2514 Bé 18 EC FEY? LDAA I
e 2517 8aA 30 , ORAA #$30
' 2519 BD FD 80 _ . JSR $FD8O PRINT I =
; 251C 86 29 LDAA 2929
o 251€E BD FD 80 JSR $FD8O PRINT *)*
2521 86 20 LDAA $$20
x 2523 BD FD 80 JSR $FD80 BLANK
e 2526 86 30 LDAA #430
X 2528 BD FD 80 ___JSR  $FDBO PRINT O
252B 86 2 LDAA #$2E o
o 252D BD FD 80 JSR $FD8O PRINT °*,*
5 2530 CE 18 06 LDX $BCD1
e 2533 BD 2A 2A JSR WRITE CORR
L )% 2536 CE 18 07 LDX #BCD2
e 2539 BD 2A 24 JSR WRITE
p 253C 86 20 LDAA #420
@ 253E BD FD 80 JSR $FU80 BLANK
\ 2541 BD FD 80 JSR $FDBO .
2544 Bé 18 EC LDAA I
® 2547 81 04 CMPA #4
| 2549 26 03 BNE FE38
254B BD FD A& JSR $FDAS }
Qo 254E 7C 18 EC FE38 INC ¢
: 2551 Bé 18 EC LDAA 1
R 2554 81 09 CNFA 9
.J 2556 26 IF BNE FE39
} 2558 BD FD A6  _ JSR____ $FDAé
| 255B CE 28 OC LDX SLINETT
® 255€ €6 0A LDAB  #10D
: 2560 BD 2A 3F JSR PASC
R 2563 BD FD 36 JSR $FD36 INCH
® 2566 81 59 CMPA 2959
s 2568 26 10 _ _BNE  FE40
T T T2%54A BE 18 EA LDAA M T T
) 256D 81 05 CMPA #5
256F 27 03 BEQ FE38A
: 2571 7€ 20 A9 JNP FE11
® 2574 7E 20 45 FE3BA  JUMP FE4
m 2577 7E 24 4C_FE39  JUMP  FE30 L
T 257A JE FE 2D FEA0 JuP $FE2D FANTON
[ ) 257D LINEL EQU x
257D 46 45 41 ) Fcc ‘FEATURE ’
4 2585 52 45 43 FCC “RECOGNITION’
» 4 2590 LINE2 EQU %
' 2590 44 45 44 . FCC__ ’DEFT/PROJECTION/" -
: 2540 44 46 54 FcC ‘FFT’ N T
| [ ] 25A3 LINES EQU |
- 25A3 53 41 4D B Fcc ‘SAMPLE AVERAGE ’
25B1 20 49 53 FCC ’ IS 2%x’
2586 LINEA EQU 2
2 2588 43 49 S2 __Fcc = °'CIRCLES?’
25€0 LINES EQU ] -
) 25C0 52 45 46 FcC 'REFERENCE LENGTH’
2500 3D 32 2A FcC ‘3 2KKS’
A-13
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’ METHOD OF INVARIANT FOURIER SIGNATURES !
;

[ ] {
(; 25D5 CINE? —EGU T |
P 25DS 44 45 4C FCC ‘DELTA THETA=-P1/’ -
() 2SES 32 2A 2A FcC 228k’ |
|. 7568 LINES  EQU % !
Py 25E8 52 45 46 FCC 'REFERENCE TAG=a’
. _2%F6 LINE? EQU x
LT "2%F& TS3 49 47 Fce ‘SIGNATURE? 7 -
X B 2601 LINE10 EQU %
3 B 2601 43 4F S2 FcC ‘CORRELATION’
Rt 2600 CINEIT EGU &
Y 260C 43 4F 4E FcC 'CONTINUE?
s 2616 XZERO EQU % A _ N .
T 2816 OF 11 FCB $F.811T - 3asy T T ;
® 2618 YZERO EQU %
N 2618 OD AA FCB $D) $AA 3498
tl 2614 RVECT EQU X
o 2614 07 2B 07 FCB $7+92Br$7,8C8+98+$72,89,$2B
rl 2622 09 F4 0A FCB $9r8F4,8A»SCE»$By$SBA,SCy$BB
L 263A 0D D1 OE FCB $D,9D1+SE,SFF7810:8477811,8A8
e 2632 13 2E 14 FCB $13,82E,814,801+816:859,$18,$87
Lt 2634 1A A0 1C FCB $1A»8A0s$1Cs9ES»$1F»$5F»$22,8D ﬂ
b 2642 24 F6 28 FCB $24,8F6+828181E 7828, 88C 1 $2F 1 845
e 2644 33 4AF 37 FCB $33,84F»837,8B1,$3Cr$74,$41,$9E
r,. 2652 47 3A 4D FCB $47583A,$4D,$50,$53,$EB,$5B, 817 -
& 2454 END (
.h
";__‘
o
@'  STATEMENTS =710
;:l FREE BYTES =14551
‘;«l _NO_ERRORS DETECTED o B

Y Y] ' o R




METHOD OF INVARIANT FOURIER SIGNATURES

o
9
‘ 1880 T T ORG $1880
e 18BO BLKSF  RMB 1
! 18B1 M RMB 1
| 1882 TFLAG  RMB 1
® 18B3 N RMB 2
Il 185 LE RMB 2 L .
: 18B7 ANGLE RMB 2
o 18B9 L RMB 1
j ___18BA LE1 RMB 2
| 18BC THETA 2na g
® 18BE J MB
‘ 18C0 I RMB 2 e
T 1862 77 BUTLIR  RMB 2
@ 18C4 BUT1I  RMB 2
. ....i8Cé6 = BUT2R RMB 2
. 18C8 BUT2I  RMB 2
Q | 18CA IP RMB 2
L 18cC 1I RMB_ 2
' 18CE NV2 RMB 2
o 18D0 NM1 RMB 2
‘ 18Dp2 K RMB 2
T 18D4 JJ RMB 2
® 18D6 BSN RMB 2
L 18p8 . POS RMB 2
- 18DA NEG RMBD 2 1
) 18DC BSN1 RMB 2
1824 ORG $1824 B
1824 COR1 RMB 1
® 1825 COR2 RMB 1
4 1826 COR3 RMB 1 ) _
T 18277777 T 7T T CORA RMB i
® 1828 DNUP1  RMB 1
1829 DNUP2  RMB 1
. 1824 T CORY RMB i
® 1828 COR10 RMB 1
o 1800 ORG $1800 S _ .
T 1800 T CORS T RMB 1 R
o 1801 CORS RMB 1
1802 COR? RMB 1
STT7T1803° 0 T CORS RMB i
e 1804 COR11  RMB 1
. 1805 COR12 RMB 1 o o
7T 1808 " COR13 RMB 1 o
o 1807 COR14 RMB 1
1808 COR1S RMB 1
i80% " 7T CORI& T RHB™ i
o 180A COR17 RMB 1
. 180B COR18 RMB 1 )
T 1go0Cc T " CFLAG RMB 1
® 180D COR19 RMB 2
180F ITER RMB 1
“ 1000 ORG $1000
P X SUBROUTINE FFT '
H % REAL» IMAG ALTERNATE IN STACK
: TR " TENTER WITH A ACCUM=M FOR
® X 2x%M FFT) Ba0 FOR FORWARD FFT»
% ___B=1 FOR INVERSE FFT
. ® A-15 |




METHOD OF INVARIANT FOURIER SIGNATURES

(T 1000 JF I8 B0 FFT  CLR  BLKSF
M 1003 CE 18 B1 LDX M
: 1006 A7 00 STAA 0 X M
‘ 1008 €7 01 STAE  1+X TFLAG
' 100A Cé6 01 LDAB 31
. 100C 4C INCA
i JOOD 4L T T 77 " INCA B "“
» ! 100E OC cLc
. 100F &F 02 CLR 2sX
: 1011 5% Fi ROLB
D 1012 24 04 BCC F2
1014 6F 03 . _CLR 39X — .
, 1014 09 - DEX T T
X 1017 SC INCRB
: 1018  4A F2 DECA
w[ 1019 24 Fé& BNE F1
Y 101B E? 03 STAB 3,X N=2X%(M+2)
r[ 101D CE 18 B1 LDX M
‘ 1020 A& 02 LDAA 2y X
Y 1022 E6 03 LDAB 39X
: 1024 S8 ASLB
o 1025 4% ROLA
.;] 1026 A7 04 STAA 49X LE=2%%(M+3)
2 1028 E7 0S STAB 51X
- 102A A& 00 LDAA™— 0,X
» 102C Cé 80 LDAB 4380
. 102E  &F 07 CLR 79X
L 1030 oC cLC
) j 1031 56 F3 RORB
o 1032 24 04 __BCC_ F4
: 1034 64F 06 CLR 67X
) 1036 08 INX
: 1037 56 RORB
o 1038 4A Fa DECA
) 1039 26 Fé BNE F3
4 103B E? 06 STAB 6 X ANGLE=2%%(15-M)
: T030  CE I BT T DX T M T T
) 1040 4D 01 TST 1¢X
1042 2E OA BGT F4A
CTTTTTT1034  aF CLRA FORWARD FFT
) 1045 SF CLRB
.~ 1046 EO 07 SUBB 77X
T 10a8 AZ 08 SBCA — & X
) . 104A A7 06 STAA 69X ANGLE=~ANGLE
104C E7 07 STAB 79X
ol 104E 86 01 FAA LDAA #1
) 1050 A7 08 STAA e.x
g 1052 FE 18 B3 FS LDX MAIN LOOP

1085 Bb 12 AT TTTTTUJSR BSCACE—*

1058 BB 18 BO ADDA BLKSF

105B  B7 18 BO STAA BLKSF BLOCK FLOAT POINT SCALE F¢
| {058 CE 18 BY LDX™ SLE

1061 A6 00 LDAA 0rX

1063 E6 01 LDAB 1l x

1065 44 TTTLSRATT T T - -

1066 356 RORB

1067 A7 00 STAA 0sX LE=LE/2

A-16
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D
[ ]
(r’ 1049 E7 01 ' 8TAD 1:X
» 1068 44 LSRA
: 104C 56 RORB
. 106D A7 05 STAA 5, X
' 106F E7? 06 STAB brX LE1=LE/2
: 1074 A6 02  LDAA 24X
1073 E6 03 LDAB 3, T
p 1075 S8 ASLB
1076 49 ROLA
g 1077 A7 02 STAA 2,X ANGLE=2%ANGLE
» 1079 E7 03 STAB 3,X
; 107B  6F 07 CLR 70X THETA=0
107D &F 08 TTTELRT T 8 B
. 107F 6&F 09 CLR ?9X
f 1081 86 04 LDAA 84
b 1083 A7 0A STAA 10D, X J=4
» 1085 30 Fé TSX
Lo 1086 09 DEX
. 1087 09 DEX
» 1088 FF 18 C2 STX BUT1R |
- 1088 CE 18 BE LDX 8J
T 108E A6 00 LDAA 0sX
D 1090 Eé 01 LDAB 1,X |
“ 1092 A7 OF STAA _ 14DyX 11=J
' 1094 E7 OF STAB 15D, X
» 1096 EB 05 ADDB  SsX v
1098 A9 04 ADCA 49X
) 1094 A7 02 STAA 25X I=J45TKPTR-1
D 109C E7 03 STAB 3,X
R 109€ CE 18 BA F7 _ LDX  #E1 .
10A1 A& 00 LDAA 0rX
» 10A3 Eé 01 LDAB 1,X ;
10AS EB 07 ADDB  7,X
q 10A7 A9 06 ADCA &9 X
P 10A9 A7 10 STAA 16Dy X IP=I+LEL
| 10AB E7 11 STAB 17DsX
10AD FE {8 CO ~LDX BUTTERFLY
» 10BO A6 00 LDAA 0sX
10B2 B7 18 C2 STAA BUTIR
| 10B5 A& O1 LDAA 1sX
» 10B7 B7 18 C3 STAA BUT1R+1 .
. 10BA AS 02 _ LDAA_ 2,X _
i0BC  B7 19 C4 STAA BUT1I
» 10BF A6 03 LDAA 3,X }
10Ct B7 18 CS STAA BUT1I+1
. 10CA FE 18 CA LDX P
" 10C7 A6 00 LDAA 0sX
o 10C® B7 18 Cé STAA  BUT2R
10CC A 01 T TLDAA X ‘
» 10CE B7 18 C7 STAA BUT2R+1 C
. 10D1 A& 02 LDAA 20X
el i0oD3 B7 18 CB 8TAA BUT2T
" 10D6 ASé 03 LDAA 3,X ;
. 1008 B7 18 €9 STAA _ BUT2I+1
10DB  CE 18 C2 LDX #BUTIR
® 10DE Aé 00 LDAA 0sX

N 10E0 E6 01 LDAB 1sX
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ADDP I X

10E4 A9 04 ADCA 4,X
10E8 B7 18 24 8TRA COR1

1 A COR2
10EC A6 02 LDAA 29X
10EE Es 03 LDAB 3, X
10FO "EB 07 —— - ADDB 7+X -
10F2 A9 04 ADCA 6o X
10F4 B7 18 24 STAA COR3

L7 COR3

10FA 7F 18 24 CLR COR?
10FD 7F 18 2B CLR COR10

OO " By 1y gy

JSR " ROTIS

1103 FE 18 co LDX I
1106 Bé6 18 24 LDAA COR1
0 7 00 ~ 5TAA 0rX
110B B4 18 25 LDAA COR2
110E A7 ot STAA 1,X
COR3
1113 A7 02 STAA 2+X
1115 Bs 18 27 LDAA COR4
1118 A7 03 STAA I X
111A CE 18 C2 LDX #BUTIR
111D A4 00 LDAA OrX
TIIF Ed o1 LDAF — " 1yX
1121 EO 05 SUBB SeX
1123 A2 04 SBCA 4,X
28 5TAA CORT
1128 F7 18 2 STAB COR2
112B A4 02 LDAA 29X
1120 " Fg o3 — T LDAE T T 35X T -
112F EO0 07 SUBB 7%
1131 A2 06 SBCA 65X
1133 B7 18 24 STAA COR3
1136 F7 18 27 STAB COR4
1139 FE 18 BC LDX THETA
IIJC“‘FF"IS“ZK“**‘“‘““‘“STX“““‘ CORY - T T
113F BD 13 g% JSR ROT1S
1142 FE 18 ca LDX 1P
1145 B3 15 23 LDAA COR1
1148 A7 00 STAA 0rX
1144 B6 18 25 LDAA COR2
114D A7 01 T TTSTAA T T ILX - T
114F B6 18 24 LDAA COR3
1152 A7 02 STAA 2»X
1154 B4 18 27 LDAA CORa
1157 A7 03 STAA 3sX
1159 CE 18 B3 LDX 4N _
ziSC‘”ﬁa”bi"““““””““‘"”LDAN“' -3 & ST T e
115€ E4 03 LDAB IrX
1140 EB OF ADDB 14Dy X
1162 A% OD ADCA 13Dv X
11464 A7 OD STAA 13D, X I=I4LE
1166 E7 oE STAB 14Dy X
1168 A8 02 7T LDpAA T 2,X T I
116A E4 03 LDAB IrX
116C EB 1A ADDB 26D, X

A-18
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>
(i 116E A9 19 ADCA  25DsX
b 1170 A7 19 STAA 25D+X II=II4LE
1172 E7 1A STAB __ 24DsX
‘ 1174 €0 o1 SUBB  1:X II-N
| 1176 A2 00 SBCA  OsX
| 1178 207 . _ BLT__ F7A S
! 1174 2E 08 | BGT Fe
| 2 117C 5D TSTB
1170 27 02 BEQ F74
7 117F 20 03 BRA F8
3 1181 7€ 10 9E F7A JMP F7
1 1184 _As 09 F8 LDAA  9sX .
y, i ad I
1188 EB v X
118A A9 04 ADCA __ 4»X
1 118C A7 09 STAA  9+X THETA=THETA+ANGLE
[ 118E E7 OA STAB  10DsX
. 1190 A4 0B LDAA  11DsX
» LA G o
' 1196 89 00 ADCA 80
| 1198 A7 OB STAA  11DsX J=J+4
» I[ 1194 E?7 0OC STAB  12DsX
119C €0 08 SUBB 81X J-LE1
.’ i:zg Ag g; "SBCA~  7»X
2 BLT FBA
1142 2E 08 BGT F9
! 11A4 5D TSTB
D 11A5 27 02 BEQ F8A
A 11A7 2003 _  _  BRA F9
11A9 7E10 85 FBA™  JUMP T F4 T T e
® 11AC  4C 06 F? INC boX LaL#1
114E A6 06 LDAA ~ 6rX
- 1180 BO 18 B1 SuBA M -
P 11B3 2E 03 BGT FoA
“ 11BS 7E 10 52 Jup FS
T 7 {1B8 A6 00 FFA™ T LDAA — OsX 7 'BIT REVERSAL
® uag s; 01 LDAB  1»X
11BC_ 4 ASRA
T TTT11BD S8 RORB
X 11BE A7 1B STAA  27D»X NV2=N/2
© —lce aeos - ioa o
1 LDA 0sX T T TTr T
o 11C4 E6 O1 LDAB  1»X
‘ 11C6 €O 04 SUBB _ #4
1 1168 82 00 SBCA ~ #0
o 11CA A7 1D STAA  29D,X NM1=N-4
i EE - 3
é LR 3DsX T T T
® 11D0 86 04 LDAA 4
; 1102 A7 22 STAA  34D:X Jd=4
pi 1104 &F 19 TLR 250vX
0" 11D6 A7 1A 8TAA  26DsX 11=4
—tiros TN
| 1 0 N a T
o 110A 08 INX
._ 11DB _FF 18 CO STX 1 I=STKPTR+3
®
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& METHOD OF INVARIANT FOURIER SIGNATURES
[ ]
(——rrm. ‘ BTX J J=Y
Y8 11E1 CE 18 BA F10 LDX SLEL
) 11E4 Aé 06 LDAA 69X
. 11E6 E& 07 LDAB 77X
e 11E8 EO 0S SUBB 55, X 1-J
. _11EA A2 04 SBCA 4x
T T11EC T 2C 4A . BGE F11
@ 11EE FE 18 BE : LDX J
R 11F1 Aé 00 LDAA 0sX
: i1F3 B7 18 C2 STAA BUTIR
o 11F6 A6 01 LDAA 19X
: 11F8_ B7 18 C3 __STAA_ BUT1R#1 o
1iFB A6 02 LDAA 2, %
P 11FD B7 18 C4 STAA BUT1I
;- 1200 A6 03 LDAA 35X
" 1202 B7 18 CS STAA BUT1I+1
o 1205 FE 18 CO LDX 1
{v- 1208 A6 00 LDAA 0sX
120A E& O1 LDAB 1rX
o 120C FE 18 BE LDX J
120F A7 00 STAA 0sX
‘n 1211 E7 o1 STAB 19X
@ 1213 FE 18 CO LDX I
b 1216 A6 02 LDAA  2sX
12186 €46 03 LDAB X
e 1214 FE 18 BE LDX J
: 121D A7 02 STAA 2sX
. 12iF €7 03 STAB X
o 1221 FE 18 CoO LDX 1
& 1224 Bé 18 C2 LDAA  BUTIR
1227 A7 00 STAA 0 X
@ 1229 Bé 18 C3 LDAA BUT1R+1
- 122C A7 01 STAA 15X
i 122E Bé 18 CA LDAA BUTITY
.j 1231 A7 02 STAA 29X
, 1233 Bé 18 CS _ LDAA  BUT1I#1 B
. 1238 A7 03 STAA 1 S
o 1238 CE 18 BA F11 LDX SLE1
' 123B A6 14 LDAA 20D X
1230 €4 15 LDAB 210, X
o 123F A7 18 STAA 24D, X K=NV2
- 1241 E7 19 STAB 25D X
T 1243 E0 1P T FIZ T SUBB 27Dy X K=1J —
X 1245 A2 1A SBCA 26Ds X
‘ 1247 2C 24 BGE F13
' 1249 A& 04 LDAA X
e 124B E6 05 LDAB 5,X
; 124D EO 19 SUBB  25DsX
T I%4F AZ 18 7" 7 SBCA T 24D,X -
o 1251 A7 04 STAA 4rX J=J-K
3 1253 E7 08 STAB SeX
b 1958 A& 1A LDAA 2807 X
P 1257 E6 1B LDAB 27D¢X
b 1259 EO0 19 SUBB  25D»X
i 1258 A2 {6 T SBCA  24DsX -
® 125D A7 1A STAA 26De X JJ=JJ-K
‘ __125F _E7 1B STAB
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METHOD OF INVARIANT FOURIER SIGNATURES
®
[
( 1261 a6 18 LDAA 24D, X
o 1263 E6 19 LDAB  25D,X
1265 47 ___ASRA
: 1264 54 RORB
o 1267 A7 18 STAA 24D,X K=K/2
{1269 E7 19 _ ___ STAB_ 2SDyX .
126B 20 Dé BRA F12
'@ 126D A4 04 F13 LDAA 4rX
: 126F  E& 0S5 LDAB SeX
9 1271 EB 19 ADDB 25D, X
® 1273 A% 18 ADCA 24D, X
3275 A7 04 = STAA  AyX JaJHK _
1277 €7 05 STAB SyX T T oo
) 1279 A6 06 LDAA bvX
, 127B €6 07 LDAB 79X
f 1270 CB 04 ADDB 3
U1 127F 89 00 ADCA #0
g 1281 A7 06 STAA b X I=1+4
| 1283 E7 07 STAB 74X
@ 1285 A6 1A LDAA 26Dy X
§ 1287 Eé6 1B LDAB __ 27D,X
1289 EB 19 ADDB 25D, X
® 128B A9 18 ADCA 24Dy X
[l 1280 A7 1A STAA  26DsX JI=JIEK e
\ 126F E7 1B STAB  27D:X
C 1291 A6 12 LDAA 18DrX !
| 1293 E6 13 LDAB 19DsX
| 1295 CB 04 ADDB ¥4
® 1297 89 0v ADCA $0
1299 A7 12 2 STAA __ 18D,X = II=II+4
1298 E7 13 STAB 19Ds X -
e 129D EO 17 SUBB . 23D,X II-NM1
| 129F A2 16 SBCA 22D, X
,‘ 12A1 2D 06 BLT F1§
@ 12A3 2€ 03 BGT Fie
4 12A5 SD TSTB
T 12A46 27 01 ~ BE@  F15 i T
® 1248 39 F14 RTS
1249 7E 11 E1 F13 JHP_ F10
e
L
o
®
.
e
o
. @
&- .
'
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METHOD OF INVARIANT FOURIER SIGNATURES
8
¢
(. | SUBROUTINE BSCALE
® ] BFP SCALING OF DATA IN STACK
\ % VECTOR CONSISTS OF N/2s, 2 BYTE
. NUNEERS. ENTER WITH N IN X REG,
Y x RETUKNS BLOCK SCALE FACTOR IN A REG.
. 12AC FF 18 Dé BSCALE STX BSN
T TI2AF "FF 18 DC §TX BSN1 ""
@ 12B2 CE 00 00 LDX *0
P 12B5 FF 18 D8 STX POS
. | 1288 CE FF FF LDX ¥IFFFF
® 12BB FF 18 DA STX NEG
: 12BE 30 BS1 TSX
T 12BF 08 INX -
o 12c0 08 INX
o 12€1 08 BS1A INX
ol 12C2 08 INX
'Y 12C3 E4 01 LDAB 19X
y 12€C5 A6 00 LDAA 09X
127 2P OF “BHI BSZ
T 12C9 BA 18 D8 ORAA  POS
L 12CC FA 18 D9 ORAB . POS+1
o 12CF B7 18 D8 STAA FOS
@ 1202 F7 18 D9 STAB POS+1
':- 12D5 20 OC BRA BSO
W 1207 B4 18 DA BSZ  ANDA  NEG T TS
e 12DA F4 18 DB ANDB NEG+1
120D B7 18 DA STAA NEG
STAB  NEG¥H1
e 12E3 Bé& 18 D6 BSO LDAA BSN
o 12E6 Fé6 18 D7 LDAB  BSN+#1
. 12E9 €0 02 “BUBB T #2
"'y 12EB 82 00 SBCA #0
L, 12ED B? 18 D& STAA = BSN
s BENFT
C'Y 12F3 2E CC BGT BS1A
g 12F5 SD TSTB
T TTA2FE 26CY T T BNE BSIA~~~ T T oot
® 12F8 B4 18 DA LDAA NEG
, 12FB Fé 18 DB LDAB NEG+1
o T 12FE CE 00 00 DX 0
@ 1301 S8 BS4 ASLB
- 1302 49 ROLA
. TTTTTTT130Y 2403 T BCC™ T BSS T R
@~ 1305 08 INX
i 1306 20 F9 BRA BS4
l 1308 09 BSS DEX
@ 1309 09 DEX
130A FF 18 DA STX _ NEG
T 136D B& 18 D8 =~  LDAA POS -
o 1310 Fé 18 D9 LDAB POS+1
: 1313 CE 00 00 LDX 00
2 1316 0D ~ SEC
Y 1317 S9 ROLB
“ 1318 20 ot BRA  BS4A
: 131A° S8  ~ 'BS&  ASLB - T i
® 131B 49 BS4A ROLA
R 131C 25 03 BCS BS7
o A-22
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MFTHOD OF INVARIANT FOURIER SIGNATURES
]
(T" 131E 08 " INX
) 131F 20 F9 BRA BSé
1321 0% BS? DEX
1322 09 DEX
» 1323 FF 18 D8 STX POS
1326 CE 18 D8 LDX  #POS
! 1329 E6 01 LDAB 19X
) 132B EO 03 SUBB 3sX
132D 2B 04 BMI BS8
4 132F A& 03 LDAA 3+ X
), 1331 A7 01 STAA 19X
£ 1333 4D 01  BS8 CTST 19X ~ POS+1=SCALE FACTOR
. 1335 26 02 BNE BS9
¥ 1337 4F CLRA
i 1338 39 " RTS8 BLOCK 8.F.=0
e 1339 30 BS9 TSX
D 133a 08 INX
|. 133B 08 INX
o 133Cc o8 BS9A INX SCALE DATA
) 133D 08 INX
' 133E Bé 18 D9 LDAA POS+1
LT 1341 2B 10 BMI BS11
) 1343 B7 18 D8 STAA POS
g 1346 A6 00 = LDAA_ 0sX
— 1348 E& 01 TTLDAR T e} T T T oot o ommTmem
> 134A 58 BS10 ASLB
. 134B 49 ROLA
of i34C 7A 18 DB DEC POS -
X 134F 2E F9 BGT BS10
i 135120 06 ) BRA  BS12
T 7 T135% Aé 00 T BSti T LDAA . 0sX T ‘*
[ 1355 Eé 01 LDAB 19X
1357 47 ASRA
T 1358 Sé RORB
) 1359 A7 00 BS12 STAA 0sX
135B E7 01 STAB 19X
71350 B4 {8 DC T 7 LDAAT BSNI’ - T
> 1360 Fé 18 DD LDAB BSN1+1
1343 CO 02 SUBB 2
w1345 82 00 SBCA #0
D 13647 B7 18 DC STAA BSN1
. 136A F7 18 DD STAB BSN1+1
————434D 2ECD ~~ "7 BGT ~ BS%A T TTTT T T
) 136F SD TSTB
1370 26 CA BNE BS%A
' 1372 B& 18 DY LDAA FOSHI
.:] 1375 39 RTS




-w
P~ METHOD HYr INVARIANT FOURIER SIGNATURES
.
- R
@ ] .
d N s . CORDIC ALGORITHM ITER ITERATIONS
‘ 1374 788 OF VECT1IS LDAA 415D VECTOR: 1S ITERATIONS
C 1 1378 7 18 OF STAA ITER
1378 7F 18 2A VECT CLR CORY VECTOR: ITER ITERATIONS
T 1378 “yF 18 2B CLR COR10
@ 1381 g4 01 : LDAA 1
. 1383 20 07 BRA LCORO
' 386 OF ROTIS LDAA #1150 ROTATION? 15 ITERATIONS
N 1387 pB7 18 OF STAA ITER
1 138A g4 g0 ROT LDAA  $$80 ROTATION: ITER ITERATIONS
. 1386 " CE 14 DY LCORO LDX  #DLO
[ I 138F FF 18 OD STX COR19
. 1393 cCcE 18 00 LDX $CORS
o 1395 a7 oC ~ STAA $Cr X
o 13972 a4 24 LDAA $24,X
f 1399 a7 oA STAA __ $ArX
1398 &F 0B CLR $B,X
@ 1398 A5 24 LDAR  $24sX |
139F g4 25 LDAB $25,X *:
} 13A1 7BD 14 91 JSR SCALE :
@ 13A4 a7 00 STAA 0sX
]* 13R4 a4 26 __ LDAA _ $26»x
o 13A €427 T 7T LDAB T 827X
o ’ 13AA Bp 14 91 JSR SCALE |
o 1348 a7 o1 STAA 19X
’-"4 13AF —a2 00 LDAA  OrX
.q 13B1 A4 01 ANDA 1»X
i 13B3 A7 01 STAA 11X
p 13BY —2776C BEQD LCORT
® 13B2 a4 25 LDAA - $25,X
: 1389 a7 24 STAA $24,X
"J 13bA 35X
@ 13BDh a4 27 LDAA $279X
el 13BF a7 26 STAA  $24:X
I3C\ —gF 27— — 7 CLR T $27sX ~ - -
® 13C3 4F 02 LCORL CLR 29X
- 13CY  4F 03 CLR I X
? gFr o8 TCLR gyX
@ 13C9  4F 09 CLR 9»X
13CR  4F 28 CLR $28s X
13Ch ag 28 “LDAA 324X -
Q-;-- 13CF g4 EO ANDA $3E0
" 1301 2¢ o1 BGE LCOR2
o 1303 ax COMA
@ 13D4 Es 26 LCOR2 LDAB $26¢X
ol _13D4& 4 EO ANDB $3E0
T “131'!& 2C°01 BGE" "LCOR3 -
Q- 3DA s3 COMB
¢ 139! E7 29 LCOR3  STAB $295X
N 1300 501 LDAB — #1
Y 13DF €7 00 STAB  0sX
M __13E1  Ap 29 ORAA 829, X
CTTTTTTI3EY 22 08T 7 BE@ T LCOR3AT T T s e
9 13EY BD 14 BC JSR DOWN2
N 13E§ 4a 00 DEC OsX
@ A-24

(T e ORI . i ._\i‘
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METHOD OF INVARIANT FOURIER SIGNATURES

1]
(1 13EA 6F 04 LCOR3A CLR 4 X
13EC Aé OF LDAA SF o X
13EE__ A7 0S5 8TAA 5sX
13F0 CE 15 32 LDX $CTABLE
: 13F3 FF 18 06 sSTX COR13
g _13F6__FE 18 06 LCOR4 LDX  COR13 _ MAIN LOOP
13F? A6 00 LDAA OrX
13FB E& 01 LDAB 15X
% 13FD_ 08 INX
o 13FE 08 INX
13FF FF 18 06 STX COR13
z 1402 FE 18 0D . _LBX_  CORt® . o
% 1405 08 INX -
: 1406 o8 INX
1407 FF 18 0D STX COR19
X 140A CE 18 00 LDX $CORS
- 140D BD 14 AB JSR TSTCFL
g 1410 2C 03 BGE LCORS
' 1412 BD 14 A4 JSR COMNP
1415 EB 2B LCORS ADDB $2BsX
- 1417 A9 2A ADCA $2AsX
| 1419 A7 2A STAA $2AsX
q 141B E7 2B STAB $2BsX THETA DONE
R 141D Aé 26 __ _LDAA 826X
141F E6 27 LDAB~  $27,X
1421 BD 14 AB JSR TSTCFL
, 1424 2C 03 BGE LCORS
R 1426 BD 14 A4 JSR COoMP
g 1429 BD 14 DS LCOR6  JSR DOWN
Ml __142C CE 18 00 LDX $cCORS
s 142F "ER 03 " ADDB 3,X
1431 A9 02 ADCA 2,X
| 1433 A7 02 STAA 2sX
L 1435 E7 03 STAB I X X DONE
| 1437 Aé 24 LDAA $24,X
o 1439 E6 2 LDAB $25,X
T 1438 BD iﬁh JSR “TSTCFL
143 2D 03 BLT LCOR7
1440 BD 14 A4 JSR _COMP
(T 1443 BD 14 DS LCOR7™ JSR DOWN
| 1446 CE 18 00 LDX $CORS
i 1449 EB 09 ADDB 99X
1440 A9 08 T ADCATT 8eX T T .
144D A7 26 STAA $26+X
144F E? 27 STAB $27+X Y DONE
“ 1451 A4 2A LDAA $2A,X
- 1453 A7 OA STAA $A»X
. 1455  6A 05 DEC SeX
VP 1487 EE 02 TTTTTTADX T 29X T T eTTr o T
1459 FF 18 24 sTX COR1
145C FE 18 26 LDX COR3
T 14SF FF 18 08 —8TX CORIS
oy 1462 B6 18 05 LDAA COR12
wal 1465 26 BF BNE  LCOR4 o
T T 14867 CE 18 00 LDX ~ #CORS  ~— T
146A 6D 00 TST 0rX
146C 27 03 BEQ LCORS

¢
.

A-25
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METHOD OF INVARIANT FOURIER SIGNATURES
T A B TA BT —JSK~ DOWNZ
Y 1471 4D 01 LCOR®  T8T 1,X
) 1473 27 1B BEQ LCOR12
‘ 1375 A& 23 LBAA  $24,X
o 1477 A7 25 STAA  $25,X
. 1479 2A 06 BPL LCOR?
T 147B B FF T T LBAA  $$FF
C @ 147D A7 24 STAA  $24,X
P 147F 20 02 BRA LCOR10
.l 1491 &F 24 ~ LCORY  CLR  $24sX
o 1483 As6 26 LCOR10 LDAA  $26sX
¥ 1485 A7 27 STAA  $27+X
[ 1a87 2A 03 BPL LCORIT
o 1489 86 FF A LDAA  #$FF
s 148B A7 26 STAR  $24sX
2 148D 39 . RTS
o 148E 4F 26 LCOR11 CLR $26,X
he 1490 39 LCOR12 RTS
i’ b
.z _x RETURNS RESCALE FACTOR IN A
s 1491 4D SCALE  TSTA
@ 1492 27 07 BEQ LSC3
L 1494 43 COMA
1495 27 03 ‘BE@ T LBC2 |
o 1497 86 00 LSCI  LDAA %0 |
. 1499 39 RTS
. 1494 50 [5CZ  NEGB
T Y 149B C4 80 LSC3  ANDB  #380
' 1490 27 02 BEQ LSC4
3 149F 20 Fé BRA L8C1
Y 1441 86 01 LSC4  LDAA  #1
i 1443 39 RTS
‘ "
@ *
g x 'RETURNS 2‘S COMP IN AsB o
! 13A4 S0 T COMP T NEGBT T T T o T T
P 14A5 25 02 BCS LCP1
, 1447 40 NEGA
YY) RTS
o 1449 43 LCPL CaoMA
o 14AA 39 RTS
% T - o
g *
’;v' X RETURNS CONDITION CODE REGISTOR STATE
ol 14AB 6D 0OC TSTCFL TST $Cr X
'J 14AD 2E 0A BGT LT2
| 144F 4D OA TIST__ sAsX B . ;
- 1aB1  2€ 03 BGE LTt |
@ 14B3 4D OB TST $BsX
£l 14BS 39 RTS
b 14Bs 6D 0OC LT1 TST $CrX .
® 1488 39 RTS |
| 14B9 6D 26  LT2 = TST = $269X . -
1488 39 RTS i ’
o *
. x
® A-26 ,




METHOD OF INVARIANT FOURIER SIGNATURES

o
[]
( 14BC Aé6 24 DOWN2  LDAA $24,X
) 14BE E6 25 LDAB $25,X
X 14CO0 472 ASRA _
;'( 14C1 56 RORB
o 14C2 47 ASRA
L 14C3  S6 RORB
v 14C4 A7 24 STAA $24,X
e 14C6 E7 25 STAB $25¢X
¥ _14c8 A8 26 LDAA___ $26+X
Nt 14CA E6 27 LDAB $27,X
o 14CC 47 ASRA
Pl ___14cD_ 56 RORB ) B
o 14CE 47 ASRA
2 14CF_ 56 RORB
s 1400 A7 26 STAA $269X
e 14D2 E7 27 STAB $27,X
i 14D4 39 RTS
' X
@ X
. B % RETURNS AsB SCALED DOWN 2%X-(I1-2) BITS
1aD5 EE OD DOWN  LDX $0,X
@ 14D7 6E 00 JHP 0y X
;Z'I __14D9 20 2E  DLO BRA  DL8 I
14DB~ 39 RTS
® 14DC 39 RTS
‘ 14DD 39 RTS
Kl fapE 39 RTS
o 14DF 20 26 BRA nL?
o 14E1 20 22 BRA DLé
ST U 14E37 20 1E BRA ~ DLS T T T T T
'y 14E5 20 1A BRA DLA
14E7 20 16 BRA DL3
W TT14E9 20 12 BRA DL2
Q- 14EB 20 OE BRA DL1
” 14ED 20 1B BRA LY
TTTC fAEF 20 1€ T T BRA pL1L Tt T o
® 14F1 20 1E BRA pL12
14F3 20 20 BRA _ DL13
7 T 14FS 20 22 T TTTTBRATT T D14
o 14F7 20 24 BRA DL1S
X 14F9 20 26 , BRA DL16 o o
T 14FB 47 DLI  ASRA )
® 14FC  S6 RORB
_14FD 47 pL2 ASRA
T T14FE T 58 RORB
o 14FF 47 DL3 ASRA
! 1500 56 RORB
CT TTTiS0f 477 7T T DLAT ASRA ;
o 1502 56 RORB
1503 47 DLS ASRA
X 1504 56 RORB
" 1505 47 DLé ASRA
1506 S6 _RORB_ -
1507 47 DL? ASRA
@ 1508 56 RORB
P .. 4509 39 DLe __ RTS
. @
{

A-27
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P METHOD OF INVARIANT FOURIER SIGNATURES
[}
e 1504 8D 1E by BSR “SWITCH
e . 1soc 39 DL10  RTS
H 150D_ 8D_1B DL11 BSR SWITCH
B 150F 20 17 BRA DL22
e 1511 8D 17 DL12  BSR SWITCH
;:L& 1513 20 12 BRA pL21
; 1515 8D 13 DL13  BSR SWITCH -
X 1517 20 OD BRA DL20
k 1519 8D OF DL14  BSR SWITCH
SRt 1518 20 08 BRA DL1Y
o 151D 8D OB DLIS  BSR SWITCH
K 151F 2003 BRA DL18
| 1521 8D 07 pLié ~ BSR SWITCH )
® 1523 57 ASRB
| 1524 57 DL18  ASRB
B 1525 57 DLi9  ASRB
o 1526 57 DL20 ASRB
1527 57 DL21 ASRB
| 1528 57 DL22 ASRB
) 1529 39 RTS
:
g 152 16 SWITCH TAB
o 152B 24 03 BPL sW1
,»‘1 152D 86 FF __ LDAA  #SFF
g 152F ~ 39 RTS ' T T T
® 1530 4F SW1 CLRA
].-( 1531 39 RTS
g ¥
) ] 1532 CTABLE EQU x
1532 40 00 __FCB_ $40,0
1534 20 00 FCB $20,0
® 1536 12 E4 FCB $12+9E4
. 1538 09 FB FCB 9+ $FB
2 153A 05 11 FCB B, 811
® 153C 02 8B FCB 2,988
r 153E 01 46 FCB 1,946
TTT T 71540 7 00 A3 - FCB 0s$AT R T -
® 1542 00 St FCB 0s$51
1544 00 29 FCB 0r$29
. 1538 ~00 14 FCB 0,314
Q' 1548 00 0A FCB 0r$A
. 154A 00 05 FCB 0+5
LTTTTTTISACT00 03 CFCB T 0v3 T -
@ 154€ 00 O1 FCB 0s1
' 1550 00 01 FCB 0s1
d 1552 END
®|
o
.L STATEMENTS =762
~
T FREE BYTES =14485 TTTTTTTm T e
o
., ¥8_DETECTED ,
= .
@ A-28 ;,'
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METHOD OF INVARIANT FOURIER SIGNATURES
®
: 1800 ORO $1800
® 1800 TEMP1  RMB ]
! 1801 TEMP2 _ RMB 1
i‘[ 1802 TEMP3 RMB 1
® 1803 TEMP4  RMB 1
L 1804 TENP5  RMB 1 S
, 1805 TEMP4  RMB 1
o 1804 BCD1 RMB 1
V.. .1807 . BCDh2 RMB A
:s’ 1808 CTR RMB 1 -
"y 1809 CTR1 RMB 1
W 1824 o ] ORG  $1824 _
1824 COR1 RMB 1 - T T T
o 1823 COR2 RMB 1
1 1826 COR3 RMB 1
e 1827 COR4 RMB 3
@ 1824 COR9 RMP 1
&) 1828 COR10 _RMB S
1830 uIt RMB 1
® 1831 ur2 RMB 1
1832 vJ1 RMB 1
1833 vJ2 RMB 2
[ XX 1835 DTIME RMB 8
4 183D .. NSAaMP __RMB __ 1 — —
183E LOGS RMB 16
® 184€ STACKL RMB 1
- ___184F STACK2 RMB 1
‘ i 1850 PUSHST RMB 1
Q 18a1 ORG $18A1
o 18A1 - SIGNI RMB 1 o e
: 18A2 SIGNG RMP 1
o 18€EC ORG $18EC
. 18€EC I RMB 1
o 18€ED P RMB 2
o 18EF THETA  RMB 4
“ 18F3 PHI RMB 2 o S
i8FF ORG $16FF
® 18FF INT RMB 4
1903 St RMB___ 8
- 1908 52 RMB 8
o 1913 s3 RMB 8
y 1918 AVG RMB 6 L o _ L
- 8000 T MATH  EQU $8000 il
o 330F SYNDET EOU $330F
3388 MUXSEL EQU $3388
1 13764 VEETIS EQU $1374
Qo 2700 ORG $2700
| x SUBROUTINE RCORR
T B R B CORRELATION OF TWO REAL SEQUENCES ~~~— —
@ b CLEAR S1»S2,83 FLOAT PT NS.
2 ACCUMULATE IN EXTERNAL LOOPS ENTER AT RCORR1
by X X POINTS TO CURRENT SANPLE
@ * ENTER AT RCORR2 TO COMPUTE S1/(S2%S3)%%0.5
e 2700 FF 18 00 RCORRY STX  TEwP
T 2703 A8 00 ) LDAA 0%
® 2705 Eé 01 LDAB 19X
2707 BD 28 7€ JSR PUSHB2
@ A-29
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@ METHOD OF INVARIANT FOURIER SIGNATURES
e
(i 270A FE 18 00 DX TENPT
U 270D A4 02 LDAA 2sX
, 270F E& 03 LDAB 3,X
. 2711 JSR PUSHBZ
o 2714 86 01 LDAA *1
. 2716 BD 2A EB_ JSR MATH1 XCIIRYCI)
2719 TCE 19 03 LDX 51
: @ 271C BD 20 44 JSR PUSHES8
P 271F 86 06 LDAA L)
« W 2721 BD 80 00 JSR HATH “SI=SIIXTDEV(I)
® 2724 CE 19 03 LDX #s1
z 2727 BD 28 4A JSR PULLS
T 272A FE 18 00 LDX TENPT
' 272D A6 00 LDAA 0sX
272F _E4 01 LDAB 1,X
. 2731 BD 28 7€ JSR PUSHB2
o 2734 FE 18 00 LDX TEMP1
e 2737 A6 00 LDAA 0rX
g 2739 ES8 01 LbAB  1,X
o 273p BD 28 7E JSR PUSHE2
L 273E_ 86 01 LDAA $1
Qm 2740 BD 2A EB JSR MATHI XCIYRX(I)
@ 2743 CE 19 0B LDX #52
4 2746 BD 28 64 JSR PUSHE8
s 2749 84 06 R .Y S 7S 0
o 274B BD 80 00 JSR MATH S2=82+X(I)¥X(I)
; 274E_CE 19 OB LDX $52
2751 BD 28 4A JSR™ PULLS
Q- 2754 FE 18 00 LDX TEMP1
e 2757 A6 02 LDAA 2sX
p 2759 €4 03 LDAB k34
Q- 275B BD 28 7E JSR PUSHE2
27SE__FE 18 00 LDX TEMP1
2 2761 A& 02 LDAA 29X
.J 2763 E6 03 LDAB 39X
4 2765 BD 28 7E JSR PUSHB2
T 2738 88 01 LbAA T T T T T T
Q- 276A BD 2A EB- JSR MATH1 YCIYRY (D)
276D CE 19 13 LDX #53
2770 BD 28 44 JSR FUSHB8
@ 2773 86 06 LDAA $6
< 2775 BD 80 00 JSR MATH S3=Y(I)XY(I)
W 2778 CE 19 13 LDX 453 .
@ 277B BD 28 4A JSR PULLS
& 2776 39 RTS
d 277F CE 19 OB RCORRZ LDX #52
.f:l 2782 BD 28 64 JSR PUSH8S
; 2785 CE 19 13 . Lbx _ #s3
2768 BD 28 44 JSR pusHe®8 T 7
® 2788 86 01 LDAA #1
b 276D BD 2A EB JSR MATH1 82183
; 2790 CE 19 0B LDX #52
® 2793 BD 28 4A JSR PULLE
2796 FE 19 OB LDX s2 CoPY
W 2799 FF 19 1% T 7 STX T -
@ 279C FE 19 OD LDX §2+2 J‘
¢ 279F _FF 19 1S STX S3+42 y
‘ A~ 30 ;a‘-
o — - - - AT T PP PSPPI PTG s o " = MY ¢ Saaead o 1!
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METHOD OF INVARIANT FOURIER SIGNATURES
®
! 27A2 FE 19 OF LDX 52+4
e 27A5 FF 19 17 STX S3+4
27A8 FE 19 11 LDX S2+6
I-T' 27AB FF 19 19 STx 53+6
® 27AE  B6 19 1A LDha 5347 EXP
;~‘~_~ _27B1 47 . . ASFy T .
: 27B2 PB7 19 1A ST4a 8$3+7 83=INITIAL ITERATE
® 27BS 86 OA LD&g #10D
| ___.._27B7 B7 18 00 ST4e TEMP1
1 27BA” CE 19 0B RC1 LDx $53
.',= 27BD BD 28 64 JSk PUSHEE
ha 27C0 CE 19 13 LD¥ $S3
T 27€3  BD 28 64 JSE PUSHB8S8 ) o T
.‘ 27C6 864 02 LDag $2
3 27¢8 BD 80 00 JS# MATH X=82/83
. 27¢B  CE 19 13 LDx #53
® 27CE BD 28 44 JSF PUSH88
E _ 27D1 86 06 LDkg #6
" 27D3 BD 80 00 JSR MATH X=X+53
® 2706 30 TSX
27D7 _éA 07 DEC 72X X=0,5X
1 27D9 CE 19 13 LD¥ #53
" 27DC BD 28 4A JSk PULLS
b 27DF 74 18 00 DEC TEMP1
= 27€2 24 D& BNE RC1
Q- 27€4 CE 19 03 LDx #S1 SQUARE ROOT DONE
27E7 BD 28 64 JSF PUSHSS8
) 27EA CE 19 13 LDr 353
. - 27ED BD 28 44 JS¢ PUSH88
» 27F0 86 02 = LDte 2
, 7 27F2 BD 80 00 JSF T TTTUTMATH T
® 27FS CE 19 03 LD» #S1
27F8_ BD 28 4A JS¢ PULLS $1=81/(S2%S3)%%0.5
27FB Fé6 19 OA LD¢g 5147
o 27FE 2€E 43 BGT RC4
- 2800 SO NEw
- 2801 CE 19 03 LDr — gs1 T Tt T T e s
® 2804 SD RC2 TS's FLOAT TO FIX
2805 27 17 BE¢ RC3
LT T 2807 A6 00 LD¢s 0rX
® 2809 47 AShs
2804 A7 00 ST 0rX
T TTTT280C T A8 Of LDég —— 1,X
® 280E 44 ROfe
280F A7 01 STts 1¢X
of 2811 A6 02 LD¢e 29X
.‘1 2813 44 ROfe
ol 2814 A7 02 STts 2vX .
T 208146 A6 03 LDfe ~ 3,X )
® 2818 446 ROfe
2819 A7 03 STem 3rX
w7 281B SA DE"s
Q" 281C 20 Eé6 BR¢ RC2
b 261E CE 19 03 RC3  LIu #51
T VTR | CLR ' T T
® 2822 BD 28 C9 J8F PUSHA44
2825 8 DC 0020 LDs #80C




Y

- i METHUD UFr L1NVAKLIANG f UUnIER iAWl vinew
]
y — 2827 34 PSHA
Q! gazs 84 46 LDAA 2944
| 824 36 PSHA
. 2325 86 03 LDAA #$03
o 282p 36 PSHA
. _ 282E 4F CLRA
~ 282F “3& PSHA SF=45536%327468/10000
@ 2830 84 09 LDAA 49
; 2832 BD 80 00 JSR MATH SCALE FOR BCD
3 2835 CE 19 03 LDX “¥51
Y X 2838 4F CLRA
3 2839 BD 28 A3 JSR PULL4
; 283C FE 19 05 X~ 8i¥2
" 283F FF 18 02 STX TENP3
: 2842 39 RTS
. 2843 CE 27 OF RCa LDX #3270F EXP>0
o 2846 FF 18 02 STX TENP3
| 2849 39 RTS
'3
@ X SUBROUTINE PULLS
!4 * PULLS FLOATING PT N
x X POINTS TO MSB
® .J 284A 33 PULLS PULB
‘ln '284B F7 18 4E _STAB__ STACK1 L
LT 284E 33 PULB
e 284F F7 18 4F STAB STACK2
L 2852 C4 08 LDAB L)
2 2854 32 ) PULA
.':J 2855 A7 00 STAA 0sX
“ 2857 08 INX
v 2858 5A DECH
® 2859 24 F9 BNE P8
6 29352 F6 18 4F LDAB STACK2
28 37 PSHB
@ 285F F6 18 4E LDAB STACK1
; 2862 37 PSHB
LT 28833V RTS — —
® - x
. % SUBROUTINE PUSHE8
, B 3 PUSHES N FLOATING PT N ON STACK
@ * X POINTS TO MSB
a 2864 33 PUSHES PULB
. 2845 F7 18 4E — 8TAB ~  STACKI -
2848 33 PULB
.;.. 2849 F7 18 4F STAB STACK2
d [17.): B 1
® J 286E A4 07 Pes LDAA 7%
; 2870 36 Pg;g
L2870 TDEX T T I
@ 2872 SA DECB
2873 26 FY BNE Pes
‘ 1 LDAB~  STACKZ
PN 2878 37 PSHB
s 2879 Fé 18 4E Lnag‘____ STACK1
T 287€ 37 " PSH S T ot T
Y 287D 39 RTS
: ]
|
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METHOD OF INVARIANT FOURIER SIGNATURES

[ s SUBROUTINE PUSH82
T 3 PUSHES 2 BYTE NUMBER ON STACK
3 CONVERTS TO FLOAT
: X MSB IN A» LSB IN B
e 287€ F7 18 50 PUSH82 STAB  PUSHST
d _2881 33 .. PUB R
' ; 2882 F7 18 4E STAB STACK1 T :
. @' 2885 33 PULB 43
R 2886 F7 18 4F STAB __ STACK2 |
9 2889 SF CLRB |
Y 288A 37 PSHB
1. =2ees 37 _PSHB .
2g8c 37 PSHB - T
@ 288D 37 PSHB
__288E_ 37 PSHB
L 2868F 37 PSHB
) 2890 Fé 18 S0 LDAB  PUSHST
I 2893 37 PSHB
. 26894 34 PSHA
(Y 2895 86 07 LDAA  #7
; 2897 BD 80 00 JSR MATH NFPN
i 289A Fé 18 4F LDAB  STACK2
C 289D 37 PSHB
R 289E F6 18 48 LDAB  STACK1
: 28A1 37 PSHB |
R 28A2 39 RTS
» X
' % SUBROUTINE PULL4
W % PULLS 4 BYTES OFF STACK
- %= STORES MSB IN_X+A o i
28A3 33 PULLA ~ PULB
e 28A4 F7 18 4E STAB  STACK1
] 28A7__ 33 PULB
1 28A8 F7 18 4F STAB  STACK2
C 28AB 4D TSTA
e 28AC 27 06 BEQ LP42 _ L o
T 284E 08 T T LPAf T INX Tt T -
© 28AF 44 DECA
28B0 27 02  BEQ___ LP42
w T 28B2 20 FA BRA LP41
'R 28B4 32 LP42  PULA
g 28BS A7 00 STAA  0X _
TTTTUZBBY 327 T T U pwlAe T T T TS
o 2888 A7 0% STAA  1sX
' 28BA 32 PULA
2688 A7 02 STAA — 27X
® 1 28BD 32 PULA
R 28BE A7 03  STAA 33X
'STTTI8CO FS 18 4F T T LDAB T STACK2 a o
@ 28C3 37 PSHB
¢ 26C4 Fé 18 4E LDAB  STACK1
" 28C7 37 FSHE
‘mi 28c8 39 RTS
.
."h TTTT T T T T T T SUBROUTINE PUSHAA T T T T
® s PUSHES 4 BYTE NUMBER ONTO STACK
‘ s MSB IN X+A
® A-33
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METMOD OF INVARIANT FOURIER SIGNATURES

)
[ ]
( 28CY 33 PUSH44  PULY
P 28CA F7 18 4E STAB STACK1
, 28CD 33 PULB
. .
Y 28D1 4D TSTA
] 28D2 27 06 BEQ LP442
4T 28D4A T 08 T T LPA4L  INX '
e 28D 4A DECA
. 28D6 27 02 BEQ LP442
S BRA TP441
' 28DA A6 03 LP442 LDAA 3 X
28DC 36 PSHA
. 28DD A& 02 LPAA 25X
@ 28DF 34 PSHA
28E0 A4 Ot LDAA 19X
) 2862 36 PSHA
@ 28E3 A& 00 LDAA 0sX
o 28E5 36 PSHA
. 28E6 F& 18 a4F LDAB STACK2
@ 28E9 37 PSHB
;g; 2B8EA Fé 18 4E LDAB STACK1
& 28€D 37 PSHB
Y 28EE 39 RTS
: x
t & SUBROUTINE PUSH4L ——~ ——— ~—
Q- 2 PUSHES 4 BYTE NUMBER ONTO STACK /
; X 3 MS BYTES ARE SIGN BITS
Lo X ENTER WITH LS BYTE IN A REG
@ 28EF 33 PUSH41 PULB
e 28F0 F7 18 4E STAB STACK1
;= 28F3 33 PULB
e 28F4 F7 18 4F STAB . STACK2
- 28F7 36 PSHA
e 28F8 48 ASLA
o- 28F9 24 04 BCC LP411
'y 28FB 84 FF LDAA 3SFF NEGATIVE
LT TTZ8FD 20 O - "BRA ° LP4L2—— -
@ - 28FF AF LP411 CLRA POSITIVE
: 2900 36 LP412 PSHA
2901 3% PSHA
@ 2902 36 PSHA
o 2903 Fé 18 4F LDAB STACK2
. TTTTTTR908 3T - PSHB =~ =~ T T T -
XX 2907 Fé 18 4AE LDAB STACK1
- 290A 37 PSHB
1 290B 39 RTS
@ b
3 x SUBROUTINE PUSH42 ,
LT T ”‘ S PUSHES 4 BYTE NUMBER ONTO STACK ~—
o z 2 MS BYTER ARE SIGN BITS
,a. s ENTER WITH LS BYTE IN By NEXT LS BYTER IN A
f 290C F7 18 50 PUSHA2 STAB PUSHST
o 290F 33 PULB
P 2910 F7 18 4E _ __STAB  STACK1 A
LT T 291% 733 E—— T N - e -
P 2914 F7 18 #F STAB STACK2
¢ 2917 Fé 18 S0 LDAB PUSHST
@ A-34




METHOD OF INVARIANT FOURIER SIGNATURES

®
[ ]
‘ 291A 37 FPSHB
) 291 34 PSHA
N 291C 48 ASLA
§ 291D 24 04 BCC LP421
CX 291F 848 FF LDAA SSFF NEGATIVE
k 2921 2008 . BRA__ LP422 . _
o 2923 AF 7 LPa21  CLRA POSITIVE
o 2924 36 LP422 PSHA
" 2925 36 PSHA
| 29286 Fé 18 AF LDAB STACK2
o 2929 37 PSHB
A 292A Fé 18 4E LDAB  STACK1
; 292D 37 PSHB
(') 292 39 RTS
L. %
i
s x SUBROUTINE TRAPIN
® X TRAPEZOIDAL INTEGRATION
i 292F Fé 18 ED TRAPIN LDAB P
' 2932 Bé 19 02 T1 LDAA INT+3
o 2935 BB 18 2S5 ADDA COR2
s._____._2938 B7 19 02 STAA INT+3
i 293B Bé 19 01 LDAA INT+2
Qo 293E B9 18 24 ADCA COR1
o 2941 B? 19 0y = STAA  INT+2
2944 Bb 19 00 LDAA INT#1 — '
) 2947 89 00 ADCA 20
. 2949 B7 19 00 STAA INT#1
g 294C Bé 18 FF LDAA INT
o 294F 89 00 ADCA *0
W 2951 B7 18 FF _ 8TAAINT
2954 5D TSTB T T b
@ 2955 27 03 BEQ T2
2957 _SA DECB
J 2958 20 D8 BRA 71
o 295A 86 01 12 LDAA o1
"* 295C _B7 18 ED STAA. P e
TTTTT295F 39 ‘ RTS ”‘ - -
® %
% SUBROUTINE TRAPFX
: X FINAL SAMPLE: TRAP INT
® 2960 86 02 TRAPFX LDAA 2
2962 BD 29 99 USSR DELAY1 , _ o
T 2943 BD 2A A€ JSR RDDEFT
@ 2968 BD 13 76 JSR VECT1S ﬁ
' 294B 7F 18 ED CLR P
1 294 BD 29 2F JSR TRAPIN
o 2971 CE 18 FF LDX SINT
A 2974 A6 21 _____LDAA  $21»X ) i
LT 29764 TaB 03 ADDA 3sX i ) )
® 2978 A7 21 STAA $219X
l 2974 Abé 20 LDAA $20sX
ol 297C A9 02 ADCA 2¢X
0" 297E A7 20 STAA $20s X
W 2980 A6 1F  LDAA  8IFeX
- TT2982 A9 01 ADCA 19X
| ® 2984 A7 IF STAA $1F» X
: 2986 A6 1E LDAA $1EsX
o A-35




METHOD OF INVARIANT FOURIER SIGNATURES
&
1]
(2988 A9 00 ' ADCA~ 0sX
e 298A A7 1E STAA  $1E»X
! 298C A4 1D LDAA  $1D,X
. 298 89 00 ADCA  #0
o 2990 A7 1D STAA  $1D»X
‘ 2992 A6 1C LDAA  $1C»X )
T 2994 89 00 ADCA %0
@ 2996 A7 1IC STAA  $1C»X
. 2998 39 RTS
. %
o * X SUBROUTINE DELAY1
2 % 9.996MSXDTIME DELAY
A 2999 B& 18 35 DELAYL LDAA  DTIME T I
e 299C 4D D1 TSTA
‘ 299D 27 oS BEQ D2
299F 8D 04 BSR DELAY
: @ 2941 44 DECA
| % 2942 20 F8 BRA D1
T 2944 39 52 RTS
o X
‘. x SUBROUTINE DELAY
W 29A5 CE 02 CA DELAY  LDX $$2CA
o 2948 09 LDYt  DEX
;« 2949 27 02 BEQ  LDY2
' 2948 20 FB BRA () 7 S
o 29AD 39 LDY2  RTS
%
X SUBROUTINE BISECD
®- x POSITIVE BINARY IN TEMP3,TEMP4
o x RETURNS BCD IN BCD1sBCD2
29AE 7F 18 04 BISBCD CLR - BCDfL
® 2981 7F 18 07 CLR BCD2
29B4 86 10 LDAA ~  #16D
W 29B& B7 18 07 STAA CTRI
@ 29B9 BF 18 04 STS TEMPS
; 29BC BE 18 01 LDS STEMP3-1
T 29BF g8 08 T TLBIBI T LDAAT 48D
® 29C1 B7 18 08 STAA  CTR
29c4 33 PULB
LT 29€5 S8 LBIBZ  ASLEB
o 29C6 24 12 BCC LBIB3
s 29c8 86 01 LDAA  #1
. T '29CA BBI18°07 "~ TADDA BCDZ ;
® 29CD 19 DAA
. 29CE_B7 18 07 STAA  BCD2
A 2901  B& 18 06 LOAA  BCDI
o 29p4 89 00 ADCA  #0
| ol 2906 19 DAA
| T 2907 B771870&8 T T STAAT BCDY - T
s PY 29DA 7A 18 09 LBIB3 DEC CTR1
k : 290D 27 1B BEQ LBiB4
ﬁ:—’”‘—mn 6 18 07 LDAA  BCDZ
® 29€2 BB 18 07 ADDA  BCD2
s 29ES 19 DAA
T T29eé B7 18 07 T T'STAA T BCDZ2 -
o 29E9 B4 18 06 LDAA  BCD1
] N 29EC_ B9 18 06 ADCA __ BCD1
! @ A-36




METHOD OF INVARIANT FOURIER SIGNATURES ;
®
8
(1 29€EF 19 DAA
» 29F0 B7 18 06 STAR  BCD1 '
‘ 29F3 74 18 08 DEC CIR !
i 29F6 27 C7 BEQ LBIB1 j
» 29F8 20 CB BRA LBIB2 |
|_____29FA_BE 18 04 LBIB4 _LDS _ TEMPS __ e ;
: 29FD 39 RTS ;
. * %
- X SUBROUTINE TUNE %
p 29FE B6 18 30 TUNE  LDAA  UII :
» 2A01 B7 EE 21 STAA $EE21
E __2A04__Bé 18 31 LDbAA U2 o e ;
i 207 B7 EE 20 STAA $EE20 !
d - 2A0A BS 18 32 LDAA VUL ;
o 2A0D B7 EE 11 STAA SEE11 :
; 2A10 Bé 18 33 LDAA  VJ2
15 2A13 B7 EE 10 STAA $EE10
% 2a16 39 RTS
x
'} x SUBROUTINES IDEX
: 2A17 FF 18 00 IDEX STX TEMP1
i 2A1A FB 18 Ot ADDB TEMP2
D! 2a1D B9 18 00 ADCA TEMP1
. 2A20 B7 18 00 STAA TENPL
2A23 F7 18 01 STAB TENP2
] 2A24 FE 18 00 LDX TEMP1
| 2429 39 RTS I
| X
> x SUBROUTINE WRITE
g 2A2RA A6 00  WRITE LDAA = OsX
2A2C7 44 LSRA™ T T T T T T T
d 2A2D 44 LSRA
2A2E 44 LSRA -
| 2A2F 44 LSRA
p 2430 B8A 30 ORAA #$30
i 2A32 BD FD 80 JSR $FD8O
TTTTTZA3S AS 000 T T T T LDAA T O0eX T T T o
> 2A37 84 OF ANDA  #80F
2A39 8A 30 ORAA #9430
" 2A35° BD FD 80 JSR $FDB0
X 2A3E 39 RTS
: x
ST - T &% T TTTSUBROUTINE PAST T T T
> 2A3F 5D PASC TSTB
2A40 27 09 BEQ PAS
] 2A42 A6 00 LDAA  0sX
.Al 2A44 BD FD 80 JSR $FD8O
- 2A47 08 INX
: 2AAGSA T T T 7 DECBT  © - T T s
[ 2A49 20 F4 BRA PASC
: 2A4B 39 ;AB RTS
.-n X SUBROUTINE RDDEFT
o 2A4C B6 18 3D RDDEFT LDAA  NSAMP
— JA4F B7 18 08 TT8TAAT CWR T T T T - T
; 2452 CE 00 00 LDX 80
o 2A55 FF 18 24 8TX COR1
D A-37

R e e
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METHOD OF INVARIANT FOURIER SIGNATURES
o
r?;—'—m—rr—{ru ' BYX  CORY
Py 2ASB FF 18 28 8STX COR4+1
, 2ASE_ 7D 18 08 RD1 TST CTR
T 3441 27 2D BEQ RD2
o 2A63 8D 43 BSR READSN
. 2A6S CE 18 00 LDX $#$1800
T T2A48 A4 28 LDAA $269X ‘
@ 2A4A AB 01 ADDA 1,X
1 W, 2A6C A7 26 STAA $269X
c T T 2R8E AE 25 TDAA $25,X
o 2A70 A9 00 ADCA OrX
L 2072 A7 25 STAA $25+ X
— T 2A74 A& 24 LDAA $24,X
o N 2A76 A9 At ADCA $Al1,X
" 2A78 A7 24 STAA $24,X
r" 2A7A A& 29 LDAA $29,X
e 2A7C AB 03 ADDA 3sX
'.,l 2A7E A7 29 STAA $299X
.""‘ 2A80 A& 28 LDAA $28,X
e 2AB2 A% 02 ADCA 29X 1
.. ___2AB4 A7 28 STAA $28s X
2A86 A6 27 LDAA $27+X
.[ 2A88 A9 A2 ADCA $A2,X
L 2A8A A7 27 STAA $27+X
. 2ABC  6A 09 TDEC T 8sX
Py 2A8E 20 CE BRA RD1 !
2A90 Aé 3E RD2 LDAA $3E,X
j’ 2A92 A7 08 STAA 8sX
e 2A%4 64D 08 RD3 TST 8¢ X
r 2A96 27 23 BEQ  RD4
L——""2A98 A& 24 LOAA — “$24,X
'Y 2A9A 47 ASRA
249B A7 24 STAA $24,X
!J‘" 2A9D A6 25 LDAA $257 X
P 2A9F 46 RORA
| 2AA0 A7 25 STAA  $25,X
i =~ T 23AAZ A& 28 TTLDAA T 824, X - -
o 2AA4 46 RORA
: 2AAS A7 26 STAA $269X
LT T 2AA7  AG 27 LDAA $277X
o 2AA9 47 ASRA
» 2ARA A7 27 STAA $27,X
.—  TZ2AAC A& 28 TLDAA T 828,X T T T T e s o
2AAE 46 RORA
".‘, 2AAF A7 28 STAA $28s X
li— — 2aB1 A& 29 LDAA $39,X
'.' 2AB3 44 RORA
J 2ABA A7 29 STAA $29,X
. 2488 7A 1808 <~ DEC T TCTR T T T
.‘.‘ 2AB? 20 D9 BRA RD3
. 2ABB FE 18 25 RD4 LDX COR2
M 2ABE FF 18 24 5TX COR1
e 2AC1 FE 18 28 LDX CORA+1
5 __2AC4 FF 18 26 8STX COR3
-7 vy B | ~ 3 - -
e X
' x SUBROUTINE READSN
| N
@
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METHOD OF INVARIANT FOURIER SIGNATURES

T ———

-__—_—;‘-_——“

“Me
-

>

< -~

~

s & r

2

LT e
=3

33

2AC8 84 03 READSN LDAA #3
2ACA B7 33 BS STAA MUXSEL
2aCD  CE 18 00 LDX #TEMP1 _
2AD0 BD 33 OF JSR SYNDET
2AD3 7D 18 00 TST TEMP1
! __2AD6 8D OC _ BSR _ SGNSET___
; 2AD8 B7 18 Al STAA SIGNI
‘ 2ADB 7D 18 02 TST TEMP3
________2ADE__8D 04 BSR SGNSET
2AE0 B7 18 A2 STAA SIGNG
2AE3 39 RTS
x
2AE4 2A 03 SGNSET BPL ~ SETPOS T T
2AES 86 FF LDAA #SFF
 2AEB8 39 RTS
2AE9 4F SETPOS CLRA
2AEA 39 RTS
X
2AEP 33 MATH1I  PULB
2AEC F7 18 4E STAB STACK1
2AEF 33 PULB
2AF0 F7 18 4F STAB STACK2
24AF3 30 TSX
2AF4_ E6 OF __LDAB  15DsX )
T 2AF4 C1 80 CMPB #$80 )
2AF8 27 05 BEG M1t
2AFA BD 80 00 JSR MATH
2AFD. 20 06 BRA Mi3
24FF 86 08 M1l LDAA 48
| _ 2BO1 33 M2  PULB
T 2BO2  4A T DECA T T -
2B03 248 FC BNE M12
2BOS Fé 18 4F M13 LDAB STACK2
i 2B08 37 PSHB .
| 2B09 Fé 18 4E LDAB STACK1
2BOC 37 _ _PSHB N
TTTTTO2BOD 39 T T RTS o T T T
x
____ 2BOE BD FD A6 PRINT __ JSR _$FDAS
{7777 2B11 "CE 18 EC LDX )
, 2B14 Cé 01} LDAB 1
_ 2B16 BDFD 74 JSR _ SFD7?4 =
T 2B19 86 20 LDAA $8$20
2B1B BD FD 80 JSR $FDBO
2B1E CE 18 30 LDX #UIL «
2821 BD 2A 2A JSR WRITE
2B24 CE 18 31 LDX *UI2
] 2B27 BD 2A 2A JSR  WRITE ) o L
T T 2B2A 86 200 7T LDAA T 820 -
2B2C BD FD 80 JSR $FD8O
2B2F CE 18 32 LDX  #VJ1
, 2B32 BD 2A ZA JSR WRITE
| 2B3S CE 18 33 LDX MVJ2
s 2838 BD 224 JSR  WRITE
2B3B 86 20 LDAA 4820
2B3D BD FD 80 JSR $FDBO
_ _2B40 CE 18 EF LDX STHETA




METHOD OF INVARIANT FOURIER SIGNATURES
[ )
(G 2B43 C& 07 LDAB 2
o 2BAS BD FD 74 JSR SFD74
) 2B48 86 20 LDAA 820
. 2B4A BD FD 80 JSR $FD80
o 2BAD CE 18 F3 LDX #PHI
o  2BSO C6 02 LDAB 92
. 2BS2 BD FD 7a JSR $FD74
- @ 2B55 39 RTS
) 2B56 END
"o}
°
|
o
| STATEMENTS =437
' b
,-- FREE BYTES =17972
@  NO ERRORS DETECTED
H ’
.|,
,.'! - T T T T - - - T -
.Il. 1
e
0,’:
@
i
o L
o
. @
o
e
O,;i
" S e
[
o




APPENDIX B - Method of Invariant Moments Assembly
Code Listing

This Appendix consists of a listing of the assembly
language program which computes invariant Fourier signatures.
This program was written to run on the Deft Laboratories’
microprocessor-based test bed. All addresses and opcodes are
hexadecimal. 1In the operand column of the statements the

following symbols are used:

$ Hexadecimal Prefix

% Binary Prefix

B Hexadecimal Postfix

D Decimal Postfix

B Binary Postfix

# Denotes Immediate Addressing Mode

The entry address for this program is $2000.

f . e e e




A METHOD OF INVARIANT ACHENTS
)
[ ]
(: 1802 ORG $1802
o 1802 TEMP3 RMB 1
) 1803 TEMPA ___RMB 3
- 1806 BCD1 RMB 1
e 1807 BCD2 RMB 1
[-____ 1828 ] ORG _ $182A
i 182A COR9 RMB 1
¥y X 182B : COR10 RMB S
) A 1830 uIi RMB 1
- H 1831 uIz RMB 1
@ 1832 vJi RMB 1
vl 1833 w2 RMB 2 o o
‘, - 1835 DTIME RMB 1
N X 1836 1 RMB 1
1837 J RMB 1
i 1838 K RMB 1
. @ 1839 XST RMB 2
i _183B WJ1  RMB 1
183C w2 RMB 1
o 183D NSAMP  RMB 1
. 183E _LOGS __RMB 1
i 183F DX RMB 2
e 1841 DY RMB 2
M _ 1843  DDY  RMB 2 B e
. 1845 PO RMB 2
o 1847 PX RMB 2
1849 PY RMB 2
;»F 1848 SIGN RMB 3
o - 184E STACK1 RMB 1
o 184F ~ STACK2 RMB 1
BT 1.1 7T PUSHST RMB Y T T T - - -
® 1851 LIMIT RMB 1
, 18E0 ORG $18E0
W 18E0 IPX RMB 2
U 18E2 IPY RMB 2
o 18E4 X RMB 8
TTUTT1getT T T YT RMB T8 T T - -
® 1BSO ORG $1B50
1B50 MO0 RMB $200
LTI 80000 T MATH O EQU T 748000
® 29EC MATHYI  EQU $29EC
o 2AF0 - BISBCD EQU $2AFO
T 3800 T 7 FLSBCD EQU T $2800 T T
® 281F FL2 EQU $281F
: 2961 SAMP EQU $2941
W 2974 SAMPLE EQU $7978
o 2A0F FZERO EQU $2A0F
- 29D7 INCX EQu $29D7
CTBgYsT T T T OACCUN EQUTTT e2872 0 T T T T T
® 2BSA PUSH88 EQU $2BSA
2B40 PULLS EQU $2B40
3A2A TTTUUT SOROOT T EQU $2AZA
® 2C17 PASC EQU $2C17
xco: WRITE EQU  $2C02 .
02 cot €aQu s2cc2 O 7T T T
P ny 2 c23 Eau $2D12
e cas EQu 82062
o




METHOD OF INVARIANT MOMENTS

[ ]
fﬁ 2062 Cé7 [ {e]1] $2D52
J 2000 ORG $2000
: 2000 BD FD A6 CALIB  JSR $FDAS
. 2003 CE 24 97 LDX SLINEL
s 20068 Cé6 24 LDAB #34D
J 2008 BD 2C 17 JSR PASC
: 200B BD FD 34 CBi1 JSR $FD36 INCH
A 200E 81 43 CMPA 0843
. 2010 26 F9 BNE CB1
¥ 2012 FE 25 77 LDX XZERD HEA yPX
g 2015 FF 18 30 STX uIl
¥ 2018 FE 25 79 LDX YZERO
. 2018 FF 18 32 TOTeIX T by T T T T ot T T T
N 201E 84 80 LDAA #$80
Ly 2020 B7 18 3D STAA NSAMP
wr 2023 86 07 LDAA 7
% 2025 B7 18 3E STAA LOGS
ol 2028 86 02 LDAA 2
G 202A B7 18 35 STAA DTINE
202D BD 29 61 JSR SAMP
- 2030 B7 18 45 STAA PO
L 2033 F7 18 44 STAB  FO+1
g! 2036 CE 99 93 LDX 289993
P 2039 FF 18 3F _ SYX DX . . ~
- 203C  CE 00 07 T LbpxX 7 - ‘ T T T ‘
- 203F FF 18 41 STX DY !
i 2042 BD 29 D7 JSR INCX :
o 2045 BD 29 41 JSR SAMP
N 2049 FO 18 46 SUBB PO+1
A 204Bp_B2 18 45 =~ SBCA PO e
204E B7 18 47 STAA PX
, 2051 F7 18 A8 STAB: PX+1
" 2054 FE 2S5 77 LDX XZERO
1 2057 FF 18 30 5TX T} §1
: 205A BD 24 48 JSR INCY
4 205D BD 29 61 JSR SAMP
2040 FO0 18 34~ T SUBB ~ PO¥L T -
2063 B2 18 45 SBCA PO
2066 B? 18 49 STAA PY
2069 F7 18 4A STAB PY+1
. 2064C BD FD A6 FEAT#2 JSR $FDAS ENTER TO SKIP CALIBRATIO!
i 204F CE 24 BB LDX SLINE2
LT TT2072 €628 T T T LbDAB T #3800 0 T T T T . B
2074 BD 2C 17 JSR PASC
2077 BD FD Aé JSR - $FDA4
“ 207A BD FD Aé FEIL JSR $FDAS
“ 207D CE 24 E1 LDX SLINE3
R 2080 Cé6 1% LDAB #21D
| - "2082 BD 2C 17 JSR =~ PASC T T o T et
2083 BD FD 36 JSR $FD36
, 2088 84 OF ANDA #90F
. 208A B7 18 3E STAA LOGS ‘
s 208D Cé 01 LDAB 'Y
el 208F 4A  FE2 DECA
T 2090 2003 T T U BLY FE3 =~ ~ o T -
2092 S8 ASLB
2093 20 FA BRA FE2
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METHOD OF INVARIANT MOMENTS
[ ]
[ ]
(T 2095 F7 18 3D FE3 STAB NSaMP
@' 2098 BD FD A& JSR $FDAS
209B _CE 25 71 LDX SLINE11
. 209E Cé 06 LDAB 86
@ 20A0 BD 2C 17 JSR PASC
. 203 BD FD 36  JSR _ §FD36 __ ——
| 20A4 84 OF ANDA #$0F
| @ 2048 B7 18 51 STAA LIMIT
¥ 20AB BD FD A4 FE3A JSR SFDAS
o 20AE CE 24 Fé LDX SLINES
'y 20B1 C6 21 LDAB__ #33D
. 2083 BD 2C 17 JSR PASC o -
T 20B6 BD FD 36 FEA4 JSR $FD36
: 20B9 81 4D CMPA $84D
r 20BB 26 F9 BNE FE4
Y 20BD FE 25 79 LDX YZERO
20C0 FF 18 32 STX vJ1
| 20C3 FF 18 3B STX VITN}
@ 20Cé6 CE 99 93 LDX 299993
: 20C9 FF 18 3F STX DX
i 20CC FF 18 43 STX DDY
e 20CF CE 00 07 LDX 887
iz~| 2002 FF 18 41 __8TX 1 4 B
I. 2005 86 02 LDAA T #2 !
'Y 20D7 B7 18 35 STAA DTIME
& 20DA CE 00 00 LDX 80
e 200D FF 18 E2 STX iPY
Y 20E0 CE 1B S0 LDX #$M00
| 20E3 86 40 LDAA 864
; 20ES BD 2A OF FES JSR FZERO INITIALIZE M(P»Q)
@ 20E8 4A DECA .
i 20E9 26 FA BNE FES
o 20EB 7F 18 37 CLR J
®: 20EE B6 18 37 FEé LDAA J WY LOOP
' ____20Fy 27 04 _BEQ  FE7
20F3 "84 03 ANDA 3
® 20FS 27 4F BEQ FE13A
: 20F7 FE 25 77 FE? LDX XZERO INITIALIZE WX LOOP l
o 20FA FF 18 30 STX urt
@ 20FD CE 00 00 LDX 40
2100 FF 18 EO  STX  IPX -
. 2103 7F 18 34 CLR 1
X X 2106 B6 18 36 FE8 LDAA 1 WX LOOP :
2109 27 07 BEQ FE9 1
;w 210B 84 03 ANDA 3
o 210D 27 39 BEQ FE13B
-8
! F10F 44 TTULSRATT T - T T
® 2110 25 OD BCS FE10
2112 BD 29 76 FE9 JSR SAMPLE XX8P EVEN
ol 2115 Bé6 18 37 LDAA J
‘f" 2118 27 12 BEQ FE11
e 211A 44 = LSRA_ = o - N
: 2118 25 31 BCS FE14
Q' 211D 20 OD BRA FE11
3 R 211F BD 29 76 FE10 JSR SAMPLE XX2P ODD
@




METHOD OF INVARIANT MOMENTS
2122 B8 19 37 7Y
2125 27 43 BEQ FE17
2127 44 LSRA
2128 25 SD BCS FEZ20
212A 20 3E BRA FE17
212C CE 1B SO FE11 LDX #M00 XX%P EVEN» Y&%Q EVEN
TTT  212F 7F 18 38 CLR K -
2132 B6 18 38 FE12 LDAA K
2135 SF CLRB
I 7134 84 09 ANTA ¥
. 2138 26 01 BNE FE13
| 2134 5C INCB
T 72137 4F T T U FE13 CLRA ~ ~~ T T o ST -
213C BD 28 72 JSR ACCUM
' __213F _8C 1D 50 CPX $M00+512D
‘ 2142 26 EE BNE FE12
2144 20 SC BRA FE23
| 2146 20 6A FE13A  BRA FE24
; 2148 20 S8 FE13B BRA FE23
214A 20 A2 FE13C BRA FE6 ;
214C_ 20 BS FE13D BRA FES
i 214E CE 1B 50 FE14 LDX #$H00 XXXP EVEN, YX%Q ODD i
‘ 2151 7F 18 38 CLR K
2154 B6 18 38 FE1S LDAA K
TTTUTTEIS? B84 09 T T ANDA 49 I
2159 SF CLRB
2154 4A DECA
" T215B 26 01 "BNE FETS
. 215D SC INCB
i 21SE 86 01 FE16 LDAA (3
TTT 72160 BD 2872 7 T JSR T T ACCuT T T T -
2163 8C 1D S0 cPX #M00+512D
- 2166 26 EC BNE  FE1S
T 77T 2148 20 38 " BRA FE23
‘ 216A CE 1B SO FE17 LDX #1100 X$%P ODD» YS3Q EVEN
' 216D 7F 18 38 CLR K
TTTT 7370 B4 18 38 FE{d  TLDAA T K T T T "
2173 84 09 ANDA *9
2175 SF CLRB
TTTTTT 2176 81 087 TCHPAT T ¥8
2178 26 o1 BNE FE19
2174 SC INCB
2178 84 02 ~— T FEI¥ T LDAA #2 T T T oo
217D BD 28 72 JSR ACCUM
2180 8C 1D S0 cPX $M00+512D
AT 72183 26 EP BNE FEL8
2185 20 1B BRA FE23
. 2187 CE 1B S0 FE20 LDX  #MOO X%%P ODD» YX%Q ODD
T 2184 7F 18 38 CLR K ~—TT— T T
218D Bé6 18 38 FE21 LDAA K
2190 84 09 ANDA 89
2192 SF CLRB
2193 81 09 CHPA *9
9. 2195 260 BNE = FE22 = -
] 2197 SC INCB T T -
2198 86 03 FE22 LDAA +3
2194 BD 28 72 JSR ACCUM
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METHOD OF INVARI

ANT MOMENTS

[ 219D 8C 1D S50 cPX #M00+512D
' 21A0 26 EB BNE FE21
, 1A2 7C 18 FE23 INC ¢
. 21AS BD 24 7% JSR INCXP
s 21A8 BD 29 D7 JSR INCX
f ____21AB_B& 18 36 = LbAA __ 1 S e
; 21AE 81 28 CMPA $40D
i 21B0 26 %A BNE FE13D
3 21B2 7C 18 37 FE24 INC J
{ 21BS BD 24 84 JSR INCYP
N 21B8 BD 24 48 JSR INCY
h 21BB Bé6 18 37 LDAA  J
, 21BE 81 28 CMPA #40D -
1o 21C0 26 88 BNE FE13C
o 21C2 CE 1B 58 LDX $M00+8 NORMALIZE MOMENTS
o 21CS FF 18 39 STX XST
Ve 21C8 FE 18 39 FE2S LDX XST
e 2i1CB BD 2B 5A JSR PUSHBS
o 21CE CE 1B S0 LDX #M00
)L 2101 BD 2B SA JSR PUSHES
t 21DA 86 02 LDAA #2
S 21Dé BD 80 00 JSR MATH M(P,Q)/M(0+0)
)i 21D9 FE 18 39 LDX XST
2| 21pC__BD 2B 40 JSR PULLS -
. 21DF FF 18 39 STX XST
. 21E2 8C 1D 50 cPX #M004512D
: 21ES 26 E1L BNE FE2S
i 21E7 CE 1B 40 LDX #M00+14D M(0,2)
Xy 21EA BD 2B SA JSR PUSHES
W 21ED CE 1B DO LDX ~ #M00+128D M(2,0)
b 21F0 BD 2B SA JSR PUSHES
v 21F3 86 06 LDAA 6
21FS BD 80 00 JSR MATH
o 21F8 CE 1B 58 LDX #MO0¥8 HICTE R
b 21FB BD 2P SA JSR PUSHSS
o 21FE CE 1B S8 LDX *$M00+8
2201 8D 2B SA T T JUSR PUSHES = - - T
' 2204 86 01 LDAA 1
o 2206 BD 29 EC JSR MATH1
‘| —2209 86 05 LDAA 5
)i 220B BD 80 00 JSR MATH
z 220E CE 1B 90 LDX #M00+44D M(1,0)
2211 BD 20°5A ~  JUSR  PUSHBES : T
p o 2214 CE 1B 90 LDX #$M00+464D
ff 2217 BD 2B SA JSR PUSHES
, 221A 84 01 LDAA ¥l
.3 221C BD 29 EC JSR MATH1
. 221F 86 0S LDAA S
“ 2221 BD 80 00 "JSR MATH — —
) 2224 CE 1B S50 LDX #M00
s 2227 BD 2B S5A JSR PUSHES
2 2227A 088 07 LDAA 2
i { 222C BD 80 00 JSR MATH
222F CE 18 EA LDX X
e 39475 BD 2B 40 T JSR T PULL8 T X MOMENT INVARIANT 7
e 2235 CE 1B 98 LDX #M00472D M(Lr1)
¢ 2238 BD 2B S5A JSR PUSHES
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METHOD OF INVARIANT MOMENTS
[ ]
(2235 CE 1P %8 LOX —  SHOO+B LOTEY
223E BD 2B SA JSR PUSHSS
E 2241 CE 1B 90 LDX #M00+64D M(1+0)
2 2244 BD 2P SA JSR PUSHES
- 2247 86 01 LDAA *1
g 2249 BD 29 EC JSR MATHL
T 224C 786 05T LDAA s
224E BD 80 00 JSR MATH
. 2251 CE 18 EC LDX Y
. 2254 BD 2B 40 JSR PULLS -
2257 CE 18 EC LDX $Y
. 225A BD 2BSA __JSR  PUSH88 e .
225D " CE 18 EC LDX Y T T
2260 BD 2B S5A JSR PUSHSS
' 22643 86 01 LDAA #1
{~ 2265 BD 29 EC JSR HATHI
2268 30 T8X
X 2269 4C 07 INC 79X
- 2248 6C 07 INC 7rX
224D CE 1B 58 LDX #$H00+8 K(Ov1)
: 2270 BD 2B S5A JSR PUSHS8
' 2273 CE 1B 58 LDX ¥M00+8
., 2276 BD 2B SA JSR PUSHES
W 2279 8601 LDAA  #1
2278~ BD 29 EC JSR ~°  MATH1 T -
227E CE 1B 90 LDX $M00+64D M(1,0)
~ 2281 BD 2B SA JSR PUSHES
j 2284 CE 1B 90 LDX #$M00+44D -
, 2287 BD 2B S5A JSR PUSHSS
o  228a 86 01 _ LpAA #t N
228C "BD 29 EC JSR MATHI - -
228F 86 05 LDAA = o5
2291 BD 80 00 JSR MATH
. 2294 CE 1B DO LDX #M00+126D MN(270)
" 2297 BD 2B S5A JSR PUSHES
) 2294 86 06 LDAA #6
= " BagC B BO 00 T T T JSR T MATH T T T e
229F CE 1B 60 LDX $M00+16D M¢0»2)
2242 BD 2B SA JSR PUSHE8
T 22A5 64 0% LDAA ' 1+
2247 BD 80 00 JSR MATH
o 22AA CE 18 EC LDX »Y
' 224D BD 2B 40 " JSR — PULLE T s e e
22B0 CE 18 EC LDX oY
2283 BD 2B SA JSR PUSHB88
“ 2586 CE 18 EC LDX 14
¥ 22B9 BD 2B SA JSR PUSHS8
P 22BC 86 01 LDAA #1
- 22BE BD 29 EC USSR MATHI O T T T T o
22C1 86 06 LDAA 86
22€3 BD 80 00 JSR MATH Y&%2
T 22€& Bb 7A ZA —JSR  SOROOT
. 22C9 CE 1B 50 LDX #M00
” 22CC BD 2B SA JSR PUSHES
—  22CF B& 02 T """ LDAATT #2 T T sty
2201 BD 80 00 JSR MATH
2204 CE 18 EC LDX oY




METHOD OF INVARIANT MOMENTS ‘

@
[ ]
- 2207 BD 2B 40 JSR FULLS Y MONENT INVARIANT |
e 22pA CE 1B S0 LDX $M00 !
) 22DD 86 40 LDAA #8340
. 22DF A7 00 STAA 0sX
o 2261 &F 01 CLR 1eX !
. 2263 4F 02 __CLR  2eX i
: 22E5 4F 03 CLR 3sX !
B 22E7 &F 04 CLR 49X |
’ 22E9 &F 03 CLR Sy X
' 22EB  &F 06 CLR &9 X
o 22ED 86 01 LDAA #1
' 22eF A7 07 STAA  7:X
¥ 22F1 BD FD Aé JSR $FDAG |
Q- 22F4 CE 25 17 LDX SLINES PRINT MOMENTS i
s 22F7 C6 06 LDAB 06
g 22F9 BD 2C 17 JSR PASC :
Q' 22FC BD FD A6 JSR $FDAS i
o 22FF _CE 25 1D LDX SLINES
* 2302 C& 3€ LDAB $42D
o 2304 BD 2C 17 JSR PASC
[ 2307 7F 18 36 CLR I
b 230A CE 1B %0 LDX #M00
@ 230D FF 18 39 8TX XST
2310 BD FD A6 FE26  JSR __ $FDA& e
> 2313 Bé 18 34 LDAA 1
T 2316 BA 30 ORAA  $$30 !
2318 BD FD 80 JSR $FD8O
o 231 7F 18 37 CLR J
' Y 231€E Bé 18 37 FE2? LDAA J
e 2321 B1 18 S1 CMPA LIMIT
3 2324 2A 25 BPL FE28
' 2326 CE 25 1D LDX SLINES
s 2329 Cé 02 LDAB 02
g 2328 BD 2C 17 JSR PASC
Qi 232E FE 18 39 LDX XST
R 2331 BD 2800  JSR _ FLeBCD
T 77 2334 Bé 18 4B LDAA SIGN
o 2337 BD FD 80 JSR $FD8O
. 233A_86 2E  _ LDAA_ _ #92E
- 233C° BD FD 80 JSR $FD8O
'Y 233F CE 18 06 LDX #BCD1
» 2342 BD2€02 __ JSR _ WRITE
. 2345 'CE 18 07 LDX #BCD2
@ 2348 BD 2C 02 JSR WRITE
E 234B FE 18 39 FE28  LDX XST
/ 234E 08 INX
.!] 234F 08 INX
f 2350 08 I -
23817 08 INX
Q. 2352 08 INX
" 2353 08 INX
Eg 2354 08 INX
® | 2355 08 INX
- 2356 FF 1839  _ STX  XST _
> 2359 7€ 18 37 INC J
o 235C Bé 18 37 LDAA J
C 235F 81 08 CMPA L)
|
® B-8 A

[ 4
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METHOD OF INVARIANT MOMENTS
. 2381 25 BB "BNE FE27
2363 7C 18 36 INC
o 2366 B4 18 36 LDAA I
I 3369 B1 18 ST CHPA  LINIT
234C 2B A2 BMI FE26
'| _ 234E BD FD A6 JSR $FDAS
{7777 2371 BD FD AéT JSR $FDAS
j 2374 CE 25 SB LDX SLINE?
: 2377 C6 0 LDAB $3
I 2379 FU‘ZC“TT“‘““‘“““USR PASC
! 237C CE 18 E4 LDX X
! 237F BD 28 1F JSR FL2
| T 72382 B6IEABT T TLDAAT T SIGN T T T
2385 BD FD 80 JSR $FD8O
¥ 2388 86 2E LDAA #$2E
p(' 238A BD FD 80 JSR $FDB0
. 238D CE 18 04 LDX $BCD1
R 2390 BD 2C 02 JSR WRITE
; 2393 CE 18 07 CoX #BCDHZ
_ 2396 BD 2C 02 JSR WRITE
. 2399 CE 25 SE LDX $LINES
y  239C €& 04 LDAB 4
: 239E BD 2C 17 JSR PASC
ri__”_”ﬁzsn;”m7nwga“§§ . T8ST X+7
s 23A4 T2A 117 T T TTTBPL T T FE30 -
23A6 4F CLRA
. 23A7 SF CLRB
l 238 FO I8 EB SUPB X7
i 23AB 82 FF SBCA $$FF
i 23AD B7 18 02 STAA TEMP3
T 7 23BO0° F7 1803 T 8TAB  TEMPA T
23p3 86 2D LDAA #32D
2385 20 0B BRA FE31
23B7 B4 18 EB FE30 LDAA X¥7
23BA B7 18 03 STAA TEMPA
23BN 7F 18 02 CLR TEMP3
T23C0 T84 2B T T LDAATT #8280 T T
23C2 BD FD 80 FE31 JSR $FD8O
23CS BD 2A FO JSR BISBCD
23C8 CE 18 07 LDX “#BCD2
23CB BD 2C 02 JSR WRITE
o 23CE CE 25 62 LDX SLINE?
T 231 C4 08 LDAB™ ¢S
23D3 BD 2C 17 JSR PASC
23p6 CE 18 EC LDX Y
- 2309 BD 28 IF JSR FL2
x 23DC B6 18 4B LDAA SIGN
“ 23DF _ BD FOD 80 JSR _ SFDBO _
3 232 @84 26 LDAA $826 T TTTTT
23E4 BD FD 80 JSR $FD8O
_ 23E7 CE 18 06 LDX $BCD1
3 23EA BD 2C 02 JSR WRITE
' 23ED CE 18 07 LDX #BCD2
o 23F0 BD 2C 02 JSR  WRITE
23F3 CE 25 SE LDX SLINER ™ T 7
23F6 C6 04 LDAB 84
__ 23F8_BD 2C 17 JSR PASC
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METHOD OF INVARIANT MOMENTS

o
[ ]
' 23FB 7D 18 F3 TST Y+7
o 23FE 2A 11 BPL FE34
: 2400 4F CLRA
) 2401 SF CLRB
e 2402 FO 18 F3 SUBB Y+7
. 2405 B2 FF _GBCA _ 88FF _
: 2407 B7 18 02 STAA TEMP3
X X 240A F7 18 03 STAB TEMP4
A ) 240D 86 2D LDAA #$2D
: o 240F 20 OB BRA FE3S
. 14 2411 B6 18 F3 FE34 LDAA Y47
- 2414 B? 18 03 STAA TEMP4
B 2417 7F 18 02 CLR TEMP3
o 241A 86 2B LDAA $#32B
s 241C BD FD 80 FE35 . JUSR $FDBO
" 241F BD 2A FO — JSR BISBCD
Q' 2422 CE 18 07 LDX #BCD2
0 2425 BD 2C 02 JSR WRITE
. 2428 BD FD A6 JSR $FDAS
@ 242B BD FD Aé JSR $FDAS
;1.1 242E 84 07 LDAA 307
a 2430 BD FD 80 JSR $FD80
® - 2433 CE 25 67 LDX SLINE1O
pe 2436 Cé6 OA LDAB $10D )
i 2438 BD 2C 17 JSR PASC
Q- ~ 243B BD FD 34 JSR $FD36
. 243E 81 59 CHPA #8359 !
8 2440 26 03 BNE FE34
@ 2442 7E 20 AB JMP FE3A
N 2445 7E FE 2D FE36 JHP $FE2D FANTOM
' ‘
.r‘ P .
2448 Bé 18 33 INCY LDAA vJ2
’ 244F BB 18 42 ADDA DY+1
'Y 244E 19 DAA
s 244F B7 18 33  STAA  VJ2
| 2A5Z B8 1§ 32 LOAA™ ™ VJI
e 2455 B9 18 41 ADCA DY
2458 19 DAA
X F—TSF §7‘T§ 32 STAA ~ VJ1
" 245C 18 3C LDAA wJ2
T 245F aa 18 44 ADDA  DDY+1
: 2342 19 T DAA -
@ 2443 B? 18 3C STAA  WWJ2
L. 2446 B4 18 3B LDAA VAT
o 2469 B9 18 43 ADCA DDY
' Y 246C 19 DAA
- 244D B7? 18 3B _ STAA Wit _
2470 39 RTS
o '
4 2471 B4 I8 EO INCXP LDAA IPX
B e 2474 F6 18 EA LDAB IPX+1
L 2477 FB 18 48  ADDB_ PX#t L
;, b 247A B9 10 47 ADCA PX '
e 247D B7 18 EO STAA IPX
| d 2480 F7 18 E1 STAB IPX+1
| i ® B-10
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METHOD OF INVARIANT MOMENTS

T 2483 39 T RTS
2
2484 Bé& 18 E2 INCYP LDAA IPY
2487 F6 18 E3 LDAB IPY+1
_248A FB 18 4A _ ADDB PY+1 _
248D 'BY 18 49 ADCA  PY
2490 B? 18 E2 STAA IPY
2493 F?7 18 E3 STAB IPY+1
2496 39 RTS
X
*_____.__.__ ——— .
2497 LINET ~ EQU $
2497 SO 4F 53 Fce ‘POSITION UNIFORM IMAGE.’
24AE 20 54 48 FCC * THEN TYPE C
24BB LINE2 EQU x
24BB 43 4F 4D Fcc ‘COMPUTES M(P»sQ) MOMENTS’
24D2 20 46 S2 Fcc * FROM_TRANSFORM'
24E1 LINEZ EQU T
24E1 53 41 4D FCC ‘SAMPLE AVERAGE 18 2%X’
24F6 LINE4A EQU L] ‘
24F6 SO 4F 53 FCC ‘POSITION TEST IMAGE.’
2504 20 54 48 FCC * THEN TYPE M /
2517 LINES  EOU X
2517 4D 28 S0 FCC HP, 7
251D LINES EQU
251D 20 20 20 Fce ’ ) 1 2’
2533 20 20 20 FCC 4 3 3 5 & 77
255B LINE? EQU x
___ 255B_58 3D 20 _____Fce Xa
235€ LINES™ EQU 3
255E 20 32 2A FCC . 2%%°
2562 LINE? EQU x
' 2562 20 20 59 FCC T Y= 7
2567 LINE10 EQU x
2567 43 4F 4E FCC ‘CONTINUE? ’
- 2571“““‘“”‘““*LINE{I‘“EGU“'”'i"“” ‘ )
2571 4C 49 4D FCC ‘LIMIT=’
2577 XZERO  EQU 2
2577 38 57 FCP $38, 457
2579 YZERO EQU %
2579 34 98 FCB $34,498
- 2575 END T - T
STATEMENTS =557
- FREE BYTES =1870%5
_ NO ERRORS DETECTED S o
— "B.L.E_._“
: B-11

-~ et e T o e R R
.
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METHOD OF INVARIANT MOMENTS

L
[ ]
( r 1800 ' ORG $1800
@, 1800 TEMPL RMB 1
) 1801 TEMP2  RMB 1
‘ 1802 TEMP3  RMB 1
& 1803 TEMPA RMB 1
. 1804 __TEMPS RMB 1 )
s 1805 TEMPé  RMB 1
& 1 1806 BCD1 RMB 1
: . 1807 BCD2 RMB 1
.| 1808 CTR RMB 1
U Y& 1809 CTR1 RMB 1
& 1824 ORG %1824
1824 COR1 RMB i
® 1825 COR2 RMB 1
. 1824 COR3 RMB 1
o 1827 COR4 RMB 3
N 182A COR® RMB 1
. 1828 COR10 RMB 5
N 1830 uri RMB 1
o 1831 uI2 RMB 1
1832 VvJ1 RMB 1
! i 1833 vJ2 RMB 2
o 1835 : DTIME RMB 1
|L~l 1834 I RMB 1 B .
ol 1837 J RMB 1
o 1838 K RMB 1 !
i 1839 XST RMB 2 1
,n[ 183B VVJ1 RMB 1
o :‘ 183C vwu2 RMB 1
; 183D NSAMP___RMB 1 =
R 183E LOGS RMB 1
(X 183F DX RMB 2
;-t 1841 DY RMB 2
lJ 1843 DDY RMB 2
' R 1845 PO RMB 2
M____ 1847 _ PX _ RHB 2 ] N
- 1849 PY RMB 2 -
® 1848 SIGN RMB 3
184E ___STACK1 RMB_ 1
/| 184AF STACK2 RMB 1
Q. 1850 PUSHST RMB 1
. 1851 = LIMIT RMB 1 e
. 18A1 ORG s18A1
Q 18A1 SIGNI  RMB 1
, 18A2 SIGNQ RMB 1
,'1 18E0 ORG $18E0
o 18E0 1PX RMB 2
“f 18E2 ___IPY  RMB 2 o o
@ 18E4 X RMB 8
i 18EC Y RMB 8
pi —{8F4 REALT RMB 2
Qo 18Fé REAL2 RMB 2
M 18F8 IMAGL RMB 2
- {6FA ' IMAG2  RMB 2’ “”’ ) } - )
@ 8000 MATH EQuU $8000
t @ B-12 b
J - - e —— ey rpie s e oy vee e . er s oppa—r . e s i‘ I
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METHOD OF INVARIANT MOMENTS
1385 ROTIS EQU 91385
1376 VECT1S EQU $1376
330F SYNDET _EQU $330F
365 8
2800 ORG $2800
CONVERTS FLPN TO BCD
T e e X POINTS TO FLPN - 5
NORMAL ENTRY REQUIRES MAG<1, IF NOT, BCD SET TO 9999

2800 E& 07 L$BCD LDAB  7sX NORMAL ENTRY
2804 50 NEGB
2805 SD TSTB

2806 2717 - PLZTTT T T T
2808 As 00 LDAA  OsX
280A 47 ASRA
2608 A7 00 STAA 07X
280D A6 01 LDAA  1sX
280F 46 RORA
2610 A7 01 STAA  1+X
2812 A6 02 LDAA 25X
2814 44 RORA
2815 A7 02 STAA 27X
2817 A6 03 LDAA  3sX
2819 44 RORA
261A A7 03 5TAA 3sX
281C 5A DECB
281D 20 E& BRA FL1
281F 4D 00 TST OsX “FRACTION ONLY
2821 24 14 BPL FL3
2823 4F CLRA _
2824 BD 2P ES J5R PUSHAL
2827 4F CLRA
2828 BD 2B BF JSR PUSH44
2828 86 OC LDPAA  #12D
282D BD 80 00 JSR MATH

T TT2830 86200 T T T TLDAA T #820° T T
2832 B7 18 4B STAA  SIGN

) 2835 20 09 BRA RL4
2837 4F CLRA
2838 BD 2B BF JSR PUSH44
2838 84 2B LDAA  #32B

T 2830 B7 18 4B SYAA "SIGN T

2840 86 DC LDAA  #3DC

_ 2842 36 PSHA
3843 86 46 LDAA #8454
2845 36 PSHA

2846 B84 03 LDAA #8303

2646 34 PSHA T — " -
2849 4F CLRA
2844 34 PSHA
26848 84 09 LDAA  #9
284D BD 80 00 JSR MATH

. 2850 CE 18 00 LDX _ #TEMP1
2853 4F T CLRA o e
2854 BD 2B 99 JSR PULL4
2857 BD 2A FO JSR BISBCD




METHOD OF INVARIANT MOMENTS
®
[ ]
( 2854 39 ‘ RTS
Qo 2858 4D 00 FLS TST 09X
: 285D 24 07 BPL FLS
. 285F 86 2D LDAA #$2D
o 2861 B7? 18 4B STAA SIGN
. 2844 2005  BRA  FLZ S
2846 86 2B FL& LDAA #82B
¥ Y 2848 B7 18 4B STAA SIGN
s 2868 CE 99 99 FLZ LDX 289999
- 284E FF 18 06 STX BCD1
e 2871 39 RTS
1l *
I ‘ T T
o %
s 2872 5D ACCUM TSTB
¥ 2873 26 03 BNE ACO
@ 2875 7E 29 55 ACOA JMP AC13
o 2878 Fé 18 38 ACO LDAB K
¥ 2878 C4 07 ANDB 7
U 287D F1 18 S1 CMPB  LIMIT
2880 2A F3 BPL ACOA
L 28682 Fé4 18 38 LDAB K
B 2885 C4 38 ANDB #$38
a 2887 57 ASRB
, . 2888 57 ASRB
® 2889 57 ASRB
5 2884 F1 18 51 CMPB LIMIT
o 288D 2A E& BPL ACOA
®- 288F FF 18 39 STX XsT
| N 2892 14 TAB
| , 2893 27 14 BEQ AC1
Qo 2895 SA DECB
2896 27 IF , BEQ AC2
: I 2898 SA DECP
l o 2899 27 2A BEQ AC3
g 2898 B6 18 F6 DA REAL2 o
- 289 Fé 18 F7 LDAB REAL2+1
‘ ® 2841 FO 18 FS SUBB REAL1+1
» 28A4 B2 18 F4 SBCA REAL1
}m 2847 20 28 BRA AC4
| @ 28A9 86 18 F4 AC1 LDAA REAL?
i 28AC 18 FS LDAB REAL1+1
LT8R F’F 18 F " ADDE T REAL2+T -
o 2882 B9 18 Fé ADCA REAL2
- 28B5 20 1A BRA ACA
.'J 2887 Bé 18 F8 AC2 LDAA  IMAGL
] 28BA Fé 18 F9 LDAB IMAGL+1 S
ST UEB0 FO I8 FE © SUBF T IMAG2¥T T T T
o 28C0 B2 18 FA SBCA INAG2
; 28C3 20 OC BRA ACA
W 28C5 B4 19 F§ AC3 LDAA THAGT
0" 28C8 Fé 18 F9 LDAB IMAG1+1
L_ 26CB FB 18 FB_ ADDB__ IMAG2+1 o
W "28CE B9 18 FA T ADCA IMAG2
o 28D1 BD 2B 74 ACA JSR PUSHB2
R 28D4 Bé 18 38 LDAA K
@ B-14
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= METHOD OF INVARIANT MOMENTS
(“““““!En7‘—54 07 ANDA " ¥4
® 2809 47 ASRA
28DA 27 OB BEQ ACS
L 28DC  4A DECA
D 280D 27 OD BEQ ACé
r __28DF _4A ) DECA
I T28E0 T27°0F BEQ Ac? -
» 28E2 CE 2D B2 LDX #C67
r 28ES 20 OD BRA AC8
‘(" 28E7 CE 2C €2 ACS LDX #CO1
D! 28EA 20 08 BRA ACS
54 .~ 28EC_CE 2D 12 ACé  LDX  #C23
B 28€F 20 03 BRA ace — T T T 7T R
) 28F1 CE 2D 62 AC? LDX $CAS
i 28F4 AF ACB CLRA
Vf" 28F5 F6 18 37 LDAB J
p 28F8 58 ASLB
Y 28F9 49 ROLA
28FA BD 2A C8 JSR IDEX
[ 28FD A& 00 LDAA 09X
28FF Eé 01 LDAB 1¢X
b{ 2901 BD 2B 74 JSR FUSHB2 cJ(®
.:l 2904 86 01 LDAA 1
g 2906 BD 29 EC JSR MATH1
‘ 7909 B& 18 38 LDAA K
D 290C 84 38 ANDA $338
k 290E 47 ASRA
o 390F 47 ASRA
D 2910 47 ASRA
g 2911 47 ASRA
T 2912 27°0B 0 T T BEQ@ T ACY TooToTTm T T T e T T T
> 2914 4A DECA
2915 27 OD BEQ AC10
. 2517 4A DECA
» 2918 27 OF BEQ AC11
4 291A CE 2D B2 LDX 2067
T TTReID 20 OO BRA AC12 N . -
) 291F CE 2C €2 AC9 LDX $CO1
2922 20 08 BRA AC12
T 2924 CTE 20 12 ACIO TDX #C23
) 2927 20 03 BRA AC12
o 2929 CE 2D 62 AC11 LDX $CAS
T T ReST 4AF T ACIZ T CLRA T T -
> 292D Fé 18 36 LDAB )
L 2930 58 ASLB
i 2931 49 ROLA
- 2932 BD 2A C8 JSR IDEX
¥ 2935 Aé 00 LDAA 0sX
T 2937 E4 01 T LDAB  1yx ~—— T ¢ -
) 2939 BD 2B 74 JSR PUSHB2 CI(P)
293Cc 86 Ot LDAA 1
T2, MATHI
) 2941 FE 18 39 LDX XST
. 2944 BD 2B %A JSR PUSHSS M(P»Q)
T 2947 84 06 LDAA = #6 '
> 2949 BD 80 00 JSR MATH
294C FE 18 39 LDX xsT
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METHOD OF INVARIANT MOMENTS
®
[
(T~ 294F BD 2B 40 JSR ~  PULLS
o 2952 FE 18 39 LDX XsT
: 2955 08 AC13 INX
‘ 2956 08 INX
o' 2957 o8 INX
‘ 2958 08 e INXC e .
' 2959 08 INX
) 295A 08 INX
’ 295B 08 INX
L 295C 08 INX
o 295D 7C 18 38 INC K
& 2960 39 RTS )
o 3
: 2961 BD 2A 96 SAMP JSR TUNE
1 2944 BD 2A DB JSR DELAY1
;- 2967 BD 2C 24 JSR RDDEFT
T 296A BD 13 74 JSR VECT1S5
C 296D 4F CLRA
L 296E _SF CLRB
bl 296F FO 18 2B SUBB  COR10
R 2972 B2 18 2A SBCA COR?
‘,. 2975 39 RTS e
X *
o s
P . X —
; 2976 BD 2A 96 SAMPLE JSR TUNE 1ST QUAD
@ - 2979 BD 2A DB JSR DELAY1
i“ 297C _BD 2C 24 JSR __ RDDEFT
; 297F Bé& 18 45 LDAA PO
® 2982 F6 18 46 LDAB PO+1
: 2985 FB 18 E1 ADDB ~ IPX+1
ol 2988 B9 18 EO ADCA IPX
C 298B FB 18 E3 ADDB IPY+1
» 298E B9 18 E2 __ADCA _ IPY
29911 37"‘8” 24 T sTAA CORY
o 2994 F7 18 2B STAP COR10
2997 BD 13 85 JSR ROT1S
g 2994 FE 10 24 LDX COR1
Q. 299D FF 18 F4 STX REAL1
= 29A0 FE 18 26 LDX COR3
LT T 29%A3 FF 18 FB STX IMAG1
@ 29A6 BD 2A AF JSR TUNEL ATH QUAD
: 2949 BD 2A DB JSR DELAY1
\{— 29AC BD 2C 24 JSR RDDEFT
.- 29AF Bé 18 45 LDAA PO
29B2 F6 18 46 LDAB PO+1
-—““’znr‘?ﬂ'e‘n ADDB ~ IPX#L B
2988 B9 18 EO ADCA IPX
29BB__FO 18 E3 SUBB IPY#1
t, ——29BE B2 18 EZ )
29C1 B? 18 2A STAA COR?
H 29CA F7 18 23 STAB COR10
JSR~ ROT1S -
29CA FE 18 24 LDX COR1
R 29CD _FF 18 Fé sTX REAL2
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METHOD OF INVARIANT MOMENTS
o
L]
& 2900 FE 18 28 DX COR3
® 2903 FF 18 FA 8TX IMAG2
| 29D6 39 RTS
: '
o s
= —"29p7 B4 16 3L INCX ~ LDAA U2 — 7 T T T
® 29DA BB 18 40 ADDA DX+1
. 29DD 19 DAA
{ 29DE B7 1§ 31 STAA Uz
e 29E1 Bé 18 30 LDAA urt
g 29E4 B9 18 3F ADCA DX
T T T Z9E7 19 T R L. T T T T T
o 29E8 B? 18 30 STAA T} §1
. 29€EB 39 RTS
' 3
: ]
®. '
L 29EC 33 HATHI  PULB
® 29ED F7 18 4E STAB 8TACK1
29F0 33 PULB
L 29F1 F7 18 4F STAB STACK2
®: 29F4 30 T8X
b 29FS5 E6 OF LDAB 15Dy X
Z9F7 C1 80 CHPB #3980
@ 29F9 27 05 BEG M11
! 29FB__BD 80 00 JSR MATH
29FE 20 06 “BRA M3
@ 2A00 86 08 M11 LDAA 8
| 2A02 33 Mi2  PULB
2403 4A T T T DECAT ) - -
@ 2A04 26 FC BNE M12
: 2006 F6 18 4F  M13 LDAB STACK2
Y 2A09 37 PSHB
e 2A0A F6 18 4E LDAB STACK1
_ 240D 37 PSHB
CTTTTTT2A06 3% T T 7 RTS8 o -
o X
X
. ZA0F &F 00 F7ER0 CLR 0rX
@ 2A11  &F 01 CLR 10X
2A13  6F 02 CLR 29X
. 2A15 6F 03 L - 12 4 T
Y 2A17 &F 04 CLR 49X
: 2019 &F 05 CLR SeX
X 2A1B &F 06 CLR &1 X
o 2A1D Cé 80 LDAB #4380
-l 2A1F E7 07 ) STAB_  7»x ]
i 2421 08 INX T -
® 2A22 08 INX
; 2A23 08 INX
s 2424 08 INX
e 2425 08 INX
“s . 2A26 08 S IN L
: 2A27 7 08 I {) | T, T T T T
® 2A28 08 INX
N 2A29 39 RTS
@ B-17 i’
4|3




\

1 -
METHOD OF INVARIANT MOMENTS
®
[]
r s
@ s
2 SQUARE_ROOT OF FLPTN_IN STACK
. 2A2A4 33 SGROOT PULB
@ 2A2B F7 18 4E STAB  STACK1
. 2A2E 33 . BULB.
: 2A2F F7 18 4F STAB  STACK2
@) 2432 30 TSX
LI 2433 Cé 18 LDAB 924D
4 2A3S 09 501 DEX
P 2A36 SA DECB
£ 2437 26 FC __ BNE_ SO
; 239 FF 18 39 8TX XST
e 243C Cé 08 LDAB 8D
| 2A43E_ A6 1IF 502 LDAA __ 31DsX
" 2440 36 PSHA
e 2441 09 DEX
. 2042 SA DECB
2A43 26 F9 BNE 502
'Y 2045 A6 1F LDAA  31DsX
’ 2047 47 ASRA
o 2A48 A7 IF STAA  31DsX
'Y 2A4A 86 0A LDAA  #10D
b 2A4C_B7 18 08 STAR _ CTR A
s 2AAF  FE 18 39 Sa3 LDX XsT T MAIN LOOP
o 2452 Cé 10 LDAB  #16D
2054 A6 IF sa4 LDAA  31DsX
2456 36 PSHA
e 2A57 09 DEX
i“ 2A58 SA_ _DECB
2 2459 26 F9 BNE S04
® 245B B84 02 LDAA €2
2ASD _BD 80 00 JSR MATH Y=X/IT
e 2A0 FE 18 39 LDX XST
e 2A63 Cé 08 LDAB 48
2065 A6 17 Sas LDAA  23DsX
T 2A67 36 o PSHA ™~
® 248 09 DEX
2469  SA _DECB
| 2A8A 26 F9 BNE 5a5
Q" 2A6C 84 06 LDAA  #6
T 2A4E BD 80 00  JSR  MATH __ yay¢éIT
2A71 FE 18 39 LDX = XST T '
® 2A74 A OF 'DEC 15Ds X
5 2476 C4 08 LDABR 98
g 2478 32 506 PULA
Py J 2479 A7 10 STAA  16DsX
| 2A7B 08 INX 3
TTTTT2AMC SA CDECETT T T A
® 2A7D 26 F9 BNE sQs
s 2A7F 7A 18 08 DEC CTR
B 2A82 26 CB BNE sa3
o 2A84 C4 08 LDAB  ¢8
H 2486 32 sa7 PULA
2487 A7 10 SYAA ™ TaD?X
Q- 2489 08 INX
. 2A8A SA DECB
[
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METHOD OF INVARIANT MOMENTS
[ )
| : 2ABP 28 FY BNE 8G7
248D F6 18 4F LDAB  STACK2
2490 37 PSHB
[T 2av1 F4 18 4E LDAB  STACKI
' 2494 37 PSHB
. 2495 39 RTS
. _RYS .
%
, P
¥ 2A94 P6 18 30 TUNE  LDAA — UIl
2A99 B?7 EE 11 STAA  SEE11
a 249C_ B4 18 31 LDAA  UI2
‘ 249F B7 EE 10 8TAA  SEEIO
. 24A2 B6 18 32 LDAA  VJi
. 2AAS B7 EE 21 STAA  SEE21
. 2AAB  B6 18 33 LDAA  VJ2
2AAB B7? EE 20 STAA  $EE20
J 20AE 39 RTS
‘ %
x
: P
a 24AF D6 18 30 TUNE1I LDAA T} § 1
g 24B2 B7 EE 11 STAA SEE11
s 2ABS Bé 18 31 LDAA  UI2
2488 B7 EE 10 STAA  SEE10
, 2ABB Bé 18 3B LDAA  WWJi
‘ 2ABE B7 EE 21 STAA  SEE21
' 2AC1 P& 18 3C LDAA — UVJ2
! 2AC4 B7 EE 20 STAA  $EE20
| 2AC7?__39 e ___RT18
. .
‘ -
S x
» 3AC6 FF 18 00 IDEX  STX  TEWPT
' 2ACB FB 18 01 ADDB TEMP2
A 2ACE B9 18 00 ADCA TENP1
L ———"5ABT "B7 18 00 ~ "STAA ~ TERPL - T e e e
2ADA F7 18 01 STAB  TEMP2
2AD7 FE 18 00 LDX TEMP1
. T T T 2ADA 39 . “RTS
y X
- s
2ADB Bé 18 35 DELAYY LDAA  DTIME
. 2ADE 4D D1 TSTA
vl “24DF BED D2
. 2AE1 8D 04 BSR DELAY
y 2AE3  4A DECA - i
o 20E4 20 F8 o BRA ) T -
2AE6 39 D2 RTS
b
: 3
. P
- _2AE7 CE 02 CA DELAY LDX _ #82CA
‘ T T 20EAT 09 T T LDYL DEX e T T
2AEB 27 02 BEQ LDY2
¢ 2AED 20 FB BRA LDY1
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METHOD OF INVARIANT MOMENTS

(r 2AEF 39 LDY2 RTS
: s
s
. )
. 2AF0 7F 18 06 BISBCD CLR BCD1
. 24F3 7F 18 07 CLR BCD2 o
; 24F6 86 10 LDAA 016D
) 2AF8 B7 18 09 STAA CTR1
, 2AFB__BF 18 04 sTS TEMPS
¥ 2AFE BE 18 01 LDS STENP3-1
. 2B01 84 08 LBIB1 LDAA #8D
h 2B03 B7 18 08 STAA CTR
, 2806 33 PULB
: 2B07 S8 LBIB2 ASLB
2808 24 12 BCC LBIR3
. 2B0A 84 01 LDAA #1
% 2BOC BB 18 07 ADDA BCD2
he 2BOF 19 DAA
% 2810 B7 18 07 STAA BCD2
5 2B13 Bé 18 06 LDAA BCD1
2 2B16 89 00 ADCA 80
b 2B18 19 DAA
N 2B19 B7 18 06 STAA BCD1
L 2B1C_ 74 18 09 LBIB3 DEC __ CTR1 _
P 2B1IF 27 1B BEQ LBip4
¥ 2821 B6 18 07 LDAA BCD2
f' 2824 BB 18 07 ADDA BCD2
" 2827 19 DAA
p 2B28 B7 18 07 STAA PCD2
N 2B2B Bé 18 06 LDAA BCD1
% 2B2E B9 18 06 ADCA BED1
: 2B31 19 DAA
. 2832 B7 18 06 STAA BCD1
| 2B35 7A 18 08 DEC CTR
; 2B38 27 C7? BEQ LBIB1
_ _2B3A__20 CB _ BRA  LBIB2
2B3C BE 18 04 LBPIBA LDS TENPS
2B3F 39 RTS
. .
g X
l.; ‘
e 2840 33 PULLE PULB_ _
T 2pai F7 18 A€ STAP STACKT™
3 2B44 33 PULB
2 2BAS F7 18 4F STAD STACK2
g 2BA8 Cé 00 LDAB 98
” 2B4A 32 ) PULA
4 2B4B A7 00 __STAA _ 0sX L
2840 08 TTINX - T T T
, 2B4E SA DECB
si 2BAF 26 F9 BNE P8
i 4 LCPAB  STACK2
M 2854 37 PSNB
M 2B5S Fé 18 4E __LDAB___ STACK1
i 2958 37 “TPSHB
¢ 2859 39 RTS
b
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METHOD OF INVARIANT MOMENTS

..

s
T 2BSA_ 33 PUSHBE PULB
| BSB F7 18 4E 5TAB  STACKI
¥ 2B5E 33 PULB
| 2BSF F7 18 4F  STAB  STACK2. ] _
2B62 Cé 08 LDAB 48
2B64 A6 07 P88 LDAA  7»X
. 2866 36 PSHA
y 2867 09 DEX -
! 2B68  S5A DECB
| _2B&9 26 F9 __BNE __ PBB
T T2B&B T F& 18 4F LDAB ™~ STACKZ T T T
2B6E 37 PSHB
2B4F __F6 18 4E LDAB ___STACK1
y 2872 37 PSHB
| 2B73 39 RTS
. x
x
b
2B74 F7 18 50 PUSHB2 STAB __ PUSHST
2877 33 PULB
2B78 F7 18 4E STAB  STACK1
: 287B 33 PULB
8 2B7C F7 18 4F STAB  STACK2Z
2B7F SF CLRB
: 2880 37 PSHB
’ 2881 37 PSHB
] 2882 37 PSHB
2883 37 ) PSHB
2884~ 37 PSHB -
2B8S 37 PSHB.
2886 Fé 18 50 LDAB ___PUSHST
: 2889 37 PSHB
: 2B8A 36 PSHA
: 2B8B 86 07 LDAA 47
T 2B8D BD 86 06T T ISR T MATH NFLPTN T
2B90 Fé 18 4F LDAB  STACK2
2893 37 PSHB
2894 F& 18 4E LDAB  STACKI
2897 37 PSHB
2898 39 RTS
—...2898 3 . S —
| *
¥ 2699 33 PULLA  PULB
2B9A F7 18 4E STAB  STACK1
A 2B9D 33 } PULB
T 2B9E F7AG 4F T T 7 STABT STACKZT T T T TTTT oo
2BA1 4D TSTA
2BA2 27 06 BEQ LP42
: 2BA4 08 CPal  INX
g 2BAS  4A DECA
- 2BAS 27 02 ) BEQ _  LPa2
2BA8 20 FA T BRA LPag " T T
2BAA 32 LP42
2BAB A7 00

-

. N . ) O . . - - . -
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METHOD OF INVARIANT MOMENTS

[
[ 28AD 32 PULA
2BAE A7 01 8TAA  1,X
; 2BBO 32 PULA
: 2BB1 A7 02 STAA  2sX
x 28B3 32 PULA
| 28B4 A7 03 . STAA  3eX I
2BB4  F6 18 4F LDAB = STACK2
: 2889 37 PSHB
; 2BBA Fé 18 4E LDAB____ STACK1
! 2B5D 37 PSHB
) 2BBE 39 RTS
vl ‘
o % -
: *
5 2BBF 33 PUSHA4 PULB
g 2BCO F7 18 AE STAD  STACKI
2 2BC3 33 PULB
, 2BC4 _F7 18 4F STAB __ STACK2
. 28C7 4D TSTA
5 2BC8 27 06 BEQ LP442
o 2BCA 08 LP441 _ INX
L4 2BCB 44 DECA
gt 2BCC 27 02 BEQ LP442
2l 2BCE 20 FA BRA  LP44l
o 5BD0 A& 03 LP4a2 “LDAA™ ~E;x T T T - -
, 2802 36 PSHA
‘ 2BD3 A6 02 LDAA 24X
1 2BDS 36 PSHA
, 2BD6 A6 01 LDAA  1sX
H 2BD8 _ 36 PSHA e
> 2BD9 A& 00 LDAA  ~ OsX -
g 2BDB 36 PSHA
g 2BDC_F6 18 4F LDAB _ STACK2
e 2BDF 37 PSHB
2BEO0 F& 18 4E LDAB  STACK1
2BE3 37 PSHB
2BE4 39 . RTS
g x
ol 2
‘ 2BES 33 PUSHAL PULB
o 2BE6  F7 18 4E STAB  STACK1 ]
L] ZBEY 33 PULB - T T I —
. 2BEA F7 18 4F STAB  STACK2
¢ 2BED 36 PSHA
g 2DEE 48 ASLA
X 2BEF 24 04 BCC LPA11
! 2BF1 86 FF LDAA  #SFF S
- 2BF3 20 01 BRA LAtz " - )
2BFS 4F LPA11  CLRA
t 20F6 36 LP412  PSHA
A 2BF7 36 PSHA
N 2BF8 36 PSHA
| 2BF9 F& 18 4F __LDAB __ STACK2
i 37 PSHD
= 2BFD Fé 18 4E LDAB  STACK1
¢ 2C00 37 __ _PSHB

B-22
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METHOD OF INVARIANT MOMENTS

T

[ ]
(7 2Cé2 A7 27 BTAA 927X
2C64 6A 08 DEC 8sX
2C44 20 CE BRA RD1
. 2€48  Aé 3E RD2 LDAA  $3EsX
- 2C6A A7 08 STAA  8¢X
- 2C6C_ 6D 08 ____RD3 ST @X . _ )
| 2C4E 27 22 BEG RD4
o 2C70 Aé 24 LDAA $24,X
. 2c72 47 ASRA
{ 2c73 A7 24 STAA  $24,X
. 2C75 A6 25 LDAA  $25,X
12677 48 ___RORA
, 2678 A7 25 STAA  $25,X -
e 2C74 A6 26 LDAA  $26+X
s _2C7C__ 46 RORA
s 2C70 A7 26 STAA  $267X
3 2C7F  Aé 27 LDAA  $27,X
k 2C81 47 ASRA
| 2682 A7 27 STAA  $277X
2C84 A6 28 LDAA  $28,X
2C86 46 RORA
g 2687 A7 28 STAR  $287X
. 2089 A6 29 LDAA  $29,X
e 2c8B_ 46 RORA . o
268C A7 29 STAA $29,X
2C8E 4A 08 DEC 8rX
- 2C90 20 DA BRA RD3
g 2€92 FE 18 25 RDA LDX CORZ
p 2C95 FF 18 24 STX COR1
| __2c98 FE 1828 DX CORA®L .
2C9D FF 18 26 STX COR3
2C9E 39 RTS
s
o |
q e
4 2C9F 86 03 READSN LDAA  #3 )
—" 2¢A1 BD 33 B& ~  JSR ~ MUXSEL " -
2cA4 CE 18 00 LDX STENP1
2cA7 BD 33 OF JSR __ SYNDET
STTTTT2CAA 70 18 000 8T TENP1
! 2CAD 8D OC BSR SGNSET
1 2CAF B7 18 Al STAA  SIGNI
—=~"'2cB2 7D 18 02 ~ TST ~  TEMP3
2CBS 8D 04 BSR SGNSET
2CB7 B? 18 A2 STAA  SIGNG
o 2CBA 39 RTS
..f .
A %
SO, JU - o .
2CBB 27 03 SGNSET BPL SETPOS
; 28D 86 FF LDAA  OSFF
L—2CBF 3% RTS
® 2CCO 4F SETPOS CLRA
M 2cC1 39 RTS8 L
.
.¥ .
o B-23
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& METHOD OF INVARIANT MOMENTS
[ ]
o T2 col  EQU ¥
® 2CC2 40 00 98 FCB $40,0,998, 933
: 2CC4é 00 00 OB ___FcB 070y$B+$95
. CA 00 F FCB 0+0,8FB,»$CD
e 2CCE 00 00 02 FCB 070,2,$2C
| 2€¢D2 00 00 FE _FCB_ 0s0s$FEs$AB )
« | TTTTTT26D4 00 0000 TFCB T 000+0s$EA T —
@ 2CDA 00 00 FF FCB 0909 $FF » $55
P 2CDE 00 00 00 FCB 010507485
£l FCB +0y 1§98
Y 2CE6 00 00 00 FCB 0+0509959
. 2CEA 00 00 FF __FCB_____0+0s$FF19BS
. 2CEE 00 00 00 TFCB T 000500842 -
'Y 2CF2 00 00 FF FCB 0+09$FF 2 9C6
ol 2CF6 00 00 00 FCB 010+0+936
o 2CFA 00 00 FF FCP 0r0sSFFsSCF
Y 2CFE 00 00 00 FCB 0+090¢93D
| 2002 00 00 FF FCB 0+0s$FF + DS
- 2D0&é 00 00 00 FCB 0+0¢0+92B
® 2D0A 00 00 FF FCB 0905 $FF »$D7
l 2DOE 00 00 00 FCB 090509829
' 2D12 €23 EQu X
Y 2D12 40 00 90 FCB $40,07$50,844
: 2D16 BD F4 1D FCB $BDy$F4»$1Dy SE
l.:r 2D1A 00 00 0A “FCP 0v0:,9A, 995
o 2D1E 02 72 FC FCB 20872+ $FCr 851
oY 2D22 00 00 FE FCB 070+ SFE s 99F
| 2026 FF 7A 00 FCB SFF+87Ar0s 905
: ..1 2D2A 00 00 00 FCB 000,0,$8B
Lo 2D2E_ 00 31 FF FCB 0s83158FF » A8
L 2032 00 00 FF FCB 000, $FF+9CD
@ 2D36 FF EA 00 FCB SFFy$EA10,$27
g 2D3A 00 00 00 FCB 00090s81F
i 2D3E 00 OC FF FCB 0s$Cr1SFF + OEA
'Y 2D42 00 00 FF FCB 0s0»$FF s $F1
LT ) 2D46 FF FA 00 FCB SFFy$FA»09$C
. T Z2D3A 00 00 00 FCBTT 070005 %A
®- 2DAE 00 04 FF FCB 0r Ay SFF o $F9
2DS2 00 00 FF FCB 050, $FF s $FC
“"—Tns—?‘rr—Oa F () FCP ¢ 70r3
A.» 2DSA 00 00 00 FCB 0505052
o 2DSE 00 ox 00 FCB 001500
. 2042 45— E0U ¥
o 2D62 40 00 BE FCB $40,07$8E,$71
2Dé4 B4 EF 21 FCB $B4 s $EF»$21 833
d 2D6A 00 00 10 FCB  0+0+810082A
@ 2D6E  OD SA F? FCB $D»$5As$F 7, $8E
d 2072 00 FCB___ 0+0s$FB+$70
ST 2p78 Fc‘?‘n FCP SFCySF1» 2,998
@ 2D7A 00 00 01 FCB 000s19996
s 2D7E 01 21 FE FCB 10821+ $FE) $FS
: 2082 00 00 FF FCB 0,0,$FF,» 337
o 2086 FF 7A 00 FCB SFF197A10, 984
2D8A 00 00 00 FCB 00009961 o
- T Z2DBET 00 AEFF T FCB T 00848+$FFi 888 T T
. | @/ 2092 00 00 FF FCB 010+ $FF»SCA
' % ¢ 2D96 FF D8 00 FCB SFF8D8+0y$2A
: B
| g ; . 24



|
METHOD OF INVARIANT MOMENTS
2D9A 00 00 00 FCBH "09050,920
. 2D9E 00 18 FF FCB 0:,9818»$FF»$E?P
, 2DA2 00 00 FF FCB 0s0sSFF»$FO
L 2DAé FF FS 00 FCB $FFs8FS5,0,¢C
\I 2DAA 00 00 00 FCB 01050+7
L 2DAE 00 04 FF FCB Or4»9FF s SFF
2DB2 cé7 EQU s
2DB2 40 00 8D FCB $40,0,98D,$BF
, 2DB6 B2 03 23 FCB $B2:3+$23,998
'y~ 2DBA 00 00 12 FCB 0,0,912,9BC
N 2DBE 12 AS F4 FCB $12+8AS»SF 4, SE2
'\ 2DC2 00 00 F9  FCB _ 0+0r$F9,818 ) o
2DCé  F9 95 04 FCB $F99895,4,868
2DCA 00 00 02 FCB 0:0,2,$E9
N 2DCE 02 96 FE FCB 2:896/SFEy 85
i 20D2 00 00 FE FCB 0s0+s$FE,» 95D
2DDé FE Ci 0% FCB SFEy8C1r1,4
______2pDA 00 00 00 FCB 0s0,0,8C1
2DDE 00 AE FF FCB OrSAE s SFF» SEF
2DE2 00 00 FF FCB 000y $FF»$92
_____2DE6 FF 9D 00 FCB $FF+$9D,0,83S
2DEA 00 00 00 FCB 0+090r941 1
2DEE 00 3A FF FCB 0»$3A»$FF»$DO
B 2DF2 00 00 FF_ FCB 0+0s$FFs8DD o . ] t
2DF4 FF E2 00 FCB SFF»$E200,$18
2DFA 00 00 00 FCB 0+050s$E
2DFE__ 00 OA FF FCB 0s8Ar$FF» SFC
2E02 CE 40 00 DUMMY LDX #$4000
2E0S FF 18 24 STX COR1
2608 CEO00OO0 ~~ LDX  #0 . e
2E0B FF 18 26 STX COR3 -
2E0E 39 RTS
. _2EOF . END

STATEMENTS =832
FREE BYTES =16585
NO ERRORS DETECTED

{ U — ©mem e e e cmme e e i e e e —— —— e+ —




APPENDIX C - Fortran Code Listings

This Appendix consists of listings of Fortran programs
which can be used to compute the coefficients ck(p) which
are defined by equations (104), (105) and (106). These
coefficients are used to compute image moments from the image
Fourier transform. The program PEVEN computes the coeffic-
ients for the case that p is even. The program PODD computes
the coefficients for the case that p is odd.

This Appendix also contains listings of the programs
EVENER and ODDER. These programs were used to obtain the
data which is presented in Figure 26 and Tables 3 and 4.
EVENER evaluates equation (137) for the case of p even. ODDER
evaluates the same equation for the case of p odd.




r

.

/

10
20
__30

~ 20

PEVEN
PI=3,1415927

T TYPE 10

FORMAT(’ COMPUTES CK(P)# P EVEN’)

TYPE 20

" FORMAT(’
TYPE 30
__ FORMAT(’ INPUT N/2» P(MAX)’)

)

TYPE 20
ACCEPT 40sN
ACCEPT 40,NPM
FORMAT(I3)
N=N+N

TYPE 20

FORMAT(’ COEFFICIENTS (REAL)
TYPE 20
TYPE 640

FORMAT(’ K P

DO 105 NP=0sNPMs2

CK(P)

)

OCTAL ‘)

DO 100 K=0»Ns1

C=0.

IF(NP.EQ,0) C=.,3
PO 90 L=1sNs1
X=2.%FLOAT(L)/FLOAT(N)
IF(X.6T.1.,) GO TQ 70

GO 70 80
FX=2-(X-2)XXFLOAT (NP)
ARG=FLOAT(K) *PI%X/2,
IF(L.EQ.N) C=C-.S5%FXXCOS(ARG)
C=C+FX%COS(ARG)

C=C/FLOAT(N)
IF(NC.LT.0) NC=65536+NC

"TYPE 110sKsNPsCsNC
TYFE 20
FORMAT(I3Zy ISy’
STOP T
END

100
1035

110 IoF11.707 7106)




[
(; /
N

VoL 30

T TYPE 10

—mg

PODD
PI=3.1415927

FORMAT( P DDD’)
TYPE 20

FORMAT(’ ‘)

TYPE 30

FORMAT(’

COMPUTES CK(P))

INPUT N/4» P(MAX)’)

‘ |

'_.

40 FORMAT (IZY)

' TYPE 50

TYPE 20
ACCEPT 40sN
ACCEPT 40sNPM

N=N+N+N+N
TYPE 20

FORMAT(’ COEFFICIENTS (IMAGINARY)‘)

TYPE 20

60

i

g
4

| " X=4&, $FLUAT{LJ /FLOAT(N)

CK(P)

TYPE 40
FORMAT(’ K P
DO 140 NP=1yNPMs2

OCTAL’)

B0 1360 K=1,N»1
C=0,
DO 120 L=1+N»1

IF(X.6T.1.,) GO TO 70
FX=XXEFLOAT(NP)

L]
: 70
' 80

90

GO TO 110
IF(X.6T.2.) GO TO 90
FX=2.,+(X-2.,)XXFLOAT (NP)

TGO TO 110 o
IF(X.GT.3.) GO 7O 100
FX=2¢-(X-2.,)XXFLOAT(NP)

! 100
4 110

= = IFTL.EQLN) C=C=, SKFXXSIN(ARG)

120

T 7T T NC=.5%32748.%C

130

.7 146 TYPE 20

1350

GO TO 110
FX==(X=4,)%XFLOAT(NF)

ARG=FLOAT(K)XPIXX/4. i
C=C+FXXSIN(ARG)
C=-C/FLOAT(N)

IF(NC.LT.0) NC=65536+NC
TYPE 150y KeNF,CsNC

‘vF11.7s’

FORMAT (I3+ISy’
STOP

AN




/

p———— e

10
15
20

R ()

40

70
80

7

_100
110

130

140
150

160

170
s

" EVENER
DIMENSION CFF(50)

PI=3.1415927

TYPE 10

FORMAT(‘ COMPUTES ER(P»X)3# P EVEN')
TYPE 20 . '
FORMAT(* )

TYPE 30

T T FORMAT (¢’ INFUT N/72, P?)

TYPE 20

ACCEPT 40:N
ACCEPT 40,.NP
FORMAT(I3)

N=N+N

~ TYPE 20
DO 100 K=0sN»1}
€=0.,

IF(NP.EG.0) C=.5
DO 90 L=1»Nr1l
X=2,8FLOAT(L)/FLOAT(N)

IF(X.6T.1.) GO TO 70
FX=XkRFLOAT(NP)

GO TO 80
FX=2-(X-2)XXFLOAT (NP)
ARG=FLOAT(K)XPI&X/2.
IF(L.EQ.N) C=C-.5¥FX%COS(ARG)

C=C+FX%COS(ARG)
C=C/FLOAT(N)
CFF(K+1)=C
TYPE 110
FORMAT(’ INPUT MESH DIVISOR=M’)
TYPE 20

ACCEPT 40N
TYPE 20

TYPE 120
FORMAT (/ @
NQS=,S5SsFLOAT (NXM)
DO 140 NG=0sNQS»1

ER(P»2%Q/MN)* )~

X=FLOAT{2xNQ) /FLOAT (M%kN)
ARG=PI%X/2.

ER=0.

DO 130 K=1,Ny1 ~~—— =
ARGK=ARGXFLOAT(K)
ER=ER-CFF (K+1)%C0S (ARGK)

ER=ER-.S¥(CFF{1)-CFF{N¥1) XCOS{ARGKY)
ER=2.XER+XXXFLOAT (NP)

TYPE 150,NQGYER
FORMAT(T4,” — “»F11.7y" — =
TYPE 160

FORMAT (’ TO CONTINUE TYPE 1‘)

TYPE 20

ACCEPT 40sN
IF(N-1)170915,170
stop - -
END

—.




/ ODDER
). DIMENSION CFF(50)

. TPI=3.1a15927

4 TYPE 10

10 FORMAT(’ COMPUTES ER(PsX)§# P ODD’)
18 TYPE 20 o
20 FORMAT(’ *)
TYPE 30

[ 30 FORMATU” INPUT N/4y F7Y
J TYPE 20
ACCEPT 40N
T T 77 T ACCEPTY 40NP T T T
40 FORMAT (I3)
N=N+N+N+N

T TYPE 20
. DO 130 K=1sN»s1

LT T T TR X=XRRFLOAT(NF)Y
L.

v

1”""—"“"‘DU‘f?U_EiT?NTT"‘"“W

C=0.,

X=4 ,.XFLOAT(L)/FLOAT(N)
IF(X.G6T.1.) GO 7O 70

l GO TO 110
i 70 IF(X.6T.2.) GO TO 90

T 80 FX=2.#(X-2,)%kFLOAT(NP)

GO 7O 110
90 IF(X.6T.3.) GO TO 100

FX=2.-(X-2.)XXFLOAT(NP)

i GO TO 110

100 FX==-(X-4,)KXFLOAT(NP)
1107 ARGEFLOAT(K)RPIXX/4. ~
IF(L.EQ.N) C=C-.5XFXASINCARG)

120  C=C+FXXSIN(ARG)

C=C/FLOAT(N)
. 130 CFF(K+1)=C
i TYPE 140
T7140  FORMAT(7 INPUT MESH DIVISOR=M‘) ~
TYPE 20
ACCEPT 40sM

0 TTYPE 20T T
TYFE 150
- 130 FORMAT(’ Q ER(F»2%Q/MN) ‘)
NQGS=.258FLOAT(NXM) )
DO 170 NQ=0sNQGS»1
X=FLOAT (4XNQ)/FLOAT (MXN)

T TTARG=PIXX/4.
ER=0.
. DO 160 K=1sN,s1
ARGK=ARGXFLOAT(K)
160 ER=ER-CFF (K+1)XSIN(ARGK)
ER=2,XER+XXXFLOAT(NP)

170 TYPE 180,NQsER
180 FORMAT(I4,’  ‘yF11.7)
i TYPE 190
190 FORMAT(’ TO CONTINUE TYPE 1°)
TYPE 20
ACCEPT 40N

IF(N-1) 200+15,200
200 sTOP
END




Distribution:

W26HAJ

U.S. Army Engineer Topographic Laboratories
Research Institute

Fort Belvoir, VA 22060

Attn: Joseph F. Hannigan

W26HAJ /STINFO

U.S. Army Engineer Topographic Laboratories
Attn: ETL -~ STINFO

Fort Belvoir, VA 22060

2 copies

14 copies




AT i e e
‘ : ”-J#..ﬁ‘,d\«.




