AD=A109 980 COMPUTER SCIENCES CORP FALLS CHURCH VA F/8 9/2

AOA INTE‘RATED ENVIRONMENT II COMPUTER PROGRAM DEV!%g;”E:;T s:gc-:'rc(w
=B0=C~!
UNCLASSIFIED RADC=TR=81~364=PTe1

{ [T
EEEERNEEREEEE




1.0 & k= 22

"“IE_ : = 22

s

»- = [k2
2 s e

’ MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS.1963-A



PHOTOGRAPH THIS SHEET

=
D |x
3 (@) E [EVEL  (Ygvnputer SCiences C‘o\? INVENTORY
j M |z

o ADA Tateqcoted Envcvonmcn"':[!'. Cowmpv

e é w e '.De\le(oemen‘l' Speci Recation. Lnterim 'R '|'

- |3 DOCUMENT IDENTIFICATION ISs ?O;Is'mil

S 1
| o [E Gt F30co2-s0-c-a212  Rape-TR-EI-3cw But £
¢ < {
i DISTRIBUTION STATEMENT A
3 Approved for public release;
: Distribution Unlimited
DISTRIBUTION STATEMENT
ACCESSION FOR

S DTIC

ik a0 ek o
3¢/ A A -

UNANNOUNCED D
JUSTIFICATION E L E c T E
JAN25 1982 .
BY D
z DISTRIBUTION /
f AVAILABILITY CODES
' DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED
¥,
A i Copy
i DISTRIBUTION STAMP W
3
- * -
= : 1
1 82 01 2 003
. DATE RECEIVED IN DTIC
- PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2
FoRM DOCUMENT PROCESSING SHEET

DTIC SO 70A




RADC-TR-81-364, Part |
Interim Report

: Decomber 1981

i

o

| O ADA INTEGRATED ENVIRONMENT Il
g; ‘COMPUTER PROGRAM DEVELOPMENT ‘
= SPECIFICATION | !
L, |
< | . "
2 Computer Sciences Corporation

i

:

:

b ROME AIR DEVELOPMENT CENTER

Air Force Systems Command
Griffiss Air Force Base, New York 1344|




v 1

. r - -

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS

é it will be releasable to the general public, including foreign nations.
i
p RADC-TR-81-364, Part 1 has been reviewed and is approved for publication.
1
3
i
APPROVED: /| =7 (
, DONALD F. ROBERTS
: Project Engineer i
! APPROVED: W\@
. 2
f ~ JOHN J. MARCINIAK, Colonel, USAF '
Chief, Command and Control Division
FOR THE COMMANDER: ﬁ X/
. e
\ JOHN P. HUSS
| Acting Chief, Plans Office
b
4
El

S

= SUSR Y

If your address has changed or if you wish to be removed from the RADC

A mailing list, or if the addressee is no longer employed by your organization,
k| please notify RADC.(COES) Griffiss AFB NY 13441. This will assist us in

1 maintaining a current mailing liset. o

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.




UNCLASSIFLED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entereq)

READ INSTRUCTIONS
PORT NuUM 7. GOVY ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER ;

RADC-TR-81-364, Part 1
4. TITLR cand Subtitie) ’ S. TYPE OF REPORT & PEROD COVERED
ADA INTEGRATED ENVIRONMENT II COMPUTER et PTE Mar 81
PROGRAM DEVELOPMENT SPECIFICATION ep r

€. PERFORMING O1G. REPORT NUMBER
N/A
7. AUTHOR(2) 5. CONTRACT OR GRANT NUMBER(S) |

A ot BN ot vl s e

F30602-80-C-0292 ]

[9. PERFORMING ORGANIZATION NAME AND AODRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS
Computer Sciences Corporation

803 Broad Street ggggig{gZ7OZF/33126F
Falls Church VA 22046
11. CONTROLLING OFFICE NAME AND ADORESS l')z REPORT “"8
: Rome Air Development Center (COES) ecember 1981
‘ Griffiss AFB NY 13441 5’-16‘“""" OF PAGES
‘ 14, MONITORING AGENCY NAME & ADDRESS((f diiferent from Controlling Otfice) | 'S. SECURITY CLASS. (of tAia report)
Same UNCLASSIFIED
132, OECL ASSIFICATION, DOWNGRADING
N/ ASCHEOUL

6. OISTRIBUTION STATEMENT (of thiz Report)

Approved for public release; distribution unlimited. *

17. DISTRIBUTION STATEMENT (of the sdetract entered in Block 20, it different (rom Report)

g

e 1

% Same

i

£

' 18. SUPPLEMENTARY NOTES

ot RADC Project Engineer: Donald F. Roberts (COES) ﬂ

‘; 19. XEBY WORDS (Continue on reverse side if necessary and identily by bdlock number)

8| Ada MAPSE AIE

1 Compiler Kernel Integrated environment
fj Database Debugger Editor

£ KAPSE APSE

'l 20. ABSTRACT (Continue on reverae side if necessary end identily dy dlock number)

i The Ada Integrated Environment (AIE) consists of a set of software tools
intended to support design, development and maintenance of embedded
computer software. A significant portion of an AIE includes software
systems and tools residing and executing on a host computer (or set of
computers). This set is known as an Ada Programming Support Environment
(APSE). This B-5 Specification describes, in detail, the design for a
minimal APSE, called a MAPSE. The MAPSE is the foundation upon which an

,oj DD, on'5s 1473  e€oimion or 1 nov 68 1s onsoLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whan Deta Entered)

APSE is built and will provide comprehensive support throughout the
design, development and maintenance of Ada software. The MAPSE tools
described in this specification include an Ada compiler, linker/loader,
debugger, editor, and configuration management tools. The kernel (KAPSE)
will provide the interfaces (user, host, tool), database support, and
facilities for executing Ada programs (runtime support system).

peiiregl

(TS
L J

UNCLASSIFIED

SECURITY CLASSIFICATION OF Twu's 2AGE(When Date Entered)

§




ol 4o

INTRODUCTION

This document presents the Computer Program Development Specifications (Type
BS) for the Computer Program Configuration Items (CPCIs) for the CSC/SEA
design of the Ada Integrated Environment (AIE) under Rome Air Development

Center (RADC) Contract Number F30602-80-C-0292. These specifications are
comprised of the following volumes:

PART I:

Volume 1, Computer Program Development Specification for CPCI KAPSE
Framework.

Volume 2, Computer Program Development Specification for CPCI KAPSE Data
Base System.

PART II:

Volume 3, Computer Program Development Specification for CPCI APSE
Command Language Interpreter,

Volume 4, Computer Program Development Specification for CPCI MAPSE
Configuration Management-System.

Volume 5, Computer Program Development Specification for CPCI Ada
Compiler.

Volume 6, Computer Program Development Specification for CPCI MAPSE
Linker.

Volume 7, Computer Program Development Specification for CPCI MAPSE
Editor.

Volume 8, Computer Program Development Specification for CPCI MAPSE
Debugger. '

Accompanying this document is an Interim Technical Report (ITR), which
describes the principles influencing the preliminary design and provides the
rationale for the decisions made, and the System Specification (Type A),
which presents the functional requirements for the AIE.

Table 1 provides a cross-reference between the AIE Statement of Work (SOW)
and the specifications.




PHASE I SOW REQUIREMENTS A - SPEC. B5 - SPEC.
i i i i
: P i } H
: | Phase I Design i H H
. ] []
E i
: PR ! 3.1.1 H H
i i General Requirements E ' E
¥
s |
3 V4101 i 3.1.1.1 { KDBS - 3.2.5 H
$ | Data Base Support, Interfaces to P 3010102 i 3.3 d
( ! host facilities (H.W. & S.W.), user | 3.1.4 { ACLI - 3.2.5 '
{ interfaces, tool interfaces i 3.7.1 ! 3.3 )
[] ] ] []
; ; ; ;
I 4.1.1.2 i 3.1.1.1 { KFW - 3.1.1 H
¥ | Portable to maximum extent possible,} 3.1.1.2 i KDBS - 3.1 g
| ! External interfaces should be i 3.1.2 ' ACLI - 3.1.1 }
5 { clearly isolated, clearly | 3.1.4 | CMS - 3.1.1 i
| identified i 3.1.5 ! Compiler - 3,1.1 1
i i 3.1.5.2 { Linker - 3.1 !
! ' ' { Editor - 3.1.1 H
H H | Debugger - 3,1.1 :
i i i i
2 | i i H
a b4.1.1.3 ! 3.1.5.1 ! KDBS - 3.3 |
| | Specify uniform protocol i 3.1.5.2 i KFW - 3.2.5 i
: | conventions between user, tools and |} i ACLI - Command H
E | | MAPSE/KAPSE, formats for invoking | : Utilities !
* | KAPSE/MAPSE facilities should be i i i
! { uniform or identical i ' i
° : i i :
: ! . i i
£ bu.1.1.4 I 3.2.3 ! KDBS - 3.2.5.7 '
P ! Shall include features to protect | 3.2.5 : 3.2.5.8 H
A ! itself from user and system errors | 3.3.7 H 3.3.6 i
E i ! H 3.3.7 ]
P { } | \
b H ' ] i
i 4.1.1.5 1 3.7 | KFW - 3.1.1 i
: ! Software should be modular and ! ! KDBS - 3.1 1
! | reusable ] | ACLI - 3.1.1 i
! ' i { CMS - 3.1.1 H
&l i H ! Compiler - 3.1.1 ]
i ! ' | Editor - 3.1.1 '
,; H : ! Linker - 3,3.1 H
' ! ! | Debugger - 3.1.1 H
‘ } i \ |
y
& M -2
1 2
|
R —— C e oA
A s o cgmdbo gty et d »’“"“" \ rf h T e ——— "—‘-‘7'1' H;"'!!h* >SRN LR gy



5 T s o e

Sdhchia v .."’:‘“.‘ e

T o ta ol

PHASE I SOW REQUIREMENTS

A - SPEC

B5 - 8§

PEC

4.1.2
KAPSE DATA BASE REQUIREMENTS

4,1.2.1

Capability to create, delete,
modify, store, retrieve, input, an
output data base objects

3-701-2
d

KDBS

4.1.2.2

Shall provide for all forms of data

necessary to fulfill all SOW
Requirements

3.7.1.2

KDBS

- 302-5 03

4.1.2.3

Shall not be dependent on external
software systems not part of the
host operating system

3.7.1.2

KDBS

- 3.

2.5

4.1.2.4
Support creation and storage of Ad
libraries in source form

'KDBS

4,1,2.5

Capability to define new
categories of objects without
imposing restrictions on computer
information stored in objects

3.7.1.2

KDBS

4.1.2.6

Provide flexible storage facilitie
to all MAPSE tools. Capability to
read and write data base objects
from within any MAPSE tool using
data transfer and control function
and high level I/0 function

3.7.1.2
S

KDBS

4.1.2.7
Capability to create partitions

3-7.102

KDBS

CM - 3




PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.2.8

Capability to assign version
qualifiers to objects or groups of
objects. Time/Date and serial
number. Capability to designate
and use default version

3.7.1.2

4,1.2.9

Capability to create object
attributes: History, Category and
Access.

3.7.1.2 KDBS -

W=t
.
VW &N =

wwmphhhvND O
.

Wwwuwwwiww

4.,1.2.10

Capability to control access to
data base objects using version
qualifier, attributes, and
partitions. "Programmable" access
controls; provisjon for privileged
user,

3.7.1.2 KDBS -

O EWN =

.

WWNNDNOND DD
.

we=MmVTOYOYUO WU
.

4,1.2.11 :
Capability to archive data base
objects

3-7-1.2 KDBS b

4.1.2.12

Data base resources and operations
as a result of this effort shall
be available to Ada programmers

A5

3.7.1.2 KDBS - 3.
3

Lo
—— e e - mmfee - e - o ca]rr e - e v e ve B e mnf e - e e e e an ww wm Te|ee e ve e e - o
——— e s e - e me e mefen — - e e mn e s e et |emn e e e em e e e e mefee e v e - —- — -

———- e —- |- - - - mn malee Bn o . e e L v e e e et e - es eeen e S ne —- e e -

12 5 e

4.1.3
KAPSE INTERFACE REQUIREMENTS

P

4.,1.3.1
Specifiy virtual interface for
KAPSE /MAPSE communication

KDBS -

e - - —— - ———— —- —w|—— - m—- —- - = e e h ma et e ma e e e s e e e e hn e e mm e vvfmc an . e " —e - --




TR T TRATTIE AR TR e T e,

LI

walde Ty

3 e &

Felats 2

PHASE I SOW REQUIREMENTS

4.1.3.2

Virtual interface will provide
user capability to invoke MAPSE
tools, interact and exercise
control over invoked tool

KFu - 3.2.4
KDBS - 3.20“

4.1.3.3

Virtual interface will have the
capability to invoke any MAPSE too
from other MAPSE tool

3.1.5.2

3
ACLI -3
1 3

4.1.3.4

Virtual interface will provide the
capability for user LOGON/LOGOFF
INITIATE/TERMINATE functions

Km - 303-2
3.2 5

u.1.3-5
Virtual interface will provide the
capability to execute Ada programs

3

4.1.3.6
User commands for job control and

invoking tools shall have a uniform

format

ACLI - 3.2.5

4.1.3.7

User communication at command leve
will be possible in standard Ada
character set

3.1.5.1 ACLI - 3.1

1

eI L I i R e el D L R R i it i

4.1.3.8

Provide standard terminal interfac
specifications and functions to
facilitate batch and interactive
terminals. Specification will
include protocols for synchronous
user interactions and standards fo
implementing simple editing of the
command line

3.1.5.3 KFW -

e

r

. - " v " e e s o e e, e B e s me s mafin e - s e e e e e e s e s e e —m e e - -
- - - - - - " - B - mmfae . —- -, e wwlom —- - mw ma rwlen mn e me e e e as e e mn e e v e —m e e - =

- o . - - - mm |- - - e me dmfe. _w e - e e e mm e, e e e s mefme e e, e e e - - am -

CM -5




B5 - SPEC

A - SPEC

PHASE 1 SOW REQUIREMENTS

Compiler
Editor
{ Debugger

FW
KDBS
KDBS
KDBS
CM
ACLI
Linker
KDBS
KFW
ACLI

—— e am|em - - s - —— ——

1.1

3.
3.1
3.7
3.1.1.1
1
7
.7 l2
1
7

CM - 6

.1.3.10
! Specify data identified as shared

{ data and provide as standard

.1.3.9
| Specify host interfaces to support

.1.4.1

| Provide basic Run-time support

.1.4,2
Provide basic data transfer and

i control functions to support high

{ level I/0 package

.1.5
GENERAL MAPSE REQUIREMENTS

.1.5.1

Tools written in Ada and conform to
| standard interface specifications

low-level I/0 function and high
.1.5.2

Inter-tool communication via
virtual interface facilities

interfaces
4.1.4

KAPSE FUNCTIONS
facilities

i\ level I1/0 package

R . - — S ems—opegERa 8 T 4 EREELT e e e - - . b e = o w

g s = . . - ®. - =



s

b d
. F

PHASE 1 SOW REQUIREMENTS A - SPEC B5 - SPEC

H ' ' '
! 4.1.5.3 i 3.1.5.1 i ACLI - 3.1.1 '
\ Formats for similar user commands \ \ }
{ shall be uniform and consistent i ! '
| across all tools i ' ]
i i } }
i ] : ]
i 4.1.5.4 i 3.1.5.2 { ACLI ~ Appendix H
\ Data produced by one MAPSE tool i 3.7.2 i ACL i
! needed or useful to another tool H { Compiler - Appendix A |
i shalled be saved. Identify such H ' Appendix C |
{ data and provide interface H ' Appendix D |
| specifications H | Linker - 3.3.2.3 :
H d : Appendix C |
: 1 : |
] [] ] ]
; 4.1.6 ; 3.7.2.5 ; Editor - 3.2.5 ;
! MAPSE Editor, includes the H ] 3.3 H
| following capabilities: find, alter | ! i
{ insert, delete, input, output, move } | H
| copy, and substitute i H ]
| i i H
E ] d H

] [)
; s ;
VU7 H i Debugger !
i MAPSE Debugger H ' '
i | b
i ] i
I 4.1.7.1 i 3.7.2.6 i\ Debugger - 3.2.5 i
{ Shall function at the Ada level ' 1 '
: : ] :
[] [] [] ]
E 4.1.7.2 1 3.7.2.6 E Debugger - 3.2.5 2
{ Shall support debugging of all Ada | H 3.3.2 H
i language features including ] i 3.3.15 i
| concurrent programs i H '
5 ; i i
i i 1 H
P 4.1.7.3 i 3.7.2.6 | Compiler - Appendix C |
| Shall provide linkage between | i Debugger - 3.2.5 i
{ executing program in binary form ] ' 3.2.6 i
i and corresponding source program ' { Linker - 3.2.5.3 i
i ] i Editor - 3.3 H
i : : |

CM -7

0 RTRN N ST T



B e B W e e LALY

X

o o

3 e -
PO

P A i

Proreitvwe

O

PHASE I SOW REQUIREMENTS

A - SPEC

B5 - SPEC

4.1.7.4
As a minimum shall provide:
Breakpoints
Display Values
Modify Values
Display and modifications of
variables shal be machine
or scalar type
representations at the
users option
Display Subprogram arguments
Modify flow of program
Tracking
Dumps

3.7.2.6

Debugger - 3.2.4

4,1.8
Compiler Requirements

Compiler

4,1.8.1
Operate in a modular fashion;
minimize resource utilization

3-7-2-3

Compiler

3.3

4.1.8.2
Operate in batch, remote batch,
and on-line modes

3.7.2.3

Compiler

3.2.5

u.1.803
Shall be easily rehosted and
retargeted

307.2-3

Compiler

3.2.5

4.1.8.4
Process Ada source and produce an
efficient, equivalent program

3-702-3

Compiler

3.2.5

e I L e POy P T o I ettt

4,1.8.4.1
Process the complete Ada
language

3.7.2.3

—— - == mwlan e e e s W s v e s mdldd dn s mr malar s i maac A dd fm e v e Er e e e e - -

—— - mm m— mmlme e e s wemlae e ca e mn]mn m e maen e e im e e mr e cd ] et mn s e cn s e e re mv E ce ee me ae

Compiler

3-2.5

s = mns me mm]mn e mr e mm|an e e ms]s s v maem e - e v e rn e me an cd e R e me ee Ce me o s A == e -

CM -8

(,/

B . ) e e o . .a._‘a‘f“




o = "
- Faksibne 4
PRSI s,

g
e

P S

e e e st o - o i e

PHASE I SOW REQUIREMENTS A - SPEC BS SPEC
: i : 1
| 8.1.8.4.2 | 3.7.2.3 | Compiler - 3.2.4 :
| Design pragmas to support require- | ' i
{ ments, design language pragmas i H :
) ) ] t
! E E E
it 4.1.8.5 i 3.7.2.3 { Compiler - 3.2.5 i
{ Produce all necessary outputs i 3.7.2.4 \ Appendix C |
| required to implement separate ! ! Appendix D |
{ compilation and linking and execu H H Appendix E |
{ tion produce output listings any or | ! !
! all of which can be user suppressed. | H i
[] [] [) []
; ; | ;
¢ 4.1.8.5.1 i 3.7.2.3 | Compiler - 3.2.5 i
| Produce symbol attribute listing i ! 3.3.14 i
d i i Appendix E |
' H i |
i i } H
! | : :
| 4.1.8.5.2 | | Compiler - 3.2.5 i
| Produce symbol cross reference ‘ i 3.3.14 i
| listing ‘ d Appendix E |
H i ' i
1 } H 1
i i ! H
| 4.1.8.5.3 i | Compiler ~ 3.2.5 ‘
\ Produce source listings i i 3.3.2 i
! 1 1 Appendix E |
i i i i
: i : !
' : i i
| 4.1.8.5.4 1 3.7.2.3 | Compiler - 3.2.5 i
{ Produce object program listing H 1 3.3.13 \
i i i Appendix E |
i ' i !
i i i i
{ | | \
| 4.1.8.5.5 | 3.7.2.3 | Compiler - 3.2.5 :
{ Collect, store, and output source | H 3.3.4 '
{ program and compilation statistics | H Appendix E |
[] 1 (] ]
| | | ;

CM -9




PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC
i i i i
! 4.1.8.5.6 i 3.7.2.3 ! Compiler - 3.2.5 |
| Produce environment listing H ' 3.3.13 [
! i : Appendix i
i ! H i
} i 1 i
] ! ] !
! 4.1.8.5.7 1 3.7.2.3 ! Compiler - 3.2.5 H
{ Produce system management listings | ! Appendix '
] t ] [}
| | ; ;
! i i :
3 : p ;
1 4.1.8.6 i 3.7.2.3 ! Compiler - 3.3 }
! Shall perform extensive error i i 3.3.2 H
| checking. Errors shall be associa- | i 3.3.4 i
! ted with the source line number H ' Appendix {
) 1 [] 1]
a z | |
| 4,1.8.6.1 i 3.7.2.3 | Compiler - Appendix i
! Severities of compiler errors shall | H H
! include ! i {
i i ] i
i i : i
! i } !
{ 4.1.8.6.2 i 3.7.2.3 ! Compiler - Appendix '
{ Error messages shall contain an ! } i
| error identifier, severity code, and! i 1
! a descriptive text i { i
i i i i
i \ \ i
{ 4.1.8.6.3 i 3.7.2.3 { Compller - 3.2.5 i
| The compilers shall detect 100% of | H Appendix !
| syntax errors and all semantic 1 : i
| errors, any capacity requirement ' i H
! that has been exceeded:; list of all | H i
! error messages generated shall H ! '
{ appear in the Users Manual. } ' H
t ] 1) (]
; | | ;
H | | i
i : : :
| 4.1.8.7 i 3.7.2.3 | Compiler - 3,2,t '
! Optimization shall occur at the | i 3.2.7 i
| user's option via language pragmas. | i 3.2.8 !
| Optimization with respect to memory | d 3.2.9 1
! usage and execution speed shall be | i 3.2.10 i
! provided. i i 3.2. 11 H
i i ! 3.2.12 H
| i i i




PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.8.8

Shall process Ada source at a rate
of 1000 statements per minute or
faster

3.2.1 Compiler - 3.2.5

- - ——- e, e -
e in

4.1.8.9

Goal shall be no arbitrary limita-
tions; clearly identify any limita-
tions on internal capacities

3.7.2.3 Compiler

3.5

4.1.9

LINKING and LOADING REQUIREMENTS
facilities shall adhere to rules
and specifications contained in
language manuals

3.7.2.4 Linker - 3.2.5

4,1.10
Ada Program Library as specified
in language manuals

3.7.2.4 Compiler - Appendix D

4.1.11
Project/Configuration Management
facilities

307-2-2 CM -

3.
KDBS - 3.
3.
3.

4.1.11.1
Must provide the following reports:
Configuration Composition
Report
Attribute Report
Partition Report
Attribute Select Report

KDBS -

CM -
ACLI -

———— e —n m- —- v mofme om ce e —n mnfen 2m e m mc]en e o —m me == mefem ce ce e e efes e - - —— -
- - e = o e o mmfoe me ve me ae wafam ce el e ccfen mh o me e e ecfee me e wm m mdee —. -l
[ VRN HUIPII P NEPUVSIPIU PN SIS JUGN PV WU PP,

—— e - - - Sa——- _—" v —n m- e —n - e ev|er - - me e e cefon - we e ——-

4,1.11.2

Summary reports based on
combinations of attribute,
partition, configuration, or
version qualifier

KDBS -

CM -
ACLI - Command
Utilities

[ O —

m —- - . = —————
]

—— = —- - ————

M - 11




PHASE I SOW REQUIREMENTS "A - SPEC BS - SPEC

4,1.11.3

MAPSE shall include a mechanism for
automatic stub generation. MAPSE
shall store source code and
maintain pertinent information for
the stub

3.7.2 Compiler

Linker

1
A ) W
w W
o U =

h,1.12

High level I/0 will be an extension
of or alternative to package
specified in the Ada Reference
Manual

KDBS

4.1.13

Specify and include in design
terminal interface routines for
batch and online keyboard terminals
required for Phase II

3.1.5.3 KFW -

4.1.14

Identify, specify and design any
additional host dependent programs
necessary to implement MAPSE on
IBM and Interdata computers

-—wm e = me e e - e - wm e e e e ce ma e ca|re e _—e e e e e e =
———— ——- wm - —— - - - ——- . mm - ——- —- -, e mn]ee e we ce m,- e —. - -
—— e - o - e, e e e volen e e ce cn me e e e —e ne e ee —e aa
e S e e e B T Y

BN e

CM - 12




| Volume )

COMPUTER PROGRAM DEVELOPMENT SPECIFICATION

(TYPE B5)
¢

COMPUTER PROGRAM CONFIGURATION ITEM

KAPSE Framework

3 Prepared for

4

€

éj Rome Air Development Center
Griffiss Air Force Base, NY 13441
;é Contract No. F300602-80-C-0292
X

,v‘

4

{ Vol 1

/L

N aaataned




hn o
PPN S - kit

TABLE OF CONTENTS

SeCtion 1 = SCOPCecitsrscerssccsssssscncsasosssosssassscssssssannsss

1.1
1.2

Identification.....ll....'..l..ll.......‘0........‘.....0
Functional sumary....'...........Q.‘........I.II.........

Section 2 - Applicable DOCUMENESeevessesercacccoscsscsssssscsssese

section J - Requj.l"ements......-..............-.-............-.-...

e e o o o
* o * »
Ew N -

wLw ww W

. o ® o ® o & ¢ ® o o @ s o ¢ o o |}
EELEFLEWLWLWLLWWLWWWLLL VDENVORRN o = a

e ® ® o €& o * & o e o « & o e

—‘S\CQNOWCWN—‘ LS A~ VAR | G

-

LLwuwre wu LwuLwrLLwLwLLwLL vwLww
. *

- L]

LN -

Introduction.ccceeecesssccecasscscscassnssscaceccoccsosos
General DescriptioN..cccccceesacessnccsccsscsccssccsssens
Peripheral Equipment Identification....cccceeescccccssace
Interface IdentificationNe..scesscscecccessncscsoccscosasnss
Functional Identification..c.ceeveeecescescccsscsacscsases
Functional Description.....ceceseescscsscccacccscscccscaas
Equipment Description..ceieesesecesscseccssccssssacsssens
Computer Input/Utilization..ececececesascsnscoscenscssscsnee
Computer Interface Block DiagraM.seecessccccesscssascscnns
Program InterfacesS.ccececsccccccrsssososssssosssosocccsssnces
Function Description..c.iicersvacsscessccssscsnsssscssscnss
Detailed Functional RequirementS..ccessccecccssscssscocse
KAPSE INitiatorsecscesseoscacescasescnssconnsccsossacosannas
Logon Utilityeeeeecesoossccesoscnccoscscnscsocssosssasosnse
Request Director...c.ccccceececeoscercocccrossensasnansne
KAPSE Terminator.ceccccscsesscceessesesccacsososscscssoscssvons
Process Administrator....ceeeececcccececssssscsssccncnscas
Task Manager..eceocesecctesoascsssasoscssssssscscnsnsscns
Context Manager..cceeeecetessoscsscsccssccossssssasacsncns
Event Monitor..ccecececeneecesssssssnsscsscsssascscsnsscossans
Volume Manager. ceceseessnacoscassscssssnssscosssassaancess
I/0 Dispatcher.cececoesssancccrscsasecasccccsassnnsseansasns
KFW Loader...ccccescencorsvsssscosssssnssssscasssssansnnss
ADAPTION.ceeesesnssoscesonscescasancncasosassssncssssesana
General Environment....c.ceeeeeesesssccscccccsvsnssssscee
System ParametersS..cceceoscescecssesesssssenssccscssscoscnns
System CapabilitieS..cecvieeeccesssascsnssoscansasscansaas

Section 4 = Quality Assurance ProvisionS....cecessscesccscescscccss

EFEes &
. @
Wi =

Introduction.sesceccecececeensscssssosscssncscssssscssncns
Subprogram TeSting..ccseceecsssoestcecrsccscsosnssssssaces
Program (CPCI) TeStinge...ceceocsscssscccsssserascsacanne
Test RequirementsS.cceecevecesconsssecssccscnscnssscssscnne
Acceptance Test RequirementS..cccececerecoccccsssccsosnns

Vol 1l
iii

3 e R . po- T DT e e
. K »

1-1

3=2
3~z
3-4
5-4
3-7
3=7
3-13
3-23
3-23
3-24
3-26
3-30
3-31
3-50
3-77
5-85
3-93
3-103
3-109
3=111
3=111
3=119
3-120

41
42
U-g
4=
4-5

W. P tam




Lot ko - -

T e e w

TABLE OF CONTENTS

Section 5 = DocumentatioNe.eeccessassnccacscsnnssssncoscasnscscsnns

Genel”aln..-.--......-..-....o.........--.......-..o.-....

Computer Program Development SpecificationNeceecscccccssse
Computer Program Product Specification..ccccecevececcsace
Computer Program LiStingS..cccescocceccccscsccsscsssconse
Maintenance ManuUal...cceecsosceccrsscecsccsssassarsonnosne
USEr S ManUal..eesvecccoscossossascasaosassscavcnsoocnsoes
Rehostability Manual..cceesescscaccccascnsscsossnccnsanccas

.
.

IS WO T
.
-k wd md b ed b
.

[« RN NS VIR NP

Appendix A - KFW Virtual Interface PackageS....ccceesseccccsaccnss

Vol 1
iv

g i o ':_‘;A"-v-* g PR Ty - e . A :

»»»»»»




K i s i e

S

P

e %

Figure

3=-1
3=2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3=-12
3=13
3=-14
3=15
3-16
3-17
=14
3=1y
3=-20
PrYE]
3~2¢
3=23
3=-24
3-25

LIST OF ILLUSTRATIONS

KFW Functional DomMBinS...eeeeeceeccscscnsssscssassonsoaness
Computer/Input/Output Utilization...eceevercnsvsacasccaansas
MAPSE Interface Block Diagram...cssecocevoscesscccsossencns
KFW Program InterfaceS....ccceeeessssccsrocnssvsonssssanane
KFW Interface StateS.ccceecceoscsscccscscossacssonsescenneoss
Ada Feature Interface..ccccecesscssccecscocscscnsscsscnsoss
KFW Kernel InterfaceS..ccacsceecescscccssanssasssssassnnnnes
KFW Virtual InterfacesS..cccececscsccccccsccnssoasonscconcse
KAPSE Loader InstantiationS...cceeseeccsccecccoccsccnsonensn
MAPSE Enclosed Task ObjeCtS.cesecescccssosassscossssccannee
ACLI Instantiation.secsceeececcscesocccnscnsscnsecenscnssnose
Logical BreaKdoWn..cocoesoceoensescravseoressacsasccasasnccss
Logical BreakdoWN...ceeesessceesesecsanctsssssssncansensnsens
PCB InstantiationN.cceceeecscccecoscccsoncccessssscoscanncns
Logical BreakdoWn..eeeeeeesecseoersscossasoscessssssscscess
Logical BreakdoWNe.ccesoeccssssosecosasasaoccscsnasssssasnee
Logical BreakdoWN.ceeeeeesseavecssossssoscsssosocscansasensse

Tank DElayeeesecesessesesssnssncsscssssssccsssssssacssssnns

Logical BreakdoWn.eeseeeesscsesosoeoscescooscsosoonsncscansasss
MAPSE Data Retrieval CycCle...cceceecccecoscesscvssscssccaccas
L0gical BreakdoWN..ceeeceseceosscrsascecossnscsasssssscscnne
Concurrent Initiate RequeSt....cceeecevsvececcccssonssnacnes
Loading New MAPSE ProCesSS...ccceescsscscoccscocssssoccscane
0S/32 Adaptation Strategy.cecccecescccesvsscsvasssonsssssees
0S/32 Adaptation Strategy (SVC USage)eeecccoacossavccaccans

Vol l

Page

3-3
3=5
3-8
3-9
3-10
3-12
3-14
3-16
3-17
3-16
3=25
3=-27
3-32
3=34
3=51
3=-78
3-b0
3=87
3=-94
5=Y96
3-104
3-106
3-110
3-115
3-116




, -_ X

SECTION 1 - SCOPE

e

1.1 IDENTIFICATION

This document presents the Computer Program Development Specification (Type
B5) for the Computer Program Configuration Item (CPCI) callea the Kernel Ada
Programming Support Environment (KAPSE) Framework (KFW). This CPCI provides
the Minimal Ada Programming Support Environment (MAPSE) interface to the

host system.

The purpose of this specification is to define the KFW being designed as
part of the Ada Integrated Environment contract for Rome Air Develoupment
3 Center (RADC). This document will serve to communicate the functional
;f design decisions that have been adopted and to provide a basis for the
g‘ detailed design and implementation phase.

This specification provides the performance, design, and testing
requirements for the KFW. Section 3 presents the performance and design
requirements. Section 4 presents the testing and quality assurance
requirements. This specification, after approval by RADC, will serve as the
development baseline for the KFW,

1.2 FUNCTIONAL SUMMARY

The KFW is designed to provide machine-independent process management and
resource management functions to the MAPSE and to translate machine-oriented
requests into machine-dependent calls.

The KFW provides the administration and control services that are necessary
for the MAPSE to support the execution of multiple programs interacting with
a shared data base. These services are presented as a canonical interface
to a virtual operating system that uses the system facilities of a host

execution domain.

The services are visible to the other MAPSE components through the KAPSE
virtual interface, which enables the other components to be designed with a

minimum knowledge of the host environment. The interface is designed to

F ! specify the functionality that is usually contained within an operating

o Vol 1
& 1-1




system, Therefore, when the host execution domain includes an operating

system, the KFW services are derived from existing facilities to avoid

duplication of or interference with those systems facilities.

The KFW interface is designed to comply with the requirements of the Ada
language (such as tasks). In those instances where the language semantics
are to be defined by implementation considerations, the KFW functionality is

designed so that minimal constraints are imposed in exploiting the host

execution domain, This results in the designed functionality being %
f restricted when the host execution domain does not supply the underlying ‘
facility (such as multiprocessing). J

]

[ |

italioll

R A

““"’-J‘. Sy .-




SECTION 2 = APPLICABLE DOCUMENTS

2.1 PROGRAM DEFINITION DOCUMENTS

1. Requirements for Ada Programming Support Environment - STONEMAN,
United States Department of Defense, February 1960.

2. Reference Manual for the Ada Programming Language, United States
Department of Defense, July 1980,

g i b Pt s

s A

¢.

3. Revised Statements of Work for Ada Integrated Environment, Rome Air
Development Center, 26 March 14%80.

2.2 INTER-SUBSYSTEM SPECIFICATIONS

4, Specification for the Ada Integrated Environment.

k| 5. Volume 2, Computer Program Development Specification for CPCI KAPSE
L« Data Base System.

b. Volume 35, Computer Program Development Specification for CPCl APSE
Command Language Interpreter.

7. Volume 4, Computer Program Development Specification for CPCI MAPSE
Configuration Management System.

8. Volume 5, Computer Program Development Specification for CPCI Ada

él Compiler. ]
b | 9. Volume 6, Computer Program Development Specification for CPCI MAPSE ?
Linker. '
gy 10. Volume 7, Computer Program Development Specification for CPCI MAPSE 4
3 Editor.

Z 11, Volume 8, Computer Program Development Specification for CPCI MAPSE

3 Debugger.

% 2.3 MILLTARY SPECIFICATIONS AND STANDARDS 9
.ﬁ 12. MIL-STD-483, Configuration Management Practices for Systenms,

L‘ Equipment, Munitions, and Computer Programs, 1 June 1971, :
H 13. MIL-STD=-#440, Specification Practices, 30 October 1yY08.

3
4

Vol 1
2-1




R r—

2.4 MISCELLANEOUS DOCUMENTS

14, Ada Support System Study (for the United Kingdom Ministry of
Defence), Systems Designers Limited, Software Sciences Limiteaq,
1979-1480.

15, Fisher, David A., Design Issues for Aca Program Support

oo ot e e i Srm AT

Environments, Science Applications Inc., SAI-81-26%-WA, October
1980.

16. Ritchie, D. M., and K. Thompson, The UNIX Time-Sharing System, The
Bell System Technical Journal, Vol. 57, No. 6, Part 2, July-August
1978.

17. Thompson, K., UNIX Implementation, The Bell System Technical
Journal, Vol. 57, No. 6, Part 2, July-August 1%78.

ok

o O il ekl
JREAPSIUPOURARE.. 0%l TR RO ot ¢

+

.|
I
4




SECTION 3 - REQUIREMENTS

3.1 INTRODUCYTIUN

This section presents the design and performance requirements of the KFw,
The visible specifications for the KFW available to all MAPSE coumponeuts are
incorporated in the KAPSE virtual interface and are presented as an appendia
to this specification. The MAPSE environment support to meet machine-
inuependent portability design requirements, as specifieu in the SUW anc
STONEMAN have been restated in the System Specification (lype A) ana are

incluced here by reference.

3.1.1 General Description

The KFW presents the facilities through which the user accesses the host
operating system. These facilities are embodied in a virtualization of
operating system services that provides for resource management, process
scheduling, and servicing of user requests. The view of the KFW presented
to users and to the MAPSE Tool Set will be consistent from implementation to
implementation. The KFW will also provide the translation of the user
requests from the virtual system to the host system. The KFW may execute on
a bare machine or under an existing operating system, depending upon the
implementation. In each instance, the KFW must interface directly with the
host to proviue the support for the cancnical interface that is visible to

the portaule MAPSE components through the KAPSE virtual interface.

A principal objective of the KFW uesign .s to optimize the coexistence anu
integration of the MAPSE and the underlying operating system. The MAPSE
user's awareness of the host envircnment should be minimal or noneaisteut,
but the MAPSE, through the KFW, should exploit existing facilities, where

appropriate, to maintain the required efficiency.

3.1.2 Peripheral Equipment Iuentification

Standard terminal interface specifications and functions are provided
through the KFW to facilitate the use of a variety of batch and interactive
terminals and to ensure that machine-dependent interfaces do not affect the

user. The KFW also provides the host interfaces required to support low-




1. KAPSE Initijiator
2. Logon Utility
3. Request Director
4, KAPSE Terminator J
, 5., Process Administrator
X 6. Task Manager
- 7. Context Manager
'j 8. Event Monitor
;i Y. Volume Manager
f 10. Input/Output (I/0) Dispatcher

level I/0 functions and basic data transfer and control functions. All nost

dependent computer programs necessary to implement the MAPSE system onh the
IBM and Interdata computers specified for delivery of the system will be
specified and implemented as part of the KFW. Although these initial hosts
are both uniprocessors, considerable attention has been given to the uesign

of the KFW control functions so as to permit efficient implementation on
multiprocessors.

3.1.3 Interface Identification

The KFW interfaces directly with the KDBS, with the MAPSE tools and user
programs through the KAPSE Interface Package and the Ada Tasking Package,
and with the host machine.

3.1.4 Functional luentification

The major functional areas of the KFW are:

11, KAPSE Loader

The 11 fdnctioual domains are depicted in Figure 3=1.

>.2 FUNCTIONAL DESCRIPTION

This section describes the functions of the KFW, the program and equipment

relationships and interfaces and the I/0 utilization of the KFW.

Vol 1
=2




X

R AL Skt

surewoq TeuorIdUNd MIN °T-£ 2andrg
9-900€-1£0 'ONdL
:
o100 HOLVYHL
cgwaco.. oh xmm::._g INIA3 AX3LNOD nSVL $$3008d »m(-uﬁ.zw» | .mmﬁu.h. E..:ooo...s :ohu.(hu.x_
| [ 1 [ T~ 1 1 1 I o7
o™
s ~.
NHOMINVHA
2
i )
[

. B TS AP et i S
R R - - " . PR 2 A et »
. . A T 0 . h q . TP 2 i
R T, . - P N RO » " - Y




e e =

The KFW provides the administration and control services that are necessary
for the KAPSE to support the execution of Aua programs interacting with a
share. data base. These services are presentead as a virtual operating

system interfacing with a host system.

The services are visible to the other MAPSE components through the KAPSE
virtual interface. The KFW is designed to provice the functionality that is

usually contained within an operating system.

The KFW is designed to provide a maximally machine-independent interface to
host systems. Where host operating system features provide the
functionality required by the KFW, the interface to those operating systems
are minimal.

>.2.1 Equipment Description

The host systems with which the KFW must interface are the IbM VM/370 system
and the Interdata 8/.2 under the 0S/32 operating system.

3.2.2 Computer Input/Output Utilization

The KFW design provigdes those facilities required by the MAPSE to
communicate interactively with terminal and storage dagevices that are
configured in the host hardware suite. See Figure 3=2.

The host hardware suite includes physical storage devices on which data may
be recorded and subsequently retrieved. The KFW provides an interface to
these devices as required to support those data base objects that have been
designated as devices for manipulation by an Ada program. The KFW relies on
the availability of device handlers in the host system so that the
correspondence between a data base object and a device may be established

and maintained in a manner consistent with that of & data base object anu a
file.

When console or terminal communication devices are configured, the host
system facilities for handling communication devices are used by the KFW to

implement an interface that is responsive to the needs of all MAPSE tools
that may establish a dialogue with a user.




PUBEEE

G ARAC Aeadnotniin

| NON- }—zl‘ KAPSE e ‘ NON- |
3 PRIVILEGED FRAMEWORK RIVILEGED

[}

i
HOST
SYSTEM
FACILITIES

i
4 STANDARD COMMUNICATION  NON-STANDARD
$ DATA CARRIER DEVICES DEVICES
P | DEVICES
: 3

|

i Figure 3-2. Computer Input/Qutput Utilization
#
%

!

: Voll

* 3-5




A consistent user communication interface to the MAPSE requires that the KFW
incorporate in its design a stanuard line-editing protocol for console or
terminal input. Host system facilities, while providing services for
reading and writing characters to communication devices, are unlikely to
conform to this protocol, Therefore the system facilities must permit the
KFW to implement the necessary functionality to support the eaiting of input
characters without interference. A critical requirement is that the defined
MAPSE breakin or attention signal be discernible by the KFW so that a user
may be connected initially to the Logon Utility or may terminate a current
execution state in the MAPSE.

When noninteractive communication devices are configured, such as a card or
paper tape device, the KFW is designed to provide conventional batch
operation by directing the device to the APSE Command Language Interpreter.

Again the host system facilities for handling these devices are useu by the
KFW.

The KFW is designeu to support a variety of nonstandard input and output

requirements. These requirements result directly from an Ada program ana
from the KFW itself.

Through the KFW, an Ada program is provided the functionality to connect to
a device that is not in tue prescribed host haraware suite. In this
instance, the host system facilities must enable the KFW to have control of
the I/0 channel for the device so that the KFW may receive and send

instructions or data from the Ada program to the device or device controller.

Other nonstandard inputs required by an Aua program are specific entry
interrupts and clock data. The KFW is designed to field the interrupts and
read the clock through the host system facilities. Similar interrupt and
timer services are required by the KFW in order to detect the termination of
asynchronous events that it may have initiated in the host environment. For
example, the completion of a MAPSE I/0 operation is recognized by its
termination interrupt being made available to the KFW through the host
system facilities.

Vol 1
3=6

27




taXn o .

R S

TN

_‘—_ P

3.2.3 Computer Interface Block Diagram

Figure »5-3 identifies the interface points between the KFW, the MAPSE

components, and the host system.

3.2.4 Program Interfaces

This paragraph identifies the KFW interfaces and their purposes. The KFW
interfaces through the KAPSE virtual interface to the MAPSE tool set and Ada
user programs, to the KDBS at the kernel level, and to the host system.
Figure 3-4 represents these interfaces.

Figure 3-5 depicts the six primary interfaces provided by the KFW in the
KVI. For each interface its calling and called states are iacentified, such
as, Process-to-Kernel, Kernel-to-Kernel and Process-to-Process. The latter
two modes do not require the use of the HKequest Director intertace ana may
be performed through Ada subprogram calls. In those instances where an
interface has multiple modes, as does the Process Auministrator, the
interface is provided to accommodate each mode through multiple packages

with identical visible specifications.

Appendix A contains the Ada package specifications for the MAPSE to KFW
interfaces, In addition, where appropriate, Ada package specifications for
the major data types used by the interfaces are included.

3.2.4.1 KAPSE Virtual Interface

Specifications of the services the KFW provides to the MAPSE tool set and
Ada user programs are encapsulated into the KFW Interface Package and the
Ada Run-time Support Package.

Ada user programs and MAPSE tools execute in a nonprivileged execution
state. The KFW considers these execution domains to be MAPSE processes.
The functional domains of the KFW and KDBS that execute in a privileged
execution state constitute the Kernel. In order to support the 1logical
distinction between a MAPSE process and the Kernel Process, the KFW supplies
an interface that enables a MAPSE process to request a service provided by
the Kernel Process. Any KDBS or KFW Kernel service that is requested by a
MAPSE process is connected to the Request Director in the Kérnel for the

Voll
3=7




29

wea8erq }o0Td 0BJI9IUT ASAVH "€-€ 2andii

v-LO0L-4Z0"ON 44

SWHVUOOUd
¥0123¥10 1S3N03Y 4"v ¥35n ¥$100L
AL1TLN NODOT . I WILSAS ¥IHIO
HOLYNINEIL/HOLVILINI %4
¥30vVO1 354w 30VIBILNG -
“WOW INNI0A MmN
‘WON 1XILNOD
HOLINOW LN3AI —
MIHILVASIO O/1 i | 43990830
"NINGY S$3006d
L]
s3ovasuum |
OV | RETNED)
150M “ M i ¥oLIG3
{M33) YIDOVNYIN ISYL , o
(80 O/ vav -
| o™
=
lllllllllll VT
Tseox
1 ¥
|
] = TP
|
| 14044NS NOLLI LUV na1AS
) $NXOVE IAIHINY je—as] 1naNIOVNWN
| ‘3LNGIYLLY 'SSIIIV NOLLYUNDIINGD
| RELTEN ‘ONd ALIILN
| s8a% o0y
| nav
| b I _
vaan | I .
130m | |
. | 13A27 §5300Ud 1INUIN 13A37 S5390Ud IS4VIV
.
7 o . - . e T el o o e i AT E il - - e T -




———
D

4
3
1
o
===
| MAPSE !
' TOOLS KDBS :
: ===
! | KFW
(Y A N 4
r-=—=--t|-—-—"=-—=="=—=«w- |
3 |
| V i
I KFW KDBS !
| ST :
! !
¥ L -
¢
5! HOST
SYSTEM
; FACILITIES j
! : |
: HOST
ENVIRONMENT =>
4] MAPSE-KFW
INTERFACE
vi Figure 3-4. KFW Program Interfaces
3
,~l ’
t 4
) Vol 1
g i
;. 3-9 i
A
i
1 ’

ZO




MAPSE-KFW INTER- INTRA- INTRA-
INTERFACE STATES MAPSE | PROCESS | KERNEL
CONTEXT MANAGER X X
EVENT MONITOR X X
1/0 DISPATCHER X X
PROCESS X X
ADMINISTRATOR
TASK MANAGER X
VOLUME MANAGER X

Figure 3-5,

KFW Interface States




service to be recognized and routed to the appropriate logical domain
within the Kernel. The nature of the interface to the Request Director
depends upon the host system facility available for communication between

executing processes.

The interfaces supplied by the KFW are oriented to specific features of the
Ada language. Figure >-b itemizes these features ana shows the functional
domains that provide the interfaces used to satisfy them. In the case of
the standard 1/0 feature, the feature also requires interfaces that are
supplied by the KDBS,

Certain facilities provided by a KFW 1logical domain are designated as
critical facilities. Critical facilities are those facilities that perform
operations which, if misused, may result in unpredictable execution states.
A design requirement of the KFW interfaces is to organize its package
specifications so that the misuse of these facilities is minimized. A means
of accomplishing this requirement is achieved by judicious use of the KLB
access control of Ada library objects in conjunction with the separation of
critical facilities.

3.2.4.2 KDBS Interface

The portability of the KDBS is achieved through the KDBS interface provided
by the KFW in the Kernel. This interface presents to the KDBS a
straightforward, convenient abstraction upon which to specify the storage
and retrieval of information. The abstraction and its accompanying
operations are designed to be compliant with host system facilities that are
generally available. The interface 1is implementable in terms of any
underlying host file management system or device handling packages. The
interface insulates the KDBS in particular from tle nature of the device on
which the abstraction 1is mapped. In the instance of an interactive
communication device, the KFW provides the terminal handler to refine the
transmission of characters, unless precluded by the host. If this occurs

the host terminal handler 1is enhanced to meet the KDBS interface
specification,

Vol 1
5=




90eJIa3ul 9anjeay epy

*9-¢ 3an814

0/1 1A MOT

O/I QYVANVYLS

SHOLYD0TIV 88300V

SLJNHUIALNL AUANI

SiNSVL

Y3IODVNVYIN
ANNTOA

HIDVNYW
ASVL

‘NINav
$8300¥d on

HOLINOW
AN3A3

HIDVNVIN
4X31NOD

NOILNDAX3
WVHOOUd NIVN

S34¥NivV3id4 vav 40
LH0ddNS 30VIYILNI
MDI-ISdVYIN

e m— e

Vol 1l
3-12




3.2.4,3 Host System Interface

The host system interfaces of the KFW provide the MAPSE direct communication
to the host environment. The nature of these interfaces determines the
functional complexity of the KFW.

LT LT Jleeias VAT g ARSI

For the two initial host systems the nature of these interfaces is
significantly different. This requires that the KFW design be aaaptable to

TR TR~

both the low level machine interface of VM/370 and tc the conventional

multiprogramming interface of 08/32. The low level style of interface

Dkl atebud

facilitates the exploitation of the base computer architecture in realizing
the potential of the KFW design. The multiprogramming style of interface
requires that the KFW use the services of the system software. As a

consequence, host software pertormance characteristics are projectea into

o the MAPSE. In those instances that result in unacceptable performance, the

host system interfaces may be tuned to an improved level of capability.

3.2.5 Function Description

The main function of the KFW is to provide the administrative and control
services that are necessary for the KAPSE to support the execution of Ada
programs interacting with a shared data base. Thus the KFW provides the
services of a logical operating system to map the MAPSE onto various host

systems.

The KFW consists of the components identified in Paragraph 3.1.4. A
schematic that informally shows the major functional interfaces provided and
employec. by the KFW is shown in Figure 3-7Y. The schematic omits the

functionality of the Request Director because it is assumea, Where requirea,

to be an implicit property of each functional interface, !

The components of the KFW that execute at the Kernel process level are
depicted in the schematic of Figure 3-7. These components provide the
essential facilities for controlling and servicing multiple MAPSE processes
and for sending and receiving requests to and from the host environment. In :
addition, facilities are included to startup and shutdown the execution of

the KAPSE.

Vol 1l
3-13




§90BJIDIU] TIUIdY MIY °/-¢ 2anBT4

TANYIN \\\\\\

w 8C00C (€0 ON 41

TIAN SINLINIVI NILSAS 150K H_
x 1SOH

llllllll S (VRN SRR S SR

e e e e e — - —— —— — —— —— —

\ \ \ u3gvol AL
\ x & 354V NDDOY

e

—e
-y
r
7 i S
x \
73A31 SS3004d
IINGIN
b: (o) ]
y30wNVI
vi
ALIMAN IDVNIVd
IDVYNIVI LHOdINS saox wu(hwzxw.—,z_
IWIL NN vQY
TIATTSSID0Hd
ISdv

SWY¥OOHd 135 1001
¥3Isn ISV ov




In those instances where a KFW component presents an interface through the
virtual interface, the KFW Kernel Process maps the portable virtual
interface functionality into one or more host dependent system facilities.
The schematic of Figure 3-8 identifies the components that provide this
mapping., The bold arrowea lines entering the hatched KFW Kernel component
i éénote the portable KFW interfaces in the virtual interface, anc the arrowed
lines exiting denote the results of the functiocnal mapping to the host
facilities. When the host system facility is a bare machine, the mapping is

isomorphic and the KFW Kernel process becomes the host operating system.

All MAPSE processes are created through an instantiation of the KAPSE Loader

executing as a process under the control of the host system facilities.

Initially, the KAPSE Loader is instantiated to load the Logon Utility. The
Logon Utility is then executed as a MAPSE process. The schematic in Figure
3=9 shows the three instantiations of the KAPSE Loader requirea to establish
the execution domains for the Logon Utility, the APSE Command Language
Interpreter (ACLI) and the MAPSE tool to run as MAPSE processes. A
consequence of the Logon Utility executing as a MAPSE process is that by
definition, it becomes the parent of all MAPSE processes and relies
primarily on the portable interfaces of the KFW Kernel Process. The KAPSE

Loader, however, is dependent upon the direct use of host system facilities.

The Task Manager is the only KFW functional domain that resides in the
g Shared Execution Domain of the MAPSE., This functional domain is used by any
?? MAPSE process enclosing Ada tasks and executes as a part of the MAPSE
process. The schematic in Figure 3-10 shows two MAPSE processes that have

'; enclosed task objects,

Only the portable interfaces of the KFW Kernel process are used by this
fé functional domain whiech is thereby insulated from the host system
facilities. Through the Kernel process tacilities, uifferent executions of
a MAPSE process are initiated in the host environment tor each encloseu task

‘: ob g ect.

The next 11 paragraphs describe the individual components of the KFW.

Vol 1l
X 3-15

=C

~—

L

g S y - R PRI ST L. < +C o T




ﬂh
§90BJI9]UL TENIATA MIN °g-¢ 2anSy3
Z
SIIVIYILNI TINUIN \\&
BE00E 1E0 ON d)
a.pw.vw.._ —! S3INLIDVI WILISAS L1SOH _
|||||||| i _—_——l—_———————f—_—_—_——e—e—— b —— e —_—e e e e e e e —— e —— ——— e

HOLVYNIWHIL HOLVILINI
»

| | B o7 %) it
\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 77

Voll
3-16

T3A3T S$3D0ud
TINYIN

S IS L S, S |

HIDYNVIK

= ALruLn J9VIVe
IDVNIVA 1HOINS seax BDVIYILN
INNLNNY vav
I3AIN SSIV0N
3ISdv
SHYYO0Hd 135 1001
u3sn 3ISdYN MoV




SuoflETIuUBISUI I3peO] ASIVA °6-f 2i1n8yy

SNIOILVIINVLSNI H3GVOT §

Z
€00€ 160 ON 41
AN _ $311119V WILSAS LSOH _
1SOH
2z \\
YIOVNVI HOLVNINYIL WOLVILINI \ \\\
1X3INOD 384w IS4y
% 27
HOLVH ISININGY SS3I0HJ _
HOLINOW
IN3A3
i~
- n
vas) Y3OVNVYW o
cw:um.-: 1o INNI10A [
AIAIVSSIIONL ~
TINYIN
S80%
U3V
Vi
ALFWIN I9VXIVd
J9VHIVY 1HO4INS seax BV
INILNNY vav
T3IAIT SSIV0U
3ISdv % Q\
SWYHOOUd \\
HIsn
% .
P r it Ranrs ¢ r e e r——r o neriiftundiuliialinal od e T -




8393[q0 ysel pasoroug ASAVW ‘QI-€ 2In8yd

.,WJ
<
800C-1£0 ON 41 ~— N
RELEN ﬁ SILINDVS WIISAS 150M _
1SOH A
——— I GG SO, S L N
HIOVNYW HOLVNIWY3L HOLVILING u3avon Atnun
1X31NOO WAV 354w 35dvy N0901
HOLVULSININGY SS3004d ;
HOLINOW
1N3A3
UIOVNVIW
i M INNTOA .
©
=y
Ll |
o™
13A31 5535044 =
TINYIN
seax
SR W ] U S S e
“xmuons&
¥SVL
Lisiiic Astian PvasN
JOVIOVE LHOINS saox MmN
INILNNY VOV
13A31 SS300Ud
3ISdv
"| SHYHO0Ud r 138 1001 v
i E T r- 354V
| !
! WSVL i #SVy
L2 J 22 -
L2 4
. - - - - - * -
- — e eonepimERe o T TUEm TS RN T ) N




1

3.2.5.1 KAPSE Initiator

The purpose of the KAPSE Initiator is to establish the initial execution

environment for the KAPSE once the Kernel process has been loaued in the
host environment.

Upon establishing an instantiation of the KAPSE, the host system initially
passes control to the KAPSE Initiator. Included as a part of this
preparation is the allocation and loading of the Shared Execution Domain and
the acquisition of the Dynamic Address Domain. Prior to relinquishing

control, the KAPSE Initiator starts the Logon Utility to make the MAPSE
available for user access.

3.2.5.2 Logon Utility

The purpose of the Logon Utility is to await input activity on the batch and
interactive communication devices configured for MAPSE use.

The Logon Utility performs the prescribed Logon protocol, including user
authentication. A process request is then issuea to start execution of the
ACLI. When the ACLI completes execution, the Logon Utility is reactivated
and makes the device available for the next user.

3.2.5.3 Request Director

The purpose of the Request Director is to route requests for Kernel process
level facilities from a MAPSE process to the appropriate KFW or KbLBS
component.

The Request Director implicitly handles all such requests for kernel level
facilities.

3.2.5.4 KAPSE Terminator

The purpose of the KAPSE Terminator is to accomplish the orderly shutdown of
the MAPSE,

The KAPSE Terminator terminates all MAPSE processes and disables each
communication device to the MAPSE to prevent further user interaction. When
the shutdown state 1is achieved, the KAPSE Terminator initiates the
prescribed MAPSE cleanup processes to perform cuata base backup. The KAPSE
Terminator releases the resources acquired by the Kernel Process
relinquishes control to the host.

and

Vol 1l
3-19




3.2.5.5 Process Administrator

The Process Administrator controls the executions of logically concurrent
MAPSE processes. The KFW Interface Package provides a portable interface
from the MAPSE tool set and Aua user programs to the Process Administrator.
This interface provides a consistent methodology for supporting the MAPSE
loosely coupled process execution structure and the requirements of Ada
tasks. A separate address domain is defined for each MAPSE process. Within
this domain the Process Administrator schedules the various executions of

e d ol el

the MAPSE process on the basis of the task control information maintained by

the Task Manager. As a result, the execution of tasks from various MAPSE

processes are interleaved while retaining the intraprocess execution
E sequence mandated by the task control information. Once the Process
,: Administrator has scheduled a process for execution, the process is
' considered to be logically active because actual execution may be delayed by
the host environment.

E 5.2.5.6 Task Manager

The Task Manager synchronizes the concurrent executions of a MAPSE process

in conformance with the intertask communication performed by tasks within
the process. The Task Manager executes within the execution domain of each
MAPSE level process. The Task Manager is responsible for establishing, in
conjunction with the Process Administrator, the execution domains required
! to support Ada tasking. In order to exploit the facilities of the host
' system, the Task Manager relies on the Process Administrator to schedule

tasks for execution when a change in the tasking control within a process is

kg -

Pl S

required, The Process Administrator may schedule one or more tasks,

e

depending on the number of tasks that are ready to be executeu, the number

of processes currently active, and the capabilities of the host system
facilities.

o T o L D

3.2.5.7 Context Manager

-

PP

The purpose of the Context Manager is to .control access and use of the
Dynamic Address Domain and Shared Execution Domain in the MAPSE.

, Vol 1
o 3-20

o4/

- ——— et e
S . N : L . g .




™

t go

The Context Manager is provided to change the address domain of an executing
process. The domains are established by the Context Manager using the host
system facilities that support storage space management for a dynamic

execution environment.

The Dynamic Address Domain is used to enable a process to change its address
domain as defined by the process context map. The Shared Execution Domain

is used to build the MAPSE Run-time System that permits the shared execution
of the KFW Task Manager and the KDBS I/0 Support Package.

3.2.5.8 Event Monitor

The Event Monitor receives, identifies, and traps requested interrupts from

the host environment that are made available to the Kernel process.

The Event Monitor, in conjunction with the Process Aoministrator, schedules
both MAPSE and kernel 1level processes to respond to these traps and
interrupts.

3.2.9.9 Volume Manager

The Volume Manager transfers data between the logical data base maintained
by the KDBS and the logical and physical data devices.

Using the most appropriate features provided by the host system facilities,

logical and physical data devices are manipulated to store and retrieve

information. The Volume Manager, although dependent on the host system

facilities, does not communicate directly with them but uses the facilities
afforded by the I/O Dispatcher. A single request to the Volume Manager may
result in one or more requests to manipulate the associated data device. 1In
these instances, the requests may be chained together and forwarded to the
I/0 Dispatcher.

3.2.5.10 1/0 Dispatcher

The purpose of the I/0 Dispatcher is to synchronize data transfer requests

that have originated from concurrently executing MAPSE processes.

The I/0 Dispatcher provides a portable interface through the virtual
interface that is used by the Volume Manager and MAPSE processes to initiate
I/0 operations to data devices configured in the host environment. The I/0

Vol 1l
3-21




i Aot

g A S WS

R e e - - P

3.2t

,‘
ke B

.

Dispatcher uses the facilities of the Event Monitor to recognize the
completion of all operations it initiates. When necessary, the process

originating the request is suspended through the Process Administrator.

3.2.5.11 KAPSE Loader

The purpose of the KAPSE Loader is to load a process for execution. The
KAPSE Loader uses the host system facilities to retrieve and load a process

that can execute under the control of the host environment. Once executing,

the process becomes a MAPSE process by registering itself through the
Process Administrator interface.




L s

P

(Rl

3.5 DETAILED FUNCTIONAL REQUIREMENYS

3.3.1 KAPSE Initiator

The KAPSE Initiator is the component within the Kernel that receives control
when the Kernel process is loaded for execution in the host environment.

The KAPSE Initiator provides no facilities to other MAPSE components. .
3.3.1.1 Inputs

There are no input arguments defined for Initiator.

3.5.1.2 Processing

The KAPSE Initiator is designed to prepare the KAPSE for process execution.
The KAPSE Initiator uses environment system parameters to create the Dynamic
Address Domain and the Shared Execution Domain. The KDBS and KFW packages

that are to be.executed as an extension of a MAPSE process are placed in the

Shared Execution Domain. The batch and interactive device definitions that

are available for user communication with the MAPSE are derivea, and the

user communication device table is formatted for subsequent use by the Logon

Utility. Once the KAPSE data base is made available the prescribed MAPSE

startup processes are begun and the KAPSE Initiator awaits their completion.

When the execution environment is ready, the Logon Utility is called through

the Process Administrator to respond to user access from the user

communication devices in the user communication device table and the KAPSE
Initiator completes its execution.

3.3.1.3 Outputs

There are no output arguments defined for Initiator.

Vol 1l
3-23




i
1

EA
:
:
;.
:

3.3.2 Logon Utility

The Logon Utility is called by the KAPSE Initiator to allow the MAPSE to be
accessed through the wuser communication devices specified in the
communication device' table. The Logon Utility provides no facilities to
other MAPSE eomponents. It is designed to start execution of a MAPSE
process for an authorized user.

3.5.2.1 Inputs

Upon receiving an input from a device the Logon Utility executes the
authentication protocol that supplies the necessary data to identify and
validate a user. In addition, sufficient information is extracted from the
data to determine which MAPSE process is to be started for the user.
Normally this process is an instantiation of the ACLI. (see Figure 3-11)

3.3.2.2 Processing

The Logon Utility derives the data base object name for the device table
entry, starts an ACLI process for execution, and passes the object name as
the standard input file to the process. The Logon Utility then awaits input
from another device or for a previously started process to attain a finished
or terminated state. In the latter case, the Process Control Block is
deleted and the device table entry is released for a new user or the next
Jjob.

3.3.2.3 Outputs

When a MAPSE shutdown has been started, inputs from interactive user

communication devices prompt the Logon Utility to display the shutaown
greeting.

Vol 1
3-24

~

. e ————————

~
AY

PRI R 580w - v eomctmrengtTIe n PSRy e - -
v 7 -~ - g ,- inki Sk A THL S 4 Do + T



UOTIBTIUBISUL ITOV °[1-f 2InSfg

WILINdHALNI T000L0Md

ALrnan
IOVNONTY NOWLVYIUNIHANY NODOY
GNYWWOD

LT
o ) .

A
~ wn
- o~
o
= o
NOLVELSININGY VaHOLVetia VOLVULSININGY,4_ wOLviLIN
2932044 on 8830044 -y
/\
N vaNANI AN AL
noNv1 NODO1 N0DO
ONVWNOD

o SR

e TV A




35.5.35 Request Director

The Request Director is the functional facility through which a MAPSE
process requests a facility provided in the Kernel process. Appenaix A
includes the specification of the Ada package REGUEST_DIRECTOR that is used
by those virtual intertace packages that define an interface to the Kernel
process. See Figure 3-12 for a logical breakdown of the Request Director.

3 From the Request Parameter List that is made available upon initiation, the
‘ Request Director calls the appropriate functional domain to service the

request.

The parameter l1ist is constructed by the Kernel procesé request in the MAPSE
process to include the kind of request and its actual parameters. The
Request_Kernel facility is then called to save the execution context and
parameter list address in the task control block. When this execution of
thie MAPSE process is gontinued. the Request_Kernel facility returns to the

rey e

Kernel process request in order to update its actual parameters.

The following example demonstrates the use of the Request_Kernel interface
by an Ada package.

O i L tantusa e 2 A




REQUEST
DIRECTOR

L REQUEST KERNEL

TP No. 031-2001-A

i
Figure 3-12. Logical Breakdown &




SN

Caa o $o %

g
iAo

e TR
e . e

e~ e

with REQUEST_DIRECTOR; use REQUEST_DIRECTUR;
package boay SOME KVI_PACKAGE is

procedure Some_Facility
(Param_1: SOME_TYPE;
Param_2: in out SOME_TYPE;
Param_3: out SOME_TYPE) is

RPL: REF_REQUEST_SHAPE := new REQUEST_SHAPE(Some_Facility);
procedure This Request is

new Request_Kernel (REQUEST_SHAPE (Some_Facility)),

REQUEST_EXCEPTION: exception;
begin

—3ave in and in out parameters in RPL
This_Request (RPL);

--Restore in out and save out parameters from RPL

exception

when REQUEST_EXCEPTION =>
--Handle Kernel exception made available in TCB
end;

end SOME_KVI_PACKAGE;

The Request Director is initiated to route the specified request to the

appropriate component in the Kernel. Request_ Kernel 1is called by all
virtual interfaces to the Kernel.

3.3.3.17 1nputs
The foliowing input argument is defined for Request Kernel:
Addr_RPL - The address of the Kequest Parameter List.

3.3.3.2 Processing

The address of the parameter list is entered in the task control block for
the task of the MAPSE process that requested the Kernel facility. The

control block 1is updated to save the current context of this process

Vol 1l
3-28




ot K

7 ik b

. . P Y ¥
O AT

i

b e
- SaC EAS

. e s v 'y "
P N S et}

4. _.i

execution. The host system facility is initiated to start execution of the
Request Director and to make available to it the control block address of
the requesting task. When this execution of the process is continued, if -an
exception occurred during the processing of the request, the Kernel

exception name that is made available in the block is raised.
3.3.3.3 Outputs

There are no outputs defined for the Request_Kernel.

Voll
3-29




S ——— T——
!l

3.5.4 KAPSE Terminator

The KAPSE Terminator is the component within the Kernel that is called to
perform an orderly closure of the MAPSE, It is designed to prepare the

MAPSE for shutdown and to terminate execution of the KAPSE in the host
environment.

3.3.4.1 Inputs

There are no- input arguments defined for the Terminator.
F 3.3.4.2 Processing

The KAPSE Terminator waits all current MAPSE processes except the Logon
Utility through the Process Administrator and marks each entry in the user
? communication device table as unavailable. Once all MAPSE processes have
I achieved the wait state, they are terminated and deleted. when the
execution environment is idle, the prescribed MAPSE shutdown processes are

begun, and the KAPSE Terminator waits for their completion.

Upon completion, the Logon Utility is terminated and deleted. The acquired

resources are released to the host environment and the Kernel process J
requests self-termination through the host system facilities.

3.3.4.3 Outputs #

SR OIS

There are no output arguments defined for the Terminator.

o alakiy o

S A oY

¥
|
|
{1

13 Vol 1




3.3.5 Process Administrator

The Process Administrator functionally encapsulates a set of operations on

2 the data structure defined as the process control block. Appendix A
. includes the specification of the Ada package PROCESS_ADMSTR that is made

T VU VST —

. available in the virtual interface., See Figure 3-13 for a logical breakgown !
Lj of the Process Administrator. '

The funaamental executable entity within the MAPSE is defined as a process.
A process results from the compiling and linking of an Ada main program and
the subsequent loading for execution of its Load Object. The MAPSE is
designed to support the logically concurrent execution of multiple processes

i through the services of the Process Administrator.

The execution domain of the MAPSE consists of the Kernel process ana one or

more MAPSE processes. The Kernel process executes in a privileged execution
state while the MAPSE processes execute in a nonprivileged execution state.
The Process Administrator is the part of the Kernel process that is designed
to coordinate and schedule the MAPSE execution domain. The host system
facilities are used by the Process Administrator where necessary to ensure

the efficient, economic execution of a process in the host environment.

) A MAPSE process may invoke the execution of another MAPSE process through
A the Process Administrator. After invocation, the calling and called

processes are candidates for execution. Parameters may be passed between

oy
g -

the calling and called process.

- Tdas ot

MAPSE processes are organized into a tree, where each process is a child

cA

ek e

process of the process that createu it. Processes invoked through the Logon
Utility are considered to be children of the Process Administratc-. A
process is permitted to terminate, suspena, or resume only itself or its
.ii descendent processes. The children of a terminated process are inherited by

their grandparent.

A consequence of the Ada task semantics is for a MAPSE process to
synchronize the execution of different tasks within the Load Object. The

P

Process Administrator recognizes this requirement by maintaining the

scheduling of a MAPSE process to be consistent with the task synchronization
specified within the MAPSE process.

o Vol 1
f:oi 3-31

-
"

52

——— !

s
£ AT TR




[RYORs o0y

PROCESS
ADMINISTRATOR

Figure 3-13,

START PROCESS
TERMINATE PROCESS
READY PROCESS
SUSPEND PROCESS
RANK PROCESS

READ FCB

SUSPEND PROCESS TASK
WAIT PROCESS

SAVE PROCESS
RESUME PROCESS
SWITCH PROCESS TASK
FINISH PROCESS
WRITE PC8

DELETE PROCESS

TP Na, 031-2003-A

Logical Breakdown

Vol 1
3-32




T — S — — “'"'-'-""""""!!!!‘

] The Process Administrator is designed to facilitate the physical parallel
3 execution of processes where the host system facilities support
multiprocessors in the host hardware suite. If sSuch facilities are not
| available, the Process Administrator implements logically parallel
(interleaved) execution of processes.

In host environments that provide system facilities precluding the Process
Administrator from assuming direct control over the scheduling of process
execution, the Process Administrator relinquishes final scheduling of

process execution to the host environment.

, The Process Administrator initiates a process by calling the KAPSE Loader
through the host system facilities and making available to it the name of
the Loaud Object and the process control block address. The KAPSE Loader
communicates with the host system to reaa the Load Object file. The Process

Administrator maintains a record of all control blocks in the Process

Dictionary. For each MAPSE process that is started by the Process
Administrator, a process control block is created. Instantiation of this
block occurs for each separate thread of process execution control through
the creation of a task control block. Each activated Ada task object
results in the creation of a task control block that references the process
control block of the enclosing process (Ada Main program). Consequently the
former is an instantiation of the latter ana identifies a unique name for
each thread of control. When a process contains only a single thread of

N il A

control, a single instantiation of the process block exists and is defined
by the process task block created during process initiation. The Process
Dictionary that is maintained through the process blocks retains the status
3 of all registered MAPSE processes. (See Figure 3-14)

Upon expiration of a standard quantum of time, the Event Monitor calls the

e
e b b A DR

Process Administrator to service the Active Process List. For each active
process, the Process Administrator computes the processing time provided to

: the process during the standard quantum of time. When this processing time
r; has exceeded the prescribed limit, the process execution is suspended and
its instance of the process control block is entered into the Process Ready
f Queue. When the process is executing under the control of the host

f: Voll
v'i 3"33




I ~aaey 0% A GO

uoyjeriuelIsuy g0d ‘4i-¢ 2andya

NOLLVLINY L3Nt 804

AMYNOILI0 $8300W

0L

o8

-0

= T o TR T T B £

o - —

Ny
S E-)

thras s

Voll
3-34

.- o~ — -

g

el 30

(2, LT

.



environment, the Process Aaministrator does not maintain the execution

context for the suspended process but relies on the host system facilities,

y - N
4 *.r BT Ay




3.3.5.1 Start Process

This facility establishes a process execution domain in which the named Load
Object can be loaded. Start_Process is requested when a MAPSE process
requires that a new process be invoked. ‘

3.3.5.1.,1 Inputs

The following input arguments are defined for Start_Process:

LA

Load_Object_Name - The name of the Loaa Object.

TR Lie

Process Param -~ The actual parameters for the process.
Process_Priority - .The process scheauling priority.

Process_Status - One of two values ("suspend" or "ready").

; 3.5.5.1.2 Processing

Start_Process creates a process control block for the new process. This
1 control block is inserted in the Process Dictionary. The KAPSE Loader is
4 called and passes the block address and referenced Load Object. If Process
Status is "suspend" the process is created in a suspended state; otherwise,
the process may be immediately scheduled for execution.

3.3.5.1.3 Outputs

The following output argument is defined for Start_Process:

Addr_PCB - The process control block address of the new process.




o i AR Yy e ol

3.3.5.2 Terminate Process

This facility terminates all execution of the specified MAPSE process.
Terminate_Process may be requested to terminate the requesting process or
any process started by the requesting process.

3.3.5.2.1 Inputs
The following input argument is defined for Terminate_Process:

addr_PCB - The process control block address of the process to be
terminated.

3.3.5.2.2 Processing

Terminate_Process validates the specified control block. The status of the
specified block is changed to terminated in the Process Dictionary and all
instances of the block are removed from the Active Process List and the
Process Ready Queue. When the process is executing under the control of the
host environment, all executions of it are terminated through host system
facilities.

3.3.5.2.3 Uutputs

There are no output arguments defined for Terminate_Process.




3.3.5.3 Ready Process

This facility schedules the execution of the specified MAPSE process.
Ready_Process is requested to schedule the execution of an Ada task within a

process.

3.3.5.3.1% Inputs

The following input argument is defined for Ready Process:
Addr_PCB - The process control block address of the process.

3.3.5.3.2 Processiﬁg

Ready_Process validates the specified process control block. A new task
enclosed by the process is schedulea for execution by inserting its instance
of the block in the Process Ready Wueue. The new task is selected from the
Task Ready Queue maintained by the Task Manager and its status updated
accordingly.

3.5.5.3.3 Outputs

There are no output arguments defined for Ready_Process.




—_—

5.3.5.4 Suspend_Process

This facility suspends the execution of a process or the execution of a task

within a process.
3.3.5.4,17 Inputs
The following input arguments are defined for Suspend_Process:

Addr_PCB -~ The process control block address of the process enclosing
the task.

Addr_TCB - The task control block address of the task to be suspended.
3.5.5.4.2 Processing

Suspend__Process validates the specified control blocks. The process

execution specified by the task control block is removed from the Active
Process List.

3¢3.5.4.3 Outputs

There are no output arguments defined for Suspend Process.

Vol l




. _—
3.3.9.5 Rank Process

; This facility modifies the scheduling priority of the specified process

i execution. Rank_Process is used to change the priority of an Ada task
within a process.
3.3.5.5.1 Inputs

fi The following input arguments are defined for Rank Process:

gi-o Foi

Addr_PCB - The process control block address of the process enclosing
the task.

Addr_TCB - The task control block address of the task to be ranked.
3.3.5.5.2 Processing
Rank_Process validates the control blocks. The specified instance of the

process block is set for execution ana schedulea in the Process Ready Queue
in accordance with the priority in the task control block.

i 3.3.5.5.3 Outputs

; There are no output arguments defined for Rank_Process.




A T

‘
4
i

3.3.5.6 Read PCB

This fac.lity reads the contents of the specified process control block into
the designated space.

Read_PCB may be requested to read the block of the
requesting process or of any dependent process of the requesting process.

3.3.5.6.1 Inputs

The following input arguments are defined for feau PTB: J

Addr_PCB - The address of the process control block to be read. {

Addr_VPCB - The address in the requesting process of where the contents
of the process control block are to be placed.

3.35.5.06.2 Processing

]
Read_PCB validates the specified process block. The contents of the block i
are placed in the aesignated space.

3.3.5.6.3 Outputs

There are no output arguments defined for Read_PCB.




o

finla ¥ Yi: v AR

3.3.5.7 Terminate Process Task

This facility terminates a concurrent execution of the specified MAPSE
process. Terminate_Process_Task is requested in oracer to terminate the
execution of an Ada task within a process.

3.3.5.7.1 Inputs
The following input arguments are defined for Terminate_Process lask:

Addr_PCB - The process control block address of the process enclosing
the task.

Addr_TCB - The task control block address of the task to be terminated.
3.3.5.7.2 Processing

Terminate_ Process_Task validates the specified process and task control
blocks. The instance of the process block is entered into the Process
Termination List. Any occurrence of it in either the Active Process List or
Process Ready Gueue is removed. When:it is in the Active Process List and
is executing under the control of the host environment, this execution of

the process is terminated through the host system facilities.

3.3.5.7.3 Outputs

There are no output arguments defined for Terminate_Process_Task.




A WL

R 2.

R

“ 7
-

e v TR
P

3.3.5.8 Wait Process

This facility waits all executions of a process depending upon the status of

another process. Wait_Process may be requested to wait the requesting

process or any process started by the requesting process.

3.3.9.0.1 Inputs

The following input arguments are defined for Wait_Process:

Addr_PCB - The process control block address of the process to be

waited.

Addr_PCB - The process control block address of the process on

which the wait depends.
Wait_Condition - The condition on which to wait.

3.3.9.8.2 Processing

Wait_Process validates the specified process control blocks. The status of

the block for the process to be waited is changed to waitea in the Process
Dictionary and all instances of it are removeu from the Active Process List

and placed in the Process Ready Queue. All process executions are removed

from the Active Process List and are suspended as required using host system
facilities. Resumption of process execution occurs upon the wait condition

being satisfied or through an explicit request to resume execution.

53.3.5.8.3 Outputs

There are no output arguments defined for Wait_Process.

Voll
3-43




—

3.35.9.9 Save Process

; This facility saves a waitea process as a Load Object. Save_Process may be 1
' requested by the process which started the waited process.

3.5.5.9.1 Inputs J

s 3 oo

The following input arguments are defined for Save_Process:

L2 it B

Addr_PCB - The process control block address of the process to
be saved.

RS i o

Load_Object_Name - The name of the Load Object.

3.3.5.9.2 Processing

Save_Process validates the specified process control block. The status of

the block for the process is changed to saved in the Process Dictionary and

a Load Object of the process execution domain is created with the name
specified for the Load Object.

3¢3.5.9.3 Outputs

There are no output arguments defined for Save_Process. :

i D

gty s
AL IR - o

i
3
L
1
" Vol 1
k> 3-44

st RN




-

£ A piid axi ey
PACICL AN SR ARRBAR UL X ot i

- ey a"‘rr
PTSQURSRIR LS Ay

3.5.5.10 Resume Process

This facility resumes the execution of a waited MAPSE process.

Resume_ Process may be requested by the process that started the

waitea
process.,
3.3.5.10.1 Inputs
The following input argument is defined for Resume_Process:
Addr_PCB - The process control block address of the process to be

resumed.

3.3.5.10,2 Processing

Resume_Process validates the specified process control block. The status of

the block for the process to be resumed is changed to ready in the Process
Dictionary. Instances of the block in the Process Keady Queue are now
available to be scheduled for execution.

3.3.5.10,3 Outputs

There are no output arguments defined for Resume_Process.




e T

= B AN

iyrilite:

’ e o

5.3.9.11 Switch Process Task

This facility suspends and reschedules the execution of a process. Switch_

Process_Task is requested so that a new Ada task within a process is
scheduled for execution.

3.3.5.11,1 Inputs
The following input arguments are defined for Switch Process Task:

Addr_PCb - The process control block address of the process enclosing
the task.

Addr_TCB - The task control block address of the task to be suspended.

3.5.9.11.2 Processing

Switch _Process Task validates the process control block. The specified
instance of the block is suspended by removing it from the Active Process
List. A new task enclosed by the process is scheduled for execution by
inserting its instance of the block in the Process Ready Queue.

3.3.5.11.3 Outputs

There are no output arguments defined for Switch Process_Task.

Vol 1l
3-46

e i o b e etk

6




RWErL R

2

A

it

IR o -

3.3.5,12 Finish Process

This facility terminates the execution of a MAPSE process.

Finish_Process

is requested to perform self-termination of a process.
3.3.5.12.1 Inputs
the following input argument is defined for Finish Process:

Process_Param - The actual parameters to be returned to the starting
process.

3.3.5.12.2 Processing

Finish_Process removes the process control block from the Active Process

List and the block's status is changed to finished in
Dictiouary.

the Process
Any actual parameters are placed in the process control block.

5.3.5.12.3 Outputs

There are no output argunents defined for Finish_ Process.

Vol 1l
3-47




3.35.5.13 Write PCB

This facility writes the contents of the designated space into the specified
process control block. Write_ PCB is a restricted request that is used to
4 change the contents of the block of the requesting process or of any
dependent process of the requesting process.

3.3.5.13.1 1nputs

Fagd oA AW e Mo peige

The following input arguments are defined for Write_PCB:
Addr_PCB - The address of the process control block to be changed.

Addr_VPCB - The address in the requesting process of where the ,

information to be written into the block is located. }

3 1

}i 3.3.5.13.2 Processing H
i

- Write PCB validates the specified block. The contents of the block that are 1

. to be inserted are checked for validity and are then placed in the block.
| Only a limited set of visible block items may be changed.

3.3.5.13.3 Outputs

There are no outputs defined for Write_ PCB. :

Vol 1 j
3-48 |




ik
P I L

@A gt

Oy

—— » R o e oo o o amens £ okiiie g ——

3.3.5.14 Delete Process

This facility removes the existence of a MAPSE process. Delete_Process may

be requested by the process which started the specified process.

3.3.5.14,1 Inputs
The following input argument is defined for Delete_Process:

Addr_PCB - The process control block address of the process to be
deleted,

3.3.5.14.2 Processing

Delete_Process validates the specified process control block. The block is
removed from the Process Dictionary and its space made available for
reassignment. A process may only be deleted if it is in a finished or
terminated state. When a process to be deleted has started processes that
are in a finished or terminated state, these processes are automatically
deleted. If the started processes are not in a finished or terminated

state, the starting process for these processes is made the requesting
process.

3.35.5.14.3 OQutputs

There are no output arguments defined for Delete_Process.

Vol 1l
3=49




2 K‘*";,. e s

J - & ol\s
RPOURPRPOP o SO

5.3.b Tlask Manager

The Task Manager functionally encapsulates a set of operations on the data
structure defined as the task control block. Appendix A includes the
specification of the Ada package TASK_MANAGER which is made available in the

virtual interface. See figure 3-15 for a logical breakdown of the Task
Manager.

A MAPSE process may synchronize the concurrent execution of different code
domains within the process in accordance 'with the semantics of Ada tasks.
The Task Manager is designed to provide the necessary functionality to
support Ada tasks using facilities available in the Kernel through the
Process Administrator. Information required to control and schedule tasks
is maintained with the Task Manager. This task intormation is accessible to
the Process Administrator when process scheduling is to be performea within
the MAPSE. A conseguence of the design is that c¢he Task Manager is
insulated from changes in the host system that would affect task execution.
In addition, because task information is accessible to the Process

Administrator the number of explicit requests from the Task Manager to the
Kernel is minimized.

The Task Manager is designed to cooperate with the Volume Manager, 1/0
Dispatcher, and Event Monitor to synthesize those functional requirements of
a MAPSE process that may effect the harmonious execution of its tasks.
Typically these requirements necessitate the use of facilities within the
Kernel that result in the task being placed in the wait state pending
delayed action in the host environment. An objective in supporting
concurrent task execution is to ensure that such a task does not
inadvertantly cause the enclosing MAPSE process to be stalled in its

execution when other tasks within the same process are candidates for
execution.

The Volume Manager in the Kernel performs data transfers between MAPSE level
processes and the host environment. Normally the task requesting the data
transfer, using Ada I1/0, must await completion of the operation. Therefore,
it is incumbent the Volume Manager to update the appropriate task
information maintained by the Task Manager and to initiate a new scheduling
decision by the Process Administrator.

Vol 1
3-50

1

P L™




LG m eB D

ST o

TASK
MANAGER

CREATE TASK

SCHEDULE TASK

DELAY TASK

ACCEPT ENTRY

ACCEPT ENTRY FAMILY
ENTRY CALL

ENTRY FAMILY CALL
CONDITIONAL ENTRY CALL
CONDITIONAL ENTRY FAMILY CALL
TIMED ENTRY CALL

TIMED ENTRY FAMILY CALL
END RENDEZVOUS

WAIT DEPENDENT TASK
TERMINATE TASK

ABOAT TASK

SELECT ALTERNATIVE
FAIL TASK

SET INTERRUPT

ACCEPT EXCEPTION
ATTRIBUTE TERMINATED
ATTRIBUTE PRIORITY
ATTRIBUTE STORAGE
ATTRIBUTE COUNT

TP No. 031.2004-A

Figure 3-15, Logical Breakdown




;e SR

32

R

v

-

The Task Manager depends upon the Event Monitor to recognize that a aqata

transfer has been completed and for the appropriate task information to be

updated. The task may then be rescheduled for execution by the Process

Administrator.

In addition, the Task Manager relies upon the Event Monitor to coordinate

the scheduling of tasks that have been associaied with specific interrupts

by intercepting the interrupt so that the appropriate task information is
updated.

- : ST T e e e e pre—— e
o wy ‘ . . 3 7
T ,; e !'iyr,.,.,‘.‘!_ | . . X . )




$9 o g

i SR

e e, At o A

T -

3.35.6.1 Create Task

This facility creates a task control block. Create_Task is called by the

prologue associated with the enclosing declarative part and executes as a
procedure under the calling task.

3.3.6.1.1 Inputs

The following input arguments are defined for Create_Task:

Addr_TCB - The address of the space allocated for the task
control block.

Addr_DTR - The address of the Dependent Task Record.

Addr_ESC - The address of the Enclosing Static Context.

Task_Priority - The static priority defined for the task.

Task_IEP - The Initial Execution Position for the task.

TCB_Alt - The Alternative Constraints for the task control
block.

3.5.0.1,2 Processing

Create_lask initializes the space allocated to the task control block. The
block chains of dependent tasks for the guardian task and scope are
updated. The status of the specified task is set to indicate that the task
is created and is awaiting activation (elaboration).

3.3.6.1.35 Outputs

There are no output arguments defined for Create_Task.




-3 il S

K

PN,

3.3.6.2 Schedule Task

This facility schedules a task for execution after the declarative part of

the task body has been elaborated. Schedule_Task is called by the prologue
associated with the enclosing declarative part and executes as a procedure
under the calling task.

3.3.6.2.1 Inputs

The following input argument is defined for Schedule Task:

Addr_TCB - The task control block address of the task to be :
scheaouled. .

3.3.6.2.2 Processing

The status of the specified task is changed to indicate that the task is

ready for execution. The task control block is entered intc the queue of
tasks ready for execution.

3.35.6.2.3 Outputs

There are no output arguments defined for Schedule_Task.

Voll
3-54




3.3.6.35 Delay Task

This facility suspends execution of a task for at least the specified
quantum of time. Delay Task is called by a task executing a delay statement
or a timed entry statement and a new task is scheduled through the Process
Administrator.

3.3.6.3.1 Ipputs

The following input argument is defined for Delay_Task:

Time_Delay - The quantum of time to suspend task execution.

3.3.6.3.2 Processing

The status of the task is changed to indicate that the task

has been
3| suspended for the specified quantum of time.

The task control block is
X entered into the queue of tasks that are currently suspended.

3.3.6.3.3 Outputs

| There are no output arguments defined for Delay Task.




5.3.6.4 Accept Entry

This facility synchronizes a service task of a MAPSE process executing an
accept statement with the execution of a task requesting the entry for this
accept statement. Accept Entry is called by the service task.

: 3.3.6.4.1 Inputs
The following input arguments are defined for Accept Entry:

:; Entry_No - The identification of the accept statement entry.
1 Null Accept - The condition that the entry is parameterless and the

accept statement does not include executable statements.

3.3.6.4,2 Processing

;; The entry queue for the specified entry is inspected for a task waiting for

‘ this entry. If there is no waiting task, the service task status is changed

to indicate that the task is awaiting a request for the specified entry and

a new task for this process is scheduled through the Process Administrator.

i If there are tasks awaiting this entry the first task is removed from the

queue for servicing. When the task to be serviced is in a delay status, the

delay condition is cancelled. The actual parameters associated with the

request are made available to the service task and execution control is

%‘ directed to the service task to complete execution of the accept statement.

';, When the Null Accept condition is satisfied execution of the service task is

; continued if it is the highest priority task, otherwise a new task is
scheduled through the Process Administrator.

3.3.6.4,3 Outputs

There are no output arguments aefined for Accept Entry.

Vol 1
3-56

: W‘p‘\.. - S~ S w . .‘A"'T"-" i o e N R

P U S



T —— .

———E e W

e i g

-

e - Amaa

3.3.6.5 Accept Entry Family

This facility synchronizes a service task of a MAPSE process executing an
accept family statement with the execution of a task requesting the family
member entry for this accept statement. Accept Entry Family is callea by

the service task.
3.3.6.5.1 Inputs
The following input arguments are defined for Accept_Entry Family:

Entry_No - The identification of the accept statement entry.
Entry_Index - The identification of the entry family member.
Null_Accept - The condition that the entry is parameterless and the

accept does not indicate executable statements.
3.3.6.5.2 Processing

The processing is identical to that defined for Accept_Entry once the entry

cueue has been located for the entry family member.
3.3.6.5.2 Outputs

There are no output arguments defined for Accept Entry Family.

Vol
3-57




3.3.6.6 Entry Call

This facility synchronizes a task of a MAPSE process executing an entry
statement with the execution of the service task defining the entry.
Entry_Call is called by the task executing the entry statement.

3.3.0.6.1 Inputs

The following input arguments are defined for Entry_Call:

Addr_TCB - The task control block address of the service task.
Entry_No - The identification of the requested entry.

Parameters - The actual parameters for the requested entry.

3.3.6.6,2 Processing

The actual parameters for the request are saved and the requesting task
control block is appended to the specified entry queue. If the specified
entry is closed, a new task is scheduled through the Process Adninistrator.
Otherwise, when the specified entry is open, all other open entries for the
service task are closed and the service task status is changed to indicate
that the task is ready for execution at the control point currently
associated with the entry. If the service task has been waiting at a delay
statement, the delay condition is cancelled. Wh=en the service task has been
waiting at a terminate statement, the changes in the dependent task
relationships are propagated as required, If the service task is in a
termination status the exception status of the requesting task is changed to

indicate a tasking error exception. A new task is then scheduled through the
Process Administrator.

3.3.6.0.,3 Outputs

There are no output arguments defined for Entry Call.




ot o N

2
¥

¥

iy

.
.

3.3.6.7 Entry Family Call

This facility synchronizes a task of a MAPSE process executing an entry
statement for an entry family member with the execution of the service task
defining the entry family. Entry Family Call is called by the task

executing the entry statement.
3.3.6.7.1 Inputs
The following input arguments are defined for Entry Fawily Call:

Addr_TCB - The task control block address of the service task.
Entry No ~ The identification of the requested entry.
Entry_Index - The identification of the entry family member.

Parameters - The actual parameters for the requested entry.
3.3.6.7.2 Processing

The processing is identical to that defined for Entry_Call except for
locating the entry and entry queue for the entry family member.

3.3.0.7.3 Outputs

There are no output arguments defined for Entry_Family_ Call.




3.3.6.8 Conditional Entry Call

This facility conditionally synchronizes a task of a MAPSE process executing
a conditional entry statement with the execution of the service task
defining the entry. Conditional Entry_Call is called by the task executing
the conditional entry statement.

3.3.6.8.1 Inputs
The following input arguments are defined for Conditional_Entry Call:

Addr_TCB -~ The task control block address of the service task.
Entry No = The identification of the requested entry.
Parameters - The actual parameters for the requested entry.

3.3.6,8.2 Processing

The processing is similar to that defined for Entry_Call. When the

specified entry is closed, execution of the requesting task is continued
with the condition that an immediate rendezvous has failed with the service
task. The task is not appended to the specified entry queue.

3.3.6.8.3 Outputs
The following output argument is defined for Conditional Entry Call:

Condition = The condition as determined by the status of the

requested entry.




|
Al
|
3
3

3.3.6,9 Conditional Entry Family Call

This facility conditionally synchronizes a task of a MAPSE process executing
a conditional entry statement for an entry family member with the execution
of the service task defining the entry family.

Conditional_Entry Family Call is called by the task executing the
conaitional entry statement.

3.3.6.9.1 Inputs

The following input arguments are defined for Conditional Entry_Family_ Call:

Addr_TCB - The task control block address of the service task.
Entry_No - The identification of the requested entry.
Entry_Index The identification of the entry family member.

Parameters - The actual parameters for the requested entry.

3.3.6.9.2 Prccessing

The processing is identical to that defined for Conditional_Entry_Call but
for locating the entry and entry queue for the entry family member.

3.3.6.9.3 Outputs
The following output argument is defined for Conditional Entry Family Call:

Condition - The condition as determined by the status of the

requested entry family member.




R

Spb ode ol o SR e s S

T e o e

R e i Y s

2 35

eaiinlé:
|l e e el

e

3.5.6.10 Timed Entry Call

This facility conditionally synchronizes a task of a MAPSE process executing
a timed entry statement with the execution of the service task defining the

entry. Timed Entry_Call is called by the task executing the timed entry
statement.

3.3.6.10.1 Inputs

The following input arguments are defined for Timed_Entry_Call:

Addr_TCB - The task control block address of the service task.
Entry No - The identification of the requested entry.

Parameters - The actual parameters for the requested entry.

3.3.6.,10.2 Processing

The processing is identical to that defined for Conditional Entry_Call

except that when the entry is closed the requesting task is appended to the
specified entry queue.

3.3.0,10.3 Outputs
The following output argument is defined for Timed_Entry_Call:

Condition - The condition as determined by the status of the
' requested entry.

Vol 1l
3-62




v A Aottt il i

: -k i 22
Fgw

3.3.6.11 Timed Entry Family Call

This facility conditionally synchronizes a task of a MAPSE process executing
a timed entry statement for an entry family member with the execution of the
service task defining the entry fanily. Timed Entry Family Call is called
by the task executing the timed entry statement.

3.3.6.11.1 Inputs
The following input arguments are defined for Timed_Entry Family Call:

Addr_TCB ~ The task control block address of the service task.
Entry No ~ The identification of the requested entry.
Entry_Index - The identification of the entry family member.
Parameters -~ The actual parameters for the requested entry.

3.5.6,11.2 Processing

The processing is identical to that defined for Timed_Entry_Call except for
locating the entry and entry queue for the entry family member.

3.3.6.11.5 Outputs
The following output argument is defined for Timed Entry Family Call:

Condition - The condition as determined by the status of the
requested entry family member.

Vol 1l
3-63

IR Ay = ge o _ S : o oogeaue
> . e TR " flen T 20N - . AR . - . " et
’ PPTIR & ity 4. - . . 2ty Lt g .




.5 adii

s R LR

]

-l W

NG

A v )
PULINUURM Y g

X
UL

e

3.3.6.12 End Rendezvous

This facility decouples a service task of a MAPSE process from the task it

is currently servicing. End_Rendezvous is called by the service task upon
the completion of an accept statement.

3.3.0.12.1 Inputs
There are no input arguments defined for End_Rendezvous.
3.3.6.12.2 Processing

The status of the task that has been serviced is changed to indicate that it
is ready for execution at the control point following the entry call unless
a task failure has occurred. A new taSk is scheduled for execution through
the Process Administrator, unless the accept statement completed by the

service task is enclosed by an outer accept statement.
3.3.6.12.3 Outputs

There are no output arguments defined for End_Rendezvous.

Vol 1
3-64

ey




Y

3.3.6,13 Wait Dependent Task

This facility synchronizes continued execution of a MAPSE process or a task

within a MAPSE process with the termination of any dependent tasks.
Wait_Dependent_Task is called by the thread of execution that is to wait.

3.3.6.13.1 Inputs

The following input argument is defined for Wait_Dependent_Task:

i Addr_DIR - The address of the Dependent Task Record.

3.3.6.13.2 Processing

To be determined during implementation.

3.3.6.15.5 Outputs

There are no output arguments defined for Wait_Dependent_Task.

%
A
b4
¢
g b
bi
9
A
&
g
' * Vol 1l
3-65 ]

ot APIIR WIS

5¢




3.3.6.14 Terminate Task

This facility terminates execution of a currently executing task within a

MAPSE process. Terminate_Task is called by the task requesting to be
terminated.

3.5.6,14,1 Inputs
There are no input arguments defined for Terminate_Task.

3.3.6.14,2 Processing

2 The status of the task is changed to indicate that it has terminated. The
changes to any dependent task relationships resulting from its termination

are propagated and the task control blocks of any dependent tasks are
5, released.

3.3.6.14,3 Outputs

There are no output arguments defined for Terminate_Task.

+ Vol 1
3-6¢




LIV

ik ana P A

£ PRI S, -

3.3.6.15 Abort Task

This facility asynchronously terminates a task within a MAPSE process.

3.5.6.15,1 Inputs
The following input argument is defined for Abort_Task:

Addr_TCB " - The task control block address of the task to be aborted.

3.3.6.15.2 Processing

The status of the task is changed to indicate that it has been terminated.

If the task has requested a delay or an entry call, these requests are

cancelled. If the task is currently servicing an entry request, the
rendezvous is cancelled. The changes to any dependent task relationships
resulting from the termination of the specified task are propagated.

3.3.6.15.3 Outputs

There are no output arguments defined for Abort_Task.




3.3.6.16 Salect Alternative

This facility conditionally synchronizes a service task of a MAPSE process
executing a select statement with the execution of a task requesting an open
entry enclosed by the select statement. Failure to synchronize with a task

may result in the service task being terminated. Select_Alternative is
called by the service task.

3.5.6.16,1 Inputs
The following input argument is defined for Select_Alternative:

Select_Table - The table describing all the alternatives enclosed
by the select statement.

3.35.6.16.2 Processing

The open alternatives are investigated in the task control block. When only
entry alternatives are open, the corresponding entry queues are inspected
for a waiting task. If only one entry has a nonempty queue, the first task
is removed from the queue for servicing. If multiple entries have nonempty
queues, a queue is arbitrarily chosen and the first task is removed for
servicing., The removed task is placed in a rendezvous state. When the task
to be serviced is in a delay status, the delay condition is cancelled. The
actual parameters associated with the entry are made available to the
service task and execution control is directed to the service task as
defined in the Select Table. When the open alternatives include delay
statements and there is no task to service, a delay alternative from the set
of equivalent-valued delay statements is chosen and the service task is
Suspended for the specified quantum of time,

When the open alternatives include a terminate statement, it is chosen if
the termination conditions are satisfied in the Dependent Task Record of the
guardian task. The service task is terminated if all dependent tasks in the
dependent task records of the guardian task have terminated or are suspended

awaiting a terminate statement. Otherwise, the service task is suspended in
a terminate state.

Voll
3-68

¥




If the open alternatives do not include a aelay or selectable terminate, the
gervice task is suspended to await a request for an open entry alternative.
In the event that there are no open alternatives, the else alternative if
available, is selected by the service task. When no else alternative is

available, the select error exception is raised in the service task.

Upon suspending the service task, a new task for this process is scheduled
through the Process Administrator.

3.3.6.,16.3 Outputs

There are no output arguments defined for Select Alternative.

S0 5

it

R
T

M
F i
X
{
;4

Vol 1
i 3-69




B . ST S o -

- e

S R o)

e ——akl.

et

3.3.6.17 Fail Task

This facility causes the failure exception condition in a task within a
MAPSE process.

3.3.0.17.1 Inputs
The following input argument is defined for Fail Task:

Addr_TCB - The task control block address of the task to receive the
failure exception.

3.3.6.17.2 Processing

The exception status of the task is changed to indicate that a failure
exception has been received. 1If the task has requested a delay or an entry
call, these requests are cancelled. In these instances and when the task
has been suspended, the status of the task is changed to indicate that it is
ready for execution and the Process Administrator is called to schedule a
new task. When the failed task is currently running, it is made reaay for
execution at the failure exception control point, and the

Process
Administrator is called to suspend the task.
3.3.6.17.3 Outputs
There are no output arguments defined for Fail Task.
Vol 1
3-70
ql

Pl



3.3.06.18 Set Interrupt

This facility associates the specified interrupt with an entry statement of
a task within a MAPSE process. Set_Interrupt is called by the prologue
L associated with the enclosing declarative part and executes under the
3

current thread of control.

3.5.6.18.1 Inputs
The following input arguments are defined for Set_Interrupt:

Addr_TCB - The task control block address of the task enclosing
the interrupt entry.

Entry_No - The identification of the interrupt entry,.

Interrupt_Name The name of the interrupt.

E | Entry_Index - The identification of the entry family member.

3.5.6.18.2 Processing

The specified entry is marked as an interrupt entry. The Event Monitor is
called to set an event for the named interrupt.

5.3.6.16.3 Outputs

There are no output arguments defined for Set_Interrupt.

.

e %

o
LI DU

PPV SN

_‘i Vol 1
& 3-71
3
“




AD=A109 980

UNCLASSTFIED

COMPUTER SCIENCES CORP FALLS CHURCH VA F/8 972
ADA INTE.IATED ENVIRONMENT II COMPUTER PROGRAM D!V!LM NT SPEC==ETC(U)
F3 602-00%‘029
RADC=TR=81=364=PT=~1

)




|0 & He ps
|||”=———— vl
m" TR 2
= L&
I2S flis pee

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUREAU Of STANDARDS 1463 A




3.3.6.19 Accent Exception

This facility propagates an exception in an accept statement of a task

within a MAPSE process. Accept_Exception is called by the service task
enclosing the accept statement.

3.3.6.19.1 Inputs

The following input argument is defined for Accept_Exception:

Exception - The name of the exception to be propagated.

3.3.6,19.2 Processing

The exception status of all tasks synchronized with the service task is
changed to indicate that the specified exception has occurred. When the
task failure exception is propagated, it is renamed tasking error. The
status of these tasks is changed to indicate that they are reaay for
execution and the Process Administrator is called to schedule a new task.

3.3.6.19.35 Outputs

There are no output arguments defined for Accept_Exception.

Vol 1
3-72




A e L.

Y SRR -

3.3.6.20 Attribute Terminated

This facility reports the termination status of a task within a MAPSE
process.

3.3.6.20,1 Inputs
The following input argument is defined for Attribute_Terminated:

Addr_TCB - The task control block address of the task to be reported
upon.

3.3.6.20.2 Processing

The termination status of the specified task is returned to the requesting
task.

3.3.6.20.3 Outputs
The following output argument is defined for Attribute_Terminated:

Termination_Status - The value true is returned if the specified
task has terminated.

Vol l
3-73

—'T.—ﬁ"_.T‘—r e
. Aad . hd




I bl 0 s 4 2

-

S 50 A S g s

3.3.6.21 Attribute Priority

This facility reports the priority of a task within a MAPSE process.

3.3.6.21,1 Inputs

The following input argument is defined for Attribute_Priority:

Addr_TCB = The task control block address of the task to be reported

upon.

3.5.6.21,2 Processing

The priority value defined for the specified task is returned
requesting task.

3.3.6.21,5 OQutputs
The following output argument is defined for Attribute_Priority:

Priority - The priority value of the specified task.

Vol 1
3-74

to the




G4 oo T

PSRV AP

E
{
|

e

by - 318 24

3.3.6.22 Attribute Storage

This facility reports the number of storage units allocated to a task within
a MAPSE process.

3.3.6.22.%1 Inputs
The folluwing input argument is defined for Attribute_Storage:

Addr_TCB = the task control block address of the task to be reported
upon.

3.3.6.22.2 Processing

The number of storage units currently allocated to the specified task is
returned to the requesting task.

3.3.6,22.3 Outputs
The following output argument is defined for Attribute_Storage:

Allocation - The number of storawe units allocated to the specified
task.

Vol 1
3-75




ik, o

e S R R

3.3.6.23 Attribute Count

The facility reports the number of outstanding calls for an entry of a
service task within a MAPSE process.

3.3.6.25.1 Inputs
The following input arguments are defined for Attribute_Count:

Addr_TCB - The task control block address of the task enclosing the
entry.

Entry_No - The identification of the entry to be reported upon.
Entry_Index - The identification of the entry family member

3.3.6.23.2 Processing

The length of the queue associated with the specified entry is returned to
the requesting task.

3.3.6.23.3 Outputs

The following output argument is defined for Attribute_Count:

Queue_Length - The number of entry and interrupt calls currently
queued.
Vol 1
3-76




3.3.7 Context Manager

The Context Manager functionally encapsulates a set of operations on the
Dynamic Address Domain and Shared Execution Domain that are definec¢ within
the MAPSE. Appendix A includes the specification of the Ada package

CONTEXT_MANAGER that is made available in the virtual interface. See Figure
3=1b for a logical breakdown of the Context Manager.

The Context Manager is designed to provide the facilities that are necessary
for a MAPSE process to dynamically change the address domain that it or

arother process may reference. Use of these facilities is restricted to

. MAPSE tools to safeguard the integrity of the MAPSE.

The address domain that may be referenced by a MAPSE process is initially
established in the process context map when a process is started. The map
associates an index with each address space that comprises the process
address domain. The Context Manager allows a process to change its address
space through a process context map index that may be dynamically associated
with an address domain created in the Dynamic Address Domain.

The Context Manager through the Dynamic Address Domain provides the
collection of storage units that may be acquired for a process. Each
acquisition defines an address space that may be referenced by the process
through the index associated with the domain.

In addition to supporting the Dynamic Address Domain, the Context Manager
provides the functionality required by the Shared Execution Domain that
enables miltiple processes to share common executable domains, such as the
Task Manager.




k0 e~ S i

CONTEXT
MANAGER

% Figure 3-16.

> -

ALLOCATE DOMAIN
AELEASE DOMAIN
FIND DOMAIN

AEAD DOMAIN
WRITE DOMAIN

LOAD DOMAIN

TP Ne. 03120084

Logical Breakdown

Vol1l
3-78

e ——




o e LA e £ 3 SR AP SANN 5 VL. PRI

3.3.7.1 Allocate Domain

This facility allocates storage units to a MAPSE process from the Dynamic
Address Domain. Allocate_ Domain is requested by a MAPSE process to
dynamically update the process context map of a specified process.

3.3.7.1.1 Inputs

The following input arguments are defined for Allocate_Domain:

i Addr_PCB - The process control block address of the process to

i receive the allocation.

' Map_index - The process context map index to be associated with 4
the domain. i

3 Domain_length - The number of storage units to be allocated in the

‘i domain.

9

¥ 3.3.7.1.2 Processing

The allocation request is validated. The specified number of contiguous

storage units is acquired from the Dynamic Address Domain. The process

context map for the process is updated to reference the acquired domain, and
. the domain address is made available to the requesting process. When the
j; request cannot be satisfied, the domain address is voided.

3.3.7.1.3 Outputs

The following output argument is defined for Allocate_Domain:

Addr_Domain - The domain address.

AR LB
el s,

oo b <00

Voll
s 3-79




$.3.7.2 Release Domain

This facility frees the storage units that have been acquired for a MAPSE
process from the Dynamic Address Domain. Release_Domain is requested by a

MAPSE process to dynamically update the process context map of a specified
process.

3.3.7.2.1 Inputs

The following input arguments are defined for Release Domain:

Addr_PCB - The process control block address of the process for
which the domain was acquired.

Map_ Index ~ The process context map index associated with the
domain.

3.3.7.2.2 Processing

The release request is validated. The process context map for the process
is updated to void referencing the domain to be released. The storage units
are returned to the Dynamic Address Domain for disposal. If the domain is
not included in the context map of another process, the storage units are
made available for subsequent allocation.

3.3.7.2.3 Outputs

There are no output arguments defined for Release_Domain.




3.3.7.3 Find Domain

This facility locates the domain address of the specified Load Object. Find

Domain is requested by the Process Administrator to ascertain the y
sharability of a Load Object. !

3.3.7.3.1 Inputs

The following input argument is defined for Find_Domain:

4 Load_Ob ject_Name - The name of the Load Object.
3.3.7.3.2 Processing

The find request is validated. The Shared Execution Domain for the MAPSE is
searched for the existence of the specified Load Object. If the Load Object
J is found the domain address is made available to the requesting process.

3.3.7.3.3 Outputs
The following output argument is defined for Find Domain:

Addr_Domain - The domain address of the Load Object. ]

" a
S

S R S Rl > i

. Vol 1
2 3-81




3.3.7.4 Read Domain

This facility reads the contents of a specified number of storage units.

Read Domain enables a MAPSE process to read the contents of a domain that is
part of a descendent process. Read_Domain is provided specifically for the
use of the MAPSE Debugger.

3.3.7.4.1 Inputs

The following input arguments are defined for Read _Domain:

Addr_Domain -

Storage_Unit
Unit_Length

Addr_Buffer

3.3.7.4.2 Processing

The address of the domain containing the specified
storage units.

The first storage unit to be read.

The number of storage units to be read.

The buffer address.

The read request is validated. The storage units within the aadress domain

are located and their contents written to tYe referenced buffer in the

requesting process.

3.3.7.4.3 Outputs

There are no outputs defined for Read_Domain.

Voll
3-82

s 3




e T e i [R——

3.3.7.5 Write Domain

4 This facility writes the contents of a specified number of storage units.
! Write_Domain enables a MAPSE process to write the contents of a domain that

4 is part of a aescendent process. Write_Domain is provided specifically for
; use by the MAPSE Debugger.

3.5.7.5.1 Inputs
The following input arguments are defined for Write_Domain:

Addr_Domain - The domain address containing the specified storage
units.

Storage_Unit The first storage unit to be written,

Unit_Length
Addr_Buffer

The number of storage units to be written.
The buffer address.

3.35.7.5.2 Processing

The write request is validated. The storage units within the address domain

are located and are overwritten with the contents of the referenced buffer
in the requesting process.

3.5.T.5.5 Outputs

There are no output arguments defined for Write_lomain.

.. o b .- C |
S emlan ok

FORPUR A S

Vol 1
o 3-83




3.3.7.6 Load Domain

This facility load$ the specified Load Object into the Shared Execution
Domain of the MAPSE. Load_Domain is requested by the Process Administrator
3 to enable common executable domains to be shared among MAPSE processes.

3.3.7.6.1 Inputs

The following input argument is defined for Load_Domain:
Load_Object_Name - The name of the Load Object.

3.3.7.6.2 Processing

The load request is validated. The specified Load Object is loaded into t
Shared Execution Domain and its domain address is made available t
requesting process. If the Load Object cannot be accommodated in the
Execution Domain, the domain address is voided.

3.3.7.6.3 Outputs
The following output argument is defined for Load_Domain:

Addr_Domain - The domain address of the Load Object.

'1 Ny

/S

; —p——
M AR A i R e iy . .
- b8 8. & 'x .;,?‘ - . ” e i tem . s " . . A | m‘ . PR P .




[

3.5.8 Event Monitor

The Event Monitor functionally encapsulates a set of operations on the data
structures defined as the Event Queues. Appendix A includes the
specification of the Ada package EVENT_MONITOR that is made available in the
virtual interface. See Figure 3-17 for a logical breakdown of the Event
Monitor,

The Event Monitor is a functional unit within the Kernel of the KFW. It is
designed to reconcile the asynchronous performance of host system facilities
with the execution of concurrent MAPSE processes. A primary responsibility
of the Event Monitor is the synchronization of the MAPSE clock. This is
achieved by requesting an event to be posted at the expiration of a standard
quantum of time. This event is typically represented in the host system

either as a type of interrupt or through an event mechanism.

In addition to maintaining the MAPSE clock, the Event Monitor includes
facilities to set, raise, wait, and cancel events. These facilities provide
services essential to the functionality supplied by the 1/0 Dispatcher and
Task Manager in support of the requirements of a MAPSE process.

The specification of an event control block contains information that
describes an event. Using this control Block. the Event Monitor associates
the occurrence of an event with an execution domain that is to be scheduled
or performed. When an event ls defined to the Event Monitor, it is entered
into the Event Queue for the éiass of event. The Event Monitor implements
events for I/0 completion, time delay expiration, and named hardware

interrupts.

Depending upon the kind of the host system facilities available, the Event

Monitor polls its entry queues periodically or is activated when an event is
posted.

The schematic in Figure 3-18 illustrates the delay of a task for a quantum
of time,

When an entry interrupt occurs the corresponding event control block is

entered in the appropriate interrupt queue for the task enclosing the
entry. If the task is currently suspended and the entry is open, then the

Vol 1l
3-85

|




|
b |
j |
i
3
}
!
2
EVENT
MONITOR
SET EVENT
CANCEL EVENT
WAIT EVENT
AAISE EVENT
. 1 TP No, 031-2000-A
[]
‘l
4
o
A
A
&
3
R
N
i
P ; !
o
p- |
L 1
t
) Figure 3-i7. Logical Breakdown :
.ol !
!q Vol 1

3-86




Le1aq jysey

SNV
NILSAS
1SOH

*g1-¢ danstyg

HOLVHISININGY HOLINOW ._o:»..uz%w:
88320ud _ AN3A3 R
lllll j - 'g F — —
HIDVYNYW vaovwvw |
NSVL WYL
$$300Md 89300Ud
284V 25TV

[ -
R 5 S

T A AL A

Vol 1l
3-87

0y

— e
-y

ik a4 e




PP

Yo oPy L.

task status is changed to indicate that it is ready for execution and this

instance of the process control block is entered in the Process Ready Queue.

The resumption of this task results in the interrupt entry being serviced
before any other open entries.

—

e Arie e

Vol 1
3-88 0
/
| / o
PN 1w v s ccarmegmrpprr et EINPRPRRRE R -~ R



3.3.8.1 Set Event

This facility associates the occurrence of an action in the host environment
with the execution domain specified in an event control block. Set_Event is
called by the 1/0 Dispatcher and Task Manager.

3.3.8.1.1 Inputs

The following input argument is defined for Set_Event:
Addr_ECB - The event control block address.

3.3.8.1.2 Processing

The event control block is validated and entered into the appropriate Event
Queue. An event may specify the expiration of a quantum of time, the
completion of an I/0 request or the occurrence of a discernible interrupt.
For interrupt and time events, the event control block includes a reference
to the task control block that defines the execution domain. For 1/0
request events, the event control block includes a reference to the carrier
control block or device control block associated with the command
specification block that initiated the I/0 request. Time events are entered
into the Event Queue to ensure that the event with the smallest quantum is
at the head of the queue.

3.3.8.1.3 Outputs

There are no outputs arguments defined for Set_Event.




3.3.8.2 Cancel Event

This facility cancels the event specified in an event control block.
Cancel_Event is called by the Task Manager.

i g e s

3.5.8.2.1 Inputs

The following input argument is defined for Cancel_Event:

~

3 Addr_ECB ~ The event control block address.

Ly art

i 3.3.5.2.2 Processing

The event control block is validated and removed from the appropriate Event
Queue.

3.3.8.2.3 Outputs

There are no output arguments defined for Cancel Event.

T e

[
3 k.
3
P
kY 3
3
i
3
!
R
o]
i
!
Ai
- | ¢
o ¢
b :
: :
_ :
1 Vol 1l
! 3-90
k-,

RS




TGk o e s m o et

-

LA Ll

SR

v

AV

LA -

35.3.8.3 Wait Event

This facility suspends execution of a task within a MAPSE process to await
the occurrence of an action in the host environment that is specified in an

event control block. Wait_Event is called by the 1/0 Dispatcher ana the
Task Manager.

3.3.8.3.1 Inputs

The following input argument is defined for Wait_Event: J

Addr_ECB - The event control block address.

3.3.8.3.2 Processing

The event control block is validated and entered into the appropriate

Event
Queue. The specified execution of the task is suspended.

3.3.8.3.2 Outputs

There are no output arguments defined for Wait_Event.

Vol 1
3-91

e g
. L) TN A0S




Lo o o agde o
e - b -

St -
Rek Wb

o

PO 4 - o, -

- evis oo

N A BT AP scomea a5

3.35.8.4 Raise Event

This facility enables a previously set event to be activated.
is called by the Volume Manager.

Raise_Event

3.3.8.4,1 Inputs
The following input argument is defined for Raise_ELvent:

Event_Name - The name of the event to be made active.
3.3.8.4,2 Processing
The event control block corresponding to the named event in the Event Queue

is removed. The process execution associated with the event is placed in

the Process Ready Gueue. Raise Event is used by the Volume Manager to i

implement the terminal attention or breakin fa~ilities.

3.3.8.4,3 OQutputs F

There are no output arguments defined for :aise ..veat.

Voll
3-92

. j B — I
W RPN W 1 .. .. y i P s v et
. - w— wrenr T o

prpgee- et
RS I L0




Bt 3

Pro Qi

3.5.9 Volume Manager

The Volume Manager functionally encapsulates a set of operations on the data
structure defined as the carrier control block. Appendix A incluaes the
specification of the Aaa package VOLUME MANAGER, See Figure 3-1y for a
logical breakdown of the Volume Manager.

The Volume Manager creates an abstract host object that can be manipulated
in order to maintain the information contained in the KAPSE data base. The
Volume Manager is designed to use the host system facilities to convert an

abstract host object into the apprOpriate'logical or physical device or file
in the host environment.

An abstract host object is defined to the KDBS as a linear data space that
may be referenced in data increments through the ordinal position assigned
to the data increment. The length of the logical space and the increment
may vary for each instantiation of an abstract host object. The
correspondence between a data base object and an abstract host object is
retained in the object control block maintained by the KDBS ana the carrier
control block maintained by the Volume Manager. The volume control block is

used to denote the union of the object and carrier control blocks.

Vol 1
3-93

Tl w72 N 2y AU

S 1 N5 At R A7 S et P e €

M AT < e s rveomrerseee




-
E
£
A
\

X

VOLUME
MANAGER

CREATE HOST OBJECT
OPEN HOST OBJECT
CLOSE HOST OBJECT
DELETE HOST QBJECT
WRITE INCREMENT
READ INCREMENT

TP No, 031.200%-A

Figure 3-19. Logical Breakdown

Vol 1
3-94




F---T-l.lI-IlIIlll!!!!!!!!-'-'-"'-'"-"-'.'---'-'-—-"!' e o

The host dependent characteristics of the volume are retainea by the Volume
Manager in the carrier control block. When a data base object is created,
the nature of the host file or device for the object may be optionally
specified in the object control block. This may indicate a specific device
in the the case of a device object. When no specific device is specified,
the Volume Manager supplies a host file of a default nature. The name of
the default file is retained in the directory entry for the object. The
same manipulative operations are supported by the Volume Manager for all KDB

objects, so that the KDBS is isolated from the nature of the host file or
devices.

For host objects that represent interactive devices, the Volume Manager
contains the necessary functionality to provide for simple editing of input
lines. It is recognized that on some hosts it may not be possible to
override the host line-editing facilities.

The Schematic in Figure 3-20 illustrates the role of the Volume Manager in a
typical data retrieval cycle for a MAPSE process.




9T124) TeAdTaIaY BIERQ ASAVH

WILSAS
1SOH

SIUNIOVI

SHLIMOVA
WILSAS
LSOH

*0Z~¢ 2andryg

1/.\ .
HOLINOW . ¥3IHOLVdSIa UIDVYNYIW
AN3A3 on INNT0A
- |f A)7IIIL
saax M.HHHHHH D> sdan <=
/ | R
N
sga
8830044
asdvm

Vol1

3-96




3.3.9.1 Create Host Object

This facility creates a host object for the KDB object described in the
ob ject control block. The name and nature of the host object are made
available through this block. Create_Host_Object is called by the KDBS from

the Kernel Process.

3.3.9.1.1 Inputs

The following input argument is defined for Create_Host_Ob ject:
Addr_0OCB - The object control block address.

3.3.9.1.2 Processing

The KDB object description in the object control block is validated and a
carrier control block is created. The KDB object description is used to
generate a host object name and a command specification block. This block
is linked to the carrier control block, and a reference to the carrier block
and the host object name are placed in the object control block. The
carrier control block is passed to the 1/0 Dispatcher to initiate the
specified host system facility.




3+3.9.2 Open Host Object

This facility makes available the host object specified in the object

control block. Open_Host_Object is called by the KDBS from the Kernel.

3.3.9.2.1 Inputs

The following input argument is defined for Open_Host Object:
Addr_0CB - The object control block address.

3.3.9.2.2 Processing

The KDB object description in the object control block is validated and a
carrier control block is created. The command specification block to make
the host object available is formatted and linked to the carrier block. A
reference to the latter is placed in the object control block and the
carrier control block is passed to the 1/0 Dispatcher to initiate the
specified host system facility. When the host object requires no explicit
use of the host system facilities, control is returned to the KDBS without
creating a command specification block.

3.3.9.2.3 Outputs

There are no output arguments defined for Open_host Ubject.

Vol 1
3-98




3.3.9.3 Close Host Object ]

This facility releases the host object specified in the object control
block. Close_Host_Object is called by the KDBS from the Kernel. :

3.5.%.3.1 Inputs

: The following input argument is defined for Close_Host_Object:
i Addr_0CB ~ The object control block address. R
3.3.9.3.2 Processing

The carrier control block referenced in the object block is validated. The
command specification block to close the host object is formatted anu linked
to the carrier block. The carrier block is passed to the 1/0 Dispatcher to

et Lotk sl Fadeihd

initiate the specified host system facility. When the host object requires

oS 7L

no explicit use of the host system facilities, the carrier block reference
in the object block is removed and the carrier block released. Control may
then be returned to the KDBS immediately.

3+43.9.3.3 Outputs

1 There are no output arguments defined for Close_Host_Object.




3 .

e e 2
e e

e i ‘_
PR PR A

K.

3.3.9.4 Delete Host Object
This facility deletes the host object specified by the object control
block. Delete Host _Object is called by the KDBS from the Kernel.

3.35.9.4.1 Inputs

The following input argument is defined for Delete_Host_Ob ject:

Addr_OCB - The object control block address.
3.3.9.4.2 Processing
The host object description in the object control block is validated and a
carrier control block is created. The command specification blocx to delete
the host object identified in the object block is formatted and linked to

the carrier block. A reference to the carrier block is placed in the object

block, and the carrier block is passed to the I/0 Dispatcher to initiate the
specified host system facility.

3.3.9.4,3 Outputs

There are no output arguments defined for Delete_Host_Ubject.

Vol 1
3-100

- s S e ey - -
Py ”"y"ﬂ‘ - vy o G T -.’7;10\' s6 -



ALY SR e

£ 4

S el i
AR e a1 el

3.3.9.5 Write Increment

This facility writes a data increment to the host object specified by the
object control block. The data to be written is supplied in the buffer

referenced in the object block. Write_ Increment is called by the KDBS from
the Kernel.

3.3.9.5.1 Inputs

The fellowing input argument is defined for Write_Increment:
Adar_0OCB - The object control block address.

3.3.9.5.2 Processing

The carrier command block referenced in the object block is validated. From
the data increment description in the object block, the command
specification blocks are formatted to write the contents of the buffer to
the designated position in the host object. The command blocks are 1linkea
to the carrier control block, which is passed to the 1/0 Dispatcher to
initiate the specifiea host system facility.

3.3.9.5.3 Outputs

There are no output arguments defined for Write_Increment.

Vol
3-101




oy e T

o o
i

=

%

¢ i
- el

e n

3.3.9.6 Read Increment

This facility reads a data increment from the host object specified by the
object control block. The data that are read are placed in the buffer
referenced in the object block. Read_Increment is called by the KDBS from
the Kernel.

3.3.9.6.1 Inputs

The following input argument is defined for Read_Increment:
Addr_OCB - The object control block address.

3.3.9.6.2 Processing

The carrier control block referericed in the object block is validated. From
the data increment description in the object block, the command
specification blocks are formatted to read the data from the designated
position in the host object into the buffer. The command blocks are linked

to the carrier block, which is passed to the I/0 Dispatcher to initiate the
specified host system facilities.

3.3.9.6.5 Outputs

There are no output arguments defined for Read_Ilncrement.

Vol l
3-102

sl




g e ———— T ———— o LT o

e e st

3.3.10 1/0 Dispatcher

The 1/0 Dispatcher functionally encapsulates a set of operations on the data
structures defined as the Device Dispatch Queues . Appendix A includes the
specification of the Ada package 10_DISPATCHER. See Figure 3-21 for a
logical breakdown of the 1/0 Dispatcher.

The I/0 Dispatcher is designed to coordinate requests resulting from KDBS
manipulation or from Ada low level input and output. When data transfer
operations have been requested from the same physical device, the I/0
Dispatcher ensures that they are passed to the host system facilities in an

oraer that provides for maximum efficiency in the host environment.

The KDBS coordinates the manipulation of data base objects to avoid logical
data inconsistencies when concurrent processes request access to the same
KDB object; however, it cannot guard against interference resulting from
accesses to different objects that have been mapped to the same host object
by the Volume Manager. Additional conflicts can occur when a physical
device can be accessed through the facilities of Ada low level input and
output, that are performed outsicde of the Volume Manager. The 1/0
Dispatcher reconciles these potential conflicts by entering all requests

into the Device Dispatch Queues that it maintains and services.

An initiate request to the I/0 Dispatcher specifies a carrier control block
or a device control block. A carrier or device control block references one
or more command specification blocks that indicate what specific host system
facility is to be initiated. From the information in the carrier block, the
I1/0 Dispatcher determines the appropriate device queue in which the command
blocks are to be entered. As a result, command blocks from multiple
requests that are directed to the same physical device are initiated from
the same device queue, thereby precluding initiating interleaved blocks from
different requests. The I/0 Dispatcher cooperates with the Event Monitor to
sustain servicing of the device queues. Prior to initiating a command
specification block, the I/0 Dispatcher sets an event with the Event
Monitor. Upon completion of the event the Event Monitor activates the 1/0

Dispatcher for the 'next request. Other asynchronous requests that have

entered command blocks in different device queues are also initiated when
possible,




1o
DISPATCHER

tiNITIATE LOW LEVEL 10
INITIATE OBJECT 1/0

TP No. 031-2008-A

Figure 3-21. Logical Breakdown




While a request has outstanding command blccks on a device queue, the
requesting task in the MAPSE process is suspended. It is rescheduled for
execution through the Process Administrator by the I/0 Dispatcher only when
a device control block has been specified. When a carrier control block has

been specified, rescneduling action is performed by the Volume Manager or
KDBS. .

The schematic in Figure 3-22 illustrates the servicing of concurrent
initiate requests to the I/0 Dispatcher.




sasanbay a3vr3Ijul JusaIndUL)

*T7-¢ 2andyy

|_v v HOLINOW
S INIAZ -8
- -y
HIOVYNYW o4
ju!:..? =
Y3IHOLVdSIa :
o=_ saax
il I
r—=—" o r--"
| saan | | 133y mon | i saon |
$83004d 883904d 8839044
I8dYN 38dVYW 28dYN
\
o o . T T T A nETE R P T T -




Yy

-

P . _ .
- . -

5.3.10,1 Initiate Lowlevel 10

This facility schedules the initiation of the command specification blocks
referenced in the device control block. Initiate_Lowlevel IO is called
through the Ada lowlevel I/0 facilities.

3.3.10.1.1 Inputs .
The following input argument is defined for Initiate_Lowlevel l0:

Addr_CB - The device control block address.

3.3.10,1.2 Processing

The device control block is validated. The command specification blocks
referenced in the device block are entered into the appropriate device
queue. When there are existing entries in the device queue the Process
Administrator is called to suspend the process or task that is dependent
upon the request. Otherwise, an event is set for the first command block,
which is then used to initiate the required host system facility and the
process-task is suspended. The remaining command blocks are initiated as
each posted event is received by the Event Monitor indicating the completion
of the requested command block. When the last command block has been

completed, the device control block is updated as required and the suspended
process or task is rescheduled for execution.

3.3.10,1.3 Outputs

There are no output arguments defined for Initiate_Lowlevel IO.

Voll
3-107




5o Sy g

Lo

TR T e gAY N T Y

35.3.10.2 Initiate Object IO

This facility schedules the initiation of the command specification blocks

referenced in the carrier control block. Initiate_Object_IO is called by
the Volume Manager.

3.3.10.2.1 Inputs

The following input argument is defined for Initiate_Object IO:
Addr_CCB - The carrier control block address.

3+3.10.2.2 Processing

The carrier control block is validated. The command specification blocks
referenced in the carrier block are entered into the appropriate device
queue, Processing is similar to that for Initiate_Lowlevel IO, except that
when the last command block has been completed control is returned to the
Volume Manager.

5.3.10.2.3 Outputs

There are no output arguments defined for Initiate_Object_IO.

Vol 1
3-108




SR TR e Y g I, LT R

v

3.3.11 KFW Loader

The KFW Loader provides the MAPSE with the facility to load a Load Object

that is to execute as a MAPSE process into an execution domain that has been
created through host system facilities.

In order to load a Load Object the KFW Loader relies on the object name and

PCB address being made available to it. The Load Object name identifies the

host object that contains the Load Object. The KFW Loader uses this name to
access the Load Object through the host system facilities.

The schematic in Figure 3-23 illustrates the loading of a new MAPSE process.

Voll
3-109




o s e o it ; ; L e o

.

~ i

NN [ .

~ A

§520014 ASIVW MaN Buypeo] ‘*g¢g-¢ 21n814 | w

1

d

v

4
“ ,.

e

: SHIIYUVYI VYiva -

-—
193r80 ¥aavol ¥
avol MR mw.:u..hﬂwmn. ~o
1S0H —
o 1 ~.
=0
YOLVEISININGY
YOLVULISINIWGY £83004d
8$3204d

'Y

8837044 8832044 .
38dVIN MaN asdvin m
'

.

B o Tt T T AP PR T el ; L

ST e A > PR g > " v



e bl — T

3.4 ADAPTATION

The initial implementations of the MAPSE are to use the IBM VM/370 and
Interdata 8/32 under 08/52 host environments. Consequently, the specified
KFW design must be adaptable to these two environments so that an
economical, efficient instantiation can be specified. The following

paragraphs discuss adaptation strategies for implementing the MAPSE.

5.4.1 General Environment

The two initial host environments are substantially different in the system
facilities offered to the KFW. The IBM VM/,70 offers a low level machine
interface while the Interdata 0S/>2 offers an interface of a conventional
multiprogramming system. Neither host system proviues multiprocessing
facilities that can be exploited by the KFW 1in the existing host
configurations . Because instantiation of the KFW in the 0S/3¢ environment
interfaces with existing software, the efficient adaptation of the KFW

represents a significant challenge.
3.4.1,1 IBM VM/570

VM/370 can be categorized as a virtual machine environment oriented to
simulating concurrently operating virtual machines under the supervision of
a Control Program (CP). The CP is the real machine resource manager. It
allocates the control processing unit to concurrently operating virtual
machines, handles all real machine hardware interrupts, schedules and
initiates all real I/0 operations and manages real and external page storage
to support virtual storage.

The adaptation strategy ftor the KFW in VM/370 is the development of an
operating system conforming to the virtual interfaces defined in this
specification, This adaptation strategy is consistent with the objectives
of both VM/570 and the MAPSE.

VM/370 provides virtual machines to support concurrently executing operating
systems that service the needs of aifferent programming communities. The
MAPSE is one such prograumming community. Consequently, the requirements for
multiuser support, econcmical portability and previous efforts to adapt
other programming environments under CMS tavor developing the KAPSE virtual

operating system directly on a virtual machine.

Vol 1
3-111




1 5.4.1.1,1 Kernel Process

The overall adaptation strategy is the specification of the KFW as the

operating system for the virtual machine. The Kernel process is created as
;E a saved system that is IPLed in the virtual machine at logon time after the
¥ virtual machine is established. The name of the Kernel process is defined
in the virtual machine configuration entry .f the VM/370 airectory. The
Kernel process executes in the virtual supervisor state and may, as a
result, issue privileged instructions. Executing in the supervisory state
the Kernel process may reference any area of virtual storage (address
domain) that is defined for the virtual machine. The LOCK option is used to
eliminate paging activity for the most frequently used pages of the Kernel
process. If necessary, additional pageable CP routines may be supplied for

use by the Kernel process.

3.4.1,1.2 MAPSE Process

A MAPSE process is executed in the virtual problem state. The Kernel
process establishes a MAPSE process through the virtual PSW and the KAPSE
Loader,

3.4.1.1.3 Dynamic Address Domain

The Dynamic Address Domain is allocated in the virtual storage defined for
the virtual machine, The Context Manager assigns page frames for the
allocated virtual storage to a MAPSE process providing the required store
and fetch protection using the SET STURAGE KEY instruction.

3.4,1.1.4 Shared Execution Domain

; For MAPSE processes that require MAPSE facilities that execute as an
extension of the process in the Shared Execution Domain {(such as the Task
Manager), the Context Manager assigns these facilities to page frames

containing locked pages in virtual storage. The protection key for the page i
¥ frames is set to permit shared execution,

5.4.1.1.% Kernel Requests

A Kernel request from a MAPSE process is supported through the SVC
instruction. This enables a MAPSE process to interrupt its execution and to

invoke the virtual SVC interrupt handling routine supplied through the Event
Monitor of the Kernel process.

Voll1l
E 3-112 1

L /53 ?

’ e ——

~ - — - VT T

. YT R Ow

SRR =z "




e, o

OIS N YO,

o

5 o
ok st

o

o . - 3%
o e da

35.4.1.1.6 MAPSE Process Execution

The execution of a MAPSE process is performed by the Kernel process through
the KAPSE Loader and the use of the LOAD PSW instruction. The name of the
Load Object to be executed as a MAPSE process is supplied in the call to the
KAPSE Loader. The Process Administrator controls subsequent execution of
the MAPSE through virtual interrupts and the virtual CPU Timer.

3.4,1.1.7 MAPSE Events

Interrupt handlers are defined in the Kernel process to receive virtual
interrupts. Through the interrupt handlers virtual device interrupts, CPU
Time expiration and SVC requests are received by the Event Monitor for
action by the Kernel process.

3.4,1.1.8 1Interactive Communication

Interactive communication with the MAPSE is supported through the virtual
console devices configured in the virtual machine. A MAPSE terminal handler
in the Kernel process services input directed to or from the virtual

consoles recognizing the editing and attention or breakin characters that
are significant to the MAPSE,

5.4,1.1.9 Standard Quantum of Time

The stanuard quantum of time for MAPSE process execution is provided in the
Kernel process using the virtual interval timer and virtual CPU timer
facilities.

3.4,1,1.10 Low Level I/0

Low Level I/0 is provided through the I/0 Dispatcher's use of the START I1/0
instruction.

3.4,1,1,11 KAPSE Data Base I/0

The Volume Manager provides the required file structuring and manipulation
to map a data base object on the virtual minidisks configured in the virtual

machine, Delineation of where the virtual device handlers are located is to
be determined.

Vol 1
3-113




e

PR Sl A 35 S e

3.4.1,1,12 Ada Tasks

Ada tasks are supported by multiprogramming within a MAPSE process. The
Kernel process is used to schedule execution of the MAPSE through system
control instructions and virtual timer interrupts.

5.4.1,1.13 KAPSE Loader

The KAPSE Loader is called to load a MAPSE process from a Load Object file.
The KAPSE Loader places the Load Object in virtual storage and starts

execution of the MAPSE through the Process Administrator.
>

3.4.1.2 Interdata 8/32

0S/32 can be categorized as a real-time operating system oriented towards
dedicated applications. The system supports the execution of background
programs while executing real-time programs in the foreground. Interactive
support is provided by the Multi-Terminal Monitor (MTM) subsystem. The

schemata in Figures 3-<4 and 3-29% illustrate the adaptation strategy of the
MAPSE to 0S/32.

3.4.1.2.1 Kernel Process

The overall KFW adaptation strategy is the specification of a subsystem that
is similar to MIM. This subsystem is the KAPSE Kernel process and
establishes a privileged relationship with 0S/32 through its declaration as
an Executive task when the Kernel process is built at Task Establishment
Time (TET). As an Executive task (E-task) the Kernel process may reference
any area of memory (address domain) and may execute all host machine

instructions. Additional system facilities are also provided for use by an

Voll
3-114




[ .
M AN
N
£893v131s uworavadepy z¢/SO °4z-¢ 2anSyg
g
......... N e el = mmm
& 7 & =—= .m,,E {Hh
Q\_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ i ininiin
7
\\k SINIWOIS AUVHEI AIUVHS % lm
2 7z ot
7 7 o Y
el Z o [
_
— H i ‘_
13431 $5330u4 i i

[ e e e ey o - .
I 2o ) S A . [

. A el




pl i g

5o stvice. o

08/32 ADAPTATION STRATEGY
(S8VC USAGE)
KAPGE DATA BagE
sveTem
nwmlm m.“g&u‘m‘wm :::
Yy 3
y
e wezanw
TEWAL e
Tese ManAGER ”
CRASH HANOLER
ScHDuLER
| i [ "B
] ]
| sver ""'::“ coNTIe-
HANDLER ManasaER m%

Figure 3-25

1 v —— e e+

[ S N



E-task including direct device manipulation to perform input and output.
The restrictions placed on E-tasks do not present major difficulties for KFW
adaptation. When the Kernel process is loaded into the 0S/32 system the

task resident option is specified to avoid it being rolled during MAPSE
execution.

3.4.1,2.2 MAPSE Process

A MAPSE process is executed as a User task (U-task) by declaring the KAPSE
Loader as a U-task when it is built. A MAPSE process is started as a
monitor task of the Kernel process.

3.4.1.2.35 Dynamic Address Domain

MAPSE processes that reference the Dynamic Address Domain are supported by
establishing a Global Task Common Segment that is referenced at task
establishment time of the KAPSE Loader.

3.4.1.2,4 Shared Execution Domain

For MAPSE processes that require MAPSE facilities that execute as an
extension of the process in the Shared Execution Domain (such as the Task
Manager) a Shared Library Segment is established to include the MAPSE

functional domain. These segments are again referenced at task
establishment time of the KAPSE Loader.

3.4,1,2,5 Kernel Requests

A Kernel request from a MAPSE process is supported through the send message
function and the trap wait condition in the task status word. This enables
a MAPSE process (U-task) to place a message on the task queue of the Kernel
process (E-task). The message is formatted to comply with the interface of
the Request Kernel facility specified by the Request Director.

5.4.1,2.6 MAPSE Process Execution

The execution of a MAPSE process is performed by the Kernel process using
the load task function to load the KAPSE Loader and the start function to
commence its execution. The name of the Load Object to be executed as a

MAPSE process is supplied in the start options to the KAPSE Loader. The

Vol 1
3-117

it b a2 Sutd iy




Process Administrator in the Kernel process controls subsequent execution of
the MAPSE process as a monitor task through the suspend, change priority,
release and end the task functions.

3.4,1.2.7 MAPSE Events

A task queue is defined in the Kernel process to receive 05/32 events that
are of significance to the execution of the MAPSE. Through this task queue,
device interrupts, data transfer completions, interval time expirations and
Kernel requests are received by the Event Monitor for processing by the
Kernel process. The task queue for the MAPSE is defined at task
establishment time of the Kernel process.

3.4,1,2.8 Interactive Communication

Interactive communication with the MAPSE is supported through terminal
devices that are configured in the Kernel process when it is loaged. For
these MAPSE terminal devices, a MAPSE terminal handler is made available to
the 0S/32 system that directs input to the Kernel process for processing.
This processing may then recognize the editing and attention or break in
characters that are significant to the MAPSE,

3.4.1,2.9 Standard Quantum of Time

The standard quantum of time for MAPSE process execution is provided in the
Kernel process using the timer management functions. Expiration of the
quantum of time results in a parameter entry on the task queue for the
Kernel process that is available to the Event Monitor.

b 5

3.4.1,2.10 Low Level 1/0

o s .
D AN
T

Low Level I/0 is provided through the Kernel process by its status as an
E-task. It may issue through the 1/0 Dispatcher the bare disk I/0 functions
read and write. Availability of this facility can be provided to a MAPSE
process when necessary. The Ada constructs RECEIVE_CONTROL and SEND_CONTROL F
support is adapted to use the trap generating device functions, Trap

o

el 18 4

¥ generating device handlers can be made available to the 08/32 system to
' interface with the Kernel process.




okl . S e PR R 3 e

o m

PR QR

3.4,1,2.11 KAPSE Data Base 1/0

Support for the KAPSE Data Base is provided by indexed and contiguous file
structures. The Volume Manager in the Kernel process maps a data base
object to the required file structure. The allocate, assign, close, delete,
read and write functions are used to perform file manipulation. The I1/0
Dispatcher may use the I/0 proceed request to achieve asynchronous data
transfers. Completion of a data transfer is recognized through a parameter
block on the task queue of the Kernel process.

3.4,1.,2.12 Ada Tasks

Ada tasks are supported by multiprogramming within a MAPSE process
(U-task). The user SVC may be used to facilitate the implementation if the
portability of the Task Manager can be maintained. The Kernel process
(E~task) 1is used to schedule execution of the MAPSE process using the
suspend and release functions. The full potential of the KFW design is
constrained by restrictions that are presented by the send message and load
task status word functions.

3.4,1,2.13 KAPSE Loader

The KAPSE Loader is created as a U-task and is established to reference the
Global Task Common Segments and Shared Library Segments loaded through the
Kernel process. Execution of the KAPSE Loader causes the specified MAPSE
Load Object file to be read into the impure segment, and prepared for
execution as a MAPSE process. When the KAPSE Loader is requested to load a
MAPSE tool the appropriate Shared Library Segment is referenced for
execution,

3.4,2 System Parameters

3.4,2.1 IBM VM/370

The system parameter that may change the operation of the MAPSE in the
VM/370 system are those reconfiguration options for a virtual machine.
These options are documented in IBM publication GC20-1757=2, Virtual Machine
Facility/>70 Features Supplement.

Vol 1
3-119




y
;
g

FAE T

ot
Sadin
i e

PUIQUEL Ny st

5.4.2.2 Interdata 8/32

The system parameters that may change the operation of the MAPSE in the
Interdata 0S/32 system include:

1. The number of Shared Library Segments

2. The number and size of Global Task Common Segments
3. The maximum size of a U-task

4, The maximum number of concurrently executing U-tasks
5. The E-task priority

6. The rolling of U=tasks that execute MAPSE tools

7. The size of the E-task queue

8. The devices to be assigned to the logical units of the E-task
9. The availability of the Spooler task

10. The availability of MAPSE supplied trap generating device
handlers

1. The availability of a secondary file directory.

3.4.35 System Capabilities

3.4.3.1 1IBM VM/370

In adapting the KFW design to VM/370 no contraints have been currently
identified that are major hinderances to the implementation.

3.4.3.2 Interdata 8/32

In adapting the KFW design to the Interdata 0S/32 system, the following
constraints have Dbeen identified as potential hinderances to the
implementation:

1. Insufficient protection control over the use of Global Task
Common Segments

2. Exclusion of executable code in Global Task Common Segments

3. Lack of a system feature to change the purity status of a
U-task segment

4, Lack of a system feature to modify the task status word of a
U-task by another task

Voll
3-120

=

R N
TR - R R Ay - ,
» ! Tr oW - .»4 e




\
%
|
|

5. A system feature must be requested to transfer
execution states

between

6. The transfer between execution states does not optionally wait

the directing task

During detailed design, every effort will made to minimize the impacts of
these constraints on the KFW interfaces.

Vol 1
3-121

Ty - - - N - v-—""“"‘.*.i‘” R p,u-.‘q“ .
»o - ey O Yo M g N . 2 4




SECTION 4 - QUALITY ASSURANCE PROVISIUNS

i 4,1 INTRODUCTION

This section contains the requirements for verification of the performance
of the KFW. The test levels, verification methods, and test requirements
" -for the detailed functional requirements in Section 3 are specified in this
n section, The verification requirements specified here shall be the basis
E for the preparation and validation of aetailed test plans and procedures for

the KFW. Testing shall be performed at the subprogram, program (CPCI),

]
3 system integration, and acceptance test levels. The performance of all
|

tests, and the generation of all reports describing test results, shall be

in accordance with the Government-approved CPDP and the Computer Program

Test Procedures.

L

: The verification methods that shall be used in subprogram and program
g

i testing include the methods described below:

1. Inspection - Inspection is the verification method requiring visual
examination of printed materials, such as source code listings, normal

|

program printouts, and special printouts not requiring modification of
the CPCI. This might include inspection of program listings to verify
3 proper program logic flow. h

- el ke

. 2. Analysis - Analysis is the verification of a performance or design
' requirement by examination of the constituent elements of a CPCI. For
g example, a parsing algorithm might be verified by analysis.

! 3. Demonstration = Performance or design requirements may be verified
| by visual observation of the system while the CPCI is executing. This
includes direct observance of ail display, Kkeyboard, and other
peripheral devices required for the CPCI.

4, Review of Test Data - Performance or design requirements may be

verified by examining the data output when selected input data are
processed. For example, a review of hardcopy test data might be used to

[P

verify that the values of specific parameters are correctly computed.

Vol 1l
4-1

/L3




Y
Fat i «

b I
- iy

. b e

v

5. Special Tests - Special tests are verification methods other than

those defined above and may include testing one functional capability of

the CPCI by observing the correct operation of other capabilities.

These verification methoas shall be used at various levels of the testing
process. The levels of testing to be performed are described in the
paragraphs below. Data obtained from previous testing will be acceptable in
lieu of testing at any level when certified by CSC/SEA and found adequate by
the RADC representative. Any test performed by CSC/SEA may be observed by
RADC representatives whenever deemed necessary by RADC,

Table 4-1 specifies the verification method for each functional requirement
given in Section 3 of this specification. The listing in Table 4-1 of a
Section 3 paragraph defining a functional requirement implies the listing of
any and all subparagraphs. The verification methods required for the
subparagraphs are included in .the verification methods specified for the

functional requirement. _Acceptance test requirements are discussed in
Paragraph 4.3.

4,1,1 Subprogram Testing

Following unit testing, individﬁal modules of the KFW shall be integrated
into the evolving CPCI and tested to determine whether software interfaces
are operating as specified. This integration testing shall be performed by
the development staff in cooraination with the test group. The development
staff shall ensure that the system is integrated in accordance with the
design, and the test personnel shall be responsible for the creation ana

conduct of integration tests.

4,1,2, Program (CPCI) Testing

This test is a validation of the entire CPCI against the requirements as
specified in this specification.

CPCI testing shall be performed on all development software of the KFW.
This specification presents the performance criteria which the developed
CPCI must satisfy. The correct performance of the KFW will be verified by

testing its major functions, Successful completion of the program testing

Vol1l
4-2




that the majority of programming errors have been eliminated and that the
} program is ready for system integration. The method of verification to be

used in CPCI testing shall be review of test data. CPCI testing shall be
, performed by the independent test team.

i 4,1.3. System Integration Testing

System integration testing involves verification of the integration of the
KFW with other computer programs and with equipment. The integration tests
shall also verify the correctness of man/machine interfaces, and demonstrate

functional completeness and satisfaction of performance requirements.

System integration testing shall begin in accordance with the incremental
development procedures as stated in the CPUP. Final system integration

shall occur subsequent to the completion of all the CPCIs comprising the

o Lo o g

MAPSE system. Two magor system integration tests shall be performea: one
for the IBM VM/370 implementation and one for the Interdata /32

implementation. The method of verification used for system integration
testing shall be the review of test data.

The test team shall be responsible for planning, performing, analyzing

monitoring, and reporting the system integration testing.

b 4,2 TEST REQUIREMENTS

g Quality assurance tests shall be conducted to verify that the KFW performs
fj as required by Section 3 of this specification. Table 4-1 specifies the
methods that shall be used to verify each requirement. The last column
refers to a brief description of the specified types of verification as
given below. Test plans ana procedures shall be prepared to provide details
regarding the methods and processes to be used to verify that the ueveloped
CPCI performs as required by this specification. These test plans and
ff procedures shall contain test formulas, algorithms, techniques, and
acceptable tolerance limits, as applicable,.

By Vol 1
4-3

IS




SECTIUN TITLE INSP, ANAL. DEMO. DATA. SECTION NO.

3.5.1 KAPSE Initiator X 4,2
3.3.2 Logon Utility X 4.2
3.3.3 Kequest Director X 4.2
3.3.4 KAPSE Terminator X 4.2
3.3.5 Process Administrator X 4.2
3.3.6 Task Manager X 4,2
3.3.7 Context Manager X 4,2
3.3.8 Event Monitor X 4.2
3.3.9 Volume Manager X 4,2
3.3.10 1/0 Dispatcher X 4,2
3.3.11 KFW Loader X 4,2
; 4
b |
1
i
4
)
g
1
&
3
q
$ Vol 1
& L4




4,2 TEST REQUIREMENTS

All programs described in Table 4-1 will be tested using driver programs and

examining output data. Drivers shall be written to generate input data ana

to log output data. Test input scripts and expected test output shall be

developed by test personnel in accordance with subprogram and program
specifications. Testing shall consist of comparing expected output data

with test output data.

4.5 ACCEPTANCE TEST REQUIREMENTS

Acceptance testing shall involve comprehensive testing at the CPCI level and
at the system level. The CPCI acceptance tests shall be defined to verify
that the KFW satisfies its performance and design requirements as specified
in this specification. System acceptance testinyg shall test that the MAPSE
satisfies its functional requirements as stated in the System

Specification. Acceptance testing shall be performed by review of test data.

These tests shall be conducted by the CSC/SEA team and formally witnessed by
the Government representatives. Satisfactory performance of both CPCI and
system acceptance tests shall result in the final delivery and acceptance of
the MAPSE system,




i g

SECTION 5 - DOCUMENTATION

5.1 GENERAL

The documents that will be produced during the implementation phase in
association with the KFW are:

1. Computer Program Development Specification (lype Bb) - Update
2. Computer Program Product Specification

3. Computer Program Listings

4, Maintenance Manual

5. User's Manual

6. Rehostability Manual

5.1.1 Computer Program Development Specification

The final KFW B5 Specification will be prepared in accordance wWith
DI-E-3013Y and submitted 30 days after the start of Phase 1I.

5.1.2 Computer Program Product Specification

A type C5 Specification shall be prepared during the course of Phase II in
accoraance with DI-E-30140. This document will be used to specify the
design of the KFW and the development approach implementing the B5
specification. This document will provide the detailed description that
will be used as the baseline for any Engineering Change Proposals. A single
C5 will be produced for the KFW with aifferent sections aadressing the
dependencies on the two host computers.

5.1.3 Computer Program Listings

Listings will be delivered that are the result of the final compilation of
the accepted KFW, Each compilation wunit 1listing will contain the
corresponding source, cross-reference, and compilation summary. The source

1isting will contain the source lines from any Included source objects.

Vol 1l
5-1




R TNEL e Tl e W TRT T A

Rk ad

yT——

"

e —am——t e A s 5

5.1.4 Maintenance Manual

A KFW Maintenance Manual will be prepared in accordance with DI-M=-30422 to
supplement the C5 and compilation listings sufficiently to permit the KFW to
be easily maintained by personnel other than the developers. The
documentation will be structured to relate quickly to program source. The
procedures required for debugging and correcting the KFW, along with
debugging aids that have been incorporated as an integral part of the KFW,
will be described and illustrated. Sample scripts for compiling KFW
components, for relinking the KFW in parts or as & whole, and for installing
new releases will be supplied. Separate sections will be provided to

address modifications that have been incorporated to tailor the KFW to
individual hosts.

5.1.5 User's Manual

A User's Manual shall be prepared in accordance with DI-M=-30421, which will
contain all information necessary for the operation of the KFW., DbBecause of
the virtual user interface presented to the KFW, a single manual is
sufficient for all host computers. Information relevant to specific hosts
will be contained in an appendix. Supplemental information will be supplied
to assist the user in locating and correcting KFW errors.

5.1.6 Rehostability Manual

In accordance with R&D-137-RADC ana RAD-138-RADC, a manual will be prepared

that describes step-by-step procedures for rehosting the KFW on a different
computer,

w




il - o EN N SR A

v

.2

Lret o
b i l Py o S
ol i 4

P

i
7&

APPENDIX A - KFW VIRTUAL INTERFACE PACKAGES §

package REQUEST DIKECTUR is

type REQUEST KIND is (Some_Facility,...);
type REQUEST SHAPE (Shape : hEQUEST KINV) is

record
Request : REQUEST_KIND := Shape;
case Shape 1is
when REQUEST KIND'FIRST = >

~-= Space for actual parameters
when REQUEST_KIND LAST = >
end case; 4
end record;

type REF_REQUEST_SHAPE is access REQUEST_SHAPE;

generic
type REQUEST_ PARAMETER is private;
type REF_REQ_PAR is access KEQUEST_ PARAMETER;

procedure Request Kernel
(Addr_RPL : REF_REQ_PAR);

end REQUEST_DIRECTOR;

Voll

ot e ad o~ i TN

d AgWrenrs.



package PCB_SHAPE is

type PROCESS_CONTROL BLOCK;
type REF_PCB is access PROCESS_CONTROL_BLOCK;
type PROCESS_CONTROL BLOCK is

4 record
X Load_Object_Name  :  LOAD_NAME; a
§ Priority :  PRIORITY_VALUE;
! Level :  PROCESS_LEVEL;
k: ! Privileges : PRIVILEGE;
3 Classification : CLASSIFICATION_LEVEL; |
: Owner_Id :  OWNER_NAME; . 3
User_la : USER_NAME; i
Process_Map : REF_PCM;
Status : PROCESS_STATUS;
Time_Used : USAGE;
Standard_Input : STD_IN;
: Standard_Error : STD_ERROR; : ;
! Stancard_Output : STD_OUT; |
Next_PD :  REF_PCB; , ,
Previous PD : REF_PCB; ]
Parent_Params : REF_RPL; ‘
Child Process : REF_PCB;
& Next_Sibling : REF_PCB;
= Wait_Process : REF_PCB;

Task Quota : TASK_LIMIT;

Time_Quota : TIME_LIMIT;
o Tasks_Active : MAX_TASKS;
| Tasks_Ready : MAX TASKS;

Tasks_Terminated : MAX_TASKS;

PO

Tasks_Waiting

MAX_TASKS;
H end record;

end PCB_SHAPE;

i R recl I A

[P

Vol 1
A-2

[N SO T . P ) PRI R, © < o




package DTR_SHAPE is
type DEPENDENT_TASK_RECORD;
type REF_DTR is access DEPENDENT TASK_RECORD;

type DEPENDENT_TASK_RECORD is
record

PR D Ut SOV PPN

Guardian_Task : REF_TCB;

First_Dependent : REF_TCB; i

Next_DTR :  REF_DIR; %

Activate_Count, !

Dependent_Count, !

Terminate_Count : NATURAL; g
|

end record;

end DTR_SHAPE;




\.A-_

O e

Ak AR .

LN UL IS o - il

L

e e m e

package ALTERNATIVE_TABLE_SHAPE is

type ALTERNATIVE_KIND is

(Entry_Arm, Constant_Family Arm, Variable_Family_ Arm,
Constant_Delay_Arm, Variable_Delay_Arm,
Else Arm, Terminate_Arm); ‘

subtype EXCLUSIVE_ALTERNATIVE is ALTERNATIVE_KIND

range Constant_Delay Arm .. Terminate_Arm;

type ALTERNATIVE TABLE ENTRY (Exclusive_Arm: EXCLUSIVE_ALTERNATIVE) is
record

Accept_Body
Alternative_Arm

Entry No
Constant_Entry_Index
Family Alternative_Arm
Null Guard,

Null Accept

case Exclusive Arm is

DOMAIN_OFFSET;
ALTERNATIVE_KIND;
ENTRY_VALUE;
INDEX_VALUE;
ARM_VALUE;

e o0 00 o0 0o

BOOLEAN;

when Constant_Delay Arm BAR Variable_Delay Arm = >
Constant_Delay : DURATION;
Delay_Alternative_Arm
: ARM_VALUE; ;

when Terminate_Arm BAR Else_Arm = >
null;

end case;

end record;

type ALTERNATIVE TABLE is array (1 .. Max_Arm Value)
of ALTEKNATIVE_TABLE_ENTRY (Exclusive_Arm);

type ALTERNATIVE_GUARDS is array (1 .. Max_Arm Value) of BOOLEAN;
type VARIABLE DELAYS is array (1 .. Max_Delay Arm) of DURATION;

type VARIABLE FAMILY is array (1 .., Max_Family Arm) of INDEX_ VALUE;
end ALTERNATIVE_TABLE_SHAPE;

Vol 1l




with DTR_SHAPE, ALTERNATIVE TABLE_SHAPE;
use DIR_SHAPE, ALTERNATIVE_TABLE_SHAPE;

package TCB_SHAPE is
type TASK_CONTROL_BLOCK;

- type REF_TCB is access TASK_CONTROL_ BLOCK;

$
; type TASK_CONTROL_BLOCK is
b record
F Task_PCB : REF_PCB;
Guardian : REF_DTR;
Static_Context : REF_ESC;
Context_Map : REF_PCM;
Initial_State H TASK_IEP;
Elaborator : REF_DTR;
| Activated, Created,
= Suspended,
= Terminated, Kernel,
‘ Running, Resdy : BOOLEAN;
Kernel RPL : REF_RPL;
Kernel_Exception $ -- To be defined
3 Exception_Name : EXCEPTION_VALUE;
Failure_Task : REF_TCB;
: Failure_Exception : =~ To be defined
i -~Ready Task Queue
Zj Next_Ready,
& Prev_Ready : REF_TCB;
’ Static_Priority,
; Run Priority : PRIORITY VALUE; *
% -=Suspenued Task Queue |
i Next_Suspended, r
'} Prev_Suspended : REF_TCB;
. Wait_Condition : - To be defined
i Wait_Time : DURATION;

--Entry call Queue Links in Calling Task

Next_Cailer,
Prev_Caller,

PSRRI of -

4 Service_Task REF_TCB;
Service Entry ENTRY_VALUVE; 3
Synchronized BOOLEAN;

Entry_Call Parameter

-= To be defined

Voll
A-5




--Nested Accept Stack in Task being serviced.
This_Caller,

Prev_Caller : REF_TCB;
Service_Priority : PRIORITY_VALUE;

—Entry Queue in Service Task.

Open_Entries : OPEN_QUEUE (1 .. Max_Entries);
Head,
Tail : ENTRY_QUEUE (1 .. Max_Entries);
3 Entry_Start_Index ENTRY INDEX;

Queue_Lengths
Interrupt_Entries
Interrupt_ECB_Queue
This_Select
Open_Alternatives
Delay Alternatives
Family Alternatives

array (1 .. Max_Entries) of INTEGER;
-~ To be defined

INTERRUPT_QUEUE;

-~ To be defined
ALTERNATIVE_GUARDS;

VARIABLE DELAYS;

VARIABLE FAMILY;

FRNVON

I

end record;

| A end TCB_SHAPE;

il I

*
#
A
*

5
¥
!

y
F 3
1
k.|
{

i Vol 1
4 A-6
¥
K | ,

! )

) e . i s 3 - ——  ——r ey
LA A . W 2o ", .y x Wy -




Lt R e A A ——

with REQUEST DIRECTOR, PCB_SHAPE, TCB_SHAPE;
use REQUEST DIRECTOR, PCB_SHAPE, TCB_SHAPE;
package PROCESS_ADMSTR is

procedure Start_Process
(Load Object_Name
Process_Priority
Process_In_Params
Process InOut_Params

Process_uut_Params out
Addr_PCB out
procedure Finish_Process
(Process_InOut_Params : I
Process_Out_Params : 1

procedure Suspend Process
(Addr_PCB : REF_PCB;
Addr_TCB : REF_TCB);

procedure Terminate Process_Task
(Addr_PCB : REF_PCB;
Addr_TCB : REF_TCB);

procedure Ready_Process
(Addr_PCB : REF_PCB):

LOAD_NAME;
PRIORITY_VALUE;
IN_PROCESS_PARAMS;

in out INOUT_PROCESS_PARAMS;

OUT_PROCESS_PARAMS;
REF_PCB);

N_PROCESS_PARAMS;
N_PROCESS_PARAMS);




procedure Wait_Process

(Addr_PCB : REF_PCB;
Addr_PCB : RLF_PCB;
Wait_Condition : PROCESS_STATUS);

procedure Save_Process
(Addr_PCB : REF_PCB;
Load_Object_Name : LOAD NAME);

procedure Resume_Process
(Addr_PCB : REF_PCB);

procedure Switch_Process Task
1 (Addr_PCB : REF_PCB;
Addr_TCB : REF_TCB); J

‘ procedure Terminate_Process
£ (Addr_PCB : REF_PCB);

procedure Rank_Process
(Addr_PCB : REF_PCB;
Addr_TCB : REF_TCB);

procedure Read_PCB
(Addr_PCB : REF_PUE;
Addr_VPCB : REF_VPCB);

pasish

.y

procedure Delete_Process
| (Addr_PCB : REF_PCB);

X procedure Write_PCB '

(Addr_PCB : REF_PCB;

! Addr_VPCB : REF_VPCB);
.

' end PROCESS_ADMSTR;

by

.

by

!

3

A!
E |

{

,4

1

? Vol 1 f

A-8

A




with REQUEST_DIRECTOR, TCB_SHAPE;
use REQUEST_ DIRECTOR, TCB SHAPE.

package TASK_MANAGER is

procedure Create_Task

(Addr_TCB ¢ REF_TCB;

Dep_Header_Record : REF_DTR;

Addr_ESC ¢ REF_ESC; i
Task_Priority ¢ PRIORITY_VALUE;

Task_IEP ¢ TASK_IEP;

TCB_Alt : TCB_ALT);

procedure Schedule_Task
(Addr_TCB : REF_TCB);

procedure Delay_Task
(Time_Delay : DURATION);

procedure Accept_Entry
(Entry_No : ENTRY_VALUE;
Null_Accept : BOOLEAN);

procedure Accept_Entry Family
(Entry_No : ENTRY_VALUE;
Entry Index : INDEX VALUE;
Null_Accept : BOOLEAN);

‘ generic
p type PARAMETER_LIST is private;
& type PARAMETER LIST ADDRESS
i is access PARAMETER _LIST;

procedure Entry_Call
(Addr_TCB : REF_TCB;
Entry_No : ENTRY_VALUE;
Parameters : PARAMETER LIST ADDRESS);

T ST VL .

pPoit=a

generic
type PARAMETER_LIST is private;
type PARAMLTER LIST_ADDRESS
is access PARAMETER _LIST;

B B ke

o

procedure Entry_Call_Family

| (Addr_TCB ~ : REF_ICB;
A Entry_No :  ENTRY_VALUE;
of Entry_Index : INDEX_VALUE;
1 Parameters : PARAMETER_LIST ADDRESS);

Voll
A-9

/58




generic
type PARAMETER _LIST is private;
type PARAMETER_] LIST ADDRESS
is access PARAMETER_LIST;

procedure Conditional Entry_Call
(Addr_TCB REF_TCB;

Entry No : ENTRY_VALUE;
Parameters : PARAMETER LIST_ADDRESS;
Condition : out BOOLEAN);

generic

type PARAMETER_LIST is private;
type PARAMETER LIST_ADDRESS
is access PARAMETER LIST;

procedure Conditional_ﬁntry_ﬁall_ﬁamily

(Addr_TCB : REF_TCB;

Entry_No : ENTRY VALUE;
Entry_Index : INDEX_VALUE;

Parameters : PARAMETER_LIST ADURESS;

Condition : out BOOLEAN);

generic
type PARAMETER_LIST is private;
type PARAMETER LIST_ADDRESS
is access “PARAMETER _LIST;

procedure Timed_Entry_Call
(Addr_TCB REF_TCB;
Entry_No : ENTRY_VALUE;
Parameters : PARAMETER_LIST ADDRESS;
Condition : out BOOLEAN);

generic
type PARAMETER_LIST is private;
type PARAMETER_LIST_ADDRESS
is access PARAMETER_LIST;

procedure Timed_Entry_Call Family
(Addr_ TCB REF_TCB;
Entry_No ENTRY_VALUE;
Entry_Index : INDEX_VALUE:
Parameters : PARAMETER_LIST_ADDRESS;
Condition : out BOOLEAN);

procedure End_Rendezvous;

procedure Selective_Alternative
(Select_Table : ALTERNATIVES_TABLE);




procedure Wait_Dependent_Tasks :
(Dependent_Tasks : REF_DTR); i

procedure Terminate_Task;

procedure Abort Task

(Addr_TCB : REF_ICB);

]
ﬁ procedure Fail Task
3 (Addr_TCB : REF_TCB);

. procedure Set_Interrupt
2 (Addr_TCB ¢ REF_TCB;
Entry No : ENTRY_VALUE;
] Entry_Index : INDEX_VALUE;
' Interrupt + INTERRUPT_NAME);

procedure Accept_ Exception

3 (Exception : EXCEPTION_VALUE);
E function Attribute_Terminated
¥ (Addr_TCB : REF_TCB) return TERMINATE_STATE;

function Attribute_Priority
(Addr_TCB : REF_TCB) return PRIORITY_ VALUE;

T P

function Attribute_Storage
(Addr_TCB : REF_TCB) return STORAGE_UNITS;

function Attribute_Count
(Addr_1CB : REF_TCB) return INTEGER;

end TASK_MANAGER;




bt AU S R - .o ARNER. L LA b b en il

G e e il

falaiair i i

with PCB_SHAPE; use PCB_SHAPE;
package CONTEXT_MANAGER is

procedure Allocate Domain

(Addr_PCB : REF_PCB;
Map_Index : INDEX_ VALULS
Domain_Length : INTEGER;
Addr_Domain : out REF_DOMAIN);

procedure Release Domain
(Addr_PCB : REF_PCB;
Map_Index : INDEX VALUE);

procedure Find Domain

(Load_0b ject_Name : LOAD_NAME;

Addr_Domain : out REF_DOMAIN);
.procedure Load Domain

(Load_Ob ject_Name : LOAD NAME;

Addr_Domain ¢ out REF_DOMAIN);

procedure Read_Domain
(Addr_Domain : REF_DOMAIN;
Storage Unit : DOMAIN OFFSET;
Unit_Length : INTEGER;
Addr_Buffer : REF_BUFFER);

procedure Write_Domain
(Addr_Domain : REF_DOMAIN;
Storage_Unit : DOMAIN OFFSET,;
Unit_Length : INTEGER;
Addr_Buffer : REF_BUFFER);

end CONTEXT_MANAGL«;

Voll
A-12




with ECB_SHAPE; use ECB_SHAPE;
package EVENT MONITOR is

procedure Set_Event
(Addr_ECB : REF_ECB);

procedure Cancel_ Event
(Addr_ECB : REF_ECB);

procedure Wait Event
(Addr_ECB : REF_ECB);

procedure Raise Event
(Event_Name : EVENT);

end EVENT_MONITOR;

Y

FRare . X

S N Pt

(e Sicliy

: P S

1 Vol 1
o A-13

_ o T
-m! S L «W\W{pm.‘ e , . o s ias : ” - . B E R




with CCB_SHAPE, DCB_SHAPE;
use CCB_SHAPE, DCB_SHAPE;

package IO _DISPATCHER is

; proceaure Initiate_LowlLevel 10
4 (Addr_DCB : REF_DCB);

§ procedure Initiate_Object IO }
j (Addr_CCB : REF_CCB); :

end I0_DISPATCHER;

. e

By

P




‘u& o e -

o i

S

ETR Ak . u.
Tl e m el

with I0_DISPATCHER, OCB_SHAPE;
use 10 DISPATCHER, OCB_SHAPE;

package VOLUME_MANAGER is

procedure Create_Host_0bject
(Addr_OCB : REF_OCbk);

procedure Open_Host_ Ob ject
(Addr_OCB : REF_OCb);

procedure Close Host Object
(Addr_OCB : REF_OCB);

procedure Delete_Host_Object
(Addr_OCB : REF_OCBb);

procedure Write Increment
(Addr_OCB : REF_OCB);

procedure Read_Increment
(Addr_OCB : REF_OCB);

end VOLUME_MANAGER;

Vol 1
A-15

b m ot _
i




T P —— B o o
- - 1
]
i
!
) Volume 2
3
COMPUTER PROGRAM DEVELOPMENT SPECIFICATION
|
5 (TYPE BS)
' COMPUTER PROGRAM CONFIGURATION ITEM i
: 1
; t KAPSE Data Base System
{
é Prepared for
i
; Rome Air Development Center
o Griffiss Air Force Base, NY 13441
H
b Contract No. F30602-80~-C-0292
“ 1Y
|
|
1
E . Vol 2
v"' i
” :
[
ZE
4 , ~ o




TABLE UF CON1ENn1S

Section 1 - ScoEe.....loooolli.'0..0.........l...l.....'..o...‘....o

1 Identification.ccecerscecessoesecsrscooscecosososcsnssoncne
.2 Functional SUMMary...cececscereceosesvoscssasscsssscessossanss

1
1

Section 2 - Applicable Documents..;-..‘.........-..-.-.-......oo.-.-

Program Definition DocUMENtS..ecereescesccnsnsosescosssoncsne
Inter-Subsystem SpecificationS.cseececscoscscocccscscosnnsse
Military Specifications and StandardsS...ceeccecccsosssosses
Miscellaneous DoCUMENES..ceetessrecsososscoconrosoosscnsnss

2.
2.
2
2

2w N =

Section 3 =~ ReQUirementS..ciceesestascssscsnsssessoscssssocsosasessse

INtroUUCEiON, sseseeetssoteorsocrssoesscscacscacsconcacnccnsos
General Description..ievecaseceecrssssecesveccscssccsannnons
Peripheral Equipment Identification..ceeeseesccscsconsoaces
Interface Identification.sivececeserscerscosoonaconsansanoes
Functional Identification..cvesesecesecssccococcasasocnsoss
Functional Description.ccscsescsscscsccessscssssesosccssnns
1 Equipment Description..ccvecessescescscsecscesoosaossasonnss
2 Computer Input/Output Utilization...ceeeerecsccescassccsces
5 Computer Interface Block DiagraM.e.cceeeesccescocccvsasnsss
4
5

e & & e s e =
¢ ¢ o
E X VA \Sar

¢ * a

Program InterfaceS.ieeeeeersersacasssoneasocssasceascsnsasncnse
Function Description.cessecesccncsccsesesosossosccnacsesses
Detailed Functional DescriptioN.icicscecesescsssssesnessosee
Attribute SUPPOrt..cieeeccecessscssssoscsescacnnnsasansssses
Partition SUPPOrt..eciseceescsessacasssansssssscccssossnscss
ACCeSS SUPPOrt.ieeierassnecnscssscrssseorsososessocassascnsssss
Ada Input/Output SUPPOrt..cececescesasrsecccsesscsssscccssasns
Version SUPPOrt..ceieeeseesaorscssssscssccsscrsasosssssssoss
Archive SuppOrt..ccveesssvesssscacssessesssssoscsnssasssncs
KDB Backu)/Restore SUPPOrt..ccccscssecscssssasssscsssnsnsans

* s & o s o
s 0 L * .
OV EWN =

Adaptat;uﬂ...........---..-.-...........-.o......-....-....

General ENVironment..cseeeceessecssossosscosscscsassasesesss
System ParametersS...ccecececceccesessosssrsssesonsncacsscses
System Capacitiesl......QICIO..........‘..l.....'.l.....'..

CapaCity oo cesvecsoesonesrsesscesssssonsasscssaacsnccscsscsss

AT s 1o
L] -
. [ ]
v =

LwLuLLuuL LV LLLWLL Lok WL WWwouvwuo
*

U 2ol ru U W NN N = a0 =
.

Section 4 = Quality AsSurance ProviSionS....ceeececcsasscesssssscsns

el

IR TR ool

Introduction..cvveessvececesssnensssssococecnsonssasscscrse
1 Subprogram TeStiNgeeeecreeeerssesssecreonsossesascsscsssssse
.2 Program (CPCI) TeStiNReceeceasesscscosoccossocscosccnsnssoens
3 System Integratiofi TeStiNg.icocssscsscoctsosscssossnscsssscs
Test Requirements....ceevecesseesssssessnsoccsoncsvsassseens
Acceptance TeStiNng..cieeeeosrsvenssesoescttoaccnscoasnnsnsnss

.

Vol 2
iii

T R S e e —_—

2-1
2-1
2=1
2=2

3=1
3=1
3=1
3=1
3=-2
3=3
3=3
-5
>3
=
3=
>=>0
3=33
=U4
3=5¢
5=-64
3=105
=111
3=11
=12«
3=122
=122
=122
3=122

4=1
43
4=5
b=y
4-4
4=y




E Section b = Docunentatiol.cveesesecesesvessocososerssoconscnsossssscsces 5-1
] 5. UeNeral..cceccesoscscsccsosnssscesscosseasassscsscnssncavassns 5-1
i 5.1.1 Computer Program Development Specification..c.cesecsccecccss 5-1
; 5.1.2 Computer Program Product SpecificationN,..cesecececsccacsces 5-1
p 5.1.2 Computer Program LiStingS...eeeececcecsccecccscsccssascscns H=-1
! 5.1.4 Maintenance ManuUal....eeceesccccccsscsscesconoasssscssansns b-2
: 5.1.9 USEr S MGHUAL.seeeeeeosoannseesennsscssoscsasaasseccasasses bez

%.1.6 Rehostability Manual..ceesceoeecsoscssscosceccscsnsnscssncnsne H=2

Appendix A - KDBS Utility Package Definmition........ccveeeccocsnaess A-1

e . e

. AR

et PN o

}

;, VéFQZ / 6 63 i




Je e v ————

LIST OF ILLUSTRATIONS

Page
Figure

3=1 Interface DiagraMe..coececeeccroecssoessocasvensanscsncsnnse 3-4
‘ 3= Tree-Structured Hierarchy..ciceeesesesconcsrsscsacaccossan =L
] 3 Partition Hierarchy..ecceeseeecscsecosssassosssccoscsaccoce 3=-7
g 3-4 Objective StructUre..ceeceecceccecssssscscsvassssssonsons =Y

3=5 Version GroUp...cseceseeanscacsnaassosescnssescssaasonsnsns 3-15

3-b Logical Structure of Abstract Ubject..cscecocescesscccces =Y
v 3=1 Execution ConteXteseeeeereosressesscrossossscsnssnssansons 3=20
3 3-8 Ada /0 OPEN.ececessocsctsosvsestosesoscsscsasscsscssssssscsns 3=21
' 3=y Ada 1/0 Createecececcscecsoccsscessosscscosnscsscassocscss 3=22
X 5>=10 BUA ClOSE@eseoeeeesooacvsasssoscessscssscascasansnssonssas 3-c4

E =1 Ada I/0 Re@deeeeveveevessacnonacnsssvoocssssosssosassnnsns 3=25
v 3=12 Ada I/0 Write.ceeeeeeoseroncervossnssssscsnsasesossssosscsssee =27
¥ 3=13 Ada I/0 Delete..csccececosnccsecsncsocssossssscnanosasons 3-28
) 3=14 KDBS Functional Diagram...eeeeeevecocsscssscssssscossoses 3=31
g 15 Attribute Support FUNCLioNnS.eeeceessceasocsocsscnvossossos 3-34
> 3-16 Partition Support FUunCtionS.....cecececcscescoscscscascne 3-hk
3-17 Access Support FunctionS..eieeecececversssssvscessanccscns 3=52
o 5-18 Ada Input/Output Support FunctiolS...essseceesscsccccsses o=vl
¥ 3-14 Version SUpport FUunCLioNS..ceeecesscesscascssacsosoassnns 3-10%
| 3-20 Archive Support FUnCtiolS..ceveeeeesoscsescesasssoncsccns 3-1m '
3 =21 Backup/Restore Support FUnCLionS...c..eeeecececcsssscssaas >=116

Pl LB P

P

i

“

£
L &
1
i
1




< o2k G

e

e g

e

ARy,

N N
D il am i

Pl
- 1

SECTION 1 - SCOPE

1.1 IDENTIFICATION

This document presents the Computer Program Development Specification (Type
B5) for the Computer Program Configuration Item (CPCI) called the Kernal Ada
Programming Support Environment (KAPSE) Data Base System (KDBS). This CPCI
provides the logical repository for all system- and user-generated data as

well as the requisite data base management system functions.

This specification provides the performance, design,
requirements for the KDBS.

and testing
Section 3 presents the performance and design
requirements. Section U4 presents the testing and quality
requirements. This specification,

assurance
after approval by Rome Air Development
Center (RADC), will serve as the development baseline for the KDBS.

1.2 FUNCTIONAL SUMMARY

The KAPSE Data Base System (KDBS) is the cornerstone of the MAPSE and

provides facilities for maintaining the different kinds of data needed in

developing computer systems. The KDBS includes not only the facilities for

storing the data, but alsc the data base management functions necessary to
manipulate the data in a controlled manner.
objects and attributes.

All data are represented as

The KDBS provides facilities to ensure correctness,
consistency, security, and flexibility.

Vol 2
1=1

) 70




SECTION 2 - APPLICABLE DOCUMENTS

2.1 PROGRAM DEFINITION DOCUMENTS

L

1. Requirements for Ada Programming Support Environment - STONEMAN,

% United States Department of Defense, February 1980.
; 2. Reference Manual for the Ada Programming Language, United States
ﬁ Department of Defense, July 1980.
f 3. Revised Statements of Work for Ada Integrated Environment, Rome Air
i Development Center, 26 March 1980.
2.2 INTER-SUBSYSTEM SPECIFICATIONS
. 4, Specification for the Ada Integrated Environment.
': 5. Volume 1, Computer Program Development Specification for CPCI KAPSE
2 Framework.
3 6. Volume 3, Computer Program Development Specification for CPCI APSE
£ Command Language Interpretor.
, 7. Volume 4, Computer Program Development Specification for CPCI MAPSE
j. Configuration Management System.
F 8. Volume 5, Computer Program Development Specification for CPCI Ada
:‘ Compiler.
j 9. Volume 6, Computer Program Development Specification for CPCI MAPSE
{ Linker.
é 10. Volume 7, Computer Program Development Specification for CPCI MAPSE
d Editor. 7
11, Volume 8, Computer Program Development Specification for CPCI MAPSE i
Debugger.

2.3 MILITARY SPECIFICATIONS AND STANDARDS

12, MIL-STD-483, Configuration Management Practices for Systems,
Equipment, Munitions, and Computer Programs, 1 June 1971.
b 13. MIL-STD-490, Specification Practices, 30 October 1968. {

!
:.'
it
|
l

Vol 2
0 2=-1




2.4 MISCELLANEOUS DOCUMENTS

14,

v

15.

QEL oy iR e el

16,

170

18.

19.

20,

E

Ada Support System Study (for the United Kingdom Ministry of
Defence), Systems Designers Limited, Software Sciences Limited,
1979-1980.

Feiertag, R. J., and E. I. Organick, The Multics Input-Output
System, Proc. Third Symposium on Operating Systems Principles,
October 1971,

Fisher, David A., Design 1Issues for Ada Program Support
Environments, Science Applications Inc., SAI-8§1-289-WA, October
1980. '

Ritchie, D. M., and K. Thompson, The UNIX Time-Sharing System, The
Bell System Technical Journal, Vol. 57, No. 6, Part 2, July-August
1978.

Rochkind, M. J., The Source Code Control System, IEEE Transactions
on Software Engineering, SE-1, December 1975.

Thompson, K., UNIX Implementation, The Bell System Technical
Journal, Vol. 57, No. 6, Part 2, July-August 1978.

Dolotta, T. A., S. B. Olsson, and A. G. Petruccelli, ed., UNIX
User's Manual, Release 3.0, Bell Telephone Laboratories, June 1980,

Vol 2
2=-2

e | e A e e




a0l g

e e s o Awae

SECTION 3 - REQUIREMENTS

3.1 INTRODUCTION

This section presents the design and performance requirements of the KDBS.
The visible specifications for the KDBS, available to all MAPSE components,
are incorporated in the KAPSE virtual interface and are presented as
Appendix A of this specification. Data base requirements, as specified in
the Statement of Work (SOW) and the System Specification (Type A) are

included by reference.

3.1.1 General Description

The KDBS, the central element of the MAPSE system, maintains all user- and
system-generated data and provides support to project management and
configuration management tools, source program libraries, and provides basic
object manipulation facilities. The KDBS is structured so that
relationships between objects in the data base are maintained, but the KAPSE
data base does not impose restrictions on the format of the information

stored in the object.

The KDBS is designed to provide for the maintenance of data objects in a
machine-independent manner. These objects include Ada source text,
relocatable, executable, project documentation, configuration and partitions
objects. The KDBS provides for creation, deletion, and modification of
these data objects as well as support for configurations, versions, and
partitions. The KDBS also supports Ada standard Input/Output (1/0) as part
of the Ada Run-Time Support package.

3.1.2 Peripheral Equipment Identification

The KDBS has been designed to be portable, and therefore is not dependent on
host computer characteristics. Services normally provided by host systems
shall be supplied by the KAPSE Framework (KFW).

3.1.3 Interface Identification

This paragraph specifies the functional relationship of the KDBS to other
MAPSE components. Paragraph 3.2.4 describes the interfaces between the KDBS
and the other computer programs in the MAPSE system. The KDBS interfaces




directly with the KFW and the KAPSE virtual interface. Thus, the KDBS has a
machine independent interface to the host and a consistent interface to the
rest of the MAPSE system.

The KDBS has two levels of interfaces to the MAPSE system, those that are
l made available to other components of the MAPSE and those required by the

KDBS in order to process requests and remain transportable.
3.1.3.1 Visible Interfaces

- The KDBS has facilities available to the users of MAPSE which are made
| visible through the virtual interface. These facilities are packaged into
] two logical areas, the Ada Run-time Support Package and the KDBS Utility
: Package. The Ada Run-time Support Package contains those functions
necessary to support the Ada standard 1/0 facilities specified in the Ada
language. The KDBS Utility Package provides those functions necessary to
manipulate and control the KDBS and its objects. Specifications for the
KDBS Utility Package are included as Appendix A. The separation between the
two packages are made because of their relation to the MAPSE system. The
Ada Run-time Support Package is a portable package from the host

implementation to the target machine, while those facilities found in the

KDB Utility Package are not generally needed on the target machine.
3.1.3.2 KDBS Required Interfaces

These are the interfaces needed by the KDBS inorder to process a request
made to it by MAPSE Process/Tasks. The only required interface the KDBS has
to other components of the MAPSE are those of the KFW. The KFW is needed in
mapping the logical I/0 from the MAPSE Process/Tasks to the physical I/0 on
the host environment. The KDBS requires the ability to signal the KFW to

suspend or reschedule MAPSE Process/Tasks requesting KDBS services.

3.1.4 Functional Identification

The major functional areas of the KDBS are:

1. Attribute support

2. Partition support

3. Access support

4, Ada input/output support

Vol 2
32




Y

5. Version support
6. Archive support
7. Backup support.

3.2 FUNCTIONAL DESCRIPTION

This section provides an introduction to the functional capabilities of the

KDBS. Detailed functional requirements are described in Paragraph 3.3.

3.2.1 Equipment Description

The KDBS is designed to be machine-independent. It will be one of the
portable components of the MAPSE system. There are no special requirements
imposed on the KDBS by either the IBM 370 or the Interdata 8/32.

3.2.2 Computer Input/Qutput Utilization

All input and output requirements of the KDBS are satisfied by the KFW. No
special requirements are impcsed on the KDBS. Information flow between the
KDBS and the host computer system is handled entirely by the KFW,

3.2.3 Computer Interface Block Diagram

The functional interfaces between the KDBS and other MAPSE CPCIs are
illustrated in Figure 3-1. Computer interfaces are given in the KFW B5
Specification.

3.2.4 Program Interfaces

The KDBS shall use host system facilities through its interface with the KFW
at the KDBS Kernel level. Facilities of the KDBS shall be made available to
MAPSE tools and user programs through the virtual interface. Functions of
the KDBS available at each interface are also indicated in the figure.

The KDB Utility Package interfaces with the virtual interface and supplies
support for access, attribute, archive, backup, version, and partition
manipulation. The Ada I/O0 functions of the KDBS are supplied through the
Ada Run-Time support package. KDBS I/0 facilities are supplied through the
Kernel level interface to the KFW.

The KDBS shall be written in Ada and therefore compilable by the Compiler.




MAPSE PROCESS LEVEL KERNEL PROCESS LEVEL {
wOST
— | | LEveL
e ——— ———
r r 1R
AcLl |
| xoes !
KERNEL ]
}
FIGURATION ACCESS, ATTRIBUTE,
wn:u'fge::ug e ' ARCHIVE, BACKUP, (
SYSTEM PARTITION SUPPORT '
|
|
COMPMLER :
|
|
KDes
UNKER Y = e
I PACKAGE
| .. ADAIO DB) 4 |
TASK MANAGER (KFW) |
| ] ew |
EDITOR by | KEW | HOST
KERNEL | MACHINE 1
| |  INTERFACES
I - |
| PROCESS ADMIN. ‘
e 1/0 DISPATCHER
DEBUGGER | EVENT MONITOR |
CONTEXT MGR. |
| KFW VOLUME MGR.
INTERFACE KAPSE LOADER |
i PKG. ll.'gém S’T‘QF&M'NATOR )
%’éﬂ. usg =J | REQUEST DIRECTOR |
PROGRAMS [ |
L] J

Figure 3-1. Interface Diagram

Vol 2
3-4




3.2.5 Function Description

The KDbS provides administration and control of all wuser and system
generated data within the MAPSt. In the KLB, all cata is represented as
objects. All objects have attributes and information content. Object names
may have, in addition, category and version qualifiers. All ob,ects are
stored as a tree-=structured hierarchy, the structure being 1induced by
partitions. Access control features are permitted on both partitions ang
ob jects. The access control scheme allows partition access rights to
control access for the entire subtree definea by the partition and thus, for
efficiency purposes, indiviual objects rights need not be specified. The
KDBS also supports virtualized I/0 facilities through the Ada Run-time
Support Package and provides the same access control facilities for an
object that represents a device as for any other object in the data base.

Backup, restore and archiving features are also an integral part of the KDBS
design.

The following paragraphs describe the functional characteristics of these
features.

3.2.%.1 Partitions

All objects are stcred in a tree-structured hierarchy see (Figure 3-2). The
structure of the hierarchy is induced via partitions, which provide a
m~:.ping from object names to the objects themselves see (Figure 3=3).
Partitions are a special category of object used to provide logical
groupings of other objects. A partition corresponds to the notion of a
"directory" in other systems such as UNIX,

Each user registered to the MAPSE has an 1individually assigned home
partition and may create additional subpartitions as needed. The KDBS
maintains several predefined partitions for system use. One of these is the
root partition. All objects in the KDB can be found by tracing a path
through a chain of partitions until the desired object is reached. A fully
specified object name identifies this chain of partitions. The syntax for
this name is a sequence of partition names followed by the unadorned base

name of the object, where the partition names are delimited with

Vol 2
3-5




wiEd
AT A

N o
e e i e

AoOT
1
nAvY Ay URAF
mos oy moy
UBER, UBER, VSRR, usen, usEn, usen,
] A L 1
DesT we s cauz s RADAR
;] rom v svs v svs
I 1
ONAR TRAN TONP
L oM oM
- WS FTR - DEC MO, SRTIA - 4
Figure 3~2. Tree-Structured Hierarchy
Vol 2
3-6
/ T e
— Lot P YR T e ST WA (D (4 -
-~ 'M'&V - d



s

OBJECT NAMEY HOBT NAME-

OBRJECT NAME2 HOBT NAME2

;; OBJECT NAME3 HOST NAME3

OBJECT NAME4 HOST NAME,4

- OBJECT NAMES HOST NAME5

OBJECT NAMEg HOST NAMEg

® ® 0 06 0 0 0 00 ¢ 0 0 o0
® @ 0 ¢ 06 0 ¢ 0 0 * s 0o

QBJECT NAME HOST NAME,,

3
Lo,

TP No. 021-1087-A

o g
o e
. e, ALK

PR

4
Figure 3-3. Partition Object .

|

i

Vol 2 4
;J 3-7 '




pi 5wl A Jootcltes ool

e B d

8 W

PO wb TR AE AT

pCapa

slashes ( / ). Full specification means that the partition chain begins at
the root, which is indicated by an initial "/%". The general forwm is thus:

/partition1/partition2/.../partitionn/base_name

where partitioni+1 is a member of partitioni. A fully specified name is
also called an absolute pathname. A partially specified pathname, or
relative pathname, does not begin with an initial "/". The chain of
partitions denoted by a relative pathname is traced beginning at, or
relative to, the current working partition, which is identified as part of

the environment of a process.

Any non-partition object may appear in seweral partitions under possibly
different names. This feature is called linking, and a link in a partition
maps a local name into an absolute pathname that identifies an obgect in a
differei.t partition. The local name thus serves as a synonym for the
absolute pathname,

3.2.5.2 Objects

All KDB objects have attributes and information content see (Figure 3>-4).
Objects may also have a category (see Paragraph 5.2.5.3) and a version
qualification. Different objects may have the same pathname; these are
distinguishable only through qualification by category and version. The

syntax for these qualifications is described in the indicated subsections.

Attributes supply additional meta-=information about an object. Much of this
information is required by the system in order to provide access control and
configuration managenent, but user-defineu attributes are also permitted.
The user may define any new attributes that do not conflict in name with
system-defined attributes. The value of a user-defined attribute must be a

single character string or a 1list of character strings separated by
semicolons ( ; ).

The logical object structure depicted in Figure 3-4 is by no means the
physical structure, which must be designed ana optimized for each host. The
system-defined attributes included in this logical structure are defined

below. Some of these are optional, others are always present for all
objects.




s

P =

bt
i

Ay

Y - A

ABSOLUTE OBJECT NAME

PARTITION LIST

GROUP 1D

HISTORY ATTRIBUTES

1. DATE-TIME CREATED
2, CFG-LIST

3. DEP-LIST

4. REF-COUNT

AGCESS RIGHTS,

ACCESS RIGHTS,,

SET EFFECTIVE ID FLAG

USER DEFINED ATTRIBUTES

INFORMATION  CONTENT

R ,&%\f;ﬁwr_‘r-

TP Mo, 021 1000A

Figure 3-4. Object Structure
Vol 2
3-9

i -
Mh" R ad

/5/

e B A e ——




1., Name - contains the fully-qualified, unique name of the object. The
! name is composed of the absolute pathname of the object, the category of 3

the object and the version of the object.

} 2. Partition List - a list of partitions that contain a 1link to this
4 object. This list is of varying length and will often be empty.

3. Owner Id - the effective user-id of the process that created this object.

! 4, Group Id - the effective group-id of the process that created this
i object. '

5. History Attributes - consists of four attributes:
a. Date-time - the date-time when the object was last modified.

b. Dependency List - a list of those objects referenced in configuring

this object.

C. Reference Count - the number of references made to this object,
including references made in dependency lists and reterences from
links.

d. Configuration List - (optional) a list of those configurations that

-i reference this object.

i 6. Access Rights - a 1list of users and groups along with their access
rights to this object. An additional "default" entry exists to indicate

the access rights of all other users. The access rights attribute may

e oM skl

be empty. The access permissions for an object are computed as a
function of the access rights for the individual object and the

b Lo da”

partition access rights for the containing partitions.

7. Partition Access Rights - (optional) may be supplied only for a
partition object. Partition access rights have the same form as
ordinary access rights but are used to control access to the entire

subtree rooted by the partition.

s i

PPV QURA SRR 4y

8. Set Effective Ids - (optional) can only be set for XQT and CMD objects.
Indicates when the program is loaded as a process, the effective user-id

 1 and group~id of the process are to be set to the user-id and group-id of
the creating user,

Vol 2
3-10

T Y g R T



3.2.5.3 Categories

The MAPSE has a number of system-defined object categories. The user is
free to add new categories, but the system tools will ascribe special
meaning to those listed below. A catexory name may be sSupplied as a

qualifier to an object base name:
base_name category_name

Names with the same base name but different category names auencote different
objects. Thus the category name will often be required to distinguish
between object names. However, many system tools automatically supply a

category for otherwise ambiguous names, based on context. Such automatic

categorization is detailed in each of the system tool specifications. The
system-defined categories are:

Help HLP Used to contain information for the Help
facility of the APSE and contains the text
k4 for describing an object with the same

base name.
Configuration CFG Used and maintained by the Configuration
Managewent System; contains the

information necessary to define and

control the building of a configuration.

PR o e -

Data DAT The default category. All objects created

without an explicit category are assiygned
the category DAT.

Kt Device DvVC Reservea for objects that serve to i
l identify I/0 devices. The information
content of such objects is host-uependent.

Archive ACV Denotes an object that is used to maintain
an archive. The archiving functions are
described in Paragraph 3.2.5.5.

Vol 2
3-11

-, - — h...__:'..—-’ ;1,_" Pt -




o g B i St A

-
Pt il

e A

C oamae e e

Command CcMD Contains subprograms written in APSE
Command Language (ACL). These are
interpreted by the APSE Command Language
Interpreter (ACLI).

Text TXT Contains data that can be processed with
the Ada Text 1/0 Package. TXT objects are

used to store Ada source modules.

List LST Contains 1listing output generated by
system tools. In particular, Compiler
listings are written into LST objects.

Relocatable REL Contains relocatable coue.

Executuble XQT Contains executable code.

Library LIB Denotes an Ada Program Library.

Partition PTN Denotes a KDB partition (see Paragraph
5.2.5.1).,

3.2.5.4 Abstract Objects and Version Control

A version group is a set of objects that represent related iterations of a
single abstract object. The name of the abstract object (the base name
qualified by category) serves as a generic name for the version group. The
abstract object serves as a directory for the objects in the version group.
An object may be created initially as an abstract object, or may
subsequently be converted to an abstract object.

A version group is tree-structured as shown in Figure 3-5. Each branch of
the tree has a name that is unique within the tree. Each version along a
branch has a number that i1s unique for that branch. Versions along a branch
must be identified with monotonically increasing numbers. To denote a
specific version of an abstract object, a version qualifier can be appended

to the abstract object name. A version name can take one of three forms:

obJect_pase_pame”category_pame.branch_name.version_pumber

Vol 2
3~12




’ X1
OBJECT
X1
X.2
X.3 x2
OBJECT
ABSTRACT
X OBJECT
[ b3
2 X3
OBJECT
Y
PARTITION
OBJECT
OBJECT
Z
OBJECT
TP No. 021-1908-A

Figure 3-5. Version Group

Vol 2
3-13

22y




R

S Tl SRES. o R SO d g

This is the fully-qualified form, and denotes a specific version,

object_pase_pame‘category_pame.branch_pame

Denotes the last version on the named branch.

object_pame‘category_pame

Denotes the last version on thé last-created branch, or on the default

branch which may be specified in the abstract object description.

The information contained in the abstract object identifies the individual
versions, defines the topology of the version tree, identifies thosé users
and user groups permitted to create new branches or versions, and provides
additional accessing descriptors. The iogical structure of an abstract

object is depicted in Figure 3-6 and described below.

Default Branch The name of the branch to be used as the default

when an unqualified reference is made. If this is

empty, the last-createa bLranch will be used as the
detfault.

Version Control Ioentifies the type of version control to be

maintained for this object. The only two types of
version control currently defined are delta and
copy.

Branch Create Identifies the id s for those users and user groups

Permission that may create a new branch, 1f not specified,
create permission is the same as the write
permission for the abstract ob,ect itself.

Branch Write Identifies the id's for tl>se users and user groups

Permission that may create a new version on a given branch.

Branch write permission may be specified separately

for each branch, If not specified for a given

branch, write permission is the same as the write

permission for the abstract object.

Vol 2
3-14




: DEFAULT BRANCH
3 TYPE OF VERSION CONTROL
5
SRANCH , WRITE PERMISSION
L]
*
.
SRANCH, WRITE PERMSSION
, BRANCH CREATE PEAMISSION
)
% VERSION NAME) USERNAME; | MREVIOUS VERSION,
HOST NAMEY TINE-DATEY EXISTENCE)
A
A p
:
g :
< {
; % VERSION NAMER USER NAMEn FROM VERSION
§ HOST NAMEn TIME-DATE, EXISTENCE,
&
z TP No. 02119000
H
t
S
"y
1
3 Figure 3-6, Logical Structure of Abstract Object
Vol 2
3-15 ;
0!
&




i N

L0055 S

e

Aadx

e W
S DU

For each version, the following information is supplied:

Version Name Name of a particular version of the abstracu object.

User Name The name (not the id) of the user who created the
version.

Previous Version The name of the version immeuiately preceding this

version in the version tree.
Host Name The host file name mapping for this version.
Date-Time The date-~time when this version was created.

Versions are ordinarily maintained in the KDB as separate objects, and this
kind of version storage is specified as the copy form of version control.
Considerable secondary storage may be required by copy version control,
although the information content of versions definea by configuration
objects may be deleted because reconstructability is guaranteed.

A second form of version control calied delta may be requested for keyed
ob jects, With delta version control, the information content of all
versions is stored with the abstract object. Associated with each recora is
an indication as to whether the record is to be included or deleted for a
given version. These version indications are relative to the version tree
topology. Thus, unless an indication to the contrary is provided, a version
automatically includes all records comprised in the previous version. For
delta-controlled objects, version extraction and version creation is
performed transparently to the user. The algorithm for version extraction

is linear in the size of the abstract object.

3.2.5.5 Access Control

Access rights are associated with objects and partitions in the KDB. An
individual access right is a pair: (user_or_group_id, access bits), which
indicates that the types of access described by the access bits are to be
associated to the identified user or group of users. The following types of

access are defined with separate interpretations provided for ordinary
objects and partition objects:

Vol 2
3-16

AR




do o e

b Rhae

read r conveys the right to reaa from the object.

Partition: same interpretation.

write W conveys the right to write into the object.
Partition: conveys the right to delete an object in the

partition.

execute e conveys the right to execute the object.
Partition: conveys the rigit to access objects in the
partition access permissions for these objects must still

be checked; without "e" permission, no access 13 allowed.

append a Conveys the right to append to the object.

Partition: conveys the right to create objects in the

partition.
mod m Conveys the right to modify the access rights of the
ob ject.

Partition: same interpretation.

delete d Conveys the right to delete the ob,ect.

Partition: same interpretation.

For partition objects, a second set of access rights, called partition
access rights, may be provided. These do not control access to the
partition object itself, but to the objects that are members of the
partition, ’

One more notion must be defined before the access permission algorithm can
be given. Every process has associated with it four ids: real and
effective user-ids, and real and effective group-ids. Ordinarily, when a
process is created, it inherits all of these ids from the parent process.
However, when a process is created from an executable object that has its
set effective ids attribute set, the effective ids of the created process
are set to the owner-id and group-id attributes of the object, These

effective ids are the ones that are used for access control.

Access permission is computed as a function of the effective user and group
ids of the process requesting access, the type .f access requested, the
partition access rights along the partition path to the object, and the

Vol 2
3-17




AD=A109 980 COMPUTER SCIENCES CORP FALLS CHURCH VA F/8 9/2

AOA XNTE.RAYED ENVIRONMENT 11 COMPUTER PROGRAM DgV!tmolcszEC-ETC(U)
UNCLASSIFIED RADC=TR=81=364=PT=1

{ ([T
EEEEEEENEE




= flze s

llm 0 v 22

S

ey 03
I "0
= [l
22 s ne

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAU OF STANDARDS 1963 A




access rights on the object itself. Assume that the access bits in each
access rignht are represented as a bit string, where the bit positions
represent the access types: read, write, execute, append, delete, and

modify. Consiuer a generalized access to an arbitrary object:
/partition1/partition2/.../partitionn_1/objectn

Assume that access be requested by a process with user id "u" and group id
wgh, For partitioni in the above pathname, let UPABi denote the
partition access bits for user id "u", UPAB1 the partition access bits for
group id "g", and DPABi the partition default access bits for all other
users. For obgectn. the ordinary access bits are used: UABi. GABi.
and DABi. For all cases in which access bits are not specified, the
default bit string of ones is used. The access permission bits, "APB", can

now be computed as follows:

APB = (UPAB, & UPAB, & . . . & UPAB_ _, & UAB))
< (GPAB, & GPAB, & . . . & GPAB__, & GAB)

< (DPAB1 & DPAB2 &. .. & DPABn_1 & DABn)

where "&" represents the bitwise "and" operation, and < represents the
bitwise "or" operation. If, in the APB, the bit corresponding to the
requestea access type is set, access is granted, otherwise access is denied.

This access control scheme allows the partition access rights of a partition
to control access to the entire subtree rooted by the partition. Access
rights for individual objects need not be supplied. If absent, the rights
are implicitly and recursively inherited from the partition access rights of
the containing partitions.

3.2.5.6 KDB Input/OQutput

The KDBS Input/Output facilities defined in the Ada Run-time Support Package
virtualize devices and methods of device access, reducing user knowledge of
host idiosyncracies. An object exists in the KDB for each device supported

by APSE. In this context the device name is the same as that of the object

name. Moreover, the same access control facilities defined for objects of
the KDB apply to the device objects.




The KDBS maintains no user-visible locks, nor are there any restrictions on
the number of users who may have a specific object open. There are,
however, sufficient internal locks to maintain the logical consistency of
the KDB when two users try to update the same object, create objects of the
same name in the the same partition, or delete objects that are currently

being used.

The facilities of version control and access control are performed
automatically and are tranparent to the user in processing I/0 requests.
The access control mechanism is initiated when a requesting MAPSE
Process/Task issues an open or create function. The requesting user .
access rights to the sgpecified object are checked before any further
processing of I/0 requests. Once it has been determined that the requesting
user does have the access rights corresponding to the type of I1I/0 request
made, the KDBS determines whether the effective user-ia is to be wodified
for the execution of the initiated MAPSE Process/Task. This is done so that
a user may ou.ly have access to a portion of KDB when executing the

particular program.

The version control mechanism is initiated at several points in the
processing of I/0 requests. At create time, the user may have selected the
version option of the create function and the KDBS creates an abstract
object and initializes it. At open time, the KDBS must resolve ambiguous
references to objects under version control by examining the abstract object
for the default version and, if necessary uncuer delta-type versioning,
making a pass through the delta object to retrieve the desired version. The
other I/0 function that calls upon the versioning mechanism is the close.
At close time, the KDBS updates the abstract object with the information
about the new version and, if wunder oelta versioning, noting those
differences between the previous version and the current version for later

references to the object.

The context of execution for the 1/0, supported by the KDBS, occurs in two
address spaces within the MAPSE, as shown in Figure 3-=7; that which executes
as a part of the MAPSE Process/Task and that which executes as part of the
kernel process. The main reason for this separation is that 1/U within the
MAPSE is interrupt-driven and the requesting MAPSE Process/Tasks may

Vol 2
3-~19




L5 s P ai -

TN

Spslsve it I W A

i)
)
[
&, |
A

T

3
]
maPss
snOCERS i
TASK
!
ADA 1D 3
PACKAGE
xo8
<:==ﬂ;7 KERWEL
ocs 1//’
P
KERNEL
=D SARED DATA
S=== DATA TRANSFER
g

Figure >-7. Execution Context

Vol 2
3-20

ooNg



not be in core at the time the requested 1/0 has completed. In this way,
some MAPSE Process/Tasks cau be schedulea ana executea while others wait for
their I/0 requests to complete.

The MAPSE Process/Task, upon geclaring an open or create, has allocated an
area in its address space that contains what is called the file descriptor.

od B

The file descriptor contains the relative index of what is termed the object
control block (OCB) for future I/0 operations issued by the MAPSE
Process/Task. The object control block is allocated in kernel space and

i 4

contains the name of the host file, the current read and current write
positions, and relative index of the next host I/0 block.

5.2.5.6.1 Ada I/0 Open

3' The Aca I/0 open converts the relative object name to an absolute object
;ﬂ name and calls the KDBS Kernel to set up the necessary areas and interfaces
requireu to interface the KFW Kernel to issue a host file open.(See Figure
3=-8) The KDBS Kernel proyram first verifies that no object exists in the
specified partition and checks the requesting users access rights to open
the object in the specified partition. The KDBS Kernel then allocates an
object control block for the object and requests the KFW Kernel to open the
é‘ host file. When the KFW has completed the request control is returned to 3
;1 the KDBS Kernel. The KDBS Kernel then returns the relative index of the

ke object control block to the requesting MAPSE Process/Task. The MAPSE
g Process/Task then places the relative index in the file descriptor for later
3 I/0 request references.

% e

prid

3.2.5.6.2 Ada I/0 Create

The Ada I/0 create converts the relative object name to an absolute object

o v A

name and calls the KDBS Kerncl to set up the necessary areas and interfaces
required to interface the KFW Kernel to issue a host file create. (See

o

Figure 3-9) The KDBS Kernel program first determines that no object exists .
in the specified partition and checks the requesting user's access rights to
create an object in the specified partition. The KDBS Kernel then allocates
an object control block tor the object and requests the KFW Kernel to create

LA e e S

h; a host file. The KFW Kernel is responsible for generating a unique,
' host-dependent




Sanade: gl 8 2
bt ol it

PP

Py

PR PP oy

MAPSE Process/Task

1-

20

Issue Ada Open Request

Convert the relative object
reference to an absolute
ob ject pathname

Allocate a file descriptor
for the opened file

Request Kernel KDBS Open
services

Receive control block index and
place in the appropriate

file descriptor for later I/0
referencing

Kernel KAPSL Data Base

Issue a suspend process for the
requesting MAPSE Process/Task

Search for referencea object
starting at the root

Determine whether referenced
object is under version control
and select version

Check access right of the

requesting user to the specified
object

Check the list of currently open
objects for possible concurrency
conflicts

Allocate an object control block
for tlhe referenced ob ect

Request KFW to issue a host file
open

Receive control back from the KFW
Request the rescheduling

Process/Task ana return control
to lock inaex

Figure >-8 Ada I/0 Open




. Ty

e

MAPSE Process/Task

1.

2.

5.

Issue Ada Create Request

Convert the relative object
reference to an absolute
ob ject pathname

Allocate a file descriptor
for the opened file

Request Kernel KDBS Create
services

Receive control block index and
place in the appropriate

file descriptor for later 1/0
referencing

Kernel KAPSE Data Base

Issue a suspend process for the
requesting MAPSE Process/Task

Check that the referenced object
does not exist

Check access right of the
requesting user to the specified
ob ject

Check the 1list of currently open

objects for possible concurrency
conflicts

Allocate an ob,ect control block
for the referenced object

Request KFW to issue a host file
create

Receive control back from the KFW

Request the rescheduling
Process/Task and return control
to lock index

Figure 3-9 Ada I/0 Create

Vol 2
3-23




D S R

.y

[ X
Tt e e e

name and issuing the appropriate host requests to create a file. When the
KFW has completed the request control is returned to the KDBS Kernel to
complete a partition entry with the host file name for later reference. The

KDBS Kernel then returns the relative index to the object control block to .

the requesting MAPSE Process/Task. The MAPSE Process/Task then places the

relative object control block index in the file descriptor for later I/0
request references.

3.2.5.6.3 Ada Close

The Ada 1/0 close function disassociates an object from the MAPSE
Process/Task by interfacing to the KDBS Kernel. See Figure >-10. 7The KDBS
Kernel demonstrates whether the object 1is opened for any othe MAPSE
Process/Task currently executing in determining whether a host file close is
to be issued. If another MAPSE user currently has the object open, the KDBS
Kernel deallocates the OCB and returns control to the MAPSE Process/Task.
When the object is not currently opened for anothe MAPSE Process/Task, the
KDBS Kernel requests the KFW Kernel to issue a host file close and when the
KFW returns control the KDBS deallocates the objeet control block and
returns control to the requesting MAPSE Process/Task.

3.2.5.0.4 Ada 1/0 Read

The MAPSE Process/Task calls the KDBS Kernel with the relative object
control block index and the number of characters to read. Control is passed
to the KDBS Kernel and it determines whether a host file read must be issued
in order to satifiy the request. See Figure 3s-11, If the object control
block buffer is empty then the KDBS Kernel requests the KFW Kernel to
perform a host file read. The interface consists of passing the relative
object control block number to the KFW. When the host file read has been
completed, the KDBS Kernel gets the number of characters requested and
returns them to the requesting MAPSE Process/Task.

Vol 2
3-24




T

H

P A MR

RO 2 BT

S nn

pe

TN

Y

MAPSE Process/Task

1. Issue Ada Cluse Request

2. Convert the relative object
reference to an absolute
object pathname

5. Request Kernel KDBS Close
services

Figure 3-10,

Kernel KAPSE Data Base

Vol 2
3-25

Check the open object 1list to

make sure no other MAPSE
Process/Tasks reference the
object

Issue a suspend process for the
requesting MAPSE Process/Task

Determine whether referenced
object is under version control,
type, and perform versioning

Request KFW to issuse a host
file close

Receive control back from the KFW

Deallocate the object control
block for the referencea object

Request the rescheduling
Process/Task and return control
to lock index

Ada Close




PRl -

-

i #sn S

V" P

MAPSE Process/Task

1.

Kernel KAPSE Data Base

Issue Ada Read Request

Determine whether object control
block buffer is empty

Issue a suspend process for th
requesting MAPSE Process/Task

Request the KFW to issue a host

read inorder to fill the object
control block buffer

Determine whether object is
under delta versioning and alter
contents for specific version

Process the reaa request

Issue a reschedule of the
suspended Process/Task

Figure 3-11. Ada I/0 Read

Vol 2
3-26




5.2.5.6.5 Ada I/0 Write

The MAPSE Process/Task calls the KDBS Kernel with the relative object
control block index and the characters to be written. See Figure 3-12.
Control is passed to the KDBS Kernel and it determines whether a host file
write must be issued to satisfy the request. If the object control block
buffer is full, the KDBS Kernel requests the KFW Kernel to perform a host
file write. The interface consists of passing the relative object control
block number to the KFW. When the host file write has been completed, the
KDBS Kernel resets the buffer and returns to the requesting Process/Task.

3.2.5.6.6 Ada I/0 Delete

The Ada I/0 delete function enables the user to delete an object from the
KDB. See Figure 3-13. The following conditions must be met before the
object is really deleted from the KDB:

1, The requesting user must have the appropriate access to the
specifiea object.

2. The object must not be in current use by another MAPSE user,

3. The object if under version control must be the current version of
the branch. It can not be an iteration in the branch.

4, Configuration rules must be followed, in that objects in the
dependency lists of other objects cannot be deleted.

3.2.5.7 Archiving Objects

An archive object is formed by combining an arbitrary number of separate
objects into on single object. The constituent objects comprised the
archive are called members of the archive object. The process of placing
objects in an archive is particularly useful as a means of eliminating
wasted space that occurs when individual objects do not occupy complete
blocks of storage. Archiving is also convenient as a means of packaging
sets of related objects and providing a means to save volatile copies of
objects in the KAPSE data base.




:' MAPSE Process/Task Kernel KAPSE Data Base

1. Issue Ada Write Request

1. Determine whether object control
block buffer is full

2. Issue a suspend process for the
requesting MAPSE Process/Task

e e -

| 3. Request the KFW to issue a host
3 write inorder to fill the buffer

4, Process the write request

5. Issue a reschedule of the
b | suspended MAPSE Process/Task

i3 SO s

k Figure 3-12. Ada I/0 Write

i

»

3

k)

A

1 Vol 2

! 3-28

; )
: /) (¢
é #




S e

o g ———

RS e WS e I I

T e

MAPSE Process/Task

Issue Ada Delete Request

Convert the relative object
reference to an absolute

ob ject path name

Request Kernel KDBS Delete

services

Figure 3-13.

Kernel KAPSE Data Base

Issue a suspend process for the
requesting MAPSE Process/Task

Search for referencea object
starting at the root

Determine whether referenced
object is uncer version control
and select version

Check access right of the

requesting user to the specified
ob ject

Check the 1list of currently
opened object for possible
concurrency conflicts

Request the KFW to issue a host
file delete

Request that the suspended MAPSE
Process/Task be rescheduled

Ada I/0 Delete




The archive facility provides a set of operations that the user of MAPSE can
employ to create new archive objects and to maintain existing ones. The
§ operations are:

ﬁ 1. List - Lists the members of a particular archive object.

2. Append ~ Creates an archive object ana adding a new member to the
particular archive.

3. Replace - Creates an archive, replacing an exisiting member or

é\ adding the a new member.

|
4, Update - Replaces only recent members with a more recent version of i

an object.
3 5. Delete - Deletes a member from an archive object.
6. Extract - Retrieves a copy of the member for use with in the KDBS.

For a more detailed discussion of the archiving capabilities of the MAPSE
system see Paragraph 3.3.6 of this document.

Lo

3.2.5.8 Backup and Restore

The Backup/Restore feature of the MAPSE system is defined in oruer to
augment those facilities that may or may not exist on the implemented host.
This facility is flexible enough to allow the user to backup any specific
branch of the KDBS hierarchy. The Backup is a complete dump, starting from

the specified branch and continuing down the hierarchy until all objects

have been copied to an external medium. The Backup capability establishes a i
checkpoint in time, essentially a snapshot of the branch being dumped,
for. ~tted in such a way as to permit restoration of the branch in case of
~} lost or damaged objects. The Restore capability provides the user a means
': to restore the lost or damaged objects from the Backup medium. A single
ﬁ object or the entire branch of the hierarchy may be retrieved from the
5: Backup medium. The frequency with which system Backup is performed is
installation~dependent for this facility may be used a frequently as every
" hour to once a day, depending on the volatility of the data base.




RN,

. -

«
o

3.3 DETAILED FUNCTIONAL DESCRIPTION

The following sections describe those functions that are used to control and
maintain objects in the KAPSE data base. These functions are made visible
through the virtual interface and are available to the general MAPSE user.

Figure 3-14 shows a logical breakdown of those functions.




;
b
(]
{
¥
z
; KAPSE
_ DATA BASE
. SYSTEM

[ I T T T ]

A ATTRIBUTE PARTITION ACCESS ADA 1/O VERSION ARCHIVE BACKUP
3 SUPPORT SUPPORT SUPPORT SUPPORT SUPPORT . SUPPORT SUPPORT
{ ATTRIBUTE PARTITION ACCESS FILE /0
- CONTROL CONTROL controL ! CONTROL
%
1
i VALUE MEMBER ) TEXT 1O
. CONTROL CONTROL ConoL CONTROL
k4
TP Ne. 021- 10004
A
P
¢
4
\J
. 4
i
§
Figure 3-14, KDBS Functional Diagram
! Vol 2
3-32
NE q
. ~
]
i
t
- y ~ of T T
TR, SUBNER, A5~ OPS LY " AT N e e F e o

) R— ] o 0 o o e Vhan o



A

L

AP A e

D e e aah donme

3.3.1 Attribute Support

This section describes facilities that enable
associate and maintain object attributes.

the users of MAPSE to

These facilities are included in

the KDBS Utility Package and their specifications are made visible through

the virtual interface. The following functions have been logically grouped

into those that are used to control the attribute and those which control
the value associated with that attribute.

See Figure 3-15 for a logical
breakdown of Attribute Support Functions.

3.3.1.1 Attribute Facilities

This section describes those functions available to the MAPSE user in

associating and maintaining attributes of the objects in the KDB,
restrictions

The

are that the

access to the object and that the
attribute name must be unique for the specified object.

for associating and maintaining attributes
requesting process must have '"mod"

Vol 2
3-33




ATTRIBUTE
SUPPORT
Al
; ATTRIBUTE VALUE
| CONTROL CONTROL
ADD ADD
: DELETE DELETE
| FIND CHANGE
.:' , LIST READ
2
:
b
; TP No. 021-1987-A
o
*
i
| ;
g
i

Figure 3-15, Attribute Support Functions

Vol 2
3-34




e

-
R EL TS 2 - e

A3y,

Tl e o s 2o o B

3.3.1.1.1 Add Attribute - Adda

This function defines and adds a new attribute to a specified object in the
KAPSE data base. An initial null value of the attribute is supplied if the
user fails to specify one. Adda is included in the KDBS Utility Package,
and its specification is visible as part of the virtual interface. Adda
calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associated with the function.

3.3.1.1.1.1 Inputs
There are three input argumsnts defined for Adda:

Oname - The name of the object to which the attribute is to be added
Aname - The name of the attribute

Avalue - The initial value of the attribute.

3.3.1.1.1.2 Processing

Adda locates the object specified by Oname. The attribute named by Aname is

associated with the specified object and initialized to the value provided
in Avalue.

Errors detected:

1. Requesting process does not have "mod" access to the specified
object.

2. Object specified does not exist.
3. Attribute specified already defined for the object.

3.3.1.1.1.,3 Outputs

There is one output argument defined for Adda; it indicates success of
execution or an error condition.

Vol 2
3-35




3.3.1.1.2 Delete Attribute -~ Dela

This function deletes an attribute from a specified object in the KAPSE data
base. Dela is included in the KDBS Utility Package, and its specification
is visible as part of the virtual interface. Dela calls an entry point of
the same name in the KDBS Kernel to perform the privileged operations
associated with the function.

3.3.1.1.2.1 Inputs
There are two input arguments defined for Dela:

Oname ~ The name of the object to which the attribute is to be deleted.
Aname -~ The name of the attribute to be deleted.

3.3.1.1.2.2 Processing

Dela locates the object specified in Oname. The attribute specified by
Aname is then deleted from the specified object.

Errors Detected:

1 Requesting process does not have "mod" access to the specified
object.

2) Attribute specified is undefined for the specified object.
3) Object specified does not exist.

3.3.1.1.2.3 Outputs

3

There is one output argument defined :or Dela; it indicates success of

execution or an error condition.

e




3.3.1.1.3 Find Attribute - Finda Q

This function finds a set of objects that contain a set of specified
attribute values.

The default search is limited to the specified partition,

but an option permits a search of all subpartitions. Finda is included in ]

: the KDBS Utility Package, and its specification is visible as part of the

b virtual interface. Finda calls an entry point of the same name in the KDBS

5 Kernel to perform the privileged operations associated with the function.
{ 3.3.1.1.3.1 Inputs

There are two input arguments defined for Finda:

Avstring - The string of attribute value pairs separated by boolean

operators (i.e., attr1=va1ue1 & attr,svalue, .. ).

Search -~ The option to search subpartitions (yes/no).

IRDGRSEISIRBEE A

‘ 3.3.1.1.3.2 Processing

Finda locates a set of process visible objects which satisfy the attribute

value pairs specified. If the Search option is set, then all subpartitions

are also searched for objects containing the specified attribute values.

3{ Errors Detected:

f} 1. Value of the Avstring is of an invalid format.

2. Invalid option selection for the Search argument.

3.3.1.1.3.3 Outputs

Finda indicates the success of execution or the an error condition.

w If

i Finda was successful, a list of process-visible objects is returned as well.

3 .
S !
5 |
¥

{3
4-‘ ‘

!

Vol 2
s 3-37

Re
) 7




3.3.1.1.4 List Attributes - Lista

This function lists all attributes and their values for a specified object
in the KAPSE data base. Lista is included in the KDBS Utility Package, and
its specification is visible as part of the virtual interface. Lista calls

an entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.1.1.4,1 Inputs

— R

There i3 one input argument defined for Lista:

Oname -~ The name of the object in which all attributes and their
values are to be listed.

3.3.1.1.4,2 Processing

o i

Lista locates the object specified by Oname. A list of attributes and their
corresponding values is retrieved fu~ the 3pecified object.

) Error Detected:

I e iAo A S

1. Requesting process does not have "read" access to the specified
object.

2. Ob ject specified does not exist.

5 AT

3.3.1.1.4,3 Outputs

Lista returns an indication of success or an error condition. If Lista was

successful a list of attributes and their values is retrieved and returned
to the requesting process.

. Y X

X

E.

—y it

L L

i Ll

e

]
Vol 2 p
3-38




1530 O

e ks e

g i

A S s B Bt e

3.3.1.2 Value Facilities

This section describes those facilities available to the MAPSE user which
provides the ability to manipulate values of the attribute.

Vol 2
3-39

=yd




AR A-as o

1.2 el INGR I S -

3.3.1.2.1 Add a Value to an Attribute - Addv

This function adds another value to an attribute value list for a specified
object in the KAPSE data base. Addv is included in the KDBS Utility
Package, and its specification is visible as part of the virtual interface.

Addv calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associated with the function.

3.3.1.2.1.1 Inputs
There are three input arguments defined for Addv:

Oname - The name of the object to which the value is to be added.
Aname -~ The defined attribute name to which the value is to be added.
Avalue - The value to be associated with the defined attribute.

3.3.1.2.1.2 Processing

Addv locates the object specified by Oname. The value specified Avalue 1s

added to the list of values for the attribute specified by Aname.

Errors Detected:

1. Requesting process does not have "mod" access to the specified
ob ject.

2. Object specified does not exist.

3. Attribute specified is not defined for the specified object.
3.3.1.2.1.3 Outputs

There is one output argument defined for Addv:
execution or an error condition.

it indicates success of

Vol 2
3-40

B e st
. .




e - .
HM ——— :

3.3.1.2.2 Change Attribute Value - Chgv

This function changes the value of the attribute for a specified object in
the KAPSE data base. Chgv is included in the KDBS Utility Package, and its
specification is visible as part of the virtual interface. Chgv calls an
entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.1.2.2.1 Inputs
There are three input arguments defined for Chgv:

Oname - The name of the object to which the value of an attribute is
to be changed.

Aname - The name of the attribute to which its value is to be changed.

Avalue - The new value of the attribute.

3.3.1,2.2.2 Processing

Chgv locates the object specified by Oname. The value specified by Avalue
replaces the current value of the attribute specified by Aname.

Errors Detected:

1. Requesting process does not have "mod" access to the specified
object.

2. Attribute specified is undefined for the specified object.
3. Object specified does not exist.

y, Attribute contains a 1list of values and this function is not
available for changing attribute values.

3.3.1.2.2.3 Outputs

There is one output argument defined for Chgv; it indicates success of

execution or an error condition.




hedcatic

g all

b .. p
R b S

e e e = B

3.3.1.2.3 Delete Attribute Value - Delv

This function deletes a value from a 1list of values for an attribute of a
specified object in the KAPSE data base. Delv is included in the KDBS
Utility Package, and its specification is visible as part of the virtual
interface. Delv calls an entry point of the same name in the KDBS Kernel to
perform the privileged operations associated with the function.

3.3.1.1.2.3 Inputs

There are three input arguments defined for Delv:

Oname - The name of the object to which an attribute value is to be

deleted.
Aname - The name of the attribute to be deleted.

Avalue - The attribute value to be deleted from the list of attributé
values.

3.3.1.2.3.2 Processing

Delv locates the object specified by Oname. The value specified by Avalue
is deleted from the list of values for the attribute specified by Aname.

Errors Detected:

1. Requesting process does not have "mod" access to the specified
object.

2. Attribute specified is undefined for the specified object.
3. Object specified does not exist.

4, Attribute specified does not contain a 1list of values and this
function is not valid for this request.

3.3.1.2.3.3 Outputs

There is one output argument defined for Delv; it indicates the success of
execution or an error condition.

Vol 2
3-42




i s S arid Y

3.3.1.2.4 Read Value - Readv

This function reads the value of an attribute for a specified object in the
KAPSE data base. Readv is included in the KDBS Utility Package, and its
specification is visible as part of the virtual interface. Readv calls an
entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.1.2.4,1 Inputs
There are two arguments passed in the call to Readv:

Oname -~ The name of the object in which the attribute value is to be
read.

Aname - The name of the attribute in which the value is to be read.

3.3.1.2.4,2 Processing

Readv locates the object specified by Oname. The value of the attribute
specified by Aname is then read and returned to the requesting process.

Errors Detected:

1. Requesting process does not have "read" access to the specified
ob ject.

2. Object specified does not exist.
3. Attribute specified does not exist for the specified object.
3.3.1.2.4.3 OQutputs

Readv returns the success of execution or an error condition. If Readv was

successful, the value of the specified attribute is returned to the
requesting process.

Vol 2
3-43

4 /5

N
L o

* o




3.3.2 Partition Support

This paragraph describes facilities which provides the users of MAPSE with
the ability to create and maintain partitions within the KAPSE data base.
4 These facilities are included in the KDBS Utility Package and their
,j specifications are made visible through the virtual interface. The

following functions have been logically grouped into those that are used to

control partition obj,ects and those that control the members of a

partition. See Figure 3-16 for a logical break down of Partition Support
functions. ’
PARTITION 3
SUPPORT
- PARTITION MEMBER
3 CONTROL CONTROL
:
CREATE CREATE_LINK
k! DELETE DELET_LINK
- LIST

FIND

e F E A e

TP No. 021-1988-A

PP O

" ey

e

e - e

Figure 3-16. Partition Support Functions
3.3.2.1 Partition Facilities
This paragraphs describes those functions available to the MAPSE user in

creating and maintaining partitions in the KAPSE data base.

:-. Vol 2
) 3-44

A
\
S~
- .




4
o grelid
-

=4

3.3.2.1.1 Create Partition - Createp

This tunction creates and adds a partition object in a specified partition
of the KAPSE da.a base. The partition is addea to the current working
partition if no path is specified. Createp is incluaded in the KDBS Utility
Package, and its specification is visible as part of the virtual interface.
Createp calls an entry point of the same name in the KDBS Kernel to perform
the privileged operations associated with the function.

3.3.2.1.1.1 Inputs
There is one input argument defined for Createp:

Pname - The name of the partition to be created. If the partition is
to be created in another partition then Pname must have a path
specified as part of the argument value.

3.3.2.1.1.2 Processing
Createp locates the point in the KAPSE data base hierarchy at which the

partition specified by Pname is to be created. 1lf a path is not specifiea,

the partition is created in the current working partition.

Errors Detected:

1. Requesting process does not have "write" access for the partition

in which a new partition is to be created.

2. Partition in which a new partition is to be created does not exist.

3. Partition already exists with the same attributes as the new one to
be created.

3.3.2.1.1.3 Outputs

There is one output argument defined for Createp; it indicates success of
execution or an error condition.

Vol 2
3-45

-




ke G R 4o

Ep: ool i, i

b

3.5.2.1.2 Delete Partition - Deletep

This' function deletes a partition object from the KAPSE data base. All
members of the partition must be deleted before a partition object can be
deleted, Deletep is included in the KDBS Utility Package, and its
specification is visible as part of the virtual interface. Deletep calls an
entry point of the same name in the KDBS Kernel to perform the privilegea
operations asso.iated with the function.

2.3.2.1.2.1 Inputs
There is one input argument defined for Deletep:
Pname =~ The name of the partition object to be deleted.

3.3.2.1.,2.2 Processing

Deletep locates the partition specified by Pname. The partition is then
deleted from the KAPSE data base only if all members of the specified
partition have been deleted.

Errors Detected:
1. Specified partition does not exist.

2. Requesting process does not have "delete" access to the specified
partition object.

3. Partition object still has member defined.
3-5-2010203 Outputs

There is one output argument defined for Deletep; it indicates the success
of execution or an error condition.

Vol 2
3-46

/0

' —_

r“
}

R

3

—— e e
EPF A4



i
j
1

PN s o -

MR .

e s g O

v st d
PRS-l

T i e o

3.5.2.1.3 List Partition - Listp

This function lists the members of a partition object in the KAPSE uata
base. Listp is included in the KDBS Utility Package, and its specification
is visible as part of the virtual interface. Listp calls an entry point of

the same name in the KDBS Kernel to perform the privileged operations
associated with the function.

3.3.2.1.3.1 Inputs
There is one input argument defined for Listp:

Pname - The name of the partition in which its membership list is to
be retrieved.

3.3.2.1.3.2 Processing

Listp locates the partition specified by Pname. If Listp is successful, a

list of objects that are members of the specitied partition is returnec to
the requesting process.

Errors Detected:

1. Requesting process does not have "read"™ access to the specified
partition.

2. Partition specified does not exist.

3.3.2.1.3.3 Outputs

Listp returns an indication of success or an error condition., If Listp was

successful, a list of member objects is returned to the requesting process.

Vol 2
3-47




1!

3.3.2.2 Member Control

This section describes those facilities available to the MAPSE user to allow
manipulation of the members of partition ob jects.

o W s e =

35 oon

P i ol .o

PP PR 3¢ cllon iy o -siate 0

kan: i ad il ucatis - dea
+ = - i .

1.

T e LS PO

[




- —_—

3.3.2.2.1 Create Link - Linkc

This function creates a link entry in the specified partition object of the

b s B

KAPSE data base. Linkc is included in the KLBS Utility Package, and its
specification is visible as part of the virtual interface. Linke calls an

§ entry point of the same name in the KDbS Kernel to perform the privilegedu
operations associated with the function.

3 3.3.2.2.1.1 Inputs y
There are two input arguments defined for Linke:

Pname - The partition name in which a link entry is to be created.

Oname - The name of the object in which the link is to be made. !

3 3.3.2.2.1.2 Processing

Linkc locates the partition specified by Pname. A link entry specified by
Oname is created in the specified partition. The name of the object is

f; assumed to be the name of the link entry in the specified partition. i

Errors Detected:

1. Requesting process does not have "write" access to the specified

partition object.

Object specified does not exist.

. A
[\¥]
L ]

3. Link already extablished with the same name.

4, Requesting user does not have read access to the object in which
the link is to be established.

3.3.2.2.1.35 Outputs

g o] TR 2y S R

There is one output argument defined for Linke; it indicates success of

-y o,

execution or an error condition.

[T Ui 24t




T S I MR

L -~

o

4 Ll o
s

3.5.2.2.2 Delete Link = Linkd

This function deletes a link entry in the specified partition object of the
KAPSE data base. Linkd is included in the KDBS Utility Package, anu its
specification is visible as part of the virtual interface. Linkd calls an

entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.5.2.2.2.1 Inputs
There are two input arguments defined for Linkd:

Pname - The partition name in which a link entry is to be createa.
Oname -~ the name of the object in which the link is to be made.

3.3.2.2.2.2 Processing

Linkd locates the partition specified by Pname. A link entry specified by

Oname is deleted from the specified partition.

Errors Detected:

1. Requesting process does not have write access to the specified
partition object.

2. Link specified does not exist.

3.3.2.2.2.3 Outputs

There is one output argument defined for Linkd;
execution or an error condition.

it indicates success of

Vol 2
3-50

R ety v e
s o v R A

.=y




Pgeteasy

3.3.2.2.3 Find Partition Entry - Findpe

This function finds a particular entry in the specified partition object in
the KAPSE data base. Findpe is included in the KDBS Utility Package, ana
its specification is visible as part of the virtual interface. Findpe calls
an entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.2.2.3.1 Inputs
There is one argument passed in the call to Findpe:

Oname =~ the object name in which to locate in the specified partition.
3+.3.2.2.3.2 Processing

Findpe locates the partition in which to search for the object specified by
Oname.,

Errors Detected:

1. Requesting process does not have read access to the specified

partition object.
2. Object specified does not exist in the specified partition.
3. ©Oname arguments specifies a nonexistent partition.
3.3.2.2.3.3 Outputs

There is one output argument defined for Findpe; it indicates the success of

execution or an error condition.

Vol 2




3.3.3 Access Support

This section describes facilities that enable MAPSE users to create and
maintain access controls on objects in the KAPSE data base and to create and
maintain groups. These facilities are included in the KDBS Utility Package

and their specifications are made visible through the virtual interface.
The following functions have been logically grouped into those that create

and maintain the access attributes and those that maintain and control

T

| groups. See Figure 3-17 for a logical break down of Access Support

|
I
E functions.
|
! ACCESS
Lt SUPPORT
s
E‘
]
:‘
f
" ACCESS GROUP
P CONTROL CONTROL
LIsT ADD_GROUP
READ DELETE_GROUP
SET LIST_GROUP
ADD_USER
DELETE_USER
READ_USER
LIST__USER

TP No. 021-1989-A

Figure 3-17. Access Support Functions
3.3.3.1 Access Control

This paragraph describes those functions available to the MAPSE user in
creating and maintaining access controls on objects.

Vol 2
3-52

:".-4.

) 2.7 ..




T

E A R el

3.3.3.1.1 List Access Attribute - Laccess

This function lists users and groups which have access rights to an object
in the KAPSE data base. Laccess is included in the KDBS Utility Package,
and its specification is visible as part of the virtual interface. Laccess
calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associated with the function.

3.3.3.1.1.1 Inputs
There is one input argument defined for Laccess:

Oname - The name of the object in which users and groups that have y

access to It are to be retrieved.

3.3.3.1.1.2 Processing

Laccess locates the object specified by Oname. A 1list of users and groups
that have access to the specified object is retrieved for the requesting
process. !

Errors Detected:

1. Requesting process does not have "read" access to the specified
ob ject.

2. Object specified does not exist.
3.3.3.1.1.3 Outputs

The value returned by Laccess indicates success of execution or an error
condition. If Laccess was successful, a list of users and groups with
access to the specified object is returned to the requesting process.




D R s Ticaal T

TR —.c.""
z —— .

3.3.3.1.2 Read Access - Raccess

This function reads the access rights of a specified user or group for a
Specified object in the KAPSE data base. Raccess is included in the KDBS
Utility Package, and its Specification is visible as part of the virtual
interface. Raccess calls an entry point of the same name in the KDBS Kernel
to perform the privileged operations associated with the function.

3-303-1n2-1 Inputs
There are two input arguments defined for Raccess:

Oname - The name of the object in which the access rights are to be
read,

Ugname -~ The user or group name in which the access rights are to be
retrieved.

3.3.3.1.2.2 Processing

Raccess locates the object specified by Oname. The access rights are then
retrieved for the user or group name specified by Ugname.

Errors Detected:

1. Requesting process does not have M"read" access to the specified
object.

2. Object specified does not exist.
3. User or group name is invalid.

3.3.3.1.2.3 Outputs

The value returned by Raccess indicates Success of execution or an error
condition. If Raccess was successful, a value is returned to show the
access rights for the specified user or group to the requesting process.

Vol 2
3-54




g

3.3.3.1.3 Set Access - Saccess

This function creates, modifies, and deletes access rights to a specified
object in the KAPSE data base. Saccess is included in the KDBS Utility
Package, and its specification is visible as part of the virtual interface.
Saccess calls an entry point of the same name in the KDBS Kernel to perform
the privileged operations associated with the function.

3.3.3.1.3.1 Inputs
There are three input arguments defined for Saccess:

Oname - The name of the object in which the access rights are to be
set.

Ugname - The name of the user or group in which the specified access
rights are to be assigned.

Accval - The access rights to be assigned for the specified user or
group.

3.3.3.1.3.2 Processing

Saccess locates the object specified by Oname. The access rights specified
by Accval are set for the user or group specified by Ugname.

Errors Detected:

1. Requesting process does not have "mod" access to the specified
object.

2. Ob ject specified does not exist.

3. Access rights to be associated are invalid.

y, User or group name specified is ihvalid.
3.3.3.1.3.3 Outputs

There is one output argument defined for Saccess; it indicates success of
execution or error condition.

Vol 2
3-55




3.3.3.2 Group Control

This section describes those facilities that enable the MAPSE user to to

create and maintain groups.

Vol 2
3-56




jiat\i-

- —

e e ne dae

3.3.3.2.1 Add Group Member - Addgm

This function adds a user or set of users to a specified group in the MAPSE
systenm. Addgm is included in the KDBS Utility Package, and its
specification is visible as part of the virtual interface. Addgm calls an
entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.
3.3.3.2.1.1 Inputs
There are two arguments passed in the call to Addgm.

Gname - The name of the group.
Unames -~ The set of users to be added to the group definition and is in

the form of: user_name,juser_name,; . . . user_name .
3.3.3.2.1.2 Processing

Addgm locates the group specified by Gname and associates those members

listed by Unames to it.
Errors Detected:
1. Group specified does not exist.
2. User name specified is an authorized user.

3. Requesting process does not have the same user id as the creating

user id.
3.3.3.2.1.3 Outputs

There is one output argument defined for Addgm; it indicates success of

execution or an error condition.

Vol 2
3-57




3.3.3.2.2 Create Group - Createg

Ef This fui.ction creates a group derinition for the access control mechanism of
§ the KAPSE data base. Createg is included in the KDBS Utility Package, and
its specification is visible as part of the virtual interface. Createg
calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associated with the function.

3.3.3.2.2.1 Inputs

There is one input argument defined for Createg.
Gname - The name of the group to be created.

3.3.3.2.2.2 Processing

Createg creates a group entry with the name specified by Gname and adds it
to the MAPSE group list.

Errors Detected:
1. Group already exists with the same name.

3.3.3.2.2.3 Outputs

?; There is one output argument defined for Createg; it indicates success of 4

. execution or an error condition. 1




e —————— e - 1

3.3.3.2.3 Delete Group - Deleteg

This function deletes a group definition from the access control mechanism

of the KAPSE data base. Deleteg is included in the KDBS Utility Package,

1 and its specification is visible as part of the virtual interface. Deleteg

‘ calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associated with the function.

3.3.3.2.3.1 Inputs 1
There is one input argument defined for Deleteg:
Gname ~ The name of the group to be deleted.

3.3.3.2.3.2 Processing

o Deleteg locates the group specified by Gname and deletes it from the MAPSE
3 group list.

Errors Detected:

1. Requesting process does not have the same user-id as the creating
process.

2. Group specified does not exist.

| 3.3.3.2.3.3 Outputs

There is one output argument defined for Deleteg; it indicates success of
R execution or an error condition.

K Sy i~

T L S e

" .
P R -

5y

“ ’ VO 1 2
, | 3-59

3 =/

N . <2 Gt




3.3.3.2.4 Delete Group Member - Deletegm ]

This function deletes a user from a specified group in the MAPSE system.
; Deletegm is included in the KDBS Utility Package, and its specification is
visible as part of the virtual interface. Deletegm calls an entry point of

o

the same name in the KDBS Kernel to perform the privileged operations

i associated with the function.
3.3.3.2.4.1 Inputs
There are two input arguments defined for Deletegm:
Gname - The name of the group in which a member is to be deleted.
. Uname -~ The name of the user to be deleted from the specified group.
3 3.3.3.2.4.2 Processing
Deletegm locates the group specified by Gname and deletes the user specified
x by Uname from it.
F Errors Detected:
1. Requesting process does not have the same user-id as the creating
process.
g | 2. Group specified does not exist.
R 3. User specified does not defined in the specified group.
s 3.3.3.2.4.3 Outputs
There is one output argument defined for Deletegm; it indicates success of
f} execution or an error condition.
F:
%
Bl
H
)
4
g |
~: Vol 2
«ﬁ 3-60

- 27y
N |




3.3.3.2.5 Find Group Member - Findgm

i This function finds a user in a specified group. Findgm is included in the
¥ KDBS Utility Package, and its specification is visible as part of the

virtual interface. Findgm calls an entry point of the same name in the KDBS
, + Kernel to perform the privileged operations associated with the function.

3.3.3.2.5.1 Inputs
1 There are two input arguments defined for Findgm:

Gname - The of the group in which to find a specified user.
Uname - The name of the user in which to check if a member of the
specified group.

1 3.3.3.2.5.2 Processing

" Findgm locates the group specified by Gname and locates the user specified
; by Uname in the specified group.

Errors Detected:

1. Requesting process does not have the same user-id as the creator.

2. Group specified is undefined.

3. User specified is not an authorized user of MAPSE.

4, User specified is not a member of the specified group.

] 3.3.3.2.5.3 Outputs

; There is one output argument defined for Findgm; it indicatés success of
A execution or an error condition.

2

£

]

. gy a0
ken A WA

Vol 2
3-61

t R IF

PRSI A e AT A iR g B gl L . '
. . R
P j ) S — L e e e - — .
DU LT P TR N Ep. < P . e L b rm s ) b . e R L .




1
!
1

o518

L .

ptats P bixtm 2

T i S -

e - il
TS, .

.

3.3.3.2.6 List Group - Listg

This function retrieves a 1list of currently defined groups for the MAPSE
system. Listg 1is 1included in the KDBS Utility Package, and 1its
specification is visible as part of the virtual interface. Listg calls an

entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.3.2.6,1 Inputs

There are no input arguments defined for Listg.

3.3.3.2.6.2 Processing

Listg retrieves a list of currently defined groups for the MAPSE system.
Errors Detected:

1. There are no currently defined groups for the MAPSE system.

3.3.3.2.6.3 Outputs

The value returned by Listg indicates success of execution or an error

condition. If Listg was successful, a list of currently defined groups is
returned to the requesting process.

Vol 2
3-62

3¢




3.3.3.2.7 List Group Members - Listgm

This function returns a 1list of users currently defined for a specified ;
group. Listgm is included in the KDBS Utility Package, and its
specification is visible as part of the virtual interface. Listgm calls an

‘ entry point of the same name in the KDBS Kernel te perform the privileged
operations associated with the function.

=

3.3.3.2.7.1 1Inputs
There is one input argument defined for Listgm:

Gname - The name of the group in which a list of its members is to be
retrieved.

3.3.3.2.7.2 Processing

Listgm locates the group specified by Gname and retrieves a list of the
members in the specified group.

Errors Detected:
1. Group specified does not exist.

2. Requesting process does not have the same user id as the group
creator.

A e [ ..

3.3.3.2.7.3 Outputs

The value returned by Listgm indicates success of execution or an error

g condition. If Listgm was successful then a membership list of the group is
ﬂ returned to the requesting process.

i Tk 90

P
- o B

Vol 2
. # 3-63

R e




3.3.4 Ada Input/Qutput Support

I/0 facilities are predefined in the Ada language by means of two packages.
The generic package INPUT_OUTPUT defines a set of 1/0 primitives applicable
to files containing elements of a single type. Additional primitives for
text input-output are supplied in the package TEXT IO0. These facilities
are described in the following sections. See Figure 3-18 for a logical
break down of Ada Input/Output Support functions.

Yy

a

E : FILE /O TEXT I/0
CONTROL CONTROL
: b CREATE L. STANDARD_ INPUT
3 e OPEN e STANDARD_OUTPUT
g — CLOSE - CURRENT_INPUT
b e |S_OPEN - CURRENT_OUTPUT
— NAME — SET_INPUT
= DELETE o SET_OUTPUT
i e READ — COL
3 — WRITE e SET_COL
= NEXT_READ = LINE
5 = NEXT_WRITE e NEW_LINE
i = SET_READ b SKIP_LINE
b b SET_WRITE b END__OF _LINE
— RESET_READ b— SET_LINE_LENGTH
e RESET_WRITE b LINE_LENGTH 1
i — S| ZE — GET 1
S o LAST b PUT
k| = TRUNCATE b GET_STRING
P i = END_OF _FILE GET_LINE
"j = PIPE PUT_LINE
1

ADA /O
SUPPORT

Figure 3-18. Ada Input/Output Support Functions




- o i -

- R e

kil e SR AL cvoiy

3

PrOGRRIPUPLYS

3.3.4,1 Ada File Input/Output

Files are declared and subsequently associated with the appropriate sources
and destinations, called external files, such as peripheral devices or data
sets. Distinct file types are defined to provide either read-only access,
write-only access or read-write access to external files. The corresponding
file types are called IN FILE, and OUT_FILE.

An open IN_FILE or INOUT FILE can be read; an open OUT_FILE or INOUT_FILE
can be written. A file that can be read has a current read position, which
is the position number of the element available to the next reaa operation.
A file that can be written to has a current write position, which is the
position number of th element available to be modified by the next write
operation. The current read or write positions can be changed. Positions

in a file are expessed in the implementation-aefineu integer type FILE_INDEX.

A file has a current size, which is the number of definea elements in the
file, and an end position, which is set to the position number of the first
defined element if any, and is otherwise zero.

When a file is opened or created, the current write position is set to one,

and the current read position is set to the position number of the first
defined element, or one if no element is defined.

The operations available for file processing are described in the following
paragraphs and apply only to open files. The exception STATUS_ERROR is
raised if one of these operations is applied to a file that is not open.
The exception USE_ERROR is raised if an operation is incompatible with the
properties of the external file. The exception DEVICE_ERROR is raised if an

I/0 operation cannot be completed because of a malfunction of the underlying
MAPSE system.

Vol 2
3-65




O i e

ORI ILA

W TN T

3.3.4.1.1 Create a File - Create

This function creates-and associates an object to a MAPSE process or task.
Create is included in the Run-time Support Package, and its specification is
made visible as part of the virtual interface. C(Create calls an entry point
of the same name in the KDBS Kernel to perform the privileged operations
associated with the function. ’

3.3.4.1.1.1 Inputs
There are two input arguments defined for Create:

File - The internal file name for the external object to be created.
Name - The name of the object to be created.

3.3.4,1.,1.2 Processing

Create expands the object name reference to an absolute object reference and
creates an entry in the specified partition for the object. Create then
allocates an object control block for the object and requests the KFW Kernel
to issue a host file create passing the relative index to the control
block. When control returns to the Create function, the host file name
generated is placed in the specified partition and control is returnea to
the requesting MAPSE Process/Task.

Errors Detected:
1. File is already open.
2. Object specified already exists.

3. Requesting process does not have "write" access to the specified
partition. '

3.3.4,1.1.3 Outputs

There is one output argument defined for Create; it indicates success of
execution or an error condition. If Create was successful, a relative index
to the object control block is returned to the requesting process.




p—"""Y

3.3.4.1.2 Open a File - Tpen

This function opens an object in the KAPSE data base for a MAPSE process or
task. Open is included in the Run-time Support Package, and 1its
specification is made visible as part of the virtual interface. Open calls
an entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.4.1,2.1 Inputs
There are two input arguments defined for Open:

File - The internal file name for the object to be openea,

Name - The name of the object to be opened.
3.3.4.1,2.2 Processing

Open locates the object specified by Name and allocates an object control
block for the object. Open then requests the KFW Kernel to issue a host
file open. When control is returned to Open an entry is made in the KAPSE
data base Open Object Table and returns control to the requesting MAPSE

process or task.

Errors Detected:

1. Object specified is already open for the requesting MAPSE process

or task.

2. Requesting process does not have "read" and/or "write" access to
the specified object.

3. Ob ject specified does not exist.
3.3.4.1.2.3 Outputs

There is one output argument defined for Open; it indicates the success of
execution of an error condition. If Open was successful then a relative

index to the object control block is returned to the requesting process.




P Y s e -

A%

TR — T

3.3.4.1.5 Close a File -~ Close

This function closes an object in the KAPSE data base for a MAPSE process or
task. Close is incluued in the Run-time Support Package, and 1its
specification is made visible as part of the virtual interface, Close calls

an entry point of the same name in ti.e KDBS Kernel to perform the privileged
operations associateu with the function.

3.3.4.1.3.1 Inputs
There is one input argument defined for Close:

File - The internal name of the file to be closed.
3.3.4.1.3.2 Processing

Close locates the object control block for the file specifed by File and
checks the KAPSE data base Open Object Table for.any other MAPSE process or
tasks that may have the specified object open. If the specified object is
under version control, the type of version control is determined and the
abstract object is updatea. If no other process or tasks are currently
using the object, Close requests the KFW Kernel to issue a host file close.

The control block is deallocated and control is returned to the requesting
process.

3.3.4.1.3.3 Outputs

There is one output argument defined for Close; it indicates success of
execution or an error condition.

Vol 2
) 3-68




FN Y

3.5.4.1.4 Check if File is Open - 1s_Upen

This function determines whether a specified object is currently open for
the requesting process. Is_Open is included in the Run-time Support
Package, and its specification is made visible as part of the virtual
interface. Is_Open calls an entry point of the same name in the KDbS
Kernel to perform the privileged operations associated with the function.

3.3.4.1.4,17 Inputs
There is one input argument defined for Is Open:

File - The internal name of the file in which its open status is to
be checked.

(4

3.3.4,1.4,2 Processing

Is__Open accesses the object control block corresponding to the file

specified by File in order to determine whether the object is open.

Errors Detected:
1. None
3.5.4,1,4,3 Outputs

Is_Open returns a boolean value as to the status of the specified file.




¥
£
4|

PSR e

3.3.4,1,5 Get External File Name - Name

This function returns the absolute object name associated with the internal
file name, Name is included in the Run-time Support Package, and its
specification is mage visible as part of the virtual interface. Name calls

an entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.4.1.,5.1 Inputs
There is one input argument defined for Name:

File - The internal name of the file in which its external
association is to be retrieved.

3.3.4,1.5.2 Processing

Name locates the object control block for the object specified by File and
retrieves the absolute object name associated with the internal file name
for the requesting process.

Errors Detected:
1. No external object associated with the internal file name.
3.35.4.1,5.3 OQutputs

Name returns a string representing the fully qualified name of the external
object currently associated with the given internal file.

Vol 2
3-70




oy

e OB,

G0 R St

— -

PO PRl

3.3.4.1,6 Delete a File ~ Lelete

This function deletes a specified object from the KAPSE aata base. Delete
is included in the Run-time Support Package, and its specification is made
visible as part of the virtual interface. Delete calls an entry point of

the same name in the KDBS Kernel to perform the privileged operations
associated with the function.

3.3.4.1,6,1 Inputs
There is one input argument defined for Delete:
Name - The name of the external file to be deletwcd.

3.3.4.1,0.2 Processing

Delete locates the object specified by Name and requests the KFW Kernel to
issue a host file delete. When the host file delete has taken place the

Delete function removes the associated partition entry and returns control
to the requesting process.

Errors Detected:

1. Requesting process does not have "delete" access to the specified
ob ject.

2. Object specified is currently in use by another MAPSE process or
task.

3. Object specified is a member of a currently active configuration.
4, Object specified does not exist.

3¢3.4.1.6.3 Outputs

There is one output argument defined for Delete; it indicates success of
execution or an error condition,

Vol 2
3-71




LI vt 2

e XIS --

T e

Plackd
ie e Gy

ot
ik

iy
P U

3.3.4.,1,7 Read a File - Read

This function reads the next item in a specified object of the KAPSE data
base. Read is 1included in the Run-time Support Package, and its
specification is made visible as part of the virtual interface. Read calls
an entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.4,1.7.1 Inputs
There is one input argument defined for Read:

File = The internal name of the file to be read.
3.3.4.1.7.2 Processing

Read locates the object control block coresponding to the internal file name
specified by File. Head examines the OCB Buffer to see if it is empty to
determine whether a host file read must be issued to the KFW Kernel. Read

then returns the next item to the requesting process.

Errors Detected:
1. Object specified is not open.
3.3.4.1.7.3 Outputs

There is one output argument defined for Read; it indicates success of

execution or an error condition.

Vol 2
3-72




it oucatiitn il

3.3.4.1.8 Write to a File - Wwrite

This function writes an item to a specified object in the KAPSL data base.
Write is included in the Run-time Support Package, and its specificatioun is
made visible as part of the virtual interface. Write calls an entry point

of the same name ip the KDBS Kernel to pertorm the privileged operations
associated with the function.

5.3.4,1,8.1 Inputs
There are two input érguments defined for Write:

File - The internal name of the file to be written to.

Item - The next element to be written to the external file.
3.3.4.1,8.2 Processing
Write ensures that this operation is compatable to the properties of the
external object and that the internal file name specified by File is open.
The Item is placed in the object control block Buffer and the current write
position is incremented by one. The current file size is incremented by one
if the element in the current write position was not defined, and sets the
end position to the written position if the written position exceeds the end
position. If Write determines that the control block buffer is full, an

interface is established to the KFW Kernel to issue a host file write and

clears the control block buffer. Control is then returned to the requesting
process.

Errors Detected:

1. Object specified is not open,

2. Write operation cannot be completea because of a device error.

3. Write operation is incompatable with the properties of the obgect.
3.3.4,1,8.3 Outputs

There is one output argument defined for Write; it indicates the success of
execution or an error condition.

Vol 2
3-73




3.3.4.1.9 Get Current Read Position - Next_Read

This function returns the current read position for a specified object in
the KAPSE data base. Next_Read is incluced in the Run-time Support Package,
and its specification is made visible as part of the virtual interface.
Next_Read calls an entry point of the same name in the KDBS Kernel to
perform the privileged operations associated with the function.

3.3.4.1.9.1 Inputs
There is one input argument defined for Next_Read:

File -~ The internal name of the file in which the current read

position is to be returned.
3.3.8.1.%.2 Processing

Next_Read locates the object control block corresponding to the internal
file name specified by File is open. The object control block is then

accessed for the current read position and returns.
Errors Detecteda:

1. Object specified is not open.
3.3.4,1.9.3 Outputs

Next_Read returns the current read position of the specified object or
raises a STATUS_ERROR because the specified object was not open.




MDA b . -1l S8 Ke LTSl e

3.3.2.1.10 Get Current Write Position - Next_Write

This function returins the current write position for the specified object in
the KAPSE data base. Next Write is included in the Run-time Support
Package, and its specification is made visible as part of the virtual
interface. Next Write calls an entry point of the same name in the KUBS
Kernel to pertform the privileged operations associated with the function.

3.3.4.1,10,1 Inputs
There is one input argument defined for Next Write:

File - The internal name of the file in which the current write

position is to be returned.

3.3.4,1.10,2 Processing

Next Write locates the object control block corresponding to the object
specified by File. The object block is accessed for the current write
position anc returns.

Errors Detected:
1. Object specified is not open.

3.3.4.1,10.3 Outputs

Next_Write returns the current write position of the specifieq object or
raises a STATUS_ERROR because the specified object was not open.




2

e N Pl ot Me-t

. - SN A

3.3.4.1,11 Set Current Read Position - Set_Read

This function sets the current read position for a specified object in the

KAPSE data base. Set_Read is included in the Run-time Support Package, and

its specification is made visible as part of the virtual interface. Set

Read calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associated with the function.

3.35.4,1.11.1 Inputs

There are two input arguments defined for Set_Read:

File - The internal name of the file in which the current read

position is to be set.

To - The value to be assigned to the current read position of the

file.

3.3.4.1.11.2 Processing

Set _Read 1locates the object control block corresponding to the object

specified by File. Set_Read then accesses the control block, and sets the

current read position, and returns.
Errors Detectea:

1. Ob ject specified is not currently open.

3.3.4,1.11.3 Outputs

Set_Read raises a STATUS_ERROR when the specified file is not open.

Vol 2
3-76




3.5.4.1.,12 Set Current Write Position - Set Write

) This function sets the current write position of a specified object in the

3 KAPSE data base., Set_Write is included in the Run-time Support Package, and

its specification is made visible as part of the virtual interface. Set

Write calls an entry point of the same name in the KDBS Kernel to perform
i the privileged operations associated with the function.
it

; 3.3.4.1.12,1 Inputs

L
There are two input arguments defined for Set_Write:

File - The internal name of the file in which the current write

position is to be set.

To - The value to be assigned to the current write position of the

file.

P .-

3.3.4,1,12.2 Processing

Set_Write locates the object control block corresponding to the object

A specified by File. Set Write then accesses the control block and sets the

current write position and returns.

Errors Detected:

|
1. Object specified is not open.

1 oo PO

3.3.4.1,12,3 Outputs

Set_Write raises a STATUS ERROR when the specified file was not open.

AT

L3

ey &

s

o Rt i

., Vol 2 1
i 3-77

: RYy




pPgcs & vty

s T

PR

FA i

.

T,

3.3.4.1.15 Reset Current Read Position -~ Reset_Read

This function resets the current read position of a specified object in the

KAPSE data base. Reset_Read is included in the Run-time Support Package,

and its specification is made visible as part of the virtual interface.
Reset _Read calls an entry point of the same name in the KDBS Kernel to
perform the privileged operations associated with the function.

3.3.4,1.13.1 Inputs
There is one input argument defined for Reset_Read:

File - The internal name of the file in which the current read
position is to be set.

3.3.4.1.15.2 Processing
Reset__Read locates the object control block corresponding to the object

specified by File, accesses the control block, and resets the current read

position to one or the first element of the object, and returns.

Errors Detected:

1. Object specified is not currently open.

5.3.4,1.15.35 Outputs

Reset_Read raises a STATUS_ERROR when the specified file is not open.




bs. oy

3.3.4.1,14 Reset Current Write Position - Keset Write

This function resets the current write position of a specified object in the
KAPSE data base. Reset_Write is inciuded in the Run-time Support Package,
and its specification is made visible as part of the virtual interface.
Reset_Write calls an entry point of the same name in the KDBS Kernel to
perform the privileged operations associated with the function.

3.3.4,1.14,1 Inputs
There is one input argument defined for Reset_Write:

File - The internal name of the file in which the current write

position is to be reset.

5.3.4.1.14.2 Processing

Reset_Write locates the object control block corresponding to the object
specified by File, accesses the control block, resets the current write
position to one, and returns.

Errors Detected:
1. Object specified is not currently open.

3.3.4.1,14,3 Outputs

Reset_Write raises a STATUS_ERROR when the specified file is not open.




3.3.4.1,19 Get Current Size of File -~ Size

This function returns the current size of a 8pecified object in the KAPSE
data base. Size is included in the Run~time Support Package, and 1its

specification is made visible as part of the virtual interface. Size calls

an entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.4.1.15.1 Inputs

There is one input argument defined for Size:

File - The internal name of the file of which its current size is to
be returned.

3.3.4,1.15,2 Processing

Size locates the object control block corresponding to the object specified

by File, accesses the control block, gets the current size of the specified
g file, and returns.

Errors Detected:

1. Object specified is currently not open.

5.3.4,1.15.3 Outputs

Size returns the current size of the specified file or raises a STATUS_ERROR
i when the specified file is not open.

el

v A T

Vol 2
3-80




3.3.4.1,16 Get End Position of File - Last

This function returns the current end position of a specified object in the
KAPSE data base. Last is included in the Run-time Support Package, and its
specification is made visible as part of the virtual interface. Last calls

an entry point of the same name in the KDBS Kernel to perform the privileged
oﬁerations associated with the function.

3.3.4.1,16.1 Inputs
There is one input argument defineu for Last:

File - The internal name of the file in which its ena position is to
be returned.

} 3.5.4.1,16.2 Processing

Last locates the object control block corresponding to the object specified ;

by File, accesses the control block, gets the end position of the specified
i file, and returns.

Errors Detected:

; 1, Object specified is currently not open.

{ 3.3.4.1,16.3 Outputs
i
1

Last returns the end position of the specified file or raises a STATUS_ERROk
when the specified file is not open.

R
A
¥
it
! ]
f} Vol 2
ﬂ, 3-81

| 253

- ——— T LR




3.3.4.1.17 Check End of File - End_Of File

This function determines whether the end of file has been reachea for the
specified object in the KAPSE data base. End_Of_ File is included in the
Run-time Support Package, and its specification is made visible as part of
the virtual interface. End_Of File calls an entry point of the same nawe in
the KDBS Kernel to perform the privileged operations associated with the

function.
3.3.4,1,17.1 Inputs
There is one input argument defined for End_Of File:

File - The internal name of the file in which the end of file
condition is to be checked.

3.3.4,1.,17.2 Processing

End_Of File locates the object control block corresponding to the object
specified by File, accesses the control block and determines whether the
current read position exceeds the the end position of the file.

Errors Detected:
1. Specified object is not currently open.
3.3.4.1,17.3 Outputs

End_Of File returns a boolean indicating whether the end of file has been
reached, or raises the STATUS_ERROR if the specified file is not open.




"--'—uﬂuw1---nl-!l-FH!-!HIﬂ'IllHI!!!lllU'-'ll'l'lllllllllllll!sr» P——— : —

3.3.4.1.18 Truncate a File - Truncate

This function truncates the specified object in the KAPSE data base.
Truncate is included in the Run-time Support Package, and its specification
is mace visible as part of the virtual interface. Truncate calls an entry

point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.4,1.18,1 Inputs
There are two input arguments defined for Truncate:

File - The internal name of the .file in which the ena of file
{ condition is to be checked.

To - The index in which the ena pointer must be reset.

{ 3.3.4,1.10,2 Processing

Truncate 1locates the object control block corresponding to the object

specified by File, accesses the control block and sets the ena position to
the number specified by To.

Errors Detected:

1. Value of end position must be greater than the reset value.

2. Object specified is not currently open.

P
aAa e

3.3.4.1,18.3 Outputs

el

Truncate raises the USE_ERROR exception if the specified index is greater
than the current end position of the file or raises the STATUS_ERROR if the
‘ specified file is not open.

g 4 L

§ o

o

O 1o

Vol 2




; 3.3.4.1,19 Create Interprocess Communication - Pipe

j This function creates a mechanism for interprocess communication in the

MAPSLE. Pipe is included in the Run-time Support Package, and its
q specification is made visible as part of the virtual interface. Pipe calls
an entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

G; 3.3.4.1,19.1 Inputs
There are two input arguments defined for Pipe:

Relocbi - The relative inaex of the input obgect control block for the
requesting process.
Relocbo - the relative index of the output object control block for the

requesting process.
5.3.4.1.19.2 Processing

Pipe takes the object control blocks specified by Relocbi and Relocbo,
creates two more object blocks with the same characteristics, and returns
the indexes of the newly created block.

Errors Detected:
3 1. None
3.3.4.1,19.3 Outputs

There is one output argument defined for Pipe; it indicates the success of

execution or an error condition. If Pipe was successful, two relative

indexes to the newly created ob,ect control blocks are returned to the

requesting process.




——

bl ST

)

ot fan s

e ¥

- SURRRE

M
. e s

- e

3.5.4.2 Ada Text File Input/Output

Facilities are available for 1/0 in human-readable form, with the external
file consisting of characters. The package defining these facilities is
called TEXT_IQ. It uses the the general INPUT_OUTPUT package of files of
type CHARACTER, so all the facilities described in the following sections
are available. In addition to these general facilities, procedures are
provided to get values of suitable types from external files or characters,
and put values to them, carrying out conversions between the internal
values and appropriate character strings.

All the Get and Put procedures have an Item parameter, whose type determines
the details of the action and determines the appropriate character string in
the external file., Note that the Item parameter is an out parameter for Get
and an in parameter for Put. The general principle is that the characters
in the external file ars ccmposed and analyzed as lexical elements.

For all Get and Put procedures, there are forms with and without files
specified. If a file is specified, it must be of the correct type (IN_FILE
for Get, OUT_FILE for Put). If no file is specified, a default input and
output files are the so-called standard input file and standard output file,

which are open and associated with two defined files.

Although the package TEXT_IO is defined in terms of the package
INPUT_OQUTPUT, the execution of an operation of one of these packages need

not have a well defined effect on the execution of subsequent operations of
tue other package.

Vol 2
3-85




3.3.4.2.1 Get Ihitial Default Input File -~ Standard Input

This function returns the initial default input file for the 'requesting
process. Standard_Input is included in the Run~time Support Package, and
§ its specification is visible as part of the virtual interface. Standard
: Input calls an entry point of the same name in the KUBS Kernel to perform
the privileged operations associated with the function.

3.5.4.2.1.1 Inputs

There are no input arguments defined for Standard_Input.

3.3.4.2.1.2 Processing

Standard_Input accesses and checks for the initial default input file and
b returns its name.

;. Errors Detected:
4 1. None
- 3.5.4,2.1,.5 Outputs

Standard_Input returns the name of the default initial input file for the
MAPSE process.




3.3.4,2.2 Get Initial Default Output File - Standard_Output

This function returns the name of the initial default output file for the
requesting process, Standard_Output is included in the Run-time Support
Package, ana its specification is visible as part of the virtual interface.
Standard_Output calls an entry point of the same name in the KDBS Kernel to
perform the privileged operations associated with the function.

3.3.4.2.2.1 Inputs

There are no input arguments defined for Standard_Output.
b 3.3.4.2.2.2 Processing

Standard_Output accesses and checks for the initial default output file and
returns its name.

3 Errors Detected:
1. None
3.3.4.2.2.5 Outputs

Standard_Output returns the name of the default initial output file for the
MAPSE process.

PRy

PR
T
ke,

Vol 2
3-87

g -

S0

§
§
3
,
S
el |




AR . Wi S LRGN ey

3.3.4.2.3 Get Current Default Input File ~ Current_Ilnput

This function returns the current default input file for a requesting
process. Current_Input is incluaed in the Run~time Support Package, and its
specification is visible as part of the virtual interface. Current_lnput
calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associated with the function.

3.3.4.2.3.1 Inputs
There are no input arguments definea for Current_Input.

3.3.4.2.3.2 Processing

Current_Input accesses the checks for the existence of the current default
input file and return its name.

Errors Detected:
1. No default input file defined.
5.3.4,2,3.3 Outputs

Current__Input returns the name of the default current input file for the
MAPSE process, or raises the STATUS_ERROR exception if there exists no
current default input file.




3.3.4.2.4 Get Current Default Output File - Current_Output

This function returns the name of the current output file for a requesting

process. Current_Output is included in the Run-time Support Package, and

its specification is visible as part of the virtual interface.

Current_Output calls an entry point of the same name in the KDBS Kernel to
perform the privileged operations associated with the function.

3.3.4,2.4,17 Inputs

There are no input arguments defined for Current_Output.

3.3.4.2.4,2 Processing

Current_Output accesses and checks for the existence of the current default
output file and returns its name.

Errors Detected:

1. No current default output file defined.

5.5.4.2.4.3 Outputs

Current_Output returns the name of the default current output file for the
MAPSE process or raises the STATUS_ERROR if there is no current output file.

. Vol 2
3-89




— el et tndetni

3.3.4.2.5 Set Current Default Input File - Set_Input

This function sets the current default input file for the requesting
process. Set_Input is included in the Run~time Support Package, and its
specification is visible as part of the virtual interface. Set_Input calls

an entry point of the same nane in the KDBS Kernel to perform the privileged
operations associated with the function.

3.5.4.2.5.1 Inputs
There is one input argument defined for Set_lnput:

File - The name of the file that is to become the default input file.

3.3.4.2,5.2 Processing

Set__Input sets the default current input file to the object specified by
File.

Errors Detected:

1. Object specified is not currently open.

3.3.4.2.5.3 Outputs

Set__Input raises the STATUS_ERROR exception if the specified file is not
open.




3.3.4.2.6 Set Current Default Output File - Set_Output

This function sets the current default output file for the requesting

process. Set_Output is included in the Run~time Support Package, ana its
specification is visible as part of the virtual interface. Set_Output calls

§ an entry point of the same name in the KDBS Kernel to perform the privileged
: operations associated with the function.

3.3.4,2.6.1 Inputs
There is one input argument defined for Set_ Output:

File - The name of the file that is to become the default output file.

3.3.4.2.6.2 Processing

Set_Output sets the current default output file to the object specified by
File.

Errors Detected:
1. Ob ject specified is currently not open.
3.3.4,2.6.5 Outputs

_,i Set_Qutput raises the STATUS_ERROR exception if the specified file is not 1
: open.

© .t

B S AARG e

fpu ke

o ol [
P R

b o Vol 2
F 3-91




5.3.4.2.7 Get Current Column Number - Col

This function returns the current column number for the next get or put to a
specified object in the KAPSE data base. Col is included in the Run-time
Support Package, and its specification is visible as part of the virtual
interface. Col calls an entry point of the same name in the KDBS Kernel to
perform the privileged operations a;sociated with the function.

H 3.3.4.2,7.1 Inputs
There is one input argument defined for Col:

File - The nawe of the file in which the current column is to be
returned.

[ 3.3.4.2.7.2 Processing

Col locates the object control block associated with the object specified by

File and returns the current column for the next get or put.

% Errors Detected:

1. Ob ject specified is currently not open.

3.3.4.2.7.3 OQutputs

Col returns the current column number for the next get or put operation or E
raises the STATUS_ERROR exception if the specified file is not open.

Vol 2
3-92




PTTIRe  ~TCRRT T

5.3.4.2.85 Set Current Column Number - Set_Col

This function sets the current column number of the next get or put for the
specified object in the KAPSE data base. Set__Col 1is included in the
Run-time Support Package, and its specification 1is visible as pr=% of the
virtual interface. Set_Col calls an entry point of the same name in the

KDBS Kernel to perform the privileged operations associated with the
function.

3.3.4,2,6.1 Inputs
There are two input arguments defined for Set_Col:

File - The name of the file in which the current column is to be set.
To - The column in which the current column is to be set to.

3.3.4,.2.8.2 Processing

Set__Col locates the object control block associated with the object
specified by File and sets the current colusm to the value specifiea by To.
The value of To must be less than the line length for the obect.

Error Detected:
1. Object specified is not currently open.

2. Value to which the column is set is greater than the line length
for the object.

3.3.4.2.8.3 Outputs

Set_Col returns no arguments but raises the STATUS_ERROR if the specified
file is not open, or raises the LAYOUT ERROR if the line length for the
object is less than the new column value.

Vol 2




r—.—-—,—“s— SR

P

3.5.4.2.9 Get Current Line Number - Line

This function returns the current line number of a specified object in the
KAPSE data base. Line is included in the Run-cime Support Package, and its
specification is visible as part of the virtual interface. Line calls an
entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.4.2.9.1 Inputs
There is one input argument defined for Line:

File -~ The name of the file in which the current line number is to be
returned.

3.3.4.2.9.2 Processing

Line locates the object control block associated with the object specified
by File and retrieves the current line length for the specified object.

Errors Detected:

1. Object specified is not currently open.

3.3.4.2.9.3 OQutputs

Line returns the current line number for the next get or put to the file, or
raises the STATUS_ERROR exception if the specified file was not open.




3
o —

i

3.5.4.2.10 start a New Line - New_Line

This function starts a new line in the specified object of the KAPSE data
base. New__Line is included in the Run-time Support Package, and its
specification 1s visible as part of the virtual interface. New_Line calls
an entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.4.2,10,1 Inputs
There are two input arguments defined for New _Line:

File - The name of the file in which a new line is to be started.

N - The number of lines to increment the current line number.

3.5.4.2.10.2 Processing

New__Line locates the object control block associated with the object
specified by File, resets the current column number to one, and increments
the current line number by the value contained in Spacing. A spacing of one
corresponds to single spacing, a spacing of two to double spacing. New_Line
terminates the current line and adds spacing-minus-one empty lines. When
the line length is fixed, extra space characters are inserted where needed
to fill the current line and ada empty lines.

Errors Detected:
1. Object specified is not currently open.
3.3.4.2.10,3 Outputs

New_Line raises the STATUS_ERROR exception if the specified file is not open.




. DR A

e ——

3.3.4,2,11 Skip Lines - Skip_Line

This function skips a specified number of lines in a specified object of the
KAPSE data base. Skip_Line is included in the Run-time Support Package, ana
its specification is visible as part of the virtual interface. Skip_Line
calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associated with the function.

3.5.4.2.11,1 Inputs
There are two input arguments defined for Skip_Line:

File - The name of the file in which line are to be skipped.
N ~ The number of lines to be skipped.

5.3.4.2.11.,2 Processing
Skip_Line 1locates the object control block associatea with the object

specified by File. Skip_Line resets the current column number to one and

increments the current line number by the value specified by N. A value of

N greater than one causes spacing-minus-one lines to be skipped as well as
the remainder of the current line.

Errors Detected:

1. Object specified is not currently open.

3.3.4.2.11.5 Outputs

Skip_Line raises the STATUS_ERROR exception if the
open.

specified file was not

v T g T




T S )

34 -

fr i e

o

3.3.4.2,12 Check if Ena of Line - End_Of_Line

This function determined whether the end of line has been reached for a
specified object in the KAPSE data base.
Run-time Support Package,

Ena_0Of_Line is included in the
and its specification is visible as part of the
virtual interface. End Of Line calls an entry point of the same name in the

KDBS Kernel to perform the privileged operations associated with the
function.

3.3.4.2.12.1 Inputs
There is one input argument defined for End_Of Line:

File - The name of the file in which to check if at end of line.
5.3.4,2.12.2 Processing
End_Of Line locates the object control block associated with the object
specified by File and checks if at end of line.

Errors Detected:

1. Object specified is not currently open.

3.3.4.2.12.3 Outputs

End_of Line returns a boolean true if the line length of the specified input

file is not set, and the current column number exceeds the length of the

current line (that is, if there are no more characters to be read on the

current line), otherwise false, or raises the STATUS_ERROR exception if the
specified file is not open.

Vol 2
3-97

=€




Ry 4

3.3.4,2.15 Set Line Length -~ Set_Line_Length

This function sets the line length for a specified object in the KAPSE data
base. Set_Line_Length is included in the Run~time Support Package, and its
specification is visible as part of the virtual interface. Set_Line_Length
calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associatea with the function.

3.3.4.2.135.1 Inputs
There are two input arguments defined for Set_Line_Length:

File - The name of the file in which line length is to be set.
N - The new line length of a file.

3.3.4,2.13.2 Processing

Set_Line_Length locates the object control block associated with the object
specified by File. The line length is set to the value specified by N for
the specified object. The value zero indicates that the line length is not
set; it is the initial value for any file.

Errors Detectea:
1. Line mark does not correspond to the specified line length.
2. Ob ject specified is not currently open.

3.5.4.2.15.3 Outputs

Set_Line_Length raises the STATUS_ERROR exception if the specified file was
not open. The LAYOUT ERROR exception is raised by a Get operation if a line

mark does not correspond to the specified line Iength.

et e ee— —




3.3.4.2,14 Get Line Length - Line_Length

This function gets the current line length for a specified object in the

: KAPSE data base. Line_Length is included in the Run-time Support Package,

and its specification is visible as part of the virtual interface. Line
i

Length calls an entry point of the same name in the KDBS Kernel to perform
{ the privileged operations associated with the function.

3 5.3.4.2,14,1 Inputs
3 There is one input argument defined for Line_Length:
;‘ File - The name of the file in which to get the current line length.
2
] 3.3.4.2.14.2 Processing
F Line__Length locates the object control block associated with the object
specified by File and gets the current line length of the specified object.
The value zero indicates that the line length is not set.
Errors Detected:
1. Object specified is not currently open.
3.5.4.2,14.3 Outputs
"i Line_Length raises the STATUS_ERROR exception if the specified file was not
E open.
.
M
\
i
21
k- |
3
%
k|
4

Vol 2
3-99

. e e - ~ -
rd v :

" ) ol
,"l‘,ﬁ"?‘“ ,"m e L A [ I g » b -




S — - - ———

3.3.4.2.15 Get a Character - Get

) This function gets the current character in a specified object of the KAPSE
i data base. Get is included in the Run-time Support Package, ana its
i specification is visible as part of the virtual interface. Get calls an_
entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.4.2.15.,1 Inputs
There is one input argument defined for Get:

File - The name of the file in which to get the current character.
3.3.4.2.15.2 Processing

;; Get locates the object control block associated Wwith the object specified by
%i File. The current character is retrieveu from the specified input object at
the gposition given by the current line number and the current column
number. Get adds one to the current column number, unless the line length
is fixed and the current column number equals the line length, in which case
i the current column number is set to one and the current line number is
' incre sed by one.

Errors Detected:
1. Object specified is not currently open.
2. Line mark does not correspond to the specified line length.

3.3.4.2.15.3 Outputs

Get returns the current character in the specified input file or raises the
STATUS_ERROR exception if the specified file was not open or raises the
LAYOUT_ERROR when the line mark does not correspond to the specified 1line
length.




5.3.4.2.16 Put a Character - Put

3 This function puts a character in a specified object of the KAPSE data
v base. Put is included in the Run-time Support Package, and 1its
specificationbis visible as part of the virtual interface. Put calls an

{ entry point of the same name in the KDBS Kernel to perform the privileged
! operations associated with the function.

3.3.4.2.10.1 Inputs
3 There are two input arguments defined for Put:

File - The namé of the file in which to put a character.

Item - The character to put in the specified file.

3.3.4.2.16.,2 Processing

Put locates the object control block associated with the object specified by :
File. The character specified by Item is written to the specified output ¢
file on the current column and current line. Put aads one to the current
column number, unless the line length is fixed and the current column number
eguals the line length, in which case a line mark is output, the current

column is set to one, and the current line number is increased by one.

i T e P 3 A = <4+t

Errors Detected:

1. Object specified is currently not open.

3.3.4.2.10.3 Outputs

A vt Amcia
ity . +¢ i

Put raises the STATUS_ERROR exception if the specified file is not open.

i< aRo

.
P Y

o Vol 2
;Ji 3-101

‘ R7%

% My

LT e




WA ;-,'.'"“'n.‘:- r O

FoAROD SINCARE

S

A

ral -
POV

3.3.4,2,17 Get a String - Get_String

This function gets the next sequence of characters in a specified object of
the KAPSE data base. Get_String is included in the Run-time Support
Package, and its specification is visible as part of the virtual interface.
Get_String calls an entry point of the same name in the KDBS Kernel to
perform the privileged operations associated with the function.

3.3.4.2.17.1 Inputs
There is one input argument defined for Get_String:

File - The name of the file in which to get the next sequence of
characters.

3.3.4.2,17.2 Processing

Get__String locates the object control block associated with the object

specified by File. Get_String performs get operations on the specified

input file, skipping any leading blanks (that is, spaces, tabulation
characters, or line marks) and returns as a result the next sequence of
characters up to (and not including) a blank.

Errors Detected:
1. Ob ject specified is currently not open.

3.5.4,2.17.3 Outputs

Get_String returns the next sequence of characters in the specified input
file or raises the STATUS_ERROR exception if the specified file is not open.

Vol 2
3-102




b e

LS

A A Bl RUCUL

G -

Liig o e i gl
NPV U NP AN Ut apai ot

s
8 - -
e e BT

3.3.4.2,18 Get a Line ~ Get_Line

This function gets the next sequence of character in a specified object of
the KAPSE data base. Get_Line is included in the Run-time Support Package,
and its specification is visible as part of the virtual interface. Get_Line
calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associated with the function.

5.3.4.2.18.1 Inputs
There is one input argument defined for Get_Line:

File ~ The name of the file in which to get a line of characters.

5.3.4,2.18.2 Processing

Get__Line locates the object control block associatea with the object
specified by File_ Get_Line performs get operations on the specified input
file, returning the next sequence of characters up to, but not incluaing, a
line mark. If the input line is already at the ena of a line, a null string
is returned. The input file is advanced Jjust past the line mark, so

successive calls to Get_Line return successive lines.
Errors Detected:

1. Object specified is not currently open.
3.3.4.2.18.3 Outputs

Get_Line returns the next sequence of characters in the specified input file
or raises the STATUS_ERROR exception if the specifiea file is not open.

Vol 2
3~103

i

RS




v AR

3.3.4.2.19 Put a Line - Put_Line

This function outputs a string of text to a specified obgect in the KAPSE
data base. Put_Line is included in the Run-time Support Package, and its
specification is visible as part of the virtual interface. Put_Line calls

an entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.4.2.19.1 Inputs
There are two input arguments defined for Put_Line:

File - The name of the file in which to put a line of characters.

Item - The sequence of character to put to the specified file.
3.3.4.2.19.2 Processing
Put__Line locates the obyect control block corresponding to the object
referenced by File. Put_Line performs put operations on the specified

output object to write a string of characters specified by Item to the
specified file and appends a line mark.

Errors Detected:

1. Specified object is currently not open.

3.3.4.2.19,3 Outputs

Put_Line raises the STATUS ERROR exception if the specified file is not open.

Vol 2
3-104

t %




3.3.5 Version Support

This section describes facilities which provides the MAPSE user to access .

versioned ob jects. These facilities are included in the KDBS Utility
Package and their specifications are made visible through the KAPSE virtual
interface. See Figure 3-19 for a logical break down of Version Support

functions. !
|
VERSION
SUPPORT
WRITE SET CREATE
BRANCH DEFAULT A LIST BRANCH
ACCESS BRANCH ACCESS

Figure 3-19. Version Support Functions




i

e

[ it Sited

% RN

WET

Ko 2

3
]
L]
" {
!

3.3.5.1 List Versions - Listv

This function lists information about all versions of a specified abstract
object. Listv is 1included in the KDBS Utiltity Package, and its
specification is visible as part of the virtual interface. Listv calls an

entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.5.1.1 Inputs
There is one input argument defined for Listv:

Oname - The name of the abstract object in which information is to be
retrieved.

3.3.5.1.2 Processing

Listv locates the object specified by Oname and retrieves information about
all versions of the abstract object.

Errors Detected:

1. Requesting process does not have "read" permission to the abstract

ob ject.
2. Object specified does not exist.
3. Object specified is not under version control.

3.3.5.1.3 Outputs

There is one output argument defined for Listv; it indicates the success of
execution or an error condition. If Listv is successful, information about
the versions of the abstract object is returned to the requesting process.




g

e ——

3.3.5.2 Create Branch Access - Cbranch_Access

This function sets the create branch access area defined in the abstract
object. Cbranch_Access is included in the XDBS Utility Package, and is
visible as part of the virtual interface. Cbranch_Access calls an entry
point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

LN g g s

Ay .

4 3.3.5.2.1 Inputs
E There are three arguments defined as input to Cbranch Access:

Obname -~ The name of the object in which the create branch access is to
be set.

:; Uname The name of the user or group in which the create branch
5 access is to be set.

Atype The indicator of whether to add or delete the user or group

name.

3.3.5.2.2 Processing

Cbranch_Access locates the object =specified by Obname and adds or deletes,
depending on the value of Atype, the user or group name specified by Uname

to the area in the abstract object to create a branch in the version
structure.

. i SN

Errors Detected:

1. Requesting process does not have "mod" permission to the abstract

object.
‘E 2. Object specified is not under version control.
; 3. Object specified does not exist.
] 3.3.5.2.3 Outputs
¥ There is one output argument defined for Cbranch_Access; it indicates
li success of execution or an error condition.

Vol 2
3-107




3.3.5.3 Write Branch Access - Wbranch_Access

This function sets the write branch access area defined in the abstract
object. Wbranch__Access is visible as part of the virtual interface.
Wbranch_Access calls an entry point of the same name in the KDBS Kernel to
perform the privileged operations associated with the function.

3.3.5.3.1 Inputs
There are three arguments defined as input to Wbranch-Access:

Obname - The name of the object and branch in which write access is to
be set.

Uname The name of the user or group in which write branch access is
to be set.

Atype The indicator of whether to add or delete the user or group

name.
3.3.5.3;2 Processing

Wbranch_Access locates the object specified by Obname and adds or deletes,
depending on the value of Atype, the user or group name specified by Uname
to the area in the abstract object to write a new version on a branch of the

version structure.

Errors Detected:

1. Requesting process does not have "mod" permission to the abstract
ob ject.

2. Object specified is not under version control.
3. Object specified does not exist.
4, Branch specified does not exist.

3.3.5.3.3 Outputs

There is one output argument for Wbranch_Access; it indicates success

execution or an error condition.

A TN An S
) o ed A 1S




g aiia u~tvia gt

O It

© oy tgrar S

-

3. Vol 2

N o

3.3.5.4 Create Branch - Cbranch

This function creates a branch in the version tree structure at a specified

version. Cbranch is included in the KDBS Utility Package, and is visible as

part of the virtual interface. Cbranch calls an entry point of the same

name in the KDBS Kernel to perform the privileged operations associated with
the function.

3.3.5.4.1 Inputs

There are two arguments defined as input to Cbranch:

Ovname -~ The name of the object an version in which a branch is to be

created.
Bname ~ The name to be associated with the created branch.
3.3.5.4.2 Processing

Cbranch locates the object specified by Ovname and creates a branch with the
name specified by Bname.

Errors Detected:

1. Requesting process does not have
specified object.

“"ecreate branch" access to the

2. Object specified does not exist.

3. Object specified is not under version control.

u.

Branch already exists with same name specified.

3.3.5.4.3 Outputs

There is one output argument defined for Cbranch; it indicates the success
of execution or an error condition.

3-109

i




e o

3.3.5.5 Set Default Version - Set_Dversion

This function sets the default version to be accessed on relative references
to the object. Set_Dversion is included in the KDBS Utility Package, and is
visible as part of the virtual interface. Set_Dversion calls an entry point
of the same name in the KDBS Kernel to perform the privileged operations
associated with the function.

3.3.5.5.1 Inputs
There is one input argument defined for Set Dversion:

Ovname - The name of the version to be the default in relative

references to the object.
3.3.5.5.2 Processing

Set_Dversion locates the object specified by Ovname and sets the area in the

abstract object to the version specified to be the default,
Errors Detected:

1. Requesting process does not have "mod" access to the specified
ob ject.

2. Object specified does not exist.

3. Version specified is invalid.

y, Object specified is not under version control.
3.3.5.5.3 Outputs

There is one output argument defined for Set_Dversion; it indicates the
success of execution or an error condition.

e T PRV P T 3 oA S




3.3.0 Archive Support

This section describes facilities that enable the user of MAPSE to archive
objects. These facilities are included in the KDBS Utility Package and
their specifications are made visible through the KAPSE virtual interface,
See Figure 3-20 for a logicel break down of Archive Support functions.

ARCHIVE
SUPPORT

[ B 1 L | 1

APPEND REPLACE UPDATE DELETE EXTRACT LIST

TP No. 021-1902-A

Figure 3-20. Archive Support Functions

Vol 2
3-111

: 7 — vt ; R R 9, o, -
TR, Ty, g Ly q v R .




[ oD

TRy
k. L e K

e

P VR

3.5.0.1 Archive Append - Aarchive

This function adds an archive member and creates an archive object if one
does not exist. Aarchive is incluued in the KDBS Utility Package, and its
specification is visible as part of the virtual interface. Aarchive calls
an entry point of the same name in the KDBS Kernel to perform the privilegea
operations associated with the function.

3.3.06.1,1 Inputs
There are two input arguments definea for Aarchive:

Aoname - The name of the archive object in which an object is to be
archived.

Oname - The name of the object to be archived.
3.3.6.1.2 Processing

Aarchive locates the archive object specified by Aoname. An archive object

is created if one does not exist. The object specified by Oname is added to
the membership of the archive.

Errors Detected:

1. Requesting process does not have "write" access in the specified

partition in order to create a partition.
2. Object specified does not exist.

3. Requesting process does not have ™write" access to the archive
object.

4, Requesting process does not have "read" access to the object to be
archivea.

3.3.0,1.3 Outputs

There is one output argument defined for Aarchive; it indicates success of

execution or an error condition.

Vol 2
3-112

.2




3.3.6.2 Archive Replace - Rarchive

This function replaces or adds an object to the archive and creates an
archive object if one does not exist. Rarchive is included in the KDBS
Utility Package, and its specification is visible as part of the virtual
interface. Rarchive calls an entry point of the same name in the KDBS

Kernel to perform the privileged operations associated with the function.
3.3.0.2.1 Inputs
There are two input arguments definedrfor Rarchive:
Aoname - The name of the archive in which a member is to be replacead.
Oname - The name of the object to be replaced in the archive object.
3.3.6.2.2 Processing

Rarchive locates the archive object specified by Aoname. An archive object

is created it one does not exist ana replaces or adds the object specified
by Oname to the archive.

Errors Detected:

1. Requesting process does not have "write" access to the archive
object.

2. Requesting process does not have '"read" access to the obgject
specified.

3. Requesting process does not have "write" access to create the
archive obgect.

4, Object specified does not exist.

3.3.6.2.5 Outputs

There is one output argument defined for Rarchive; 1t indicates success of
execution or an error condition.

Vol 2
3-113




AD~A109 980 COMPUTER SCIENCES CORP FALLS CHURCH VA F/8 9/2
ADA !NTEORA'I’ED ENVIRONMENT 11 COMPUTER PROGRAM DEVE\.M NT SPEC-ETC(U)

onz-so-c-nz
UNCLASSIFIED RADC: -TR-BX-SUO-PT-

END




s £
=

e
e
HIO
N
o

i <
22 it ne

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 &




3
A
|

A
Y s o L ..

AR

AT

- i v

5 W i SO
P S

3.3.6.3 Archive Update ~ Uarchive

This function updates a member of the archive object. The update only takes
place when the date/time stamp of the object is niore recent than those of
the associated members., Uarchive is included in the KUDBS Utility Package,
and its specification is visible as part of the virtual interface. Uarchive
calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associated with the function.

3.3.0.3.1 Inputs
There are two input arguments defined for Uarchive:

Aoname - The name of the archive object in which a member is to be
updated.

Oname - The name of the object to be used in updating a member in the
archive,

3.3.6.3.2 Processing

Uarchive locates the archive object specified by Aoname. The member of the

archive is updated only when its date/time stamp is later than the object to
be archived.

Errors Detected:

1." Requesting process does not have ™"write" access to the archive
object.

2. Requesting process does not have "read" access to the object
specified.

3. Requesting process does not have "write" access to create the
archive object.

b, Object specified does not exist.

5) A member does not exist corresponaing to the object to be archivea.
3.3.6.3.3 Outputs

There is one output argument defined for Uarchive; it indicates success of

execution or an error condition.

Vol 2
3-114




3.35.6.4 Archive Delete - Darchive

This function deletes a member from a specified archive object in the KAPSE
data base. This function deletes only a member of the archive, not an
entire archive object. Darchive is included in the KDbS Utility Package,
and its specification is visible as part of the virtual interface. Darchive
calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associated with the function.

3.3.6.4.1 1Inputs
There are two input arguments defined for Darchive:

Aoname - The name of the archive in which a member is to be deletea.
Mname - The name of the member to be deleted from the archive.

3.3.6.4.2 Processing

Darchive 1locates the archive object specified by Aoname. The member

corresponding to the name specified by Mname is deleted from the archive.

Errors Detected:

1. Requesting process does not have "delete" access to the archive
ob ject.

2. Archive specified does not exist.
3. Member specified does not exist.
3.3.6.4,3 Outputs

There is one output argument defined for Darchive; it indicates the success
of execution or an error condition.

Vol 2
3-115

287

.- - = *:“’-f._:?rﬁv

.y e,




3.3.6.5 Archive Extract - Earchive

This function copies a member of a specified archive into the KAPSE data
base. Earchive is included in the KDBS Utility Package, and its

specification is visible as part of the virtual interface. Earchive calls

an entry point of the same name in the KDBS Kernel to perform the privileged
operations associated with the function.

3.3.6.5.1 Inputs ]

! There are two input arguments defined for Earchive:

Aoname =~ The name of the archive in which a member is to be extracted.

Mname <~ The name of the member to be extracted from the archive.
t! 3.3.6.5.2 Processing

Py
bt

Earchive locates the archive object specified by Aoname.
‘ member specified by Mname is made into the KAPSE data base.

A copy of the

g Errors Detected:
X 1. Requesting process does not have "read" access to the specified
E archive object.

i

2. Archive specified does not exist. i
K 3. Member specified does not exist.

! 3.3.6.5.3 Outputs

There is one output argument defined for Earchive; it indicates the success
of execution or an error condition.

Vol 2
3-116

o ‘;:‘::.‘ et "

25y |1




JUNGPY, .

15

. W
»
.

To——

3.3.6.b - Archive List - Larchive

This function retrieves the membership 1list of a specified archive.
Larchive is included in the KDBS Utility Package, and its specification is
visible as part of the virtual interface. Larchive calls an entry point of

the same name in the KDBS Kernel to perform the privileged operations
associated with the function.

3.35.6.6.1 Inputs
There is one argument passed in the call to Larchive:

Aoname - the name of the archive in which a list of members is to be
built.

3.3.6.6,2 Processing

Larchive locates the archive object specified by Aoname. A list is
retrieved and returend to the requesting process.
Errors Detected:

1) Requesting process does not have "read" access to the specified
archive object.

2) Archive specified does not exist.
3.3.6.6.3 Outputs

There is one output argument defined for Larchive, which indicates success

of execution or an error condition, If Larchive is successful then a
membership list of the archive is returned.

Vol 2
3-117




3.3.7 KDB Backup/Restore Support

This section describes facilities that enable the MAPSE user to Backup and
Restore selected portion of the KDB. These facilities are included in the
KDBS Utility Package and their specifications are made visible through the
KAPSE virtual interface. See Figure 3-21 for a logical breakdown of
Backup/Restore Support functions.

BACKUP
SUPPORT

KDB
RESTORE

TP No. 021-1993-A

Figure 3-21. Backup/Restore Support Functions




PRIGNIE

-dihk ;'_'14..'9. , &y

3.3.7.1 KAPSE Data Base Backup Facilities - Backup

This function performs a backup of selected portions of the KAPSE data
base. Backup is included in the KDBS Utility Package, and its specification

is visible as part of the virtual interface. Backup calls an entry point of

the same name in the KDBS Kernel to perform privileged operations assoclated
with the function.

3.3.7.1.1 Inputs
There is one input argument defined for Backup:

Pname - The starting partition for the backup.

3.3.7.1.2 Processing

Backup locates the partition specified by Pname. All members of the
specified partition are then copied to an external medium for later use.

Error Detected:

1. Requesting process does not have
partition object.

"read" access to the specified

3.3.7.1.3 Outputs

There is one output argument defined for Backup, it indicates the success of
execution or an error condition.

Vol 2
3-119

S




3.3.7.2 KAPSE Data Base Restore Facilities - Restore

This function restores a selected portion of the KAPSE data base. Restore
is included in the KDBS Utility Package, and its specification is visible as
part of the virtual interface. Restore calls an entry point of the same
name in the KDBS Kernel to perform privileged operations associated with the
function.

3.3.7.2.1 Inputs
There is one input argument defined for Restore:

Oname - The object name which is to be restoréd.
3.3.7.2.2 Processing

Restore locates the object specified by Oname. A search is made of the
backup medium for the specified object. If the object is  a partition, the
entire structure under the partition is also restored.

Errors Detected:
1. Object specified does not exist on the backup medium.

2. Requesting process does not have Mwrite" access to the specified
ob ject.

3.3.7.1.3 Outputs

There is one output argument for Restore; it indicates the success of

execution or an error condition.




AR G-y

iaaciig

AR

PR

g i3 regt”

-

R

R

— it e e

3.3.7.3 List Backup -~ Lbackup

This function lists the objects on the backup medium. Lbackup is included

in the KDBS Utility Package, and its specification is visible as part of the

virtual interface. Lbackup calls an entry point of the same name in the

KDBS kernel to perform privileged operations associated with the function.
3.3.7.3.1 Inputs
There is one input argument defined for Lbackup:
Bck_Name - The name of the backup medium
3.3.7.3.2 Processing

Lbackup locates the backup medium specified by

Beck _Name and lists the
resident objects to Standard_Output.

Errors Detected:
1. None.

3.3.7.3.3 OQutputs

There is one output argument defined for Lbackup;

it indicates the success
of execution or an error condition.

Vol 2
3-121

Aot e

5?73

24 O




- L

3.4 ADAPTATION

This section describes any adaptation that might be required to rehost the
KDBs.

3.4.1 General Environment

The mapping performed from the logical to physical representation will
probably differ on each implementation of the KDBs. This mapping may result
in a change to the object control block buffer used for I7/0 in order to
better utilize more efficient blocking factors of the host storage system.

3.4.2 System Parameters

The object control blocks that the KDBS accesses and controls may be
parameterized for ease of portability of the KDBs.

3.4,3 System Capacities

An implementation may place some limitations on the number of host files

that a process may have open; however, no logical design limitations exist.

3.5 CAPACITY

None known.

Vol 2
3-122




Pl 2 e o

Lk

il

T

SECTION 4 - QUALITY ASSURANCE PROVISIONS

4,1 INTRODUCTION

This section contains the requirements for verification of the performance
of the KAPSE Data Base System (KDBS). The test 1levels, verification
methods, and test requirements for the detailed functional requirements in
Section 3 are specified in this section. The verification requirements
specified herein shall be the basis for the preparation and validation of
detailed test plans and procedures for the KDBS. Testing shall be performed
at the subprogram, program (CPCI), system integration, and acceptano‘test
levels. The performance of all tests, and the generation of all reports

describing test results, shall be in accordance with the Government approved
CPDP and the Computer Program Test Procedures.

The verification methods that shall be used in subprogram and program
testing include the methods described below: -

1. Inspection - Inspection is zhe verification method requiring visual
examination of printed materials such as source code listings, normal
program printouts, and special printouts not requiring modification of
the CPCI. This might include inspection of program listings to verify
proper program logic flow.

2. Analysis - Analysis is the verification of a performance or design
requirement by examination of the constituent elements of a CPCI. For
example, a parsing algorithm might be verified by analysis.

3. Demonstration - Performance or design requirements may be verified
by visual observation of the system while the CPCI is executing. This
includes direct observance of all display, keyboard, and other
peripheral devices required for the CPCI,

4, Review of Test Data - Performance or design requirements may be

verified by examining the data output when selected input data are
processed. For example, a review of hard copy test data might be used
to verify that the values of specific parameters are correctly computed.




5. Special Tests - Special tests are verification methods other than

thoée defined above and may include testing one functional capability of
the CPCI by observing the correct operation of other capabilities.

These verification methods shall be used at various levels of the testing
process. The 1levels of testing to be performed are described in the
paragraphs below. Data obtained from previous testing will be acceptable in
lieu of testing at any level when certified by CSC/SEA and found adequate by
the RADC representative. Any test performed by CSC/SEA may -be observed by
RADC representatives whenever deemed necessary by RADC.

Table 4-1 specifies the verification method for each functional requirement
given in Section 3 of this specification. The listing in Table 4-1 of a
Section 3 paragraph defining a functional requirement implies the listing of
any and all subparagraphs. The verification methods required for the
subparagraphs are included in the verification methods specified for the
functional requirement. Acceptance test requirements are discussed in
Paragraph 4.3.

Table 4-1. Test Requirements Matrix

SECTION TITLE INSP, ANAL. DEMO. DATA. SECTION NO.
3.3.1 Attribute Support X 4.2
3.3.2 Partition Support X 4,2
3.3.3 Access Support X 4.2
3.3.4 Ada I/0 Support X 4.2
3.3.5 Version Support X 4.2
3.3.6 Archive Support X 4,2
3.3.7 Backup/Restore Support X 4.2




|

. I e
P

4.1.1 Subprogram Testing

Following unit testing, individual modules of the KDBS shall be integrated
into the evolving CPCI and tested to determine whether software interfaces
are operating as specified. This integration testing shall be performed by
the development staff in coordination with the test group. The development
staff shall ensure that the system is integrated in accordance with the
design, and the test personnel shall be responsible for the creation and
conduct of integration tests.

4.1.2. Program (CPCI) Testing

This test is a validation of the entire CPCI against the requirements as
specified in this specification.

CPC1 testing shall be performed on all development software of the KDBS..
This specification presents the performance criteria which the developed
CPCI must satisfy. The correct performance of the KDBS will be verified by
testing its major functions. Successful completion of the program testing
that the majority of programming errors have been eliminated and that the
program is ready for system integration. The method of verification to be
used in CPCI tvesting shall be review of test data. CPCl testing shall be
performed by the independent test team.

4,1.3. System Integration Testing

System integration testing involves verification of the integration of the
KDBS with other computer programs and with equipment. The integration tests
shall also verify the correctness of man/machine interfaces, and demonstrate

functional completeness and satisfaction of performance requirements.

System integration testing shall begin in accordance with the incremental
development procedures as stated in the CPDP, Final system integration

shall occur subsequent to the completion of all the CPCIs comprising the

MAPSE system. Two major system integration tests shall be performed: one
for the IBM VM/370 implementation and ‘one for the Interdata 8/32
implementation. The method of verification wused for system integration
testing shall be the review of test data.

id



ol

Pl
- -

A

T am e e e

AR Ak R

The test team shall be responsible for planning, performing, analyzing
monitoring, and reporting the system integration testing.

4.2 TEST REQUIREMENTS

Quality assurance tests shall be conducted to verify that the KDBS performs
as required by Section 3 of this specification. Table H4-1 specifies the
methods that shall be used to verify each requirement. The last column
refers to a brief description of the specified types of verification as
given below. Test plans ahd procedures shall be prepared to provide details
regarding the methods and processes to be used to verify that the developed
CPCI performs as required by this specification. These test plans and
procedures shall contain test formulas, algorithms, techniques, and
acceptable tolerance limits, as applicable.

All programs described in Table #4-1 will be tested using driver programs and
examining output data. Drivers shall be written to generate input data and
to log output data. Test input scripts and expected test output shall be
developed by test personnel in accordance with subprogram and program
specifications. Testing shall consist of comparing expected output data
with test output data.

4,3, ACCEPTANCE TESTING

Acceptance testing shall involve comprehensive testing at the CPCI level and
at the system level. The CPCI acceptance tests shall be defined to verify
that the KDBS satisfies its performance and design requirements as specified
in this specification. System acceptance testing shall test that the MAPSE
satisfies its functional requirements as stated in the System

Specification. Acceptance testing shall be performed by review of test data.

These tests shall be conducted by the CSC/SEA team and formally witnessed by
the government. Satisfactory performance of both CPCI and system acceptance
tests shall result in the final delivery and acceptance of the MAPSE system.

Vol 2
4=4




T o M D A

i et
= 5 igem X

A abaria

s ol

ki e ae - Bt

SECTION 5 ~ DOCUMENTATION

5.1 GENERAL

The documents that will be produced during the implementation phase in
association with the KDBS are:

1. Computer Program Development Specification (Type B5) - Update

2. Computer Program Product Specification

3. Computer Program Listings

4. Maintenance Manual

5. User's Manual i

6. Rehostability Manual

5.1.1 Computer Program Development Specification

The final KDBS BS Specification will be prepared in accordance with
DI-E-30139 and submitted 30 days after the start of Phase II.

5.1.2 Computer Program Product Specification

A type C5 Specification shall be prepared during the course of Phase 1I in

accordance with DI-E-30140. This document will be used to specify the

design of the KDBS and the development approach implementing the B5

specification. This document will provide the detailed description that

will be used as the baseline for any Engineering Change Proposals.

5.1.3 Computer Program Listings

Listings will be delivered that are the result of the final compilation of

the accepted KDBS. Each compilation wunit 1listing will contain the

corresponding source, cross-reference, and compilation summary. The
listing will

source
contain the source lines from any INCLUDEd source objects.

Vol 2
5-1

=g

PR s

A te.

e e d S



T

Pd

a6 Ak i

Bea: i - P UL
P N mtat

< ét

e

ek B

5.1.4 Maintenance Manual

An KDBS Maintenance Manual will be prepared in accordance with DI-M-30422 to
supplement the C5 and compilation listings sufficiently to permit the KDBS
to be easily maintained by personnel other than the developers.
documentation will be structured to relate quickly to program source.
procedures required for maintaining the KDBS,
illustrated.

The
The

will be described and
Sample scripts for compiling KDBS components,
the KDBS in parts or as a whole,

supplied.

for relinking
and for installing new releases will be

5.1.5 User's Manual

A User's Manual shall be prepared in accordance with DI-M-30421, which will
contain all information necessary for the operation of the KDBS. Because of
the virtual user interface presented by the KAPSE,
sufficient for all host computers.
will be contained in an appendix.

a single manual is
Information relevant to specific hosts

5.1.6 Rehostability Manual

In accordance with R&D-137-RADC and R&D-138-RADC, a manual will be prepared

to describe step-by-step procedures for rehosting the KDBS on a different
computer.

Vol 2
5-2

N W




fosiia
A

R

o ey

P B

foc. o

DR o

LU

APPENDIX A - KDBS UTILITY PACKAGE DEFINITION

package KDBS_UTILITY is

-- package to support attribute manipulations

package ATTRIBUTE_SUPPORT is

function Adda (Oname :
Aname @
Avalue :

function Dela (Oname :
Aname :

procedure Finda (Avstri
Olist

Condition_Code

OBJECT_NAME;
ATTR_NAME;
ATTR_VALUE) return COND_TYPL;

OBJECT_NAME;

ATTR_VALUE) return COND_TYPE;
ng : ATTR_VALUE_STRING;
: out REF_OLIST;

: out COND TYPL);

prucedure Lista (Onaine : OBJECT_NAME;
Alist ¢ out REF_ALIST;
Condition_Code : out COND_TYPE);
function Addv (Oname : OBJECT_NAME;
Aname : ATTR_NAME,
Avalue : ATTR VALUE) return COND_TYPE;
function Chgv (Oname : OBJECT NAME;
Aname : ATTR_NAME;
Avalue : ATTR_VALUE) return COND_TYPEL;
function Delv (Oname : OBJECT_NAME;
Aname : ATTR_NAME;
Avalue : ATTR VALUE) return COND_TYPE;
procedure Readv (Oname : OBJECT_NAME;
Aname : ATTR_NAME;
Avalue s out ATTR_VALUE;
Condition_Code : out COND_TYPE),

end ATTRIBUTE_SUPPORT;

-- package to manipulate partitions

package PARTITION_SUPPORT is
function Createp (Pname

function Deletep (Pname

¢ PART_NAME) return COND_TYPE;

¢ PART_NAME) return COND_TYPE;

Vol 2
A-1

i
i
]
!




procedure Listp (Pname
Plist

Condition_Code

function Linkc (Pname
Oname

function Linkd (Pname
Oname

function Findpe (Oname

end PARTITION SUPPORT;

-- package to support access

package ACCESS _SUPPORT is

procedure Laccess (Oname :
Access_List : out REF_ALIST;
Condition_Code :

procedure Raccess (Oname :
Access Value : out REF_AVALUE;
Condition_Code :

function Saccess (Oname

. { function Addgm (Gname

Uname

function Createg (Gname

PART_NAME;
out REF_PLIST;
out COND TYPE);

PART_NAME; _
OBJECT_NAME) return COND_TYPE;

PART_NAME;
OBJECT_NAME) return COND_TYPE;

¢ OBJECT_NAME) return COND_TYPE;

control

OBJECT_NAME;
out COND TYPE);

OBJECT_NAME;
out COND_IYPE);

OBJECT_NAME;

3 Ugname : USER NAME;
. Accval :

ACCESS_VALUE) return COND_TYPE;

: GROUP_NAME;
¢ USER_NAME) return COND_TYPE;

¢ GROUP_NAME) return COND_TYPE;

function Deleteg ( Gname : GROUP_NAME) return COND_TYPE;

function Deletegm (Gname

GROUP_NAME;

Uname : USER_NAME) return COND_TYPE;

function Findgm (Gname
Fi Uname

y] procedure Listg (Glist
1)

GROUP_NAME

¢ USER_NAME) return COND TYPE;

Condition_Code

out GROUP_LIST;
out COND_TYPE);

procedure Listgm (Gname : GROUP_NAME;
Glist : out GRQUP_LIST;
Condition_Code : out COND_TYPE);

end ACCESS_SUPPORT;




-= package to support version control

package VERSION SUPPORT is

procedure Listv (Onume UBJECT_NAML;

; Vlist " : out VERSION_LIST;
’ Condition_Code : out COND_TYPE);

3 function Cbranch_Access (Obname : OBJECT_BRANCH;

d Uname : USER_NAME;

8 Atype : TYPE_FUNC) return COND_TYPE;
function Wbranch_Access (Obname

Uname
Atype

OBJECT_BRANCH;
USER_NAME;
TYPE_FUNC) return COND_TYPE;

function Cbranch (Ovname : OBJECT_VERSION;
Bname : BRANCH_NAME) return COND_TYPE;

g | function Set_Dversion (Ovname : UBJECT_VERSION) return CUND_TYPE,

end VERSION_SUPPORT;

-— package to support achiving facilities

package ARCHIVE SUPPURT is

b | function Aarchive (Aoname

ARCHIVE_NAME,
Oname

OBJECT_NAME) return COND_TYPE;

. function Rarchive (Aoname : ARCH1VE_NAME;
‘ Oname : OBJECT_NAME) return COND_TYPE;

function Uarchive (Aoname : ARCHIVE_NAME;
Oname : OBJECT NAME) return COND_TYPE;

4

function Darchive (Aoname : ARCHIVE_NAME;

§ Mname : MEMBER_NAME) return COND_TYPE;
b, function Earchive (Aonawe : ARCHIVE_NAME;
A Mname : MEMBER_NAME) return COND_TYPE;

proceuure Larchive iAoname : ARCHIVE NAME;
Aclist : out ARCHIVE LIST;
Condition_Code : out COND_TYPE);

PP PR cw -

end ARCHIVE_SUPPORT;

P

Vol 2
A-3




Lt

A

.

-- package to support backup and restore facilities

package BCKRST_SUPPORT is
function Backup (Pname : PARTITION NAME) return COND_TYPE;

function Restore (Oname : OBJECT NAME) return COND_TYPE;

procedure Lbackup (Bck_Name

: BACKUP_NAME;
Blist ¢ out REF_BLIST;
Condition_Code : out COND_TYPE);
end BCKRST_SUPPORT;
end KDBS_UTILITY;
Vol 2
A-4
s0f
/

BN S
" - ol I N v S
-~ e N g TR - il -




fd arm g o e

INPUT OUTPUT PACKAGE DEFINITION

package INPUT_OUTPUT is

type IN FILE is limited private;
type OUT_FILE is limited private;
type INOUT FILE is limited private;
type FILE_INDEX is range 0 ., . . implementation defined;

== general operations for file manipulation

procedure Create (File
prucedure Create (File

: in out OUT_FILL; Name : in STRING);
¢ in out INOUT FILE; Name : in STRING);
in STRING);
in STRING);
in STRING);

procedure Open (File : in out IN _FILE; Name
procedure Open (File : in out OUT_FILE; Name
procedure Open (File : in out INOUT_FILE; Name

i procedure Close (File : in out IN_FILE);
; procedure Close (File : in out OUT_FILE);
procedure Close (File : in out INOUT_FILE);

function Is Open (File : in IN FILE) return Boolean;
function Is_Open (File : in OUT_FILE) return Boolean; !
function Is_Open (File : in INQUT_FILE) return Boolean;

function Name (File : in IN_FILE) return String;
function Name (File : in OUT_FILE) return String; ;
function Name (File : in INOUT_FILE) return String; !

procedure Delete (Name : in STRING);
function Size (File

function Size (File
function Size (File

in IN_FILE) return File_Index;
in OUT_FILE) return File Index;
in INOUT_FILE) return File_lIndex;

function Last (File : in IN_FILE) return File_Index;
function Last (File : in OUT_FILE) return File_Index;
function Last (File : in INOUT_FILE) return File_lndex;

procedure Truncate (File : in QUT_FILE; To : in File_Index);
procedure Truncate (File : in INOUT FILE; To : in File_Index); )

-- input and output operations

in IN_FILE; Item : out ELEMENT TYPE); |

procedure Read (File : =
in INOUT_FILE; Item : out ELEMENT_TYPE);

procedure Read (File

function Next_ Read (File : in IN_FILE) return File_Index; |
: in INOUT_FILE) return File_Index; 3

function Next_Read (File




procedure Set_Read (File :
procedure Set_Read (File :

procedure Reset_Read (File
procedure Reset Read (File

procedure Write (File : in
procedure Write (File : in

function Next_Write (File :
function Next_Write (File :

procedure Set_Write (File :
procedure Set_Write (File :

procedure Reset_Write (File
procedure Reset Write (File

function End_0f Fiie (File
function End Uf _File (File

procedure fipe (Relocbi
Eelocbo
Newocbi
Newoecbo

Condition_Coae

in IN_FILE; To

B in FILE_INDEX,;
in INOUT_FILE; To

in FILE_INDEX);

: in IN_FILE);
: in INOUT FILE);

OUT FILE; Item : in ELEMENT_TYPE);
INPUT_FILE; Item : in ELEMENT TYPE);

in OUT_FILE) return File_Index;
in INOUT_FILE) return File_Index;

in OUT_FILE; To

] in FILE_INDEX);
in INOUT_FILE; To

: in FILE_INDEX);
: in OUT_FILE);

¢ in INOUT_FILE);

in IN_FILE) return Boolean;
in INOUT_FILE) return Boolean;

: REF_OCB;
: REF_OCB;
: out REF_OCB;
: out REF_QCB;
¢ out COND TYPE);

== exceptions that can be raisea

| NAME_ERROR texception;
5 USE_ERROR texception;
k: STATUS_ERROR  :exception;
E DATA_ERROR lexception;
[ DEVICE ERROR  :exception;
[ END ERROR texception;

end INPUT OUTPUT;

ae NN

3

Vol 2
A-6




P__T_Mw—w“w._ -

TEXT_IQ PACKAGE DEFINITION

package TEXT_ IO is
package CHARACTEn_IO is new INPUL_OUTPUT (CHARACTER);

type IN_FILE

is new CHARACIER_IO.IN_FILE;

type OUT_FILE is new CHARACTER_IQ.QUT_FILE;

-- Character Input-Output

procedure Get (File : in IN_FILE; Item : out CHARACTER);
procedure Get (Item : out CHARACTER);
procedure Put (File : in OUT_FILE; Item : in CHARACTER);
procedure Put (Item : in CHARACTER);
== String Input-Output

- procedure Get (File : in IN_FILE; Item : out STRING);

: procedure Get (Item : out STRING); ’

2 procedure Put (File : in OUT_FILE; Item : in STRING);

‘ procedure Put (Item : in STRING);

!

function Get_String (File : in IN_FILE) return STRING;
function Get_String return STRING;

function et Line (File : in IN FILE) return STRING;
function Get_Line return STRING;
: procedure Put_Line (File : in OUT_FILE; Item :
| procedure Put_Line (Item : in SIRING);
-— Generic package for Integer Input-Output

in STRING);

X generic

7 type NUM is range <>; 1
p with function Image (X : NUM) return String is NUM IMAGE;

> with function Value (X : STRING) return NUM is NUM'VALUE;

package INTEGER IO is
procedure Get (File

in IN_FILE; Item : out NUM);

§: procedure Get (Item : out NUM);

§ procedure Put (File : in OUT_FILE;

¥ Item : in NUM;

3 Width ¢ in INTEGEk := 03

'j Base : in INTEGER range 2 .. 16 := 10);
!

in NUM;
in INTEGER := 0;
in INTEGER range 2 .. 16 :=

procedure Put (Item
Width
Base

10);
end INTEGER_IO;

iy .
Tl vy a b

Vol 2
A-T

- A iy "




T

g B2

BRI 2

1]
.

-- Generic package for Floating Point lnput_Output

generic
type NUM is digits <>;

with function Image (X
with function Value (X

package FLOAT_IO is
procedure Get (File :
procedure Get (Item :

procedure Put (File
Width
Mantiss
Exponen

proceduré Put (Item :

in NUM; Width

: NUM) return STRING is NUM' IMAGE:
¢ STRING) return NUM is NUM® VALUE;

in IN_FILE; Item : out NUM);

out NUM);

: in OUT_FILE; Item : in NUM;

: in INTEGER := 0;
a :
t:

in INTEGER := NUM'DIGITS;
in INTEGER := 2);

o

INTEGER :=

-
[

Mantissa : in INTEGER := NUM'DIGITS;

Exponent

end FLOAT_IO;

in INTEGER := 2);

~- Generic package for Fixed Point Input_Output

generic
type NUM is delta <>;
with function Image (X

with function Value (X
package FIXED I0 is

: NUM) return STRING is NUM' IMAGE;
¢ STRING) return NUM is NUM'VALUE;

Delta Image ¢ constant STRING := IMAGE(NUM DELTA -

INTEGER (NUM'DELTA));

Default_Decimals : constant INTEGER := DELTA_IMAGE'LENGTH - &3

procedure Get (File : in 1IN _FILE; Item : out NUM);

procedure Get (File

procedure Put (File
Itew
Width
Fract

®e @a e s

procedure Put (Item
Width
Fract

end FIXED I0;

== Input_Output for Boolean

procedure Get (File

out NUM);

in OUT_FILE;
in NUM;
in INTEGER := 0;

in INTEGER := Default_Decimals);

in NUM;
in INTEGER :=

03
in INTEGER Default_Deciwals);

in IN_FILE ; Item : out BOOLEAN);

procedure Get (Item : out BOOLEAN);

Vol 2
A-8




procedure Put (File in OUT FILE;

Item ¢ in BOOLEAN;

Width : in INTEGER := 0,

Lower_Case : in BOOLEAN := FALSE);
procedure Put (Item ¢ in BOOLEAN;

Width ¢ in INTEGER := 0;

Lower_Case : in BOOLEAN := FALSE);

-~ Generic package for Enumeration Types

generic
type ENUM is (<>);
with function Image (X
with function Value (X
package ENUMERATION IO is
procedure Get (File : in IN FILE; Item : out ENUM);
procedure Get (Item : out ENUM);

ENUM)  return STRING is ENUM' IMAGE;
STRING) return ENUM is ENUM® VALUE;

! procedure Put (File in OUT_FILE;

g Item s in ENUM;

| Width : in INTEGER := O;

4 Lower_Case : in BOOLEAN := FALSE);

'i procedure Put (Item : in ENUM;

. Width ¢ in INTEGER :s O;
Lower_Case : in BOOLEAN := FALSE);

end ENUMERATION_10;

-=- Layout control

L6 TGP

function Line (File : in IN_FILE) return NATURAL;
function Line (File : in OUT_FILE) return NATURAL;
function Line return NATURAL;

function Col (File : in IN_FILE) return NATURAL;
function Col (File : in OUT FILE) return NATURAL;

n NATURAL);

? function Set_Col (File : in IN_FILE; To : i
: in NAIURAL);

function Set_Col (File : in OUT_FILE; To
function Set Col (To : in NATURAL);

- iy

procedure New_Line (File : in OUT_FILE; N : in NATURAL := 1);
procedure New_Line (N ! in NATURAL := 1);

¢, procedure Skip_Line (File : in OUT_FILE; N : in NATURAL := 1);
[4: procedure Skip Line (N : in NATURAL := 1);

Vol 2
A=Y

y
AN

,.
PRI ‘W

&hm < B eddu B R e P Y LIS N
, ;




function End_Of_Line (File : in IN FILE) return BOULEAN;
; function End_Of Line return BOOLEAN;

procedure Set_Line_Length (File in IN _FILE; N
procedure Set Line Length (File : in OUT FILE; N

: in INTEGER);
procedure Set_Line Length (N : in INTEGER);

in INTEGER);

sk WG 3 s S

function Line_Length (File : in IN_FILE) return INTEGER);
function Line_Length (File : in OUT_FILE) return INTEGER);
j function Line_Length return INTEGER;

' == Default input and output manipulation

function Standard_Input return IN_FILE;
function Standard_Output return ouT _FILE;

function Current_Input return IN FILE;
! function Current_Output return OUT _FILE;

procedure Set_lnput (File : in IN_FILE);
procedure Set_Output (File : in OUT FILE);

— Exceptions

NAME_ERROR ¢ exception renames CHARACTER_IO.NAME ERROR;
USE_ERROR ¢ exception renames CHARACTEh_IO.USE_ERROR;
STATUS_ERROR ¢ exception renames CHARACTER I0.STATUS_ERROR;
: DATA_ERROR : exception renames CHARACTER_IO.DATA_ERROR;
: | DEVICE_ERROR : exception renames CHARACTER_IO.DEVICE ERROR;
) END_ERROR : exception renames CHARACTER _I0.END_ERROK; 3
4 LAYOUT_ERROR ¢ exception;

end TEXT_IO;

sy

o e e

e

it

o

Vol 2 /5

A=-10




paaee 1452, 3

RRANGRE: o ot i 3 A8

MISSION
of
Rome Air Development Center

RADC plans and executes researnch, development, test and
selected acquisition proghams in suppornt of Command, Control
Communications and Intelligence (C31) activities. Technical
and engdineering suppornt within areas of technical competence
A8 provided to ESD Progham Offices (POs) and othen ESD
elements. The principal technical mission areas are
communications, elLectromagnetic guidance and control, sun-
vedllance of ghround and aenospace objects, intelligence data
collection and handling, information system technology,
Lonosphernic propagation, sofid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility.







