
AD-AI09 507 ARMY ELECTRONICS RESEARCH AND DEVELOPMENT COMMAND FOD-ETC F/G 9/3
A HIERARCHICAL GRAPHIC SOFTWARE PACKAGE FOR DOCUMENTING CIRCUIT--ETCIUI
NOV Al H RIEBSAMEN

UNCLASSIFIED DELET-TR-Al-20GN

El o"EhEEEohEmjEE

EEEED ~hE

fl~Q 125 ~W. 8
111=1_L25

.. [. 1.4U 'N 11 .

RESEARCH AND DEVELOPMENT TECHNICAL REPORT

DELET-TR-81-20

A HIERARCHICAL GRAPHIC SOFTWARE PACKAGE FOR DOCUMENTING

CIRCUIT DESIGN LAYOUT

- IDTIC SIELEcTE
HENRY RIEBSAMEN

ELECTRONICS TECHNOLOGY & DEVICES LABORATORY

NOVEMBER 1981

. DISTRIBUTION STATEMENT

Approved for public release:
distribution unlimited.

ERADCOM
US ARMY ELECTRONICS RESEARCH & DEVELOPMENT COMMAND
FORT MONMOUTH, NEW JERSEY 07703

// .

NO0TI CE S

Disclaimers

The citation of trade names and names of manufacturers in
this report is not to be construed as official Governmernt
indorsement or approval at commercial products or services
referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not
return it to the originator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ("en Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPORT NUMJER 2. 30VT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

DELET-TR-81-20 - '7
4. TITLE (and Subtitle) . TYPE OF REPORT & PERIOD COVERED

A Hierarchical Graphic Software Package For Final
Documenting Circuit Design Layout. Final _,-

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(,) S. CONTRACT OR GRANT NUMBER(S)

Henry Riebsamen

9. PERFORMING ORGANI. ATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Microelectronics Division AREA & WORK UNIT NUMBERS

Electronic Technology and Devices Laboratory ILl 62705 AH94 05 11 13
ERADCOM, Fort Monmouth, N. Jo 07703 DELET-IC-K

1t. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Electronics Research & Development November 1981
Command, Fort Monmouth, N. J. 07703 (ERADCOM 13. NUMBEROFPAGES

1ELET-IC-K 35
14. MONITORING AGENCY NAME & ADDRESS(if differunt from Controlling Office) 15. -CURITY CLASS. (of this report)

Unclassified
15a. DECL ASSI FICATION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited,

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary wnd identify by block number)

Hierarchical Graphics Software

2% ABSTRACT (Continue on reverse side If necessary and Identify by block number)

This paper describes the processing techniques and characteristics of a
graphic documentation software package which was developed for plotting
hierarchically-modular circuit design layouts using a dot-matrix printer/
plotter. This software can be used for other graphic applications as well
so long as the data is supplied in the required descriptive language format,
This software package will process modularly partitioned circuits or structur
to any nested level and allow accumulative rotation and mirroring

DD ll1jAN73 1473 EDITION OF I NOV SS IS OBSOLETE UNCLASSIFIED - '

SECURITY CLASSIFICATION OF THIS PAGE (*Wen Data Entered)

L. ill ".... ... "..... il -lli

UNCLASSIFIED
;EURITY CLASSIFICATION OF THIS PAGE(o97hn Data Enteed)

(B orientations) of the modules regardless of nesting level. The software
uses design data in RCA's Design File Language format-stew Appnix A)'and
accesses data for the modules from library files using searches on name. If
the graphic presentations require more than one page width, multiple segments
(pages) are spooled out to the printer/plotter with fiducial reference marks
for joining the segments together Complete integrated circuit layouts may be
plotted using either cell outlines or complete cell details, Other options
include scaling, rotation, windowing, and shading of polygons, A single mask
level may be selected for plotting, if desired,

Accssion For
R¢ Tq G7;,& I"

-v,,1 7 -v Codes

Dist pnial

SECURITY CLASSIFICATION OF THIS IMAGEtaen Datm ftntm eE)

. "" J l ' ma r

TABLE OF CONTENTS

Subject Page

A. General

Background 1

Areas of investigation 1

B. Graphic requirements, constraints, and options

Software requirements 1

Design file language 3

Geometric constraints 3

Plotting data and options 4

Modular nesting options 5

C. Processing procedures

Design file ordering 5

General program structure 5

The plot data files 8

Rotation and mirroring of modules 8

Coordinate data scaling 8

The plotting technique 13

Point plotting 15

Plotting a horizontal line 15

Plotting lines that are other than horizontal 15

Shading 18

D. Graphic software verification 18

E. Development results and conclusions 20

Glossary 25

Appendix A - Design File Language Specification 26

i

.-jkJJijJj~J -" -I-,. -- M.6 '- ... '

LIST OF ILLUSTRATIONS

Figure Title Page

I Module placement diagram for a hierarchically partitioned circuit. 2

2 Design file key polling routine. 6

3 Nested module processing routine. 7

4 Look-up table for accumulative rotation effects. 9

5 Coordinate adjusting routine for rotational orientations. 10

6a Y-coordinate dimension scaling diagram. 11

6b X-coordinate dimensional scaling diagram. 12

7 Geometric segmentation for plotting. 14

8 Look-up table representation for point plotting on a 16
given row of a plot matrix.

9 Look-up table representation for plotting horizontal 17
lines on a given dot-matrix row.

10 Polygon vertex criteria for complementing the shading flag. 19

11 A test plot illustrating accumulative rotation and 21
mirroring for four nested levels.

12 A test plot illustrating the graphic capabilities 22
related to angles, scaling, shading, and holes
in polygons.

13 A test plot of a windowed area of an integrated circuit 23
using the polygon outline option.

14 A test plot of a windowed area of an integrated circuit 24
using the polygon outline and shading options.

ii

.fl " " ' " i d . .. : . . . ' ' 1

A. General

Background

More efficient design automation processes are needed to satisfy the demand
for larger and more complex circuits. Hierarchically modular processing of
system or circuit design algorithms can lead to improved computer
processing efficiency as well as the minimization of design data storage
requirements. The use of standardized modules, especially if used
repetitively (multiple instances) in hierarchically modular design
structures, can contribute greatly to the attainment of the desired
efficiencies. The alternative, as used currently by many algorithms, is to
fracture the circuit design data to primitive functions or geometries
(smashing) prior to processing. To do otherwise requires a memory stack
oriented recursive process. When, as required for some module placement
and layout plotting operations, scaling, rotation, or mirroring of modules
are not necessary, the problem of accumulative effects is introduced over
the range of structured design levels.

Hierarchically-modular partitioning of a circuit is illustrated in Figure I
for a structure of three levels. In this example, the overall design is a
chip (level 1) which is partitioned into a group of components with
conductor connectivity specified so that their composite behavior satisfies
the behavioral specification of the chip. These components (level 2) are a
roup of macrocells (modules requiring further partitioning) and cells
modules not requiring further sub-division). Each macrocell is then
partitioned, in a like manner, to result in a group of cells (level 3) with
the required conductor connectivity specified.

Areas of investigation.

Hierarchically modular processing can be useful in numerous areas of design
automation. For example, in the integrated circuit design process,
hierarchically modular techniques can be used for multi-level simulation,
module placement and conductor routing, design rule and connectivity
checking, and documentation. The need to investigate multi-level design
processing techniques for hierarchically structured circuits prompted
development of the subject graphic documentation facility, which uses a
dot-matrix printer/plotter. This paper describes the graphic utility and
the techniques used that are relevant to hierarchically modular processing.

B. Graphics Requirements, Constraints, and Options.

Software requirements.

Several requirements were established and desirable attributes considered
for the graphic software before proceeding with development.

J1

LEVEL 2 LEVEL 2
(MACROCELLS) (CELLS)

LEVEL 1 LVL

(CHIP) (CELLS)

FIGURE 1. MODULE PLACEMENT DIAGRAM FOR A HIERARCHICALLY
PARTITIONED CIRCUIT.

2

The following software requirements were adopted:

The software shall be able to make use of integrated circuit design files
and cell libraries from the Army's current Computer Aided Design and Design

Automation System (CADDA).

The software shall be able to handle circuit designs that have been
modularly partitioned in a hierarchical manner without reducing the data to
primitive geometries (smashing).

A desirable feature to be considered for incorporation into the software was a
shading (polygon fill) technique which would be:

" Capable of overlaying shading patterns.

" Adaptable for use with a color printer/plotter (such as supplied by
Trilog, Irvine, California)

" Adaptable for generating data for mask generation without reducing
the design data to a single modular level (smashing).

Design File Language (DFL)

Because of its modular nesting capability, RCA's Design File Language (See
Appendix A) was selected as the preferred of the two output design data
formats available from the Army's current CADDA system.

Geometric Constraints.

The DFL language, and thus the subject graphics program, limits the types
of geometric figures to: general polygons, ortho-polygons, polygons that
are holes in other polygons, and paths that consist of connected line
segments.

For the processing procedures used in this software, the following
constraints must be applied to the geometric figures:

" Line segments and the distances separating line segments, when
transformed for plotting, must be no shorter than twice the pitch of
the dot spacing of the printer/plotter output.

" Adjacent line segments for polygons and paths should not form angles
that are less than forty-five degrees. That is, sharp points must be
chopped off.

o3

Plotting Data and Options.

An interactive option editing program is used to initialize, change, list,
and save the data and program options required by the graphic software.
These options include:

o Dimension system (English, Metric, or Integer).

o Overall dimensions and border size.

The minimum and maximum coordinate values of the x and y ranges of
the design layout are required.

o Window size

If the user elects to plot the complete design, the window size is
defaulted to the overall dimensions; or else the minimum and
maximum coordinate values for the selected area of the design are
required.

o Resolution (units per dot-spacing).

o Scale factor

A scale factor may be specified by the user. If not selected, or
the selected value is in conflict with the resolution specified,
the scale factor is defaulted to a value that is a function of the
resolution. The scale factor may be optimized so that the plots
fill a page width or number of page widths.

o Polygon outlines.

If the polygon outline option is selected, outlines of polygons
will be drawn.

o Shading of Polygons.

A polygon shading option may be selected to enhance the
presentation of design layout. For integrated circuit design
layout, this feature associates a different shading pattern to
each mask level of the fabrication process.

o Character option (EBCDIC or ASCII).

The graphic software was written to use ASCII character code to
conform to the CADDA facility. However, an EBCDIC to ASCII
converter was provided since design data output from the current
design system has data keys coded in EBCDIC.

4

o Plot mode.

The plot mode option enables the user to plot a selected mask
level or all mask levels.

o Cell outline option.

Module outlines or complete details can be used for the graphic

presentation by referencing the desired library.

Modular Nesting Options.

Associated with each design module are the following options:

o Rotation and Mirroring of Library Elements.

Each library call in a design file includes a parameter to indicate
which of eight allowable orientations is to be applied for the
call. See Appendix A for orientation detail.

o Scaling of Library Elements.

Each library call in the design data may include a scaling parameter
in either or both the x and y-coordinate directions.

C. Processing Procedures

Design File Ordering.

In an effort to minimize library searching time, library calls in the
design file are ordered by name, using a 3 digit collating routine.

General Program Structure.

The general program structure consists of a polling routine (See figure 2)
for directing the processing as a function of the keys (See Appendix A) in
the design data file. Data processing continues on each modular nesting
level of design structure until a library (Q) call increments the nesting
level or an end of library definition (Z) call returns processing to the
next higher level of design structure.

Parameters that are a function of nesting level are stored in arrays used
as stacks so that these parameters are available when returning from
processing a module call to the next higher design structure level. These
parameters include accumulative rotation, accumulative scale factor,
accumulative fiducial reference dimensions, mask level, line width, and
module name. Similarly, a series of consecutively numbered files are used
as a file stack to store the data for the modules being processed. These
arrays and files are over-written as needed in traversing the levels of a
hierarchically structured design. Figure 3 is a flow diagram of the
library searching, copying, and module processing initialization routine.

5

INTAIZE
I.. OPTIONS
2. PLOT DATA FL

FIGURE .ADGNEFILE KEYPOLNRUTE

KE6 .,O

--- I.

READ & DECODE ORIENTATION
DATA FOR A NESTED MODULE

DETERMINE:
MODULE NAME, ROTATION,
FIDUCIAL DISPLACEMENT,

AND SCALE FACTOR

NAME IS SAME AS
PREVIOUS NAME

LIBRARY FILE = CELL LIBRARY
SEARCH LIBRARY FOR C NAME

NOT FOUND

LIBRARY FILE = MODULE LIBRARY
SEARCH LIBRARY FOR MODULE NAME

FOUND NOT FOUND

SORE MODULE NAME
O

COPY MODULE DATA - RROR - -E NOT FOUND

REWIND DATA FILE
READ FIDUCIAL DISPLACEMENTS RTR
ADJUST FOR ROTATION AND
FIDUCIAL DISPLACEMENT

FIGURE 3. NESTED MODULE PROCESSING ROUTINE.

I•.

The Plot Data Files.

For the Printronix dot-matrix printer/plotter, a 780 X 780 dot-matrix
picture format requires approximately 100,000 bytes of memory. If this
size is tripled in both coordinate directions, close to a megabyte of
memory is required for the picture matrix. Since these sizes are too large
for array storage in random access memory, a random disc file is used for
the plot data. The plot file is initialized to a12 blanks and then
accessed randomly to modify the plot data as it is processed. I/O accesses
use a 36 row by 67 byte buffer in order to minimize the number of I/O
operations.

After all the plot data has been processed, the data from the randomly
accessed file is converted to the form required for spooling to the
Printer/Plotter.

Rotation and Mirroring of Library Elements.

Accumulative values for rotation and fiducial displacements are determined
and stored in stack arrays at the corresponding level for each library
call.

The accumulative rotation is determined for each library call by using a
look-up table (figure 4) iteratively through each modular nesting level
using the rotation symbols for adjacent levels to index into a table to
obtain the accumulative effect. The accumulative rotation value is used to
adjust the coordinate values for plotting. It is used as an index for
vectoring to the proper coordinate adjusting routine. See Figure 5 for a
diagram of the adjusting routine and Figure 11 for a demonstration of the
accumulative rotation and mirroring capability.

To determine the accumulative fiducial displacement, the displacement in
the library call is adjusted using the accumulative rotation at the next
lower design level and then added to the fiducial displacement value at the
next lower level of the design structure.

Coordinate Data Scaling

The origin, for drawings to be plotted, is located in the upper right-hand
corner. Coordinate data for the vertices of polygons or paths are adjusted
according to the user selected scale factor and windowing dimensions.

The adjusted y-coordinate values (PLOTY) correspond to the dot-row location
in the plot matrix. See Figure 6a for the dimensional derivation. The
adjusted x-coordinate values (PLOTX) correspond to the dot-spacing computed
from a fiducial reference line with a displacement (DISPL) that is a
function of the page number for drawings requiring more than one page
width. See Figure 6b for the dimensional interrelationships.

8

SEE APPENDIX A FOR AN EXPLANATION OF ROTATION CODES

0 0 1 2 3 4 5 6 7

1 1 2 3 0 6 7 5 4

2 2 3 0 1 5 4 7 6

3 3 0 1 2 7 6 4 5

4 4 7 5 6 0 2 3 1

5 5 6 4 7 2 0 1 3

6 6 4 7 5 1 3 0 2

7 7 5 6 4 3 1 2 0

/ 0 1 2 3 4 5 6 7

ROTATION INDEX FOR CURRENT NESTED LEVEL

ROTATION INDEX FOR NEXT LOWER NESTED LEVEL

FIGURE 4. LOOK-UP TABLE FOR ACCUMULATIVE ROTATION EFFECTS.

-9-
.1

ROT = ROTATION INDEX -O
X = X - COORDINATE
Y = Y - COORDINATE

INTERCHANGE X & Y
ROT=N THEN NEGATE Y

NEGATE X & Y RDT=3

ROT=4 E INTERCHANGE
THEN NEGATE X

NEGATE X ROT=5

ROT=6 NEGATE Y

INTERCHANGE X & Y ROT=7

FIGURE 5. COORDINATE ADJUSTING ROUTINE FOR
ROTATIONAL ORIENTATIONS.

10

~ATA 0

YMAX YMINPLOT 0

BRDR PLTYN

SF =SCAE FATORPL Y

TYMI = MIN SFPLOT
TYMA = YAX XSF TGE YRANGE

PLTYMN =TYMAX-DISPL TYMAX
PLTY =(Y X SF) -DISPL PLTYMX
PLTYMN BRDR

FIGURE 6a. Y -COORDINATE DIMENSION SCALING DIAGRAM.

RGX = CHIP SIZE
XMX CNST j~.CNST = 0.1 X RGX

I SF = SCALE FACTOR
I FIDX = (XMX + CNST) X SF

XMN ~. RGX RGEX = WINDOW SIZE
TXMIN =FIDX - (XMAX X SF)

XMAXTXMAX =FIDX - (XIMIN X SF)
XMAXDISPL =TXMIN - BRDR

+ (DOTS/PAGE X (PAGE-i)
PLTXMN = TXMIN - DISPL

XM IN RGXPLTXMX = TXMAY - DISPL

TCGHIPD DISPL

PLTXMXX

FIGRE 6b.\ X G. CORIAE DIESO SCALING DIAGRAM

PL12

DIM- .

The Plotting Technique.

The plotting technique developed for this software enables:

0 Plotting polygons and paths per DFL language specification
(Appendix A) except that the constraints described in paragraph B
must be observed.

0 Shading of polygons with patterns as a function of fabrication mask
level. The shading patterns have been selected to enable
esthetically reasonable composite patterns for representing the
common areas of polygons that overlap one another.

The plotting technique adopted for this software recognizes vertices of
polygons or paths to be critical points requiring special treatment for
plotting. The y-coordinate values of a polygon or path are sequenced to get a
series of plotting intervals in the y-coordinate direction. Further, those y-
coordinate intervals that would overlap records in the randomly accessed data
file are subdivided. See Figure 7. Note that, the partitioning assures that
all vertices appear in the first row of a y interval.

The vectors appearing in each y interval and the vector count are
determined. Then, for each y interval (segment), the x-coordinate values to
be plotted, for each vector in each segment, are determined for each row in

the segment.

The x-coordinate values for each vector are processed according to the vector
characteristics. Separate routines are used for:

" Horizontal lines.

" Vertical lines.

* Skew lines greater or equal to forty-five degrees.

* Skew lines less than forty-five degrees.

Note that dot matrix representation of skew lines that are less than forty-
five degrees, result in multiple horizontal line segments.

For horizontal lines, only the endpoints are listed, but are flagged for
recognition when plotting.

13I

13

BUFFER INTERVALS

(36 DOT ROWS) AJSE
y y

INTEILS INTjALS

FIGURE 7. GEOMETRIC SEGMENTATION FOR PLOTTING.

14

The x-coordinate values in each dot row are then sequenced piior to the actual
plotting or shading operation.

If flagged for line plotting, each dot row of x-coordinate values is scanned
and the routines invoked for plotting points and/or horizontal line segments,
as required.

Point Plotting (See glossary for logical and arithmetic definitions.)

The Printonix Printer/Plotter is byte oriented and requires bit seven of a
data byte to be set to indicate that it is plot data rather than alpha-
numeric data. With bit seven set, bits one to six correspond to the plot
state of the next six dots on the row being processed. However, since data
is processed more efficiently in half -'ords (two bytes), the plot data is
manipulated in this manner by the grapic software.

To plot a point on a given row, DIV 12 of the x-coordinate determines the
word in the row to be modified ond MCj 12 of the x-coordinate gives the
position in the 12 dot interval to be modified. The MOD 12 value is used
to index into a table to find s.. 7lue to be OR'd with the word to be
modified. Figure 8 picturc the look-up table plot representation for the

twelve possible values.

Plotting a Horizontal Line.

To plot a horizontal line, MOD 12 and DIV 12 of the two x-coordinates are
first determined. The DIV values give the initial and final word to be

modified in scanning the row being processed. The initial MOD value is
used to index into a table to get the value for the line segment of the
first word to be modified. The final MOD value is used to index into
another table to get the terminating line segment. The interim locations

are modified by ORing with the code for a solid line of 12 dots. Figure 9
illustrates the look-up table plot representations for the initial and
terminating segments of a horizontal line.

If the two DIV values are equal, ANDing the two values obtained using the
MOD values will get the horizontal line segment representation within a
single word of the dot row being processed.

Plotting lines that are other than horizontal.

Except for lines that form an angle of less than forty-five degrees with
the horizontal, the x-coordinates are determined for each y-coordinate
value using basic slope-intercept geometry. Each point is then plotted as
outlined above.

15

INDEX = X MOD 12

- 12 DOT SPACINGS

2 --- WORD = X DIV 12
3 *

4 *

5 *

6

7 *

8 *

9 *

10

11*

12

Figure 8. Look-up table representations for point plotting
on a given row of plot matrix.

16

* *

r0 * * *<
* * * Q * *
* " * " * * *

z *n z * " *. I
*j P" h4 * *i Z

W- -j.

Z~ .4 -4 '

W w - 3 C

w w w >40 < 3 xCL-.
LL F-~ m n

W L)Z

rd Mf) 0r. ,)0r

* or-4 17

For those lines that form an angle less than forty-five degrees with the
horizontal, the line is broken up into horizontal line segments and points
which are then plotted individually as outlined above.

Shading.

If flagged for shading, each dot row of x-coordinate values for a polygon
is scanned and directed to shade areas enclosed by the polygon except for
areas that are holes in the polygon. For orthogonal polygons, the shading
procedure is controlled by complementing a shading flag every time a line
is crossed in horizontally scanning the picture field. However, for
general polygons, the flagging procedure must be more sophisticated.

Each vector of a pair intersecting to form a vertex is flagged according to
its orientation with a horizontal line through the vertex. Line segments
are typed as horizontal (0), above the horizontal (+I), or below the
horizontal (-l). Figure lOa illustrates the vertex and line orientations
that are flagged for complementing the shading flag. Figure 10b shows the
conditions for which complementation of the shading flag is to be ignored.

In shading a polygon, each interval flagged for shading on a dot row is
processed by a call to the same routine used to plot a horizontal line,
the only difference being the look-up tables used for obtaining the data
used for modifying the horizontal interval. The shading values are
obtained from look-up tables having an additional dimension since the
shading patterns are a MOD function of the dot row being processed.

Note that the look-up tables for shading pattern data used for the Printonix
dot-satrix printer/plotter are similar to those which would be required for
the Trilog color printer/plotter.

D. Graphic Software Verification.

Development of the graphic software included systematic tests and
demonstrations of the adopted options and capabilities. Some of the more
important of these are as follows:

A graphic representation of a standard cell with:

e The polygon outline option.

9 The shading option added to the polygon outline option.

18

a. Conditions for b. Conditions for not
complementing complementing

Figure 10. Polygon vertex criteria for complementing the shading flag.

19

I'

The capability of plotting general polygons having sides at any angle

within the geometric constraints outlined above for:

o The polygon outline option.

o The shading option added to the polygon outline option.

o Holes inside polygon outlines.

Library accessing for circuit designs which have been configured by the
Army's MP2D placement and routing program for:

o The polygon outline option.

o The shading option added to the polygon outline option.

o The cell outline option using a cell outline library.

Multi-page graphic presentations.

Plotting selected areas of a design (windowing).

Library accessing for designs that have been modularly-partitioned in a
hierarchical manner. This included accumulative rotation, scaling, and
fiducial displacement to any number of nested levels.

See Figures 11 to 14 for examples of the plotting ipabilities.

E. Development Results and Conclusions.

A hierarchical procedure was developed and demonstrated for plotting that
does not require reducing the design data to primitive geometries
(smashing) prior to processing. Its hierarchical capability is made
possible by:

o A recursive technique which uses stacks for storing data that is a
function of hierarchical nesting level.

o A table look-up technique that automatically adjusts for the
accumulative effects of multiple rotations and mirroring.

A graphic capability has been developed and demonstrated for documentation
of integrated circuits that have been processed by the Army's MP2D
placement and routing program. Computer processing times for plotting a
small chip varied from about five minutes for a small windowed area of the
chip to about fourteen minutes for a complete plot using outlines for the
cell representations. For complete cell details, appreciably longer time
would be required.

20

I' mrnz m-, F,~ i~ mr- IM Z~I RM
& UR kiLEG,

_ _ __. Z3rJ~r MG:U7M

R ~~ nra INri~j~

;A Nmrz L!M C l arzun
RG7 r-MI

O1IN~
~ '~JR 'N ~ '-P'N

Figure R.7M M A" tes plot ilusraingacmltv rottio
an mrorngfr ou esedlves

L'Z- I 21

.~ .,.. ..-...,,.,, ,. 4,Q

Fiur 1 ..- tstp o :... iutrain the:. graphics capabilities..'ate.

-,,,..,,g,', N

-,... ,- z >,-$..r, rSNN. .;,

to angles, scaling, shading, and holes in polygons.

22

~ 1

[114

---]IDi- --L

Figure 13. A test plot of a windowed area of an integrated circuit
using the polygon outline option.

23

IL. . .

4. Y"I. ,Z ,X , Y

.. '

Figure 14. A test plot of a windowed area of an integrated circuit
using the polygon outline and shading options.

24

A raster oriented shading technique was developed and demcnstrated for use
as a polygon fill operation in the subject graphic software. For
integrated circuits, the shading pattern is selected as a function of the
fabrication mask level. This technique is also considered suitable for:

a. Color graphics processing with the Trilog color printer/plotter.

b. Generating raster scan data for mask fabrication from data files of
designs that have been hierarchically structured.

The graphic documentation package does not support text plotting at the
present time. It was not introduced because the descriptive language used
(DFL) does not provide this capability in the version used. It is needed
to provide text and text position for cell identification, component
number, and terminal numbers when outlines of cells are plotted instead of
detail descriptions. The text data must be processed with proper rotation,
but no mirrowing, for readability.

Although the graphic software package was designed primarily for plotting
hierarchically modular circuit layouts, this graphic software package can
be used for other applications. For example, with a simple design file
editing program, it could be used for preparing illustrations for papers or
reports.

Glossary

AND operator - The AND operator has the property that if P and Q are two
integers in binary form, then (P AND Q)is a binary number for which each bit is
1 if both of the corresponding bits of P and Q are 1, else 0.

DIV operator - The DIV operator has the property that if P and N are two
integers, then P DIV N is the truncated result of division of P by N.

MOD operator - the MOD (MODULO) operator has the property that if P and N are
two integers then P MOD N is the remainder for an integer division of P by N.

OR operator - The OR operator has the property that if P and Q are two
integers in binary form, then P OR Q is a binary number for which each bit is
1 if either or both of the corresponding bits of P and Q are 1, else 0.

25

Appendix A

DESIGN FILE LANGUAGE SPECIFICATION

A. GENERAL SPECIFICATIONS

A Design File consists of segments, each of which begins on a word boundary and

contains an integrated number of full words. The first word in each segment is called

the Header.

The first byte i8 bits) of the header word is called the Key. The Key is an EBCDIC
character which identifies the type of segment which follows. The fourth byte of the
header contains the Span, which is the number of full words in the segment, including
the header.

The significance of the remaining words in the segment depends on the type of
segment, as determined by the key. The last segment in any file must be an E
segment.

Sample Design File:

KEY SPAN

- Sm Mf 0 0 2 header word
M Segment ,"'3

L 0 0 5 header word

15

L Segment - 257
5

30
0 0 I

E Segment E 0 0 I

END OF FILE

26

All coordinates in DFL Spectra 70 form are signed integers in units of 10- 8 inch
= 0. 01 microinch. Thus the distance 1 niil is represented by the integer 100, 000.

The maximum span of any segment is 255 = 28 - 1. The maximum coordinate
value is *21.'47483647 inches = (231 -1)/108.

B. SEGMENT TYPES

1. Polygon Segment

Key: P

Span: 2N - 1, N = number of corners in polygon
Form at:

coordinate pair of
X I first corner f
y I polygon

X 2 coordinate pair ci

YJ gsecond corner of

polygon

Interpretation: This segment specifies a closed polygon with a maximum of 127
corners. The sides may be at any angle with the x and y axes, but may not intersect
each other. Closure is assumed from the last point in the segment back to the first
point. This means the first point is not repeated at the end of the segment: a corner
angle of 00 or t10 ° is NOT permitted.

2. Orthogonal Polygon Segment

Key: 0

Span: N + 1, N number of corners

Format:
F - 0 0 FLAG SPAN coordinate pair of

X I) first corner of 0
Y IJ polygon

X) coordinate pair ofy3 third corner of 0

polygon

27

* I

Interpretation: The 0 segment specifies a polygon all of whose sides are parallel

to either the x or y axes. Each corner angle must be =90 °. Only the coordinates of

every other corner (i. e. , the first, third, fifth, etc.) are stored in the segment to

conserve space. Sides may not intersect each other. The first side, starting at the

first coordinate pair in the segment, must be parallel to the x-axis (horizontal). The

maximum number of corners is 254. Closure is assumed as for the P polygon.

The FLAG identifies the orthogonal polygon as being either Normal, Exterior or
Hole (see below).

FLAG 0 Normal
1 Exterior

2 Hole

It is often desired to specify a figure which is not simply connected; that is, it

has an isolated area inside the figure which is not filled in (see sketch). An orthogonal

polygon segment header contains a byte which can specify this condition and identify

whether the particular polygon is an Exterior, or outside, polygon, or a Hole, specify-

ing an empty space inside another polygon (see the definition of FLAG above).

Orthogonal
Polygon

The foliowirg rules govern the use of OE (Exterior) and OH (Hole) polygons:

a. Only orthogonal polygons may form holes and exteriors.

b. Any OE may contain up to 200 OH polygons inside it (but no more than

SOO corners total for all holes).

c. No OH may intersect another OH or the OE surrounding it.

d. Every OH must be inside an OE.

e. No OE may be inside an OH.

f. Exteriors may intersect; however, any holes in common will be filled.

g. Normal polygons may be placed inside holes.

Processing programs reduce an exterior and its holes down to a number of
simply-connected normal polygons and fills them. Such a program will define an

error if more than 200 sides are formed when this reduction is made.

28

3. Line Segment

Key: L

Span: 2N-1, N = number of ends and corners of line

Format:

L 0 0 SPAN
Xl

Y I
X2
Y2

Interpretation: A line is placed on a drawing by connecting the points in the
line segment in the order in which they appear. The line will be of constant width as
determined by the most recent width (W) segment. The ends are squared off at the
first and last points, and each corner in the line is made continuous by intersecting
the parallel sides of the two lines (except for the outside point of an acute angle, which
is smoothed off). The line may intersect itself. The line may have no more than 127
corners, including end points.

width= last point

first point -,

4. Mask Segment

Key: M

Span: 2

Format:

M 0 0 SPAN]
LEVEL

29

Interpretation: The Mask segment specifies the mask level number on which
any figures following the segment appear. The level specification holds true until the
next mask segment changes it, or the file ends. The segment can specify any level
from 0 to 255, but only levels 0-23 may be used by programs processing DFL.

5. Width Segment

Key: W

Span: 2

Format:

W 0 0 _I 2
WIDTH

Interpretation: This segment specifies the width of any figure specified by a
line segment following this width segment. This width specification holds until the
next W segment changes it, or the file ends. The value of W is an integer in units of
10-s inch, and has the same limits as any other coordinate number.

6. End Segment

Key: E

Span: 1

Format:

j E L 0__ 0

Interp.-etation: The E segment marks the end of a design file, and is always
the last segment in a file.

7. Comment Segment

Key: C

Span: Variable

Format:

C FLAG I SPAN

30

Interpretation: The comment segment is defined to provide for future addi-
tional segment types. The specific interpretation of a given comment is indicated by
the value of FLAG, which is arbitrarily assigned whenever the need arises. The span
is set according to the conventional rules.

S. Definition Sement

Key: D

Span: 5

Format:

0 J 0 1 NAME
x-fiducial
y- fiducial

Interpretation: The Definition Segment marks the beginning of a section of
the design file which may be referenced elsewhere in the file by name. The NAME
is a number between 1 and 32, 767 = 215-1 (considered a 2-byte signed integer). The
x and y fiducials define a point which is used as a reference point when referring to
the definition from elsewhere in the file. The coordinates are subject to the same
numerical constraints as any other coordinate in DFL. The -1 (all 32 bits set) is the
result of an historical accident.

The section of a design file intended to comprise the definition must be pre-
ceded by a D segment and terminated by a Z segment (see below). Once a definition
is begun, it must be terminated with a Z segment before another definition is started.
Two definitions by the same name may not exist in the same file.

Names are chosen by the user under the following constraints:

NAME USE

1-199 User may choose at will. May be referenced
only within the same file.

200-9999 Numbers assigned to users in blocks. User may
use only those numbers assigned to him.

10, 000 up Reserved for system library use.

31

9. End-of-Definition Segment

Key: Z

Span: 1

Format:

z 0 0 1

Interpretation: Terminates a definition, which began with a D-segment.

D-segment
All the segments

in the
definition

Z - segment

10. Library Call Sezment

Key: Q

Span: 4, or 6 if scale factors are included.

Format:

ROTATiONI 0 NAME
x- fiducial

y- fiducial

x- scale
y-scale

Interpretation: A Q-segment in a file specifies that the definition whose num-

ber the Q-segment bears is to be placed in the position, with the rotation, with the

scale factor given. The fiducial point of the definition will be placed at the fiducial
point of the Q-segment (sometimes referred to as Q-call). All other points on the
definition will be in the same position relative to the Q-call fiducial as they are within
the definition itself.

The ROTATION byte specifies 1 of 8 possible orientations for the defini-4-n
as it is laid in place:

ROTATION POSITION

0 p same orientation as in definition

1 o 900 clockwise

32

ROTATION POSITION

1 iSO0 clockwise

3 O 2700 clockwise

4 Rotate about Y-axis

5 Rotate about X-ads

6 a 900 clockwise, then about X-axis

7 M 900 clockwise, then about Y-axis

The two scale factors are optional; if they appear in the Q-call, they specify
that the definition is to be stretched or shrunk about the fiducial when placed on the
artwork. The scale factor is a 32-bit number with binary point in the middle: i. e.,
a scale factor of 1 has the following bit pattern:

0000 0000 0000 0001 0000 0000 0000 0000

The largest scale factor is thus 216-1 = 65. 535 and the smallest is 216
.000015. Care must be taken that the product of the scale factor and the coordinates
to which they are applied is neither too large nor too small for the purpose intended.

Since the X and Y scale factor may in general be different, care must be
ta.en when applying both rotation and scale factors to a definition. The order is
always:

a. Rotate the figure.

b. Apply the scale factors.

This implies that if the rotation is 900 , the X scale factor will be applied to the values
of the coordinates which were originally Y-coordinates before the fizure was rotated.

It is permissible to include Q-calls within definitions; the condition may e.xist
where a definition contains a call to another definition, which in turn calls still another

definition, etc. A Q-call calling a definition is defined as a Nesting Level of 1. If
the definition calls another definition through a Q-call, the Nesting Level becomes 2.
The maximum Nesting Level permitted is 10.

Whenever a DFL file is being processed and a Q-call is reached, the current

mask level, line width, rotation and scale factors are stored before the Q-call is pro-
cessed. Then the (new) rotation and scale factors, if any, are calculated and the

called definition processed. The definition may change the mask level and width.
When the end of the definition is reached and control returned to the point in the file
where the definition was called, the previous values of mask level, line width, rota-

tion and scale factors (if any) are restored.

33

11. Librar' Up date Segment

Kev: U

Span: IN-2, IN =adefinitions to be deleted

Format:

u 0 o SPANI
FLA G 0 N~'1Jefinitionsdee

NAME I
NAME 2

Interpretation: The U-segment signals those systems maintaining libraries
that a library update ;s occurring. The U-segment contains the names i 'i. e., numbers)
Of definitions to be deleted. The second half of the second word of the segment con-
tains the number of definitions which immediateiv- follow the U-segment which are to
be added to the libra, . The FL-AG by-te is the EBCDIC character I i=C9 16) if the par-ic-
viar update .rn is to complIetelv initialize the liIbrary: if the FLAG isEBCDIC 0

=!D6 1 6), then an e~dsting library is to be updated.

C. OUTDATED DFL CHARACTERISTICS

Several colder DFL files may contain somne valid but no longer supporteo
characteristics.

1. G-Sezment

'Pre%-iously used to specify artwork generation for Manin A-.rtwork Program.
Superseded by non-DFL program control cards.

2. D-Segment wtih Definition Length

At one time the Z key was not used to end a definition; the number of words
included in the definition was placed in the fifth word of the D-segment.

D. SIUMMIARY: DFL LIMIlTS

Limits

P Polygon 127 corners

0 Polygon 254 corners - all right angles, sides parallel to axes

34

L Centerline 127 connected points - line may cross itself

M Mask Level 0-23 only can be processed

Coordina:esz - nrirm.u -n i0- 'nch, maximum =21.4748347 ,ncnes

Holes and Exer-ors: Up to 200 holes max per exterior, but no more than S00
corners

No hole mav intersect exieror or another hole.

Every hole must be inside an exterior.

No exterior may be inside a hole.

Exteriors may intersect. holes in common will be lost.

Definition Names:

1-199 Defined and called within file

200-9999 User library

10, 000-32. 767 System library

A deic:icn may c:ntain Q calls, but may not contain another definition.

A design rIe may not nest Q-calls up to a depth of 10.

Mask Le-el, Width, Rotation and Scale Factor are restored following a Q-call.

Rotations: AR
1
2

3

5
6

7

Mann Pattern Generator:

(measurements in inches on the reticle):

Aperture opening 0. 0005 inch to 0. 1200 inch steps of 0. 0005 inch

Aperture angle 00 to 890, steps of 10

Travel 0 to 4 inches, steps of 0. 00025.

35

HISA - FM - 2723 - 81

