LEVELI 1-1 DELAWARE RIVER BASIN MILLTOWN DAM WEST CHESTER AREA MUNICIPAL AUTHORITY NDI NO. PA-00218 DER NO. 15-146 CHESTER COUNTY, PENNSYLVANIA PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers Baltimore, Maryland 21203 BY Berger Associates Harrisburg , Pennsylvania 17105 **JULY 1981** #### **PREFACE** This report has been prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies. In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected. Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential. ## PHASE I REPORT NATIONAL DAM INSPECTION PROGRAM ## BRIEF ASSESSMENT OF GENERAL/CONDITIONS AND RECOMMENDATIONS Name of Dam: MILLTOWN DAM State & State No.: PENNSYLVANIA, 15-146 County: CHESTER Stream: EAST BRANCH CHESTER CREEK Date of Inspection: APRIL 9, 1981 Based on the visual inspection, past performance and the available engineering data, the dam and its appurtenant structures appear to be in poor condition. In accordance with the Corps of Engineers' evaluation guidelines, the size classification of this dam is small, and the hazard classification is high. These classifications indicate that the Spillway Design Flood (SDF) should be in the range of one-half the Probable Maximum Flood (PMF) to the full PMF. The recommended SDF for this structure is one-half the PMF. The spillway capacity is adequate for passing only 18 percent of the PMF peak inflow without overtopping the dam. Hazard to life is significantly increased downstream if the dam fails. The spillway therefore, is considered to be seriously inadequate, and the facility is classified as unsafe, non-emergency. The following recommendations are presented for immediate action by the owner: - That, in lieu of improving the facilities, the embankment be breached after obtaining a permit from the Bureau of Dam Safety, Obstruction and Storm Water Management, Pennsylvania Department of Environmental Resources. - That a detailed hydrologic and hydraulic engineering analysis be made by a professional engineer with experience in the design and construction of dams to determine means for providing adequate spillway capacity. - That the upstream and downstream slopes and the crest be cleared of all trees, brush and debris under the supervision of a professional engineer experienced in the design and construction of dams. The embankment shall be provided with an adequate protective cover and be maintained on a regular basis. The Republic of the State th NDI NO. PA-00218 MILLTOWN DAM DER NO. 15-146 WEST CHESTER AREA MUNICIPAL AUTHORITY CHESTER COUNTY - That, after clearing, the right abutment be inspected for signs of seepage, sloughs and other indications of instability. - 5. That the crest of the left embankment be widened and raised. - 6. That the eroded stone section of the spillway discharge channel be filled with rocks of appropriate size. - That the drawdown valve be maintained and operated on an 7: annual basis. - That a formal surveillance and downstream warning system be developed for use during periods of high or prolonged rainfall. - 9. That an operation and maintenance manual be prepared forguidance in the operation of the dam during normal and emergency conditions, and that a schedule be developed for the annual inspection of the dam and its appurtenant structures. SUBMITTED BY: APPROVED BY: BERGER ASSOCIATES, INC. HENDRIK JONGSM ENGINEER HARRISBURG, PENNSYLVANIA James W. Peck Colonel, Corps of Engineers Commander and District Engineer DATE: July 31, 1981 OVERVIEW MILLTOWN DAM Photograph No. 1 #### TABLE OF CONTENTS | | Page | |---|--------| | SECTION 1 - PROJECT INFORMATION | | | 1.1 GENERAL | 1 | | 1.2 DESCRIPTION OF PROJECT | 1 | | 1.3 PERTINENT DATA | 2 | | SECTION 2 - ENGINEERING DATA | | | 2.1 DESIGN | 5 | | 2.2 CONSTRUCTION | 5 | | 2.3 OPERATION | 5 | | 2.4 EVALUATION | 5
5 | | SECTION 3 - VISUAL INSPECTION | | | 3.1 FINDINGS | 7 | | 3.2 EVALUATION | 8 | | SECTION 4 - OPERATIONAL PROCEDURES | | | 4.1 PROCEDURES | 9 | | 4.2 MAINTENANCE OF DAM | 9 | | 4.3 MAINTENANCE OF OPERATING FACILITIES | 9 | | 4.4 WARNING SYSTEM | 9 | | 4.5 EVALUATION | 9 | | SECTION 5 - HYDROLCCY/HYDRAULICS | | | 5.1 EVALUATION OF FEATURES | 10 | | SECTION 6 - STRUCTURAL STABILITY | | | 6.1 EVALUATION OF STRUCTURAL STABILITY | 13 | | SECTION 7 - ASSESSMENT AND RECOMMENDATIONS | | | 7.1 DAM ASSESSMENT | 15 | | 7.2 RECOMMENDATIONS | 15 | | | | | APPENDIX A - CHECK LIST OF VISUAL INSPECTION REPORT | | | APPENDIX B - CHECK LIST OF ENGINEERING DATA | | | APPENDIX C - PHOTOGRAPHS | | | APPENDIX D - HYDROLOGY AND HYDRAULIC CALCULATIONS | | | APPENDIX E - PLATES APPENDIX F - GEOLOGIC REPORT | | | WLLEWNIY L - GEOTHORIC KELOKI. | | うりる ひとを間からのできれるもでは 東京教室の日本教 ## PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM #### MILLTOWN DAM NDI NO. PA-00218 DER NO. 15-146 #### SECTION 1 - PROJECT INFORMATION #### 1.1 GENERAL #### A. Authority The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspections of dams throughout the United States. #### B. Purpose The purpose of this inspection is to determine if the dam constitutes a hazard to human life and property. #### 1.2 DESCRIPTION OF PROJECT #### A. Description of Dam and Appurtenances Note: Design drawings for this dam (Plate III, Appendix E) indicate a spillway elevation of 104.0 (normal pool). It was estimated from the U.S.G.S. Quadrangle sheet that the normal pool elevation is 345.0. Elevation 345.0 was used as the elevation of the low flow notch in the spillway for this report. Milltown Dam is an earthfill structure with an embankment length of 250 feet on the right of the spillway and 30 feet on the left of the spillway. The maximum embankment height is about 20 feet. The ogee spillway is located near the left abutment. Its crest is 69 feet long at an elevation 5.5 feet be! w the abutment walls. The intake control structure is a wet well located on the upstream side of the crest adjacent to the right spillway wall. Two 16-inch pipes discharge from the reservoir into the wet well. A 16-inch pipe leading from the wet well is used as the supply line. A 16-inch Y-section, with a control valve at the downstream toe, can be used for drawdown. #### B. Location: East Goshen Township, Chester County U.S.G.S. Quadrangle - West Chester, PA Latitude 39°-58.1', Longitude 75°-32.7' Appendix E, Plates I & II C. <u>Size Classification</u>: 5 Small: Height - 20 feet Storage - 114 acre-feet 6.6 D. <u>Hazard Classification</u>: High (Refer to Section 3.1.E.) E. Ownership: West Chester Area Municipal Authority Mr. David M. Hughes, Manager 205 Lacey Street West Chester, Pennsylvania 19380 F. Purpose: Water supply (abandoned) #### G. Design and Construction History The facilities were designed in 1921 by Franklin and Company, Philadelphia. A permit for construction was issued on February 22, 1921. H.W. Fitzgerald, Binghamton, New York, the contractor, started construction in the spring of 1923 and completed the facilities on August 15, 1924. #### H. Normal Operating Procedures The dam and reservoir were constructed for use as a domestic water supply. An abandoned filtration plant is located about 250 feet downstream. Heavy siltation of the reservoir has occurred over the years and the reservoir is no longer used for domestic water supply storage. #### 1.3 PERTINENT DATA A. <u>Drainage Area</u> (square miles) From files: | | Computed for this report: | 6.3 | |----|--|------| | | Use: | 6.3 | | в. | Discharge at Dam Site (cubic feet per second) See Appendix D for hydraulic calculations. | | | | Maximum known flood (estimated from gage records for East Branch Chester Creek) | 633
 | | Outlet works at pool Elev. 345 | 58 | | | Outlet works at low pool Elev. 335 | 33 | | | Spillway capacity at pool Elev. 349.1 (low point of dam) | 2063 | | c. | Elevation (feet | t above mean sea le | evel) | | |----|----------------------------|---|------------------|--| | | Top of dam (lov | w point as surveyed | 1) | 349.1 | | | Top of dam (des | sign crest) | | 350.3 | | | Spillway crest | (low flow notch) | | 345.0 | | | Upstream porta | l invert (approx.) | | 329.2 | | | Downstream por | tal invert (approx | .) | 329 | | | Streambed at do (estimate) | ownstream toe of d | am | 329 | | ъ. | Reservoir (mile | es) | | | | | Length of norm | al pool (Elev. 345 | .0) | 0.4 | | | Length of maxim | mum pool (Elev. 34 | 9.1) | 0.7 | | E. | Storage (acre- | feet) | | | | | Spillway crest | (Elev. 345.0) | | 18.5 | | | Top of dam (El | ev. 349.1) | | 114 | | F. | Reservoir Surf | ace (acres) | | | | | Spillway crest | (Elev. 345.0) | | 9.2 | | | Top of dam (El | ev. 349.1) | | 43 | | G. | Dam | | | | | | Refer to Plate | s III and IV in Ap | pendix E for pla | n and section. | | | Type: | Earthfill. | | | | | Length: | 280 feet not incl | uding the spillw | ay. | | | Height: | 20 feet. | | | | | Top Width: | Design - 8 feet; | Survey - varies. | | | | Side Slopes: | Upstream: Below elev. 345 Above elev. 345 Downstream: | | Surveyed Unknown 2.1H to 1V 2.1H to 1V | Zoning: Concrete core wall on centerline of the dam. Cutoff: Trench excavated into rock for placing of concrete core wall. Grouting: None. #### Outlet Facilities Type: 24" diameter concrete outlet pipe, blowoff from 16-inch water supply line. Inlet Elevation: (Approx.) 329.2 Location: Right side of spillway. #### Spillway Type: Concrete ogee section with low flow notch. Length of Weir: 69 feet including 41 foot low flow notch. Crest Elevation: 345 (low flow notch); 345.5 (remainder). Location: Left end of dam. #### Regulating Outlets See Section 1.3.H. above. #### SECTION 2 - ENGINEERING DATA #### 2.1 DESIGN The available engineering data for Milltown Dam are limited to a set of three construction drawings. One drawing is a general plan of the reservoir. The other two drawings have been reproduced in Appendix E of this report. The files also contained a report prepared by the Pennsylvania Department of Environmental Resources (PennDER) upon the application for a permit. This report states that PennDER calculated the capacity of the spillway at 2940 cfs and had reviewed the stability of the spillway section. This review indicates that the resultant would fall within the middle third of the base. Designer's calculation for stability, seepage, and spillway capacity are not available. #### 2.2 CONSTRUCTION The available construction data are limited to a copy of the construction specifications, a progress report by PennDER dated July 17, 1923, and a few construction photographs. The report was based on a field inspection of the foundation on July 16, 1923, and states that excavation for the core wall had been completed. The trench was 15 feet deep at the spillway section and had reached a very hard gneissie rock with tight seams. The overburden consisted of large boulders and loose seamy stone. No seepage was noticed on the upstream side of the excavation. The concrete of the core wall was of good quality. The construction specifications indicates that material with up to 3 inches of stone was to be placed on the upstream side of the core wall, and that less impervious material was to be placed on the downstream side. Fill, placed in layers of 6 to 12 inches, was to be compacted. #### 2.3 OPERATION Formal records of operation are not maintained by the owner. Maximum discharges over the spillway crest are unknown. The reservoir is no longer used for water supply storage. All inflow above normal pool is discharged over the spillway. The valves on the drawdown line and supply lines have not been operated for many years. Inspection reports by PennDER indicate that maintenance of the embankment has been neglected. #### 2.4 EVALUATION (- #### A. Availability The available engineering data are contained in the files of PennDER, Harrisburg, Pennsylvania. #### B. Adequacy The available engineering and construction data, combined with the field inspection, are considered to be adequate for making a reasonable assessment of the dam. #### C. Operating Records Operating records, including maximum pool levels, have not been maintained. #### D. Post Construction Changes The visual inspection did not reveal that post construction changes were made at these facilities. #### SECTION 3 - VISUAL INSPECTION #### 3.1 FINDINGS #### A. General The general appearance of Milltown Dam is poor, due to lack of maintenance. Brush and trees are growing on the upstream and downstream slopes (Photograph No. 4), and the immediate downstream area has been used as a dump area. The crest of the left section of the embankment is low and narrow. There were no signs of seepage or slope stability problems. The visual inspection check list and sketches of the general plan and profile of the dam, as surveyed during the inspection, are presented in Appendix A of this report. Photographs of the facilities taken during the inspection are reproduced in Appendix C. The inspectors discussed the use and condition of the facilities with the manager of the authority in his office. #### B. Embankment The embankment on the left side of the spillway has a low and narrow crest (Photographs No. 1 and No. 6). Several large trees are growing on both the upstream and downstream slopes. The embankment to the right of the spillway has a poor appearance. The crest is below the design elevation and has very little protective cover. The upstream slope is covered with dumped rock with a considerable growth of brush near the normal flow line (Photograph No. 3). The downstream slope has very dense brush over most of its surface, which prevented close observation of the condition of this slope. Rubbish and fill have been dumped on this slope. A steep, bare scorpath is located adjacent to the spillway on the downstream slope. A concrete slab has been placed on the crest adjacent to the control structure (Photograph No. 5). A sewer line and several man holes are located immediately downstream of the dam (Plate A-I). Piles of rock, brush, tires, and other debris were dumped in this area. #### C. Appurtenant Structures The ogee concrete spillway has a 41 foot wide low flow nocch in its center. (See Photographs No. 7, 8 and 10.) The concrete in this area has interiorated. A large piece of concrete has spalled off adjacent to the low flow notch (Photograph No. 10) at the top of the weir. The spillway abutment walls have many small cracks, but appeared to be stable. At the downstream end of the concrete ogee section there is a two foot deep basin with an endsill (Photograph No. 9). It appears that the original riprap in this area has eroded. Further investigation is required to determine the dopth of erosion and the condition of the bottom of the basin. Placing additional heavy stone in this basin is recommended. The intake control structure is located in the right spillway wall and is in fair condition. The downstream valve on the drawdown line has not been operated in many years. #### D. Reservoir The reservoir area is surrounded by flat to moderate slopes. A sewer line has been recently installed in the right bank of the reservoir. The bank is at the present unprotected against erosion. A roadway parallels the bank on this side. An undetermined but considerable amount of siltation has occurred in the reservoir. The drainage area is mostly cultivated land with many residential developments. Township Line Dam, another reservoir for the West Chester Area Municipal Authority, is located two miles upstream from Milltown Dam. This dam (DER No. 15-046) has been previously inspected for a Phase I report. #### E. Downstream Channel The immediate downstream channel is a natural creek with a rock-lined bottom. The slopes are moderate to nearly level. An abandoned municipal water treatment plant and Pennsylvania Route 3 are located within 600 feet downstream of the dam. There are four houses located about one-half mile farther downstream. Based on the field observation, the potential hazard for loss of more than a few lives exists downstream of the dam. The hazard category is therefore considered to be "High." #### 3.2 EVALUATION The overall visual evaluation of Milltown Dam indicates that the dam is in poor condition due to poor maintenance practices. It is recommended that the embankment and the area immediately downstream of the embankment be cleared of all trees, brush and debris. The crest of the embankment and the slopes should be restored to their original design dimensions and be provided with a protective vegetative cover. The eroded spillway discharge channel should be backfilled with appropriate sized stone. #### SECTION 4 - OPERATIONAL PROCEDURES #### 4.1 PROCEDURES The dam and reservoir were constructed to provide water supply torage for the West Chester area. Due to siltation, this facility is no longer used. At the present time, all inflow is discharged over the spillway. #### 4.2 MAINTENANCE OF EMBANKMENT The owners of the reservoir and embankment have not performed any maintenance of the embankment in the recent years. #### 4.3 MAINTENANCE OF OPERATING FACILITIES The reservoir is no longer used for its original purpose and the gates and valves have not been maintained or operated in recent years. #### 4.4 WARNING SYSTEM There is no formally organized surveillance and downstream warning system in existence at the present time. #### 4.5 EVALUATION うふのたのみなっては一場の我の姿而のを明日 The operational procedures for Milltown Dam are inadequate. It is recommended that a program be developed for regular maintenance of the dam, which shall include the
removal of all trees, brush, and debris, the mowing of the embankment on a regular basis after reseeding, and the annual maintenance and operation of the drawdown valve. A formal surveillance plan and downstream warning system should be developed for implementation during periods of heavy or prolonged rainfall. #### SECTION 5 - HYDROLOGY/HYDRAULICS #### 5.1 EVALUATION OF FEATURES #### A. Design Data The hydrologic and hydraulic analyses available from PennDER for Milltown Dam were not very extensive. No stage-discharge curve, stage-storage curve, unit hydrograph, or flood routings were contained in the PennDER files. #### B. Experience Data There are no records of flood levels at Milltown Dam. Based on records of the U.S.G.S. stream gage on East Branch Chester Creek located about 2.6 miles downstream of the dam, the maximum inflow to Milltown Dam is estimated to be 633 cfs. This flood was passed without reported difficulties. #### C. Visual Observations On the date of the inspection, no conditions were observed that would indicate that the appurtenant structures of the dam could not operate satisfactorily during a flood event until the dam is overtopped. It was noted that riprap at the downstream end of the spillway chute had been dislodged. Upstream of Milltown Dam is one manmade dam. This impoundment was included in the hydrologic evaluation in Appendix D. #### D. Overtopping Potential Milltown has a total storage capacity of 114 acre-feet and an overall height of 20 feet, both referenced to the top of the dam. These dimensions indicate a size classification of "Small"; the hazard classification is "High" (see Section 3.1.E.). The recommended Spillway Design Flood (SDF) for a dam having the above classification is in the range of one-half the Probable Maximum Flood (PMF) to the full PMF. Because of the small storage capacity, the recommended SDF is one-half the PMF. For this dam, the SDF peak inflow is 6531 cfs (see Appendix D for HEC-l inflow computations). Comparison of the estimated SDF peak inflow of 6531 cfs with the estimated spillway discharge capacity of 2063 cfs indicates that a potential for overtopping of Milltown Dam exists. An estimate of the storage effect of the reservoir and routing of the computed inflow hydrograph through the reservoir shows that this dam does not have the necessary storage available to pass the SDF without overtopping. The spillway-reservoir system can pass a flood event equal to 18% of a PMF, based on the present low point of the embankment. If the top of dam would be made uniform at the design elevation, the spillwayreservoir system would be able to pass a flood event equal to 26% of a PMF without overtopping. #### E. Dam Break Evaluation The calculations to determine the behavior of the dam in the event of an overtopping and a resulting breaching of the embankment indicates that there will be a substantial increase in water levels downstream from the dam. Several houses are located about 3200 feet downstream from the dam. On the basis of the results of the dam break analysis, using the U.S. Army Corps of Engineers HEC-1 program, the water surface elevations in the vicinity of the houses have been compared for several conditions prior to and after a dam break. (Refer to Table 1, Appendix D.) For an. earth embankment with a concrete core wall, it is estimated that one foot of overtopping would result in a breach. It is estimated that the core wall will fail along with the earth embankment. Calculations indicate that 27 percent of the PMF inflow would cause an overtopping of 1.0 foot, based on the present low point of the crest. The increase in water levels downstream due to overtopping of 1.0 foot with no failure as compared to no overtopping would be 1.0 foot. While more property would be exposed to flooding, the increase in the hazard to loss of life is not considered significant. With failure, however, the breaching analysis indicates a rise of 2.1 feet above the flow level just prior to breach when considering a 15 minute time to complete the breach and a 0.6 foot rise above flow level just prior to breach when considering a two hour time to complete the breach. The increase in hazard to loss of life and property damage is reflected not only in the increase in depth of water of 2.1 feet in the 15 minute breach and 0.6 foot in the two hour breach, but more significantly in the shorter time to reach the peak. Less time would be available to respond to the flooding under the breach conditions. Being an earth embankment with a core wall, it is judged that the breach would be completed between the 15 minute and the two hour period. The numerical difference of water levels is 1.5 feet. The property damage would be similar with either time of failure. Again, however, the time factor is most significant regarding loss of life. Calculations indicate that the water depth will increase at a rate of 2.1 feet in 15 minutes under the 15 minute breach condition. One manmade dam is located upstream of Milltown Dam. For this evaluation, this impoundment was not considered to have breached (see Appendix D). On the basis of these calculations, it is concluded that the hazard to loss of life and property damage is significantly increased when the dam is overtopped and failed as compared to the condition just prior to failure. Refer to Table 1, Appendix D, for comparison of flood water ## F. Spillway Adequacy Calculations show that the spillway discharge capacity and reservoir storage capacity combine to handle 18% of the PMF (refer to Appendix D). Since the spillway discharge and reservoir storage capacity cannot pass one-half of the PMF and because the downstream hazard to loss of life is high and this hazard is significantly increased when the dam fails as compared to just prior to failure, the spillway is judged to be seriously inadequate. The hydrologic analysis for this investigation was based upon existing conditions of the watershed. The effects of future development were not considered. #### SECTION 6 - STRUCTURAL STABILITY #### 6.1 EVALUATION OF STRUCTURAL STABILITY #### A. Visual Observations #### 1. Embankment The visual inspection of Milltown Dam did not detect any signs of embankment instability. However, the downstream slope was covered with dense brush and trash, preventing close observation. At its lowest point, the crest of the dam is 1.2 feet below its design elevation and is narrow and unprotected near the left abutment. A footpath adjacent to the right spillway wall has caused a steep, eroded condition. Seepage was not detected. The upstream slope is protected with dumped rock. #### 2. Appurtenant Structures Although the spillway has deteriorated, the present condition does not endanger the safety of the structure. The spillway walls have numerous small cracks but are apparently stable. No movement or tilting was detected. The erosion beyond the concrete spillway slab is of concern. To prevent possible und rmining of the concrete slab, heavy stone should be placed in this area. #### B. Design and Construction Data #### 1. Embankment A CONTRACTOR OF THE PROPERTY OF THE PARTY typical embankment section (Plate III, Appendix E) indicates an earthfill embankment with a concrete fore wall along the centerline of the dam. The core wall has a bottom width of three feet and was founded on rock. A trench up to 15 feet deep was excavated through the overburden. The top of the core was 1.8 feet below the design crest elevation. The upstream slope was protected with riprap. An inspection report in 1927, prepared by PennDER, indicates that the embankment had settled one foot over a length of ten feet on each side of the spillway. The narrow crest in the left embankment has been reported since 1941. #### 2. Appurtenant Structures The typical section of the spillway (Plate IV, Appendix E) indicates only a token amount of reinforcement in the concrete section. Fifteen tension bars, spaced at about 5 feet, are located on the upstream side. A cutoff wall is placed on the upstream side. The spillway is founded on gravel and sand. At the downstream side, there is a 30-inch deep cutoff wall with weepholes. Beyond this cutoff wall is a grouted stone slab about 25 feet long with another three foot deep cutoff wall. The intake control structure is an integral part of the right spillway wall. ### C. Operating Records Operating records for this dam have not been maintained by the ## D. Post Construction Changes There are no indications that post construction modifications have been made to the dam or its appurtenant structures. #### a. Seismic Stability This dam is located in Seismic Zone 1, and it is considered that the static stability is sufficient to withstand minor earthquake-induced dynamic forces. No studies or calculations have been made to confirm this assumption. #### SECTION 7 - ASSESSMENT AND RECOMMENDATIONS #### 7.1 DAM ASSESSMENT #### A. Safety The visual inspection and the review of the construction drawings indicates that Milltown Dam is in poor condition due to poor maintenance procedures. There were no signs of structural instability, seepage, or sloughage. Dense brush growth on the downstream slope prevented close observation. The embankment profile is below its design crest elevation over most of its length. Erosion beyond the spillway could undermine the concrete slab. The hydrologic and hydraulic computations indicate that the combination of the storage capacity and the discharge capacity of the spillway are sufficient to pass only 18 percent of the PMF without overtopping the embankment. The recommended SDF is 50 percent of the PMF. Failure of the dam could occur with 27 percent of the PMF. The hazard to loss of life is significantly increased when the dam fails. The spillway is therefore considered to be seriously inadequate and the facility is classified as unsafe, non-emergency. #### B. Adequacy of Information The visual inspection is considered to be sufficiently
adequate for making a reasonable assessment of this dam. #### C. Urgency The recommendations presented below should be implemented immediately. #### D. Additional Studies A detailed hydrologic and hydraulic study is recommended to determine methods of improving the spillway capacity. #### 7.2 RECOMMENDATIONS **(**: In order to assure the continued satisfactory operation of this dam, the following recommendations are presented for immediate implementation by the owner: 1. That, in lieu of improving the facilities, the embankment be breached after obtaining a permit from the Bureau of Dam Safety, Obstruction and Storm Water Management, Pennsylvania Department of Environmental Resources. - 2. That a detailed hydrologic and hydraulic engineering analysis be made by a professional engineer with experience in the design and construction of dams to determine means for reoviding adequate spillway capacity. - 3. That the upstream and downstream slopes and the crest be cleared of all trees, brush and debris under the supervision of a professional engineer experienced in the design and construction of dams. The embankment shall be provided with an adequate protective cover and be maintained on a regular basis. - That, after clearing, the right embankment be inspected for signs of seepage, sloughs and other indications of instability. - 5. That the crest of the left embankment be widened. - 6. That the eroded stone section of the spillway discharge channel be filled with rocks of appropriate size. - Tha: the drawdown valve be maintained and operated on an annual basis. - 8. That a formal surveillance and downstream warning system be developed for use during periods of high or prolonged rainfall. - 9. That an operation and maintenance manual be prepared for guidance in the operation of the dam during normal and emergency conditions, and that a schedule be developed for the annual inspection of the dam and its appurtenant structures. APPENDIX A CHECK LIST OF VISUAL INSPECTION REPORT ## CHECK LIST ## PHASE 1 - VISUAL INSPECTION REPORT | PA DER #15-146 | NDI NO. PA-00 218 | |---|---------------------------------------| | NAME OF DAM Milltown Dam | HAZARD CATEGORY High | | TYPE OF DAM Earthfill | | | LOCATION East Goshen TOWNSHIP | Chester COUNTY, PENNSYLVANIA | | INSPECTION DATE 4/9/81 WEATHER | Showers TEMPERATURE 40-50° | | INSPECTORS: R. Houseal (Recorder) | OWNER'S REPRESENTATIVE(s): | | H. Jongsma | | | R. Shireman | | | A. Bartlett | | | | | | NORMAL POOL ELEVATION: 345 (U.S.G.S.) A | AT TIME OF INSPECTION: | | BREAST ELEVATION: 350.3 (Design) | | | SPILLWAY ELEVATION: 345.0 (Low flow) | | | MAXIMUM RECORDED POOL ELEVATION: Unkno | | | GENERAL COMMENTS: | | | The general visual appearance of this nance. The downstream slope and beyon miscellaneous items. Fill from sewer the reservoir encroaches into the pool | installation along the right shore of | ## VISUAL INSPECTION EMBANKMENT | | OBSERVATIONS AND REMARKS | |--|--| | A SURFACE CRACKS | None observed. | | | Notice observed! | | B. UNUSUAL MOVEMENT
BEYOND TOE | None observed. Dirt road at toe plus waste area for timber, boulders, stone, misc. fill, tires and other non organic rubbish. Sanitary sewer manhole about 50' downstream from toe near spillway outlet channel. | | C. SLOUGHING OR EROSION OF EMBANKMENT OR ABUTMENT SLOPES | Downstream slope covered with heavy brush, brambles, small trees and rubbish. Could not detect any sloughs or slope distress. | | D. ALIGNMENT OF CREST: HORIZONTAL: VERTICAL: | Horizontal - straight lineno movement visible. Vertical - refer to Profile, Plate A-II. | | E. RIPRAP FAILURES | None observed. Weed and brush cover to water's edge on upstream slope. | | F. JUNCTION EMBANKMENT
& ABUTMENT OR
SPILLWAY | Appear to be sound structurally. Eroded foot path down slope at junction with right spillway wall. Recent fill from sewer installation at right end of embankment near roadway. | | G. SEEPAGE | None observed on slope or along downstream toe. | | H. DRAINS | Refer to plans. | | J. GAGES & RECORDER | None. | | K. COVER (GROWTH) | Crest - bare earthsome grasstire tracks. Upstream slope - dumped rock with weeds, grass and brush. Downstream slope - heavy brushsome small trees and rubbish and fill. | ## VISUAL INSPECTION OUTLET WORKS | | OBSERVATIONS AND REMARKS | |------------------------|--| | A. INTAKE STRUCTURE | Stone masonry structure adjacent to the right spillway structure. | | B. OUTLET STRUCTURE | None. | | C. OUTLET CHANNEL | Directly from spillway to creek. | | D. GATES | None. Valve in downstream manhole for a reported 24" blowoff. Has not been operated in many years. | | E. EMERGENCY GATE | See D. above. | | F. OPERATION & CONTROL | No records. | | G. BRIDGE (ACCESS) | None. | ## VISUAL INSPECTION SPILLWAY | | OBSERVATIONS AND REMARKS | |--|--| | A APPROACH CHANNEL | Directly from reservoir. | | B. WEIR: Crest Condition Cracks Deterioration Foundation Abutments | Ogee spillway section. Concrete spalled and in a slightly deteriorated condition. Overflow section is fair. Spillway walls have many cracks. It appears that the embankment to the right of the control structure has been repaired by placing a mass of concrete. | | C. DISCHARGE CHANNEL:
Lining
Cracks
Stilling Basin | Natural stone and rock channel. Should be drained to inspect condition. | | D. BRIDGE & PIERL | None. | | E. GATES & OPERATION EQUIPMENT | None. | | F. CONTROL & HISTORY | No records. | ## VISUAL INSPECTION | | OBSERVATIONS AND REMARKS | |---------------------------|--| | INSTRUMENTATION | | | Monumentation | None. | | Observation Wells | None. | | Weirs | None. | | Piezometers | None. | | Staff Gauge | None. | | Other | None. | | RESERVOIR | | | Slopes | Moderate - 3:1 and flatter. | | Sedimentation | Reported as a serious problem. The reservoir is no longer used in the water supply system. | | Watershed
Description | Grassed lawns and roadway on right. Lawns and woods on left. | | DOWNSTREAM CHANNEL | | | Condition | Na <u>t</u> ural creekrock bottom. | | Slopes | Moderate to near level. | | Approximate
Population | More than a few. | | No. Homes | Abandoned water treatment plant. Route 3. Four homes. | Eroded Narrow Crest Trees .L.ow Flow Eroded Pool Detoriated 24"Blow-Off Control Tower Concrete Slab Footpath RESERVOIR Brush, Briors, Trees & Debris Sewer Flow & Trees Ĭ. Rocks Brush Bare Sewer Line Ecavation & Backfill Road MILLTOWN DAM PA-00218 INSPECTION SURVEY PLATE A-I SURVEYED 4-11-81 1 **(** ' - 大学者の記録とは一世の日本の日本 APPENDIX B CHECK LIST OF ENGINEERING DATA #### CHECK LIST ENGINEERING DATA PA DER # 15-146 NDI NO. PA-00218 NAME OF DAM MILLTOWN DAM | ITEM | REMARKS | |---|---| | AS-BUILT DRAWINGS | Not available. | | REGIONAL VICINITY MAP | U.S.G.S. Quadrangle - West Chester, PA
See Plate II, Appendix E | | CONSTRUCTION HISTORY | Construction started in Spring 1923. Contractor: H.W. Fitzgerald, Binghamton, NY. Completion date: August 15, 1924. | | GENERAL PLAN OF DAM | Plate III, Appendix E. | | TYPICAL SECTIONS
OF DAM | Plate_III, Appendix E. | | OUTLETS: PLAN DETAILS CONSTRAINTS OISCHARGE RATINGS | Plates III and IV, Appendix E. Not available. | ### ENGINEERING DATA | ITEM | REMARKS | |---|---| | RAINFALL & RESERVOIR RECORDS | No records. | | DESIGN REPORTS | Not available. | | GEOLOGY REPORTS | Not available. | | DESIGN COMPUTATIONS: HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES | None. | | MATERIALS INVESTIGATIONS: BORING RECORDS LABORATORY FIELD | Borings were made. Results are unknown. | | POST CONSTRUCTION
SURVEYS OF DAM | None reported. | | BORROW SOURCES | From reservoir area. | | | | ### ENGINEERING DATA | ITEM | REMARKS . | |---|--------------------------------| | MONITORING SYSTEMS | None. | | MODIFICATIONS | None. | | HIGH POOL RECORDS | No records. | | POST CONSTRUCTION ENGINEERING STUDIES & REPORTS | None reported. | | PRIOR ACCIDENTS OR FAILURE OF DAM Description: Reports: | None. | | MAINTENANCE & OPERATION RECORDS | No_records. | | SPILLWAY PLAN, SECTIONS AND DETAILS | Plates III and IV, Appendix E. | ## ENGINEERING DATA | ITEM | REMARKS | |--|--| | OPERATING EQUIPMENT, PLANS & DETAILS | See plans. | | · | | | CONSTRUCTION RECORDS | Limited to one inspection report for foundation of core wall. | | PREVIOUS INSPECTION REPORTS & DEFICIENCIES | PennDER inspection reports dated 1923, 1927, 1932, 1934, 1937, 1941, 1944, 1948, 1952, 1962, 1970, and 1972. Narrow crest, low crest, brush, and trees have been reported. | | MISCELLANEOUS | | | | | | | | | | | | | _ | | | | |
; | | **(**: NDI NO. PA-00 218 # CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA | DRAINAGE AREA CHARACTERISTICS: subirdan housing developments | |--| | ELEVATION: | | TOP NORMAL POOL & STORAGE CAPACITY: Elev. 345 Acre-Feet 18.5 | | TOP FLOOD CONTROL POOL & STORAGE CAPACITY: Elev. 349.1 Acre-Feet 114 | | MAXIMUM DESIGN POOL: Elev. 350.3 | | TOP DAM: Elev. 349.1 | | SPILLWAY: | | a. Elevation 345 | | b. Type concrete ogee section with low flow notch | | c. Width 69 feet including 41 foot low flow notch | | d. Length | | e. Location Spillover near left abutment | | f. Number and Type of Gates none | | OUTLET WORKS: | | a. Type 24 inch pipe with valves | | b. Location right side of spillway | | c. Entrance inverts 329.2 | | d. Exit inverts 329.0 _ | | e. Emergency drawdown facilities _pipe with valves | | HYDROMETEOROLOGICAL GAGES: | | a. Type <u>none</u> | | b. Location | | · ·c. Records | | MAXIMUM NON-DAMAGING DISCHARGE: 2063 cfs | APPENDIX C **PHOTOGRAPHS** OVERVIEW OF SPILLWAY AND RIGHT EMBANKMENT - NO. 2 UPSTREAM SLOPE - NO. 3 RIGHT EMBANKMENT - NO. 4 NOTE: BRUSH AND TREES ON SLOPE CONTROL TOWER - NO. 5 NOTE: CONCRETE SLABS LEFT EMBANKMENT - NO. 6 NOTE: TREES AND NARROW CREST LOW FLOW NOTCH IN SPILLWAY - NO. 7 OVERVIEW OF SPILLWAY - NO. 8 ERODED DOWNSTREAM SLAB - NO. 9 ERODED SPILLWAY CREST - NO. 10 SPILLWAY SECTION FROM RIGHT ABUTMENT - NO. 11 DOWNSTREAM CHANNEL - NO. 12 OVERVIEW OF RESERVOIR - NO. 13 APPENDIX D HYDROLOGY AND HYDRAULIC CALCULATIONS # SUMMARY DESCRIPTION OF FLOOD HYDROGRAPH PACKAGE (HEC-1) DAM SAFETY VERSION The hydrologic and hydraulic evaluation for this inspection report has employed computer techniques using the Corps of Engineers computer program identified as the Flood Hydrograph Package (HEC-1) Dam Safety Version. The program has been designed to enable the user to perform two basic types of hydrologic analyses: (1) the evaluation of the overtopping potential of the dam, and (2) the capability to estimate the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. A brief summary of the computation procedures typically used in the dam overtopping analysis is shown below. - Development of an inflow hydrograph to the reservoir. - Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam. - Routing of the outflow hydrograph(s) of the reservoir to desired downstream locations. The results provide the peak discharge and maximum stage of each routed hydrograph at the outlet of the reach. The output data provided by this program permits the comparison of downstream conditions just prior to a breach failure with that after a breach failure and the determination as to whether or not there is a significant increase in the hazard to loss of life as a result of such a failure. The results of the studies conducted for this report are presented in Section 5. For detailed information regarding this program refer to the Users Manual for the Flood Hydrograph Package (HEC-1) Dam Safety Version prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California. MILLIONA DAM ## SPILLWAY RATING 349.1 FOR OF DAM LOW POINT 14' 345.5 SPILLWAY CREST (LOW FLOW NOTCH) Q = C L, H13/2 + C L2 H23/2 L, = 14+14 = 28' Lz = 41' H1 = 349.1-345.5: 3.6 H2 = 349.1 - 345.0 = 4.1 Q= 3,88 x 28 x (3.6) 1.5 + 3,88 x 41 x (4.1) 1.5 = 2063 CFS (### SPILLWAY RATING CURVE . . . : • = 33 CF5 ## EMBANKMENT RATING Q = CLH 3/2 C = 2.7 (KINGS HOBK.) AT ELEV 349.5 2.7x 7x (.25)"5 = 2.7 x 4 x (.2) "5 = 2.7 x20 x (.1) 1.5 = 12.7 x 50 x (.25) "5 = 2.7 x38 x (.15) "5 = £ = 28 CES AT ELEV 350 17 x 7 x (.75) "5 = 2 7 x 7 x (.55) "= 2.7 x 9 x (.1) 15 = 2,7 × 36 × (.3) "5 : 16 2,7 y 50 x (.45) 1.5 = 2.7 x 50 x (.75)"5: 88 2.7 x 50 x (.6)"5: 63 2.7 x 15 x (12) 115: £ : 233 CFS AT ELEV 350.5 2.7 x 6 x (2) 1.5 = 1 2.7 x 7 x (1.25)"5: 26 2.) x 7 x (1.05) 1.5 = 20 2.7 x 18x (.5) 1.5 = 2.7 x 4 x (.15) 1.5 = 2.7 x /4 x (.1) 1.5 = 1 2.7 x 36 x (.8) "5 : 70 2.7 x 50 x (.95) 1.5. 125 2.7 x 50 x (1.25) 1.5: 189 2.7 x 50 x (1.1) "5: 156 2.7 x 35 x (.45)115: 29 2 - 635 CES £ : 1217 CFS £ : 2846 CF5 2 : 5041 CFS £ = 10 800 CFS , AT ELLEV 351 11 ELCV 352 AT ELEV 353 355 ELEV Mary Market in the Comment SUBJECT MILL FORM RAM TOTAL DISCHARGE CURVE MILLTOWN DAM ### MAXIMUM KNOWN FLOOD AT DAMSITE THERE ARE NO RECORDS OF POOL LEVELS AT THIS DAM. BASED ON RECORDS OF THE STREAM GAGING STATION ON EAST BRANCH CHESTER CREEK LOCATED ABOUT 2.6 MILES DONNSTREAM OF THE DAM (DA. = 10.8 SO.MI.) THE MAXIMUM DISCHARGE AT THE GAGE OCCURRED IN JANUARY 1978 WHEN A FLOW OF 971 CFS WAS OBSERVED. THE MAXIMUM INFLOW TO MILLTOWN DAM IS ESTIMATED TO BE: $\left(\frac{6.33}{10.8}\right)^{0.8}$ × 971 = 633 CFS ### DESIGN FLOOD SIZE CLASSIFICATION MAXIMUM STORAGE: 114 ACRE-FEET MAXIMUM HEIGHT: 20 FEET SIZE CLASSIFICATION IS "SMALL" HAZARD CLASSIFICATION SEVERAL HOMES LOCATED NEAR THE DOWNSTREAM CHANNEL. USE "HIGH" RECOMMENDED SPILLWAY DESIGN FLOOD THE ABOVE CLASSIFICATIONS INDICATE USE OF AN SOF ERVAL TO ONE HALF PMF TO THE PROBABLE MAXIMUM FLOOD. BY RLS DATE 1/13/8/ CHKD. BY DATE BERGER ASSOCIATES MILLTOWN DAM UPSTREAM RESER OIR TOWNSHIP LINE DAM EARTHFILL DAM 34' HIGH 530' LONG OGEE SECTION C = 3.8 (PENN DER FILES) EM BANKMENT C = 2,7 (KINGS HOBK) DATA OBTAINED FROM PENNOER FILES AND SITE VISIT. BY_RLS__DATE 4/23/8/ BERGER ASSOCIATES CHKD. BY DATE MILLTOWN DAM BREACH ASSUMPTIONS BREACH WIDTH SIDE SLOPES (EARTH EMBARKMENT WITH CORE WALL) = 1:1 (EARTH E MBANKMENT FAILURE TIME WITH CORE WALL) = BETWEEN IS MIN. AND 2 HA. USE: .25 HR, .5HR., 1 HR., 2 HR. POOL LEVEL AT FAILURE: EARTH EMBANKMENT WITH CORE WALL SAY 1.0 FT. OVER TOP OF DAM UPSTREAM RESERVOIR: THALLINE DAM = NOT OVERTOPPED BY 27% PMF WILL NOT BREACH, DAMAGE CENTER - 3200 FT DOWNSTREAM 330 320 ELEV ELEV. OF DAMAGE . 310 180 . 300 . 360 STATION ... ## SPILLWAY CAPACITY CURVE mattheway received a source of the second ## HYDROLOGY AND HYDRAULIC ANALYSIS DATA BASE | | ME OF DAM: MILLTOWN DAY
BABLE MAXIMUM PRECIPIT | | | | 24 HOURS (1) | |--------------------------|--|------------|------------|---|--------------| | | FOOTNOTES SEE NEXT PAGE) | | | | | | (10) | STATION | 1 | 2 | 3 | 4 | | | | TOWNSHIP | MILLTOWN | | | | STAT | ON DESCRIPTION | LINE DAM | DAM | | | | DRAI | AGE AREA (SQUARE MILES) | 2.6 | 3.7 | | | | | LATIVE DRAINAGE AREA
RE MILE) | 2.6 | . 6.3 | | | | <u> </u> | ≈ 6 HOURS | 113 | 113 | | | | 点 5 | ш G 12 HOURS | 123 | 123 | | | | STI | 24 HOURS | 132 | 132 | | | | ADJUSTMENT
OF PMP FOR | DRAINAGE AREA (%) (2) | 143 | 143 | | | | A P | Zone 6 | | | | | | | (3) | 10 | 10 | | | | T T | ZONE (3) | 10 | 10 | | | | SS
SS | C _p /Ct ⁽⁴⁾ | .60/1.25 | .60/1.25 | | | | ~ ய | L (MILES) (5) | 3.30 | 3.73 | | | | | Lca (MILES) | 1.59 | 1.65 | | | | SNYDEF | $T_p = C_t \left(L \cdot L_{ca} \right)^{0.3}$ (Hours) | 2.06 | 2.16 | - | | | - | CREST LENGTH (FT.) | 50 | 69 | | | | DATA | FREEBOARD (FT.) | 5.7 | 4.1 | | | | <u> </u> | DISCHARGE COEFFICIENT | 3.8 | 3.88 | | | | LLWAY | EXPONENT | 1,5 | 1.5 | | · | | SPILI | ELEVATION | 414 | 345 | | | | | NORMAL POOL | 414 = 65 | 345 = 9.2 | | | | AKEA (4)
(ACRES) | ELEV | 420 = 124 | 350 = 51 | | | | (AC | ELEV | | 360 = 77 | | | | - | NORMAL POOL (7) | 414 = 597 | 345 = 13.5 | | | | E | HORMAL FOOL | | | | | | STORAGE
(ACRE - FEET) | (8)
ELEV | 390 = 0 | 339 = 0 | | | | 2 E - | ELEV. | 405 = 174 | | | | | STA | ELEV | 420 = 1150 | | | | | Ĵ | | 425 × 2000 | | ! | | **(**: - (1) Hydrometeorological Report 33 (Figure 1), U.S. Army, Corps of Engineers, 1956. - (2) Hydrometeorological Report 33 (Figure 2), U.S. Army, Corps of Engineers, 1956. - $^{(3)}$ Hydrological zone defined by Corps of Engineers, Baltimore District, for determining Snyder's Coefficients ($^{\rm C}_{\rm p}$ and $^{\rm C}_{\rm t}$). - (4) Snyder's Coefficients. - $^{(5)}L$ = Length of longest water course from outlet to basin divide. $L_{\rm ca}$ = Length of water course from outlet to point opposite the centroid of drainage area. - (6) Planimetered area encompased by contour upstream of dam. - (7) PennDER files. - (8) Computed by conic method. DRAINAGE AREA SCALE: I" = IMILE MAP TABLE NO. 1 #### COMPARISON OF WATER SURFACE ELEVATIONS #### MILLTOWN DAM SDF = 6531 cfs Crest Elevation (Low Point) - 349.1 Spillway Elevation - 345.0 | | • | | | | |----|--|--------------------|--------------|-----------------------------| | | STAGE | CREST OF ELEVATION | DAM
DEPTH | 3200' D/S OF DAM* ELEVATION | | Ą. | At Low Point in
Embankment Crest | 349.1 | 0 | 311.5 | | В. | 27% PMF Overtopping
No Breach | 350.14 | 1.04 | 312.5 | | C. | 27% PMF Overtopping (15 Min. Breach) | 350.11 | 1.01 | 314.6 | | D. | 27% PMF Overtopping
(2 Hour Breach) | 350.13 | 1.03 | 313.1 | ^{*}Several houses located about 3200 feet downstream of Milltown Dam. Considered to be damage center. Condition C: (Time refers to elapsed time after start of storm). Time to reach breach elevation 350.1 at dam = 42.50 Hours. Water level 3200' downstream prior to breach = 312.5'. Duration of breach = 15 Minutes. Time for breach to peak 3200' downstream = .5 Hours. Peak elevation 3200' downstream due to breach = 314.6. Rate of increase in water level = 2.1' in 30 Minutes. RESERVOIR ROUTING - THRU MILLTOWN DAM うちとうこう 冬本年代 海南州海南部海南部 1/28 349.1 2063 347.5 2416 | · 63 | Y1 | 1 | | | | | | 19.5 | -1 | |------------|------|-------|-------|------|-------|-------|-------|------|-------| | 64 | Y4 | 345 | 345.5 | 346 | 340.5 | 347 | 347.5 | 348 | 348.5 | | 5 5 | Y4 | 350 | 350.5 | 351 | 352 | 353 | 355 | | | | 66 - | Y5 | 0 | 55 | 197 | 401 | 650 | 936 | 1256 | 1606 | | 67 | Y5 | 3049 | 3901 | 4956 | 7593 | 10872 | 19012 | | | | £9 | \$A | 0
 9.2 | 51 | 77 | | | | | | 69 | \$5 | 339 | 345 | 350 | 360 | | | | | | 70 | \$\$ | 345 | | • | | | | | | | 71 | \$0 | 349.1 | | | | | | | | | 72 | K. | 99 | | | | | | | | PREVIEW OF SEGUENCE OF STREAM NETWORK CALCULATIONS | RUNOFF HYDROGRAPH AT | 1 | |--------------------------|---| | ROUTE HYDROGRAPH TO | 2 | | ROUTE HYDROGRAPH 10 | 3 | | ROUTE HYDROGRAPH TO | 4 | | ROUTE HYDROGRAPH TO | 5 | | ROUTE HYDROGRAPH TO | 4 | | RUNOFF HYDROGRAPH AT | 7 | | COMBINE 2 HYDROGRAPHS AT | 8 | | ROUTS HYDROGRAPH TO | 9 | | EUR DE NÉTURAL | | #### FLOOD HYDROGRAPH PACKAGE (MEC-1) DAM SAFETY VERSION JULY 1978 LAST MODIFICATION OF AFR 80 ****************** RUN DATE# 81/07/23. TIME* 10.05.31. 52 1 EAST BRANCH CHESTER CREEK MELTOUN DAM *** EAST GOSHEN TWP., CHESTER COUNTY, PA. NDI # FA-00218 PA DER # 15-146 | | | | , | JOB SPEC | :IFICATI | 3N | | | | |-----|-----|------|-------|----------|----------|-------|------|------|-------| | NQ | NHR | AHIN | IDAY | IHR | ININ | HETRO | IPLT | 1PRT | RSTAN | | 300 | 0 | 15 | 0 | 0 | 0 | 0 | Ç | -4. | Ů | | | | | JOPER | HWT | LROPT | TRACE | | | | | | | | 5 | 0 | 0 | c | | | | MULTI-PLAN ANALYSES TO BE PERFORMED NPLAN= 1 NRTIO= 9 LRTIO= 1 .85 .70 .60 RTIOS= 1.00 .50 .10 ****** ******* ****** ******** ******** | | | · | | | SUB-4 | REA RUNC | FF COMPU | TATION | | | • | | | | |---------|---------|------------|--------|-----------|------------|-----------|----------------------|--------|-----------|------------|---------|-----------|--------|--------| | | | | | INFLOW | HYEROGRA | APH - TWA | . LINE P | AM SUB | AREA | | | | | | | | | | 1 | STAQ
1 | ICOMP
O | | ITAPE
0 | | JPRT
0 | INAME
1 | | TUAI | 0
0 | | | | | , | | | | нулепа | RAPH DATA | | | | • | | | | | | | IHYDG
1 | | | | TRSDA | TRSFC | RAT | | | AME LO | OCAL
O | | | | | | | | | | PRECI | P DATA | | | | | | • | | | COMPUTE | D BY TH | E PROGRAI | 0.00 | 23.50 | | R12 | R24
132.00 | | | | | | | | | | | , | | | | | | | | | | | | | | | | | | | TOL ER | | TRKS RT
0.00 1 | | | | | | | | | | | | | | | | ROGRAPH D
CP= .60 | | | | | | | | | | | | | | | RECESS | SION DATA | | | | | | | | | | | | | STRTQ= | -1.50 | | N= | | RTIOR= 2 | .00 | | | | | | | Ų | NIT HYDRI | OGRAPH | 48 END- | OF-PERIS | B ORDINA | ATES, LAG | = 2, | 05 HOURS | , CP= . | .60 VOL | = 1.00 | | | | | 20. | 74 | • | 149. | 234. | 325 | 5, 4 | 06. | 465. | 498 | 3. | 502. | | | | | 415. | 348 | | 325. | 287. | 253 | 3. 2 | 24. | 198. | 175 | 5. | 154. | 136. | | | | 120, | 106 | | 94. | 83, | 73 | 3. | 65. | 57. | 51 | l• | 45. | 39. | | | | 35. | 31 | • | 27. | 24. | 2: | 3.
L. | 19. | 17. | 15 | 5. | 13. | 11. | | | | 10. | 9 | • | 8. | 7. | | 5. | 5. | 5. | ı | 4. | | | | | 0 | | | | | | END-GF-8 | PERIOD FL | OW | | | | | | | | HO.DA | HR.MN | PERIOD | RAIN | | | | Q H | | HR.MN P | ERIOD | RAIN | EXCS | LOSS | COMP 0 | SUM 26.88 24.47 2.42 166100. (683.)(621.)(61.)(4703.43) ******** ******* ******* ****** ***** ******** TRSPC COMPUTED BY THE PROGRAM IS | • | | | | | |----------|--------|-------|--------|------------------| | ******** | ****** | ***** | ****** | *11417444 | HYDROGRAPH ROUTING RESERVOIR ROUTING - TWP. LINE DAM ISTAQ ICOMP IECON ITAPE **JFLT JFRT** INAME ISTAGE IAUTO 2 0 1 ROUTING DATA QLCSS CLOSS AVG IRES ISAME ICPT IPMP LSTR 0.0 0.000 0.00 1 NSTPS NSTDL 1.46 ANSKK STORA TSK ISPRAT 0.000 0.000 0.000 597. CAPACITY= 12. 61. 174. 361. 597. 1150. 2000. SLEVATION= 390. 395. 400. 405. 410. 414. 420. 425. CREL SPWID CORN EXPU ELEVL COQL CAREA EXPL 50.0 3.8 1.5 414.0 0.0 0.0 0.0 0.0 DAM DATA TOPEL CGRD EXPD DAMWID 420.0 2.7 1.55 530. PEAK DUTFLOW IS 6150, AT TIME 42.50 HOURS PEAK OUTFLOW IS 5051. AT TIME 42.75 HOURS PEAK OUTFLOW IS 3746. AT TIME 42.75 HOURS FEAK GUTFLOW IS 3209. AT TIME 43.00 HOURS PEAK OUTFLOW IS 2589. AT TIME 43.25 HOURS FEAK DUTFLOW IS 2016. AT TIME 43.25 HOURS PEAK OUTFLOW IS 1452. AT TIME 43.25 HOURS FEAK OUTFLOW IS 911. AT TIME 43.50 HOURS PEAK DUTFLOW IS 402. AT TIME 43.75 HOURS ******* ******** ***** ******* ****** The second of the second | | 4**** | 11 | ***** | 1 | *** | ***** | | **** | *** | ** | * #44*** | | ~ | |---------------------------------------|------------------|--|----------------|-----------------------------------|--------------------|------------------------|---------------|----------------------|-------------|------------------|-----------------------|-----------------------|--| | ر بر بر
ماریخ
بر محمد استان است | ·, . | • | N. J. | | HYDROGR | APH ROUT! | เหย | | | | | • | 5/18 | | | | | ROUTI | NG THRU | REACH 2 - | 3 | | | | | | | . To | | • . | | ٠ | ISTAQ
3 | ICOMP
1 | 0
0 | ITAPE
O
ING DATA | JPLT
0 | | INAHE
1 | ISTAGE
0 | GTUAI
O | | | | | | 0.0 | CLDSS
0.000 | AUG
0.00 | IRES
1 | ISAME
1 | 10PT
0 | _ | | LSTR
0 | | | | | | | | NSTPS
1 | NSTIL
0 | LAG
O | AMSKK
0.000 | 0.000 | | STORA
0. | ISPRAT
0 | | | | | NORMAL DEPTH ONC | 1) QN(2 | ****** | ELNVT
384.0 | ELMAX
410.0 | RLNTH
1100. | SEL
.00630 | | | | | | | | | | 0.00 41 | N COURDINAT
0.00 80.0
0.00 790.0 | 0 400.1 | 00 180. | 00 390.0 | 0 510.00 | 584 | .00 520.00 | 384, | 00 | | | | | STORAGE | 0.00
139.60 | | | 7.47
186.91 | 16,2°
212,5° | | 8.49
9.56 | 43.69
267.99 | | 60.32
297.70 | 78.22
328.63 | 97.41
361.33 | 117.86
395.20 | | OUTFLOW | 0.00
41233.41 | | | 635 .47
99 4. 52 | 1797.63
73924.4 | | 0.15
10.36 | 7218.65
101029.45 | | 975.64
239.63 | 17763.64
132577.68 | 24570.20
150068.75 | 32 392.4 0
168726.29 | | STAGE | 384.00
397.68 | | | 386.74
400.42 | 398.1
401.7 | 1 39 | 39.47
3.16 | 390,8
404.5 | | 392.21
405.89 | 393.59
407.26 | 394.95
408.33 | 396.32
410.00 | | FLOW | 0.00
41233.41 | | | 635 .47
994 .5 2 | 1797.6
73924.4 | | 0.15
30.36 | 7218.6
101029.4 | | 975.64
239.63 | 17763.64
132579.68 | 24570.20
150048.75 | 323 9 2.40
168725.2 7 | | HAXIMUM STAG | E IS | 390.4 | | | | | | | | | | | | | HAXIMUM STAG | E IS | 370.0 | | | | | | | | | | | | | MAXIMUM STAC | SE 13 | 389.5 | | | | | | | | | | | | | MAXIMUM STAT | GE IS | 389.1 | | | | | | | | | | | | | HAXIMUM STA | EE IS | 369.6 | | | | | | | | | | | | | MAXIMUM STA | GE IS | 388.3 | | | | | | | | | | | | | MAXIMUH STA | GE IS | 387.7 | | | | | | | | | | | | | ATZ MUMIXAM | SE IS | 387.1 | | | | | | | | | | | | | HAXIMUM STA | GE IS | 386.1 | | | | | | | | | | | | ******** ***** ******* | | ***** | *** | **** | ** | 411 | \$\$\$4 \$\$ \$ | | ***** | *** | ti | **** | | 1. | |------------|---------------------------|---|----------------|----------------|---------------------|------------------------|----------------------|---------------------|-------------|----------------|---------------------|-------------------------------|----------------------| | | | | | | HYDROGR | AFH ROUT | ING | | | | | | 129 | | | | | ROUTIN | IG THRU | REACH 3 - | 4 | | | | | | | | | | | | ISTAQ
4 | ICOMP
1 | IECON
O
ROUT | ITAPE
O
ING DATA | JELT
0 | | INAME
1 | ISTAGE
0 | OTUAI | | | | | · | CLOSS
0.0 | CLOSS
0.000 | AVG
0.00 | IRES
1 | ISAME
1 | IGPT
O | | | LSTR
0 | | | | | | | | nstps
1 | NSTDL
0 | LAG
O | AMSKK
0.000 | 0.000 | | STORA
0. | ISFRAT
0 | | | | | NORMAL DE | PTH CHANNEL | ROUTING | | | | | | | | | | | | | ******* | | | | | | | | | | | | | | | | RN(1) ยูฯ(
∙0700 .05 | | | ELMAX
390.0 | RLNTH
2350 | SEL
00280 | | | | | | | | | | 0.00 3 | ON COORDINATE
80.00 500.00
70.00 990.00 | 390.00 | 700.0 | 0 370.00 | 740.00 | 369.0 | 00 750.00 | 369.0 | 0 | | | | | STORAGE | 0.0
1 9 5.7 | | | 7.22
4.04 | 30.72
363.40 | | 4.33
2.90 | 64.05
482.53 | | 63.38
42.29 | 105.82
602.19 | 127.86
662.21 | 154.02
722.37 | | OUTFLOW | 0.0
17194.0 | | | 3.56
6.12 | 1637.76
36840.62 | | | 4627.54
54470.04 | | 88.19
97.44 | 9142,24
75262,33 | 12003.75
86743.30 | 15287.44
96982.71 | | STAGE | 369.0
380.0 | | | 1.21
2.26 | 372.32
383.37 | 37.
38 | 5.42
1.47 | 374.53
335.58 | | 75.63
86.68 | 376.74
387.79 | 377.84
388.69 | 378.95
390.00 | | FLOW | 0.0
17194.0 | | | 3,56
6,12 | 1637.76
36840.62 | | 7.4 9
1.60 | 4627.54
54470.04 | | 88.19
87.44 | 9142.24
75262.33 | 12003.75
8 676 8.30 | 15287.44
98982.71 | | MAXIMUM S | TAGE IS | 375.3 | | | • | | | | | • | | | | | RUHIXAN | TAGE IS | 374.8 | | | | | | | | | | | | | MAXIMUM S | TAGE IS | 374.1 | | | | | | | | | | | | | MAXIMUM S | TAGE IS | 373.6 | | | | | | | | | | | | | MAXIMUM ST | TAGE IS | 373.1 | | | | | | | | | | | | | HAXIHUH SI | TAGE IS | 372.6 | | | | | | | | | | | | | MAXIMUM ST | TAGE IS | 372.1 | | | | | | | | | | | | | MAXIMUM ST | TAGE IS | 371.5 | | | | | | | | | | | | | MAXIHUM SI | TAGE IS | 370.6 | ******* ******* ******* | ***** | ****** | ***** | ****** | ****** | | |-------|------------|--------------------|--------|--------|--| | | . . | HYDROGRAPH ROUTING | | | | #### ROUTING THRU REACH 4 - 5 #### ISTAQ ICOMP IECON ITAPE **JPRT** JFLT INAME ISTAGE DTUAL - 0 ٥ ROUTING DATA · OLOSS CLOSS AVG IRES ISAME TOPT IPHP LSTR 0.0 0.000 0.00 1 NSTPS NSTÓL LAS JAMSKK X TSK STORA ISPRAT 0 /0.000 0.000 0.000 0 1 0. #### NORMAL DEPTH CHANNEL ROUTING QN(1) QN(2) QN(3) ELNUT ELMAX RENTH .1000 .0500 .1000 363.0 390.0 2050. .00280 CROSS SECTION COORDINATES -- STATELEVISIATELEV -- ETC 0.00 390.00 150.00 380.00 260.00 370.00 450.00 363.00 460.00 363.00 890.00 370.00 1010.00 380.00 1120.00 390.00 STURAGE 0.00 4,88 18,17 39.88 70.01 108.54 151,93 197.31 245.26 275.11 347.34 458.16 401.66 517.00 578.31 642.09 708.35 777.07 848.27 921. OUTFLOW 0.00 136.41 789.96 2250.93
4766.99 8636.71 14937.17 22604.28 31572.15 41795.50 53242.66 65890.37 79720.85 94698.72 110854.18 128184.34 146688.63 166368.27 187225.82 209254.98 STAGE 363.00 364.42 365.94 367.26 368.68 370.11 371.53 372.95 374.37 375.79 377.21 378.63 390.05 381.47 382.89 384.32 385.74 387.16 388.59 370.C. FLOW 0.00 136.41 788.96 2250.93 4766.99 8636.71 14937.17 22604.28 31572.15 41795.59 53242.66 65890.37 79720.85 94698.72 110954.18 128184.34 146688.63 166368.27 187225.82 MAXINUM STAGE IS 369.2 MAXIMUM STAGE IS 368.8 MAXIMUM STAGE IS 368.2 MAXINUH STAGE IS 367.8 MAXIMUM STAGE IS 367.4 MAXIMUM STAGE IS 367.0 MAXIMUM STAGE IS MAXIMUM STAGE IS MAXIMUM STAGE IS ******* ******** ******** ****** ********* 209264.95 | | · · · · · · · · · · · · · · · · · · · | | ********* | | ******** *** | | | ***** | ******** | | ****** | | | | |----|---|---|---------------------|---------|--------------|--------------------|------------------------|--------------|---------------------|-------------|----------------|-----------------------------|----------------------|--------------------------| | | | | | | | HYDROGR | APH ROUT | ING | | | | | T/ | | | | | | | ROUTING | THRU F | EACH 5 - | 6 | | | | | | | 128 | | (| | | | ISTAQ I | COMP
1 | 0 | ITAPE
O
ING DATA | JPLT
0 | JPRT
0 | INAKE
1 | ISTAGE
0 | IAUTO
0 | | | | | | | 0.0 | | AVG
0.00 | IRES
1 | ISAME 1 | TGOT
Q | IPMP
O | | LSTR
0 | | | | | | | | | NSTPS A | STUL
0 | LAG
O | AHSKK
0.000 | 0.000 | TSK
0.000 | STORA
0. | ISPRAT
0 | | | | | - | NORMAL DEPTH | CHANNEL ROU | TING | | | | •. | | ·. | | | | | | | | nds and then the the time | | | | | | | | | | - | | | | | | un(1 | | | | | RLNTH
2100 | SEL
0069 0 | • | | | • | S SECTION CO
1.00 390.00
0.00 360.0 | 0 50.00
0 450.00 | 370,00 | 150.00 | 360.00 | 240.00 | 354,0 | 0 250,00 | 354.0 | 0 | | | | | \$ | STORAGE | 0.00
140.38 | 2.24
164.83 | | 64
88 | 16.20
218.07 | | 7.92
6.25 | 42.50
275.43 | | 58.83
05.60 | 76.78
335.76 | 96.36
369.92 | 117 .56
402.07 | | | | 0.00
22176.43 | 70.86
27573.00 | | | 999.63
40318.42 | | 5.78
0.76 | 3885.94
55514.22 | | 10.93
98.94 | 9497,37
73077,0 9 | 13148.72
82751.53 | 17371.96
93025.83 | | | STAGE | 354.00
367.68 | 355.37
369.05 | | | 358.11
371.79 | | 9.47
3.16 | 360.84
374.53 | | 62.21
75.89 | 363,58
377,26 | 364.95
378.63 | 366.32
390.00 | | | FLOW | 0.00
22176.43 | 70.86
27573.00 | | | 999.63
40318.42 | | 5.78
).96 | 3985.94
55514.22 | | 10.93
98.94 | 9497.37
73077.09 | 13148.72
82751.53 | 17371.96
93025.83 | | | MAXIMUM STAGE | IS 362 | •0 | | | | | | - | | , | | | | | | MAXIMUM STAGE | IS 361 | •5 | | | | | | | | | | | | | | HAXIMUM STAGE | IS 360 | • 9 | | | | | | | | | | | | | | MAXIMUM STAGE | IS 360 | .3 | | | | | | | | | | | | | | MAXIMUM STAGE | IS 359 | .9 | • | | | | | | | | | | | | | MAXIHUM STAGE | IS 359 | . 4 | | | | | | | | | | | | | | MAXIMUM STAGE | IS 358 | .7 | | | | | | | | | | | | | | MAXIMUM STAGE | IS 357 | .9 | | | | | | | | | | | | | | HAXIMUH STAGE | IS 356 | .8 | | | | | | | | | | | | ******** ******** ****** ******* ******* | | | ***** | k*# | ** | ***** | r¥ | *** | ****** | | **** | **** | | ****** | | | · A . / | |-------|----------|-----------------------------------|------------|-----------------------------|--------------------------|--------------|-----------------------|--------------------------|-----------------------------|---------------|--------------|---------------|-------------------------------|----------|--------|----------------| | | | | | | | SUB-A | REA RUN | OFF COM | PUTATION | 4 | | - | | | | 9/ | | | • | | | I | YFLOW I | HYDROGRA | iph - MI | LLTOWN 1 | DAM SUB/ | AREA | | | | | | 12.6 | | | | | | 15. | TAQ] | ICOMP
0 | IECON
O | ITAPE
0 | JPLT
0 | | | E ISTAC | SE IAUTO
O O | | | | | | | : | IHYDG
1 | IUHG
1 | TAREA
3:70 | | HYDROG
TRSD
6.3 | | PC RAT | | 1 WOH
0 | | LDCAL
0 | | | | | irsfc | COMPUTEL |) BY THE | | | | | PREC
R12
123.00 | | 4 R- | 48 R
00 0. | | R96
•00 | · | | | | | | | LROPT
O | | | | | RAIN 9 | | | STRTL
1.00 | CNSTL
.05 | ALSMX
0.00 | | | | | | | | | | | | TP= : | JNIT HYD
2.16 | ROGRAPH
CP= .60 | | = 0 | | | | | | | | | | ٠ | | | STRTQ= | -1.5 | | SION DA
SN= | | RTIOR= | 2.00 | | | | | | | | | 25.
592.
189.
59.
19. | 92. | 1
4
1 | 85.
70.
49.
47. | 292,
419. | 40
37
11 |)7.
74.
18.
58. | 516.
333.
106.
33. | 600. | 6
2 | 53.
85. | 75.
24. | 210. | | | | | 0 | | | 8 . 1. 9 . 1. | | | | -PERIOD | | 115. 111 | | | 5V00 1 | 0.00 | 50V5 0 | • | | | п∪∙ИА | HR.MN | - | RAIN | EXUS | 1022 | LURY | U | NO • NA | HK • MH | | 26.88 | EXCS L'
24.47 2
(621.)(| .42 2 | | | | • | | ***** | *** | *1 | ***** | (* * | ** | ****** | k | **** | ***** | | ***** | * | | | | | | | | | | | COMBINE | HYDROGS | RAPHS | | | | | | | | | | | | | (| OMB1NE | HYDROG | RAPHS A | T MILLTO | NAC HIVE | | | | | | | | | | | | | . 19 | DATE
8 | 1COMP
2 | IECDN
0 | ITAPE
O | | | | ME ISTA
1 | GE IAUTO
O O | | | | ****** ****** ****** | | | ******* | 7 | ****** | ***** | *** | ****** | * | ***** | | | |----------|--------------|------------------|------------------|-------------------|--------------------------|----------------------------|----------------------|--------------------|------------|---------|---------| | | | | | | HYDROGRAPH | ROUTING | | | | | 10/ | | | | | | RESERVOIR ROU | ITING - THRU | MILLTOWN DAM | ٠. | | • | | 128 | | 1 | | | I | STAU ICUMP
9 1 | TECON IT
O
ROUTING | 0 . 0 | JPRT I | NAME ISTAGE
1 0 | DTUAT
O | | | | t | | | | LOSS AVG | | | IPMP
O | LSTR
0 | | | · | | • | | | N | STPS NSTDL
1 0 | | ISKK X | TSK S | TORA ISPRAT | | | | | - | STAGE | 345.00
350.00 | 345.50
350.50 | | 346.50
352.00 | 353.00 | 347.50
355.00 | | 348.50 | 349.10 | 349.50 | | | FLÖN | 0.00
3049.00 | 56.00
3901.00 | 197.00
4936.00 | 401.00
7593.00 | 650.00
10872.00 | 936.00
19012.00 | 1256.00 | 1606.00 | 2063.00 | 2416.00 | | | SURFACE ARE | A= 0. | 9. | 51. | 77. | | | | · | | | | | CAPACIT | Y= 0. | 18 | 155. | 790. | | | | | | | | | ELEVATIO | N= 339. | 345 | 350. | 360. | | | | | | | | | | | CREI
345.(| | CORW EXPW | | OQL CAREA
0.0 0.0 | | • | | | | | <i>*</i> . | | | | TOSEL 349.1 | DAM DATA COOD EXFD 0.0 0.0 | | | | | | | | PEAK OUTFLOW | IS 14587 | AT TIME | 42.50 HOURS | | | | | | | | | | PEAK DUTFLOW | I3 12017 | . AT TIME | 42.75 HOURS | | | | | | | | | | PEAK OUTFLOW | IS 9478 | . AT TIME | 42.75 HOURS | | | | | | | | | | PEAK OUTFLOW | IS 7938 | . AT TIME | 42.50 HOURS | | | | | | | | | | PEAK OUTFLOW | IS 6496 | AT TIKE | 42.75 HOURS | | | , | | | | | | | PEAK OUTFLOW | IS 5082 | . AT YIME | 42.75 HOURS | | | | | | | | | | PEAK QUTFLOW | IS 3697 | . AT TIME | 42.75 HOURS | | | | | | | | | 1 | FEAK OUTFLOW | | | 43.00 HOURS | | | | | | | | | \ | PEAK OUTFLOW | IS 1096 | . AT TIME | 43.00 HOURS | | | | | | | | ******** ****** ## PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR HULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS) | | | | | | | | | | : | | | | |---------------|-------------------|--------|------|----------|------------|------------|-------------|----------|----------|----------|-----------------|--------| | | | | | | | | PLIED TO FL | | | | | | | OPERATION | STATION | AREA | PLAN | | | | | | | | RATIO 8 | | | | | | | 1.00 | . 95 | •70· | •60 | .50 | .40 | ,30 | .20 | .10 | | HYDROGRAPH AT | 1 | 2.60 | i | 6804. | 5783. | 4762. | 4082. | 3402. | 2721. | 2041. | 1361. | 630. | | | (| 6.73) | | |
| | 115.59)(| | 77.06)(| | 38.55)(| | | ROUTED TO | 2 | | | | | | 3209. | | | | 911. | | | | (| 6.73) | { | 174.14)(| 143.02)(| 111.72)(| 90.87)(| 73,32)(| 57.08)(| 41.11)(| 23.79)(| 11.38) | | ROUTED TO | 3 | | | | | | 3202. | | | | | 402. | | | (| 6.73) | (| 174.09)(| 143,20)(| 111+69)(| 90,63)(| 73.33)(| 57.02)(| 41,13)(| 25.76)(| 11.39) | | CT DETUGA | | 2.60 | | 6126. | | | 3201. | 2582. | | | | 400. | | | (| 6.73) | (| 173,45)(| 142.95)(| 111.60)(| 90.65)(| 73,10)(| 56,94)(| 40,99)(| 25.71)(| 11.33) | | ROUTED TO | | 2.60 | | 6120. | | | 3190. | | | | | 399. | | | (| 6./3) | (| 1/3,29)(| 142,58)(| . 111+20)(| 90.33)(| /3.04)(| 5á.74)(| 40+87)(| 25.65)(| 11.29) | | ROUTED TO | | 2.60 | | 6103. | | | 3189. | | | | | 398. | | | (| 6.73) | (| 172,80)(| 142,62)(| 111.15)(| 90,31)(| 72,871(| 35,68) (| 40.35)(| 25.59)(| 12+26) | | HYDROGRAPH AT | | 3.70 | | | 7938. | | | 4569. | | | 1368. | | | | (| 9.58) | (| 264,44)(| 224,78)(| 185.11)(| 158,67)(| 132,22)(| 195.78)(| 79+33}(| 52.89)(| 26,44) | | 2 COMBINED | 8 | | | 14553. | 12080. | 9513, | 7977. | 6531. | 5111. | 3748. | 2383. | | | | (| 16.30) | (| 414,74)(| 342.07)(| 269+38)(| 223.89)(| 134.93)(| 144./1)(| 106.131(| 6/.48)(| 31.38) | | ROUTED TO | | 6.39 | | 14597. | | | 7938. | | | | 2320. | | | | (| 15,32) | (| 413.96)(| 340,27)(| 268.40)(| 224.78)(| 183.71)(| 143.85)(| 104.69)(| 65. 70)(| 31.04) | | 1 | | | | | SUMMARY OF | FIAM SAFE | TY AMALYSIS | ; | | | | | | | | | | | 7 | WP. L | INE | DAM | | | | | | PLAN 1 | • • • • • • • • • | | | | TAL VALUE | SPILLW | MY CREST | TOP OF I | DAM | | | | | 1 | | 1811191 | VALUE | STILLWAY CK | ur unn | | | |-------|-----------|----------|---------|-------------|----------|-------------|---------| | | ELEVATION | 414 | •00 | 414.00 | , | 420.00 | | | | STORAGE | 5 | 97. | 597. | | 1150. | | | | OUTFLOW | | 0. | 0. | `. | 2792. | | | RATIG | KAXIKUM | MAXIHUM | MAXIMUH | HAXIMUM | DURATION | TIME OF | TIHE OF | | OF | RESERVOYR | DEPTH | STORAGE | DUTFLOW | OVER TOP | MAX OUTFLOW | FAILURE | | PMF | W.S.ELEV | OVER DAM | AC-FT | CFS | HOURS | HOURS | HOURS | | 1.00 | 421.39 | 1.39 | 1336. | 6150. | 5.25 | 42.50 | 0.00 | | ∙85 | 421.03 | 1.03 | 1326. | უ051. | 4.25 | 42.75 | 0.00 | | .70 | 420.62 | • 62 | 1256. | 3946. | 3.50 | 42.75 | 0.00 | | .60 | 420.28 | •28 | 1198. | 3209. | 2,25 | 43.00 | 0,00 | | .50 | 419.71 | 0.00 | 1123. | 2589. | 0.00 | 43.25 | 0.00 | | .40 | 418.83 | 0.00 | 1042. | 2016. | 0.00 | 43.25 | 0.00 | | .30 | 417.83 | 0.00 | 955. | 1452. | 0.00 | 43.25 | 0.00 | | ?() | 415.94 | 0.00 | 859. | 911. | 0.00 | 43.50 | 0,00 | | 4.3 | 142.5 | | | 4 1 44 | | | | | Į | PLAN 1 | STATION | 3 | |-------------|----------------------|---------------------|----------------| | | UMIXAK | | i time | | RATIO | FLOW, CF | S STAGE,FT | F HOUPS | | 1.00 | 6148 | | 42.50 | | •85
30 | 505 <i>7</i> | | | | .70
.60 | 3944
3202 | | | | ,59 | 2590 | | | | .40 | 2014 | | | | •30 | 1452 | 387.7 | | | ,20 | 910 | | | | - •10 | 402 | 386.1 | 44.00 | | P | LAN 1 | STATION | 4 | | | MAXIHUM | MUKIXAN | TIME | | RATIO | FLOW, CFS | | - | | 1.00 | 6126. | 375.3 | 42.75 | | .85 | 5048. | | | | •70 | 3941. | | | | , 40 | 3201. | | | | •50
•40 | 2582.
2611. | | | | .30 | 1447. | | | | .20 | 903. | | | | .10 | 400. | 370.6 | 44.25 | | PL | .AN 1 | STATION | 5 | | | , OXIMUM | MAVERIA | TTVC | | 14170 | | MAXIMUM
STAGE:FT | | | | | | | | 1.00
.95 | 6120.
5035. | 369.2 | 42.75 | | .70 | 3927. | 363.8
368.2 | 43.00
43.25 | | •60 | 3190. | 367 .8 | 43.50 | | .50 | 2579. | 367.4 | 43.50 | | . Bj | 2004. | 367.0 | 43.75 | | .30
.20 | 1444. | 366.5 | 43.75 | | .10 | 904,
39 9. | 366.0
365.0 | 14.00
44.50 | | | 0.71 | 303.0 | 77100 | | ٥, ' | ₩ 1 | MCITATE | 6 | | OITAR | MAXIMUM
FLOW/CFS | MAXIMUM
STAGE:FT | TIME
HOURS | | 1.00 | 6103. | 362.0 | 42,75 | | .85 | 5037. | 361.5 | 43.00 | | .70 | 3925. | 360.9 | 43.25 | | .60
.50 | 3199.
2574. | 360.3
359.9 | 43.50 | | .40 | 2002. | 357.9
357.4 | 43.75
43.75 | | .30 | 1443. | 358.7 | 44.00 | | .20 | 904. | 357.9 | 44.25 | | •10 | 398. | 356.8 | 44.75 | | | | | | 13/28 | MILL | Town | DAM | |------|------|-----| |------|------|-----| | | PIAN 1 | | | | | | 14 201 | | | |----------|------------------------|---------------------------|--|--------------------------------------|--------------------------------------|---|--------------------------------------|---|--------------------------------------| | | | ************* | INITIAL VALU ELEVATION 345.00 STORAGE 18. OUTFLOW 0. | | 5.00
18. | SPILLWAY CREST
345.00
18.
0, | | OF DAM
349.10
114.
2063. | | | • | | PMF | | HAXIMUM
DEPTH
OVER DAM | MAXIMUM
STORAGE
AC-FT | MAXIMUM
OUTFLOW
CFS | DURATION
GVER TOP
HOURS | TIME OF
MAX OUTFLOW
HOURS | TIME OF
FAILURE
HOURS | | 9 | | 1.00
.85
.70
.60 | 353.91
353.28
352.58
352.11
351.58 | 4.81
4.18
3.49
3.01
2.48 | 373.
335.
294.
267.
239. | 14537,
12017,
9478,
7938,
6496, | 11.25
10.75
10.00
9.00 | 42.50
42.75
42.75
42.50 | 0.00
0.00
0.00
0.00 | | Ø | EGI ENCOUNTERED.
N> | .40
.30
.20
.10 | 351.05
350.38
349.39
347.75 | 1.95
1.28
.29
0.00 | 210.
174.
126.
67. | 5082,
3697,
2320,
1096, | 8.25
7.00
5.25
2.50
0.00 | 42.75
42.75
42.75
43.00
43.00 | 0.00
0.00
0.00
0.00
0.00 | | | 网络西班牙克斯属 | ** * * * * * | | 01 AFR | | | | | | | • | VONC | EACH | |---|----------|--------------|---------------------------------------|-----------------|------------|-------------|------------|------------|-----------------|---------------|-----------|------------|---| | | 1 | *1 | • | #######
Al | **** | | GUN DAM | *** | EAST | BRANCH CH | IESTER CA | FEK | | | | 2 | | | A2 | | EAST 6 | OSKEN TI | NP., CHES | STER COU | NTY, PA. | | reu. | | | | 4 | | | A3
B 300 | ! | 0 15 | PA-0021 | | | 15-146 | 2.5 | /* | | | | 5 | | | B1 5 | | . 13 | , ,,, |) (|) (| o o | '. 0 | -4 | 4 1 | | • | 6 | | | J 5 | | 1 . 1 | •• | : | | | | | | | | /
8 | | | J1 .27
K | | • | | | | t | • | | | | | 9 | | | N1 | | INFLOU | HYDROGR | APH - TU | P. ITHE | I
Dam Suba | E E A | | - | | | 10 | | | M 1 | | 1 2.6 | | 6.3 | | THE SUPP | VEH | 1 | <u>'</u> . | | | 11
12 | | | P
7 · | 23. | 5 113 | 123 | ,132 | 143 | | | • | | | | 13 | | 1 | V 2.05 | •6 | 0 | | | • | 1 | .05 | | | | | 14 | |) | -1.5 | 0 | | . * | : | e ^{lo} | : | | | 1 | | | 15
16 | | , | (| | 2 | | | | . 1 | | 11. T | | | | 17 | | , , , , , , , , , , , , , , , , , , , | | • | RESERVS | IIR ROUT | ÌNG – TW | LINE | DAM | | | , • • • • • • • • • • • • • • • • • • • | | | 18 | • | | 1 1 | | | 1 . | | | 507 | | | | | | 19 | | | S 0 | 12 | 2 61 | 174 | 361 | . 597 | 597
1150 | 2000 | ه د | | | | 20 | | | E 390 | 395 | | 405 | 410 | 414 | 420 | 425 | | | | | 21
22 | | \$ | \$ 414
D 420 | 50 | | 1.5 | · . V | | | 1,20 | | t e | | | 23 | | ĸ | | 2.7
3 | | 530 | | | | | | | | | 24 | | - K | - | · · | | THRU RE | ACH 2 - | 3 | 1 | | An Sa | , .c ; | | | 25 | *4 * | , Y | | er gi | 13 | | | | | ., ., ., | r divi | Kir , , | | | 26
27 | • | Ì | | 4.6 | | | | | 1, 1, | | F | | | | 28 | | Y:
Y: | | .07
410 | | 334 | 410 | 1100 | .0063 | | . 1 | | | | 25 | | Y | | 370 | . 80
790 | 400
400 | 180 | 370 | 510 | 334 | 520 | 384 | | | ·* 30 | • • | K | 1 | 4 | | , UUF | 1000 | 410 | . 4 | | 176 | ÷. | | | 31 | | K1 | | | ROUTING | THRU RE | ACH 3 | 1 | | | ٠. | : | | | 32
33 | | Υ | | | | 1 | 1 | | | | | | | | 34 | | 11
16 | | •05 | . 07 | 770. | 724 | | (| · . | e , 11 e . | | | | 35 | | Y7 | | 380 | .07
500 | 369
380 | 390
700 | 2350
370 | .0028 | | ٠, | | | | 36 | | . Y7 | | 370 | 790 | 380 | | | 740 | 369 | 750 | 369 | | | 37
70 | | K | 1 | | (4,5) | . ,' | | | | | | | | | 38
39 | | K1 | | | ROUTING | THRU P.EA | ICH 4.7 5 | | | | |
 | | | 40 | | Y
Y1 | . i | • | | 1 | 1,1 | • | • • • | . , | | | | | 41 | | Ϋ́δ | | .05 | .1 | 343 | 700 | 10050 | hana : | | Ü | | | | 42 | | Y7 | | 370 | 150 | 380 | 390
260 | 2050
370 | .0028 | 717 | 410 | | | | 43 | | Y7 | 890 | 370 | 1010 | 380 | 1120 | 390 | 450 | 363 | 460 | 363. | | | 44
45 | | K | 1 | 6 | | | | | 1 | | | | | | 46 | | K1
Y | | | ROUTING | | | | | | | | | | 47 | | Y1 | i | · · . · · | | 1 | 1 | | | | | | | | 48 | | Y6 | •1 | .07 | •1 | 354 | 330 | 2100 | .0069 | | | | | | 49 | | ¥7 | . 0 | 380 | 50 | 370 | 150 | 360 | 210 | 354 | 250 | 354 | | , | 50 | | Y7. | 370 | 360 | 450 | 370 | 510 | 380 | 210 | 427 | 250 | 334 | | 1 | 51
52 | | K
K1 | | 7 | THE SULL | | | | 1 | | | | | | 53 | | M | 1 | 4 | INFLOW HY | DROGRAPI | | MAD NWO. | SUBAREA | | | | | | 54 | | ř | | 1
-23.5 | 3.7
113 | 125 | 6.3
132 | 1 17 | | | 1 | | | | 55 | | 1 | | | 410 | . LEV | 132 | 143 | 1 | .05 | | | | | 56 | | W | 2.16 | •60 | | | | | 1 | 103 | | | | | 57
50 | | X | -1.5 | 05 | 2 | | | | | | | | | | 59
59 | | K
K1 | 2 | 8 | MANAGE | | | | 1 | | * | | | | | | | | | COMBINE H | YDROGRAP | HS AT KI | LETCUM D | AM | | | • | | | 60 | | K | 1 | 9 | | | 1121 | PETT ALL T | 1 | | | | The second secon 15/28 PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS RUNOFF HYDROGRAPH AT 1 ROUTE HYDROGRAPH TO 2 ROUTE HYDROGRAPH TO 3 ROUTE HYDROGRAPH TO 4 ROUTE HYDROGRAPH TO 5 ROUTE HYDROGRAPH TO 6 RUNOFF HYDROGRAPH AT 7 COMBINE 2 HYDROGRAPHS AT 8 ROUTE HYDROGRAPH TO 9 ROUTE HYDROGRAPH TO 10 END OF NETWORK NUN DATE* 81/07/23. TIME* 10.07.54. MILLTOWN DAM **** EAST BRANCH CHESTER CREEK EAST GOSHEN TWP., CHESTER COUNTY, PA. #DI # PA-CO218 PA DER # 15-146 JOB SPECIFICATION NO NHR NHIN IDAY IMIN
IPLT METRO **IPRT** NSTAN JOPER KWT LROPT TRACE MULTI-PLAN ANALYSES TO BE PERFORMED MPLAN= 5 NATIO= 1 LRTIO= 1 # PEAN FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MUNTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS) RATIOS APPLIED TO FLOWS | • | | | | | * | |-----|---------------|---------|---------------|--------|--------------------------| | 9 | OPERATION | STATION | AREA | PLAN | RATIO 1 | | 9 | | | | | 12, | | 9 | HYDROGRAPH AT | 1 (| 2.60
6.73) | 1 (| 1837.
52.02) | | | | | | 2 | 1837.
52.02) | | 3 | | | | 3 (| 1837. | | | | | | 4 | 52.02)
1837. | | e e | | | | . (| 52.02) | | | | | | 5 | 1837. | | • | | | | (| 52.02) | | • | ROUTER TO | 2 | 2.60 | 1 | 1288. | | _ | • | (| 6.73) | (| 36.46) | | • | | | | 2 (| 1289.
36.46)(| | | | | | 3 | 1288. | | 9 | | | | (| 36,46)(| | | | | | 4 | 1298. | | _ | | | | (| 36.46)(| | 3 | | | | 5
(| 1288.
36.46)(| | | ROUTED TO | 3 | 2.60 | 1 | 1288. | | | | (| 6.73) | (| 36,46)(| | _ | | | | 2 | 1288. | | | | | | (
3 | 36,46)(| | | | | | (| 1288.
36.46)(| | | | | | 4 | 1288. | | | | | | (| 36,46)(| | | | | • • • | 5 | 1283. | | • | | | | (| 36.46)(| | | ROUTED TO | 4 | 2.60 | 1 | 1284. | | | | (| 6,73) | (| 36.35)(| | | | | | 2 (| 1284.
36.35)(| | 1 | | | | 3 | 1284, | | 7 | | | | (| 36.35)(| | | | | | 4 | 1284. | |) | | | | (| 36.35)(| | | | | | 5
(| 128 4.
36.35)(| | | ***** | | | • | 20100/1 | ``` ROUTED TO 2.60 1279. 6.73) 36.22)(2 1279. 36,22)(3 1279. 36,22)(1279. 36.22)(5 1279. 36.22)(ROUTED TO 2.60 1 1279. 6.73) 36.21)(2 1279. 36,21)(3 1279. 36,21)(1279. 36.21)(1279. 36.21)(HYDROGRAPH AT 3.70 1 2521. 9.58) 71,40)(2521. 71,40)(3 2521. 71.40)(2521. 71.40)(2521. 71,40)(2 COMBINED é.30 3334. 16,32) 94,40)(3334. 94,40)(3 3334. 94,40)(3334. 74.40)(3334. 94.40)(ROUTED TO 6.30 3286. 16.32) 93.04)(8382. 237,36)(7350. 208,42)(5812. (164,57)(4167. (118.01)(ROUTED TO 10 6.30 3286. 16.32) 93.06)(6890. 195.12)(6247. 176.67)(5584. 158.17)(4134. ``` ### TWP, LINE DAM | | | | | 107. | C // / (– | • | | | |------|--------------------|----------------------------------|------------------------------|---------------------------------|---------------------------------------|-------------------------------|---------------------------------------|-----------------------------| | FLAN | 1 | ELEVATION
STURAGE
OUTFLOW | | | SPILLWAY CRES
414.00
597.
0. | 4 | OF DAM
120.00
1150.
2792. | | | | OF | | DEPTH | MAXIMUM
STORAGE
AC-FT | MAXIMUM
OUTFLOW
CFS | DURATION
OVER TOP
HOURS | TIME OF
MAX OUTFLOW
HOURS | TIME OF
FAILURE
HOURS | | | .27 | 417.58 | 0.00 | 927• | 1288. | 0.00 | 43.50 | 0.00 | | PLAN | 2 | ELEVATION
STORAGE
OUTFLOW | | VALUE
.00
97. | SPILLWAY CRE
414.00
597.
0. | | OF DAM
420.00
1150.
2792. | | | | RATIO
OF
Phf | MAXIMUM
RESERVOIR
W.S.ELEV | KAXIMUM
DEPTH
OVER DAM | | MAXIMUM
OUTFLOW
CFS | DURATION
OVER TOP
HOURS | TIME OF
MAX OUTFLOW
HOURS | TIME OF
FAILURE
HOURS | | | .27 | 417,58 | 0.00 | 927. | 1289. | 0.00 | 43.50 | 0.00 | | PLAN | 3 | ELEVATION
STORAGE
OUTFLOW | 414 | VALUE
1.00
197. | SPILLWAY CRE
414.00
597.
0. | - | OF DAM
420.00
1150.
2792. | ×. | | | RATID
GF
PMF | MAXIMUM
RESERVOIR
U.S.ELEV | MAXIMUM
DEPTH
OVER DAM | MAXIMUM
STORAGE
AC-FT | MAXIMUM
OUTFLOW
CFS | DURATION
OVER TOP
HOURS | TIME OF
MAX OUTFLOW
HOURS | TIME OF
FAILURE
HOURS | | | .27 | 417.58 | 0.00 | 927. | 1288. | 0.00 | 43.50 | 0.00 | | PLAN | 4 | ELEVATION
STORAGE
OUTFLOW | 41 | L VALUE
4.00
597.
0. | SFILLWAY CR
414.00
597.
0. |) | P GF DAM
420.00
1150.
2792. | | | | RATIO
OF
FMF | MAXIMUM
RESERVOIR
U.S.ELEV | MAXIMUM
DEPTH
OVER DAM | MAXIMUM
STORAGE
AC-FT | | DURATION
OVER TOP
HOURS | | TIME OF
FAILURE
HOURS | | | .27 | 417.58 | 0.00 | 927. | 1288. | 0.00 | 43.50 | 0.00 | | PLAP | 1 5 | ELEVATION
STORAGE
CUTALOW | | AL VALUE
14.00
597.
0. | SPILLWAY C
414.0
597
0 | • | DP OF DAM
420.00
1150.
2792. | | | RATIO
OF
PHF | MAXIMUM
RESERVOIR
W.S.ELEV | MAXIMUM
DEFTH
OVER DAM | MAXIMUM
STORAGE
AC-FT | MAXIMUM
OUTFLOW
CFS | DURATION
OVER TOP
HOURS | |--------------------|----------------------------------|------------------------------|-----------------------------|---------------------------|-------------------------------| | 127 | 417,58 | C.00 | 927. | 1288. | 0.00 | | | | PL | AN 1 | STATION | 3 . | | | | RATIO | MAXIMUM
FLOW•CFS | MAXIMUM
STAGE,FT | TIME
HCURS | | | | .27 | 1288. | 387.5 | 43,50 | | | | PL | AN 2 | STATION | 3 | | | | RATIO | MAXIMUM
FLOW+CFS | MAXIMUM
STAGE:FT | TIME | | | | .27 | 1289. | 387.5 | 43.50 | | | | PL | AN 3 | STATION | 3 | | | | RATIO | MAXIMUM
FLOW.CFS | MAXIMUM
STAGE:FT | TIME
HOURS | | | | .27 | 1288. | 387.5 | 43.50 | | | | PLi | AN 4 | STATION | 3 . | | | | RATIO | MAXIMUM
FLOW/CFS | MAXIMUM
STAGE,FT | TIME
HOURS | | | | .27 | 1288. | 387.5 | 43.50 | | | | PLA | AN 5 | STATION | 3 | | | | RATIO | MAXIMUM
FLOW:CFS | MAXIMUN
STAGE,FT | | | | | .27 | 1283. | 397.5 | 43.50 | | | | PLA | N 1 | STATION | 4 | | | | RATIO | | MAXIMUM
STAGE:FT | | | | | .27 | 1284. | 371.9 | 43.75 | | | | PLA | N 2 | STATION | 4 | | | | RATIO | HAXIHUM
FLOW+CFS | MAXIMUM
STAGE,FT | | | | | .27 | 1284. | 371.9 | 43.75 | TIME OF MAX OUTFLOW MOURS 43.50 TIME OF FAILURE HOURS 0.00 19/2 (3) , de de | PLAN | 3 | STATION | 4 | |-------|----------------------|-------------------------|---------------| | RATIO | MAXIMUM
FLOW,CFS | MAXIMUM
STAGE:FT | TIME
HOURS | | .27 | 1284. | 371.9 | 43.75 | | PLA! | 1 4 | STATION | 4 | | RATIO | | MAXIMUM
STAGE,FT | | | .27 | 1284. | 371.9 | 43.75 | | PLA | 1 5 | STATION | 4 | | RATIO | MAXIMUM
FLOW, CFS | MAXIMUM
STAGE,FT | | | .27 | 1284. | 371.9 | 43.75 | | FLA | N 1 | STATION | 5 | | RATIO | | MAXIMUM
STAGE:FT | TIME
HOURS | | .27 | 1279. | 366.3 | 43.75 | | PLA | N 2 | STATION | 5 | | RATIO | MAXIMUM
FLOW, CFS | | | | .27 | 1279. | 366.3 | 43.75 | | PLA | N 3 | STATION | 5 | | RATIO | | MAXIMUM
STAGE:FT | | | •27 | 1279. | 356.3 | 43.75 | | PLA | N 4 | STATION | 5 | | RATIO | HAXIHUH
FLOW+CFS | | | | .27 | 1279 | 356.3 | 43.75 | | PLA | AN 5 ' | STATION | 5 | | DITAR | | M MAXIMUM
S STAGE,FT | | | .27 | 1279 | . 366.3 | 43.75 | | | | RATIO .27 RATIO .27 | PLAN 2 HAXIMU FLOW+CF 1279 PLAN 3 HAXIMU FLOW+CF 1279 PLAN 4 MAXIMU | STATION MAXIMUM S STAGE,FT 358.5 STATION MAXIMUM S STAGE,FT 358.5 STATION | TIME HOURS 44.00 TIME HOURS 44.00 | | | |--------------------|----------------------------------|---|---|---|---|---|---| | | | RATIO
•27
RATIO
•27 | MAXIMU
FLOW-CF
1279
PLAN 3
MAXIMU
FLOW-CF
1279
PLAN 4
MAXIMU | M MAXIMUM S STAGE,FT STATION MAXIMUM S STAGE,FT STATION MAXIMUM S STAGE,FT STATION | TIME HOURS 44.00 TIME HOURS 44.00 | , | | | | · | .27
RATIO
.27 | FLOW+CF
1279
PLAN 3
MAXIHU
FLOW+CF
1279
PLAN 4
MAXIHU | STATION MAXIMUM STAGE,FT 358.5 STATION | HOURS 44.00 6 TIME HOURS 44.00 | | | | | | RATIO
•27 | PLAN 3 MAXIHL FLOW,CF 1279 PLAN 4 MAXIHU | STATION UN MAXIMUM 'S STAGE,FT '. 358.5 STATION | TIME HOURS | , | | | | | RATIO
.27 | HAXIHU
FLOW,CF
1279
PLAN 4
MAXIHU | MAXIMUM STAGE,FT 358.5 STATION | TIME
HOURS
44.00 | | | | | | .27 | FLOW,CF
1279
PLAN 4
MAXINU | STATION | 44.00 | | | | | | į | PLAN 4
MAXINU | STATION | 6 | | | | | | | UNIXAM | | | | | | | | OI14R | | | | | | | | | | FLOW, CF | | TIME
HOURS | | | | | | .27 | 1279 | 358.5 | 44.00 | | | | | | F | PLAN 5 | STATION | 6 | | | | | | RATIO | | M MAXIMUM
S STAGE,FT | TIHE
HOURS | | | | | | •27
SL | | . 358.5
AM SAFETY ANAL | 44.00
YSIS | | | | | | • | MI | LLTOWN | DA | m | | | 1 | ELEVATION | 345 | VALUE | SPILLWAY CRES | | OF DAM
349.10 | | | | STORAGE
OUTFLOW | | 18. | 13.
0. | | 114.
2063. | | | RATIO
OF
PMF | MAXIMUM
RESERVOIR
N.S.ELEV | MAXIMUM
DEPTH
OVER DAM | MAXIMUM
STORAGE
AC-FT | | | TIME OF
MAX OUTFLOW
HOURS | TIME OF
FAILURE
HOURS | | •27 | 350.14 | 1.04 | 162. | 3286. | 5.00 | 43.00 | 0.00 | | | ELEVATION
STORAGE | 345 | .00
18. | 345.00
19. | , | 349.10
114. | | | | OF
PMF | RATIO MAXIMUM OF RESERVOIR PMF W.S.ELEV .27 350.14 ELEVATION STORAGE | RATIO MAXIMUM MAXIMUM OF RESERVOIR DEPTH PMF N.S.ELEV OVER DAM .27 350.14 1.04 INITIAL ELEVATION 345 STORAGE | RATIO MAXIMUM MAXIMUM MAXIMUM DF RESERVOIR DEPTH STORAGE PMF W.S.ELEV OVER DAM AC-FT .27 350.14 1.04 162. INITIAL VALUE ELEVATION 345.00 STORAGE 18. | RATIO MAXIMUM MAXIMUM MAXIMUM MAXIMUM OF RESERVOIR DEPTH STORAGE OUTFLOW PMF N.S.ELEV
OVER DAM AC-FT CFS .27 350.14 1.04 162. 3286. INITIAL VALUE SPILLWAY CRES ELEVATION 345.00 345.00 STORAGE 18. 18. | RATIO MAXIMUM MAXIMUM MAXIMUM MAXIMUM DURATION OF RESERVOIR DEPTH STORAGE OUTFLOW OVER TOP PMF W.S.ELEV EVER DAM AC-FT CFS HOURS .27 350.14 1.04 162. 3386. 5.00 INITIAL VALUE SPILLWAY CREST TOP ELEVATION 345.00 345.00 STORAGE 18. 18. | RATIO MAXIMUM MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF OF RESERVOIR DEPTH STORAGE OUTFLOW OVER TOP MAX OUTFLOW PMF W.S.ELEV OVER DAM AC-FT CFS HOURS HOURS -27 350.14 1.04 162. 3286. 5.00 43.00 INITIAL VALUE SPILLWAY CREST TOP OF DAM ELEVATION 345.00 345.00 349.10 | PLAN 1 STATION Eng. | 0 | | | RATIO
OF
PHF | MAXIMUM
RESERVOIR
U.S.ELEV | NAXIMUN
DERTH
OVER DAM | MAXIMUM
STORAGE
AC-FT | OUTFLOW (| OURATION
OVER TOP
HOURS | TIME OF
MAX OUTFLOW
HOURS | TIME OF
FAILURE
HOURS | | |-------------|---|------|---------------------|----------------------------------|------------------------------|-----------------------------|--------------------------------------|-------------------------------|-------------------------------------|-----------------------------|--| | @
(
• | , | | .27 | 350,11 | 1.01 | 161. | 8382. | 2.03 | 42.75 | 42,50 | | | 9 | | FLAN | 3 | ELEVATION
STORAGE
OUTFLOW | | | SPILLWAY CRES
345.00
16.
0. | | OF DAM
349.10
114.
2063. | | | | ම
-
ම | | | RATIO
OF
1 MF | MAXIMUM
RESERVOIR
W.S.ELEV | MAXIMUM
DEPTH
OVER DAM | MAXIMUM
STORAGE
AC-FT | | DURATION
OVER TOP
HOURS | TIME OF
MAX OUTFLOW
HOURS | TIME OF
FAILURE
HOURS | | | | | | •27 | 350.12 | 1.02 | 161. | 7360. | 2.21 | 45.00 | 42.50 | | | 6 | | PLAN | 4 | ELEVATION
STORAGE
OUTFLOW | INITIAL
345 | | SPILLWAY CRES
345.00
18. | | UF DAM
349.10 .
114.
2063. | | | | 3 | | | RATIO
OF
PMF | MAXIMUM
RESERVOIR
W.S.ELEV | MAXIMUM
DEPTH
OVER DAM | MAXIMUM
STERAGE
AC-FT | MAXIMUM
OUTFLOW
CFS | DURATION
DVER TOP
HOURS | TIME OF
MAX OUTFLOW
HOURS | TIME OF
FAILURE
HOURS | | | • | | | •27 | 350.12 | 1.02 | 161. | 5812. | 2.54 | 43.50 | 42,50 | | | 9 | | FLAN | 5 | ELEVATION
STOWNE
OUTFLOW | | VALUE
100
18.
0. | SPILLWAY CRES
345.00
18.
0. | et tof | OF DAN
349.10
114.
2063. | | | | ® | | | RATIO
OF
PMF | MAXIMUM
RESERVOIR
W.S.FLEV | MUMIXAM
HTGGD
MAG RAVO | MAXIMUM
STOPAGE
AC-FT | MAXIMUM
OUTFLOW
CFS | DURATION
OVER TOP
HOURS | TIME OF
MAX OUTFLOW
HOURS | TIME OF
FAILURE
HOURS | | | 0 | | | .27 | 350,13 | 1.03 | 161. | 4172. | 3.04 | 44.08 | 42.50 | | | • | | | | | F | PLAN 1 | STATION | 10 | | | | | • | | | | | RATIO | MAXIMU
FLOW/CF | | | | | | | 0 | | | | | •27 | 3296 | 312.5 | 43.00 | | | | | A | | | | | ı | PLAN 2 | STATION | 10 | | | | | ()
() | | | | | RATIO | MAXIMU
FLOW+CF | | | | | | | _ | | | | | .27 | 6990 | 314.6 | 43.00 | } | | | 12/29 | 1 | PLAN | 3 | STATION | 10 | | |-------|--------|--------------------|-----------------------|----|---------------| | RATIÛ | | MAXIKUM
LOW,CFS | MAXIMUM
STAGE • FT | | TIME
HOURS | | 127 | | 6247. | 314.3 | | 43.00 | | ! | PLAN | 4 | STATION | 10 | · . | | RATIO | | MAXIMUM
LOW,CFS | MAXIMUM
STAGE•FT | | TIKE
HOURS | | •27 | | 5586. | 313.9 | | 43,50 | | F | PLAN - | 5 | STATION | 10 | | | RATIO | | MAXIMUM
LOW,CFS | MAXIMUM
STAGE,FT | | TIME
HOURS | | •27 | | 4134. | 313,1 | | 44,25 | | | ; | | | | | EOI ENCOUNTERED. | 2 73 | Vom Ensety v
LAST MEDIF | ERSION JULY
ICATION OF AFR | (15/8
2 80 | | | | | | | • • | | | |----------------|--|--|----------------|--------------------|----------------|--------------|------------------|-----------------------|----------|-----|------|---| | • | ************************************** | \$¥##\$################################# | *** | | | | | | | (DE | SIGN |) | | 8 | 2. | A1
A2
A3 | | MILLTOW
EAST SO | ISHEN TUP | **** CHEST | IER COU | Branch Ch
NTY, PA. | ESTER CR | EEK | , , | | | { | 4 | B 30 | - | RUI # P | A-00218
0 | f
O | A DER | 15 −146 C 0 |) 0 | | | • | | 0 | 6 | J | 5
1 9 | 1 | | | | • | V | -4 | 0 | | | • | 7
8 | J1
- K | 1 .85 | .7 | . 5 | ٠5 | • | • .3 | .2 | •1 | | | | 3 | 9
10 | K1 | | INFLOW A | HYDROGRAF | H - TWP | . LINE | 1
Dam Subai | REA | | | | | 6 | 11 | P | 23.5 | 2.6
113 | 123 | 6.3
132 | 143 | | | 1 | | | | _ | 12
13 | T
W 2.06 | .50 | | | | - 10 | 1 | .05 | | | | | 0 | 14
15 | X -1.5
K 1 | 05 | 2 | | | | | | | | | | _ | 16 | K1
Y | £ | RESERVOI | R ROUTIN | G - TWP. | LINE | 1
Pam | | | | | | 89 | 18 | Y1 1 | | | 1 | 1 | | 597 | | | | | | 8 | · . 19 20 | \$S 0
\$E 390 | 12
395 | 51
400 | 174
405 | 361 | 597 | 1150 | 2000 | | | | | | 21
22 | \$\$ 414
\$D 420 | 50 | 3.8 | 1.5 | 410 | 414 | 420 | 425 | | | | | 6 | 23
24 | К 1 | 2.7
·3 | 1.5 | 530 | | | 1 | | | | | | | 25 | К1
Ү | | ROUTING T | HRU REAC
1 | H 2 - 3 | | • | | | | | | 8 | 26
27 | Y1 1
Y6 .1 | •07 | •1 | 384 | 410 | 4400 | | | | | | | 2 | 29
29 | Y7 0
Y7 620 | 410
390 | 80 | 400 | 410
160 | 1100
390 | .0063
510 | 384 | 520 | 384 | | | | 30
31 | K 1 | 4 | 790 | 300 | 1000 | 410 | 1 | | | | | | 9 | 32
33 | K1
Y | 5 | ROUTING TH | HRU REACS
1 | i 3 - 4
1 | | • | | | | | | | 34 | Y1 1
Y6 ,07 | .05 | .07 | 369 | 390 | 2350 | 0.000 | | | | | | 9 | 35
36 | Y7 0
Y7 870 | 380
370 | 500
990 | 380 | 700 | 370 | .0028
740 | 369 | 750 | 369 | | | 3 | 37
38 | K 1
K1 | 5 | | | 1010 | 390 | 1 | | | | | | | 39
40 | Y | N: | אד סאנדטס | RU KEACH
1 | 4 ~ 5 | | | | | | | | • | 41
42 | Y6 .1 | .05 | •1 | 363 | 390 | 2050 | .0028 | | | | | | | 43 | Y7 0
Y7 890 | 390
370 | 150
1010 | 380 | 260
120 | 370 | 450 | 363 | 460 | 363 | | | | 44
45 | K 1
K1 | 6 | UTING THR | | | 390 | 1 | | | | | | . | 46
47 | Υ
Υ1 1 | | CITHO INV | 1 | 1 | | | | | | | | , | . 48
49 | Y6 .1 | .07 | | | 380 : | 100 | .0059 | | | | | |) | 50 | Y7 0
Y7 370 | 380
360 | | | _ | 360
380 | 240 | 354 | 250 | 354 | | | | 52 | K
K1 | 7
INF | LOW HYDRO | | | | 1 | | | | | | | 53
54 | M 1
P | 1 | 3./ | 6 | 3.3 | | OUPHNEA | | | | | | / " | 55
56 | T
W 2.16 | | 110 | 123 | 32 | 143 | 1 | •05 | | | | | | 57
58 | X -1.5 | .60
05 | 2 | | | | | | | | | | | 59 | K 2
K1 | 8
Comi | BINE HYDR | OGRAPHS | AT HILL | יאַת אַשְּׁוּטְּ | 1 | | | | | | | 60
61 | K 1
K1 | y | ERVOIR RO | | | | 1 | | | | | | | | | | | - 11110 - | TIM DAVE | LIUWN 1 | JAM | | | | | , } | 3 | 62
63
64 • | Y
Y1
Y4 3 | 1
45 3 45.5 | 346 | 1
346.5 | 347 | 347.5 | 18.5
348 | -1
348.5 | 349.1 | 350.3 | |---------------|---|-----------------|-----------------------|------------------------------------|----------------------------------|---------------------|---------------------------------|-------------|-------------|---------|-------| | • | 65
66
67 | Y5
Y5 41 | | 352
197
6422 | 353
401
9185 | 354
650
12368 | 355
934
15916 | 1256 | 1606 | 2063 | 3084 | | | 68
69
70
71 | | 0 9.2
39 345
45 | 51
350 | 77
360 | | | | | | | | 3 | 72
1 | | 99 | W OF SEQU | IENCE OF | STREAH I | NETWORK (| CALCULAT | IONS | | | | • | | | · | ROUTE F | HYDROGR
HYDROGRA:
YDROGRAY | א דס | | 1
2
3 | | | | | 3 | | | | ROUTE H | iydrograf
Iydrograf | H TO
H TO | | 4 5 | | | • | | • | | | | RUNOFF
COMBINE | IYDROGRAS
HYDROGRA
C HYDR | PH AT
OGRAPHS | AT | 6
7
8 | | | | | 0 | | | | END OF | IYDROGR4F
Network | H 10 | | 9 | | | | | 9
Ø | 1***************
FLGOD HYDROGRAPH
DAM SAFETY VERSIO | PACKAGE (| | | | | | | | | | | _ | LAST HODIFICATI | | | | | | | | | | | | • | RUN DATEM 81/07/
TIMEM 10.09. | | | | | | | | | | | | | - . | | | | | | | | | | | | � | | | i | MILLTOWN
EAST GOSH
MBI # PA- | EN THP., | CHESTER | AST BRAN
COUNTY,
DER # 15 | PA. | ER CREEK | | | | • | | NQ | | (IN ID | JOB | SPECIFIC | | | LT IPF | RT NSTA | Ņ | | • | - | 300 | 0 | | 0 | 0
WT LRO | 0 | 0 | | | Ò | ****** ******* ****** ****** MULTI-PLAN ANALYSES TO BE PERFORMED NPLAN= 1 NRTIO= 9 LRTIO= 1 .85 .70 .60 .50 .40 . .20 .10 RTIDS= 1.00 # FEAK FLOW AND STORAGE (EMD OF FERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS) | , ,, | • | | 72. | | ٠ | RATIDS API | | Lows | | | | | |---------------|---|--------|------|---------------|----------|----------------|----------|----------|----------|----------|---------|--------| | OPERATION | STATION | area | FLAN | RATIO 1 | RATIO 2 | RATIO 3 | RATIO 4 | RATIO 5 | | | | | | | | | | 1.00 | •65 | . 70 | ,60 | .50 | .40 | •30 | •20 | .10 | | | | | | | | | | • | | | | | | HYDROGRAPH AT | 1 | 2.50 | 1 | 6804. | 5783. | 4762. | 4082. | 3402. | 2721. | 2041. | 1361. | óãû, | | | (| 6.73) | (| 192,65)(| 163,76)(| 134.86)(| 115.59)(| 96.33)(| 77.06)(| 57.80)(| 38.53)(| 19.27) | | ROUTED TO | 2 | 2.60 | 1 | 6150. | 5051. | 3946. | 3209. | 2589. | 2016. | 1452. | 911. | 402, | | | (| 6.73) | (| 174,14)(| 143.02)(| 111.72)(| -90,87)(| 73.32)(| 57.08)(| 41.11)(| 25.79)(| 11.38) | | ROUTED TO | 3 | 2.60 | i | 6148. | 5057. | 3944. | 3202. | 2590. | 2014. | 1452. | 910. | 402. | | | (| 6.73) | (| 174.09)(| 143,20)(| 111,69)(| 90.63)(| 73,33)(| 57.02)(| 41.13)(| 25,76)(| 11.38) | | ROUTED TO | 4 | 2.60 | 1 | 6126 | 5048. | 3941, | 3201. | 2582. | 2011. | 1447. | 908. | 400. | | | (| 6.73) | (| 173.46)(|
142,95)(| 111.60)(| 90.65)(| 73,10)(| 56,94)(| 40.99)(| 25.71)(| 11.33) | | ROUTED TO | 5 | 2.60 | 1 | <i>6</i> 120. | 5035. | 3927. | 3190. | 2579. | 2004. | 1444. | 906. | 399. | | | (| 6,73) | (| 173.29)(| 142.58)(| 111,20)(| 90.33)(| 73,04)(| 55,74)(| 40.89)(| 25.65)(| 11.29) | | ROUTED TO | 6 | 2.60 | 1 | 6103. | 5037. | 3925. | 3189. | 2574. | 2002. | 1443. | 904. | 398. | | | (| 6.73) | (| 172.80)(| 142,62)(| 111.15)(| 90.31)(| 72.87)(| 56.58)(| 40.35)(| 25.59)(| 11.26) | | HYDROGRAPH AT | 7 | 3,70 | i | 9339, | 7938. | á5 37 , | 5603. | 4669. | 3736. | 2802. | 1853. | 934. | | | (| 9.59) | (| 264,44)(| 224.78)(| 195.11)(| 158,67)(| 13247 00 | 105,78)(| 79.33)(| 52.39)(| 26,44) | | 2 COMBINED | 8 | 6.30 | 1 | 14653. | 12080. | 9513. | 7977. | 6531. | 5111. | 3748. | 2383. | 1126. | | | . (| 15.32) | (| 414.94)(| 342.07)(| 269.38)(| 225.89)(| 134.93)(| 144.71)(| 106.13)(| 67.48)(| 31.68) | | ROUTED TO | 9 | 6.30 | | 14551. | | | 7920. | 6491. | 5068. | 3673. | 2317. | 1096. | | | (| 16.32) | (| 412.04)(| 339.76)(| 268.22)(| 224,27)(| 183.80)(| 143.51)(| 104.02)(| 65.61)(| 31.04) | ## SUMMARY OF DAM SAFETY ANALYSIS TWP. LINE DAM | FLAN 1 | | INITIAL VALUE | SFILLWAY CREST | TOP OF DAM | |--------|-----------|---------------|----------------|------------| | | ELEVATION | 414.00 | 414.00 | 420.00 | | | STORAGE | 597. | 597. | 1150. | | | OUTFLOW | 0. | 0. | 2792. | | RATIO | MUHIYAM | MAX1#UM | MAXIMUM | MAXIMUM | DURATION | TIME OF | TIME OF | |-------|-----------|----------|---------|---------|----------|-------------|---------| | QF | RESERVOIR | DEPTH | STORAJE | OUTFLOW | OVER TOP | MAX OUTFLOW | FAILURE | | FMF | W.S.ELEV | OVER DAM | AC-ST | CFS | HOURS | HOURS | HOURS | | 1.00 | 421.39 | 1.39 | 1386. | 6150· | 5.25 | 42,50 | 0.00 | | .85 | 421.03 | 1.03 | 1326. | 5051. | 4,25 | 42.75 | 0.00 | | .70 | 420.62 | .62 | 1256. | 3946. | 3,50 | 42.75 | 0.00 | | .50 | 420.28 | +28 | 1198. | 3209. | 2.25 | 43.00 | 0.00 | | •50 | 419.71 | 0.00 | 1123. | 2589. | 0.00 | 43.25 | 0.00 | | • 40 | 418,83 | 0.00 | 1042. | 2016. | 0.00 | 43.25 | 0.00 | | .30 | 417.88 | 0.00 | 955. | 1452. | 0.00 | 43.25 | 0.00 | | .20 | 416.34 | 0.00 | 859. | 911. | 0.00 | 43.50 | 0.00 | | .10 | 415.65 | 0.00 | 749. | 402. | 0.00 | 43.75 | 0.00 | 1 904. 378. 44.25 44.75 357.9 355.8 21/17 J 0 3 ### MILLTOWN DAM | - | 17/// | | | | | | | | | | | |----------|------------------|-------------|---------------------------------|--|--------------------|--|----------------------|-----------------------------------|---------|--|--| | | PLAN 1 | ****** | ELEVATION
STORAGE
OUTFLOW | INITIAL VALUE
N 345.00
18.
O. | | SPILLWAY CREST TO
345.00
18.
0. | | OF DAM
350.30
170.
3084. | | | | | 9 | | RATIO
DF | MAXIMUM
RESERVOIR | MAXIMUM
Depth | MAXIMUM
STORAGE | MAXIMUM
OUTFLOW | DURATION
OVER TOP | TIME OF
MAX OUTFLOW | TIME OF | | | | a | | PMF | W.S.ELEV | OVER DAM | AC-FT | CFS | HOURS | HOURS | HOURS | | | | | , | 1.00 | 354.62 | 4.32 | 416. | 14551. | 9.00 | 42.50 | 0.00 | | | | ③ | | 85 ، | 353.88 | 3.58 | 371. | 11999. | 8.50 | 42.75 | 0.00 | | | | â | | ٠70 | 353.09 | 2.79 | 324. | 9472. | 7.50 | 42.75 | 0.00 | | | | | | ٠60 | 352.54 | 2.24 | 292. | 7920. | 6.75 | 42.75 | 0.00 | | | | 8 | | ∙50 | 352.02 | 1.72 | 265. | 6491. | 5.75 | 42.75 | 0.00 | | | | • | | • 40 | 351,42 | 1.12 | 230. | 5069. | 4,50 | 42.75 | 0.00 | | | | | | •30 | 350.68 | •38 | 190. | 3673. | 2.50 | 43.00 | 0.00 | | | | • | | ∙20 | 349.40 | 0.00 | 126. | 2317. | 0.00 | 43.00 | 0.00 | | | | 3 | | .10 | 347.75 | 0,00 | 67. | 1096. | 0.00 | 43.00 | 0.00 | | | | | EOI ENCOUNTERED. | | | | | 20701 | **** | 10100 | 0.00 | | | | _ | N> | | | | | | | | | | | APPENDIX E PLATES **, (11)** Cressona Cressonal Cresson Puppioun Kimberton Phopfilix'. Ile DAM PHILADELPHIA Gap Sadsbir Gienolden. Gloucester LOCATION MAP MILLTOWN DAM Out T PA-00218 PLATE I 一一十年 在八月日中七十二年間明府、荒職以 . Earth timbankment 25 to 1 Slope below elso kink To be covered with loose sto not less than 8"deep) 2 to 1 slope org Com Wall 20 PUBLIC 2 to 1 Slope -Plan of Dam Scale 1'-8 Earth Embankment -Ground J Cross Section on Line N.B -Sauthe bashin ways + 1" ES" DRAWING No 2 - Plan and Sections of Dam PLATE III PA-00218 and the second of o Herter of control delegations of the second of Entering Adaptive and State Adapti Cross Section of Concrete Spillway ----(akmatentritus taskina east) Scale (1 7. -- Cross Section through Retaining Wall - 1 Section on Line A - B Scale 4 . Deta & New Over How Chamber . DRAWING NO 3. Section in hour PLATE 15/2 PA-00218 APPENDIX F GEOLOGIC REPORT #### GEOLOGIC REPORT #### BEDROCK - DAM AND RESERVOIR This area overlies the Baltimore Gneiss, which is a recrystallized sediment consisting of biotite and hornblende gneiss, heavily injected with gabbro. #### STRUCTURE The joints are moderately to poorly formed in a platy or blocky pattern. #### OVERBURDEN The overburden in this area most probably consists of residual soils originating from the parent bedrock. #### AQUIFER CHARACTERISTICS This formation has an extremely low primary porosity and the jointing provides a very low secondary porosity. Subsurface seepage in this area should be of little concern. #### DISCUSSION The state of s From the available construction plans, it appears that the cutoff trench of the dam was excavated to bedrock. If such is the case, the Baltimore Gneiss provides a good quality foundation for heavy structures. #### SOURCES OF INFORMATION - 1. Bascom, F., et al., 1932. Coatesville West Chester, Pennsylvania Delaware Folio: U.S. Geological Survey F-233. - 2. McGlade, W.G., 1972. Engineering Characteristics of the Rocks of Pennsylvania: Pennsylvania Geological Survey EG-1. ### LEGEND hg Balti Baltimore Gneiss