
MITRE-Bedford Division . .EVFI§"

MTR-3999 601 Zz; Z1 TO

5Iistory of Protection in Computer Systems

John D. Tangney

15 JULY 1980

DTIC

D

Afroved for public release; Ulstribution unlimited.

MITRE Technical Report

MTR-3999

History of Protection in Computer Systems

John D. Tangney

15 JULY 1980

CONTRACT SPONSOR OSD (C31)
CONTRACT NO AF19628.80-C-0001

PROJECT NO 8420

DEPT. D 7 5

DTIC
The views and conclusions contained in this papa- are those • ECTE
of the authors and should not be interpreted as necessarily

representing the official policies, either expressed or implied

of th' Department of Defense or the United States Government. 0 EC 2 3 1981
Accession For D

TH__________ NTIS GRA&I
THEDTIC TAB [\"I I~i(idUnflinournced L_______- Justif ication.

BEDFORD, MASSACHUSETTS Approved for public release; distribution unlimited.By"...

Distribut I on/.

Availabtlity Codes

lAvall and/or
Dist SpLcialLI

Department Approval:(

MITRE Project Approval: JZ 2 ~

ABSTRACT

This report documents a lecture delivered at the NSA Computer
SecuriLy Workshop on 19 March 1980. The subject of the lecture was
the evolution of information protection features in commercially
available general purpose computing systems. The lecture covered
features built into both computer hardware and operating systems in
an attempt to prevent programs of one user from stealing, modifying,
or destvoying programs of other users and of the operating system.

This report is more than just a script for the lecture. In
explaining certain features, it goes into much grea.~er detail than
is covered during the actual lecture, especially when presenting
those hardware features considered essential to the development of
trusted operating systems.

This report should be useful to readers interested in the
multilevel computer security problem. An appendix is included
which provides contextual information about the multilevel security
problem and the need for trusted operating systems.

ACKNOWLEDGEMENTS

This lecture has evolved from one developed by Ed Burke, enti-
tled "Computer Security Technology Introduction, History, and Back-
ground", given originally at the MITRE Computer Security Workshop in
January 1979, and which was revised and redelivered by Ed with the
title "Protection in Operating Systems: A Technical History," at the
NBS Seminar on DOD Computer Security Initiative Program in July
1979.

Comments and suggestions by Pete Tasker were very helpful in
bringing this lecture to its present form.

iv

ft~~- -C- -

History
Of

Protection
In

Computing
Systems

The intent of tnis briefing is to Consider the evolution ofinformation protection features In c•mmercially available computing
systems. We will examine those features designed into the computer
hardware and into operating systems In an attempt to prevent programsof one user from stealing, modifying or destroying the programs anddata of)ther users and of the operating system.

I

1i

,•.• .-- •. ,,u

Outline

(ompulirt 4lP nr1liuni

In order to structure this presentation, we will consider the
evolution of information protection features starting from the first
generation of computer systems and cnntinuing right up to state-of-
the-art or current generation computer systems.

Our purpose in doing so is to examine the principles underlying
the provision of effective information access controls within a com-
puter system. We shsll see when people first became concerned about
the proLection of information and the provision of internal access
controls, and we shall look at some of the hardware and software
mechanisms developed to address the protection problem.

We shall see that the protection of information was not really
a problem during the first and second generations because they were
single-user-at-a-time systems. Protection became a cause for con-
cern with the third computer generation when systems were designed
to share processor and storage resources among several concurrent
user programs.

As we move through each generation, we shall first examine the
nature of the operating systems typical of that generation. We will
look at the types of services provided to the programmer by the
operating system and consider briefly its underlying structure.

Then we will discuss the types of protection featurcs designed
into typical systems of that generation by both the hardware and
operating system designers. We shall emphasize hardware features

2

because a sound hardware buase is essential to the implementation of
effective and efficient information access controls. We shall see
that hardware is not the problem, that the types of hardware features
we consider important are piesently available with most contemporary
computer systems;. (As you will discover during the remainder of
the leccures, the problem is really oute of designing and implementing
reliable operating systems software.)

After discunsing typical protection features of each generation,
we. will see how requirements for the processing of classified
information were satisfied.

Finally, we will note how protection problems not solved by a
particular generation influenced the nature of hardware and software
protection features built into systems of the succeeding generation.

3

- - - -. ~.--~---- ~=meow

First Generation Computers

I-:r mid - 40's h, CIRCA IO

1141dwari and simpIkr bittap wiftwar

USELR SOr WARE

DW STA __ _.AR

The first computer generation began with the invention of the
electronic digital computer just after the second world war and
lasted until around 1960. The technol~gy of these machines was
relays and vacuum tubes, The LNIAC, EDVAC, and UNIVAC I were early
members of the first generation. The IBM 704 (scientific) and IBM
705 (conmercial) introduced core memories, with capacities on the
"order of 16 and 32 K words. The I/O devices were card reader/punch,
printers, and magnetic tape for secondary storage.

First generation computers Liad no operating systems &s we now
know them. They were essentially single user systems -- no
resources were shared. The programamer programmed in symbolic assem-
bly language or FORTRAN, using simple bootscrap software to load the
assembler or compiler into the machine to assemble or compile his
program, later using the same bootstrap to load his machine code for
execution. The programmer was also the comp'jter operator.

4

First Generation Protection

%.. *h.hrnq Wi rewurt V%

%vt t ould dtilrin, hotbo sorap %hlt are

%,i pto,14-t lion lraltlirv%

First generation systems were not resource sharing systems.
They were used by only one programmer at a time, who had access to
the entire system, all its resources, until finished or until his
allotted time had expired, whereupon a new programmer had the sys-
tem. Under this environment the only protection problem was that of
trying not to destroy the bootstrap software. But this happened
quite often as programs were being debugged (and even after as they
were used on a regular basis); it was a well accepted fact of life.
The programmer would just have to reload the bootstrap, usually by
first manually entering (through console switches) a very simple
bootstrap loader which would subsequently be used to load a more
us,'ful punched card or magnetic tape loader.

There were, however, no protection features designed into
either the hardware or the bootstrap software.

I

5

First Generation Security

Uimr had accems to all physical voutct,

Systern prL4tcted at highest lewi

Most comlptaatkon done at single *swl

First generation computers were primarily used for number
crunching. If there were requirements for Classified computations,
the system would be operated In the system high mode. The system
was located in a facility secured to the appropriaLte level and all
programiers were cleared to that level.

There was no provision at that time for a periods processing
mode of operation; most computations were done at the single, system
high level. If there was a need for unclessified processing -- the
bowling scores, for example - these were treated as Classified and
the output -- the scores -- had to undergo a downgrading procedure
before they could be removed from the facility and posted in a hall-
way in an uncleared area.

6

Second Generation Systems

CIRCA 1960 to miki 66's

Monitor oftwuaff

USER SOFTWARE

MONITOR SOFT7WARE

HARDWAR"E

Tile second generation started shortly before 1960 and lasted
only about until 1964, with IBH's intorduction of System/360. It
was a transitional period in many respects.

Computers of Lhis generation wore constructed out of discrete
solid state components -- transistors and resistors -- and were
smaller, faster, cheaper, and more reliable than their vacuum tube
predecessors. Repr-sentatives of this generation were the IBM 7000
series -- characterized by the 7090 (scientific) and 7070 (commer-
cial) -- the IBM 1400 series -- with the 1401 (commercial) most
prominent -- and the Burroughs B5000 series.

Main memories were still magnetic core based, but were double
the capacity of first generation main memories, and memory access
speeds improved almost by an order of magnitude.

Punched cards and magnetic tapes were still the primary peri-
pheral storage media, however, random access magnetic disks and mag-
netic drums were first introduced on some second generation systems.
These disks and drums were controlled by an independent I/O channel
-- a small processing unit -- operating in parallel with the central
processor. It wasn't until the third generation, though, when the
performE .ce advantages inherent in simultaneous operation of the
central processor and I/O procassors were fully exploited.

The second generation saw the advent of operating system

software in the form of a collection of system routines commonly

7

called a monitor. The moniLor was a set of useful machine services
which enhanced and extended the machine architectture and provided a
more useful and productive programing interface. A significant
second generation development was the distinction between systems
programmers, who wrote and maintained monitor routines, and applica-
tion programmers, who developed application systems using the moni-
tor. These application systems also utilized monitor facilities at
run time.

Typical cf second generation operating systems was the Fortran

Monitor System of the IBM 7090, ',hich provided the programmer with
facilities for the compilation, debugging, and execution of Fortran
programs.

8

I-------

- - .- ~

Second Generation Systems

Notion of "logical' I/'Odevices

Memoryi *Wae o'erlayed

Ubrary functions

User at a time

The beginnings of time sharing/Inlormati(n procesi~sng

Sane of the more notable services provided by these monitors
were logical I/O devices, memory overlaying, and libraries of com-
monly used routines.

The notion of logical 1/O devices was an important development.
The user no longer had to worry about dealing directly with physical
devices. The monitor provided a number of logical devices anj
operations for the manipulation of them. The monitor performed the
mapping of logical device accesses to physical device accesses trans-
parently to the user.

Another feature of these monitors was support for overlaying of
main memory. Memory capacity was on the order of 64IK words, some of
which was reserved for the monitor. User applications were expand-
ing and pressing the available memory capacity, so the idea of over-
laying was conceived whereby the user program was partitioned into
pieces, one piece resident jnd executing in main memory, the other
pieces residing on auxiliary storage. When the first piece finished
executing, the monitor would fetch the second piece into main
memory, overlaying it on the first piece, and execute it.

The concept of library functions was developed. Examples were
mostly useful mathematical routines -- trigonometric function,
square root -- which could be referenced in a FORTRAN program; the
link editor/loader routines of the monitor would retrieve these rou-
tines from the library. Various magnetic tape utilities, such as
sort/merge, were also provided.

I

Second generation systems were single-user-at-a-time batch pro-
cessing systems. Programmers would submit their batch jobs to an
operator who would feed them into the system. However, only one
user program vould reside in main memory at a time and it would exe-
cute until completion. The operator would mount any tapes needed by
the user's program.

In the second generation, though, systems programmers were
already making some interesting observations about processor utili-
zation. Although this was generally not a problem with CPU-bound
scientific programming, it was observed that commercial applications
tended to spend much of the time performing I/O operations. Some of
this commercial processing tended to be information processing
rather than computation.

Also, in the early 60's researchers on Project MAC at MIT began
examining the idea of multi-access, interactive processing. Already
researchers were recognizing the relative inefficiency of single-
user-at-a-time batch processing systems and were searching for
alternative modes of processing. The MIT group developed the Compat-
ible Time Sharing Syscem (CTSS), supporting three interactive users
and running the Fortran Monitor System in the back.around, on an IBM
7090 modified to support multiprogramming, a technique we will see
universally employed on third generation systems.

10

?~i

Second Generation Protection

Sinmle u%4r proqrdsm

I Ir(IhA .,4 mec hanin% hi proi.' I rj,%ideni monilor %of111 drP
Irmm u~er proqrdtm

MAIN MEMORY

tSFR

eRO(iRAM

hItA 1 (' NI %1IDI N I

,%INRAM MONIlOR

Second generation systems were still one user at a time. At
most only one user program resided in main memory Pt a time and it
executed until completion. The only protection problem was that of
protecting the resident monitor programs from the resident user pro-
gram. The special hardw3re feature was merely a fixed protected
area at the bottom end of main memory which contained the monitor.
Let us say that the monitor resided in main memory starting at loca-
tion 40000. Now, whenever the processor fetched an instruction from
a location greater than 40000, it knew that monitor software was
executing and it would allow any location in main memocy to be read
or written by that instruction. However, whenever the processor
fetched an instruction from a locat-ion less than 40000, it knew that
a user program was executing and would allow only locations less
than 40000 to be read, written, or branched to by that instruction.
The one exception was that the user program could branch to location
40000 only. This was the mechanism by which the user program could
"trap" to the monitor and request some particular service.

Some systems permitted only the monitor to execute I/0 instruc-
tions; that is, the processor would perform an I/0 instruction only
if it had been fetched from location 40000 or greaL.ýr. This forced
the user to trap to the monitor for I/0 and was the hardware protec-
tion mechanism by which the monitor could protect the library pro-
grams (stored on system tape or disk) from accidental or malicious
destruction.

11

S• .:-_ _ _ __ • •; _ _,,_ -.-. _: . .•

We shall see thia notion of a "two state's processor -- a
privileged state and unprivileged state -- extended somewhat in the
third generation to address protection problems in multiprogramming
computing system.

12

Second Generation Security

User had Acceh to rost rewurces

Systcm. users at hisgest lewi

Some manual mketw for Ikef cias•fled runs

With respect to the processing of classified information, there

was very little difference from that of the first generation. Sys-

tem high was the prevalent mode of operation. The output of any
lower classified jobs had to be reviewed and downgraded to its true

level of classification.

1I

" ~13

Third Generation Systems Thh. i Generation Systems

USER USER USER IUSER IUSER .. *USER
(eneral purpose c.ompuling %,stemr

Common Art hhie lure o% er sevpral mNiolels OPRTEM

Iftwqrdljof of autonomous 1 0 proc essors

Main (on mrn ol operaling %%,stem: moximum resource HARDWARE

ulillirlion

FILE

I DEVICES

The third generation is widely regarded as having begun in 1964
with IEM's introduction of System/360. Honeywell's 600 series is
also characteristic of the third generation. The technology of the
third generation was solid state circuitry, offering improvements in
speed, capacity, and reliability, and permitting even smaller pack-
aging. Memories, still of core memory technology, began co reach
capacities of 128K words and larger.

The major third generation systems were designed to be general
purpose computing systems. The manufacturers decided to move away
from the notion of one machine model for scientific pro.;essing and
another for commercial processing. Instead they wanted an architec-
ture whxch would support both numerical computation and information
processing. Support for data management services was recognixed as
a very desirable and useful feature.

Another distinguishing characteristic of third generation sys-
tems was that they provided a common architecture over various
models ranging in performance and capacity. Models at the lower end
of the range presented the same architecture as did models at the
upper end. The different models were instruction set compatible.

The third generation saw full employment of independent I/O
processors (or channels) operating in parallel with the central pro-
cessor. A significant factor influencing the third generation was
the rapidly escalating demand for computer usage. As the basic
technology improved, computers were becoming cheaper and a computer

14

I V .14

was becoming essential to more and more businesses and government
agencies. Even so, a computer represented a significant investment
annu it was important that it be utilized as much as possible. For-
tunstely more and more applications were being identified as cakidi-
dates for computerization.

The primary concern of the third generation operating system
was maximizing utilitation of the computer's various resources. The
gcal was to keep the central processor and I/0 processor as busy as
possible. The technique employed by third generation operating sys-
tems to achieve maximum resource utilization was known as multipro-

15

4I

Multiprogramming

MAN MEMOR¥
44uhipir umo-r prostr~ams one reorpidenk in main mermor% PROGRAM A

Prilqrldm A cr@ %Ugcmt on prlo t or
until it requeIsb 1 0

Opg• iainq %,%rls n bubpiendb Program A P ASER
huot %dr b 1 Opopderaio on 0I t hannel F AREA

O()rrailnq % % tern . nldrib .another
is,'r prinranm on priut qsor

PROGRAM C

()PHATING

The idea behind multiprogramming is that the operating system
keeps more than one user program resident in main memory at a time.
One user program runs on the central processor until it terminates,
exhausts its allotment of central processor time, or requires I/0,
whereupon it makes an I/O request to the operating system. The
operating system suspends that user j.-. gram from running, initiates
the I/O request on one of the I/O processors, and gives the central
processor to one of the other resident user programs (which runs
until it terminates, needs I/O, or runs out of time).

Multiprogramming is the technique by which the operating system
shares the resources of the computing system among several resident
user programs. It is this concurrent sharing of resources that dis-
tinguishes the third generation from earlier generations and intro-
duces a number of new protection problems.

16

....- ++•'+:.-=....

. +.

Third Generation Services

Revmrce aillocation

MQTT•V W ,po'*

File stem

Virtlkih ,tn WitkA Ifi, ,le ur c.*'

Program iUbrary

The operating system became a major component of the third gen-
erat!on computing system. It carried the significant responsibility
of seeing to it thpt the resources of the system were maximally
utilized.

Most third generation computer systems were baton systems,
receiving a stream of user jobs and processing several of these at a
time. Several user programs are resident in main storage at a time.
The task of the operating 3ystem is to multiplex the system's main
resurces -- central processor, main metory, and I/O channe s -

among the resident jobs in the most efficient manner.

During the third generation, the advantages of on-line storage
for programs and data ft" 4 s - much more efficient than off-line
cards or magnetic tape -- were well recognized. Therefore some cen-
tralized meais of organizing and storing user information, ano
managing the retreival of this information, was delegated to the
operating system. This mechanism is known as a file system.

A wider variety of programming languages were supported by
these gene-al purpose systems. Compilers for Fortran anr Cobol were
available; IBM tried to be all things to all men with PL/I. The
notion of on-line libraries containing often used routines and use-
ful utility programs, introduced during the second generation, was
greatly expanded during the third generation.

17

- - ~ i

Third Generation Protection

Met hanksma needed to support user mul ihrogrammmnq WMlev

L1 I t q, fll xi , '.&' k ~i hm. 'thh

As already noted, the introduction of multiprogramming
presented both the hardware and operating system designers with some
serious protection problems. Mechanisms were needed to support mul-
tiprogramming safely. W'th several user programs concurrently
resident in main memory, mechanisms were needed to protect one user
program from interference by another, and to protect resident
operating system software from interference by user programs..
Thirdly, mechanisms were needed to protect the various resources
managed by the operating system - the file system, the program
libraries -- from interference by user programs.

The first two protection concerns are addressed by foatures
providing memory protection -- the ability to protect areas or par-
titions of main memory from unwarranted access by user programs.
The third protection concern is 3 matter of controlling a given
program's access to certain central processor instructions and to
1/O devices.

18

- A~ t..

Third Generation Protection

Memon. portqc tion

(TPV and I 0 proit tion

Let us examine some of the hardware features built into third
ge.eration computing systems to provide memory, central processor,
and I/0 device protection.

One of two mechanisms was employed to protect one r sident user
program from destroying another resident user program, and to pro-
tect the operating system resident software from resident user pro-
grams: lock and key, or base and bounds registers.

(See the next two view graphs entitled "MEMORY LOCKS AND PRO-
GRAM KEYS" and "BASE AND BOUNDS REGISTERS".)

The most significant mechanism was that of the two-state cen-
tral processor, meaning that the processor could operate in one of
two states: privileLed or unprivileged. Certain of the processors
instructions are designated as privileged, meaning they can only be
executed when the processor is operating in privileged state. Exam-
ple of privileged instructions are those that perform I/O, control
the interrupt mechanism, and set base and bounds registers or locks
and keys.

The two processor states create two domains of execution, which
have been calleo supervisor and user domains. User programs execute
in user dnasin, with the processor in unprivileged mode, meaning
that any attempt to execute one of the privileged instructions is
trapped by the processor. Also, the lock and key, or base and
bounds, memory protection mechanism, whichever is used, is enforced
on memory accesses.

19

- - - ----- - -

The operatitg system executes in supervisor domain, with theprocessor in privileged mode, able to execute the privilegedInstructions. Typioally any memory protection meoIhaniMs are dia-abled, meaning any memory location is acoeasible tram supervieor'domain. Only the ,operating system has unoontrolled access to all ofthe system's resources; umer programs have indirect aooess to system
resources.

20

Memory Locks and Program Keys

PR(XiRAM I O(Ks MAIN MUMORY 0
SIAIUS WORD 0101

IIIO j 0=10 I PROGRNAM A 1000

KI- I V O P(XiRAMI IIf WO)(U tURRN1

PROGRAtM (I) P 40A)

S PRO(iRAM C

LPI- RA I I% NMW)

With the lock and key mechanism, each location in main memory
carries with it a lock -- for example, a 4-bir integer, which can be
set by the operating system -- and each resident user program is
assigned a key -- for example, another 4-bit integer. When the
operating system assigns a user program an area in main memory, it
sets the locks of the locations in that area to contain the 4-bit
pattern assigned as key to the program. Now,, whenever a program
accesses main memory, the processor checks to see that the program's
key matches the value stored in the lock associated with the area
accessed.

t2

!: 21

Base and Bounds Registers

MAIN MEMORY
SPROGRAM A

[BOUNDSE

PROGRAM 6"

OPERATINGJ

SYSTEM

L

With the base and bounds mechanism, the processor contains a
pair of registers called a base register and a bounds register. The
base register contains the starting location in main r.ý,-iory of the
currently executing user program; and the bounds register contains
the ending location of the user's program in main memory. On each
memory reference made by the currently executing user program, the
processor checks that the reference is within the area. in main
memory defined by the base and bounds register. When a different
user program is given the processor, the base and bounds register
are changed, by the operating system, to describe the new program's
memory area.

22

Program Status Word

r/ PVI EM

PRIVILEGE BIT:
0 UNPRIVILEGED
I o PRIVILEGED

USER DOMAIN SUPERVISOR DOMAIN

USER PROGRAMS OPERATING SYSTEM
P -0 P-I
UNPRIVILEGED PRIVILEGED INSTRUCTIONS
INSTRUCTIONS I/O
MEMORY ACCESS LOAD PSW
CHECKS SET MEMORY PROTECTION

MAY BYPASS MEMORY ACCESS
CHECK

Third generation systems were multiprogramming systems: meaning
more than one user program was resident in main memory at a time and
the central processor was multiplexed among these resident user pro-
grams (and the operating system).

Therefore, the hardware protection mechanisms centered about
protecting one program from another (and protecting the system from
user programs).

The key hardware feature was the program status word (or PSW),
a hardware register within the central processor. It defined the
characteristics of the currently executing program. One bit in the
PSW indicated the particular state in which the processor was exe-
cuting -- privileged or unprivileged -- and thereby indicated the
domain in which the program was executing.

If the executing program was a user program, a field within the
PSW held the (4-bit or so) key assigned to the program to govern its
legal memory area.

Another field within the PSW was the interrupt mask. Depending
upon the setting of this field, certain I/O devices were prevented
from interrupting the central processor.

It is important to note that the PSW can only be loaded or
modified by software executing in supervisur domain. The machine
instructions to load or modify the PSW are privileged instructions.

23

By permitting only operating system software to run in supervisor
domain, the operating system can control the use of system
resources.

As noted, user software runs in user domain. Transfer into
supervisor domain, and privileged processor mode of execution, is
also hardware controlled. User programs invoke the operating system
by executing a trap (or supervisor call) instruction, which~ is
unprivileged. The effect of the trap instruction is to change the
mode of the processor to privileged and to commence execution at a
predefined memory location containing operating system code.

Transfer to the operating system occurs asynchronously by means
of an 1/0 interrupt. When a device raises its interrupt flag, the
central processor recognizes this and automatically sets the proces-
sor mode tj privileged and initiates an interrupt handler at a
predefined location within the operating system region of main
memory.

24

Third Generation
Protection Features

Software mechanisms were included within the operating system

itself to augment the protection mechanisms provided by the
hardware.

Some systems attempted to verify the legality of supervisor
calls issued via the trap instruction from user domain. In particu-
lar, some attention was given to checking the validity of parameters
supplied with the system call. The operating system would check the
number of parameters supplied and assure that each parameLer 'was of
the proper type. For example, the operating system might wish to
check that a parameter defining the starting address of an 1/0
buffer was indeed within the memory area allocated to the program
making the requesk..

Users had little facility for performing 1/0 directly. Rather,
1/0 was provided ais a service by the operating system. This was
good from a protection standpoint because the misuse of an 1/0 chan-
xiel by a user program could destroy other resident user programs or
information stored on shared 1/0 devices.

Most third generation systems employed passwords to control
access to files within the file system. The owner of a file would
assign a password tD the file upon its creation. Anyone wishing to
access that file in a job step wqould have to submit its password on
one of the control tards for the job step. The system would verify
correctness of the password before granting the user access. The
owner could thus share the file with fellow progranmmers by informing
them of the fila's whereabouts and its password.

25

Most systems incorporated an audit log mechanism to maintain a
record of user operations &nd system resource usage (informatior
essential to billing users for systk:= usage). Of importance tc
information protection were audit lug entries resulting from fi~e
system usage. For example, the system would create an entry when-
ever a file was read or modified. The entry would indicate the user
accessing the file, the type of access, and time of access. File
access audit information was generally made available to the owner
of a file so that the owner could determine whether some unauthor-
ized user was using the file (by illegally obtaining or guessing its
password).

I

26

Third Generation Security

UJsers ard inlormidion ai differe:n leelv .

Cont urrent mutileve.l use de"sirable

Operalinq %s•%lvrnh ••re unreliable

fldd I(i relerl In ladilindl Ieklhnique%

There was an increasing demand for the services provided by
third generation computer systems. More and more applications were
being considered for implementation on a computer. Many of these
potential applications had requirements for the concurrent process-
ing of information at multiple classification levels, and some
required the servicing of users of differing levels of clearance.

As we have noted, in order rto satisfy these multilevel require-
ments the operating systems must support effective access control
mechanisms to guarantee the separation of multilevel information.
The computer system must be able to thwart attempts by malicious
useri to gain access to information for which they do not possess
sufficient clearance.

It was evident, though, that third generation operating systems
were too unreliable and they could not be trusted to effectively
protect information. They were just not constructed with security
as a primary design goal.

So it was not possible to satisfy the demand for true mul-
tilevel processing. Instead system architects had to revert to the
traditional techniques of either system high operation, with its
disadvantage of prolifer4ting classified information, or periods
processing, with its ineffi'.ient utilization of system resources.

27

-- .it ~

Third Generation Problems

Hardware and %oftware features were not Aie(like

The hardware and software protection features of third genera-
tion operating systems were ineffective because of the unreliable
nature of the operating system software. There were both design and
implementation bugs in the software which could be exploited by the
knowledgeable, malicious user to subvert the protection features.
After all, it is the responsibility of the operating system to util-
ize the underlying hardware protection features correctly; if it is
possible to subvert the operating system it is possible to subvert
the hardware protection features.

The operating systems were so unreliable because they were not
developed through a well conceived design and implementation strat-
egy. The term "design by committee" or "ad hoc design" were unfor-
tunately so characteristic of those systems. It is fair to say that
the primary objective of third generation operating system designers
and implementators was simply to get the system worKing, to keep the
resources utilized, and maximize throughput. The responsibilities
of the third generation operating system were an order of magnitude
greater than its second generation predecessor. The resulting
operating systems were very large in size, written mostly in assem-
bly language for efficiency, and consequently very complex. (I'm
sure you have all heard stories about the hundreds of people
involved in designing and building OS/360, and its hundreds of
thousand of assembly language instructions, and its near constant
number of one thousand bugs throughout its many releases!)

28

~--~.--.-

Third Generation Penetrations

OS360: MITRE

GCOS: Governm•mn

O$SVS: SDC

As evidence of the protection weaknesseq of third generation
operating systems, a number of them have been successfully
penetrated and documentation of these penetrations is in the public
domain. Let us briefly die,'uss three of them.

A couple of people at MITRE were able to penetrate OS/360,
specifically the MVT (or Multiprosramming with Variable number of
rasks) operating system. A particular Air Force organization made

an attempt at achieving a multilevel mode of processing on OS/360
WVT. They devised a security software package which they felt would
permit the processing of classified data while both cleared and
,incle&red user programs were concurrently resident in main memory.
The package would be used by people running classified jobs and what
it did was to destroy all I/0 buffers and the program's area in main
memury upon termination of the class;.fied job, so that subsequent
(probably uncleared) user programs could not "scavenge" any of the
classified information. The classified jobs were constrained to use
only tapes for thcir classified data to avoid having to rely on the
protection mechanisms of MVT's disk access software.

This approach sounds pretty good at first glance, but note that
it is str attempt to provide security through an "add-on" application
package Because the MITRE penetratorg were able to penetrate MVT
itrelf, upon which the package ran, they were able to circumvent the
package's securiLy provisions.

29

The security package w.cs located on the system disk and the
penetrators were able to replace the package with their own version,
which continued to destroy the buffers and working areas of classi-
fied jobs, but before doing so wrote a copy of the classified infor-
mation onto a disk file owned by the penetrators.

The penetrators were able to replace the security package
because they were able to "take over the system." While examining
the program listings of MVT, they noticed that the software mechan-
ism controlling the execution of I4VT programs in supervisor domain
were too dispersed; MVT did a lot of branching among routines in
supervisor domain and they found it relatively easy to fool MVT into
either a) returning to the user program after completion of a super-
visor call without resetting the processor mode to unprivileged, or
b) simply branching directly to user program while still in
privileged mode. The net effect in either case is to return to the
user program in privileged mode. The user program is now the
operating system.

The penetrators also found a significant 1/O design flaw. MYT
would store 1/O control blocks in the user program area, unprotected
from the user program. A knowledgeable user could write his program
to exploit this, modifying the control information set up by MYT so
that the uger could effectively read and write memory areas not
belonging to him. The user could read information belonging to
other users or, more ominously, write areas of memory reserved for
the operating system. The latter would permit the user to "rewrite"
portions of the operating system, inserting so-called "trap doors"
into the operating system which could be exploited only by that
user.

The Defense Intell 'igence Agency (DIA) was able to penetrate the
GCOS operating system running on the Honeywell 635. As do most
penetration teams, the DIA group found not one but a number of
flaws; one relates to the checkpoinit/restart feature of OCOS.

Checkpoint/restart is a useful program debugging tool. The
idea is that a user program executes until it encounters a check-
point, at which time CCOS is invoked to dump the user program regionj
onto a disk file. GCOS would dump both user data and control infor-
mation onto this file. GCOS would make this dump file available to
the user; the user could read and modify this dump file and then
request GCOS to restart the suspended program. GCOS would read in
the dump file and restart the program.

One of the pieces of control information stored on the dump
file is the program statuis word. Incredibly, the user could modify
the PSW, setting the processor mode to privileged, before restarting

30

-. .-

the program. The user could exploit this design flaw to take over
the system.

The OS/VS operating system running on IBM 360 was penetrated by
a combined group from IBM and System Development Corporation. OS/VS
evolved from MVT and unfortunately inherited many of its flaws.

One of the penetrations perpetrated by IBM/SDC exploited flaws
in the handling of I/O channel programs. OS/VS permitted user pro-
grams t. write their own channel programs. However, the user pro-
gram had to invoke OS/VS in order to run the channel program and
OS/VS would endeavor to check the validity of the channnel program
before running it. OS/VS would check to see that the user was only
doing I/O to areas of memory assigned to the user program. Unfor-
tunately, there were a number of schemes whereby the user could
write a self-modifying channel program, particularly when the chan-
nel program consisted of a number of channel commands chained
together. The channel program, once blessed by OS/VS, resided in
the user's area of main memory. One of the early channel commands
would read in a new channel program -- unchecked by OS/VS -- which
would overwrite later channel commands which had been checked by
OS/VS. These new commands could read or write memory areas not
belonging to the user.

It is probably safe to say that there were few, if any, unsuc-
cessful penetration efforts of third generation systems when the
penetration team was knowledgeable and determined. It is also safe
to say that most penetration efforts found not one but several
exploitable flaws, both design and implementation flaws.

31

Current Generation Systems
Current Generation Systems

Int.'rat ti' e. multiple .14*~ t e% imebharinq USER USER [USER USER USER .* USE
Virtual memor, art hitet ture'. OPERATING

I %ample% SYSTEM

M•,I ,"C HARDWARE

00, FILL O VMAIN
V\X VMs SYSTEM PROCESSOR MEMORY

I/O
DEVICES

Let us now look at current generation computing systems. It is
probably reasonable to label these systems fourth generation sys-
tems, but I haven't seen that term used to refer to modern systems
so I prefer to call them current generation systems.

Perhaps the most distinguishing characteristic of the current
generation relates to mode of usage. Current generation systems are
interactive systems where many users access the system concurrently
using terminal devices. Insteal of submitting a deck of punched
cards containing a series of job steps, as was the pattern of use
during the third generation, current generation users sit at a ter-
minal and issue commands to the computer using the terminal's key-
board.

The technique employed by current generation operating systems
to support multiple concurrent user access is called timesharing.
The operating system allocates the central processor to user pro-
grams for very short periods of time (e.g., 100 milliseconds), usu-
ally in a simple round-robin fashion, in an attempt to distribute
processor time evenly among all users desiring service. Since each
user is guaranteed a slice of processor time, say, every three or
four seconds, the user is given the illusion of having the whole
machine to himself.

If the operating system is to timeshare efficiently the proces-
sor among multiple user programs, as many user programs as possible
should be concurrently resident in main memory. In the ideal case,

32

all user programs would be memory resident and timesharing would be
a simple matter of suspending one user program -- after it exhausted
its allotted time-slice -- and starting another. Unfortunately main
memories are just not large enough to accommodate, all at once, the
programs of all users desiring service, particularly if each user's
entire program must reside in main memory, as was the case on third
generation systems.

A distinguishing architectural feature of current generation
hardware is virtual memory. Virtual memory permits more flexible
operating system allocation of main memory to user programs, making
the operating system better equipped to support interactive access
by multiple users through Limesharing. The important characteristic
about virtual memory architectures in this regard is that the
address space of a user program is partitioned into a set of
independently allocated units, some of which are main memory
resident when the user program is executing, and some of which are
not. Because only the more active (i.e, most recently executed)
units of a user program are resident, and not the entire program (as
was the case on third generation systems), the operating system can
fit a greater number of user programs in memory at once, and hence a
greater number of users can be serviced efficiently through
timesharing.

The characteristics of virtual memory are treated in greater
detail later.

Here are some examples of current generation systems. MULTICS
is a system developed jointly by MIT, Bell Laboratories, and
Honeywell. This group was one of the first to recognize the infor-
mation protection problems inherent in interactive, multiple access,
timesharing systems. The MULTICS operating system was first imple-
mented on a Honeywell 645. Later, it was reimplemented on a
Honeywell 6180. Many of the protection features specific to the
MULTICS philosophy of information sharing and protection were i-nple-
mented in software on the 645, but migrated into the hardware of the
6180.

TENEX is an operating system developed by Bolt, Beranek, and
Newman for the PDP-10 line of DEC computers. The first version of
TENEX was implemented on a third generation KA-1O processor enhanced
by BBN with a hardware device which provided a paged virtual memory.
TENEX has since been reimplemented on the KI-10 and KL-10 proces-
sors, both incorporating a paged virtual memory as a standard
feature.

VM 370 is a virtual machine operating system developed
by IBM for those IBM 370 models which include a

33

paged virtual memory. V14 370 provides a set if virtual machines,
each one looking like a cu,,nlete IBM 370 au described in the Princi-
ples of Operation of Syetem/.'0-. Eaca ý-ýrCual machine runs its own
IBM 370 operating system and supports a set of users. Vu 370 iso-
lates one virtual machine and its set of userv from the other vir-
tual machines and their users.

VAX VMS is the operating system developed by DEC for its VAX-
11/780. The VAX machine is a segmented-paged virtual memory archi-
tecture.

34

Current Generation
Operating Systems

I %% influenu's
11 ý I• L'Jo ITt l , m ml 'l TI Ih lllht llll L| ll) |' Iltp ll rlt Ih •

t v",tl d I till i Ith•)l.

Two major factors shaped the development of current generation
operating systems. First, operating system designers recognized
that the multiprogramming model employed during the third generation
was inappropriate for satisfying the response requirements of
interactive processing. The c.oncept of the process was developed as
the computational entity to support the interactive user's process-
ing requirements. The operating system's provision of multiple con-
current processes to support multiple interactive users is known as
multiprocessing.

Secondly, the designers were well aware of the unreliability of
third generation operating systems. They knew how easy it was to
penetrate them and subvert whatever hardware and software protection
mechanisms existed. They realized that the crux of the problem was
the almost ad hoc manner in which third generation systems were
developed. So, they began to consider better strategies for design-
irg, implementing, and testing current generation operating systems.
They learned a lot about the inadequacies of third generation
software engineering and also about the flaws exploited to penetrate
third generation systems.

35

Third Generation Multiprogramming

MAIN MEMORY

I :"er progranm Io ve ue one
job ,,ip PROGRAM A

I niere proqram rvidvý in main
miemor, unlil tomplelion PROGRAM D

Prror.1m 4,4p i% ,11it PROGRAM C

PRO(GRAM 8

HA I (H \ OPIrA rITG
SIMRAm SYS ItUM

Let us consider further the multiprogramming model of the third

generation. As already noted, users submitted batch jobs on card
decks. Each user job consisted of a number of job steps; for exam-
ple, a typical job might consist of a compilation step, a link edit
step, and a load and execute step. The operating system would read
in a job and perform each job step sequentially. For the compila-
tion step, the operating system allocated an area in main memory in
which the compiler executed as a user program. This compilation
program resided in main memory and executed until completion. For
the linkage editing step, the operating system again allocated an
area in main memory (perhaps the same area) in which the linkage
editor ran as a user program until completion. Finally, the operat-
ing system performed the load and execution step by again allocating
a main memory area, loading in the link edited user program, and
executing it.

The important points about this model is that each job step ran
independently as a user program which resided entirely in main
memory and executed until completion, abnormal termination, or
exhaustion of its allocated processor time, and that the main memory
allocated to the user program was fixed in size during program exe-
cution.

36

Current Generation Multiprocessing

P -- -

I I

,INO(I SS

r rFILE SYSTEM

USER TERMINAL PER PROCESS MEMORY

Now, in the carrent generation, instead of having just one (or

a few) batch job stream(s), the operating system must handle many
job streams con.:urrently, one stream for each user logged on the
system. Analogous to the individual steps of a batch job, the user
issues a series of commands to the operating system. Each command
is just like the job step of the previous generation. Now, however,
the user at his terminal must be serviced reoponsively by the sys-
tem. Acceptable "turn-around" or response time is now measured in
seconds instead of minutes.

Hardware and software designers developed the notion of the
process to service each user. The process is a computationdl
entity, an environment in which the individual programs requested by

the user are executed. The operating system supForts these indivi-
dual processing environments, providing them as needed to users of
the system.

Current generation systems support a number of user processes

concurrently and are therefore called multiprocessing systems. The
multiprogramming model of the third generation has evolved into the
multiprocessing model of the current generation to better support
interactive processing by multiple concurrent users. Current gen-
eration systems use virtual memory addressing techniques to squeeze
as many user processes as possible into main memory to achieve fast
response to user requests.

37

The process is a virtual processing environment. It consists
of a virtual. address space of some fixed maximum size, On most
current generation systems, the virtual address spa.ce of a user's
process may contain many programs simultaneously. This is true of
systems asich as MLTLTICS, TENEX, and UNIX. Included in the virtual
address space of each process is the operating system. (This
doesn't mean that there are many copies of the operating systems,
one for each process; rather, only one physical copy Exists and is
shared by all of the processes; each process has its own virtual
copy of ti"', operating system.)

Since each process includes a virtual address space and an
operating system -- which provides a file system, I/0 devices, and
other services -- the process represents the user's virtual process-
ing environment or virtual computing system. We say that current
generation operating systems provide a pr-_process virtual environ-
ment.

The operating system should be capable, as a matter of course,
of isolating and protecting processes from each other, while permit-
ting the sharing of programs and information among processes w~hich
desire to cooperate.

38

Current Generation Operating
Systems Functional Division

L A

L.J L- __E' ...
USER DEVICES j FI.E SYSTEM

PER - PROCESS MEMORY

RA PROVIDE SERVICES
(. T.I. SUPPORT ABSTRACTIONSe MANAGE RESOURCES

CPU DEVICES

As has already been stated, the other major factor shaping
current generation operating systems is the emphasis on operating
system design. Designers realized that, if their operating systems
were to become more reliable, they had to adopt a better design
strategy.

One of the first things they came to realize is that an operat-
ing system is not a big monolith -- the operatin system. Ra':her,
it was possible to distinguish the various functions performed by
the operating system.

This slide depicts a three-part functional division.

One thing that an operating system does is provide services.
It makes available to users such things as compilers, text editors,
data base management services, loaders, debuggers, and mail ser-
vices. In the context of the current generation, the operating sys-
tem, at the uLer's request, moves the programs and data which con-
stitute a particular serv ce into the user's process virtual
environment for execution.

Next, the operating system implements a number of abstractions.

The most significant is the process abstraction, which we have
explained above. The process itself is constructed out of a number
of other abstractions which include 1) user or logical I/O devices,
2) the per-process virtual memory, and 3) the file system.

39

---.. . .-- - - -

The operating system implements theso various abstractions out
of the underlying physical resources of the computing system.
Processes are run, in some order, upon the central processor.
References to logical 1/O devices are napped into references to phy-
sical I/0 devices. The file system is constructed on (typically)
random access 1/O devices, such as magnetic disks. And the per-
process virtual memory is mapped, with the assistance of some vir-
tual address translation hardware, onto main memory and some fast,
random access backing store, such as magnetic drum or fJ.xed-head
disk.

The operating system must incorporate various resource alloca-
tion and management strategies in order to support the abstraction-
resource mapping in an efficient manner.

40

Current Generation Operating
Systems Internal Structure

USER PROCESSES

OTHER EXTENDED FEATURES OF OS OPERATING

P")(ISS I McHY Il A((i S Dt *(. 'YSTEM
I IABS I I, A ST.

S PROtF (SSIN NI.MORY I)! VI(' J
0MG,1 Mill WIT

HARDWARE

Some designers translated the functional division into an

internal structuring, or layering of the operating system. It was

during this period that the idea of structuring the internal design

into a hierarchy of modules or layers was first conceived. Modules

at the lowest layers of the hierarchy are concerned with the alloca-

tion and management of the physical resources. This slide shows

three modules in the bottom layer: processor management, memory

management, and 1/0 device management.

The next layer in the hierarchy consists of modules which con-

struct abstractions out of resources and export these abstractions

to users of the system. The slide depicts four abstraction modules:

process, memory, file, and device. There is an additional module at

this level, the access control module. Ideally, such a module would

exist at this level and serve as the sole mechanism in charge of

system-wide access control. All references by user processes to

memory, file, and I/0 device abstractions would be monitored by this

module, which would determine whether a given reference is to be

allowed.

These two layers together have been called the kernel of the

operating system. The kernel is the critical core of the operating

system and is that part which should be emphasized in order to

achieve reliable information protection.

The highest layer of the operating system consists of modules
which provide the extended features of the operating system. Some

41

of these features are constructed out of the basic abstractions ofthe operating system; these include mail facilities, record manage-ment or data management facilities, network access facilities, lineprinter spoolers, and comuand language interpreters.

I

42

LV

Current Generation
Protection Problems

k er process % user protes%

k.'%vr pro t'S • s operalinqt %sltem

t ..Vr pro(ess 'kI Prm resourt eP

Tho -otection problems faced by current generation operating
systerl, igners were more complex than those faced during the third
generacLion because the process is a more complex entity than the
program. Th•e process may consist of a number of programs. Whereas
the third generation progiam was static in size, the process isdynamic -- its memory and resource requirements varying as programs
are moved in and out of the per process virtual environment.

The problem now is the incorporation of hardware and software
mechanisms to aupport multiprocessing safely. The problem has
aspects similar to those encountered in the third generation, yet
nmore cotý' -'x.

Mechanisms are needed to protect one user process from another.The operating system must supply per process virtual environments
which, on the one hand, isolate processes as a matter of course yet
permit cooperation or controlled sharing of information between oramong processes ii desired. This problem is one of providing
memory protectio .o inter-process communication features.

Mechanisms are needed to protect the operating system software
from user processes. Again this is largely a matter of memory pro-
tection, setting aside main memory areas for operating system
software and controlling access to it by user processes.

Lastly, the resources of the computer system must be protected
from user processes. Users should be able to make use of the

43

system's~ resources, but only in a manner controlled by the operating
system. As we saw in the third generation, this can be accomplished
by structuring the hardware operations of the system into privileged
and unprivileged operations, the former being used solely by the
operating system to control and manage the system resources.

44

Current Generation
Protection Features

Virtual memory

Executit.n domains

Hierarchical domains

Concentric rings

L0 access controls

Here are the types of hardware mechanisms used to deal with the
protection problems of multiprocessing systems.

Virtual memory is both a memory management and memory protec-
tion feature, and we saw earlier the importance of a virtual memory
architecture to the support of multiprocessing and interactive
access by multiple users.

Execution domains, hierarchical execution domains, concentric
rings, and I/0 access controls are some of the types of hardware
mechanisms employed to separate privileged and unprivileged opera-
t ions.

45

Virtual Memory
I SI MAIN MII MORY'

PR)t S VIRIU•AI

M P ING t X IS-

I A81 U RW

Here is a rather generalized description of virtual memory. It
is meant to characterize both true virtual memory systems, such as
MULTICS and VAX-11/780, and so-cal~ld mapped memory systems like the
PDP-11/45 and 11/70.

The virtual address space of a process consists of a collection
of either variable sized segments or fixed sized pages. This slide
depicts a paged virtual memory system. Descriptors for the pages of
a process are nollected together into a mapping table. Each
descriptor contains information defining both the location of the
page and the process' access permissions to the page. A flag within
the descriptor typically indicates whether the page is resident in
main memory. If the flag is set, the location information is the
starting location of the page in main memory; if reset, the starting
location of the page on auxiliary memory. In the slide, the second,
fourth, and fifth pages of the process' virtual address space are in
main memory.

Access permissions are read (R), write (W), execute (E), and
null (N). The process has read and write permission to the second
and fifth pages, and execute permission to the fourth page. Null
access means that no page is described by a particular descriptor;
it is used to indicate that a mapping table entry does not contain a
value descriptor -an unused page of the process' virtual address
space.

46

Addresses generated by programs within the process are two-
component vitual addresses. The firet c.omponent is an index used by
the virtual memory hardware to locate within the mapping table a
descriptor for the page to be referenced. The second component is
an offset used to locate a specific byte or word within the object.
The virtual memory hardware first checks the access permission field
to verify that the attempted access is permitted to the process. If
it isn't, an access fault is generated by the hardware and the
operating system is initiated to take appropriate action. If access
is permitted and the page is in main memory, the hardware adds the
offset to the starting location of the page to form the effective
physical address. If the page is not in main memory, a RN~ fault
is generated by the hardware and the operating system is initiated
to move the page into main memory off of auxiliary memory.

Because the operating system creates and manages processes, it
is the responsibility of the operating system to create and manage
the process mapping tables. By doing so in a correct and judicious
manner, the operating system can effectively isolate processes where
required and allow them to cooperate and share information where
desired. Descriptors are added to mapping tables as processes
request that pages be brought into their virtual memory. Whether or
not the operating system honor~s the request depends upon the protec-
tion policy enforced by the operating system.

47

Execution Domains

MAINR SUP•ERVISOR
MAPPIN4G MEOR DOMA1IN

USER DOMAIN TABLE ABS•OLUTES~ADDRFSS

VIRTUAL ADDRESS

PRIVILEGED

+- INSTRUCTIONSUNPRIVILEGED
INSTRIONSHALT

LOAD/STORE

I/O

SET DOMAIN 9

We saw in the third generation how execution domain hardware
was used to partition operations into privileged and unprivileged
ones. This slide shows how a two-domAin hierarchy is implemented in
a virtual memory architecture. The only distinction is that user
software executing in user domain (with the processor in
unprivileged mode), is constrained to using virtual addresses which
are translated by the virtual memory hardware into physical main
memory addresses. The operating system, executing in supervisor
domain (with the processor in privileged mode), is privileged, if it
so wishes, to use absolute physical memory addresses (and, in some
systems, can thereby access any main memory location). All the
other characteristics of execution domains remain the same as they
were in the third generation.

48

Ii

Hierarchial Execution Domains

MAPPiNG TABLE MAIN MEMORY

KERNEL

(PRIV) • KERNEL

MAPPh JG TABLE KERNEL

SUPERVISOR SUPERVISOR

MAPPING TABLE USER

USER

We have noted how current generation operating system designers

recognized that certain elements of the operating system were more
critical than others and required greaLer emphasis in design and
implementation in order to achieve overall reliability. Some
hardware designers realized that hardware support was needed to iso-
late and prouect these more critical operating system components.

This slide illustrates the concept of hierarchical execution

domains, as provided by the PDP-11/45 and 11/70 computer systems.
There are three modes of processor operation -- kernel, supervisor,
and user -- and a mapping table for each mode of execution. A pro-
cess therefore consists of three separate address spaces, or three
domains of execution. At any point in time during process execu-
tion, the particular mode of processor operation determines which of
the three mapping tables is used to translate virtual addresses.

The kernel address space contains those critical operating sys-

tem components which manage the physical machine resources and
implement abstractions out of these resources. The supervisor
address space contains non-kernel operating system components which

provide the extended services. And the user address space contains
user software.

The three domains of execution are linearly ordered in terms of

privilege. When a process is executing in kernel domain, kernel
operating system software is executing and information in all three
address spaces is accessible to it. Also, aniy privileged machine

49

instructions can only be executed in kernel domain, i.e. , when the
processor is operating in kernel mode. When a process is executing
in supervisor domain, non-kernel operating system software is exe-
cuting and only the supervisor and user address spaces are accessi-
ble. And when a process is executing in user domain, user software
is executing and only the user address space is accessible. Trap
instructions are used by software in user domain to invoke software
in supervisor domain, and by software in supervisor domain to invoke
software in kernel domain.

With this hierarchical execution domain mechanism, critical
kernel operating system software is protected from non-kernel and
user softwa~re, and non-kernel operating system software is protected
from user software.

50

Concentric Rings

MIAPPING TABLE

©0 R 37 PEAR L E2 ItJAJLN

2

Concentric ring hardware architectures are a generalization of
hierarchical execution domain architectures. The MULTICS 6180,
Honeywell SCOMP, and PRIME 400 and 500 are examples of concentric
ring architectures. This slide illustrates the general cliaracteris-
tics of a ring architecture supporting a segmented virtual memory.

Conceptually, rings of execution are arranged concentrically,
with ring 0 innermost, most privileged, and most protected. Rings
1, 2, and 3 are peripheral to ring 0 and of decreasing privilege and
protection. Ring 0 is analogous to kernel domain in a hierarchical
domain architecture, ring I is analogous to supervisor domain, and
rings 2 and 3 are analogous to user domain. (Ring 2 can be thought
of as user domain 1, with greater privilege and protection than ring
3, or user domain 2.) A field within the PSW defines the current
ring of execution of the currently executing process.

Segments of the process virtual memory are assigned to particu-
lar rings of execution just as segments may be assigned to particu-
lar domains in a hierarchical domain architecture. But unlike
hierarchical domain architectures, where a segment is assigned to a
particular domain by the placement of its descriptor into the map-
ping table associated with the domain, a segment is assigned to a
particular ring by the setting of certain values within ring bracket
fields of its descriptor. Furthermore, instead of defining the
address space of a process .A,-th a mapping table per domain, the
address space is defined by a single mapping table.

51

The value of ring brackets R1, R2, and R3 define the ring(s) of
execution fram which a segment may be read, written, and executed.
In this example, R1 defines the write bracket. A process may write
a data segment providing it possesses a descriptor for it in which
the write permission bit (W) is set and the current ring of execu-
tiorn of the process is between 0 and the value in R1. Similarly,
the combination of R2 and the read permission bit (R) ci-fines the
ring(s) of execution fraxn which a data segment may be read. And, in
a somewhat different fashion, the combination of R1, R2, and R3, and
the execute permission bit (E) defines the ring(s) of execution from
which a code segment may be invoked and executed.

PA contains the physical memory address, either in main or aux-
iliary memory, of the start of the segment, and LEN contains infor-
mation defining the length of the segmnent.

On a concentric ring architecture, code and data segments of
the kernel components of the operating system would be assigned to
ring 0. Each user process would include in its mapping table seg-
ment descriptors for these kernel code and data segments. The R1,
R2, and R3 values for certain kernel code segments would be set such
that they could be called by code segments executing in higher rings
using a CALL machine instruction; the CALL instruction would set the
ring field in the P3W such that the kernel code segments executed in
ring 0. Other kernel code segments might have ring bracket values
such that they could only be called by other kernel code segments
executing in ring 0. The R1 and R2 values of descriptors for kernel
data segments would be set such that they could only be accessed by
kernel code segments (0.e, R1 0 and R2 =0); they would be inac-
cessible to code segments operating in higher rings.

To continue further, code and data segments for non-kernel com-
ponents of the operating system would be assigned to ring 1, and the
mnapping table for each user process would include descriptors for
these segm~nts. Again, some of these non-kernel segments would be
made accessible to user code segments executing in rings 2 and 3,
others would be accessible only to code segments operating in ring

Finally, uý:er code and data segments would be assigned to ring

2 or ring 3 depending upon the protection needs of the User.

Note that the access rights of the process tend to increase as
the process' ring of execution decreases. Code segments executing
in ring 0 - the kernel of the operating system -- have access to
all segments of the address space, whereas code segments executing
in, say, ring 2 can only access segmen'ts assigned to rings 2 and 3.
Certain ring 0 and 1 segments may be accessible to these ring 2 code

52

segments, however, depending on the protection concerns of the
designers.

Any privileged machine instructions would be executable only by
ring 0 code segments.

53

1/0 Access Control

V0IRVCETEUAER

We havealreadydiscussDRhoEmStS adaedsgeshv
definedI/O oprationsto be DRilESS ahieisrutos

thereby~~~~IDE priinonyteOpFErTin ytmacs oIOdvcs

Here isa mechaism ihreb pcfcIOdvcscnb aeacs
siletousr rgrmsan mniuatd sig npiilge mchn
instructions. It is a m~~~~~~Echns rvddb h D-14 n 17

computerCE sysem anIscle emr apdIO

to maiuate anready deisceurdrssed hust litarwae meigemry loa-e
teions. I/0 dpevieregioster are assvigned busin addtressesoasar
mhemrey locaitions. Tnyhe sttueadratan regsterces tof a/ devices. b
Hrea usin a lcadninstruction; spcontro and datairegses can bemaeces
writtent using apsogrem in mnsrcion.euiguprvlgdahn

inthcsigns.Ific anceofatism featured is that an -1/4 Idvccand be/7

tor deiningsha the control, status, and data registers forthedevc
co anipbae adde to0 thevprces mappin addbresse Ins thise slieor thciat

paemdsrpory maptios. Tohe saun devic registers of an / device. Thne
proeaussn has read andswruciote accsntrol the devic registers cand can
writeaand wrtuhs/ dvcyaing an storing saytrctihe

frThe secondicande thir words ofeathre isixtha page of0 itsvirtucalb
icue wihntevruladdress space.o rcs. Adsrp

tootefng that winthout someaddtiondaal cnrolismechnsm fonl pro-eic

graoidIOdvcess (eag. terinls can bemade accessil to useric eisesan a

54

processes. It would be unwise to give a process access to a -Direct
Metnory.Access (DMA) 1/O device, or an I/O channel, because the pro-
cess might instru~ct the device to read or write memory areas not
belonging to the process. One mechanism which would permit user
processes to access DMA devices would be to have these devices
operate using virtual addresses when reading and writing memory.
Virtual addresses presented by the DMA device would be mapped into
physical memory addresses using the mapping table of the process
which "owned" the device.

55

Current Generation
Protection Features

Pdasw.ords for user auibhqnoictaion

F-ile gsyiem attb (Oflionrols

Audio met hdnisms

Let us now examine some of the types of protection features of
current generation operating systems.

One of the most common is the use of passwords for user authen-
tication. When a user attempts to logori to the system, he must
identify himself to the system and submit a password. The system
assures that the user is who he says he is by checking the password
against a list of valid users and their associated passwords.- It is
important that the system authenticate the user in some fashion,
lest a malicious user masquerade as some other user and gain access
to information to which he is otherwise not entitled.

Most current generation operating systems support mechanisms to
control access to information in the file system. File system
access controls must accommodate both the protection and controlled
sharing of information. Systems such as TENEX and UNIX support file
system protection based on the notion of self, group, and others.
This means that the creator or owner of a file can specify what type
of file access (e.g., read, write, execute, delete) is allowed to
himself (the owner), to other users in the same group as the owner,
and to all other users of the system. A much more flexible file
protection mechanism is access control lists, as supported by NUL-
TICS, wherein the creator or owner of a file can specify that par-
ticular users can have certain access to the file. For example, the
owner may specify that Jones has read access, Smith has read and
write access, Brown has read access, and everyone else has no
access.

56

Finally, most current generation systems maintain an audit log
of significant events. For example, whenever a user logs on, the
operating system makes an entry into the audit log recording the
user's identification and the date and time of logon. The system
can then read the audit log and display to the user information
descrý.bing when he last logged on. Should the user determine that
he didn,'t really logon previously, as the system says he did, he can
infer that sampone knows his password. The system may also record
in the audit log information describing for each file: time of last
access, time of last modification, and by whomn. The system should
make this information available to the owner of the file so that he
can be assured that the file is being used only as he wishes.

57

Current Generation Security

Operating systems still unreliable

MuhNlevel use not possible

Traditional s•curity techniques used

Sysltvli high opvva,unl~

Pi-riod, In-C~ v-m.l1

Weli, with all of these interesting hardware and software pro-

tection features, and the greater emphasis on operating system

design, you might conclude that current generation systems are by

and ldrge reliable enough to permit their use for processing mul-

tilevel information. Unfortunately this is not the case. Current

systems are still too unreliable and the traditional security tech-

niques of system high operation and periods processing must be used

in order to process classified informal:ion.

58

Current Generation Penetrations

II NF\. III

MW I I1(,, I'.SI) MIIRI

%I I , I no% erio. 01 Mit hiqdn

As evidence of the continuing lack of reliable access control
mechanisms, consider the following successful penetrations of
current generation systems.

A group consisting of representatives from IBM and System
Development Corporation was able to penetrate the IBM Virtual
Machine operating system, VM/370, which runs on the System/370.
VM/370 differs from conventional operating systems in that the
interface presented to the user is that described in the Principles
of Operation of System/370. VM/370 implements a number of virtual
System/370 machines; i.e., each user has the illusion of having a
stand-alone 370 consisting of a CPU, main memory, and I/O devices.
VM/370 endeavors to isolate each virtual machine. By sharing vir-
tual devices, data sharing with VM/370 is analogous to the way in
which data is typically shared among real machines.

The basis of all penetrations perpetrated by IBM/SDC was the
complexity of the VN/370 Control Program (CP) in mapping virtual
machine I/O onto real machine I/0. Each virtual machine user can
write a virtual machine channel program which the CP, for perfor-
mance reasons, would analyze for legality and then generate a real
I/O channel program to accomplish the virtual machine I/O. The
analysis was able to catch attempts at self-modifying virtual
machine channel programs, but the penetrators were able to introduce
"puns" in the real channel programs generated by CP. These puns
were based on the ability to chain I/O commands on the real machine.
The penetrators were able to seize control of the real machine and

59

have their own code run in supervisor domain. They were thus able
to access files belonging to all VM/370 users. Also, they found
that the CP was unable to control excessive demands by a particular
virtual machine, and they were able to monopolize real machine
resources, denying service to other virtual machines.

The TENEX operating system was penetrated in several ways by a
group at Lawrence Livermore Laboratories. The most interesting
penetration path was dubbed the "Password Information Leak." It is
a very subtle and complei flaw and characterizes a very stubborn
problem common in probably every system: the release of sensitive
information through timing or other unrelated information channels.
In the case of TENEX, the channel is the users ability to determine
a page fault occurrence, i.e., a reference to a page in the user
process' virtual address space which is not resident in main memory.

TENEX processes can submit passwords for checking in several
flexible ways. For instance, the process can invoke a system call
to gain access to some directory in the file system. Directories
are password protected, so the process must know the password for
the desired directory. The process would include the password as a
parameter to the system call. The process is able to put the pass-
word in user space and submit a pointer to it as the system call
parameter.

TENEX would do character-at-a-time checking of the password and
the knowledgeable programmer could exploit this fact to guess pass-
words. The programmer would position the submitted password so that
it straddled a page boundary. For example, the first character
would reside In the last byte of a resident virtual page and the
remaining characters would reside in the leading bytes of the next
page, which the programmer would arrange to be non-resident. The
programmer would issue the system call andi ,sequently determine
whether the non-resident page was referenced by TENEX. If so, the
programmer knew that the first character of the password was correct
and he would rearrange the position of the password and issue the
call again to guess the next character.

Another flaw the LLL group found was that typescript files of
user sessions were automatically assigned a protection mode of read
access to everyone. These files could contain very sensitive infor-
mation, like passwords.

A very extensive penetration analysis of the MULTICS system was
performed by people from the Air Force Electronic System Division
(ESD), with support from individuals at The MITRE Corporation. This
group was successful in finding an exploitable weakness in the NUL-
TICS hardware (the early Honeywell 645) and several weaknesses in
the MULTICS operating system.

60

The hardware problem concerned the bypassing of access checking
of operand addresses of the "execute" instruction. The trick was to
issue an execute instruction which had to resolve a series of
indirect addresses through different segments before the ultimate
operand was fetched. The hardware failed to perform access checking
on the final address in the sequence. The penetrators were able to
read or write a segment without the hardware checking the access
permissions in the final segment descriptor.

A somewhat simailar flaw was discovered in the parameter valida-
tion routines of the MULTICS operating system. The ring 0 valida-
tion routines performed insufficent validation of parameters s'~p-
plied by outer ring procedures on system calls to ring 0. The outer
ring procedure could fool the ring 0 validator by supplying a
pointer as a parameter which indirected through several segments
before the ultimate parameter was reached. The validator neglected
to perform access checking before retrieving or storing the ultimate
location.

These access checking flaws in the hardware and software could
be exploited in a number of ways. The malicious user could change
his user ID stored in his process data segment in ring 0 to be some-
body else and gain access to their files. Or the user could modify
ring 0 code and plant a trap door, or do just about anything else.
(Note: the flaw in the execute instruction has been remedied in the
new Honeywell 6180 hardware; also, the ring 0 parameter validator is
now done by the 6180 hardware -- correctly!)

Finally the Michigan Terminal System (MIS) was successfully
penetrated by a gtoup of University of Michigan graduate students in
advanced operating system principles. MTS runs on an IBM System/370
plug-compatible Amdahl 470V/6 and was designed to be secure from
penetration by student users -- even if rhey had full access to all
system documentation and listings. In fact, the penetration project
was undertaken at the invitation and full cooperation of the Univer-
sity of Michigan Computer Center!

MTS is a general purpose operating system providing both batch
and interactive service. It supported over 25,000 user accounts and
over 250 terminal users per day.

The class used SDC's Flaw Hypothesis Methodology and was very
successful. The flaws they found and exploited are similar to those
already discussed for other systems. One flaw in the system's
parameter checking routine allowed the. penetrators to trick the sys-
tem into storing arbitrary bit strings into system data bases. The

61

penetrators could alter accounting data, assume the identity of
other users, and run their programs in privileged mode. The parame-
ter checking flaw was that the system could be made to alter, unwit-
tingly, pointer parameters after they had been checked for legality,
but before they were actually used during the system call.

The Michigan group also found it easy to Cause system routines
to branch to user code without changing the processor mode back to
unprivileged.

Summnary conclusions in their report occurately characterize the
general reliability problem. "A large operating system frequently
depends on a number of control structures, each of which assumes
that the others function correctly. However, a flaw in one such
component may render the others useless. [The operating system
designer]).., Must distinguish security relevant control structures
from non-security relevant structures and concentrate on the
former .

62

Summary

Protel lion problems &rose when resourtce were shared

Third generation operating smstems wer, not designed with
IV.olet lion aN a prima"r goal

(urrent gene• mion operating strslems

11- q. .0 11',l d]l lld' .• 'U p l l"TL). r pf" 4] l "'ll. .1

C.Ill~ llt Jltl~ 11 ,1 ' Int ,lllll

Let us briefly summarize this examination of the evolution of
protection in operating systems.

We saw that the protection of information by the operating sy3-
tem did not become of concern until the third computer generation
when resources were shared by a number of user programs concurrently
resident in main memory. By and large, however, third generation
operating systems were not designed with information protection as a
primary goal. Rather, the goals were efficient utilization of
resources and system throughput.

Current generation hardware and software designers were well
aware of the unreliable nature of third generation protection and
endeavored to make improvements. The hardware designers were suc-
cessful. Intuitively, one can see that the hardware protection
mechanisms provide adequate hardware support. The operating system
designers and implementors were less successful. Although they
clearly recognized the importance of concentrating on a better
structuring of the internal software design -- and some did indeed
centralize those components which dealt with resource utilization,
the implementing of abstractions, and information protection -- the
resulting software still tended to be large, complex, and bug prone.

In order to produce operating systems with more reliable infor-
mation protection, better design and development methodolcgies are
needed. Now that the importance of structuring the internal design
of a system and of kernelizing components responsible for

63

information access control is well accepted, what are needed now are
improved techkiiques for unambiguously specifying the design, and for
constructing programs which can be shown to implement correctly the
design. This requirement can be satisfied by evolving software
design, development, and verification methodologies incorporating
formal specification languages, verifiable programming languages,
and yerificat ion techniques which strive to demonstrate via
mathematical proof the correspondence between program specification
and program code.

64

APPENDIX

This appendix includes lecture slides providing background
information on the multilevel computer security problem and the
requirement for trusted computing systems.

65

COMPUTER SECURITY PROBLEM

I The protection of information

I as it is stored within or processed by

a computer system serving a community of users

This opening slide attempts to define the computer security
problem as it exists today. We state the overall problem rather
simply as: the protection of information as it is stored within or
processed by a computer system serving a coummunity of users.

Our emphasis is on systems designed to support a community of
Users through the sharing of resources - the central processor,
storage devices, communications lines. Concern about the ability of
computing systems to protect the information they store and process
became most acute with the advent, about a dozen years ago or so, of
interactive systems designed to support multiple users simultane-
ously. The Department of Defense naturally desired to employ such
systems for a variety of applications; many of these, however, had a
requirement for the concurrent processing of information Classified
at multiple levels, and some potential applications had a require-
ment for supporting simultaneously users of multiple clearances.

Great concern arose, at that time, over whether the operating
systems of this new breed of computer system could effectively main-
tain the separation of multilevel information and, further, whether
they could prevent the malicious user from gairing access to infor-
mation to which he was not entitled. As many of you know, it was
quite evident these systems could not be trusted to enforce the
separation of information, or deny the malicious user access to
classified information.

66

With that unfortunate realization began the long process of
research and development programs into the construction of operating
systems incorporsting information protection mechanisms to permit
the simultaneous storage and processing of multilevel information.

And this is what we are primarily here to examine: the provi-
sion of information protection mechanisms, and assurances of their
correct implementation, in modern operating systems.

67

INTRODUCTION

SOLUTION : CENTRAL ISSUE IS ACCESS CONTROL

- EFFECTIVELY CONTROLLING ACCESS TO

a) THE COMPUTER SYSTEM ITSELF

b) INFORMATION CONTAINED WITHIN IT

One of the first groups to intensively examine the computer
security problem was the Defense Science Board's Task Force on Com-
puter Security, formed in 1967 to study and recommend hardware and
software safeguards that would satisfactorily protect classified
information in multi-access, resource-sharing computer systems.

Essentially, the central issue in solving the problem, so the
Board concluded, is one of access controls - effective, non-
circumventable access controls. Mechanisms must be adopted which
effectively control access to the computer system itself, and to the
information contained within the system.

Adequate mechanisms had already existed to effectively control
access to the system. After all, classified information was being
stored and processed on computer systems at that time - not mul-
tilevel information on multi-access systems, however -- and tech-
niques did exist to control access to these systems.

It was the second aspect, that of effectively controlling
access to information contained within the system, by the users of
the system, for which effective mechanism did not exist and for
which much work needed to be done.

68

INTRODUCTION

I POLICY DICTATES ACCESS CONTROL RULES

I DODD 5200.1R CHOSEN AS OUR STANDARD

I MANDATORY PROTECTION POLICY

I - INFORMATION HAS CLASSIFICATION
- USERS HAVE CLEARANCES
-CLEARANCE <: CLASSIFICATION

I DISCRETIONARY PROTECTION POLICY

Some policy must form the basis of the access control rules.
Department of Defense Directive 5200.1R, which outlines the policy
to be followed in the realm of people and paper donuments, can be
naturally extended to the comptiter system domain.

The Directive establishes a mandatory protection policy to
govern the handling of classified documents. It states that all
.information is assigned a cl0ssification which identifies the sensi-
tivity of the information by ascertaining the potential level of
damage to the interests of the United States were the information to
be divulged to an unfriendly foreign agent. There are three formal
levels of classification: Top Secret, Secret, and Confidential.
However, when the policy is extended to the computer system domain,
it is useful to consider Unclassified as a fourth level of classifi-
cation.

Information may also carry a Special-Access Category or Com-
partment, if that information is segregated and entrusted to a par-
ticular agency or organizational group for safeguarding. For exam-
ple, information pertaining to nuclear matters is entrusted to the
Atomic Energy Commission. Note that compartments create a furthe[
structuring within classification levels.

The Directive also stipulates that all personnel are to be
assigned a clearance, which is the privilege granted to an

69

individual on the basis of a background investigation to access
classified information necessary to his work. There are three for-
mal national clearances: Top Secret, Secret, and Confidential.
Again, when extended to the realm of computer systems, it in useful
to include a fourth category, Uncleared.

The general access control rule is that in order to be granted
access to classified information, an individual's clearance must be
equal to or greater than the classification of the information,
where the clearances and classifications are linearly ordered Confi-
dential, Secret, Top Secret. Further, if the information carries a
compartment, the individual must also be cleared to access informa-
tion of that compartment.

A clearance, however, is a necessary but not sufficient condi-
tion to have access to classified information. DODD 5200.lR also
establishes a discretionary protection (or need-to-kn~v) policy.
Need-to-know is an administrative action certifying that a given
individual requires access to specified classified information in
order to perform his assigned duties. The combination of a clear-
ance and a need-to-know constitutes the necessary and sufficient
conditions for granting access to classified information.

70

CLASSIFIED PROCESSING

DODD 5200.28 REGULATES PROCESSING OF CLASSIFIED
INFORMATION

INOMTO STRE AN RCSE
- ESTABLISHES POLICY

FOR PROTECTING CLASSIFIED

- OUTLINES MODES OF OPERATION

As many of you know, computer systems are indeed used to store
and process classified information. The formal requirements on com-
puter systems that must process any form of classified information
are set forth in Department of Defense Directive 5200.28, "Security
Requirements for Automatic Data Processing (ADP) Systems."

This directive establishes policy for protecting classified
information stored, processed, or Used within an ADP system. It
provides for the application of administrative, physi.aal, and per-
sonnel security measures required to protect ADP equipment,
material, and installations from inadvertent or deliberate comuprom-
ise.

It states that security controls should prevent deliberate or
inadvertant access to Classified material by unauthorized persons,
and unauthorized manipulation of the computer and its associated
peripheral devices.

It also establishes a policy outlining the modes of operation
in which classified data may be processed.

71

CLASSIFIED PROCESSING

DOD 5200.28-N IS ADP SECURITY MANUAL

OUTLINES CONTROLS

- PHYSICAL

- PERSONNEL
- ELECTROMAGNETIC
- CONSEC
- OPERATING SYSTEM ACCESS CONTROLS
- PROCEDURAL

DOD 5200.28-M, "Techniques and Procedures for Implementing,
Deactivating, Testing, and Evaluating Secure Resouroe-Sharing'AD.'
Systems," is also known as the ADP Security Manual. It expands .pon
the policies and requirements of DODD 5200.28 and outlines spocitic
measures and controls to be established for cemplisnoe with the pol-
icy.

Sections in the manual include: physical, personnel, else-
tromagnetic, comunications, operating system, and procedural safe-
guards.

Physical security controls safeguard the oomputer system itself
and access to It. It is the first line of defense, so to speak.
The central ocmputer Installation and terminal locations should be
in areas of restricted ocoess. Types of measures employed here are
vaults, locked doors, armed guards. The intent, of course, is to
deny Improperly cleared individuals access to the ocmputer Itself
and to any of Its terminals. Other issues relating to physical secu-
rity are:

- fire, flood, earthquate safeguards
- hardware maintenance
- file backup
- recovery plans
- control of documentation

72

Personnel controls relate to establishing the trustworthiness
of individuals permitted access to the comiputer system. Naturally,
in the DOD environment personnel security relates to attaining
clearance levels for these individuals conmmensurate with the clas-
sification and special categories of the information to be pro-
cessed. It is very important to educate personnel as to their
responsibilities in handling classified information in the computing
domain.

Electromagnetic emanations are released during the transmission
of information over commnunications lines and during the operation of
computing equipment. It is possible to intercept and monitor these
waves and determine the information being transmitted or processed.
Generally, the fieldi of strength of these emanations increases as
the voltage and current increases. Therefore high voltage devices
like CRTs and high current devices like core memories and elec-
tornechanical devices (card readers, printers) are of major concern.
Techniques exist for analyzing emanations released by devices and
for reducing these emanations.

Communications security addresses the passive monitoring of
electromagnetic emanations and the active wire tapping of informa-
tion during transmission. Communications security employs various
cryptographic techniques to combat these threats. Connercially-
available equipment exists for effectively and efficiently encrypt-
ing information transmitted over channels of small and large
bandwidth.

Operating systems security relates to any security and protec-
tion mechanisms supported by the operating system or by any applica-
tion subsystem. Types of controls considered here are passwords to
support user authorization and access to files, the labelling of
output, and the logging of user operations.

Finally, procedural controls refer to the coordinated admiinis-
tration of all of the above types of safeguards to satisfy the DODD
5200.28. Generally, a system security officer is assigned responsi-
bility for administering these safeguards. Responsibilities include
the registration of users, overseeing the mode of operation, estab-
lishing erasure and declassification procedures, reviewing audit log
information.

73

r I

I
CLASSIFIED PROCESSING

IJNILEVEL PROCESSING

--IS NOT PART OF THE PROBLEM

I- CAN BE HANDLED BY PROPER APPLICATION
OF THE VARIOUS ""AFEGUARC6

- DEDICATED SYSTEM

I

We distinguish between two types of classified processing:
unilevel and multilevel processing. Unilevel processing is where
the computer system stores and process information of a single clas-
sification level. The system is dedicated to processing at a sin-
gle, fixed security level. This type of processing is not part of
the problem; it is well understood and can be handled by the Judi-
cious applicition of the safeguards and procedures stipulated in DOD
5200.28-N.

741

I CLASSIFIED PROCESSING

MULTILEVEL PROCESSING

- SYSTEM HIGH OPERATION

- PERIODS
PROCESSING

Multilevel processing i6 a situation where processing of
several different levels of classification must be done on a single
ccauputer system. The ADP Security Manual identifies two modes of
operation to support multilevel processing.

The first is system high operation. This is a mode of opera-
tion where all users are cleared for the highest level of data being
processed in the system, and all processing takes place at that
level. All jobs must be upgraded to the system high level.

An implication of system high operation is that an unclassified
Job run on such a system would have to have its output treated as

* classified. This is unfavorable because it proliferates classified
information. Before the output of the unclassified job can be han-
dled again in an unclassified manner-, it must go through a standard
declassification procedure. Further, because we cannot trust the
computer to separate the data of a real classified job and an
upgraded classified job, we are not sure that the output of the
upgraded job is really unclassified. Tt must be thoroughly
reviewed.

This mode of operation is useful only if all .isers can be
cleared to the system high level.

75

-- --- --

The second acoepted mode of multilevel operation i3 periods
processing, or color chng operation. With this mode the computer
13 dedicated for use at specific security levels for different
periods of time. For example, at SECRET In the morning and UNCLAS-
SIFIED in the afternoon.

When the System transists from one level to another, certain
procedures must be followed to change the level (color) of the sys-
tern from one level (color) to another. This is called a color
change.

Color change consists of three phas0s - quiescence, change-
over, restart - and may take upwards of two hours from peak pro-
Cessing activity at one level to peak processing at the new level.
Changeover phase involves removing storage media, clearing all
memories and processors, removing all printer ribbons, and loading a
fresh copy of the operating system.

The advantage of periods processing over system high operation
is that there is no proliferation Of Classified information. The
disadvantage is the time wasted during the color change procedure.

76

CLASSIFIED PROCESSING

TRUE MULTILEVEL PROCESSING

-CONCURRENT PROCESSING OF MULTILEVEL INFORMATION B
USERS OF DIFFERING LEVELS OF CLEARANCE B

I - COMPUTER ASSURES SEPARATION OF INFORMATION

REQUIRES TRUSTFD OPERATING SYSTEM

- PROTECTION FEATURES IMPLEMENTING EFFECTIVE
N INFORMATION ACCESS CONTROLS

- ASSURANCE OF COMPLETE AND CORRECT OPERATION

What we are striving to achieve, however, is true multilevel
classified processir~g, which we define to be the concurrent processing
of irformation of more than one level of classification by users of
more than one level of classification. A prerequisite for support-
ing this mode of operation is a computer system wh~ich can be trusted
to maintain the separation of information classified at different
levels.

The system must maintain a clearance attribute for each user
and a classification attribute for all information contained within
the system; and. before a user (i.e., his program) may access any
piece of information, the system must examine the clearance of the
user and the classification of the information.

Trust means that the system is reliable enough not to acciden-
tally compromise information, and robust enough to thwart the inten-
tions of the malicious user.

True multilevel processing requires a trusted computing systetr.
A trusted computing system is defined to be one supporting hardware
and software protection features implementing effective information
access controls. In addition, we must be assured of the complete
and correct operation of the information access controls.

77

