" AD-A108 735 STANFORD UNIV CA DEPT OF COMPUTER SCIENCE F/6 6/4
QUERY OPTIMIZATION BY SEMANTIC REASONING, (U)
J J KING NOD039~80+6=0132
NL

MAY 81
UNCLASSIFIED STAN=-CS-81-857

1.0 ke gz
=g

s I

m T
— lle&

M2s s g

o

hY

MICROCOPY RESOLUTION TEST CHART 1
. .

NATIONAL BUKREAL 08 STANDRRIY. (9. 4

- @ BT

Query Optimization by Semantic

A~

DA1087 35

by

Jonathan Jay King

Rescarch sponsored in part by

National Science Foundation
International Business Machines
Defense Advanced Rescarch Projects Agency

Report. No. STAN-CS-81-857

Reasoning

DTIC

ELECTE
DEC 2 11981

B

Department of Computer Science

Stanford University
Stanford, CA 94305

KIY

@

e
S
»

-
»

DISTRIBUTION STATEMENT A

TR

Approved for public release;
Distribution Unlimited

———

Query Optimization
by Semantic Reasoning

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
' OF STANFORD UNIVERSITY
‘ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
‘ FOR THE DEGREE OF
1 DOCTOR OF PHILOSOPHY

By
Jonathan Jay King

May 1981 {'

{c) Copyright 1981
by

Jonathan Jay Kiﬁg

; S. Government
T material may be reproduced by or for the U.S.
p::'Zuant to the copyright license under DAR clause 7-104.9(a)

(1979 Mar).

Abstract

The problem of database query optimization is to sclect an cfficient way to process a query
expressed in logical terms from among the alternative ways it can be carried out in the physical
database. This thesis presents a new approach to this problem, called semantic query optimization.
The goal of semantic query optimization is to produce a semantically equivalent query that is less
expensive to process than the original query.

Semantic query optimization actually transforms the original query into a new onc by means of a
process of inference. The transformations are limited to those that yicld a semantically equivalent
query, one that is guaranteed to produce the same answer as the original query in any permitted state
of the database. This guarantee is achicved because the knowledge used to transform a query is the

_same knowledge used to insure the semantic integrity of the data stored in the database. Thus,

semantic query optimization brings together the apparently separate research areas of query
processing and database integrity.

The thesis also addresses an important issuc in current automatic planning research: production
not just of a correct solution but of a “good™ one, by means of an efficicnt problem solver. Semantic
query optimization advances the notion of a problem reformulation step for problem-solving
programs. In this stzp, cquivalent statements of the original problem are sought, onc of which may
have a better solution than the original problem. This method avoids explicit and possibly costly
analysis of cfficiency factors during planning itself.

Semantic query optimization can also be viewed as one aspect of intelligent database mediation. 1t
applics knowledge of a problem domain and of the capabilities and limitations of the database to
posc the most effective and easily processed queries to solve a user’s problem.

" The thesis formally defines transformations that preserve semantic equivalence for queries in the
relational calculus. In addition, it identifies several classes of cost-reducing query transformations for
relational database queries, and provides quantitative estimates of the improvements they can
produce, based upon widcly accepted models of query processing.

The thesis also discusses the design and implementation of a system that carries out semantic query
optimization for an important class of rclational database querics., The system is called QUIST,
standing for QUery Tmprovement through Semantic Transformation. \

The QUIST system has analyzed a range of querics for which different transformations apply. For
these queries, QUIST obtains substantial reductions in the cost of processing at a negligible cost for
the analysis itself,

Acknowledgments

1t is a pleasure to acknowledge the help and support I have received from many people in the
cfforts that have culminated in this thesis,

Gio Wicderhold is responsible for creating the Knowledge Base Management Systems Project
within which] have carricd out this research. He has consistently fostered the flow of ideas between
artificial intelligence and database research that underlics the thesis. His special concern for the
effective performance of intelligent computer programs helped to set the direction of my research,
Gio never stints in his personal and professional support of his colleagues. I am honored to be
among them. ' ‘

Throughout my years at Stanford, Bruce Buchanan has been a scientific inspiration and a fund of
common scnse. 1 marvel at the breadth of his interests and at his ability to locate the heart of a
problem. He is consistent, thoughtful, and above all, a gentleman. He has helped me more than once
to stay the course.

Of Earl Saccrdoti's many sterling attribﬁtcs. I want to thank him most for his enthusiasm. Earl
strives for connection, extension, and application. He has often persuaded me of the significance of
ideas that I have not fully appreciated. Earl is also responsible for much of what clarity of cxpression
appears in the text.

I have had other valuable rescarch colleagues in pursuing this work. Daniel Sagalowicz has spent a
great deal of time with me, planting the sceds of many ideas and letting me discover the answers he
alrcady knows. Barbara Grosz has helped me in many ways, with a critical eye and a warin heart. Ed
Feigenbaum has contributed his unique perspective on the care and feeding of expertise in computer
programs. Jerry Kaplan, the ramrod of the KBMS Project, has kept me pointed in the right
direction.

Other members of the KBMS Project have been extremely helpful. The roster past and present
includes Bing-quan Chen, Jim Davidson, Ramez El-Masri, Sheldon Finkelstein, Hector Garcia,
Mohammed Olumi, Tom Rogers, Neil Rowe, David Shaw, and Kyu-Young Whang. Special credit
goes to Shel Finkelstein for surviving as my office mate and for trying to add some rigor to my
thinking. And of course, Jayne Pickering has kept the whole menagerie in line. Thanks, Jayne, we
needed that. : i

S BN
Other fricnds far and near have helped improve my idcas and have offered support of all kinds.
They include Saul Amarel, Bill Baker, Avron Barr, Dave Barstow, Sylvia Bates, Jim Bennctt, Denny .
Brown, Jake Brown, Harold Brown, Pat Burbank, Mark -Cartun, Virt Cerf, Mike Clancy, Steve 1

Crocker, Nancy Davis, Randy Davis, Bob Engelmore, Larry Fagin, Dick Gillam, Abra Greenspan,
Pat Guitcras, Noerm Haas, Doug Hofstadter, Elaine Kant, Peggy Karp, Fred Lakin, Ruth Andrea
Levinson, Paul Martin, Larry Masinter, Thorne McCarty, Brian McCune, Charles Mingus, Bernard
Mont-Reynaud, Bob Moore, Jack Mostow, Malka Rosen, Betty Scott, Ted Shortliffe, Bob Sproull,
Lee Sproull, Mark Stefik, Blair Stewart, Jacquie Stewart, Jacobo Valdes, Bill van Melle, Richard
Waldinger, Dave Wilkins, Terry Winograd, Bill Yamamoto, and Ignacio Zabala.

And of course, Luis Trabb-Pardo. i

I have five special debts to acknowledge. 1 want to thank Belvin Williams for hiring me on faith, {
B.0.Koopman for showing me the work of the scientist in the world, Bill Raub for putting me on the
path toward scicentific research, Ed Feigenbaum for giving me a chance to straighten things out, and
Bob Taylor for refusing to help me quit.

ik

1 wisn to thank the National Science Foundation, the International Business Machines
Corporation, and the Defense Advanced Rescarch Projects Agency for their financial support. This
document was composed on the facilities of the Stanford Artificial Intelligence Laboratory and was
printed on equipment donated to Stanford by the Xerox Corporation. The rescarch described here
was conducted as part of the Knowledge Base Management Systems Project at Stanford Umvcrsny :
and SRI International, supported by the Advanced Research Projects Agency of the Department of
Defense under contract N00039-80-G-0132. 1

My parcnts and my sister Stephanic have helped me in every way imaginable. I hope they realize
how much.

And thanks most of all to Jonah and to Ellen, for everything.

:I ., "™

| Accesslon ror

NTIS GRAZ] GRALI ?
DTIC TAB a

! Unannounged 0

’Jut

t Dist bution/

) :Altlilablllty coan
vail and/or
Dist Speoial

Ta blé of Contents

. Introduction

1.1 Overview of the thesis

1.2 Background of the current research
1.2.1 Database abstraction and data models
1.2.2 The relational model
1.2.3 Conventional query optimization
1.2.4 Semantic integrity of databases

1.3 Guide to reading)

. Query Processing Expertise

2.1 Relational databases

2.2 The specification of relational database queries

2.3 Optimization of simple restrict-join-project queries
2.4 A conventional query optimizer for multifile queries
2.5 Generalizations about query processing

. Semantic Query Optimization

3.1 The limits of conventional query optimization
3.2 The semantic equivalence of queries
3.3 Semantic integrity constraints '
3.4 Query transformations that preserve semantic equivalence
3.5 Formal definition of semantic equivalence transformations
3.5.1 Merging of well-formed formulas
3.5.2 Semantic equivalence of transformed formulas
3.5.3 Transformation of a Query using a scmantic integrity constraint
3.6 Logical transformations in semantic query optimization

. The QUIST system

4.1 The design of an effective semantic query optimization system

4.1.1 Choosing semantic knowledge

4,1.2 Controlling transformations with structural and processing knowledge
4.2 Introduction to the QUIST system

4.2.1 The class of queries handled by QUIST

4.2.2 QUIST's semantic knowledge base
4.3 Ovcrview of the operation of the QUIST system

4.3.1 The planning step - identification of constraint targets

4.3.2 The gencration step -- production of constraints and scmantically equivalent

queries .
4.3.3 The testing step -- selection of the query with lowest estimated cost

V0NN -

R R

12.
13
15
18 -
19

23

24
25
27

29
30
32

35

-

36
k7
38
39
41
4
43
43

. ¢
4.3.4 Summary of QUIST operations 44 .
4.4 Example of the operation of the QUIST system. 45 |
4.4.1 Step 1 - Idcntification of constraint targets _ 48 .
4.4.1.1 Scanning a rlation 48 'S
4.4.1.2 Joining two relations 50
4.4.1.3 Summary of QUIST's constraint generation heuristics and classes of query 53
transformations
4.4.1.4 Constraint targets for the example query : .4
4.4.2 Step 2 - Generation of new constraints 55 .
4.4.2.1 Selection of rules for the generation of new constraints 55 .t
4.4.2.2 Scmantic cquivalence transformations in QUIST 51’
4.4.2.3 Mcrging a new constraint with an cxisting query 59
4.4.3 Step 3 - Formulation of the set of semantically equivalent qucries 60
4.4.3.1 The introduction of joins 62
4.4.3.2 The climination of query constraints 63 L
4.4.4 Step 4 - Determing the lowest cost query 65
5. The effectiveness of the QUIST system 67
: 5.1 Quantitative estimates of query improvements 67
5.1.1 Processing assumptions and cost formulas 68
5.1.2 Cost improvements from transformations . 69
5.1.2.1 Index introduction ' 69
5.1.2.2 Join introduction 70
5.1.2.3 Scan reduction Y
5.1.2.4 Join climination 71
5.2 Experiments with the QUIST system 71
5.2.1 Analysis of individual queries 72
5.2.2 The effect of inference-guiding heuristics 76
5.3 The stability of QUIST’s control strategy 77
6. The significance of semantic query optimization 81 .
6.1 Significance for databasc research 81
6.1.1 The relationship of semantic integrity to query processing 81
6.1.2 The organization and cffects of semantic query optimization systems 82
6.2 Significance for artificial intclligence rescarch 85
6.2.1 The reformulation of problems for better solutions 85
6.2.2 Intclligent databasc mediation 83
6.3 Limitations and directions for future research : 89
6.3.1 Data moC s and databasc architcctures : 90
6.3.2 Semantic knowledge 90
6.3.3 Control of scmantic query optimization 93
6.4 Conclusion 95
Appendix A. The QUIST query language 97
A.l Syntax of the QUIST query language 97
A.2 Semantic restrictions on the language o 97
"Appendix B. QUIST and the relational calculus 99
B.1 Gencration of a relational calculus query from a QUIST query 99
B.2 The generation algorithm , ’ 100
e

) B.3 QUIST semantic rules and their refational counterparts 103
B.4 QUIST transformations and their relational counterparts , 104
Bibliography) . o7
)
]
.
»
»
»
8
»

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 4-1:
Figure 4-2:
Figure 4-3:

List of Figures

Operation of a conventional query optimizer

Operation of the QUIST semantic query optimizer
The QUIST problem reformulator

Ilustrative tuples in the SHIPS relation

Elements of conventional query optimization
Gencralizations about query processing

Example database relations

Heuristics that designate constraint targets.
Heuristics that designate nontargets.

BRwnaw

15

45
53

List of Tables

Table 5-1; Assumed File Sizes for Timing Experiments
Table 5-2: Reduction in Processing Costs with SQO
Table 5-3; Effect of Inference-Guiding Heuristics

72
75
76

mitinady atiinmndhtittatoimtn.

,.,_.._...__,,,rhw-
.

INTRODUCTION ' . 1

Chapter 1
Introduction

1.1 Overview of the thesis

The problem of database query optimization is to select an cfficient way to process a query
expressed in logical terms from among the alternative ways it can be carried out in the physical
database. This thesis presents a new approach to this problem, called semantic query optimization

(SQO).

The goal of scmantic query optimization is lo produce a semantically equivalent query that is
less expensive to process than the original query,

Semantic query optimization is a response to inherent limitations in what may be termed
conventional query optimization mcthods'r ([Selinger79] [Yao79] [Youssefi78]). These methods seek to
exploit efficient paths in the physical database. However, it is not possible to supply physical support
for all logical relationships because of the high cost to maintain that support when the database is
updated. Thus, there will be many qucries that both involve access to much data, and in which the
logical relationships are not well supported physically. These queries are expensive to process, and
conventional techniques are ineffective,

Scmautic query optimization actually transforms the original query into a new one by means of a
process of infercnce. The transformations are limited to those that yield a semantically equivalent
query, one that is guaranteed to produce the same ansver as the original query in any permitted state
of the databasc. This guarantec is achicved because the * nowiedge used to transform a query is the
same knowledge used to insure the semantic integrity (McLeod76] or meaningfulness of the data
stored in the database. Thus, semantic query optimization brings together the apparently separate
rescarch arcas of query processing and database integrity.

SQO also addresscs an important issue in current automatic planning research: production not
just of a correct solution but of a "good™ one, by means of an efficicnt problem solver.

1"I‘I'n: term optimization is a misnomer; there is no claim that the least expensive processing method is found. However, the
term is firmly established in the literature.

hi

T

2 INTRODUCTION L‘

Semantic query optimization advances the notion of a problem reformulation step for
problem-solving programs. In this step, equivalent statements of the original problem are
sought, one of which may have a belter solution than the original problem. This method

avoids explicit and possibly costiy analysis of efficiency factors during planning itself. . B
Semantic query optimization can also be viewed as onc aspect of intelligent database mediation. 1t
. applics knowledge of the problem domain and of the capabilities and limitations of the database to ‘
- pose the most effective and casily processed queries to solve a user’s problem. 1

As with most query optimization work, the rescarch presented here deals with querics using the
relational model of data ([Codd70], [Kim79]).'r The thesis formally defines transformations that
preserve scmantic equivalence for queries in the relational calculus [Codd71). In add +*un, it
identifies several classes of cost-reducing query transformations for relational database queries, and .
provides quantitative cstimates of the improvements they can produce, based upon widcly accepted
models of query processing,

The thesis also discusses the design and implementation of a system that carries out scmantic query
optimization for an important class of rclational database queries. The system is called QUIST, 4
standing for QUery Improvement through Semantic Transformation.

The QUIST system has analyzed a range of queries for which different transformations apply in
the contexi of a simplified query processing model based on the System R access path selector
[Selinger?9). For these querics, QUIST's overhead is negligible compared to the estimated reduction
of query processing cost. The overhead is also negligible in cases where QUIST determines that there
are no constraint targets, or that the query conditions arc not satisfiable. The latter condition is
detected without recourse to actual data, in contrast to a similar function performed by so-called
"cooperative response” sysiems ([Kaplan79), [Janas79]).

QUIST uses heuristics to guide the process of inference that produces equivalent queries. The
1 process is directed toward the application of onc or more specific types of transformations on the
rclational query, such as the climination of a relation or the introduction of a constraint on an
indexcd attribute. The only inferences that take place are those that may produce a query that is
more cfficient to process.

QUISTs inference-guiding heuristics reflect the expert knowledge of rclational databasc structure
and qucry processing developed in recent query optimization research. Indeced, it is the existence of
fairly wide agrcement about models of query processing and optimization issucs in the relational
setting that makes that sctting a a suitable one for exploring scmantic qucry optimization.

The operation of QUIST can be contrasted with that of a conventional query optimizer. A
conventional optimizcr (Figure 1-1) takes the given query as its input. 1ts output is a plan consisting
of a sequence of retricval operations in the physical database.

T'ﬂ\c work is also applicable to other data models particularly where implementations include some fast access paths.

w —
d INTRODUCTION . 3
' . Query (Problem)
Conventional
R Query
Optimizer
Sequence of
' Retrieval Operations
(Plan)
Figure 1-1: Opcration of a conventional query optimizer

' In operational terms (Figure 1-2), QUIST encompasses:

e a problem reformulator

¢ aconventional query optimizer
’

¢ a query sclector.

QUIST starts with the constraints spceified in the input query. The problem reformulator (Figure

1-3) first determines which database relations, if any, are constraint targets. QUIST designates a

’ relation as a constraint target if it determines that it may lower the cost of query processing by finding

- additional contraints on that relation. If there are no targets, QUIST merely returns the original

query for processing. Otherwise, its problem reformulator next rcpeats a cycle of operations that

; produce constraints until no more cycles cau be carricd out. During each cycle, relevant semantic

| integrity rules are retriecved. QUIST filters the rules according to the list of constraint targets, tests

them for applicability against the current constraints, and asserts ncw constraints if possible. The

process terminates when some cycle fails to gencrate new constraints. Finally, the problem

reformulator gioups the known constraints, both those given originally in the query and those

derived using semantic knowledge of the domain, into a sct of queries that arc semantically
equivalent to the original query.

QUIST next uscs its conventiona! query optimizer to estimate the cost of processing cach of the
semantically cquivalent qucries. Finally, as its output QUIST sclects the query with the lowest
cstitnated processing cost as determined by the conventional query optimizer. ’

In more abstract terms, QUIST opcrates at three levels that correspond to the levels of the plan-
gencrale-iest paradigm of artificial intelligence [Feigenbaum71] seen in such systems as Meta-
Dendral [Buchanan76). ‘I'he planning and generating steps take place in the problem reformulator,
while the testing step is carricd out by the conventional optimizer and the query selector.

| . — S . . ‘ I

: ' : INTRODUCTION

QuIsT

Problem Reformuliator

» : Equivalent -+ |- Queries

Conventional
Query Optimizer

Minimum-cost | Retrieval Plans

Query Selector

Sequence of
Retrieval Coerations
(Plan)

Figure 1-2: Operation of the QUIST semantic query optimizer

¢ The planning level is the one at which constraint targets arc established. At thisdevel, the
query is treated in very abstract terms. The query’s only important characteristics are the
names of the rclation attributes that arc constrained or from which output values are
requested. At the planning level, QUIST divides the databasc's relations into those that
should be targets for inference and those that should not, much in the way that the
Dendral program [Feigenbaum?1) divides fragments of chemical structures into those
that should or should not be part of a desirced complete structure.

o At the generate level, QUIST explores a space of semantically cquivalent queries. Each
move in this space is a query transformation based upon te inference of an additional
constraint. Each inference is supported by a rule in the semantic knowledge base. Only

INTRODUCTION
’
Query
) QUIST
Physical lnference-guid'ing
Database Heuristics
Schema
]
PROBLEM
REFORMULATOR
§ Plan-Step
. Semantic
Constraint Targets Integrity
' Rules
‘Generate-Step J
(infer/Group)

i

}

Equivalent Queries

Figure 1-3: The QUIST problem reformulator

m

6 INTRODUCTION

plausible moves arc generaied in the sense that the constraint target list permits only
transformations which may possibly produce a lower cost query. The representation of

the query at the generate level is less abstract than at the planning level. At the generate
level, it is neccssary to dcal with the precise constraints on database atuibutes, not just -
with the names of the attributes that have been constrained.

o The testing level views cach query in the most detail. Here, estimates of actual processing
cost arc obtained. QUIST includes a conventional query optimizer to find the icast
expensive way to process cach semantically equivalent query produced at the generate
level. The scquence in which each part of the query is processed is an essential factor.
Processing at this level can be rcgarded as carrying out moves in a space of physical
realizations of a single logically expressed query producced at the level above.

QUIST's use of the query processing expertise developed in conventional query optimization
research is secn in the relationship between the scarches at the generate and testing levels. The .
testing level search of alternative processing sequences, which is nothing other than conventional .
query optimization, is guided by detailed models of the cost of data access. The generate level search i
of semantically cquivalent queries is guided by the constraint target list. The heuristics that produce
the constraint target are, in cffect, summarics or abstract versions of the detailed cost models used at
the testing level,

1.2 Background of the current research ' .

This rescarch introduces the use of semantic reasoning to address the problem of query
optimization in relational databases. In this scction, we bricfly review the rescarch on database
abstraction that has focussed attention on the query optimization problem. We indicate why
relational databases are a suitable context for this current study, and we note how previous
investigators have defined the problem in that context. We also discuss the important ideas about the
semantic integrity of databases that suggest the possibility of semantic rcasoning 2s an approach to
cfficient query processing. ‘The rescarch discussed in this section serves to frame the issucs of the
current study, We defer until Chapter 6 a discussion of the significant contributions of our rescarch
in the context of previous investigations.

1.2.1 Database abstraction and data models

The query optimization problem arises from the distinction between the logical and physical
representations of a database. Fry and Sibley [Fry76] trace the cvolution of database abstraction
concepts that has led to the current notion of a dara model as thc mcans to maintain the

_ logical/physical distinction. A data model is a language in which to express the logical structure of a
databasc and the logical operations that are permitted upon that structure. That is, a data model is a
vehicle for defining a databasc’s data clements, relationships, and data types, as well as the opcrations

INTRODUCTION ' : 7

on the clements and relationships. 1t is also the basis for the query language by which clements of the
database can be specificd and retricved by their logical properties.

Most attention has been paid to threc kinds of data models. These arc the network model
[Taylor76], the hierarchical mode! [Tsichritzis76}, and the rclational model [Codd70]. Numerous
database systcms and query languages have been based on each of these models (see [Wiederhold77]
for an extensive wtalogue of such systems).

1.2.2 The relational model

Whatever the merits of database systems based on the three major data modcls with respect to case
of implementation, maintenance, and use, it has been persuasively argued [Datc77] that the relational
model provides the greatest separation between logical and physical levels of a database. The degree
of data indcpendence thus offered has stimulated much rescarch into high level nonprocedural
facilities for retricval and update, for the definition of logical and physical structurcs and user views,
and for the control of access, integrity, concurrency and recovery ([Kim79]); the current study follows
in that linc of rescarch.

For simplicity, a relational database can be viewed as a collection of tables of data. In this view the
table columns are attributes and the rows correspond to individual data records. There are no explicit
connections among the tables, so manipulations of them can be specified simply and flexibly. One
broad class of rclational data manipulation languages is based on the relational algcbra [Codd70)
which defines operators to transform tables into other tables. Basic operators include restriction
(horizontal subsctting of a table), projection (vertical subsetting of a table), and join (cross matching
of two tables). Arnother broad class of languages is based on the relational calculus [Codd71}, an
applicd predicate calculus.

1.2.3 Conventional query optimization

Research in conventional qucry optimization is important to the present work for two reasons.
First, it has shown that scparating the logical and physical aspects of a databasc does not necessarily
result in incfficient query processing. Secondly, it has -stablished a body of knowledge about the
factors that govern the cost of processing queries, knowledge that can be directly applied in a system
for semantic query optimization.

As we shall detail in Chapter 2, rescarch in conventional query optir™ ation has centered on
querics built up from the basic rclational algebra operators of restriction, projection, and join, or
from their cquivalents in the relational calculus.

The starting point for query optimization research in the rclational context was the analysis of
individual operations. Astrahan and Chamberlin [Astrahan75}, among others, studicd the restriction
operation. Gotlicb {Gotlicb75] and Rothnic [Rothnic75} are among those who investigated the join
operation,

v

8 INTRODUCTION

Query optimization rescarch builds on studics of the simplest queries that involve all of the key
relational operations. These simplc queries involve a single join operation between just two relations.
The most important of these studies, from the standpoint of establishing the necessary elements_
underlying conventional query optimization, arc those of Blasgen and Eswaren [Blasgen77) and Yao
and DcJong [Yao78]. These studies produced scts of query processing methocs for the simple
qucrics, along with cost formulas and applicability conditions for the mcthods. '

Most recently has come the development of optimizers for the general class of restriction-join-
projection queries. The building blocks of these optimizers are the methods to process the single-join
querics. The key insight underlying the optimizers is to see the evaluation of the general query in
terms of a sequence of evaluations of simple queries. The task of the gencral optimizer is to choose
which simple mecthods to apply, and in what scquence. The query optimizers of INGRES
[Youssefi78] and of System R [Sclinger79] can be viewed as operating in this manner.

1.2.4 Semantic integrity of databases

The idea of scmantic query optimization presented in this thesis rests squarely on the concept that
a databasc should be an accurate reflection of some real world application, not just any collection of
data values. If the database contains values that cannot be attained in its real world application, then
there is said to be a violation of the semantic integrity of the database, Semantic query omimizaﬁon
relies on a knowledge base of rules that are not part of the database proper, but that describe what
values in the databasc correspond to possible states of the real world application.

In carly database systems, integrity checks were confined to the detection of errors in format or
were implemented as ad-hoc procedures incorporated in gencral database updating routines. A more
systematic approach to the classification, detection and treatment of semantic integrity violations
arose in the work of such researchers as Eswarcn and Chamberlin [Eswaren?5] and Hammer and
Mcl.cod [Hammer78]. Two broad notions of semantic integrity have been developed. One notion
concerns the specification of permissible stares of the database. For instance, it may be required that
the salary of employees be no greater than some maximum figurce; any data valuc for salary that
exceeds that maximum does not reflect a legitimate state of affairs in the company, and so must be
considered a semantic integrity violation. The other notion of scmanlic integrity concerns
permissible transitions from one state to another. For instance, it may not be permissible to ieduce
the salary of an employee, even if the salaries before and after the change are both Iegitimate salaries,

Because query processing is assumed to take place in a single statc of the database, we are only
concerned in the present research with scmantically based constraints on states of the database, rather
than with permissible transitions between states, Several methods have been suggested for expressing
such state constraints including: as qualifications in a query language expression [Stoncbraker75]; in
a special constraint fanguage [Mcleod76]: in terms of an algebra in the sprit of abstract data types
[Brodic78]; and in a general logical formalism such as predicate calculus [Chang78) or semantic
nctworks [Roussopoulos?7]. The rescarch presented here generally adopts the predicate calculus

INTRODUCTION 9

approach to representing semantic integrity constraints adopted by Chang [Chang78] and others
[Gallaire78).

In addition to studics in the representation of scmantic constraints ¢a databases, much effort has
been devoted to issues of designing systems for specifying semantic integrity constraints and for
checking them cfficiently (JHammer78), [Wilson80]). The method deviscd by Stoncbraker
{Stoncbraker75] for maintaining semantic integrity of a database is similar to the method used by
QUIST. Stoncbraker's method, called query modification, works by modifying an update request. In
gencral terms, it conjoins appropriate integrity constraints to the qualification portion of the update
request. In this way, no data is altered that would result in a state that violates the cdnjoincd
constraint. The query transformations described in the present research are similar to these query

" modifications.

We have now concluded our brief review of research that forms the background to our
investigation of semantic query optimization. We shall look at additional related research when we
discuss the significance of our results in Chapter 6.

1.3 Guide to reading

Semantic query optimization integrates two important sources of knowledge: knowledge about
cost factors in query processing. and knowledge about the semantics of the application task domain.
Chapter 2 discusses the problem definitions and models of query processing that characterize
conventional approaches to the optimization of querics in relational databases. Chapter 3 introduces
scmantic query optimization, It presents the formal basis for the notion of a transformation of a
relational query that preserves meaning in all permitted states of the database.

In Chapter 4, we describe the QUIST system in detail. We show how the models of query
processing developed in research on relational databases are directly incorporated into heuristics to
guidc the transformation of queries into less costly, semantically cquivalent forms. In Chapter 5, we
discuss the effectiveness of QUIST in terms of the estimated reductions in cost made possible by
various kinds of query transformations. We also report the results of using QUIST on a range of
querics that illustrate those classes of transformations, and we discuss the stability of the QUIST
control strateg, when the size of the database or rule base increases.

Finally, in Chapter 6 we discuss the significance of the work reported here in the context of
rescarch in database management and artificial intelligence. We also review the limitations of the
currcnt work and suggest dircctions for future research,

QUERY PROCESSING EXPERTISE 1

4
) Chapter 2
Query Processing Expertise
’ The most important outcome of conventional query optimization research! is deeper

understanding of . probler.. of accessing data, what we might call query processing expertise. In the
terminology of Sect’s ~ 1 1, quety processing expertise is knowledge of problem-solving methods for
the specific r.niien: ¢ processing database queries. This expertisc is manifested in two ways: in
terms of the assumptions, models, and approaches that characterize advanced query optimization

’ systems, and in “:rms of generalizations concerning the factors that contribute to the cost of
processing queries.

Rescarch in the optimization of rclational database queries serves as an appropriate case study for

examining query processing expertise. There is substantial agreement on the validity and power of
¢ the data storage, data access, and cost models developed in the relational context, although there is no
standard accepted for all systems.

Query processing expertise is an essential underpinning of semantic query optimization. Through
the proper use of this knowledge, it is possible to control the usc of semantic knowledge in an
? effective semantic query optimization system. In this chapter, therefore, it is our aim to summarize

i the expertise that has cmerged from rescarch on relational database query processing. In so doing,
we specify the class of queries towards which we have directed our specific rescarch in semantic
qucery optimization.

In Scction 2.1, we review the basic terminology of relational databases. In Section 2.2, we describe
how quecries are specified. Our objective in Section 2.3 is to specify the knowledge that underlics
conventional approaches to optimization of restrict-join-project querics. This is the class of queries
that is the focus of conventional query optimization research. We accomplish this objective through a
detailed review of some characteristic research work in the ficld. We extend this in Scction 2.4 to
¢’ show how this query processing knowledge is actually used in a conventional query optimizer.
Finally, in Scction 2.5 we make cxplicit some of the genceralizations about query processing that
constitutc query processing cxpertise and that play an integral part of scmantic query optimization.

T1hc usc of the term optimization in this context is discussed in Section 1.1,

1

12 QUERY PROCESSING EXPERTISE

2.1 Relational databases

In formal tcrms, a relational database is a collection of relations. Let D1,D2,. ,Dn be n scts. Codd
[Codd71] defines the exteided Cartesian produci of these sets as:

X(D1,D2,....Dn) = {(d1,d2,...dn): di€D;j forj = 1,2,....n}.

R is a relation on the sets D1,D2....,Dn if it is a subset of the extended Cartesian product of those sets.

A relation is thercfore a sct, and its members are n-tuples (or more simply, fuples) where n is referred
to as the degree of the relation. The sets Di on which the relation R is defined arc called its -

underlying domains. For purposcs of modelling databases, the domains under consideration are
integers and character strings. The number of n-tuples (or more simply, tuples) in R is the cardinality
of R.

A relation can be viewed as a table in which the rows correspond to tuples and the columns
correspond to mappings from the relations into its domains. The mappings arc called attributes, and
it is possible to base more than one attribute on the same domain. An attribute value is the entry for
a particular row/column combination.

To illustrate the data definitions, consider a relation that describes characteristics of ships:
SHIPS(Ship Owner Type Length Draft Deadweight)

SHIPS is the name of a relation. The words in parentheses are the names of the attributes of the
relation.

Assumc that the attributes Ship, Owner, and Type are defincd on the strings, and that the other
attributes take on integer vatues. The relation might consist of the following tuples (based on data
from 1loyd's Register of Ships [Lloyds78)):

Ship Owner Type Length Draft Decadweight
"Bralanta” "Braathan” “Tanker" 285 17 154
"British Wye” "BP Shipping" "Tankc.r" 171 9 25
"Carlova” "Index Maritime" "Bulk" 218 12 S5
"George F. Getty” "Hemispinere"” "Tanker" 319 19 227

"'lntcllcct Encrgy” "Energy Shipping” "Tanker” 88 6 2

Figure 2-1: Nlustrative tuples in the SHIPS relation

- P SO —_—) U

- .,

[4
QUERY PROCESSING EXPERTISE - 13
We take the first tuple to signify that the tanker Bralanta is owned by Braathan, that it is 285
¢ meters long, has a draft of 17 meters, and has a deadweight (sizc) of 154,000 long tons. The other
tuples are interpreted similarly.
2.2 The specification of relational database queries
? .

There are two broad classes of relational query languages: those based upon the relational algebra
and those bascd upon the relational calculus. An extensive discussion and comparison of the two
classes can be found in [Date77]. In a relational algebra language, a query is expressed by specifying

_operators that transform rclations into other relations, and ultimately into the desired result relation.
' The relational calculus is an applied predicate calculus. Query languages based on the rclational
calculus specify retrieval in terms of a calculus expression. Pirotte [Pirotte78] gives an excellent

survey of the kinds of relational query languages that are based on the predicate calculus.

The languages based upon the relational algebra and the languages based upon the relational

' calculus present different interfaces to a user or a program. However, Codd demonstrated [Codd71]
that the two formalisms are equivalent. In that same paper, Codd proposed the relational calculus as
a standard against which the expressive power of query languages could be mecasured.
We now illustrate the specification of relational queries using a language based on the relational
¢ calculus, the SODA language [Moore?79). We note that a query does three things:
L. It specifies what relations are involved in the query, either for checking conditions or for
retrieving specific values.
. 2. It specifies what conditions must be met.
3. It specifies what aspects of the qualifying data items are to be retrieved.
L.
Our illustration uses a simpic example relational databasc that includes two relations:
’ SHIPS(Ship, Length)

CARGOES(Ship, Cargotype. Quantity)

These relations contain information about ships and the cargocs they carry. Suppose it is desired
'y to retricve the names of ships longer than 200 meters that arc carrying more than 1000 tons of wheat.
‘The appropriate query in SODA could be expressed as:

. | T p——y.... - . - e

14 QUERY PROCESSING EXPERTISE

{IN V1 SHIPS) (IN V2 CARGOES) -
((V1 Ship) = (V2 Ship)) -
((V1 Length) > 200) ((V2 Cargotype) = “Wheat™) ((V2 Quantity) > 1000)

(? (V1 Ship))

The first line dcﬁneﬁ the ranges of two fuple variables V1 and V2. A tuple variable is a variable
that ranges over the tuples of a specified relation. For each tuple variable, the query specifies the
relation over which the variable ranges. Thus, V1 ranges over the SHIPS relation, and V2 ranges over
the CARGOES relation.

The next two lines of the query specify the retrieval qualification. What are the objects on which
the qualification is to be tested? They are preciscly the tuples of the relation formed by taking the
Cartesian product of the relations over which the tuple variables range. The formation of the
Cartesian product is conceptual, ’I‘h'at is, it may not actually be nccessary to form the product
completely before applying qualifying conditions. Indeed, it is advisable on cfficiency grounds not to
form the product. Each tuple in the Cartesian product of the example query is the concatenation of a
SHIPS wple with an CARGOES tuple.

The first line of the qualification contains the join ferm ((V1 Ship) = (V2 Ship)). A join term has
the form (X COMP Y) where X and Y are artribute specifiers, and COMP is one of the comparison
operators such as =, 2, and so forth. An attribute specifier is a (tuple variable, attributc name)
pair; it is the same thing as the indexed wple referred to in [Codd71], but restricted to a single relation
and a single auribute. The attributes specified by X and Y must be defined on the same underlying
domain. Roughly speaking, the join terms of our cxample query pairs cach cargo with the ship that is
carrying it by cquating the namcs of ships.

The next line contains three restriction terms, (V1 Lengih) > 200), ((V2 Cargotype) = “Wheat”),
and ((V2 Quantity) > 1000), that further restrict the subset of the Cartesian product that passcs the
join term test. A restriction term is of the form (X COMP CONSTANT) where X and COMP are as
before and CONSTANT is a constant in the domain of the attribute specificd by X. In our cxample,
the SHIPS portion of qualifying Cartesian product tuples must have a Length valuce greater than 200,
and the CARGOES portion must have a Cargotype value of “Wheat™ and a Quantity value greater
than 1000. Notc that therce is an implicit conjunction among the join and restriction terms.

The tuples of the specified Cartesian product relation that satisfy the retrieval qualification are
called the qualifying tples. 'The final task of the query is to say what information is sought from the
qualifying tuples. The dcsired output is specified in a rarger list. A target list is a list of attribute
specifiers. Each attribute specificr in the target list requests the retricval of the value of the specified
attribute for all qualifying tuples. The final linc of the example query specifics the retricval of the
ship name Ship from the SHIPS portion of the qualifying tuples.

QUERY PROCISSING EXPERTISE 15

In a standard relational calculus language, a retrieval qualification is a logical combination of
restriction terms and join terms, using the standard logical conncectives and existential and universal
quantification. - The reader is referred to [Codd71] or [Pirottc78) for a thorough discussion of
allowable qualifications. Intuitively, the join terms of a qualification most often correspond to
semantic relationships among cntities and the restriction terms are additional restrictions on the
cntities so related.

2.3 Optimization of simple restrict-join-project queries

Experience with relational database systems indicates that there is a subset of the relational algebra

‘ in which a very great percentage of queries can be cxpresscd. This subset has thercfore become the

main focus of conventional query optimization rescarch in relational databases.

In this scction, we look in deil at a characteristic example of this research, the work of Blasgen
and Eswaren {Blasgen77] at IBM. Our purpose is to reveal the foundation elements of conventional
query optimization that have been gencrally accepted by investigators in the ficld. These clements
arc noted in Figure 2-2,

1. A limited but important class of queries.
2. A modcl of data storage.
3. A model of access to data.
4. A cost mcasure related to data access.
5. A sct of methods to carry out the “atomic™ queries.
6. System and query parameters that arc used in cost analysis.
7. Cost formulas and applicability conditions for the methods.
Figure 2-2: Elements of conventional query optimization

The querics 'inder consideration are those that can be expressed in terms of the three basic
rclational algebra operations: restriction, which sclects rows from a relation; projection, which sclects
columns from a rclation; and join, which matches (cross-references) two relations on compatible
attributes (attributes defined on the same underlying domain of values). Note that the discussion
applics to the relational calculus oo becausce a corresponding class of querics in that formalism can be
translated into these algebraic terms (sec [Yao79), for example). The corresponding class in relatior.al
calculus terms involves range statements for tuple variables, plus a qualification in terms of those
variables, which together correspond to restriction and join, and a target clause which corresponds to
a projection.

16 . : QUERY PROCLSSING EXPERTISE

The work reported in {Blasgen77) considers a gencral query with the following form: apply a given
restriction to relation R, yielding R, and apply a possibly different restriction to relation S, yielding S!
Join Rand S'to form a (new) relation T, and project some columns from T. This query can be termed

a Iwo-relation query, and can be vicwed as the atomic unit from which all the restrict-join-project
qucries can be constructed.

Blasgen and Eswarcn propose straightforward models of access and storage. Because these models
~are typical of the access and storage models used throughout conventional query optimization
research, we will describe them in detail.

The database is assumed to be stored on direct access secondary storage, typically on disk. Physical
storage is divided into fixed length pages. There are two kinds of pages, data pages and index pages.
The tuples of the database relations are stored as fixed length records on the data pages (under this
assumption, the terms wple and record are used interchangeably throughout the query optimization
literature). A data page may contain tuples from more than one relation, but no tuple is broken up
across page boundaries, Each tuple has a unique tuple identifier (TID). It is assumed that the file
systcm can convert a TID into an address for direct access to a tuple. The TID's have the property
that accessing a sct of tuples in sorted TID order accesses a data page at most once,

L F Secondary storage is divided into segmenrs. A segment is a large address space that contains one or

more relations. It is implemented as a sct of pages. Each tuple stored in a segment identifies the
relation to which it belongs. No relation is broken up across segment boundaries. To obtain all the
tuples of a relation, the segment can be scanned by fetching its pages one at a time and checking
every tuple on the page for membership in the desired relation. This kind of scan is called a segment
scan. A segment scan fetches every page in the segment once.

Because a segment can be large, a segment scan can be very slow. For this reason, other access
paths to the tuples of a relation may be arranged. The model described in [Blasgen77] admits an
access path based on a single-column index to a relation (another type of access path is the fink). A
L singlc-column index on a column A of a relation R is a set of pairs whose first component is a value
from A and whose sccond component is the TID of a tuple of R that has that value. The index is
stored as a B-tree of pages. Pages at the lowest level contain the actual (key, TID) pairs sorted by key.
Higher levels contain pointers to lower level pages. Because of the B-tree organization, the index
permits rapid access to a single tuple with a desired value. The number of index pages to be fetched
cquals the height of the tree. Also, the lowest level index pages are linked so that all the tuples or any
key subscquence of them can readily be retrieved in sorted key order by scanning the lcaf nodes of
the index. This operation is called an index scan.

The uscfulness of an index for query cvaluation depends upon whether the relation is clustered
with respect to the index and on the number of tuples to be retrieved. A relation is clustered with
respect to an index if the tuples of the relation are stored in the same sequence as the key sequence
given by the index. With such an arrangement, if the index is uscd to access tuples of the relation
then cach data page of the relation will be fetched only once. . On the other hand, if the index is

e . o

QUERY PROCESSING EXPERTISE 17

unclustered with respect to the relation, it is assumed that each access of a tuple using the index
requires fetching a new data page.

Besides scgment scan and index scan, the access modcl includes sorting tuples on the value of some
columa. It is assumed that the files are large enough to require an cxtcrnal Z-way sort-merge.

Based on the access and storage modelé, Blasgen and Eswaren develop methods to carry out the
two-relation query. The methods differ in their use of TIDs, indexes, and sorting, and some of them
arc only applicable if certain indexes exist. Two of the methods will be described.

The first method is the nested loops method. The first relation is scanned. For cach tuple that
mects the restrictions on that relation, a scan of the second relation is performed. Some tuples from
-the second relation may be found that meet the restrictions on the second relation and that have the
same join column value as the current first relation tuple. Each qualifying second relation tuple is
combinced with the current first relation tuple to form a composite result tuple (projecting out the
desired columns).

The second method is the merging scans method. Both relations must be scanned in join column
order. Either relation that is not indexed on its join column must be sorted into a temporary file that
is ordered on that column. The first relation is scanned in join column order. For cach first relation

tuplc that meets the restrictions, the sccond relation is scanned. However, because of join order
scquencing, it is possible to keep track of the current position of the two scans and ncver rescan any
portion of cither relation once the current join column value exceeds the value in that portion. This
bookkeeping also makes it possiblc to spot situations where tuples in one relation have no join
partners in the other relation,

The cost measure for the methods is the number of pages that must be brought in from secondary
storage. This is a rcasonable assumption if it is believed that input/output time dominates processor
time. Most (though not all) query optimization models make this assumption. .

Given a set of methods and a cost measure, it is possible to develop cost formulas for the methods.
The formulas depend upen system parameters that arc database-dependent but independent of the
specific query, and upon other guery-dependent paramcters. The cost formulas for a method to
process a complete two-relation query are built from cost formulas for scanning a single relation. For
a segment scan, the cost is the number of pages in the segment that contains the relation. This is
obviously a system parameter, not related to the restrictions or other aspects of the query.

Unlike a secgment scan, the cost of an index scan depends both on system parameters and on query
paramcters. To sce this, consider a scan of a key subsequence of column A of relation R using index
I. Suppose the scan starts at column value V1 and ends at column value V2. That is, the aim is to
retricve all tuples of relation R that have a value for column A that is greater than or cqual to V1 and
less than or equal to V2,

The first step of the scan is to locate the first tuple with a value between V1 and V2. The index
permits rapid access to that tuple, at the cost of fetching a number of index pages cqual to the height

18 QUERY PROCESSING EXPERTISE

of the tree in which the index is stored; index tree height is clearly a system paramcter. The rest of
the opcration consists of chaining along the leaf index pages until the key value exceeds V2. At cach
index page, TIDs for qualifying tuples are found and their data pages are fetched. The number of
leaf index pages and the number of data pages fetched depends upon the number of tuples that have
a value between V1 and V2 for column A. This obviously depends upon the query because V1 and
V2 are specified by the query.

It is straightforward to combine scan cost formulas into cost formulas for a compicte two-relation
query processing method. For example, the nested loops method consists of a scan of one relation

and for cach of its qualifying tuples, a scan of the sccond relation. Hence, the cost of the nested loops .

mcthod is the cost of scanning the first relation plus the product of the number of qualifying first
relation tuples with the cost of scanning the second relation.

The work of S.B. Yao and his associates presented in [Yao78) and [Yao79] rests on the same
clements as the work of Blasgen and Eswaren. In particular, Yao's work addresses the same class of
two-rclation restrict-join-project queries and presents similar storage, access, and cost models. The
work is significant in systematically building the query processing mcthods out of a comprehensive
sct of submethods. This results in a much larger sct of query processing methods than Blasgen and
Eswaren present. Yao also investigates the use of links as auxiliary access paths.

2.4 A conventional query optimizer for multifile queries

The methods that have been developed to handle two-relation queries in the restrict-join-project
class have been extended to handle querics that involve n relations, where n is greater than two. This
is the basis for the general query optimizer for IBM’s System R experimental relational database
management system [Sclinger79]. The optimization mcthods for the INGRES relational database
systemn can also be vicwed in this framework for most queries [Youseffi78]. We illustrate the
functioning of n-relation conventional optimizers with the System R optimizer. The discussion omits
some aspects of optimization that are specific to System R, such as the possible requirement to
present results in a specified sequence or grouping.

Processing a query that involves N relations is viewed-as processing a sequence of queries that
involve iwo relations, ;. Lhis view, a two-relation subquery is processed to form a resulting composite
relation. This relation is processed with a third relation to form a new composite, and the sequence
continucs until all relations in the original query have been brought in. In the actual processing, it is
not always nccessary to form and store the complete composite relation before the next relation is
brought in. Instcad, when a composite tuple is formed from a two-relation query, it can be joined
with tuples from a third rclation, and so forth. Intermediate composite relations are stored only if a

_sorting operation is required in connection with the next two-relation processing step.

The extension from two-rclation queries to N-relation queries outlined above has been termed
iterative composition by Kim [Kim79]. The task of the gencral query optimizer based upon iterative

. A

QUERY PROCLESSING EXPERTISE - 19

composition of subqueries is twofold. First, it is necessary for the optimizer to choose the order in
which the rclations are to be brought in; that is, it must choose the scquence of two-rclation
subqueries. Second, the optimizer must choose a method to carry out cach subquery.

The sequence of subqueries is important in determining the overall cost, even though the size of
the result is the same regardicss of the processing sequence. For a query that involves N relations,
there are N factorial permutations of the processing sequence. However, the method to bring in the
K+ 1th relation is independent of the way the first K relations are processed. The search of
sequences can thercfore operate efficiently by finding good scquences for successively larger subsets
of the rclations in the query. The System R optimizer uses another heuristic to reduce the number of
permutations it considers: a relation is considercd as the next one to be brought in only if it is

- involved in a join with onc that has already been processed.

The System R optimizer grows a processing search trec by iteration on the number of relations
involved so far. First, the best method is found to scan cach relation. Next, the best way is found to
involve the first relation in a two-relation query with a second relation. This continues until all
rclations arc involved. Unpromising paths of the search tree are pruned on the basis of the heuristics
described above and on the basis of estimated processing costs for the partially worked out queries.

An important source of information for the optimizer is the estimated selectivity of the query
restrictions, the only place in the optimizer where semantic information is used. The sclectivity of a
restriction on a relation is the fraction of tuples of the refation that satisfy the restriction. Both the
cost formulas for certain scans and the fonmulas for combined methods use the fraction of tuples that
mect the restrictions imposed by the query. To estimate selectivity, the optimizer uses information
about the range of values for attributes, if that information is available. It makes the simple
assumption that the values for any attribute arc uniformly distributed within the legal range and that
the distribution of values is known with sufficiently fine granularity. This assumption enables
estimates to be made with limited statistics on database valucs. Youseffi [Youscffi78] has looked into
the issuc of how additional statistics can improve the estimates, but the simple System R mcthods
appear to work fairly well [Astrahan80a]. In the absence of valuc range statistics, the System R
optimizer makes arbitrary although intuitively plausible cstimates.

2.5 Generalizations about query proces sing

In this scction, we review some gencral conclusions about relational query processing that can be
drawn from the kind of rescarch described above. As we shall see, these gencral conclusions play an
important role in the design of an effective semantic query optimization system.

The nct result of conventional query optimization rescarch is an appreciation of how the
relationship between the constraints specificd by a query and the data structures comprising the
datahasc affect the cost of processing. In many cases, this knowledge is represented in the choice of
relevant system parameters and in the cost formulas based upon them. Occasionally, though, the
knowledge is expressed as gencral statements about the interaction of querics and structures.

20 QUERY PROCESSING EXPERTISE

A key factor in the cost of processing a query is the physical clustering of logically related items,
what Wicdcerhold [Wiederhold77] refers to as the binding of the data scmantics. While this seems
intuitivcly obvious, the studices of Blasgen and Eswaren demonstrate the degree of its importance, and
they relate it to specific kinds of queries and specific structures in the storage model. The role of
clustered indexes is highlighted. As the System R experiments [Astrahan80a] confiim, the case of an
equality predicate on an indexed but nonclustered attribute is about tic only case in which a
nonclustercd index scan is preferred over a clustered onc. In gencral, a query whose constraints
permit the exploitation of clustered access paths, whether indexes or links, can be answered much
more efficicntly than a query whose constraints do not permit those paths to be exploited.

Conventional query optimization pays attention to avoiding catastrophically bad processing
methods. The classic example of a bad processing method is processing a join as a Cartesian product
followed by a restriction. In one of the rare glimpses into the explicit reasoning of experts in query
processing, Youscffi and Wong [Youssefi79] discuss the formulation of processing strategics based on
this consideration. They note that, intuitively, the processing cost for a onc-variable query is linear in
the size of the relation, while the cost for a two-variable query increases faster than lincarly in the
sum of the relation sizes. This line of reasoning suggests to them that it is nearly always advantagcous
to restrict the individual relations prior to checking the join condition, that is, prior to accessing and
considering the relations together. An exception occurs when one of the relations is physically
clustered with respect to the join condition. Other factors to be considcred are the sizes of the
rclations and whether the relations are in the target list. In any event, it is generally true that the
stronger the restrictions that can be applicd to the individual relations prior to carrying out the join,
the less expensive is the overall process.

This discussion is indicative of the body of expertise about query processing that has emerged from
research on query optimization. To restate the main idca, the cost of processing depends on the
relationship between the constraints specified by a query and the data structures implicated by the
query. Specifically, with respect to the fundamental operations discussed in this chapter, Figure 2-3
indicates some representative generalizations:

In Chapter 4, we shall sce how such gencralizations are used to control the way semantic
knowledge is used in scmantic query optimization. Before that, however, Chapter 3 discusses the
shortcomings of conventional query optimization and describes the new approach of semantic query
optimization.

SEMANTIC QUERY OPTIMIZATION

o G1. A restriction on an attribute that is not indexed leads to an cxpensive scan.

o G2. A restriction (other than an cquality predicate) on an indexed attribute where the
index is not a physically clustering index leads to an expensive scan.

o G3. A restriction on a physically clustering index can be processed efficicntly.

e G4. The cost of joins gencrally dominates the overall cost of processing.

e G5. A join between two large and weakly restricted relations is very expensive.

o G6. The cost of a join decrcases substantially as the strength of restrictions on the joined

relations increases, cxcept on a relation which is clustered with respect to the join term
(and is therefore likcly to be the “inner™ relation of the join method).

Figure 2-3: Generalizations about query processing

SEMANTIC QUERY OPTIMIZATION 23

Chapter 3
Semantic Query Optimization

In this chapter, we present the formal basis for semantic query optimization in relational databases.

\J " We begin in Section 3.1 by revicwing the limitations of conventional query optimization that

motivate the development of our new method. In Section 3.2 we look informally at the notion of the

semantic equivalence of two database queries that is at the heart of semantic query optimization.

Scmantic equivalence is defined in terms of semantically meaningful states of the database. This in

’ turn is intimatcly bound up with with the semantic integrity constraints associated with the database.

We formally define semantic integrity constraints for relational databases in Section 3.3. In Scction

g 3.4, we show informally how one query can be transformed into a semantically equivalent one using a

scmantic integrity constraint. Section 3.5 synthesizes the preceding sections into a formal definition

of relational database query transformations that preserve semantic cquivalence. Finally, Section 3.6

discusses additional logical cquivalence transformations that can be used in conjunction with
scmantic equivalence transformations to reduce the cost of processing a query.

3.1 The limits of conventional query optimization

Conventional query optimization rescarch has identified a set of problems, has produced uscful
3 modecls of data storage and filc opcrations, has yiclded insights into the factors that influence the cost

of query processing, and has in general lent support to the belicf that high level query languages can
[y be used with acceptable efficiency.

The difficulty with conventional query optimization remains the lack of correspondence between ' L
the logical relativnships referenced in a query and the phiysical relationships of the data that represer -
them. One can view the manipulations of a conventional query optimizer as a hunt for opportunities,

» for those parts of the query in which the logical structure corresponds well to the supporting physical
structure. For instance, the presence of indexes on the joining attributes for two files in a multifile
query is likely to make that join a candidate for processing before other joins. The logical/physical
correspondences are exploited to reduce as much as possible the size of the data structures that must
be handled without suitablc physical support.

To maintain physical support for all logical relationships is not possible, however. The costs to
maintain that support as the database evolves are too great. In simplest terms, if a query involves a

¢ e— . - - W T b - mr meme me——e

"—_—"——-'-'—-—"—'-—‘

2% SEMANTIC QUERY OPTIMIZATION

large amount of data in logical relationships that are not well structured in the physical database, then
the query can't be processed cfficiently. Examples of poor correspondence are casy to imagine. A
constraint on an unindcxed attribute of a relation forces a sequential scan. A join between two ﬁle::
for which suitable indexes or links do not exist forces a cross matching process which is almost always
very expensive.

Conventional query optimization is limited to treating the logical restrictions of the query as fixed.

If the query restrictions cannot be processed efficiently, nothing can be done.

3.2 The semantic equivalence of queries

We now begin the formal description of semantic query optimization, developed as a response to
the limitations we have just described. The key idea is that the given query restrictions are not
regarded as fixed, but as perhaps only one of several equivalent ways to posc the same qucstion. We
said in Section 3.1 that conventional query optimization is a hunt for opportunitics. The goal of
scmantic query optimization is to crcate new scarch spaces in which to hunt for such opportunities.

The heart of semantic query optimization is the process of transforming a query into a semantically
equivalent one. Two queries are considered to be scmantically equivalent if they result in the same
answer in any state of the database that conforms to the semantic integrity constraints (sce Section
1.2.4).

Semantic equivalence is not the same as logical equivalence. Two qucries are logically equivalent if
the qualifications of one can be transformed into the qualifications of the other by the application of
standard logical cquivalences such as De Morgan's LLaws. Another way to put this is that two querics
are logically cquivaient if they produce the same answer in any database whatsocver in which the
querics are well-defined. For instance, the query “list the names of all employces who are not both
unmarried and over forty years old” is logically cquivalent to the query “list the names of all
employces who are cither married or arc not over forty years old.”

Logically equivalent queries are obviously semantically equivalent, but semantically equivalent
querics necd not be logically equivalent. That is, two scmantically equivalent queries might yicld
different answers when posed to the database in a state where some semantic intagrity constraint is
violated.

For cxample, supposc there is a semantic integrity constraint to the cffect that the company has no
cmploycee under the age of cighteen. If the database conforms to this condition, then the query “list
the names of all employces between the ages of fifteen and twenty™ is semanticatly equivalent to the
query “list the names of all cmployces between the ages of cighteen and twenty.” The answers will be
the same because the enforcement of the scmantic integrity constraint guarantecs that there is no item
in the database corresponding to an cmployee between the ages of fifteen and cighteen. Howecever, if
a violation of the constraint is permitted and data is entered on an employece whose age is recorded as
sixtcen ycars old, then the two querics will not produce the same answer,

= - , f

SEMANTIC QUERY OPTIMIZATION - 25

Another way to look at the difference between logical cquivalence and semantic equivalence is that
semantic cquivalence is measurced against a particular sct of semantic integrity rules. For instance, if
the rule requiring cmployees to be at Icast eightecn is changed so that employecs must be at least
seventeen instead, then the two queries just discussed are no longer semantically equivalent. The first
query may return some seventeen year olds but the sccond onc cannot. By constrast, logical
cquivalence is unaffected by changes in the semantic integrity constraints,

We also wish to distinguish semantic cquivalence from coincidental equivalence in a particular
statc of the database. Scmantically equivalent querics must produce the same answer in all permitted
states of the database. A simple cxample illustrates what we mcan by coincidental equivalence.
Suppose the company happens to have one employec named “Fred Smith™ and that he happens to
» “ be the only employee who is 47 years old. Then the queries “What is the employee number of each
employce named Fred Smith?” and “What is the employee number of each employee who is 47 ycars
old?” give the same answer. However, it is easy to imagine a situation in which the two questions do
not give the same answer. For instance, nothing prevents the company from hiring another 47 year
old cmployce whose name is not “Fred Smith™. If the company does hire another 47 year old, then
the two questions do not have the same answer. ’

3.3 Semantic integrity constraints

‘The forcgoing discussion of semantic cquivalence underscores the point that:

The basis of semantic equivalence independent of logical equivalence and independent of
changes in state is the enforcement of the semantic integrity of the database.

The notion of the semantic integrity of a databasc is understood with respect to the relationship of

the databasc to some rcal world application. Every allowablc state of the databasc is supposed to be a

valid “snapshot” of aspects of the application. If the database contains values that cannot be attained

] in the real world application, then there is said 10 be a violation of the semantic integrity of the
databasc. '

We now formally develop the notion of semantic integ..ty constraints for relational databases. In
so doing, we are also preparing the groundwork for a formal discussion of relational database qucries
'y and semantic equivalence transformations.

Qur point of vicw is a standard one in rescarch analyzing databascs in terms of formal logic (sce,
for instance, {Gallairc78]). The descriptors of rclations and querics arc just those of the relational
. calculus that we discussed in Scction 2.2 A relational databasc is considered to be made up of two
E ’ parts: an extensional database (EDB), and an intensional database (IDB).

The EDB is the set of clementary assertions or tuples contained in the relations in any particular
. state of the database. For instance, any of the tuples in our cxample in Scction 2.1, such as

26 SEMANTIC QUERY OPTIMIZATION

("Bralanta” "Braathan" "Tanker" 285 17 154)
is part of the EDB.

The IDB is a set of general laws cxpressed as closed well-formed formulas in the first-ordef
predicate calcutus. The general laws, as the name implies, apply more broadly than the elementary
asscrtions. An example of a general law that applies to alt the tuples in a single relation is a rule that
all ships over 190 thousand tons deadweight (size) are supertankers. This can be expressed as

Vx/ gy ps(x-Deadweight > 190) — (x.Shiptype = “supcrtanker”)..

As noted above, this general rule is expressed as a closed well-formed formula in a typed first-order
predicate calculus. The variable x ranges over tuples of the SHIPS relation. The expression
“x.Deadwcight” significs the value for the Deadweight attribute of the tuple to which x is bound.

Other general laws may involve more than one relation. Suppose there is a CARGOES relation
that includes Ship and Quantity attributes. Then we can express the rule that a ship cannot carry a
greater quantity of cargo than the ship's capacity as follows:

VX/SHIPS Vy/CARGOB (x.Shipname = y.Ship) — (y.Quantity < x.Capacity)
Intuitively, most general laws involve universal quantification over relations. However, it is also
possible to express an existential law, such as the rule that therce is at least one supertanker:

Ix/ g yps (x-Shiptype = “supertanker™).

Why divide the databasc into cxtensional and intensional parts? The reason is the following
essential relatonship between EDB and IDB:

The elemeniary assertions or tuples of the FDB are considered 10 define an intcrprctationlr
of a first order theory whose proper (nonlogical) axioms are the general laws of the IDB.

From the perspective of semantic query optimization, the importance of gencral laws stems from
their usc as integrity rules. In terms of a first-order theory and its interpretation, every operation on
the databasc such as adding, delcting, or changing clementary assertion, amounts to a change in
interpretation. In these terms, we have the following definition:

Semantic integrity is enforced if and only if the only changes permitted to the database are
those that leave the elementary assertions of the EDB as a model (and not merely an
interpretation) of the semantic integrity rules of the IDB.

In other words, the enforcement of semantic integrity prevents the database from entering a state in
which any of the closcd well-formed formulas of the integrity rules evaluates to false,

1'Sc:(: [Nicolas78a].

SEMANTIC QUERY OPTIMIZATION 27

3.4 Query transformations that preserve semantic equivalence

Our motivatien in investigating semantic integrity constraints is to sc¢ how to transform a query
into a semantically equivalent query. The significance of integrity rules for this purpose becomes
apparcnt if we consider e notion of satisfiability. Specifically, suppose we drop the univers&l
quantificr from the first general rule above. The result is an open formula in which the previously
quantified variable now appears free. The open formula can be put in the form of a query, similar to
the form that appears in [Pirottc78):

Q;: {x/g;ps | (x.Deadweight > 190) — (x.Shiptype = “supertanker”)}.

. The answer to this query is a set of tuples from the SHIPS rclation, namely the sct of tuples that

corresponds to ships whose deadweight is less than 190 or which are supertankers. For convenience,
we omit any indication of which attributes of x should be returned.

The items in the answer set for this query are those tuples in the SHIPS relation which, when
substituted for x in the formula, make the formula true,

The significant obscrvation is that by enforcing the original integrity constraint, we require that
every tuple in SHIPS make the formula true. Hence, the open formula is satisfied by the entire
SHIPS relation. That is to say, according to the rule, every ship either has a deadweight of less than
190 or is a supertanker.

Consider any other query that requests the set of tuples from SHIPS that satisfy some qualification
Q. Let T be the set of qualifying tuples. The set T is clearly a subset of the set of all tuples in SHIPS.
But all tuples in SHIPS satisfy the integrity constraint qualification Qi, so in particular, the tuplesin T
satisfy it also. That is, no tuple of T satisfies the qualification Q but does not satisfy the qualification
Q,. Thercfore, we can replace qualification Q by the conjunction of Q and Q,, and the answer set T
remains the same. The query with this new qualification is scmantically cquivalent to the original
query with qualification Q.

For example, suppose we start with a query that requests all ships with a draft greater than 20
mcters. We cxpress this as;

{x/qyyips | (x-Draft > 20)}.

We can drop the universal quantifier from the integrity constraint and obtain the following
semantically equivalent query:

{%/giyps | (x-Draft> 20) A ((x.Deadweight > 190) — (x.Shiptype = “supertanker”))}

This new query docsn’t make much sensc as it stands. 1t asks for those ships whose draft exceeds 20
meters and which, if they have a deadweight over 190, also have a shiptype of “supertanker”.
Nevertheless, this query yiclds the same answer as the original one. Now suppose we had started
with a query that requests all ships with a deadweight of over 190 thousand tons:

{%/ s ips | (x.Deadweight > 190)}.

Wec apply the same transformation to this query to obtain:

p2] ‘ : SEMANTIC QUERY OPTIMIZATION

{x/s"",s | (x.Decadweight > 190) A ((x.Dcadweight > 190) — (x.Shiptype = “supertanker”))}

The transformation bascd upon integrity scmantics has been completed, but we can now use the
logical axioms of first-order logic to transform this query further. In particular, we usc the
equivalence expressed in the axiom schema:

AANA-=B)=(AAB)

for any terms A and B to transform the query into the simpler, equivalent form:

{x/giups | (x-Deadweight > 190) A (x.Shiptype = “supertanker”)}.

This is indced an interesting resuit. We started with a constraint on the decadweight of ships, and
found that we could add a constraint on their shiptype. If the Shiptype attributc is indexed, the new
query may be much less expensive to process. The transformation corresponds to our intuition in this
case, as it should. The integrity constraint we used says that all ships with deadweight over 190
thousand tons arc supertankers. The end result looks like a simple application of modus ponens, but
it is more than this; it is a transformation that depends on propertics of the database when vicwed as
amodec! of the integrity constraints,

3.5 Formal definition of semantic equivalence transformations

We now develop a general, formal definition of the type of transformation illustrated by the
foregoing cxample. The idca behind the definition is also scen in the example. The transformation
should permit us to combine an intcgrity constraint and a query in such a way that the meaning of the
query is not changed and so that terms can be further combined by the application of legical
cquivalences. Our discussion has three parts: transformation of a well-formed formula (wff) of the
typed predicate calculus by mcans of merging with a second wff; conditions under which the new wff
is semantically cquivalent to the transformed wfT; and the application of this type of transformation
to querics and semantic integrity constraints in the relational calculus.

3.5.1 Merging of well-formed formulas

Consider two wifs, X and Y, of a typed, first-order predicate caleulus. Suppose that X has the free
variables (x 1 Xgo oo xn) and that Y has the free variables (yl. Yoo o ¥ m). Each variable X, and i is
typed., that is, it ranges over a specificd domain. We can write X and Y in tens of predicates P and Q
as follows:

X= P(xl, S xn)

Y = Qy) Yy e ¥

Under these circumstances, we have the following condition for merging X and Y:

SEMANTIC QUERY OPTIMIZATION 29

Formula Y can be merged into formula X if and only if the variables (y,....y,) can be put
into one-to-one correspondence with a subset of the variables (x ,...,x) so that corresponding
variables range over the same domain. If this condition holds, then formulas X and Y are
said tc be merge-compatible.

Let xj' be the variable in X that corresponds to variable Y inY (xj' is not necessarily the same
variable as xj). Then Y can be rewritten as:

Y= Q(xi, xi, x;n).
We now take the conjunctionZof X and Y:
Z = P(x), Xp oo X I,.) A Q(xi. xi, xl'n).

But the variables (xi, xi, xr‘n) are a (possibly rearranged) sublist of the variables (xl, Xgs v xn), S0
we can write Z just in terms of the latter variables:

Z= P(xl. Xyo o X).

n

We say that the formula Z is the transformation of the formula X when merged with the formula
Y.

3.5.2 Semantic equivalence of transformed formulas

Let us assume that each variable X, Tanges over some domain of values Di. Let us further assume
that there is some set 1 of permitted interpretations of the the variables (xl,... xn), where an
interpretation is an assignment of a value from domain D, to the corresponding variable x,, for all i
from 1 through n. The sct I is a subsct of the Cartesian product of the domains, denoted by D= D, x
Dyx..x D, . Under these assumptions, we have the following definition:

Two well-formed formulas F1 and F2 over frce variables (xp.nx,) are semantically
equivalent with respect to the permitted interpretations if and only if I'l and F2 have the
same truth value in every permiltied interpreiation.

Note in particular that it is not necessary for F1 and F2 to have the same truth vatue for possible
interpretations in D that arc not in the subset 1 of permitted interpretations (as they would have to be
if they were logically equivalent). We expect that D is reduced to I by means of semantic intcgrity
constraints.

The original wff X and the transformed wif Z of Section 3.5.1 range over the same sct of variables.
Under what conditions are they scmantically equivalent according to the definition just given?

Formula Z is the conjunction of formulas X and Y. It is clear, therefore, that Z is semantically
cquivalent to X if and only if the formula Y is true under all permitted interpretations of the
variables. Now, Y is dcfined only in terms of the variabics (yl.....ym). a subset of the variables
(xpueeaXp): Hence, every interpretation of (X)X) includes an intcrpretation of (Y oY) Therefore,

" P(b

30 SEMANTIC QUERY OPTIMIZATION

The conjunction of two merge-compatible formulas X and Y is semantically equivalent to
Jormula X, if and only if formula Y is true in ail permitied interpretations of its variables
O peens¥ ") For our purposes, we call this the validity requirement.

There is onc more important point to consider. Suppose X is actually the quantifier-free matrix of
a quantified well-formed formula F,. Some or all of X’s variables will then be bound and not free,
Call the bound variables b, and the free variables f; Then Fx can be written as

F,: (Q;b,)(Q,b,) .. (Q,b,) X, or

F,i (QpbXQyby) - (Qby) PO by),

where cach (Q;b)) is either of the two quantifier expressions Vb, and Bbi. It is clear, however, that the
quantificd well-formed formula F, formed by substituting Z for X in F, has the same truth value as
F, for all permiticd assignments of values to the free variables f, through fg.

3.5.3 Transformation of a query using a semantic integrity constraint

We now connect the discussion with our central interest in querics and semantic knowledge. Here,
the role of the formula to be transformed, Fx. is assumed by a database query. The role of the
merging formula Y is played by a semantic integrity constraint. The resulting formula FZ is the new
scmantically equivalent query.

We draw upon the view of a database in terms of relational calculus, described in Section 3.3, Let
b fi...f) b a well-formed formula of the wple relational calculus [Piroue78) with free
variables b) through bm and f | through fn. Every variable is understood to range over the tuples of a
single relation. As before, et (Q b)) be cither of the two quantificr expressions Vb, and Bbi. Then any
qucry can be expressed in the form:

Q:(Qb)(Q,by) - (Qub) Po(byebp £y),

Considering the query Q as a whole, variables b) through bm arc bound, and variables f1 through
fn are free, There are two kinds of queries to consider. In a closed query, there are no free variables
(n = 0). The answer to a closed query is a yes/no answer, depending upon whether or not Q is true
with respect to the current interpretation, that is, the current contents of the extensional database
(EDB). If there are free variabies (n > 0), then the query is an open query. The answer to an open
query is the set of assignments to the free variables f) through f that make Q true in the current
interpretation. Because variables range over the tuples of relations, the answer to an open query is a
sct of n-tuples of relation tuples. An open query need not have any quantifier expressions; it must
have free variables. In either case, provision must also be made to extract tuple attributes for
comparison or retricval purposcs.

As noted in Scction 3.3, a semantic integrity constraint can be represented as a closed well-formed
formula of the relational calculus, Hence, we can express a constraint as:

SEMANTIC QUERY OPTIMIZATION 31

C: (Qlcl)(QZCZ) (chk) PC(Cl""'ck)

where there are no free variables in C taken as a whole. Constraint C has the very important property
that it cvaluates to “true™ in all permitted states of the database; indeed, that is the definition of
semantic integrity enforcement.

As we stated above, we want io have query Q and constraint C play the roles of formulas F andY
of Section 3.5.1, respectively. It is evident that a query Q is very much like the kind of formula Fx
given above. The only additional specification is that the variables range over the tuples of database
relations. However, the correspondence between a semantic integrity constraint C and the formula of
type Y is not so immediate. We must confront the fact that constraint C has no free variables as it

now stands, so it can't be merge compatible with ar. ther formula,

We remedy the absence of free variables in C in such a way that we insure the validity requirement
stated in Section 3.5.2. Namely, we allow any universal quantifier in C's prefix to be dropped. If the
quantifier Vc, is dropped, then C can now be expressed as the formula Pé(ci), a formula with no prefix
and the single free variable ¢ The resulting formula must be true in all permitted interpretations
(assignments of a value to variable ci). This is because the original universally quantificd constraint
says precisely that the formula is truc for all values of variable ¢

A universal quantifier can be dropped whercever it appears in the prefix, even if it appears within
the scope of an existential quantifier. This can be seen from the logical thecorem

(PREF X3x)(Vy)I(PREF,)P(z, x.y.2,) — (PREF X(V3))(PREF,)P(z, x.y.7,)

where (PREFI) and (PREF,) stand for portions of the prefix. This means that a universal quantifier
can be "moved left” outside the scope of an enclosing existential quantifier, hence outside the scope
of any cxistential quantifier.

We do not permit an existential quantifier to be dropped. To sce why we imposc this restriction,
consider wlt it would mean to do so. The variable bound by the quantificr would now be free.
What tuples in the range of the variable would satisfy the resulting formula? We have no way to tell.
All we know is that at least one tuple does satisfy the formula, but we cannot assert that the formula is
true for cvery such assignment,

It must be noted of course that the requirement of merge compatibility means that we can only
create free variables in the constraint for which there is a corresponding free variable in the matrix of
the query.

We now have a dircect parallel to the process sct forth in Scctions 3.5.1 and 3.5.2. We summarive
the process for transforming a query into a semantically cquivalent query as follows:

Let Q be 2 query expressed in the tuple relational calculus:
Q: (Q;5))Qyby) - (Qby) P By by £y,

where every variable is understood to range over the tuples of a single relation and (Q;b,) is cither of
the two quantifier expressions Vb, and Bbi.

32 SEMANTIC QUERY OPTIMIZATION

Let C be a semantic integrity constraint represented as a closed well-formed formula of the tuple
relational calculus: '

C Qe)Qyey) . (Qe) P ley) i

where C has the property that it evaluates to true in all permitted states of the databasc. Let (c, Cpr
ci) be a subset of the universally quantified variables of constraint C, and let P;(ca, Cps ...,ci) be the
well-formed formula produced by dropping the corresponding universal quantifiers. Then, if and
.only if the variables (c'3, Cip woo ci) can be put into onc-to-one correspondence with a subset of the
variables (bl,...,bm,fl....,fn) so that corresponding variables range over the same relation, it follows
that the query Qgiven by:

Q% (QD)XQy05)- QD) Po(byb o fyf) A PG, Gy

is seinantically equivalent to query Q; that is, Q’gives the same answer as Q in every permitted state
of the database. For convenience, the newly transformed query can be written as:

Q" (QDQ;0)) - (Qu b Pi(by.by)

where P"] is the conjunction of Pq andP_.

3.6 Logical transformations in semantic query optimization

A semantically equivalent query formed according to the preceding definitions may well be more
cxpensive to process than the original query. After all, the new query apparently involves more terms
than the original. However, various improvements in efficiency may arise by a further
transformation or simplification of the new expression, based upon the replacement of terms by
terms that are logically cquivalent. The effect is that terms in the new qualification expression are
subject to canccllation or combination. Simplifications can be based upon such domain-independent
properties as transitivity of numerical comparators, along the lincs suggested by Youseffi
[Youscfti78).

Of great importance are simplifications that involve semantic integrity constraints in the form of
implications. To sce this, consider a constraint of the form

Vx P(x) — Q(x)

where the variable x ranges over some relation R. Suppose the matrix of some query Q contains the
term P(z) where the variable z ranges over the same relation as the variable x in the constraint.
According to the procedures outlined in the preceding sections, we can transform Q into a
semantically cquivalent query Q 'whose matrix contains the conjunction:

P(z) A (P(z) = Q(2)).
However, by the logical equivalence
AANA-=B)=(AADB)

we can replace this conjunction by the simpler conjunction

.a k

e

SEMANTIC QUERY OPTIMIZATION 33

P(z) A Q(2).

‘The net cffect is as if the original query condition P(z) were used to infer the new condition Q(z)
by mcans of the semantic integrity constraint. Similarly, if the original query contains the term ~Q(y)
where the variable y ranges over relation R, then by the equivalence

(-BA(A = B)=(-BA-A)
this term can be replaced by the conjunction ~Q(y) A -P(y). Indecd, if the original query actually
contains the conjunction P(z) A Q(z), z ranging over relation R, then by using the logical equivalence
(AABAA—=B)=A

~we can replace this conjunction by the simple condition P(z). In other words, the condition Q(z) has
been shown to be derivable from P(z), hence it is superfluous and may be dropped from the query.

This concludes our gencral discussion of the formal basis for semantic query optimization. In the

next chapter, we describe the QUIST system, in which these idcas have been implemented and

tested.

i S, i e

THE QUIST SYSTEM 3S

Chapter 4
The QUIST system

In Chapter 3, we presented the formal basis for the transformation of one relational database query
" into another semantically equivalent query. This semantic equivalence transformation is at the heart
of semantic query optimization. In this chapter, we take up the issue of creating an effective semantic
query optimization system, and we describe the operation of QUIST, an implemented semantic
query optimization system.

In Section 4.1, we discuss the factors that influence the effectiveness of a semantic query
optimization system, particularly the choice of what semantic knowledge should ever be considered
for semantic query optimization, and the way that structural and processing knowledge is used to
control the semantic transformation of querics. We begin the description of QUIST in Section 4.2,
noting the class of querics it handles and the tybes of semantic rules it uses. In Scction 4.3 we present
an overvicew of system operation. We indicate that QUIST operates in a plan-generate-test mode in
which the problem of query optimization is addressed at different levels of abstraction. Finally, in
Section 4.4 we discuss the actions of the system in great dctail by means of an example. We show
how the gencralizations about processing queries to rclational databases discussed in Chapter 2 are
incorporated in specific heuristics. ‘'We show specifically how the heuristics are used to control which
knowledge base rules are used for query transformations, and we relate the heuristics in general to
particular types of transformations of relational database queries.

4.1 The design of an effective semantic query optimization system

A query optimization stratcgy based upon semantic cquivalence transformations presents bot -
opportunitics and dangers. The opportunities lie in the possibility of climinating unnceded
opcrations, or replacing or modifying operations with more cfficient oncs. The dangers arise from
what may be a large store of semantic integrity constraints. Any query might possibly be transformed
by any combination of thosc constraints. If not controlled in some way, the process of generating
transformations of the query can be very expensive.

There are two ways to bring the process under control: by restricting what semantic integrity
constraints will ever be considered for query transformation, and by using knowledge of database
structure and processing to guide the transformation of any particular query.

FRCIDING PAGE BLANK-NOT FILsgp

36 THE QUIST SYSTEM

4.1.1 Choosing semantic knowledge

The kinds of knowledge that are most uscful for semantic query optimization depend primarily on
two factors: the kinds of querics that are to be handled, and the physical organization of the data. ~

The most common kinds of queries involve access between cntities and their attributes. A typical
query may be “What is the length of the Totor?” in which an entity’s namc (or identifier) is given and
somec attributes are sought. The direction of access is reversed in a query like “What arc the names of

“the French ships over 300 feet longT” in which constraints are specified on the values of attributes
and the retricval of entity identifiers is sought. Both dircections of access arc combined in a query

such as “List the draft of French ships™ where a set of entitics is specificd by means of constraints on
one set of attribates, and retrieval of another set of attributes is sought. When the query involves
relationships and not just objects, access between entities and attributes is still crucial. For instance,
in the query “Which Italian ships are commanded by admirals?” the set of ship captains who are
considered as commanders is confined to those whose rank (an attribute) meets a specificd constraint.

The importance and frequency of these queries is reflected in the physical organization of
databases, the second major factor that influences what scmantics should enter into semantic query
optimization. A prime objective of semantic query optimization is to produce usefut constraints. As
pointed out in Chapter 2, the physical structure of a relational database is typically organized into
records and ficlds that correspond to cntities and attributes. In anticipation of querics with
constraints on attributes, indexes are stored that contain pointers to physical locations of records
(entities) with particular values in certain ficlds (attributes). Constraints on indexed attributes
obviously are uscful, as arc constraints on attributes of cntitics that have links to other entities.

In consideration of both the common kinds of queries and the typical physical organization of
databases, it is evident that constraints on the attributes of cntities are of utmost importance. The
kind of semantic rules that are most useful arc rules that relate constraints on attributes expressed in
queries with constraints that arc uscfut in the sense just described.

This observation leads to the view of semantic query optimization as a movement of constraints
among different parts of the database. Onc kind of scmantic rule that directly supports the
movement of constraints is what Kent [Kent78) calls general resirictions on relationships. Thesc are
constraints on the parti~ipants in relationships that are more specific than simply designating their
entity type. They relate properties or attributes of one participant with properties or attributes of
another, One such kind states

C14C2

where C1 and C2 are simplc restrictions on attributes and 8 is a Boolcan comparator such as less-than
or greater-than. For example, there may be a relationship between a consignment of cargo and the

“insurance policy that covers it, to the cffect that the amount of the policy docs not exceed the value of

the consignment. In this casc, there is a relationship between the amount attribute of the policy and
the value attribute of the consignment. Another kind of rule that restricts relationships states

THE QUIST SYSTEM ' . 3

Cl-Q2

for constraints C1 and C2. For instance, we may know that only leasing companies own ships with a
dcadweight (size) over somc amount. That is, given a certain constraint on a ship’s deadweight,
another constraint can be inferred on the type of business of the company that owns the ship.

4.1.2 Controlling transformations with structural and processing knowledge

There is no guarantce that any semantic cquivalence transformation leads to a lower cost query.
Indeed, a competent database administrator chooses database file structures that support efficient

access 1o frequently referenced data. Thus, assuming that a conventional query optimizer is used, it is

reasonable to expect that many queries can be answered efficiently in the form in which they are
posed.

Therefore, an effective semantic query optimization system must determine whether to seek cost
reductions via semantic transformations. If it does, it must confine its efforts as much as possible to
the transformations that are most likely to result in lower cost queries. It should not undertake costly
efforts only to find that a reasonably cfficicnt query cannot be improved further. ‘

As we discussed in Chapter 3, the ability to carry out semantic equivalence transformations rests on
the semantic knowledge about the database. As we shall sce in this chapter, the ability to control the
semantic query optimization system depends upon knowledge about what transformations are likely
to yicld a lower cost query. This ability rests in turn upon two kinds of knowledge: knowledge of the
physical file organization of the databasc, and knowledge of the available retrieval processes,
particularly in terms of how various aspects of those processes influence their cost.

In Chapter 2 we indicated that one of the main results of conventional qucry optimization is the
identification of standard file structures and an appreciation of the factors that contribute to the cost
of query processing. We can sce how this interacts with judging the potential uscfulness of a
semantic transformation. Consider the query “What ships are carrying iron ore?” posed to a database
that lists information about ships and thcir current cargoes. Threc kinds of information can be
brought to bear to decide the uscfulness of semantic transformations in this case.

e Knowledee of processing cost factors. Two way~ to extract qualifying tuples from a
relation are to perform a sequential scgment scan and to perform a scan by way of a
clustered index. The latter method is usually much less expensive. This means that the
presence of a restriction on a clustered index attribute significantly lowers the cost of this
kind of process.

o Knowledge of file structurcs. In this casc, et us assume that there is a SHIPS relation
stored as one file, and that the file has a clustered index on the Shiptype attribute.

o Knowlcdge about the semantics of the database. Let us assume that there is a semantic
integrity constraint to the effect that the only type of ship capable of carrying iron ore is a
bulk orc carrier. That is, no tuple can exist in the SHIPS relation for which the Cargo

38 THE QUIST SYSTEM

ficld has the value “iron ore” and the Shiptype field has some value other than “bulk ore
carrier”, :

From the knowlcdge of processing cost factors, an effective semantic query optimization system
should rate as potentially uscful any transformation that starts with a query that must be processed by
a segment scan and that results in a query that can be processed by an indexcd scan. From the
knowledge of file structures, the system should determine for this query that there is a potential
opportunity to make this kind of transformation. What is needed is a semantic constraint that relates

‘the values of the Shiptype and Cargo attributes. The knowledge of the semantics of the database

gives such a constraint in this case. The query can be transformed into “What bulk ore carriers are
carrying iron ore?” The cost to process this query should be compared to the cost of the original
query to select the one to be posed to the database.

This exampie suggests how the flow of information and control can be organized in an effective
semantic query optimization system. The system analyzes the query with respect to processing
mecthods and file structures. The analysis identifies potentially uscful transformations specialized to
the context of the current query. ‘That is, they are expressed in terms of relations or attributes that are
involved in the query. If potentially useful wransformations are identified, the system retrieves
appropriate semantic constraints using the specialized descriptions. The system then carries out
semantic equivalence transformations and simplifications with those constraints. Finally, the system
evaluates the cfficicncy of the resuiting queries and sclects for processing the one with lowest
estimated cost.

4.2 Introduction to the QUIST system

The QUIST system (QUery Improvement through Semantic Transformation) is a program that has
been implemented to explore the design and operation of an effective semantic query optimization
system in the context of an important class of relational database queries. ‘The system demonstrates
the ability to transform queries by reasoning about the semantics of the database. 1t shows that it is
possible for a semantic query optimization system to achicve significant improvements in query
processing cfficiency that are unattainable by conventional methods. It also shows that a semantic
query optimization system can run with acccptable overhcad compared to the overall cost of
processing querics. In doing so, QUIST demonstrates the use of specific inference guiding heuristics
based on structurc and processing expertise originating in conventional query optimization research.

In this section, we describe the class of querics for which QUIST can attempt semantic query
optimization. We also indicate the kinds of semantic integrity rufes that QUIST can usc for this
purpose, The choice of the kinds of semantic knowledge used by QUIST follows the ideas sct forth
in Section 4.1. We take up the other issue of Scction 4.1, the control of semantic transformations by
means of structural and processing knowledge, later in this chapter.

|

THE QUIST SYSTEM 39

4.2.1 The class of queries handled by QUIST

The QUIST query language is a query language for relational databases. It is in a class of
languages that can be termed atiribute/constraint languages. This choice reflects the importance of
constraints on attributes as described in Section 4.1. Indecd, the entire QUIST system is designed
from the point of view that the most useful semantic transformations in relational queries can be scen
as the addition, delction, or modification of constraints on databasc attributes.

Attribute/constraint languages are particularly simple, hence somewhat limited, yet have been
shown to admit a significant subset of restrict-join-project relational queries (see Section 2.3)." Two
examples of attribute/constraint query languages are the IDA language devecloped by Sagalowicz at

. SRI International [Sagalowicz77] and the APPLE language devcloped by Carlson and Kaplan at

Northwestern University [Carlson76). The QUIST query language is modelled most closely on IDA.
In the context of the LADDER natural language database access system [Hendrix78], IDA has been
shown 10 admit a substantial and interesting class of queries.

The essential distinguishing feature of an attribute/constraint language is that it presents a
relational databasc as if it contained just a single virtual relation, masking the real relations
underlying it. The point of this is to make the specification of relational database queries as simple as
possible. It buffers users and natural-language understanding programs from the need to know the
structure of the database and from any reorganization of the database that involves changes in the
association of attributes with relations,

The single virtual rclation is formed from the real relations as follows. A subset of all the possible
joins between relations is specified such that at most one join is permitted between any two real
rclations, and so that there exists onc and only one logical path (sequence of joins) between any two
real relations. The set of joins is performed and duplicates arc eliminated. The result is the virtual
relation. If the virtual relation is thought of as a graph whosc nodes are the real relations and whose
cdges are joins between real relations, then the virtual relation is a tree structure of real relations.
Any query to the database involves a subtree of this virtual relation.

The virtual relation makes possible a great simplification in the specification of restrict-join-project
queries: joins are made implicit because they have alrcady been specified in the definition of the
virtual relation That means that an attribute/constraint query is specified solely in terms of
restrictions and projections. In other words, an attribute/constraint query consists of boolcan
combinations of simple constraints on attributcs, plus a list of attributes whose values are desired.
Significantly, tuple variables need no longer be used in the query, because there is only one (virtual)
rclation. -

The cost of this simplification is a sct of limitations on the general relational model. For one thing,
attribute names must be unique throughout all rclations because tuple variables are no longer
available to distinguish them. For another, no join is permitted other than those prespecified through
the definition of the virtual relation. The latter limitation implies that a relation can only be involved

YO ORI

i

40 ' . THE QUIST SYSTEM

once in a query (for instance, it cannot be joined to itsclf). With respect to the concepts represented
in the database, this means that it is possible to represent only one kind of relationship between any
two classes of entitics represented as relations. Moore discusses some of these limitations in
[Moore79). Nevertheless, as indicated above, attribute/constraint languages pcrmnl the cxpression of
an important and uscful range of queries.

The level of abstraction presented by an attribute/constraint query language is illustrated by an

<
example from IDA. Suppose a database contains two relations:

SHIP: (Shipname Shipclass Shiptype)

SHIPCLASS: (Class Type Length Draft)

where, for instance, Shipname is the name of a ship and Length is the length of any ship in a

particular ship class. Assume the choice is to permit SHIP and SHIPCLASS to”be joined on
Shipclass and Class, respectively.

A request for the names of all ships is mercly a request to print all valucs Ef the Shipname
attribute. No constraints need to be specified. In IDA, this request is specified as (? Shipname). In
gencral, an expression of the form (? Attribute) returns the valuc of the specified attribute. To
request the length of a ship whose name is “Totor”, it is necessary to place a constraint on the
Shipname attribute and to request the value of the Length attribute. The IDA specification is:

(Shipname = “Totor™) (? Length).

The two attributes arc on separate underlying retations, but IDA hides this from the user. The
IDA query processing system determines the logical access path between the two relations, It looks
up the prespecified join between SHIP and SHIPCLASS and, in effect, transforms the joinless form
of the query into one that includes the join term (SHIP.Shipclass = SHIPCLASS.Class).

The class of queries handled by QUIST is actually somewhat different from IDA's. The
qualification of a QUIST query is a conjunction of constraints on attributes, rather than a general
boolcan combination of constraints. This limitation is compensated for by permitting the constraint
on cach attribute to be, in effect, a disjunction of simple constraints. QUIST does not attempt to
perform semantic transformations on such questions as “What ships are registered in France or are
over 200 fect long?” where the disjunction involves constraints on morc than one attribute. In this
case, the design decision was to avoid the added difficulties of inference with gencral disjunctions on
the grounds that many practical qucries do not involve them and because of the low probability of
finding less expensive transformations of them,

As with DA, QUIST querics can specify constraints on numecrical-vaiucd attributes and
constraints on string-valued attributes. A numcrical constraint is specified as the intervals in which
the attribute’s value is permitted to fall. The complcte constraint can be a disjunction of these
intervals. For instance, supposc a query constrains the Age attribute in a personnel database to be
greater than 20 and less than or cqual to 25, or to be greater than or cqual to 65 and lcss than 70 This
constraint is specified as

|
i

THE QUIST SYSTEM 41

(Age € ((20 25}[65 70))).

This constraint is considered to be a disjunction of two intervals. QUIST checks that intervals do
not conflict. If the constraint on a numerical attribute is in fact a simple constraint, such as specifying
that Age is less than 635, then the preceding form can be abbreviated as

(Age < 65)
rather than, for instance, specifying an interval one of whose bounds is + 0o or -co.

String-valued attribuies can be constrained to be a member of some set of strings,” or to be
excluded from some set of strings. For example, if Shiptype must be either “tanker” or “fishing”, the
constraint is specified as:

(Shiptype € {“tanker” “fishing"}).

Another type of constraints for string-valued attributes is typificd by the constraint that Shiptype
must be neither “bulk™ nor “refrigerated”:

(Shiptype & {“bulk” “refrigerated”}).

This is equivalent to a conjunction of simple incquality constraints. As with numecrical constraints,
the notation for a simple constraint can be abbreviated, as for example:

(Shiptype = “supertanker”)
to indicate that the Shiptype must be a supertanker.

The complete syntax of queries admitted by the QUIST system is given in Appendix A.

4.2.2 QUIST’'s semantic knowledge base

The QUIST system captures the important semantic integrity restrictions on attributcs and
rclationships described in Scction 4.1. The single-relation view of the databasc makes it easy to
cxpress these restrictions, subject to the limitation that only one kind of relationship can be
represented between any two kinds of entities. The restrictions are stored in a “conceptual schema”
or knowledge base where they arc associated with the attributes they mention.

The simplest type of restriction is what McLcod [Mcleod76) refers to as domain definition. This
type of restriction specifies the possible values of an attribute regardless of the values of any other
attributes, and regardless of any relationships involving the cntity to which the attribute is associated.
For instance, if it is known that all ships in thc database have a dcadweight of between 20 thousand
tons and 450 thousand tons, regardless of their shipclass, their registry, the type of business of their
owner, or any other factor, then the knowledge base would associate with the Deadweight attribute
the restriction:

(Deadwecight € ([20 450])).

4 ' . THE QUIST SYSTEM

In terms of the more gencral first-order formulas described in Chapter 3, domain definition
restrictions are implicitly universally quantificd over the (real) rclation to which the restricted
attribute is associated. Thus, the example restriction corresponds to:

Vx/gypps (x Deadweight 2 20) A (x.Deadweight < 450)

The other types of restrictions involve two or more attributes. Two kinds of muliiattribute

restrictions arc represented. One kind, called a bounding rule, asserts that the value of one attribute is

~ bounded by the value of another attribute. For example, the quantity of a cargo that can be carried

by a ship is bounded by the capacity of the ship. If there are two rclations, CARGOES and SHIPS,

and the unique logical access path defined between them corresponds to a “carrying” relationship,
then the bounding rule can be represented simply as:

(Quantity < Capacity). ' j

The corresponding form of this restriction in terms of a general first order formula is a universally
quantificd expression in which the predefined logical access path between SHIPS and CARGOES is

made explicit. 4
' Vx/s“",s Vy/c ARGOES (x.Shipname = y.Ship) — (y.Quantity < x.Capacity)
The other typc of multiattribute semantic restriction is called a production. A production is a rule
of the form:
CLADACLADA .. AC(A)) — CTA). _ : -
Every term in the rulc is a constraint expression on an attribute. No attribute can appear more :

than once on the left hand side. An example of a production is a rule that states that cargoes of
refined petroleum products are carried only by ships whose dcadweight is under 60 thousand tons.
This rule involves the same “carrying” relationsh’n and hence the same implicit join between L
CARGOES and SHIPS as in the previous example. In this case, the rule is represented as:

. (Cargotype = “refined™) — (Deadweight < 60)

where Deadweight is in units of thousands of tons. The production form used by QUIST is the Horn
clause form common in deductive databases [Nicolas78a). G

As with bounding rules, the corresponding general first orde- formula is a universally quantified
expression with an explicit join term when attributes from more than one relation arc involved:

Vx/giups VY carcors (X-Shipname = y.Ship) A (y.Cargotype = “refined”) — (x.Deadwcight < 60) ¢

The fact that the semantics of domain definitions, bounding rules, and productions can be expressed
as simply as in the forcgoing examples is one of the motivations behind the choice of the QUIST data
modcl and language.

THE QUIST SYSTEM _ 43

4.3 Overview of the operation of the QUIST system

The QUIST system accep:s a qixery in the QUIST relational database query language, produccs a
set of scmantically cquivalent queries (possibly including only the original query), and returns the
query from that sct with the lowest estimated retrieval cost. In this section, we present an overview of
how QUIST performs these tasks. We defer detailed descriptions until Section 4.4.

In Scction 1.1, we indicated that QUIST's opcrates in a mode of plan, generate, and test that
appears in other artificial intelligence programs for- solving a wide range of problems
[Feigenbaum71]. The purpose of the planning step is to identify both desirable and undesirable
characteristics of a solution to the given problem. These characteristics of a solution are used to

- control the generation step in which candidate solutions are produced. Finally, the testing step

carries out detailed evaluation of the candidate solutions in order to select the one with highest merit.
Overall, the three steps are characterized by the degree of abstraction at which the problem is
addressed, and by the kind of search carried out.

4.3.1 The planning step -- identification of constraint targets

The planning step starts with the constraints specified in the input query. Using heuristics based
on structure and processing knowledge, the system determines which database rclations, if any, are
constraint targels. A relation that is-a constraint target is one that has attributes on which additional
constraints should be sought. Constraint targets are determined by viewing the query only in terms
of which relations it involves, either through constraints or through sclection for output. The search
spacc is very simple, consisting merely of assignments of rclations to the sets of targets and
nontargets. Incidentally, the concept of constraint targets should not be confused with the term
1arget list, commonly uscd to describe which attributes are to be output from the database. Instead of
target list, we usc the term owtpu! attributes.

If there are no constraint targets, QUIST merely returns the original query unchanged. In such a
case, QUIST has determinced that it is not worthwhile to generate cquivalent queries because no
equivalent query is likely to cost less to process than the original query. On the other hand, if there
are constraint targets then QUIST continues on to the generation of semantically equivalent querics.

4.3.2 The generation step -- production of constraints and semantically equivalent
queries

The generation step consists of a cycle of constraint production operations repeated until no more
constraints are produced. Each cycle of constraint production retricves relevant knowledge base
rules, filters them according to structurally-based criteria (that is, the list of constraint targets), tests
them for applicability against the current constraints, and asscrts new constraints if possible. The
process terminates when some cycle fails to gencrate new constraints,

“ THE QUIST SYSTEM

The generation step treats the query less abstractly than the planning step does. It must use the
precise constraints on database attributcs, not merely the names of constrained or outpu; attributes.
The search at the gencration level is through a space of semantically- cquivalent qucries. ‘Each move w
consists of the production of another constraint. Only plausible moves are permitted because the ©
constraint target list produced by the planning step permits only those those transformations that may
possibly lower the cost of processing.

4.3.3 The testing step -- selection of the query with lowest estimated cost

The generation step produces one or more QUIST queries that are known to produce the same
answer. In the testing step, each query is analyzed by conventional query optimization methods.
This yields an estimated lowest cost to perform each query. The query with the minimum estimated

L

lowest cost is determined. .

At the testing level, the scarch is through a space of physical realizations of a single logically \\
cxpressed query. The query itself must be analyzed in the greatest detail, in terms of the actual \ !
database files it accesses and the sequence in which it accesses them.} .

4.3.4 Summary of QUIST operations

In describing the detailed operation of the QUIST system, it is convenient to distinguish the three N
_ steps just described plus the task of grouping inferred constraints into semantically equivalent \
queries. To summarize the opcrations, then, the following steps take place:

1. ldentification of constraint targets (the planning step)
2. Inference of new constraints (part of the generation step)

3. Grouping of constraints into the sct of semantically equivalent queries (conclusion of the
generation step)

4. Estimation of the minimum processing time for each query and sclection of the query
with the lowest estnated processing time (testing step)

We now present an example to illustrate these steps.

11hc problem is nonctheless abstracted in the scnse that the actual query is not carried out: rather, the cost to perform it is
just cstimated.)

THIK: QUIST SYSTEM ' : 4
4.4 Example of the operation of the QUIST system.

In this scction, we begin an example of the operation of the QUIST system. The example brings
out the kinds of knowlcdge that semantic query optimization requires, and shows precisely how
QUIST integrates the different knowledge sources into an effective system. In particular, the
example is used to identify a sct of heuristics that guide the inference of new constraints. These
heuristics are specific to relational databases as described in Chapter 2.

The example is specifically tailored to illustrate the special capabilities of semantic query
optimization. In particufar, it involves both the addition and the elimination of relations from a
query. The example also illustrates how structural knowledge is used to halt a particular line of

. constraint generation when the constraints appear to offer no hope of reducing the cost of query

processing.

QUIST’s operation is illustrated using the relational database illustrated in Figure 4-1:

SHIPS (Shipname Owner Shiptype Draft Deadweight Capacity Registry)

PORTS ~(Portnamc Country Depth Facilitytype)

CARGOES (Ship Destination Shipper Cargotype Quantity Dollarvalue Insurance)
OWNERS (Ownername Location Assets Business)

POLICIES (Policy Issuer Coverage)

INSURERS (Insurer Insurercountry Capitalization)
Figurc 4-1: Examplc databasc relations

QUIST operates with an attribute/constraint data modcel. Specifically, it treats the database as a
singlc virtual relation. It is therefore nccessary to specify the unique logical access paths among the
real relations. The joins that underlie the permitted logical access paths are:

1. OWNERS.Ownername = SHIPS.Owner

2. SHIPS.Shipname = CARGOES . Ship

3. CARGOES.Destination = PORTS . Portname
4, CARGOES.Insurance = POLICIES.Policy

5. POLICIES.Issuer = INSURERS.Insurer

which stand for, respectively,

46 THE QUIST SYSTEM
1. A ship and its owner
2. A ship and a cargo it is carrying
3. A cargo and its destination port
4. A cargo and the policy that insures it
S.A polic.y and its issuing company

The database is assumed to be implemented by means of one file per relation. It is further
assumed that the SHIPS file has a clustering index on its OWNER attribute. This means that the
SHIPS file is clustered with respect to the OWNERS file; given a tuplc in the OWNERS file, the
corresponding tuples in the SHIPS file (that is, the ships owned by that owner) can be accessed much
less cxpensively than by a sequential secarch of SHIPS. In addition, the OWNERS file is much
smalier than the SHIPS file,

A very simple knowledge base of géneral semantic rules accompanies the database in this example.
We don't wish to claim the validity of all these rules; they are merely uscful iHustrations of the kinds
of rules that can be uscd for semantic query optimization. The rules are:

e Rulc R1. Every ship over 350 thousand tons deadweight can opcrate only at ports with
offshore load/discharge capabilities. '

¢ Rulc R2. Only leasing companics own vesscls that exceed 300 thousand tons deadweight.
- @ Rule R3. A cargois never insured for more than its dollar value.
o Rule R4. A ship carrics no more cargo than its rated capacity.

o Rulc RS. Any cargo other than liqueficd natural gas or refined petroleum products that is
worth more than 500,000 dollars is handlcd only at general cargo ports.

o Rule R6. The only ships whose deadweight exceeds 150 thousand tons are supertankers f
or aircraft carriers.

e Rule R7. Cargocs worth over three million dollars and carried by supertankers are
insured by policics issued by Lloyds.

e Rulc R8. Ships owned by petrolcum companies only carry liqueficd natural gas, refined
petroleum products, or crude oil.

1., - ules in the example knowledge basc are represented to QUIST as:
R1: (Dcadweight > 350) — (Facilitytype = “offshore™)

R2: (Dcadweight > 300) — (Business = “leasing™)

o T oEe et R TR

THE QUIST SYSTEM 'y}

R3: (Coverage < Dollarvaluc)

R4: (Quantity < Capacity)

RS: (Cargotype & {"LNG" "refined"}) A (Dollarvalue > 500) — (Facilitytype = “gcneral™)
R6: (Dcadweight > 150) — (Shiptype € {“'supertanker” “carrier”})

R7: (Dollarvalue > 3000) A (Shiptype = “supeﬁanker") —+ (Issuer = “Lloyds™)

RS: (Businéss = “petroleum”) — (Cargotype € {“LNG" “refined” “oil"})

The subject of our example is the following query:

“List the destination of cargoes worth less than one million dollars being carried by
supertankers over 400 thousand tons deadweight to ports with offshore load/discharge
Jacilities.”

Note that this query was invented specifically to illustrate semantic query optimization capabilities.
As motivation, consider a shipping analyst who wishes to detect cases in which very large ships are
being employed wastefully so that they can be rerouted to more profitable activities.

The represcntation of this query to QUIST is:

Q: (Deadweight > 400) A (Shiptype = “supertanker™)
A (Dollarvalue < 1000) A (Facilitytype = “offshore”);
(? Destination)

Processing query Q as given involves three relations, SHIPS, CARGOES, and PORTS, and two
joins among them: SHIPS to CARGOES, and CARGOES to PORTS. Howcver, we rcadily sce that
semantic rule R1 makes the constraint on Facilitytype superfluous. If this constraint is climinated,
then it won't be necessary to involve PORTS in the processing at all. PORTS is involved in Q only to
restrict tuples in CARGOES, and it turns out that this restriction is unnecessary.

Moreover, the constraint on Deadweight also makes it possible to infer a constraint on the Business
attribute of the OWNERS file. Although this introduces a join to a new file, the database is
structured so tat this may be advantageous. This is because this join has, in cffect, been
precomputed and stored as the link from OWNERS to SHIPS,

In addition, a constraint can be inferrcd on the Coverage attribute of the POLICIES relation by
means of rule R4, However, it is not desirable to involve POLICIES in the query because the join to
CARGOES is not supportcd by a prestored link or index.

We now discuss how QUIST handles this query.

|

a8 ' : THE QUIST SYSTEM

4.4.1 Step 1 - Identification of constraint targets

QUIST's first step establishes inference goals. The task of this goal-setting step is to accept the list
of attributcs that are constrained or designated for output by the query, and to return a (possibly
cmpty) list of target relations on which the placement of additional constraints may be worthwhile.

In this step, QUIST determines whether it seems worthwhile to seck to transform the given query
into an cquivalent one. If it docs seem worthwhile, then QUIST seeks to identify what opportunities
exist for cost-reducing transformations. However, it may be thc casc that it is not worthwhilc to
transform the given query. For example, the query restrictions might consist of just a single
constraint which happens to be on an attribute with a clustering index. No additional constraints can
reduce the processing effort for that query. Any effort devoted to inference would then be wasted,
Even if inference is not ruled out, there will probably be only a few relations on which the placement
of additional constraints will reduce query processing effort. Pruning the set of target relations can
significantly reduce useless inference effort.

To produce a set of constraint targets from a set of constraincd or output attributes, QUIST uses
constraint generation heuristics. Thesc heuristics are based upon knowlcdge about the structure of
the database and about the factors that contribute to the cost of retrieval. The heuristics reflect the
expert knowledge developed from analysis of relational database query processing.

By what critcrion should target relations be chosen? The general answer is that a relation should
be the target for the generation of constraints if and only if the placement of such constraints on the
relation makes some retricval operation less expensive or renders it unnecessary altogether.

We can make this criterion more specific in the context of the retrieval operations for restrict-join-
project queries discussed in Scction 2.3. The major operations are scanning a relation, and joining
two rclations.

4.4.1.1 Scanning a rclation

We first consider scanning a relation. A rclation can be scanncd in three ways: by a segment scan,
by a scan using a nonclustered index, or by a scan using a clustered index. A scgment scan looks at
every page in the scgment that contains the relation. A scan with a nonclustered index looks (more or
less) at one page for every qualifying tuple.

As for a clustered index scan, we introduce the concept of restriction selectivity [YaoT9]. Sclectivity
is a fraction between 0 and 1. It corresponds to the fraction of tuples in a relation that mects some
constraint. "The stronger the constraint, the closer sclectivity is to 0. Let attribute A have a clustered
index. Ifconstraint C is imposed on A, and C has a selectivity value of RSEL., then a clustered index
scan via attribute A using constraint C retrieves approximately a fraction RSEL of the pages on which
the relation is stored.

Consideration of these altcrnatives leads to the generalizations noted in Section 2.5:

Y ol JSUNUIPR YOI o U |

Vo S

¥

THE QUIST SYSTEM 49

o G1. A restriction on an attribute that is not indexed leads to an expensive scan.

e G2. A restriction (other than an equality predicate) on an indexcd attribute where thc
index is not a physically clustering index lcads to an expensive scan.

o G3. A restriction on a physically clustering index can be processed efficiently.

These generalizations give us the following inference guiding heuristic:

H1. Try to exploit a clustercd index. Ty to obtain a constraint on an attribute of a relation
which is restricted in the query and which has a clustered indexed atiribute that is not
restricted in the query.

Another heuristic arises from the same generalizations, It involves a clustering link between two
relations that cffectively precomputes and stores the join between them. There is a clustering link
from relation X to refation Y .if cach tuple in relation X has a pointer to the corresponding tuples of
relation Y and those corresponding Y tuples arc physically grouped together. The actual join can be
performed with X as the outer relation and Y as the inner relation, That is, X is scanned and for cach
qualifying tuple, the pointer gives the corresponding tuples of Y quite inexpensively. The same
effectis achicved if Y has a clustering index on the attribute by which it is joined to X.

From the perspective of scanning refation Y, however, the prestored join with X opens another
opportunity to reduce retrieval cost. If X is much smaller than Y and if an cffcctive constraint on X
can be found, then the clustering link can be followed to extract qualifiers from Y inexpensively.
Onc way to look at this is to regard X as the parcnt of Y in a hierarchy. Constraining the parent
relation is very effective for constraining the child relation.

The surprising aspect is that it can be advantagcous to scan Y via a join from X even if X does not
appear in the original gquery. That is, the cost of the overall query can be reduced by introducing an
additional filc and an additional join. This is one casc that is clcarly contrary to the intuition
cxpressed in conventional query optimization rescarch. The exploitation of a clustering link is
expressed in the following heuristic:

H2. Push a constraint up a hicrarchy. A relation should be a constraint target if it has a
clustering link into a much larger file that is constrained in the query, even if the relation
itself is not in the original query.

For the most part, however, it is not a good idea to introduce an additional rclation and extra join
operations into a query for the obvious reason that joins arc normally expensive. This advice is
summecd up in the heuristic:

H3. Don't introduce unlinked joins. With” the exception of the clustering link

50 TIIE QUIST SYSTEM

(parent/child) case, do not generate constraints for relations that are not part of the original
query.

4.4.1.2 Joining two relations

We now consider the join operation. Regardless of the method chosen to perform the join, we
have noted in Scction 2.5 that ’

o G4. The cost of joins gencrally dominates the overall cost of processing.

o G35. A join between two large and weakly restricted relations is very expensive.

Thus, much of our concern in finding new constraints centers on reducing the cost of joins. We have
considered performing joins by two methods: the nested loops method and the merging scans
mcthod. For simplicity in QUIST, we assume that all joins arc carried out by the nested loops
method, but much of the justification for the ensuing inference heuristics holds for either method.

In the nested loop method, onc relation (called the outer relation) is scanned, and for each outer
tuple that meets the constraints on that relation, the second relation (called the inner relation) is
scanncd. The inner scan seeks qualifying inner relation tuples that match the outer tuple on the join
attributes. We noted in Chapter 2 that “the cost of the nested loops method is the cost of scanning
the first relation plus the product of the number of qualifying first rclation tuples with the cost of
scanning the sccond relation.” This presents three opportunities to reduce the cost of the join by the
generation of constraints: reducc the cost of the outer scan, reduce the number of qualifying outer
* tuples, and reduce the cost of the inner scan.

We've already discussed how to reduce the cost of scanning a relation, so we take up the question
of how the gencration of constraints can help to reduce the number of qualifying tuples in the outer
scan. Let's first consider the underlying intuition. Suppose two relations X and Y are to be joined
and that both arc restricted on some of their attributes. From the point of view of X, the join to the
restricted relation Y can simply be scen as a somewhat more indirect restriction than the simple
constraints on X's attributes. That is, for some tuples in X that othcrwise meet the restrictions on X's
attributes, there are no corresponding tuples in Y, hence those tuples of X do not participate in the
join. .

We would like to translate this indirect restriction into a simpler one in terms of constraints on
attributes of X so that it can be applicd prior to the cross referencing scan that makes the join
expensive to perform, A constraint on an attribute can be applicd much less expensively than a
constraint imposcd indirectly through a join.

Let's make this clearer with an example. Suppose we request the owners of French ships carrying
cargocs of refined petroleum products: '

Q: (Registry = “France™) A (Cargotype = “refined™); (2 Owner)

- W

e —

THE QUIST SYSTEM ' . 51

‘This involves a join between SHIPS and CARGOES. The requirement that each SHIPS tuple be
joined to a restricted CARGOES tuple can be vicwed as another restriction on SHIPS. However, the
subset of French ships that are carrying refined products can’t be determined prior to performing the
join as the query is stated. If SHIPS is the outer relation, there will have to be a scan of the inner
relation CARGOES for every French ship.,

Now, suppose there is a general rule that only ships with a deadweight under 60 thousand tons
carry refincd products. This is represcnted as the QUIST rule:

R: (Cargotype = “refined™) — (Dcadweight < 60)

The attribute Deadweight is on the SHIPS rclation and the atribute Cargotype is on the
CARGOES relation. Rule R makes it possible to infer the constraint (Deadweight < 60) “across the
join boundary” from the CARGOES relation to the SHIPS relation. The transformed query Q’so
obtained is:

Q" (Cargotype = "refined") A (Registry = "France™) A (Deadweight < 60); (72 Owner)

Instead of having to scan CARGOES for every French ship, it is now only necessary to scan
CARGOES for every French ship of less than 60 thousand tons deadwcight. This should bring about-
a substantial reduction in the cost of performing the join.

Reduction in the number of qualifying tuples is limited to the movement of constraints across the
join boundary. No reduction is achicved if the inferred constraine depends entirely on constraints on
the same relation. This is because cvery tuple in the relation that meets the inferred constraint must
necessarily meet the supporting constraints. If part of the support comes from constraints on the
other relation, though, there will be a reduction in the number of qualificrs. Again, we can make this
limitation clear with an example. Suppose the gencral rule stated above is altered slightly, so that it
statcs that cvery French ship that carries refined products must be under 60 thousand tons
dcadweight:

R: (Cargotype = "refined”) A (Registry = "France™) — (Deadwecight < 60}

The constraint on Deadweight can be still be inferred and there is still a reduction in the number of
qualifying SHIPS tuples. This is because there may be ships other than French ships whose
dcadwcight is less than 60 thousand tons. But supposc the rule is altcred again to state that all French
ships arc less than 60 thousand tons deadweight, regardless of what they are carrying or of any other
factor, Then the rule is:

R: (Registry = “France™) — (1Dcadweight < 60)

and, given query Q, the Deadweight constraint can still be obtained. This time, however, the
constraint did not move across the join boundary. No reduction in the number of qualifying SHIPS
tuples is obtained, because every tuple of SHIPS with a Deadweight value under 60 already has a
Registry value of “France”.

From the discussion of constraint mcvement between joined relations, we conclude that

52 THE QUIST SYSTEM

H4. Move a constraint across a join boundary. A relation involved in a join o a sufficiently
strongly restricted relation is a targel for constraints.

The qualification that the joining relaticn be “sufficiently strongly restricted™ arises for the
following reason. If a relation has strong constraints on its attributes and it is w0 be joined to a
relation with very wceak constraints on its attributes, then it is very unlikely that a usefully strong
constraint can be inferred from it across the join boundary. If the relation it is joined to is not itself q
restricted, then no constraint can be moved across the boundary.

Another qualification must be added to the preceding heuristic, related to clustering links and to
another gencralization from section 2.5:

o G6. The cost of a join decreases substantially as the strength of restrictions on the joined (
relations increascs, except on a relation which is clustered with respect to the join term
(and is therefore likely to be the “inner” relation of the join method).

Suppose relation X is to be joined to relation Y and that therc is a clustering link from X to
Y. Then it is extremely likely that a conventional optimizer such as the System R optimizer q
[Selinger79] will choose to perform the join using X as the outer relation and Y as the inner relation
in the manner described carlier. That is, X is scanncd and for each qualifying tuple, the pointer (or
equivalent index) gives the correspongding tuples of Y gnite inexpensively. In this case, no additional
constraint on Y can be applied effectively to reduce the cost of the scan, and there is no point in
reducing the number of qualifying Y tuples by adding constraints because Y is the inner relation of
the join. Hence, Y should not be a constraint target in this case, and we have the additional heuristic:

HS. Don't push a constraint down a hicrarchy. A relation should not be a iarget for
constraints if°it is joined to a restricted file from which it has a clustering link or equivalent w
index.,

From our consideration both of scanning one relation and of joining two relations, we can suggest
another heuristic as well;

H6. Use a strongly restricted clustered index. If a file is strongly constrained on an
attribute with a clustered index, then it should not be a target for construints.

This heuristic applics whether the relation is the only one in the query or is joincd to other
rclations. In the former casc, the relation will be scanned by way of the already constrained attribute.
In the latter case, the strong constraint on the indexced attribute makes the relation a likely candidate
to be the inner rclation, hence reducing the number of qualifiers is not helpful. Besidcs, the strength
of the constraint makes it unlikely that further reductions in the number of qualifiers can be
obtained.

THE QUIST SYSTEM 53

Finally, the generation of new constraints makes it possible to render some retricval operations
unnccessary. The target in this case is a query relation that only serves to restrict another relation and
from which no information is to be output. If the restrictions on that relation can be found to be
supcrfivous, that is, derivable cntircly from constraints on other query relations, then it can be
eliminated and the join to it eliminated at a great cost saving. We sum this up as follows: '

H7. Try to eliminatc a dangling relation. If a relation is joined to just one other relation and
none of its attributes contribute to the output, then il is a large! for constraints.

4.4.1.3 Summary of QUIST's constraint generation heuristics and classes of query transformations

Let us summarize the discussion of QUIST constraint generation heuristics by grouping the
heuristics into those that dcsignate constraint targets and those that designate nontargets, The
heuristics that designate targets are shown in Figure 4-2. With cach of these heuristics, we indicate
the kind of query transformation it contemplates, in tcrms of changes in scanning or joining
operations.

o H1. Try to exploit a clustered index. Try to obtain a constraint on an attribute of a relation
which is restricted in the query and which has a clustered indexed attribute that is not
restricted in the query.

o This heuristic contemplates the replacement of a segment scan by a clustering index
scan. W refer to this transformation as index introduction.

o H2. Push a constraint up a hierarchy. A relation should be a constraint target if it has a
clustering link into a much larger file that is constrained in the query, even if the relation
itself is not in the original query.

o This heuristic contemplates the addition of a join to the query, referred to as join
introduction. The cffect of the added join is similar to replacing a segment scan of
the linked rclation by a clustering index scan of that relation.

e H4. Move a constraint across a join boundary. A relation involved in a join to a
sufficiently strongly restricted relation is a target for constraints.

o In this case, the objective is to reduce the number of inncr scans of the join by
obtaining additional restrictions prior to the cross referencing part of the operation.
Hence, the transformation is calied scan reduction.

o H7. Try to éliminate a dangling relation. 1f a rclation is joined to just onc other rclation
and nonc of its autributes contribute to the output, then it is a target for constraints.

o This heuristic is aimed at join elimination by means of infcrring from other query
contraints the constraints on the dangling relation specificd in the query.

Figure 4-2: Hcuristics that desigriate constraint targets.

Ty

54 ' : TIIE QUIST SYSTEM

In Figure 4-3, we show thosc constraint genceration heuristics that designate relations that are not to
be targets for constraints.

e H3). Don't introduce unlinked joins. With the exception of the clustering link
(hierarchical) case, do not gencrate constraints for relations that are not part of the

original query.

o HS5. Don't push a constraint down a hierarchy. A rclation should not be a target for %
constraints if it is joincd to a restricted file from which it has a clustering link or
cquivalent index. .

o H6. Use a strongly restricted clustered index. 1f a file is strongly constrainted on an
attribute with a clustered index, then it should not be a target for constraints.

{
Figure 4-3; Hcuristics that designate nontargets.
4.4.1.4 Constraint targets for the example query
Let us now consider the identification of constraint targets for the example query: J

Q: (Dcadweight > 400) A (Shiptype = “supertanker”)
A (Dollarvalue < 1000) A (Facilitytype = “offshore™);
(? Destination)

The attributes named in the query reside on three underlying real relations. Attributes are
: constraincd on SHIPS, CARGOES, and PORTS, and an attribute is to be output from CARGOES.

‘Each of these three relations is designated as a target for constraints by heuristic H4 (move a
constraint across a join boundary) because they are all involved in joins with another constrained
relation. and because neither of the cxceptions in heuristics H5 (don't push a constraint down a
hierarchy) or H6 (usc a strongly restricted clustered index) apply. Both SHIPS and PORTS are also
designated as targets by heuristic H7 (try to climinate a dangling relation) because both are joined
just to CARGOES and ncither has an attribute involved in the output.

In addition, the OWNERS relation is designated as a constraint target by heuristic H2 (push a
constraint up a hicrarchy). The OWNERS file is much smaller than the SHIPS file and there is a
clustering link from OWNERS to SHIPS.

Finally, the POLICIES and INSURERS relations arc designated as nontargets by heuristic H3
(don’t introduce ualinked joins). The inclusion of cither of these relations would introduce a costly
join,

Now that we have designated appropriate targets for additional constraints, it remains to be seen
how to usc this information to guide the semantic query transformation process. This issue is taken
up in the next section. ‘

THE QUIST SYSTEM _ b3

4.4.2 Step 2 - Generation of new constraints

We now describe the next step of QUIST's production of semantically cquivalent querics: the
process of inferring additional constraints on database attributes. QUIST's inference process is based
upon the methods of semantic query transformation of general relational calculus querics described
in Chapter 3 (sce also Section B.4 of Appendix B). We first show how the inference process works on
the example query. Following the example, we describc QUIST's gencral rules for generating new
constraints and for merging new constraints with an existing set of constraints. We conclude by
noting the conditions under which it is permissible to introduce a constraint on an attribute
associated with a relation not previously involved in the query.

4.4.2.1 Selection of rules for the generation of new constraints

The constraint generation step begins with a set of query constraints and with a set of relations
designated as constraint targets. A set of rules is then extracted from QUIST's knowledge base.
These rules are used to assert new attribute constraints. To be among the rules selected for the
asscrtion of new constraints, a rule must pass several tests:

o Relevant. The rule must be relevant to the constraints in the query. For a bounding rule,
it is necessary that one of its mutually constraining attributcs be constrained in the query;
we refer to this as the relevant attribute. For a production, there are two possible ways to
be relevant: cither the single attribute constrained on its right hand sidc is involved in the
query, or cvery attribute constrained on the left hand sidc is involved in the query. As
with a bounding rule, the term relevant attribute (or attributes) is used. If relevance is
achicved by means of the right hand side attribute, then one more condition must hold:
there must be only one left hand side constraint. The reason for this is to avoid asscrting
a disjunction; this point is further discussed in Section 4.4.2.2,

o For our example, rules R4, RS, and R (Scction 4.4) are eliminated by the relevance
test. For all rules but these, one side of the rule catirely involves constraints on
Deadweight, Dollarvalue, Shiptype, or Facilitytype. Rules R4 and R8 do not even
mention any of the attributes constrained in the query. The right hand side of rule
RS constrains Facilitytype. Thercfore, RS would be relevant except that its left
hand side has morc than one constraint. Rule RS is not relevant from its left hand
side because although it contains a constraint on Dollarvalue, it also contains a
constraint on Cargotype, hence the rule fails the “entirely” part of the relevance
test.

o Promising. If the rule is relevant, it is then tested to scc if it is promising. This is a test
based on the expected uscfulness of the constraint that can be asserted using the rule, A
bounding rule involves two attributes. One of them is the relevant attribute; the other is
the potential sitc of the new constraint, which wc call the candidate attribute. For a
production, the attributc on the opposite side from the relevant attribute or attributes is
the candidate attribute. A rule is heuristically promising if and only if the candidate
attribute is associated with a relation in the list of constraint targets. The point of this test
is to avoid long chains of inference that have relatively little likelihood of producing a
constraint where we want one.

-
k.
56 THE QUIST SYSTEM
o The constraint targets are SHIPS, PORTS, CARGOES, and OWNERS. Among
the candidate attributes of the relevant rules, Coverage and Issucr are not associated)
with one of thesc relations; they are associated with POLICIES. Thus, rules R3 and Q

R7 fail the test of promise: we don’t wish to bring in constraints on the POLICIES
relation.

o Applicable. Every relevant and promising production must be tested to see if it is
applicable. A production is applicable if and only if cach of its relevant attributes is
constrained at least as strongly by the query as by the rule itsclf. Every bounding rule is ‘1
automatically applicable.

o Rules R1, R2, and Ré6 are still possibilities. It turns out that all these rules are
applicable. For example, the query constrains the relevant attribute Deadweight
with the constraint (Deadweight > 400). Rule R1 constrains Dcadweight with the
constraint (Deadweight > 350), which is a conscquence of the query constraint.
Note that rule R3 would have passcd the applicability test, but that rule R7 would
not because it requires a stricter constraint on Dollarvalue than the onc specified by
the query.

Every rule that is relevant, promising, and applicable can be used to determine a new constraint on an
attribute. 'The constraint is considered to be effective if the result of asserting it in conjunction with
the corresponding constraint in the query results in a stronger constraint than the query constraint.

The following new constraints can be asserted:

From R1: (Facilitytype = “offshore™)

From R2: (Business = “leasing™)

AT

From R6: (Shiptype € {“supertanker” “carrier”})

The first two of these constraints are effective in that they are at least as strong as the prior
constraint on the same attribute. ‘The last constraint is not as strong as the query constraint (Shiptype
= “supertanker™) so the constraint from R6 is not cffective,

If some rules pass the three tests and some effective new constraints arc obtained, then a new
round of constraint generation begins; otherwise, the constraint gencration step ends. In each
succeeding round of the constraint generation step, we seek just those rules that were not applicable
in any carlicr round. For instance, no applicable production is allowed to be used again. Thus, rules
R1, R2 and R6 are no longer in consideration after the first round of constraint gencration.
Furthermore, attributes that have just been more tightly constrained in the last round are
distinguished from attributes that were constrained in carlicr rounds; the set of relevant attributes in
the relevance test for rules must contain at least onc newly constrained attribute. In this way, we
avoid the repeated retricval of a rule whose attributes on one side are all constrained but which has
-already been uscd to assert a constraint or has been shown to be unpromising or inapplicable. For
instance, rule R3 will not be relevant to the second round of constraint generation as Dollarvaluc was
not newly constrained after the first round. [If Dollarvalue reccives a stronger constraint in a later
round, rule R3 will be rclevant again.

TIIE QUIST SYSTEM ' . 57

We start the second round of constraint generation for the cxample query. Apart from the

eviously described elimination of rules from consideration, the major difference in this round is
that rule R8 is now rclevant (because the Business attribute was constrained in the first_round).
However, rule R8 is not applicable because its constraint on Business, (Business = “petroleum”),
does not follow from the newly asserted constraint (Business = “leasing”). No other constraints are
asserted in this round, so the process of constraint generation terminates.

4.4.2.2 Semantic equivalence transformations in QUIST

We now describe the general conditions related to the generation of constraints in QUIST as the
basis for scmantic equivalence transformations of QUIST querics. The discussion here appeals to an
intuitive notion of inference for the particular kinds of expressions and rules admitted by QUIST. In
Appendix B, we show how semantic equivalence transformations in QUIST arc actually a special case
of such transformations for relational queries, and therefore how the formal definitions advanced in
Chapter 3 7~ply to QUIST as well.

As noted earlier, there are two kinds of rules in QUIST: bounding rules and productions. Once a
rulc has been sclccted to try to generate a new constraint, the ensuing manipulations are domain-
independent; that is, they depend only upon properties of mathematical and sct operators. It should
be noted too that the result of any QUIST inference is the assertion of a single constraint on a single
attribute.

The conjunctive form of query permitted in QUIST lends itsclf to a simple form of semantic
equivalence transformation. The restriction portion of a QUIST query Q can be represented as

Q:CADACLAYA . AC,(A).

Query Q involves constraints on the sct of attributes {Al.AZ...,A“}. a subset of all the attributes in the
virtual relation. Each term Ci('\i) is one of the constraint forms defined cartier.

Given a conjunctive query Q, the basic semantic transformation operation of QUIST is as follows:

1. Select some semantic rule R from the QUIST semantic knowledge base,
2. If possible, use rule R and query Q to produce a new constraint C(A) on attribute A.

3. If a new constraint C°(A) is produced, combine it with Q to form the transformed query

Q.

We have already discussed QUIST's rule sclection tests and the heuristics that they use. Here we
assume that a rule R has been sclected and we discuss how a new constraint C(A) can be producced.
In Scction 4.4.2.3, we discuss how the ncw constraint can be merged with query Q to form the
semantically equivalent transformed query Q.

We cxamine this first in the context of a bounding rule. A QUIST bounding rule is of the form:

“*"“'““"'“‘“—*F""“"—-wnunnnnuu‘

58 THE QUIST SYSTEM

where A, and A, arc numerical-valucd databasc attributes and @ is a standard Boolcan ~~.parison
operator such as less-than or greater-than. The bounding rule places an upper bound ~2 ¢- 2 uf the
attributes and a corresponding lower hound on the other (except in cases of equality and inequality).
If a query constrains one of the attributes by, say, placing an upper bound on it, and if the bounding
rule indicates that the constrained attribute scrves as an upper bound for the other aitribute, then that
other attribute inherits the same upper bound. Similar remarks hold for a lower bound.

As an example, consider bounding rule R4 from the cxample knowledge base. It states that a ship
carries no more cargo than its rated capacity, and is represented to QUIST as (Quantity < Capacity).
It is natural to think of the value of Capacity as providing an upper bound on the value of Quantity;
it is equally correct to think of the value of Quantity providing a lower bound on the value of
Capacity. Suppose a query contains the constraint (Quantity > 100); that is, the query places a lower
bound on Quantity. Then it is easy to see that a Jower bound constraint on Capacity, (Capacity >
100). can be inferred. In a similar way, a query with a constraint (Capacity < 250) permits the
infercnce of the constraint (Quantity < 250). If the query instcad contains the constraint (Quantity €
100), then it is not possible to use the example rule to infer anything about Capacity, and similarly for
the constraint (Capacity > 300). o

Turning now to productions, we will see that constraint generation draws on properties of both
numerical and set operators. As noted carlier, a QUIST production is a rule of the form

CLAYA . ACA)— C(A) :

U
where each term C(A) signifies a constraint on some database attribute and where a given attribute
appcars at most once on the left hand side.
With QUIST productions, it is possible to rcason left-to-right or right-to-left. In reasoning left-to-
right, it is nccessary to show that the query constrains all the attributes on the left hand side of the G

rule, and that every such rule constraint follows from the corresponding query constraint by the
propertics of numerical or set comparison.T If so, then the rule's right hand sidc constraint can be
asserted.

Reasoning right-to-left is limited to productions with a single constraint on the left hand side. This
is because right-to-left reasoning deals with the contrapositive of the rule. The negation of a . <
multiterm conjunction is a multiterm disjunction, but QUIST, in common with many other inference
systems, makes no inferences with disjunctions of terms. In this mode of reasoning, if it is seen that
the negation of the right hand term follows from the corresponding query constraint, then the
negation of the left hand term can be asserted. Obtaining the negation of a constraint on a string-
valued attribute is simply a matter of exchanging & for €, or vice versa. For constraints on
numerical-valued attributes, it is a matter of “inverting” the interval specificd in the constraint. For
instance, the negation of the constraint (Age € ((18 65])) is (Age € ((-co 18] (65 o0))).

fln paniicular, QUIST docs not sct up inference subgoals,

)
THE QUIST SYSTEM 59
To illustrate inference with QUIST productions, consider a production that states that juice and
) bananas are always carried in refrigerated ships:

(Cargotype & {“juice” “bananas”}) — (Shiptype = “refrigerated™). -

Suppose the query contains the restriction (Cargotype = “bananas™). The rule’s constraint on
Cargotype follows from this corresponding query constraint because the set of values permitted in the
’ query is a subset of the values permitted by the rule. Therefore, the constraint (Shiptype =
“refrigerated”) can be asserted. If, on the other hand, the query contains the constraint (Shiptype =
“supertanker™), then the production given above can bc used to assert the constraint)

(Cargotype & {“juice” “bananas”}).

»
4.4.2.3 Merging a new constraint with an existing query
We have seen how QUIST generates additional constraints on attributes. In this section, we
describe in general how new constraints are combined with an existing QUIST query.
. » ,
' The result of any one of the inference processes just described is the assertion of a single new
constraint C’on an attribute A. The processes can be viewed as follows: given some conjunction T of

terms Ci(Ai), it is possible to infer a new term C’(A); that is, T — C. From this point of view,

combining the ncw constraint with the old ones follows along the lines described in Section 3.6 on
’ logical transformations in semantic query optimization, with some additional factors arising from

QUIST’s joinless representation and from the task of detecting unsatisfiable query constraints.

To be more specific, let query Q be represented as before:

Q CAPDACLANA .. AC(A).

’
} By the logical cquivalence
(AA(A—B)=(AAB)
i , query Q can be transfonnedT into the semantically equivalent query:
; Q:QACA)
The new quer. Q’is actually formed by replacing the prior constraint C(A) on attribute A by the
conjunction of C(A) and the new constraint C(A). The resultant constraint is obtained as follows:
’ 1. If there is no prior constraint C(A), then the resultant constraint is merely C(A).
2. If the prior constraint C(A) is stronger than C’(A), then the resultant constraint remains
C(A).
»
tln most cases; but sce Scetion 44.3.1,
) []

60 ' : THE QUIST SYSTEM

3.If the new constraint C"(A) is as strong or stronger than C(A), then the resultant
constraint is C(A).

4. If C(A) and C’(A) overlap in the sense that C permits some values of A that C'does not
permit and vice versa, then the resultant constraint is the intersection of the values they
permit. For instance, if C(A) is (A € {“a” “b"}) and C(A) is (A € {"b" “c"}), then the
resultant constraint is (A = “b”"). An analogous combining rule is observed for numerical
interval constraints,

5. Finally, if C(A) and C’(A) conflict in the scnse that there are no values of A that can
satisfy both constraints, then the original query restrictions are not satisfiable in the
databasc; that is, the answer to the originial query must be the empty set. Note that this is
detected without recourse to the data.

4.4.3 Step 3 - Formulation of the set of semantically equivalent queries

We now discuss the last step of QUIST's gencration phasc: the formulation of a sct of alternative,
semantically equivalent queries from the constraints gencrated in the preceding step. A simplified
way 1o look at the final step of query formulation is as follows. After constraint generation, there is a
set of constraints on Jatabase attributes. Some of these constraints must be part of the query while
other constraints arc optional. A constraint is optional if it can be derived from other query
constraints. One of the querics in the sct of semantically cquivalent queries is a “kernel” query, Qo'
that includes only the nccessary constraints, [If no new constraints arc generated, then Q0 is the
original query. If there are N additional optional constraints, then the set of equivalent queries
includes an additional 2N-1 querics generated by all possible choices of including or excluding those
N constraints.

This account must be modified in scveral ways. First, it is not always possible to classify every
constraint as necessary or optional independently of the classification of the other constraints, What
may happen is that two scts of constraints are related, so that one sct or the other may be excluded,
but not both. Sccond, the addition to the query of certain derivable constraints may implicitly
introduce new relations into the query. Introduction of new relations is only permitted if the
database meets certain structural constraints, Finally, QUIST assumes that once a particular (real)
rclation is involved in a query, every constraint on attributes of . iat rclation should be part of the
query. The reason is that additional constraints on a rclation cannot increase the cost of processing,
given QUIST's cost mcasure, the number of page fetches from sccondary storage. Thercfore, the
number of independently excludable constraints is reduced.

In the remainder of this section, we indicate how the sct of cquivalent queries is formulated for our
example. After that, we give the details about when constraints can be considered optional, and when
new relations can be introduced.

We started with the QUIST query

THE QUIST SYSTEM 61

Q: (Deadweight > 400) A (Shiptype = “supertanker”)
A (Dollarvalue < 1000) A (Facilitytype = “offshore™);
(7 Destination) :

and the constraints generation step left us with the followirg constraints:

(Dcadwcight > 400), (Shiptype = “supertanker”), (Dollarvalue < 1000),
(Facilitytype = “offshore™), (Business = “leasing”).

The only new constraint derived in that step is (Busincss = “leasing™), although it is now known

that the Facilitytype constraint is derivable from other query constraints, namely from the constraint
on Dcadweight using rule R2.

Let us denote the five constraints by C1 through C5 as follows:

CI: (Deadweight > 400)

C2: (Shiptype = “supertanker™)
C3: {Dollarvalue < 1000) .

C " (Facilitytype = “offshore”)
C,: (Business = “leasing™)

Then C | through C3 are the necessary constraints and C, and CS arc the optional constraints. The
kernel qucry Qo contains just the nccessary constraints:

Qo—=—C1/\C2AC3

which, incidentally, is not the original query becausc the constraint on Facilitytype has been
identified as optional. There are two optional constraints, each on a scparate underlying relation, so
therc arc three other equivalent queries:

Q, = Q, A C, (the original query)

The cost of the alternative queries can be estimated by determining the real relations they involve.
The kernel query Q0 involves attributes on SHIPS and CARGOES; that is, it is possible not to
involve PORTS at all, because PORTS is not involved in the output and the only constraint on one of
its attributes is derivable from constraints on other relations. All the other queries involve SHIPS and
CARGOES, while bringing in additional rclations: Q1 adds PORTS (Q1 corresponds to the original
query), Q, adds OWNERS, and Q, brings in both PORTS and OWNERS.

The OWNERS relation is of course not involved in the original query. In order for queries Q2 and
Q3 to be cquivalent to the original query, it is nccessary that every tuple in SHIPS have a
corresponding tuple in OWNERS. If this condition is not met, then it is possible that some tuples in
SHIPS that satisfy the original query conditions will not satisfy the join condition.

A b e ale A bt AN A AR R C At D diias ahn i 2k Bl b s A a

Y

62 THE QUIST SYSTEM

QUIST has now gencrated four cquivalent queries, cach involving a different set of databasc
relations. This concludes the first phasc of the QUIST system. The next phase is to detcrmine which
of these querics has the lowest estimated processing cost. Before we discuss this, we discuss the S
conditions under which rclations can be added to a query (as OWNERS is added to get queries Q,
and Q3), and the conditions under which relations can be dropped from a query (as PORTS is
dropped from the original query to get querics Qp and Q,).

.
]

4.4.3.1 The introduction of joins)
It was noted earlier how the query Q A C'(A) is semantically equivalent to query Q in most cases,

if constraint C(A) can be derived from the other constraints in Q. The possible exception arises when

the addition of C"(A) implicitly introduces a new (real) rclation into the query, the relation R to {

which attribute A is associated. The introduction of a new relation also introduces one or more joins

to connect R with the real relations already involved in Q. g

This section discusses the conditions under which it is permissible to introduce new relations and
new joins into a query. Briefly, it is only all right to do so if no tuples in the original query fail to
satisfy the join terms that must be inwoduced. We illustrate this idea with an example here. It is
discussed more completely in Appendix B. ‘

An example illustrates the introduction of joins. Suppose the query requests the destination of all
cargocs of refined petroleum products:

Q: (Cargotype = “refined™); (? Destination)

and suppose it is known that refined petroleum products are only carricd by ships whose deadweight
does not exceed 60 thousand tons:

R: (Cargotype = “refined”) -—+ (Deadweight < 60).

Cargotype is associated with the CARGOES relation, and Deadweight is associated with the SHIPS
relation that is not involved in the original query Q. The straightforward query transformation
produccs a request for the destination of ail cargoes of refined petroleum products that are being
carried by ships of under 60 thousand tons deadweight:

Q" (Cargotype = 1 fined”) A (Dcadweight < 60); (7 Destination)

The new query Q’implicitly introduccs a join between CARGOES and SHIPS. One way to process
Q’is to find all ships not exceeding 60 thousands tons deadweight, then to find the cargoces they are
carrying and indicate the destinations for the cargocs that are refined petrolcum products. However,
consider some tuple x in the CARGOES relation. If the Ship attribute of x has a null value, or if it
contains the name of a ship that is not listed among the tuples of the SHIPS relation, then the join
will miss tuple x, cven though a simple scan of CARGOES requested by the original query Q will
return tuple x,

The difficulty is rclated to the siructural semantics [E\Masri80b] of the database. The fact that

R

-

THE QUIST SYSTEM ' : ' 63

there is no value for the Ship attribute of a tuple in CARGOES may be a data entry oversight, or it
may reflect a database design decision to permit null values and thus to interpret a cargo as existing
independcently of any ship that may carry it. The fact that the Jatter interpretation results in a null
value in some field is an artifact of the manner in which relationships can bc represented in the
relational model. The former case, in which the value in the Ship attribute of some tuple in
CARGOES docs not correspond to the valuc in the Shipname attribute of any tuple in SHIPS, is
much more likcly to be an error in data cntry.

In any event, query Q’is semantically cquivalent to query Q if and only if for every tuple in
CARGOES there exists a corresponding tuple in SHIPS, where “corresponding” refers to tuples in
SHIPS that would be logically accessed from CARGOES by way of the logical access path defined
for QUISTs virtual relation.

It is assumed throughout the QUIST system that the appropriate structural constraints on the
existence of corresponding tuples are enforced, so that the introduction of joins is always pcrmitted.T
The system could be modificd to make this assumption unnccessary. It would be necessary to
incorporatc another test to sce if the existence condition docs in fact hold when the introduction of a
particular join is considered.

4.4.3.2 The climination of query constraints

As pointed out in Section 3.6, it is possible not only to add constraints to a query, but also to
eliminate constraints if they are dcrivable from other constraints in the query. A constraint on a
single attribute can be climinated despite the fact that it was constrained in the original query,
provided that another equally strong or stronger canstraint can be derived on the same attribute
based solcly on initial constraints on other attributes. Similar conditions hold for the climination of
constraints on more than onc originally constrained attribute, although care must be taken to avoid
climinating scts of constraints that support each other’s derivation.

The following example illustrates the possible pitfall in constraint climination. Let query Q
contain the constraints (A1 YIDA (A2 30 A (A3 > 50). Assume there arc two production rules, Rl
and R, "

Ry (A} > 5) A(A;>10) = (A, > 40)
Ry (A > 25) A (A;>40) = (A, > 20)

With rule R, itis possible to infer the new constraint (A2 > 40), with constraints on A, and Ay in
its basis. With rule Rz, we obtain (A 1 > 20), whose basis includes constraints on A, and A3. Hence,
both A, and A, are candidates for constraint elimination. Yet if both are dropped, yielding the query
(Ay> 50), then there is no guarantee that the items retrieved by that query satisfy the constraints on

tT.his condition is made more precise in Appendix B.

64 THE QUIST SYSTEM

cither A, or A,. The problem is that -he derived constraint on either attributc requires a constraint
on the other one.

The details of the analysis of constraint elimination in QUIST are as follows. Suppose that query
Q’has been formed from the original query Q through several steps of infercnce and merging, and
that Q’constrains attributes /\1 through An. For every attributc A in this sct, onc of three conditions
holds:

1. Auribute A was not constrained by the original query Q. Clearly, then, the coastraint C’
(A) in Qs not essential for obtaining the desired answer and can be climinated.

2. Attribute A was constrained by the original query Q and no other, stronger constraints
have becn derived on it. Therefore, constraint C'(A) in Q’is essential and must not be
eliminated.

3. Attribute A was constraincd by the original query Q but other, stronger constraints have
been obtained on A during the inference and merging that produced the constraint C(A)

inQ’
Thus, constraints on all attributes in class 1 can be climinated, but no constraints on attributes in class
2 can be eliminated. Whether or not constraints on class 3 attributes can be eliminated depends upon
what is called the basis of the contraints. This explicit maintenance and use of inference
dependencies 1o reason about the necessity of constraints is akin to the sct-of-support idcas for
derived information used for “truth maintenance™ systems ([Fikes75), [Doylc78]).

The basis of a constraint C on some database attribute A is defined to be the sct of constraints in
the original query which must hold in order for C to hold. Before any steps of inference and
merging, the basis of each constraint imposed in the initial query contains just the constraint itself.
Let Q°be the current query, and let {CI(A D .CK(AK)} be the set of constraints in Q that enable
constraint C*(A) to be asserted using some semantic rule R. The basis of C'(A) is the union of the
bases of thosc constraints. C’(A) is now merged with Q according to the rules listed in the preceding
section. When C’(A) is strictly stronger or weaker than the prior constraint C(A), the basis of the
resultant constraint is simply the basis of the stronger constraint. When the two constraints overlap,
the basis of the resultant constraint is the union of the bases of the new and the prior constraints.

To return to the question of eliminating constraints, first consider individually each class 3
attribute, that is, cach attribute that is constrained in the original query Q and upon which additional
constraints have been obtained. Let C(A) be the constraint on A in the initial query Q, and let C'(A)
be the constraint on A in transformed query Q°. Constraint C(A) on transformed query Q’can be
climinated if and only if constraint C(A) from original query Q is not in the basis of C’(A); in other
words, only if C’(A) is derivable entirely from query constraints on attributcs other than A.

When considering the elimination of constraints from several attributes that arc constrained in the
original query, it is necessary to avoid climinating too many constraints, as the earlicr cxample
illustrated. That situation is avoided by rctaining the rule against climinating a constraint on an

S -

r T ' T —

'y

THE QUIST SYSTEM 65

attribute that appcars in its own basis, and employing a procedure to keep track of the ultimate basis
of a constraint when other eonstraints are eliminated. Supposc there are scveral candidates for
constraint climination. Let the constraint on attribute -A meet the test for single constraint
elimination. Suppose that constraints on attributes B and C are in the basis of the constraint on
A. When the constraint on A is climinated, it should be dropped from the bases of all other
constraints and replaced by the constraints on B and C (unless they already appear).

In the example, suppose we choose to eliminate the constraint on attribute A,. Its basis contains
constraints on A2 and A, The constraint on A, docs contain the constraint on A,. so the coqstraint
on Al replaced by the constraints on A, and A3. Since A3 already appears in the basis, the new basis
consists of constraints on Azmd A;. But now, A, no longer meets the test for constraint elimination,
because it appears in its ownbasis. Thus, we are left with the cquivalent query (A,>40) A (A3 > 50).
It is easy to sce by production rule R, that items that satisfy this query also satisfy the original
constraint (A, > 10).

4.4.4 Step 4 - Determing the lowest cost query

The last task of the QUIST system is to take the set of queries produced in the preceding steps and
to estimate which one costs the least to carry out. In a sense, this process is not an integral part of
semantic query oplimization because it is merely a matter of performing a conventional query
optimization analysis for a set of queries, rather than for a single query.

QUIST's query cost cstimator is derived from the one described for System R [Sclinger79]. The
assumptions behind the System R query optimization were reviewed in Chapter 2. QUIST's cost
cstimator differs from that of System R chicfly in assuming that a join is carried out by the ncsted
loops method rather than choosing between that method and the merging scans method. This is a
reasonable simplification and docs not affect the heuristics; for instance, it would still make sense to
move constraints across join boundaries prior to performing sorts. Another difference from the
System R optimizer is that QUIST's cost measure involves just the number of estimated page fetches
rather than combining this with an estimate of CPU activity. However, results reported in
[Astrahan80a) suggest that the number of page fetches is a suitable cost measure for the class of
qucries admitted by QUIST. '

QUIST's estimator differs from System R’s in one other respect: the estimation of restriction
sclectivitics (Scection 4.4.1.1). System R assumcs that all constraints arc indcpendent, hence the
cstimated sclectivity of a conjunction of constraints is the product of the cstimated selectivity of cach
constraint alone. On the other hand, the QUIST estimator must distinguish between given and
derived constraints. A derived constraint is, of course, not indcpendent from the constraints from
which it is derived. In QUIST, the cstimated-selectivity of the conjunction of a given constraint and a
constraint derived from it is taken to be the estimatcd sclectivity of the given constraint alonc.

We have now concluded the description of how QUIST operates. In thg next chapter, we discuss

Y 3.4'3:
" R

the system’s effectiveness,

.

THE EFFECTIVENESS OF THE QUIST SYSTEM » 67

Chapter 5
The effectiveness of the QUIST system

QUIST has been implemented to investigate the design of effective systems for semantic query
optimization. We described issues in the design of such effective systems in Section 4.1. In this
chapter, we address the question of QUIST's effectiveness from several different perspectives.

In Section 5.1, we present details of the cost model used in QUISTs cost estimation step (the last
step). We use this cost model to provide quantitative estimates of the reduction in the cost of
processing that is obtained by effecting each of the transformations defined in Section 4.4.1.3: index
introduction, join introduction, scan reduction, and join elimination,

We then examine timing results for a range of queries in Section 5.2. Processing of the selected
queries illustrates each of the indicated transformations, as well as the ability of QUIST to decide that
no inference is apt to be fruitful or to recognize when the original query restrictions cannot be
satisfied. '

Finally, we take up the question in Section 5.3 of the continued cffectiveness of QUIST's control
strategy as the size of the database or the number of semantic rules increases.

5.1 Quantitative estimates of query improvements

This section presents estimates of the quantitative improvement that can be obtained for each of
the four QUIST transformations: index introduction, join introduction, join elimination, and scan
reduction. It is possible that the application of one of thesc transformations results in a complete
change in the sequence of processing the complete query. Hence, it is not possible to state directiv
what the overall effect on query cost will be of any given transformation. Instead, estimates are
presented for local changes, as if the transformation had no other effect. Additional changes at the
rescquencing level would lower costs even further,

anp
oz L M
L T Nuey

68 THE EFFECTIVENIESS OF THE QUIST SYSTEM

5.1.1 Processing assumptions and cost formulas

First, we briefly review our assumptions concerning how scans and joins are performed. Each
relation is assumed to reside on a single file that is divided into pages of P records each, where P is a
systemwide constant. Furthermore, it is assumed that cach filc entircly fills the storage segment in
which it resides. The cfiect of this assumption is that the cost to perform a sequential scgment scan is
simply the number of pages in the file, because we read no pages associated with other files. This
assumption leads to undcrestimates of the improvements brought about by transformations that
eliminate segment scans,

A join is performed on two relations; throughout this section,we assume that R, is the outer
relatiom and R, is the inner relation, unless stated otherwise. R, is scanned by means of a sequential
scan or an indexed scan. We only consider clustering indexes in this section. For every qualifying
tuple in R, we find the corresponding tuples in R,. This is achieved cither by a sequential scan of
RZ, or by a clustering indexed scan if we have a constraint on an indexed attribute of R2 other than
the join attribute, or by what can be called a link scan, a clustering indexed scan in which the
clustering index is on the join attribute. The cost to find the corresponding records varies according
to the method of the inner scan. :

Based on the processing assﬁmptions, we develop necessary cost formulas. Let Ni be the number
of records in the file that corresponds to relation Ri. Therefore, the file occupies Ni/P pages, and the
cost S(R,) to perform the scquential segement scan is given by

S(R) = N/P.

The cost of a join depends on the number of qualifying items in the outer relation. This in turn
depends upon the selectivity of the restrictions on that relation. Let a be the selectivity value of the
restrictions on relation R;, where 0 < a s L. Then the number of qualifying tuples from rclation R, is
“iNi‘

Unless otherwise stated, we assume that the outer relation of a join is scanned by means of a
scquential scgment scan. Given that assumption, there are three cost formulas for the join between
relation R and R,. The appropriate formula for the cost J(R,.R,) depends upon how tuples of R,
are found to match the current qualifying tuple of Rr If Rz' is scanned by means of a sequential scan,
the cost is '

JRR)) = N,/P + a;N,N,/P.

If R2 is scanncd by means of an indexed scan on a clustering index of an attribute other than the join
attribute, then the join cost is given by

KR, R,) = N)/P + a)N,a,N,/P.

“The difference between these two costs is due solely to the fact that only aZNzlP pages need to be

scanned for cach of the a 1N1 scans of R, for an indexed scan, versus N2/P pages each time for a
sequential scan. The figure for an indexed scan relics on the assumption that the values permitted by

I S

THE EFFECTIVENESS OF TIE QUIST SYSTEM 9
the restriction on the indexed attribute arc clustered together rather th.a scattered throughout the
relation. This is the case, for instance, when a numerical attribute is confined to some interval.

If there is a clustering index on the join attribute of R,, we assume that the query processor or the
underlying file system is sophisticated enough to maintain its “current pla_cc" in the scan of R, within
an in-core buffer, so any page of R, is read at most once. In other words, rather than scanning R,
completely for every qualifier in R, the system first checks to see if the proper page is in the buffer.
The next page of R, is brought in from the disk only if it is 'not in the buffer or if the end of the
previous page is reached while reading matching tuples. In this case, then, the cost to perform the
join is merely the cost to scan R, plus the number of pages of R2 that hold tuples that correspond to
R, qualifiers.

To determine the fraction of pages with corresponding tuples, we make the additional assumption
that there is a 1 to N relationship between records of file R, and file R,. This seems a reasonable
assumption for the kind of hierarchical link that is implemented by the index just described. Under
this assumption, every tuplc in R1 has, on the average, NZ/N1 corresponding tuples in R2° We refer
to the inverse of this as 8, so that 0 £ 8 < 1. The fraction of pages of R, which are brought in is
approximately the same fraction of pages on which there are qualifiers in Rr If we assume that those .
qualifiers are bunched and not randomly scattered throughout R, then the fraction of R, pages
brought in is simply aj. Therefore, we have the following formulia for the join with an indexed scan
on the join attribute:

IR R) = N/P + a,N,/P.

The considerable saving of this method (the elimination of the N1 factor in the second term) is due to
the clustering of the two files with respect to each other.

5.1.2 Cost improvements from transformations

The join cost formulas are used to show how diffcrent QUIST query transformations reduce the
cost of processing in sclected examples.

5.1.2.1 Index introduction

In index introduction, a constraint is obtained on an index that was not previously constrained.
Assume in this example that the index is not on the join attribute. Rl and R2 have constraints with
sclectivites a; and a,, as usual. Supposc a new constraint is inferred on a clustering index of R,,and
assumc it depends at Jeast partly on other constraints on R [50 that the overall sclectivity is still a. If
we keep R, as the outer relation, then the cost of the join is

J(RI‘RZ) = “lNl/P + a1N1N2/P°

The original cost is

70 THE EFFECTIVENESS OF THE QUIST SYSTEM

JRR) = N//P + aN,N,/P.

However, for large files (large values of N1 and Nz) we expect the cross product terms (the ones that
involve NlNz) to dominate the costs, so there is only a marginal improvement. However, if there is a
constraint inferred on a clustering index of Rz- then the new cost is

JR,R,) = N./P + a/N,a,N,/P

assuming that the new constraint does not change the overall sclectivity of constraints on R,
Considering just the cross product terms, if C is the original cost and C’is the cost after the
transformation, then the two costs are related by

C'&.# a2C

where a) is a fraction between 0 and 1, hence there could be a substantial reduction in cost.

5.1.2.2 Join introduction

Supposc R, is part of the original query and R, is not, but there is a clustering link from R, to R,;
that is, R2 has a clustering index on an attributc to which it is joined to Rl, and R1 and R2 are in
proper sequence with respect to their respective joining attributes. If we infer a constraint on Rl (and
if suitable structural constraints are met -- see Appendix B) then a join between R1 and R2 can be
introduced.

Consider a case where the original query includes a join between R2 and some relation R3.
Assuming that neither relation is constrained on an indexed attribute, the cost of performing the join
is .

J(RyR;) = Ny/P + a,N,N,/P.

if R, is the outer relation. The first term is the scan of R2 and the second term is the cross matching
term of R2 and R,

Now suppose R, enters through join introduction. There are now two joins to be done. The cost
of the join between R, and R2 is given by

JR;Ry) = N,/P + a;N,/P.
if R, is the outer relation. The two joins can be cascaded so that the cost to join R, and R, only
includes the previous cross matching term. Thercfore, the total cost is now

C'= N/P + a\N/P + a,N,N,/P.

The factor in the final cross matching term is assumed to be the same after join introduction as
before; that is, it is assumed there will be as many qualifiers from R,, hence as many scans of R,.
This is bascd on the assumption that the constraints on R, arc inferred from constraints already on
Rz' If we denote the original cost formula as C = J(Rz,RJ) and if we recall the ratio between the file
sizes as B = N /N,, then we find that the original cost C is related to the new cost Cby

THE EFFECTIVENESS OF THE QUIST SYSTEM 7

C'= C-[1-(a, + B)IN,P.

If R, is the samc size as R, so that B = 1, then join introduction clearly is not worthwhile. But if
both a, and B arc near zero, then join introduction can be quite useful, .

5.1.2.3 Scan reduction

In this transformation, constraints are inferred “across the join boundary”. The point very simply
is to reduce the number of qualifiers in the outer scan. If a constraint of selectivity a ‘is inferred on
Rl. and if it is independent of the other constraints already on Rr then by considering the dominant
product term as we did for index introduction we find that the new cost C'is related to the old cost C
by the same rclationship:

C'rs aC.

5.1.2.4 Join elimination

A relation is only involved in the query to constrain another rclation; none of its attributes are
desired as output and it is only joined to that one other relation. In this transformation, the
constraints on the “dangling” relation are shown to be derivable from other constraints in the query,
so the join to that relation is simply eliminated.

Generally spcaking, this should lead to a reduction in the cost of the query by about the amount
needed to perform the join. Therefore, because a join is often very expensive, join elimination may
bring about a substantial cost reduction. However, in the case of a clustering link such as supports
the join introduction transformation, the elimination of a join may actually increase the cost of the
query, so join climination wouid not then be desirable.

5.2 Experiments with the QUIST system

To demonstrate the effect of semantic query optimization on the cost of processing queries, a
selection of QUIST querics, including the example query of Chapter 4, has undergone semantic
query optimiza’"on with the QUIST system. The queries are specifically chosen to illustrate various
transformations that can be obtained by means of semantic query optimization, and to illustrate the
magnitude of the resulting reductions in query processing cost. The query processing cost estimates
arc bascd on the mode! of query processing described in Scction 5.1 and depend also upon the
assumed size of the files indicated below. The stated time to perform the analysis itself comes from
actual mcasurcments, but depends upon the implementation of QUIST.

What these results suggest about the potential importance of semantic query optimization is more
significant than the specific numbers reported here. Beyond the particular processing cstimates, the
results support the contention that semantic query cptimization can btring about significant

o

Ip . : THE EFFECTIVENESS OF THE QUIST SYSTEM
reductions in the cost of processing qQuerics with an acceptable overhead for analysis. They also
suggest the cffectivencss of the inference-guiding heuristics.

We assume the same database as the one described in Section 4.4, Physical database parameters
have been chosen in order to give some idea of processing time for a moderately large database. We
assume that cach relation in the example database corresponds to a single physical file with the
following number of records:

File Size
SHIPS 20,000
CARGOES ' 25,000
PORTS 2,000
OWNERS 200
POLICIES 25,000
INSURERS 500

Table 5-1: Assumed File Sizes for Timing Experiments

We assume that there are twenty records per file page (the same value used in [Ya079]) and that
the time per page fetch is thirty milliseconds (cxtrapolated from [Gotlicb75]). We further assume
that the SHIPS file is physically clustered with respect to the OWNERS file,

The example rule base contains approximately thirty rules like the ones in Section 4.4. These rules
were obtained in part from Couper’s “Geography of Sea Transport™ [Couper72).

The QUIST system is implemented in Interlisp [Teitelman78) on a Digital Equipment Corporation’

DECSystem20 model 60 computer.

5.2.1 Analysis of individual queries

We start with the cxample query of Chapter 4;

“List the destination of cargoes worth less than one million dollars being carried by
supertankers over 400 thousand tons deadweight to ports with offshore load/discharge
Jacilities.” .

As indicated in Scction 4.4.3, three semantically equivalent querics can be gencrated in addition to

THE EFFECTIVENESS OF THE QUIST SYSTEM 7

the original one. These inciude two useful transformations of the original query: join introduction

? and join elimination. First, it is worthwhile to add the OWNERS filc into the query because SHIPS
is much larger than OWNERS and is physically clustered with respect to it. Second, it is p(_)ssible to
show that the constraint on PORTS is superfluous. Because PORTS is only joined to one file and is
not involved in the output, it can be climinated. Hence, the lowest cost transformed query turns out
to be:

“List the destination of cargoes worth less than one million dollars being carried by
supertankers over 400 thousand tons deadweight owned by leasing companies.”

4 QUISTs conventional query optimization subsystem determines that for the assumed file sizes and
auxiliary structures, the original query in SHIPS, CARGOES, and PORTS can be processed in 435
seconds. The query in OWNERS, SHIPS, and CARGOES that results from join introduction and
join elimination can be processed in just 19 seconds. The total time to perform this analysis is 2.1

» scconds. '

The reduction in cost of well over an order of magnitude for this example query comes from the

simultaneous occurrence of fortunate circumstances in the query, database structure, and semantic
rules. Indeed, the query was specifically chosen to show what can happen when circumstances are
right, ' '

Things are not always so well-suited for semantic query optimization, but there are many situations
in which significant improvements can be obtained. We now present a sct of queries to illustrate the
specific transformations of QUIST: index introduction, join climination, scan reduction, and join
introduction. Other querices in the set illustrate two other important characteristics of QUIST. First,
QUIST can detect a query whose qualification cannot be satisfied because of semantic integrity
constraints (and which is therefore a null query). Sccond, QUIST can determine rapidly when there
3 arc no opportunitics for cost reduction via semantically based transformations.

For this set of querigs, it is assumed that the database has clustering indexes on the Shiptype field H
’ of SHIPS, the Ship field of CARGOES, the Country field of PORTS, and the Issuer field of
POLICIES. The queries are presented along with the rulc that is relevant to the particular
transformation, the transformed version of the query, if any, and the resulting change in processing, ¢
any.

) 1. Index introduction.

Query QI: “List the owncrs of all ships with a deadweight greater than 200 thousand
tons.”

) Relevant rule: “Any ship over 150 thousand tons deadweight is a supertanker.” (This is a
‘ change from cxample rule R6). :

Transformed query: “List the owners of all supcfiankcrs with a dcadweight greater than
200 thousand tons.”

S & T
-

14 THE EFFECTIVENESS OF THE QUIST SYSTEM

Result: A new constraint on the indexed Shiptype attribute of SHIPS.

o~

2. Join clinination.

Query Q2: “List the shipper and quantity of liquefied natural gas cargoes carried by
pressurized tankers to Marseilles.”

P

Relevant rule: “Liquefied natural gas is always carried by pressurized tankers.”

Transformed query: “List the shipper and quantity of liqucficd naturai gas cargoes
l carried to Marscilles,”

Result: Elimination of the join with SHIPS because Shiptype constraint is superfluous.
3. Scan reduction.

Query Q3: “List the owners and the quantity of cargo of ships carrying refined
petroleum products to Danish ports.”

] Relevant rule: “Refined petroleum products are carried by ships with deadweight under i
L ’ 60 thousand tons.” A

Transformed query: “List the owners and the quantity of cargo of ships with deadweight
under 60 thousand tons carrying refined petrolcum products to Danish ports.”

Result: Constraint on Deadwcight can be applied prior to cross matching step of join
between SHIPS and CARGOES reducing the number of qualifying SHIPS tuples and
therefore the number of scans of CARGOES.

4, Join introduction.

Query Q4: “List the owners of supertankers with decadweight over 350 thousand tons that
are carrying cargoes to French ports.”

Relevant rule: “Only leasing companies own vessels that exceed 300 thousand tons
deadweight.”

] Transformed querv: “List the leasing company owners of supertankers with deadweight
over 350 thousand tons that are carrying cargoes to French ports.”

Result: Addition of join between OWNERS and SHIPS has the effect of a more cfficient
scan of SHIPS,

5. Detection of unsatisfiable conditions.

Query Q5: “List the owners of all bulk cargo ships with deadweight over 200 thousand
tons.”

Relevant rule: “Any ship over 150 thousand tons deadweight is a supertanker.”

"M

THE EFFECTIVENESS OF TIIE QUIST SYSTEM 75

Result: No transformed query. QUIST indicates that no items can satisfy the query
conditions.

6. Abscnce of opportunities for cost reducing semantic transformation. .
Query Q6: “List the owneis of all refrigerated ships.”

Result: Indexcd attribute Shiptype is alrcady constrained. No relevant rule. Query
remains the same.

We now show the estimated processing times associated with these queries on the example
databasc (Table 5-2).

Query Transformation Est. Proc. Time Est. Proc. Time
without SQO (scc.) with SQO (sec.)
Qo join introduction 435 19

& join elimination

Ql index introduction 30 4
Q2 join climination 313 37
Q3 scan rcductipn 1125 ’ .519
Q4 join introduction 348 112
Qs (unsatisfiablc)! 30 0
Q6 {SQO deemed uscless) 3 3

Table 5-2: Reduction in Processing Costs with SQO

Two times are shown. The first one is the estimated time tn process the original query optimized only
by conventional means. The second one is the estimated time to process the transformed query, that
is, with both scmantic and conventional optimization. Again, what is significant is the relative
magnitudc of processing times rather than the precise times indicated. Note that the amount of
processing time for QUIST itself is about 1 sccond in cach case. In the case of the detection of
unsatisfiable conditions, the time for QUIST analysis is under half a sccond. These QUIST analysis
times include all four stcps described in Chapter 4, including the time it takes to carry out

1"n\c query is a null query. QUIST would not scnd it to the database for processing.

Rk AN

76 THE EFFECTIVENESS OF TIE QUIST SYSTEM

conventional query optimization for each alternative query. The example query of Chapter 4 is
referred to as QO. '

5.2.2 Thé effect of inference-guiding heuristics

Another important factor in QUIST’s effectiveness is the cffect of the inference-guiding heuristics.
Table 5-3 indicates that QUIST spends much more time generating constraints when the heuristics
are not enforced. This effect is compounded because when more constraints are generated, more
alternative queries may be formulated, and these additional queries must cach undergo conventional
optimization.

Query QUIST -- all steps QUIST -- inference only
time time time time
with : without with without
pruning pruning pruning pruning
QL 43 sec. 67 29 1.20
Q2 90 26 42 S8
.Q3 1.00 11 A4S Sl
Q4 130 - 201 22 98

Table 5-3: Effect of Inference-Guiding Heuristics

For cach of the four querics noted here, four timing figures are given. First there are two timings for
all steps of QUIST, with and without pruning based upon heuristics; that is, with and without the use
of constraint targets. Sccond, there are two timings for just the inference portion of QUIST (step 2
described in Chapter 4) with and without pruning. A larger difference is seen when we look at all
steps of QUIST sather than just at QUISTs inference steps. As noted above, this reflects the effort to
estimate the cost of morc altcrnative queries.

The cffectiveness of inference guiding heuristics is suggested by the number of rules tested in the
analysis of a query like query Q) with and without pruning. Without pruning, 33 rules were tried;
these included 20 separate rules plus repetitions due to rencwed eligibility as new constraints were
inferred. Of these, 11 were actually found applicable and were used to infer new constraints. When
constraint targets were cstablished and used, however only 8 rules were found eligible, and only 1
was uscd to infer a new constraint. Analysis without pruning was cven more incfficient because cost
cstimates had to be found for additional alternative queries.

o

THE EFFECTIVENESS OF THE QUIST SYSTEM '

5.3 The stability of QUIST’s control strategy

One mecasure of the effectiveness of a strategy to control inference s how well it constrains the
search. In QUIST’s case, «he pertinent question is how many rules are tested during the analysis of a
typical query. QUIST's control strategy has been cffective for a relatively small set of approximately
thirty-five rules. Would the strategy still be effective as the size of the database or the number of
rules increases? '

Our answer-to the question is a qualified “yes”. We shall argue that the number of rules that must
be tested for a typical query is bounded, and that the bound hardly increases at all as the database or
set of rules grow. We also offer some plausible arguments that the bound is small enough that the
rules can be tested efficiently.

We make the following assumption about the rules in order to simplify the argument:

Al. Simple rules. Each rule is a production relating two attributes. That is, each rule is of
the form C,(A,) — Cz(Az)jbr two attributes A, and 4,

In Section 4.4.2.1, we described how QUIST’s rules are used during the analysis of a query. In this
section, we follow that description in order to establish a suitable measure for the effort expended by
QUIST on a typical problem.

First, we cstablish some terminology. A rule R is associated with an attribute A if and only if A is
onc of the two attributes constrained in the rule (there are just two, according to assumption Al). We
designate by S(A) the sct of rules associated with attribute A; this sct nced not be nonempy for every
attribute.

Let us illustratc what can happen to 2 rule by means of an cxample. Suppose that attributes A,
and A, arc on constiaint target relations, and that attribute A4 is on a nontarget rclation. Also
supposc that the knowledge base contains the following rules:

R1: (A, > 40) — (A, > 200)
R2: (A, > 30) — (A, 50)

R3: (A, > 60) — (A, > 300)
R4: (A, < 20) — (A, > 150)
RS: (A, > 25) = (A4 > 100)

Assume that at some point in processing, it is known that (A, > 100) but that no constraint is
known on Al or A3. '

Now suppose it is concluded (by rules other than R1 through RS) that (A, > 50). All rules
associated with A, (that is, thosc in S(A)). fall into onc of five classifications illustrated by rules R1
through RS.

18 . : THE EFFECTIVENESS OFF THE QUIST SYSTEM

First, we exclude from possible use thosc rules that arc not promising in the sense that they
conclude a constraint about an attribute on a nontarget relation. Rule RS is not promising because
given a constraint on attribute A, it would conclude a constraint on attribute A, which is on a
nontarget relation. By prior organization of the rules, it should be possible to determine unpromising
rules once and for all at negligible cost. ‘

Next, we sce which rules are applicable in the sense that the rule’s constraint on A, is implicd by
the ncwly inferred restriction on Ar Rules R1 and R2 arc applicable, but rules R3 and R4 are not.
Furthermore, rule R4 can never be applicable, so it can be excluded from consideration at any
subsequent point. By constrast, it is possiblc that rulc R3 may become applicable if the constraint on
A, is later strengthened as a result of additional infcrences. We assume onc “unit” of cost to check
promising rulcs for applicability because of the work involved in comparing the rule constraints and
the current restriction on the attribute. The test for potential future applicability falls out of the
dircct test for applicability so it costs no more.

Finally, we determine if the applicable rules are effective in the sense that they produce a new
constraint. Rule R2 is not effective because the constraint ic yields, (A2 > 50), is weaker than the
current restriction on A, Rule R1 is effective because it yiclds a new and stronger constraint, (A
200). In cither case, another “unit” of cost is incurred comparing constraints on attribute A,. In
addition, both rules are now “uscd up” and excluded from further testing.

To generalize from this example, we assume:

o Unpromising rules incur no cost and are excluded from further testing.

.o Inapplicable rules incur one unit of cost; only rules that are potentially applicable later
arc retained for further testing.

o Applicablc rutes, whether effective or not, incur two units of cost and are cxcluded from
further testing.

Hence, the cost of analyzing a query can be determined as follows. For cvery attribute that is
constrained once, cither in the original query or by means of subscquent inference, the cost cquals
the number of inapplicable associated rules, plus twice the number of applicable rules. For every
attribute that is constrained twice, the cost is the previous cost plus an additional cost figured only on
the basis of potentially applicable rules left over after the first cunstraint was asserted. Costs for
subsequent constraints are figured the same way, on the basis of a dwindling set of potentially
applicable rules.

Thercfore, the problem of determining the cost of analyzing a typical query becomes a probiem of
determining the following quantitics:

1. the number of attributes that are constrained

2. the number of times cach attributce is constrained

THE EFFECTIVENESS OF THE QUIST SYSTEM 79

3. the number of associated rules that are promising
4, the number of promising rules that are applicable

~ S. the number of inapplicable rules that remain for subsequent testing.

As we stated above, we will not attempt to make an actual estimate of the cost of analyzing a
typical query, but will argue that the cost is bounded, that the bound is stable with respect to the size
of the database and the rule base, and that the bound is likely to be “reasonable”. We make several
more plausible assumptions: ' ‘

A2. Simple queries. Almost all queries constrain just a few attributes, no more than (say)
ﬁve.‘r
A3. Strong constraints. Query constraints are often likely to be quite restrictive.

Ad. Nonuniform distribution of rules. Some attributes have relatively many associated rules,
many have relatively few or none.

Based on thesc assumptions, we make one more crucial assumption:

AS. Limited inference. Only a small nuiber of attributes receive inferred constraints, and
very few of these are constrained more than once.

Our overall picture of inference in QUIST is as follows. A small number of attributes are
restricted in the query (assumption A2). The process of generating constraint targets therefore does
not yicld a large sct of targets. - Consequently, only a relatively small percentage of the rules
associated with the constrained attributes are promising, are tested, and incur a cost. The query
constraints arc probably strong, at lcast on the “important™ attributcs that arc involved in many rules
(assumptions A3 and A4), Therefore, very few new constraints are inferred and very foew rules
remain potentiatly applicable. Strong constraints probably Icad to other strong constraints, so that
there are few if any long chains of inference (assumption AS).

Returning therefore to the five quantities of interest described above, we are asserting that the
number of contrained attributes is likely to be small and that each attribute is likely to be constrained
no more than once. Concerning the quantities that involve numbers of rules, if the number of
promising rules is recasonable, then the number of applicable and retested rules is reasonable too.

It is this last question of the number of promising rules that involves the growth of the database
and the rule base. We make the following two assumptions about the effect of such growth:

T'lhis seems 10 be the experience in systems like LADDIRR (Hendrix78).

- T m'——""—-—w

80 THE EFFECTIVENESS OF THE QUIST SYSTEM

A6. Growth of the database. The growth in the number of items in the database has no effect
on the number of rules.

L]

This assumption is actually rather obvious as the rules merely dictate permitted configurations of
the data and arc not otherwise linked to any aspect of the data, including the quantity of it.

As for whether the bound is rcasonable or not, that depends on just how many rules are likely to
be associated with the number of relations that are constraint targets in a typical query. There is no
solid evidence from prior research to suggest what that number might be, but contemporary expert
systems in artificial intclligence such as MYCIN [Shortliffe76] and PROSPECTOR [Duda78] have on
the order of a few hundred rules for the entire system. This would certainly be a manageable
number. '

THE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION 81

Chapter 6

The significance of
semantic query optimization

In this final chapter, we discuss the significance of semantic query optimization in general and of
its formulation in the QUIST system in particular. Our work advances specific ideas about the
processing of database querics and about the organization of planning programs. It also serves as an
important example of the fruitful interaction between research in artificial intclligence and research
in databases. We also discuss the limitations of the research and make suggestions for future
investigations.

6.1 Significance for database research

Semantic query optimization is significant for database research in tying together research on
query optimization with rescarch on the semantic integrity of databases. The synthesis provides a
new and powerful method of query optimization. We discuss this in Section 6.1.1. In Section 6.1.2,
we compare the work on QUIST with a related, more general proposal, called KBQP, of Zdonik and
Hammer. We indicate that QUIST is a significant step forward because it provides specific-answers
about how semantic query optimization should be carried out and controlied in a context where
query processing is relatively well understood, and becausc it has shown specifically by how much
query processing can be improved using semantic reasoning,

6.1.1 The relationship of semantic integrity to query processing

The semantic integrity of a database is insured when the data in it are forced to meet semantic
integrity constraints that reflect the rcal world application modelled by the database. The
development of semantic integrity notions and the design of systems to cnforce scmantic integrity
were sketched in Section 1.2.4. Through the work of Chang [Chang78)], El-Masri [ElMasri80b],
Hammer and McLcod [Hammer75], Roussopoulos [Roussopoulos?7), and others, declarative
formalisms have becn applied to the purpose of stating general laws that express the semantics of a
database. ~

The development of the ideas about semantic integrity constraints was motivated by one purpose,

82 TIE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION

that of making surc that the data in the database is meaningful. Our rescarch advances another
H important and unforescen usc of these constraints. We have shown that:

The semantic knowledge about a database expressed in semantic integrity constraints can
sometimes be used to transform a database query into a semantically equivalent query that
is much less expensive to process than the original query.

2 This demonstration. thus brings together the two apparently quite separate research areas of
database integrity and query optimization. '

The notion that gencral rules about the databasc can be applied during the processing of a query,
and not just during the validation of updates, has appeared in other work, but not for the purpose of
improving efficiency. For instance, in Chang’s DEDUCE? system [Chang78], general semantic rules
are used to define virtual relations in terms of the basic relations that are stored in the database.
When a DEDUCE?2 query is processed, all virtual relations are transformed into the underlying basic
relations. As with QUIST, DEDUCE2 checks whether the query poses conditions that violate
semantic integrity constraints, but DEDUCE2 does not perform transformations for the sake of
efficiency. '

6.1.2 The organization and effecis of semantic query optimization systems

The insight advanced by QUIST, that semantic integrity constraints can be used for efficiency
" transformations, has been introduced independently by Hammer and Zdonik [Hammcer80] under the
name knowledge-based query processing (KBQP). Their work resembles the QUIST work in three

F essential respects. First, of course, they propose that semantic knowledge about databases be applied
to the problem of cfficient query processing. Sccondly, they suggest that the way to bring semantic
knowledge to bear on this problem is by means of the transformation of queries into equivalent

queries. Thirdly, they identify control of the query transformation process as crucial to the successful
application of scmantic knowledge to query processing.

However, QUIST makes important and original contributions in the introduction of the concept of
semantic query optimi~~tion and in the organization and analysis of scmantic query optimization
systems. To identify these contributions, it is convenient to contrast QUIST with the KBQP
proposal,

Rty ol A ool
b

KBQP is intented to operate in the context of an abstract data management system that treats the
databasc as a collection of scts of objects. The data model rescmbles the entity-relationship model
[Chen76). By contrast, QUIST operates with the relational model. The difference is significant

. because, as discussed in Chapter 2, rescarch on the relational model has produced a body of query-
processing cxpertise for which there is little countcrpart in studies related to the entity-relationship
F, modecl. Indeed, onc of the significant demonstrations of our research is that:

|
1
|
|
[_
!
|

THE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION 8

Factors that govern the cost of processing a relational database query can be expressed as
expert rules that can help control the query transformation process of a semantic query
optimization system. .

It is worth noting that this rcsult is the product of taking an artificial intclligence “perspective”
toward results in database research,

As noted above, the KBQP proposal recognizes that in order to maintain the overall efficiency of
the system, it is necessary to perform only those qQuery transformations that may lead to reduced
query processing costs. Hammer and Zdonik postulate a sct of what they term: cost-reducing
technigues to control transformations. For example, the aim of one such techunique, called domain
refinement, is to convert the domain of a restriction expression into a smaller one whose members are
more readily accessible. The technique of domain refinement seems intuitively plausible. Indecd, it
corresponds in the relational context to QUIST's index introduction transformation (Section 4.4.1.3).
What the research on QUIST has done is to gc beyond intuitive plausibility in the context of a well-
developed model of query processing (Section 5.1), leading to the asscrtion that:

Several classes of transformations of relational database queries that reduce the cost of
processing have been identified, and the reduction they produce in the cost of processing
has been estimated quantitatively based upon well-developed models of query processing.

To control the application of their cost-reducing techniques, Hammer and Zdonik proposc a
multiprocesssing control structure. At the start of analyzing a query, a separate process is set up for
each technique applied to each subexpression in the original query. Each process is assigned a
priority based upon heuristics that reflect the presumed likelihood that the particular technique will
succeed and produce an improvement in the particular subexpression. An example of ‘such a
heuristic is: “assign a low priority to a process that involves domain refincment applied to an
expression that docs not appear in any statements about subsct relationships in the knowledge base™.
Hammecr and Zdonik acknowledge that the number of processes is apt to grow large. The rcason they
propose such an claborate control structure in spite of this is their belicf that it is necessary to reason
about transformation goals at every step in the analysis of the query.

QUIST controls the transformation process quite dil.crently (Section 4.3). It forms constraint
targets in a separate analysis before it attempts to infer any constraints. Because of this separation,
the inferences that producc transformed querics arc carried out in a data-directed rather than a goal-
dirccted manner. That is, QUIST rcasons forward from known constraints without having a precise
goal for that rcasoning. This is not to say, howcver, that QUIST does not identify which constraints
would be desirable. This is exactly what QUIST does when it identifies constraint targets (its so-
called planning step, Section 4.3.1). Rather, QUIST uses goal information to cut off unpromising
lines of inference.

The result is that QUIST's control strategy is much less claborate than the onc proposed for

L ek omie e .

..

84 THE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION

KBQP. In Section 5.2, we report on experiments that show QUIST's control strategy to be effective,
at lcast for a limited sample of QUIST"s ¢lass of relational database queries. In Section 5.3, we argue
further that the control strategy remains cffective under rcasonable assumptions about the complexity
of the scmantic rules and the growth of the database.

™

The KBQP approach to control reflects the philosophy that determining a suitable query
transformation is a very complex problem and that the possible improvement in the query warrants
an elaborate and possibly expensive analysis. QUIST’s approach reflects a different philosophy: ¢
keep the analysis simple at the cost of missing some desirable transformations. At first glance,
KBQP's approach seems more general, Yet, QUIST's approach seems appropriate where, as in the
case of its particular class of relational database querics, where storage and access conventions are
well established and cost factors are well understood. The point is that QUIST can make reasonable
assumptions about the frequency and the consequent importance of certain kinds of constraints
(namely, those on single attributes, particularly indexed attributes). Its knowledge base and its
control strategy are bascd on these assumptions. It may be that as other classcs of queries and other
means of storing and accessing data arc better understood, new QUIST-style heuristics can be
developed and QUIST's approach will prove effective. Which philosophy is more appropriate for
semantic query optimization in general can only be determined by further research. However, it can
be said that;

There is evidence that a simple control strategy that uses forward reasoning limited by a set
of previously computed constraint targets is effective for semantic query optimization in
attribute/constraint relational Gueries.

KBQP is a design proposal that would probably require new machine architectures for cost-
cffective implementation. By contrast, QUIST has becn implemented and tested on a range of
querics. It builds cxplicitly on assumptions and models of contemporary rescarch in query
1 optimization for relational databases as implemented on current generation serial architectures.

We can summarize the relationship of semantic query optimization to the methods we have called
conventional query optimization as follows:

Semantic query optimization makes it possible to achieve substantial improvements in the
efficiency of processing that are not achievable by conventional techniques. At the same
time, though, semantic query optimization can be viewed as extending the usefulness of
conventional methods in the sense that the purpose of producing semantically equivalent
queries is to creatc new opportunities to apply conventional guery optim:zation technigues,

Finally, we should note:

1 The development of semantic query optimization demonstrates the fruitfulness of

THE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION 85

investigating certain database problems from the point of view of artificial intelligence
research.

The development of scmantic query optimization is part of a growing awareness of this point
[Brodic81] that is highly significant for datahase research.

6.2 Significance for artificial intelligence research

As formulated in the QUIST system, semantic query optimization is significant in two hajor

. respects. First, it suggests a new problem reformulation approach to the task of producing a “good”

plan when there already is an existing planning program to producc correct plans. Second, it
provides an example of intelligent database mediation by providing intclligent assistance in the best
use of database resources. In Section 6.2.1, we identify a conventional query optimizer as a planning
program. We discuss recent research in planning and problem solving in which the issues of
efficicncy and explicit control of problem solving emerge. Finally, we contrast QUISTs approach on
these issucs with the approach taken in other planning systems. In Section 6.2.2, we define the
databasc mediation task and note how QUIST has supplied one part of the desired function.

6.2.1 The reformulation of probiems for better solutions

Given a database query stated in logical terms, the problem of query optimization is to specify an
cfficient way to process that query in the physical database. That is to say, the problem of query
optimization is exactly what is referred to in artificial intelligence research as problem-solving.
Problem-solving is the determination of a sequence of actions to satisfy a goal. In q..ry
optimization, the goal is to obtain some data or 0 check the truth of some assertion. The actions
through which the goal can be satisfied are operations in the physical database such as segment scans
and indcxed scans (Section 2.3).

The resemblance between a query optimizer and an artificial intelligence problem-solving program
is illustrated by the System R query optimizer. . As noted in Section 2.4, System R's optimizer
analyzes the pr. cessing of an n-relation query as a sequence of processing 2-1elation queries. Thus,
cach 2-relation query can be regarded as an absiract step in the plan to perform the desired retricval,
Onc of the main tasks of the optimizer is to pick the best way to carry out each 2-relation query.
‘There may be many ways to do this; in fact, [Y2079] describes a modet that can generate 339 different
methods to carry out a 2-relation query. Thus, the optimizer must refine the abstract step in the best
available way. The refinement of abstract plan steps is a fundamental part of all rccent planning
programs whether they are based on hierarchical planning (NOAH [Saccrdoti?7]), best-first search
(LIBRA [Kant79)), or orthogonal planning (MOLGEN {Stcfik80}).

The other task of the System R optimizer is to choosc the best sequence in which to perform the 2-

86 ' © THE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION

relation queries. Sequencing and refinement are related tasks. For example, some processing steps
computc a result in an order that differs from the original order of the data from a given rclation.
Any index on that rclation is no longer usable for later steps. Hence, certain refinement choices are,
lost. Conversely, a single refincment choice for a particular step may so dominate the alternatives as
to forcc the step to be performed carly it the sequence in .order to avoid possible invalidation, This
interaction bctween betwcen sequencing and reﬁncmenl is also seen in programs like LIBRA
[Kant79].

In the QUIST system, it is assumed that a conventional query optimizer is available to carry out
the refincment of a logically stated query into a plan for execution in the physical database. What is
significant about QUIST is the following:

A semantic reasoncr can be applied as a preplanner that can result in the production of
better plans by its associated planning program, without complicating the planning program
itself.

To understand the significance of this for planning problems in genéral, lct us review some recent
planning programs in more detail. The review focusses on two issucs: the role of cfficiency
considerations in planning, and the control of the planning process itself.

The PEGASUS program of Sproull [Sprouli77] was one of the first planning programs to address
efficiency issues directly (JGarvey76] provides another example). Sproull's chief concern was to
integratc the symbolic planning mcthods of artificial intelligence with the considerations of utility
developed in decision theory. The basic approach taken by PEGASUS was to conduct a search of
plan alternatives using a utility function to measure the promise of partially completed plans. The
utility function did more than this, however. It also provided the basis for judging the relative vaiue
of further planning, of obtaining more information about the (uncertain) cnvironment, and of
carrying out proposed plan steps. Thus, the PEGASUS planner controlled its own activities using the
same utility functions it employed to sclect the best plan. The overall goal of PEGASUS was to
achicve optimal behavior measured in terms of the combined utility of the execution of the completed
plan and of the planning process itself, '

Kant's LIBRA program [Kant79] also considered efficiency explicitly. Its goal was to take a high-
level description of a program and to transform it into an cfficicnt program that could actually be
executed. Knowledge about how to transform a program was contained in coding rules devcloped by
Barstow [Barstow79]. LIBRA's task was to decide which of possibly many coding rules to apply at
any point. tt used efficiency rules to do this (and in this respect s very much like QUIST). The
efficiency rules reflected both heuristic and analytical estimates of the cost of alternative refinements.
In addition, LIBRA used resource allocation rules to decide which part of the program description to
refine first. Choosing to refine some parts before others could greatly reduce the number of
refinement alternatives that had to be considered.

The MOLGEN program of Stefik [Stefik80] advanced the notions of metaplanning and constraint

THE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION 87

posting. The idea of metaplanning is that the planning process itself should be controlled by a similar
planning proccss (a similar notion appears in [Hayes-Roth78]), responsible for such activitics as focus
of attention at the planning level. Constraint posting is the idca that decisions should be postponed
until the constraints arising from commitments or guesses elsewhere in the developing plan are
propagatcd. This reduces the number of alternatives that must be considered.

These programs illustrate several major themes of current research in problem solving and
planning:

o Planning proceeds by adding constraints to a partially éomplcted plan.
¢ The programs reason explicitly about the control of the planning process.

o Decisions about how to refine a particular segment of a plan are intermixed with
decisions about what the planning program should do next.

o In many cases (PEGASUS and LIBRA, for example) it is desired to produce not just a
correct plan but a “good” plan, and furthermore, it is desired to that the planner itsclf be
efficient,

In query optimization, including semantic query optimization, we are obviously concerned with
the quality of the final plan, as measured by its efficiency. We are also concerned with the cfficiency
of the planning process. Where QUIST differs from contcmporary planning programs is in its .
approach to finding an efficicnt plan. Rather than integrating decisions about the planner's focus of
attention with decisions about the choice of refincment, including those choices that bear on
efficiency, QUIST moves considerations of cfficiency into a preplanning step. In this step,
constraints arc added to the statement of the problem itself. The constraints are added not as the
result of claboration of a plan step,-but rather for the express purpose of having the planner work on
a new but cquivalent problem for which a more cfficient plan may be generated. In other words:

A preliminary reformulation of a problem statement can be used to achieve a more efficient
solution to the problem, thereby avoiding explicit and possibly costly analysis of efficiency
Jactors during the actual process of producing the solution.

The result is that the conventional query optimizer, viewed as a planner, can be much simpler than
it would have to be if it tried to add new constraints to the plan in order to make the plan more
cfficient.

Is it rcally nccessary to simplify the planner in this manncr? Both Sproull and Kant have claimed
that their systems not only produce efficient plans but do so with an 2fficient planner. In fact, despite
some investigation of the issue, the cost of planning is not a crucial factor in PEGASUS's travel
planning domain nor in LIBRA's program synthesis domain. That is not to say that an integrated
control strategy may not be appropriate. It does suggest that further investigation is nceded to
determine where that strategy is worthwhile, In any event, both PEGASUS and LIBKA work with

T

88 TUHE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION

cssentially fixcd problem statements; new constraints cnter only in the refinement to exccutable
plans. (Interestingly, the planner reported in [Haycs-Roth78] does not have a fixed problem
statement; the planner is frec to choose which of many tasks to perform. The “gnodness” of the plan,
is loosely related to how many tasks can be carricd out using the completed plan.)

The separation between problem reformulation and problem solving raises an issue that is not
present in typical planning programs: how is problem reformulation controlled? In QUIST, problem

“reformulation (the semantic transformation of the query) is controiled by means of the constraint

target list (Section 4.3.1). The constraint targets are determined from knowledge about the possible

opportunities for finding less expensive ways to search the files involved in the query. In the -

terminology of planning;:

The process of reformulation of the problem for the sake of efficiency can be guided by
knowledge about the cost of processing alternative refinements of abtract plan steps.

That is, there is a two way flow of information. Not only does problem reformulation change the
class of possible plans to include more efficient plans, but also the information about the cost of plan
opcrators that the planner uses can be abstracted to guiae the reformulation process.

To summarize. then, semantic query optimization as formulated in the QUIST system offers a new
method for achicving a “good™ solution 10 a problem when a method for finding correct solulionﬁ
already exists. The new method consists of reformulating the statement of the problem into an
cquivalent form for which better solutions may exist. The process of reformulating the problem
statement is controlled by using an approximate model of the kiuds of solutions produced by the
associated problem solver,

6.2.2 Intelligent database mediation

A user who wishes to access a database in order to solve a problem faces several difficultics. For
one thing, the user may not know what information is contained in the datbasc. For another, he
may not know what concepts the database uses in general and what terminology s used to refer to
them. Even if the user aderstands the database’s structure and terminology, he may not know how
they relate to his own concepts and terms for the problem domain,

In conventional database installations, the user must ¢ither puzzlic out these problems on his own,
or elsc he has recourse to the services of a database analyst or liaison. The analyst mediates between
the database resources and the user solving a problem. The analyst applics knowledge of both the
problem domain and of the capabilitics and limitations of the databasc to posc the most effective and
casily processcd querics that can help solve the original problem. The analyst supplics certain
knowledge about the database which the uscr lacks in order to make the most cffective use of the
database. Of course, the analyst must know cnough about the problem domain in order 1o do this
scnsibly.

THE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION 89

With the development of interactive query systems, it is expected that average users will interact
more directly with databases, without the aid of a database analyst. It is clcar, however, that better
facilities must be created to perform some of these intelligent database mediation functions
automatically.

Some aspects of intelligent database mediation have been explored. McLeod’s IFAP (Interaction
Formulation Advisor Pratotypc) [McLeod78] supplics knowledge of the classes of entities known to
the database about which a user can pose queries. In the LADDER system [Hendrix78], a user's
natural language query is transformed into a retrieval language query to the appropriate network site
and database. That is, one of LADDER's functions is to supply knowledge of the distribution of data
among sites and databases, knowledge that the user lacks.

Semantic query optimization is significant as an application of artificial intelligence methods to one
aspect of the intclligent database mediation problem:

As an intelligent database mediator, a semantic query optimization system employs
detailed knowledge of semantic constraints on the data and detailed knowledge of the
physical organization of the database, knowledge that a user should not be expected to
know or to be able to use.

In addition,

Semantic query optimization is the first effort to apply semantic reasoning to the task of
providing efficient access to pre-existing computer resources.

We are not claiming that the present research has discovered the problem of intelligent database
mediation nor that it has devised entirely new solutions to that problem. Rather, the present research
should serve to cncourage additional applications of artificial intclligence techniques to database
mcdiation and other database problems.

In the future, we will want romputer systems to be increasingly knowledgeable not just about the
answers to specific questions, but also about the range of knowledge sources which it can access and
the ways in which those sources can be used. The research -eported here i5 a step in that direction.

6.3 Limitations and directions for future research

Database retricval is a very important activity. Semantic query optimization holds the promise of
substantial improvements in this activity. Thercfore, it is worthwhile examining how the ideas
advanced in this rcsearch are limited, and how their future uscfulness might be extended. We are
particularly concerned with how semantic query optimization can be cxtended to other data models
and system architectures, how additional kinds of semantic knowledge can be employed for cfficient

AD=-A108 735 STANFORD UNIV CA DEPT OF COMPUTER SCIENCE F/6 6/4
GUERV OPTIM!ZATION BY SEMANTIC REASONING, (U)

UNCLASSIFIED STAN-CS'81'857

00039-80-6-0132

END
oare
fit
I 82
oTig

| Sl 1O nee H2
» —— wg - !
i &

1

2 e e

|

=
N
wn

F——
MM
)

=

40
-

—_—
=
o

"
e

|
[
L.

-
[
tor

=
=

o

P,

MICROCQOPY RESOLUTION .H_SI CHART
NATIONAL RUREAL OF STANDRRDS [ane A ’ 1

d’«

\
90 THE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION
processing of querics, and how methods to control scmantic query optimization may have to be
extended. '
6.3.1 Data models and database architectures
The QUIST system operates in the context of a subclass of the relational model of data which we
.

_have referred to as an auribute/constraint model (Section 4.2.1). We have indicated that this includes
an important class of queries. Yet, it may be desirable to extend the system so that it is relationally
complete [Codd71]. To do this, it would be necessary to drop the assumption that there is a single
logical path between any two relations. This would require a somewhat more complicated
representation of semantic rules, because the logical path between relations would have to be C
specified. Whether the extra complexity would be merited by the frequency of queries outside the
range now covered by QUIST would have to be studied. The difficulty would be to retain the
potential improvements of semantic transformations without adding the complexity of a general-
purposc theorem prover.

Our research centered on the relational mode! because that modcl has been the focus of attention
of much recent rescarch on query processing. However, semantic reasoning can certainly be applicd
in the context of other data models. For example, the principle of “pushing a constraint up a
hierarchy” (Section 4.4.1.3) certainly makes sense in a hierarchical or nctwork database. 4

We also adopted a conventional model of data storage and access (Section 2.3). This model or
models like it is the basis for most rescarch in query optimization. However, there is growing interest Y
in query optimization in distributed databases ([Epstein78]) and in unconventional database
machines ({Shaw80]). More generally, there is recent research ([Lenat79], [Katz80]) that extends the
idcas of W;cdcrhold ([Wicderhold77]) on the notion of the binding of semantic knowledge to data
structures. The aim of this research is to develop abstract descriptors and rules with which to reason
about the case or difficulty of realizing the physical counterpart to a logical expression. If this effort

~ is Successful, it would be an appropriate vehicle to generalize the heuristics of QUIST to apply to
multiple databases and unconventional architectures.

Y SR

6.3.2 Semantic knowledge

. The semantic knowledge used by QUIST involves constraints on particular values stored in the
database. However, there arc othier kinds of constraints that could be used for scmantic query
optimization,

“ Cardinality constraints specify the minimum or maximum number of individuals in some cntity

) class that can be associated with an individual in some other cntity class by means of a particular type
. of rclationship. An cxample is: “every freshman and sophomore must have at least two faculty

advisors.” Dependence constraints can be vicwed as cardinality constraints in which at lcast one

THE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION ’ 91

related entity must exist. Dependence and cardinality constraints are particularly significant in terms
of the structural integrity of databascs [EtMasri80b]. For example, the constraint that “cvery manager
must manage exactly one department” regulates updates and deletions of manager and department
entitics; the deletion of a department entity forces the deletion of related manager cntities, and no
manager entity can be inserted for which the designated related department entity does not exist in
the database. Howevcr, the constraint does not determinc which managers can be related to which
departments. Among the structural constraints are the widely discussed “functional dependencics”
and “multivalued dependencies” [Ullman80].

To see how cardinality and dependence constraints could be used for scmantic query optin.;ization.
consider the constraint “every student except those with an independent study major has at most two
" advisors.” Suppose the query is: “what are the name and facuity rank of the advisors of history -
majors?” One way to process the question would be to find each history major in turn, and then to
find cach of his advisors and print his name and rank. However, we know that there are at most two
advisors for each student, so the search for a given student’s advisors can stop when the second
advisor has been found. Notice that the ability to exploit the constraint on the number of advisors
requires a different control strategy than QUIST's. Specifically, it requires more dircct control of the
query processor itsclf so that, for instance, a limit on the number of hits from some file can be set and
reset as nceded. By contrast, QUIST works entirely at the level of transforming the “surface level” of
queries. The only thing that the scmantic optimization component passes down to the query
processor is a query, and not auy instructions on how to process it.

Another kind of semantic knowledge is what can be termed approximate knowledge, knowledge
that is probabilistic or about which there is some uncertainty. It includes the heuristics or rules of
thumb that help experts to reason effectively in their area of expertise. Approximate knowledge
could be applied to semantic query optimization by using a somewhat different strategy than QUIST
uses, one that is itsclf heuristic in nature. Suppose it is known that most supertankers are registered
in Panama, Liberia, or Greece, and suppose a query asks for the names of three supertankers carrying
crude oil to Italy. In that case, it is likcly that thc names of threc qualifying supertankers can be
found merely by examining those rcgistered in Panama, Liberia, or Greece, If the registration
information is well supported in the databasc (say, by an index) and if there are indeed threc
supcrtankers registered in one of those countries -and that are currently carrying crude oil to ltaly,
then it is preger and effective to transform the question so that it references the country of
registration. ’

This strategy offers no guarantec that the substituted query gives the same answer as the original
query. Therefore, a more sophisticated system is nceded (0 apply this new strategy cffectively. For
instance, suppose there arc 100 supertankers. If we know that “most™ supcriankers arc Liberian, then
it scems likcly that questions that request 5 supertankers can be answered mercly by referencing
Liberian tankers. However, it may not be effective to process questions that request 95 supertankers
by looking first only at Liberian tankers. If the required number of supertankers are not found
among the Liberian oncs, the search must be rencwed among all supertankers. The system must be

92 ' - THE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION

sophisticated cnough to determine when it is probably worthwhile adding constraints to the query
based on approximate knowledge.

Finally, we consider the usc of knowledge not about the semantics of the domain but about the.
relationship between concepts defined within the database itsclf (the familiar notion of logical views).
For instancc, suppose that in a university database the predicate INSTRUCT is a derived relationship
between professors and students defined in terms of fundamemal predicates TEACH and
ENROLLED-IN as follows:

Vp,s INSTRUCT(p,s) = 3c.(TEACH(p,c) A ENROLLED-IN(s,c))

This says that a professor p instructs a student s if and only if there is some class ¢ that the
professor tcaches and in which the student is enrolled. Let us now consider the query:

“What professors instruct all the students whom they advise?”

which we render as: _ ;
F: ' . {p |V¥s. ADV[SE(p s) — INSTRUCT S(p S)} '

The strategy for this query would be to eliminate all professors who advise more students than they
instruct, for in that case, they certainly can’t instruct cvery student whom they advise. We can .
conservatively assume that cach student is enrolled in no more than onc course taught by.any (.,
professor. Then for every professor who satisfics the query, it must also be true, from the definition
of “instructs™. that he instructs fewer students than the product of the maximum number of students
in any one class and the maximum number of classes taught by any professor. Let Cny(S) stand for
the number of items in sct S, and Max(x,F(x)) stand for the upper bound on function F(x) for any
value of x. In addition, let I(p) be the total number of students instructed by a professor, p. That is:

Vp I(p) = Cnt({s | INSTRUCT(p,s)})

Then the conservative upper bound can be expressed as:
Vp 1(p) < Max(c(Cnt({s | ENROLLED-IN(s,c)}))) * Max(p,(COUNT({c | TEACH(p.c)}))) -

If, for instance, there is a maximum enroliment of 20 students in any course, and a maximum
teaching load of 3 courses per professor, then we can climinate from consideration any professor who
adviscs morc han 60 students. This conservative bound can be tightened as more information is
gathered during query processing. Thus, if professor X tcaches 2 courses, one with 12 students and
onc with 18, he can be climinated if he advises more than 30 students, rather than the conservative
bound of 60. As this stratcgy uses cardinality constraints, it rclies on more detailed control of query
processing than QUIST does.

TIE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION 9

6.3.3 Control of semantic query optimization

In Scctions 6.1.2 and 6.2.1, we argued the merits of organizing a scmantic query optimization
} system as a preplanner. That is, we advocated performing all semantic transformations of the query
f; prior to gencrating the sequence of steps for actually carrying out the query in the physical database.
f)

However, we saw an example in the last section in which knowledge about the distribution of
’ current data values could provide cost-reducing constraints. In this section, as in Section 6.2.1, we
recommend that further rescarch be conducted on the question of under what conditions control of
semantic query optimization should be integrated with the processing of the query itself. As further .
] justification for such research, we offer two more examples of data-dependent semantic query ’
» -optimization.
Consider, for example, a database that contains data about ships and their movements. Assume
that the most frequent queries concern the current status of American ships, so that a small file i
‘ containing duplicate informatjon about their most important current voyage attributes is maintained.
’ Whenever a position report is received on an American ship, both the regular file and the duplicate
“highlights™ filc are updated. Suppose that a user poses the query:

“Where is the fastest tanker?”

‘1 If the nationality of the ship is stored with its speed and shiptype, then we can check whether the

Pt ship is American. Ifit is, then we only have to look for its position in the small file of Amcrican ships.
Otherwise, we have to look through the larger file of position reports for all ships. If the fastest
tanker happens to be American, then in effect the original query can be transformed into:

’ But this transformation is only supported in the current statc of the database. There is no integrity
rule prohibiting the inscrtion of another record representing a faster tanker of another nation. Thus,

L | “Where is the fastest American tanker?"
[1
| |
!
F ﬁ this transformation is inherently dependent upon the current state of the database.
|
|

The preceding example and the one in the last section do not actually use any rules about the

application domain; they only usc relationships internal to the database. Yet, the current contents of

’ the databasc can affect the application of a domain rule as well, as the following example illustrates.
Assume we have simple rclational database:

SHIPS: (Shipnamc Shiptype Length Draft Capacity)
») PORTS: (Portnamc Country Depth Facilitytype)

VISITS: (Ship Port Date Cargo Quantity)

% TIIE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION

and the following two semantic integrity rules based on domain knowledge:

Rule R1. “A ship can visit a port only if the ship’s draft is less than the
channel depth of the port.” :

Rule R2. “Only liquefied natural gas (LNG) is delivered to ports that are
specialized LNG terminals.”

Assume that cach relation is implemented as a single file on its own data pages. The VISITS file

“has a clustered index on Cargo. Now consider a query that requests the ships, dates, cargoes and
quantities of visits to the port of Zamboanga. According to our semantic Query optimization '

heuristics, it is desirable to infer a constraint on Cargo from the given constraint on Port.

Imagine that instead of performing semantic transformations in a preplanning phase, there is
integrated control of semantic transformation and data retrieval. Control of the process of inferring
cost-reducing constraints can then be viewed as control of the moves in a space of constraints on
attributes. Constraints can be moved either by applying a rule, by retrieving items restricted on one
attribute and obscrving their values on other attributes, or by matching constraints on attributes
defined on the same underlying sct of entities.

Continuing the ecxample, starting with a constraint on the Port attribute of VISITS, new constraints
can be found by retrieving from VISITS or by assigning the value “Zamboanga” to the Portname
field of PORTS. The first choice is rejected because the objective is to reduce the cost of that very
retricval, With a constraint on Portname in PORTS, a retricval from PORTS can be performed. In
this case, just a single record will be obtained because Portname is the unique identifier in that file.

- With appropriate access methods, such as hashing, the retrieval will be very incxpensive.

When the PORTS record for “Zamboanga™ has been obtained, rules R1 and R2 may apply. If rule
R2 applics, that is, if Zamboanga is a specialized liquefied natural gas terminal, then a strong
constraint will be obtained on the goal attribute Cargo, and retricval from VISITS will take place by
mcans of an indexed scan rather than by mcans of a more expensive scquential scan. If the data on
Zamboanga docs not support that inference, then other inference paths beginning with rule R1 will
have to be considercd. This illustrates the possible dependence of retricval planning on the current
contents of the database.

Whether or not suck ~laborate control is worthwhile is certainly open to question. It depends in
part upon what kinds of processing options are available; it scems more likcly, for instance, that an
integrated strategy makes more sense in a distributed databasc with redundant files. The point of
these examples is simply to indicate the value of further research on this issuc.

"w—“w

7~

THE SIGNIFICANCE OF SEMANTIC QUERY OPTIMIZATION 95

6.4 Conclusion

This research has introduced a new method to reduce significantly the cost of processing database
queries. The mcthod uses semantic knowledge that is otherwise used to insurc the validity of
databasc cntrics. It applies technigues of artificial intelligence to the problem. At the same time, it
suggests a new approach to problem solving when the quality of the desired plan is important and
;) there already exists a generator of correct plans. This approach is to reformulate the problem
' statement as an equivalent problem which may have a better solution.

To be useful in future database systems, the work presented here must be extended to additional

models of physical data storage and access and to a wider range of logical data models. Also,

) " experience is necded with actual database systems to test further the promising results obtained under

laboratory conditions; tests of query processing methods are generally run on small sets of invented

3 cxamples, but this is not a suitable practice for future work. Additional rescarch is needed to

investigate when a problem reformulation strategy can be applied to the task of finding good
solutions to problcms.

) Whatever the particular merits or shortcomings of semantic query optimization and the QUIST.
" system, the research presented here suggests the value of work at the interscction of database

management and artificial intelligence. Thesc ficlds are important and exciting and have a great deal
to offer to each other.

THE QUIST QUERY LANGUAGE 97

Appendix A
The QUIST query language

A.1 Syntax of the QUIST query language

In the following description, the metasymbol “+™ means one or more instances of the type so
designated, and the mctasymbol “|” means a choice between the items it separates, In the actual
QUIST language, the tokens ONEOF and NOTONEOF are used instead of the symbols € and &,
respectively, that are used in the examples throughout this report.

<query) :: = ({selcctions> <restrictions>)

<selections) @ = (<attributed +)
<restrictions) 1 = (<restriction> +)
i) <restriction :: = (<attribute> <constraint>)
<constraint) 1= <string constraint> | <integer constrain®
Y string constraint) ::= (ONEOF (<string> +)) | (NOTONEOF (<string +>))

integer constraint) :: = (Cinterval> +)

<integerd))

<comparator> ::= GT | GE | LT | LE | EQ | NE

A.2 Semantic restrictions on the language

1. An attribute can appear only once among the sclections or among the restrictions.

2. An integer-valued attribute can only be constrained by an integer constraint, and a string-

t Cinterval) :: = ((IGT| GE] <integer>) ((LT | LE] <intcgerd)) | ((<comparator>
E valued attribute only by a string constraint.
[

i) 3. The intervals of an integer constraint must not conflict. This requircment is enforced as
follows. If the constraint is ((Compl Valuel) ... (CompN ValucN)), then Valuel < Value2
]

P Y LT

% ' . THE QUIST QUERY LANGUAGE
< .. €< ValueN. Furthermore, cach GT/GE term that is not last in the list must be
followed by a LT/LE term (possibly with some intervening NE terms), and each LT/LE .
term that is not last in the list must be followed by a GT/GE term (possibly with some . d
intervening EQ terms). 1

QUIST AND THE RELATIONAL CALCULUS 9

Appendix B
QUIST and the relational calculus

In this appendix, we show that the querics, semantic cquivalence transformations, and integrity
-rules of QUIST are special cases of relational calculus queries, semantic equivalence transformations,
and integrity rules, respectively. To do this, we indicatc how to determine the relational calculus

query that corresponds to a QUIST query. We also show how the process of semantic equivalence

transformation in QUIST is a special case of the process for relational queries.

B.1 Generation of a relational calculus query from a QUIST query

A QUIST query consists of a qualification, which is conjunction of constraints on database
attributes, and an output list, which is a list of attributes whose values are requested. Hence, a
QUIST query corresponds to an open query of the relational calculus, as defined in Chapter 3. A
QUIST quecry is simpler than a relational query chiefly in two respects: join terms need not be stated
explicitly, and only conjunctions of attributc constraints can be expressed. The major difference in
form arises from the assumption in QUIST that every attribute is associated with a single virtual
relation, hence no relation need be specified. Relational calculus queries, on the other hand, empley
tuple variables that range over cxplicitly specified database relations.

To gencrate the relational calculus query that corresponds to a QUIST query, it is therefore
nccessary to determine what real relations are involved in the query and what join terms are needed
to link them together properly. Because only conjunctive querics are permitted, every relation in the
databasc that is involved in the query plays onc of only four possible rolcs:

1. some of its attributes are constrained but none are in the output list;
2. some attributes are in the output list but none are constrained;
3. somc attributes arc constrained and some are in the output list;

4. its attributes are neither constrained nor designated for output, but it is joined between
two (or morc) other relations.

A tuplc variable must be generated for every relation that is involved in the query. If some
attributes of the relation are designated for output (Cases 2 and 3), then the variable appears in the

100 QUIST AND THE RELATIONAL CALCULUS

relational query target list.. If not (Cases 1 and 4), then the variablc appears as an existentially bound
variable within the qualification.

1f some of the relation’s attributes are constrained (Cases 1 and 3), then it is necessary to gencrate a,
restriction term in the corresponding tuple variable. The restriction term is the conjunction of the
restrictions on the attributces of the relation.

Y

A QUIST query does not mention any relations that are joined to others but are not otherwise
. involved in the query (Case 4). The fact that these relations are involved is determined in the course
of generating the required mappings (join terms) among the other involved relations (Cases 1, 2, and .
3).

It is fairly simple to generate the mappings among the query relations because there is one and
only one logical access path or mapping betwecn any two relations in the database; this is a ?
distinguishing characteristic of QUIST and of other attribute/constraint relational query languages.

Conscquently, we can choose any relation involved in a query and regard it as the root of a tree of ‘
relations. Every other relation in the query can be reached via some unique path. Indeed, the
structure of a query should be viewed as a subtree of QUIST's virtual relation. The virtual relation,

defined in Chapter 4, is a tree structure in which all the rcal database relations are linked by way of
uniquely specificd sequences of joins.

B.2 The generation algorithm

We use the tree-structure property of the virtual relation to generate the rclational query from the
QUIST query. The major steps of the algorithm are:

e Step 1. Determine directly from the QUIST query which database relations have either
constrained or output attributes (Cases 1, 2, and 3).

e Step 2. Designate one of these relations as the root of the tree of query relations.

e Step 3. Choosc a relation found in Step 1. Generate a tuple variable for it and link it up
to the relations that have already been chosen by generating the appropriate join terms.
Gencrate a restriction term for the rclation if necessary. Repeat until all such rclations
have been chosen.

o Step 4. Formulate the relational query from the tuple variables, restriction terms, and
join terms.

We now describe *he steps of the algorithm in more detail,

T. 7..*ster adsall relations that are constrained or part of the output. Go through restrictions
-in the QUIST qualification. If the attribute in the current restriction is associated with a relation X
that has not yet been encountered, then add X to the set S . of constrained rclations. Next, go through
the QUIST output list. For cach new rclation X encountered, add X to the set Sou Of output

relations. Finally, letS ;, be S U S ourr the set of all relations so far involved in the query.

QUIST AND TIIE RELATIONAL CALCULUS ' 101

In the sccond step, we dioose any relation X from S.ll to be the root relation to which all the other
rclations will be linked. We generate a tuple variable x for this relation. If X is in S the sct of
relations involved in the output, then variable x is placed in sct Q,. the set of variables that will be in
the target list; the subscript “free™ conveys the idea that variables in the target list appear free in the
qualification of the relatiosal query. Otherwise, x is placed in Q3. the set of variables that will be
existentially bound in the qualification. If X is in Sc, the set of rclations involved in QUIST
constraints, then a restriction term P(x) is generated. P(x) is the conjunction of restrictions on
attributes associi_itcd with X. For example, if the restrictions (A € {“a” “b"}) and (A, € ({50 100)
are the QUIST constraints associated with relation X, then P(x) is given by:

P = (xA, = “a") VA, = “D") A ((x.A, 2 50) A (x.A, < 100)).

The third step is the most complfcated and requires further discussion and some terminology. The
key concept is that of the logical access path or mapping between any two relations X and Y. A
QUIST mapping is the unique expression of join terms by which the two relations can be linked.
Assume that tuple variable x ranges over relation X and tuple variable y ranges over relation Y. Let
M(x.y) (= M(y.x)) denote the mapping between X and Y in terms of these tuple variables. If X and
Y arc “neighbors” in the sense that they are permitted to be joined together directly, then M(x,y) is.
simply

M(x.y) = J(x,y)

where J(x,y) is the join tem ((x.A) = (y.B)) for some prespecified attributes A and B-of X and Y,
respectively. This specification is part of the definition of the QUIST virtual relation.

Suppose, however, that the virtual relation is defined in such a way that X and Y are only allowed
to be linked via intermediate relation Y,. This mcans that the relational counterpart of the QUIST
query involves relation Y, as a necessary joining “bridge” between X and Y. The relational query
now involves a term that represents this mapping between X and Y:

M(x.y) =3y, | Jxy) A Jy,¥)

That is, for every qualifying pair of tuples (x.y) from X and Y there must be somc tuple A inY, that
supports the mapping by way of the two prespecified joins. ‘

In general, some scquence of rclations Y,,Y,,...Y intervencs between X and Y in the predefined
mappings of the virtual relation, where we adopi the convention that the lower the subscript, the
closcr the relation is to X. The mapping expression is then given by:

M(x.y) = 3y, .. 3y, Iy) A Ny, y) A A Sy ,Y)
where the intermediate conjuncts correspond to the prespecified aliowable joins.

Even though relations X and Y are involved in the constraints or output designated by the QUIST
query, it may be that some or all the relations Y, that connect X and Y are not involved in that way.
However, these relations must be specified in the relational query counterpart to the QwST query.
They constitute the Case 4 rclations defined above.

102 . QUIST AND THE RELATIONAL CALCULUS

The idea of this next step of the algorithm is to link up the relations in S, one at a time by linking
cach onc to the root rclation X, introducing new “bridge” relations as nceded. Every time a new
relation is selected for linking or is introduced as a bridge relation, a new tuple variable is generated.

Some coinplications may arise in the linking process. For one thing, some or all of the nccessary)
mapping cxpression may have been generated when a previously chosen relation was linked up.
Intuitively, this occurs when the new relation lies farther out along the same branch from X as the
preceding relation, or when the new and preceding relations have a common ancestor relation
‘between them and X. Therefore, each linking step only introduces as much of the mapping
expression as necessary. One other possible complication is that the new relation may have been
introduccd already as part of the bridge between X and a preceding relation. In this case, a new tuple
variablc should not be generated for it.

We now resumc the description of the third step in the algorithm. Let Y bce the new restriction in
S all that is to be linked up. Assume for the moment that Y has not been previously introduced as a
bridge rclation. Therefore, we generate a new tuple variable y to range over Y. If Y is a Casc 1
relation, constrained but not part of the output, then variable y is placed in the set QB' as it will
appear cxistentially bound in the relational query. Otherwise, y is placed in Ql because it will be in
the query’s target list.

We must now introduce some part of the mapping expression M(x.y). If we denote X by YO, then
the definition of the virtual relation specifies that there are n relations Yo through Y o2 0, between
Xand Y. Let Yx‘ 0 < k < n, be the relation with the highest subscript among these relations that have
already been linked into the query; that is, YO through Yk have alrcady been linked in. Therefore, it
is only necessary to complete the link from Yk to Y.

In other words, instead of generating the mapping expression M(x,y), we generate the mapping
expression M(y,.y). In addition, we generate tuple variables ¥y 41 through y . and place these in the
set Q3 beeause they enter the relational query as existentially bound variables. Of course if n = 0,
mcaning that X can be joined directly to Y, or if k = n, meaning that all intervening relations have
alrcady becen linked in, then no new tuple variables are generated.

Finally, if Y is in S, that is, if it is constrained in the QUIST query, then we generate a restriction
term P(y) in the same way that we gencrated a restriction term P(x) for rclation X in step 2.

Now suppose that refation Y had been introduced previously as a bridging relation. We do not
necd to link Y to X because cvery bridging relation is automatically linked to X. We do not need to
introduce a new tuple variable y, because this has alrcady been done. However, we do have to check
whether Y is in Som. the sct of relations involved in the output. 1f so, we must transfer y from the sct
Q3 where it was originally placed as a bridging variable, to the sct Qn' 50 it will end up in the target
list. Also, we must generate a restriction term P(y; if Y is in S, the sct of constrained relations.

This concludes the description of step 3 of the algorithm. When this has been done for all relations
in S e are rcady for the last step, the actual gencration of the relational query.

~y.

NUN oo SN

QUIST AND TUHE RELATIONAL CALCULUS 103

The target list of the query is simply the list of variables in Q,. The qualification of the query is a
conjunction of restriction terms P(y) for all relations Y in Sc. and join tcrms J(y.y’) gencrated in the
linking step. We can distinguish the P and J terms on whether they contain any variables in Q3. Call
the conjunctions of these terms P(Q 3 P(Q). J(Q3). and J(Q‘). (Note that J(Q3) can have terms that
refer to both a bound and a free variable,) We gencrate existential quantifiers for all variables in Q3.
They will be in the form

Eiv1 Elv2 E!vk

if v through i/k are the variables in Q 3 Let us abbreviate this as 3(Q 3). Then the s« ational query
can be written as:

{@Q) 1 P(Q) A J(Q) A 3(Q3) (P(Q3) A JQ3)}

It really doesn't matter if we place the free variables within the quantifiers, so we can equivalently
express the query as

{Q) 1 3(Q3) (PQ,) A JQ,)}

where of course the subscript “all” refers to all variables, frec or bound. This emphasizes the
similarity of the relational form to the original QUIST form: a simple conjunction of terms.

B.3 QUIST semantic rules and their relational counterparts

We now have a quite simple representation of a QUIST query in terms of the relational calculus.
Next, we consider QUIST rules and transformations in terms of thcir relational counterparts,

For productions, we consider all the relations associated with the attributes involved in the rule. If
we group the constraints by relation, we start with an expression like

VX.Yyen¥q PO AP(Y)) A . AP (v) — P(x)

but to this we must add the appropriate join terms to insure that the relations arc properly linked.
We select X as the root relation. The process of gencrating the join terms is then very much like the
onc previously described to build up a query. In particular, we may introduce additional variables
that will appear existentially bound in the rule. Let Rr refer to variables that arc present without
being introduced for linkage purposes; Ry refer just to those existentially bound variables: and R
refer to all variables of either kind, Then, using the same kind of abbreviations as in our description
of querics, the relational form of the production is

VR, (3(R3) JR ;) A P(R)) ~ P(x).

A bounding rule obviously involves cither one relation X or two relations X and Y. The case of one
relation is quite simply Vx P(x) where P(x) is a comparison between two attributes of relation X. For
two relations, the proper notion is Vx,y M(x,y) — P(x,y). That is, given the proper mapping
conditions between X and Y, possibly involving intervening relations (hence other cxistentially

104 ' . QUIST AND THE RELATIONAL CALCULUS

bound variables), then some predicate P(x,y), the comparison between attributes of X and Y, holds.
The form of the bounding rule tums out to be very similar to the form of the production. Recalling
that M(x,y) may involve some cxistentiaily bound variables, we can write the bounding rule as

Vxny (B(Ra) J(Rau)) b P(X.)')-

B.4 QUIST transformations and their relational counterparts

QUIST transformations can now be scen to be a special case of the semantic equivalence
transformations for relational queries described in Chapter 3. We illustrate this just for the case of a
production. We start with some query in the form: <

Suppose we wish to infer a constraint on the relation X using a production
YR (3(R3) JR) AP (R) — P(x). v

The QUIST transformation corresponds to dropping all the universal quantifiers from this
expression, fcaving one in which R , are free variables. In order to carry out the transformation, two
conditions must be met. First, every relation ranged over by the variables in R , Must be a query
relation ranged over by some variable in Qa". This condition also guarantecs that the query has the
requisite join terms. Seccond, cvery restriction term in the conjunction Pr(Rr) must be at least as
strong as the corresponding restriction term in the conjunction P(Q,). If these two conditions are
net, then upon application of the logical schema

(AA(A—=B)=(AAB)

the constraint P(x} can be conjoined to the query expression, where xis the variable in the query that
corresponds to x in the rule.

There is onc additional case where the transformation can be made, that of join introduction. In
that case, the relation X is not already part of the query even though all the antecedent conditions of
the rule are met. We wish to add P(x} to the query. The only way to do s0 is to add in the necessary
join terms to Tink X to the cxisting query relations. That is, we want to link X into the query in just
the same way that we described above for constructing a query step by step. Obviously, x itself is not
alrcady in the target list, so x will be cxistentially bound in the query. Also, any intermediate
relations needed to link in x will be existentially bound. Hence, we scek to introduce a conjunction of
join terms that involve existentially bound variables, such as

Byl.....ayn.ax J(y.yl) A A J(yn,x)

where y is the variable that ranges over relation Y, the relation already in the query to which X can be
linked. This expression can be conjoined to the original query without altering the answer if and only
if every tuple in Y satisfics i(; that is, if and only if the structural integrity constraint

F o]

-
\
’ «
QUIST AND THE RELATIONAL CALCULUS 108
Yy 3y .3y 33X L JEy DA A Iy, %)
') holds.
»
H)
)
|
’
i »
;,
B
j
’

M-

o ¥

Voad Bt
M1

.

:g

>

¥
4

BIBLIOGRAPHY

Bibliography

[ANSI75] ANSI1/X3/SPARC Study Group on Data Base Managemeht Systems,
Interim Report,
Bulletin of ACM SIGMOD7(2), 1975.

' [Astrahan75] Astrahan M. M. and Chamberlin D, D. ’
Implementation of a structured English query language. i
Communications of the ACM 18(10):580-588, October, 1975. :

[Astrahan80a] Astrahan M. M., Kim W., and Schkolnick M.
Evaluation of the System R access path selection mechanism.
Research Report RJ2797, IBM, April, 1980,

[Astrahan80b]. Astrahan M. M, et al, i
A history and evaluation of System R.
Research Report RJ2843, 1BM, June, 1980,

[Barstow79] ﬁamlow, DR.
’ Knowledge-based Program Construction,
: Elsevier North-Holland, New York, 1979.

[Blasgen77) Blasgen, M. and Eswaren, K.]
Storage access in a relational database,
1BM Systems Journal 16(4).97-137, 1977.

- [Brachman80] Brachman, Ronald J. and Smith, Brian C.
3 Special Issue cn Knowledge Representation.
ACM SIGART Newsletter , February, 1980.

[Brodic78] Brodie, Michael L.,
Specification and verification of data base semantic integrity.
Technical Report CSRG-91, Computer Systems Research Group, University of
Toronto, April, 1978.

[Brodic80] - Brodie, Michael L.
Data abstraction, databases, and conceptual modelling: an annotated bibliography.
Special Publication 500-59, National Bureau of Standards, May, 1980.

g0 nusd
] , w s : -

108

[Buchanan76]

(Carlson76]

.[Chang78]

[Chen76)

[Codd70)

[Codd71]

{Comer79]

[Couper72]

[Date77]

[Davis76)

[Davis77)

BIBLIOGRAPIY

Buchanan, Brucc G.

Scientific theory formation by computer.

In Simon, J.C. (editor), Proc. of Advanced Study Institute on Computer Qriented
Learning Processes. NATO, Noordhoff, Leyden, 1976.

Carlson C. R. and Kaplaa R. S.

A generalized access path model and its application to a relational data base system.
In Proc. of ACM SIGMOD Conference, pages 143-154. 1976.

Chang, C. L. . | _
DEDUCE 2: Further investigations of deduction in relational databases.

In Gallaire, Herve and Minker, Jack (editors), Logic and data bases, pages 201-236.
Plenum Press, 1978,

Chen, Peter.
The entity-relationship model -- toward a unified view of data.
ACM Transactions on Database Systems 1(1):9-36, March, 1976.

Codd, E.F. ' ¥
A rclational mode! for large shared data banks. f |
Communications of the ACM 13(6):377-387, June, 1970.

Codd, E. F.
Relational completencss of data base sublanguages. '
In Rustin, Randall (editor), Data Base Systems, pages 65-98. Prentice-Hall, 1971,

Comer, D.
The ubiquitous B-tree.
ACM Computing Surveys 11(2):121-137, June, 1979.

Couper, A.D. .
The geography of sea transpor,
Hutchinson, London, 1972,

Date, C. J.
An introduction to database systems (2nd ed.).
Addison Weslcy, Reading, Massachusetts, 1977,

Davis, Randall.

Applications of meta level knowledge io the construction, maintenance and use of
large knowledge bases.

PhD thesis, Stanford University, July, 1976.

Computer Science Department Report STAN-CS-76-552.

Davis, Randall,

Interactive transfer of expertise: acquisition of new inference rules.

In Proc. Fifth Indl. Joint Conference on Artificial Intelligence, pages 321-328.
Cambridge, Massachusetts, August, 1977.

BIBLIOGRAPHY

[Doyic78]

109

Doyle, Jon.
Truth maintenance systems for problem solving.

" Technical Report AI-TR-419, MLLT. Artificial Intelligence Laboratory, January,

[EIMasri80a]

[Elmasri80b]

[Epstein78)

[Eswaren75]

[Feigenbaum71] Feigenbaum,E.A, Buchanan,B.G., and Lederberg,J.

[Fikes75]

[Fry76]

[Gallaire78)

[Garvey76)

[Gotlieb75)

1978.

El-Masri, Ramez and Wicderhold, Gio.
Properties of relationships and their representation,
In Proc. National Computer Conference. 1980.

El-Masri, Ramez. _ d
On the design, use, and integration of data models.
PhD thesis, Stanford University, June, 1980.

Epstein, R., Stonebraker, M., and Wong, E.

Distributed query processing in a relational data base system.

Memo UCB/ERL M78/18, University of California at Berkeley, Electronics
Rescarch Lab, April, 1978,

Eswarcn, Kapali and Chamberlin, Donald.

Functional specifications of a subsystemn for database integrity.

In Proc. First Intl, Conference on Very Large Data Bases, pages 48-68. Scptember,
1975

On gencrality and problem solving: a case study using the DENDRAL program
In Meltzer, B. and Michie, D. (cditors), Machine Intelligence 6, pages 165-190.
Amcrican Elsevier, New York, 1971.

Fikes, Richard.

Deductive retricval mechanisms for state description models.

In Proc. Proc. Fourth Intl. Joint Conference on Artificial Intelligence, pages 99-106.
Thilisi, USSR, Scptember, 1975.

Fry J.P. and Sibley,E.H.
Evolution of data-basc management systems,
ACM Computing Surveys 8(1):7-42, March, 1976.

Gallaire, Herve and Minker, Jack (eduots)
Logic and Data Bases.
Plenum Press, New York and London, 1978.

Garvey,Thomas D.

Perceptual sirategics for purposive vision,

Technical Note 117, SR International Antificial Intelligence Center, Scptember,
1976.

Gotlicb, L.
Computing joins of rclauons.
In Proc. of ACM SIGMOD Conference, pages 55-63. 1975.

B s

110

[Hall75]

{Hammer75]

[Hammer78])

{Haycs-Roth78)

[Held75}

[Hendrix78)

{Janas79)

[Kant79]

[Kaplan79]

[Katz80)

[Kellog78]

BIBLIOGRAPHY
Hall, PA.V.
Optimisation of a single relational expression in a relational data base system.
Technical Report UKSC 0076, IBM UK Scientific Centre, June, 1975.

Hammer, Michael M. and MclLcod, Dennis J. -
Semantic integrity in a rclational data basc system,

In Proc. First Intl. Confercnce on Very Large Data Bases, pages 25-47. Scptember,
1975.

Hammer, Michael M. and Sarin, Sunil K.
Efficient monitoring of database assertions.
In Supplement 10 Proc. of ACM SIGMOD Conference, pages 38-49. 1978.

Hayes-Roth, B. and Hayes-Roth, F.
Cognitive processes in planning.
Technical Report R-2366-ONR, RAND Corporation, December, 1978.

Held.G.D.. Stonebraker M.R ., and Wong,E.
INGRES - a rclational data base systcm.
In Proc. National Computer Conference. 1975.

Hendrix, Gary G., et al.
Dcveloping a natural Janguage interface to complex data.
ACM Transactions on Database Systems 3(2):105-147, June, 1978.

Janas, Jurgen M. .

How not to say NIL -- improving answers to failing querics in data-base systems,

In Proc. Sixth Ind. Joint Conference on Ariificial Intelligence, pages 429-434,
Tokyo, Japan, August, 1979

Kant, Elaine.

Efficiency considerations in program synihesis: a knowledge based approach
PhD thesis, Stanford University Computer Science Department, September, 1979.
Technical Report STAN-CS-79-755,

Kaplan, S. Jerrold.

Cooperative responses from a portable natural language data base query system.

PhD thesis, Dept. of Computer and Information Science, University of
Pennsylvania, 1979.

Katz,R.H. and Wong,E.
An access path model for physical databasc design.
In Proc. of ACM SIGMOD Conference, pages 22-28. May, 1980,

Kellog, Charles, Klahr, Phillip, and Travis, Larry.

Deductive planning and pathfinding for relational data bases.

In Gallaire, Herve and Minker, Jack (editors), Logic and data bases, pages 179-200.
Plenum Press, 1978. '

e e

st ot P O SO

BIBLIOGRAPHY

[Kent78)

[Kim79)

[King79]

_ {Klahr78]

[Konolige81]

[Lenat76)

[Lenat79)

[Lloyds78]
[MclLeod76]

(McLeod78]

[McLeod81]

[McSkimin77}

1

Kent, William.
Data and reality.
North-Hoiland, Amsterdam, 1978.

Kim, Won.
Relational database systems.
ACM Computing Surveys 3(11):185-212, Scptember, 1979.

. King, Jonathan J.

Exploring the use of domain knowledge for query processing efficiency.
Heuristic Programming Project Technical Report HPP-79-30, Stanford Umvemty
Computer Science Department, December, 1979.

Klahr, Philip.

Planning techniques for rule selection in deductive question-answering.

In Waterman, D.A. and Hayes-Roth, F. (editors), Pattern-Directed Inference
Systems, pages 223-239. Academic Press, 1978.

Konolige, Kurt.

The database as a model: a metatheorelic view.

Technical Report, SRI International Artificial Intelligence Center, forthcoming
1981.

Lenat, Douglas B,
AM: an artificial intelligence approach to discovery in mathematics as heunsuc

search.
PhD thesis, Stanford University, July, 1976.
Stanford Artificial Intelligence Laboratory Memo 286.

Lenat, D. B, Hayes-Roth, F., Klahr, P.
Cognitive economy.
Technical Report N-1185-NSF, Rand Corporation, June, 1979,

Lloyds Register of Ships 1978-1979.

McLcod, Dennis J. _

High level expression of semantic integrily specifications in a relational data base
system,

Technical Report 165, MIT Laboratory for Computer Science, September, 1976.

McLeod, Dennis 1.
A semantic data base model and its associated structured user inlerface.
PhD thesis, MIT, August, 1978.

McLeod, Dennis J. and Smith, John Miles.
Abstraction in databases.
SIGPLAN Notices 16(1), January, 1981.

McSkimin, James R. and Minker, Jack.
The use of a semantic network in a deductive question answering system.
In Proc. Fifth Intl. Joint Conference on Artificial Intelligence, pages 50-58. 1977.

I

12

[Moore79)

[Nicolas78a]

[Nicolas78b]

[Nilsson71]

[Pecherer75)

[Pirotte78]

. [Reiter78)

[Rothnie75]

"—"_'—'-'“

BIBLIOGRAPHY

Moore, Robert C.
Handling complex queries in a distributed database.

Technical Note 170, SRI International Artificial Intelligence Center, October, 1979.

Nicolas, J. M. and Gallaire, H.
Data base: thcory vs.interpretation.

In Gallaire, Herve and Minker, Jack (editors), Logic and Data Bases, pages 33-54.

Plenum Press, Mew 3'ork and London, 1978.

Nicolas, J. M. and Yazdanian, K.
Integrity checting in deduetive databases.

In Gallaire, ¢¥erve and Minker, Jack (editors), Logic and Data Bases, pages 325-344.

Plenum “* ss. New Yourk and London, 1978.

Nilsson, Nils. J.
Problem- Sclving Methods in Artificial Intelligence.
McTGraw H:il, New York, 1971,

Pecherer, R. M.
Efficient evaluation of expressions in a relational algebra.
In Proc. ACM Pacific 75 Conference, pages 44-49. April, 1975,

Pirotte, Alain.
High level data base query languages.

In Gallaire, Herve and Minker, Jack (editors), Logic and Data Bases, pages 409-436.

Plenum Press, New York and L.ondon, 1978.

Reiter, Raymond.
Deductive question-answering on relational data bases.

In Gallaire, Herve and Minker, Jack (editors), Logic and data bases, pages 149-177.

Plenum Press, New York and London, 1978.

Rothnie, J. B.

Evaluating inter-cntry retrieval cxpressions in a relational databasc management

system,
In Proc. 1975 National Computer Conference, pages 417-423. 1975.

[Roussopoulos?7)

[Sacerdoti77}

[Sagalowicz77]

Roussopoulos, Nicholas D.
A semuantic network nodel of data bases.

PhD thesis, Univ. of Toronto Computer Science Department, April, 1977,

Sacerdoti, E.D.
A structure for plans and behavior.
Amecrican Elscvier, New York, 1977,

Sagalowicz, Daniel.)
IDA: an intclligent data access program.
In Third Intl. Conference on Very Large Data Bases. October, 1977,

~r

A

BIBLIOGRAPHY ' . 13

[Schmid75}) Schmid, H. A. and Swenson, I.R.
On the semantics of the relational data model.
In Proc. of ACM SIGMOD Conference. May, 1975.

[Sclinger79) Sclinger, P. Griffiths et. al.
Access path sclection in a relational database management system.
In Proc. of ACM SIGMOD Conference, pages 23-34. May, 1979.

{Shaw80] Shaw, D.
Knowledge- based retrieval on a relational database machine.
" PhD thesis, Stanford University, August, 1980,

[Shipman79] Shipman, David W.
The functional data model and the data language DAPLEX. '
In Proc. of ACM SIGMOD Conference (Supplement), pages 1-19. May, 1979.

[Shortliffe76]) Shortliffe, E. H.
MYCIN: Computer Based Medical Consultations.
American Elsevier, 1976.

[Smith75] Smith, J. M. and Chang, P.
Optimizing the performance of a relational algebra data base interface.
Communications of the ACM 10(18):568-579, October, 1975.

[Smith78) Simith, Brian.

Levels, fayers, and pianes: the framework of a theory of knowledge representation
" semantics.

Master's thesis, MIT Artificial Intelligence Laboratory, 1978.

[Sproull77] Sproull, Robert F.

Strategy construction using a synthesis of heuristic and decision-theoretic methods.
PhD thesis, Stanford University, July, 1977.

[Stefik30) Stefik, M.J.
Planning with constraints.
PhD thesis, Stanford University, January, 1980.
STAN-CS-80-784.

Bt et

r [Stonebraker75] Stoncbraker, Michael.
3 Implementation of integrity constraints i...d vicws by query modification.
In Proc. of ACM SIGMOD Conference, pages 65-78. May, 1975.

[Stonebraker76] Stoncbraker, Michael et. al.
_The design and implementation of INGRES.
ACM Transactions on Database Systems 3(1):189-222, September, 1976.

[Stonebraker80] Stonebraker, Michael.
Retrospection on a databasc system.
ACM Transactions on Database Systems 5(2):225-240, June, 1980.

L -

W T ey ————————

114 . _ BIBLIOGRAPHY

[Taylor76] Taylor, R. W.and Frank,R. L.
CODASYL data-basc managemcent systems.
ACM Computing Surveys 1(8).67-104, March, 1976.

[Tcitelman?8] Teitelman, Warren.
Interlisp Reference Manual
Xerox Palo Alto Research Center, Palo Alto, California, 1978.

[Tsichritizis?6] Tsichritizis, D. C. and Lochovsky, F. H. |
: Hicrarchical data-base management. A ‘ : !
ACM Computing Surveys 1(8):105-124, March, 1976. i

. |

f

{Ullman80] Ullman, Jeffery D.
Principles of Database Systents.
Computer Science Press, 1980.

[Vanmelic79] van Melle, William.
A domain-independent production-rule system for consultation programs.
In Proc. Sixth Intl Joint Conference on Artificial Intelligence, pages 923-925.
Tokyo, Japan, August, 1979.

[Weyhrauch80] Weyhrauch, Richard.
Prolegomena to a theory of mechanized formal reasoning.
Antificial Intelligence 13(1-2):133-170, 1980.

[Wiederhold77] Wicderhold, Gio. ‘ J
Daiabase design.
McGraw-Hill, New York, 1977. .

[Wilson80] Wilson, Gerald A.
A conceptual model for semantic integrity checking.
In Proc. Sixth Inil. Conference on Very Large Data Bases. September, 1980.

{

[Wong76) Wong, Harry K.T. and Mylopoulos, John.
Two views of data semantics: a survey of data models in artificial intelligence and
database management. |
A.l.Memo, University of Torento Department of Computer Science, December, (J
197s.

[Wong76b) Wong, E. and Youssefi, K.
Decomposition -- a strategy for query processing.
ACM Transactions on Database Systems 3(1):223-241, September, 1976.

[Yao78) Yao, S. Bing and De Jong, David.
Evaluation of access paths in a relational database system.
Technical Report 280, Purdue University Department of Computer Sciences,
August, 1978,

[Yao79] Yao, S. Bing. .
i ' ' Optimization of query evaluation algorithms.
ACHM Transactions on Daiabase Systems 2(4):133-155, June, 1979,

BIBLIOGRAPHY ‘ 115

[Yousscfi78) Yousscfi, Karel A. Allen.
Query processing for a relational database system.
? ~ PhD thesis, University of California, Berkeley, January, 1978,
" Electronics Research Laboratory Memorandum UCB,ERL M78/3.

[Yousscfi79)] Youssefi, Karcl A. Allen and Wong, Eugene.
Qucry processing in a relational database management system.
In Fifth Intl. Conference on Very. Large Data Bases, pages 409-417. 1979,

.
.

)

* l

|

