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Abstract

Thc problem of database query optimization is to select an cfficient way to process a query

expressed in logical terms from among the alternative ways it can be carried out in the physical

database. This thesis presents a new approach to this problem, called semantic query optimization.

The goal of semantic query optimization is to produce a semantically equivalent query that is less

expensive to process than the original query.

Semantic query optimization actually transforms the original query into a new one by means of a

process of inference. The transformations are limited to those that yield a semantically equivalent

query, one that is guaranteed to produce the same answer as the original query in any permitted state

of the database. This guarantee is achieved because the knowledge used to transform a query is the

same knowledge used to insure the semantic integrity of the data stored in the database. Thus,

semantic query optimization brings together the apparently separate research areas of query

processing and database integrity.

The thesis also addresses an important issue in current automatic planning research: production

not just of a correct solution but of a "good" one, by means of an efficient problem solver. Semantic

query optimization advances the notion of a problem refornulation step for problem-solving

programs. In this stzp, equivalent statements of the original problem are sought, one of which may

have a better solution than the original problem. This method avoids explicit and possibly costly

analysis of efficiency factors during planning itself.

Semantic query optimization can also be viewed as one aspect of intelligent database mediation. It

applies knowledge of a problem domain and of the capabilities and limitations of the database to

pose the most effective and easily processed queries to solve a user's problem.

The thesis formally dcfines transformations that preserve semantic equivalence for queries in the

relational calculus. In addition, it identifies several classes of cost-reducing query transformations for

relational database queries, and provides quantitative estimates of the improvements they can

produce, based upon widely accepted models of query processing.

The thesis also discusses the design and implcmentation of a system that carries out semantic query

optimization for an important class of relational database queries The system is called QUIST,

standing for QUery Improvement through Semantic Transformation.\

The QUIST system has analyzed a range of queries for which different transformations apply. For

these queries, QUIST obtains substantial reductions in the cost of processing at a negligible cost for

the analysis itself.
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INTRODUCTION

Chapter 1
Introduction

1.1 Overview of the thesis

f
The problem of database query optimization is to select an efficient way to process a query

expressed in logical terms from among the alternative ways it can be carried out in the physical

database. This thesis presents a new approach to this problem, called semantic query optimization

(SQO).

The goal of scnantic query optimization is to produce a semantically equivalent query that is
less expensive to process than the original query.

Semantic query optimization is a response to inherent limitations in what may be termed

conventional query optimization methodsf ([Selinger79] [Yao79] [Youssefi78]). These methods seek to
exploit efficient paths in the physical database. However, it is not possible to supply physical support

for all logical relationships because of the high cost to maintain that support when the database is

updated. Thus, there will be many queries that both involve access to much data, and in which the

logical relationships are not well supported physically. These queries are expensive to process, and

conventional techniques are ineffective.

Semantic query optimization actually transforms the original query into a new one by means of a

process of inference. The transformations are limited to those that yield a semantically equivalent

query, one that is guaranteed to produce the same answer as the original query in any permitted state
of the database. This guarantec is achieved because the '. nowledgc used to transform a query is the

same knowledge used to insure the semantic integrity [McLeod76] or meaningfulness of the data

stored in the database. Thus, semantic query optimization brings together the apparently separate

research areas of query processing and database integrity.

SQO also addresses an important issue in current automatic planning research: production not

just of a correct solution but of a "good" one, by means of an efficient problem solver.

t'rhe term optimization is a misnomer: there is no claim that the least expensive processing method is found. However, the

term is firmly established in the literature.

.. . . . ..p, , , il l I . . . .. . .



2 INTRODUCTION

Semantic query optimization advances the notion of a problem reformulation step for
problem-solving prograins. In this step, equivalent statements of the original problem are
sought, one of which may have a better solution than the original problen. This method
avoids explicit and possibly costiy analysis of efficiency factors during planning itself

Semantic query optimization can also be viewed as one aspect of intelligent database mediation. It

applies knowledge of the problem domain and of the capabilities and limitations of the database to

pose the most effective and easily processed queries to solve a user's problem.

As with most query optimization work, the research presented here deals with queries using the

relational model of data ([Codd70], (Kim79]). The thesis formally defines transformations that

preserve semantic equivalence for queries in the relational calculus [Codd7l]. In ade 'in, .t

identifies several classes of cost-reducing query transformations for relational database queries, and

provides quantitative estimates of the improvements they can produce, based upon widely accepted

models of query processing.

The thesis also discusses the design and implementation of a system that carries out scmantic query

optimization for an important class of relational database queries. The system is called QUIST,

standing for QUery Improvement thr.otigh Semantic Transformation.

The QUIST system has analyzed a range of queries for which different transformations apply in

the context of a simplified query processing model based on the System R access path selector

[Selinger79]. For these queries, QUIST's overhead is negligible compared to the estimated reduction

of query processing cost. The overhead is also negligible in cases where QUIST determines that there

are no constraint targets, or that the query conditions are not satisfiable. The latter condition is

detected without recourse to actual data, in contrast to a similar function performed by so-called

"cooperative response" systems ([Kaplan79], [Janas79]).

QUIST uses heuristics to guide the process of inference that produces equivalent queries. The

process is directed toward the application of one or more specific types of transformations on the

relational query, such as the elimination of a relation or the introduction of a constraint on an

indexed attribute. The only inferences that take place are those that may produce a query that is

more efficient to process.

QUIST's inference-guiding heuristics reflect the expert knowledge of relational database stncture

and query processing developed in recent query optimization research. Indeed, it is the existence of

fairly wide agreement about models of query processing and optimization issues in the relational

setting that makes that setting a a suitable one for exploring semantic query optimization.

The operation of QUIST can be contrasted with that of a conventional query optimizer. A

conventional optimizer (Figure 1-1) takes the given query as its input. Its output is a plan consisting

of a sequence of retrieval operations in the physical database.

t1hc work is also applicable to other data models particularly where implementations include some rast access paths.
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Query (Problem)

Conventional

t Query
Optimizer

Sequence of

Retrieval Operations

(Plan)

Figure 1-1: Operation of a conventioial query opt imizer

t In operational terms (Figure 1-2). QUIST encompasses:

* a problem reformulator

* a convcntional query optimizer

* a qucry selector.

QUIST starts with the constraints spccified in the input query. The problem reformulator (Figure

1-3) first determines which database relations, if any, are constraint largels. QUIST designates a
relation as a constraint target if it determines that it may lower the cost of query processing by finding

additional contraints on that relation. If there are no targets, QUIST merely returns' the original

query for processing. Otherwise, its problem reformulator next repeats a cycle of operations that
produce constraints until no more cycles can be carried out. During each cycle, relevant semantic

integrity rules are retrieved. QUIST filcrs the rules according to the list of constraint targets, tests

them for applicability against the current constraints, and asserts new constraints if possible. The

process terminates when some cycle fails to generate new constraints. Finally, the problem

reformulator gioups the known constraints, both those given originally in the query and those

derived using semantic knowledge of the domain, into a set of queries that arc semantically

equivalent (o the original query.

QUIS' next uses its convcntional query optimizer to estimate the cost of processing cach of the

semantically equivalent queries. Finally, as its output QUIST selects the query with the lowest

estimated processing cost as determined by the conventional query optimizer.

In more abstract terms, QUIST operates at three levels that correspond to the levels of the plan-

gencrale-lest paradigm of artificial intelligence [Fcigcnbaum71] seen in such systems as Meta-

Dendral [lluchanan76]. Thc planning and generating steps take place in the problem rcformulator,

while the esting step is carried out by the conventional optimizer and ie query selector.
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Que'y CPblemeRe

Equivalent Queries

Conventional
Query Optimizer

Minimum-cost .. Retrieval Plans

Sequence of.

Retrieval Operations

(Plan)

Figure 1-2: Operation orthe QUIST semantic query optimizer

9The planning level is the one at which constraint targets arc established. At this 4evel, the
qucry is treated in very abstract terms. Thic query's only important characteristics are the
nancs of the relation attributes that irc constrained or from whiich output values are
rcq-u.cst.cd. At thc planning level, QUI!;T divides tic databasc's relations into those that
should bc targets for itircrcncc and those that should not. much in the way that the
Dendral programn [Feigcnbaumflj divides fragments of chemical structures into those
that should or should not be part of a desired complete structure.

& At the generate levcl, QUIST explorcs a space of semantically equivalent queries. Each
move in this space is a query transformation bascd upon-die inference of an additional
constraint. Each inferece is supported by a rulc in the senmantic knowledge base. Only
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Query

01)1ST
Physical Inference-guiding

Database Heuristics
Schema

Semantic
Constraint .. Targets Integrity

Rules
Generate-Step

(inter/Group)

Equivalent Queries

Figure 1-3: T1he QUIST problem reformulator



6 INTRODUCION

plausible moves arc generaied in the sense that the constraint target list permits only
transformations which may possibly produce a lower cost query. The represcntation of
the query at the generate level is less abstract than at the planning level. At the generate
level, it is necessary to deal with the precise constraints on database att'ibutes, not just
with the names of the attributes that have been constrained.

* The testing level views each query in the most detail. Here, estimates of actual processing
cost are obtained. QUIST includes a conventional query optimizer to find the least
expensive way to process each semantically equivalent query produced at the generate
level. The sequence in which each part of the query is processed is an essential factor.
Processing at this level can be regarded as carrying out moves in a space of physical
realizations of a single logically expressed query produced at the level above.

QUIST's use of the query processing expertise developed in conventional query optimization

research is seen in the relationship between the searches at the generate and testing levels. The

testing level search of alternative processing sequences, which is nothing other than conventional

query optimization, is guided by detailed models of the cost of data access. The generate level search

of semantically equivalent queries is guided by the constraint target list. The heuristics that produce

the constraint target are, in effect, summaries or abstract versions of the detailed cost models used at

the testing level.

1.2 Background of the current research

This research introduces the use of semantic reasoning to address the problem of query
optimization in relational databases. In this section, we briefly review the research on database

abstraction that has focussed attention on the query optimization problem. We indicate why

relational databases are a suitable context for this current study, and we note how previous

investigators have defined the problem in that context. We also discuss the important ideas about the

semantic integrity of databases that suggest the possibility of semantic reasoning ts an approach to

efficient query processing. 'Tlie research discussed in this section serves to frame the issues of the

current study. We defer until Chapter 6 a discussion of the significant contributions of our research

in the context of previous investigations.

1.2.1 Database abstraction and data models

The query optimization problem arises from the distinction between the logical and physical

representations of a database. Fry and Sibley [Fry76] trace the evolution of database abstraction

concepts that has led to tie current notion of a data model as the means to maintain the

* logical/physical distinction. A data model is a language in which to express the logical stricture of a

database and the logical operations that are permitted upon that structure. That is, a data model is a
vehicle for defining a database's data elements, relationships, and data types, as well as the operations
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on the elemcnts and relationships. It is also the basis for the queiy language by which elements of the

database can be specified and retrieved by their logical properties.

Most attention has been paid to three kinds of data models. These are the network model

[Taylor76], the hierarchical model [Tsichritzis76], and the relational model ICodd70]. Numerous

database systems and query languages have been based on each of these models (see [Wiederhold77]

for an extcnsiveL .3talogue of such systems).

1.2.2 The relational model

Whatever the mcrits of database systems based on the three major data models with respect to ease

of implementation, maintenance, and use, it has been persuasively argued [Datc77J that the relational

model provides the greatest separation between logical and physical levels of a database. The degree

of data independence thus offered has stimulated much research into high level nonprocedural

facilities for retrieval and update, for the definition of logical and physical structures and user views,

P and for the control of access, integrity, concurrency and recovery ([Kim79]); the current study follows

in that line of research.

For simplicity, a relational database can be viewed as a collection of tables of data. hi this view the

table columns are attributes and the rows correspond to individual data records. There are no explicit

connections among the tables, so manipulations of them can be specified simply and flexibly. One

broad class of relational data manipulation languages is based on the relational algebra [Codd70]

which defines operators to transform tables into other tables. Basic operators include restriction

(horizontal subsetting of a table), projection (vertical subsetting of a table), and join (cross matching

of two tables). Another broad class of languages is based on the relational calculus [Codd71], an

applied predicate calculus.

1.2.3 Conventional query optimization

0 Research in conventional query optimization is important to the present work for two reasons.

First, it has shown that separating the logical and physical aspects of a database does not necessarily

result in inefficient query processing. Secondly, it has -stablished a body of knowledge about the

factors that govern the cost of processing queries, knowledge that can be directly applied in a system

for semantic query optimization.

As we shall detail in Chapter 2, research in conventional query optirr" ation has centered on

queries built tp from the basic relational algebra operators of restriction, projection, and join, or

from their equivalents in the relational calculus.

* The starting point for query optimization research in the relational context was the analysis of

individual operations. Astrahan and Chamberlin (Astrahan75), among others, studied the restriction

operation. Gotlicb [Gotlieb75] and Rothnic [Rothnic75l are among those who investigated the join

operation.

P
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Query optimization research builds on studies of the simplest queries that involve all of the key

relational operations. These simple queries involve a single join operation between just two relations.

The most important of these studiec, from the standpoint of establishing the necessary elements.

underlying conventional query optimization, are those of Blasgen and Eswaren [Blasgen77] and Yao

and DeJong [Yao78]. These studies produced sets of query processing methods for the simple

queries, along with cost formulas and applicability conditions for the methods.

Most recently has come the development of optimizers for the general class of restriction-join-

projection queries. The building blocks of these optimizers are the methods to process the single-join

queries. The key insight underlying the optimizers is to see the evaluation of the general query in

terms of a sequence of evaluations of simple queries. The task of the general optimizer is to choose

which simple methods to apply, and in what sequence. The query optimizers of INGRES

[Youssefi781 and of System R [Selinger79] can be viewed as operating in this manner.

1.2.4 Semantic integrity of databases

The idea of semantic query optimization presented in this thesis rests squarely on the concept that

a database should be an accurate reflection of some real world application, not just any collection of

data values. If the database contains values that cannot be attained in its real world application, then

there is said to be a violation of the semantic integrify of the database. Semantic query optimization

relies on a knowledge base of rules that are not part of the database proper, but that describe what

values in the database correspond to possible states of the real world application.

In early database systems, integrity checks were confined to the detection of errors in format or

were implemented as ad-hoc procedures incorporated in general database updating routines. A more

systematic approach to the classification, detection and treatment of semantic integrity violations

arose in the work of such researchers as Fswaren and Chamberlin [Eswaren75] and Hammer and

McLeod [Hammcr75]. Two broad notions of semantic integrity have been developed. One notion

concerns the specification of permissible states of the database. For instance, it may be required that

the salary of employees be no greater than some maximum figure; any data value for salary that

exceeds that maximum does not reflect a legitimate state of affairs in the company, and so must be

considered a semantic integrity violation. The other notion of semantic integrity concerns

permissible transitions from one state to another. For instance, it may not be permissible to i'educe

the salary of an employee, even if the salaries before and after the change are both legitimate salaries.

Because query processing is assumed to take place in a single state of the database, we are only

concerned in the present research with semantically based constraints on states of the database, rather

than with permissible transitions between states. Several methods have been suggested for expressing

such state constraints including: as qualifications in a query language expression [Stonebraker751; in

a special constraint language [Mcleod761; in terms of an algebra in the sprit o abstract data types

[Brodie78j: and in a general logical formalism such as predicate calculus [Chang78] or semantic
networks [Roussopoulos77l. The research presented here generally adopts the predicate calculus
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approach to representing semantic integrity constraints adopted by Chang [Chang78] and others

[Gallaire7gB.

In addition to studies in the rcprcscntation of semantic constraints ca databases, much effort has

been devoted to issues of designing systems for specifying semantic integrity constraints and for

checking them cfficicntly ([Hammer]78, [Wilson8O]). The method devised by Stoncbrakcr

[Stoncbraker75] for maintaining semantic integrity of a database is similar to the method used by

QU IST. Stonebraker's method, called query modification, works by modifying an update request. In
general terms, it conjoins appropriate integrity constraints to the qualification portion of the update
request. In this way, no data is altered that would result in a state that violates the conjoined

constraint. The query transformations described in the present research are similar to these query
0 modifications.

We have now concluded our brief review of research that forms the background to our
investigation of semantic query optimization. We shall look at additional related research when we

discuss the significance of our results in Chapter 6.

1.3 Guide to reading

Semantic query optimization integrates two important sources of knowledge: knowledge about
cost factors in query processing, and knowledge about the semantics of the application task domain.

Chapter 2 discusses the problem definitions and models of query processing that characterize
conventional approaches to the optimization of queries in relational databases. Chapter 3 introduces

semantic query optimization. It presents the formal basis for the notion of a transformation of a
relational query that preserves meaning in all permitted states of the database.

In Chapter 4, we describe the QUIST system in detail. We show how the models of query

processing developed in research on relational databases are directly incorporated into heuristics to

guide the transformation of queries into less costly, semantically equivalent forms. In Chapter 5, we
discuss the effectiveness of QUIST in terms of the estimated reductions in cost made possible by
various kinds of query transformations. We also report the results of using QUIST on a range of

queries that illustrate those classes of transformations, and we discuss the stability of the QUIST
control stratcg, when the size of the database or rule base increases.

Finally, in Chapter 6 we discuss the significance of the work reported here in the context of
research in database management and artificial intelligence. We also review the limitations of the

current work and suggest directions for future research.

J
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Chapter 2
Query Processing Expertise

The most imptant outcome of conventional query optimization research t is deeper

understanding of t,. -roblet,. of accessing data, what we might call quer, processing expertise. In the
terminology of Sect', - J 1, queiy processing expertise is knowledge of problcm-solving methods for

the specific w.,uben, t processing database queries. This expertise is manirested in two ways: in
terms of the assumptioirs, models, and approaches that characterize advanced query optimization

systems, and in '-rms of generalizations concerning the factors that contribute to the cost of
processing queries.

Research in the optimization of relational database queries serves as an appropriate case study for

examining query processing expertise. There is substantial agreement on the validity and power of
the data storage, data access, and cost models developed in the relational context, although there is no

standard accepted for all systems.

Query processing expertise is an essential underpinning of semantic query optimization. Through
the proper use of this knowledge, it is possible to control the use of semantic knowledge in an
effective semantic query optimization system. In this chapter, therefore, it is our aim to summarize

the expertise that has emerged from research on relational database query processing. In so doing,
we specify the class of queries towards which we have directed our specific research in semantic

query optimization.

In Section 2.1, we review the basic terminology of relational databases. In Section 2.2, we describe

how queries are specified. Our objective in Section 2.3 is to specify the knowledge that underlies

conventional approaches to optimization of restrict-join-project queries. Tlis is the class of queries
that is the focus of conventional query optimization research. We accomplish this objective through a

detailed review of some characteristic research work in the field. We extend this in Section 2.4 to
show how this query processing knowledge is actually used in a conventional query optimizer.

Finally, in Section 2.5 we make explicit some of the generalizations about query processing that

constitute query processing expertise and that play an integral part of semantic query optimization.

1tlhe use of the term optimization in this ontext is discussed in Section 1.1.

9p

r it . . . ..
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2.1 Relational databases

In formal terms, a relational database is a collection of relations. Let D1,D2,. ,Dn be n sets. Codd

[Codd7l] defines the exte;nded Cartesian product of these sets as:

X(DI,D2,...,Dn) = {(dld2,...,dn): djEDj forj = 1,2,....n}.

R is a relation on the sets D1,D2,..,,Dn if it is a subset of the extended Cartesian product of those sets.

A relation is therefore a set, and its members are n-tuples (or more simply, tuples) where n is referred
to as the degree of the relation. The sets Di on which the relation R is defined are called its

underlying domains. For purposes of modelling databases, the domains under consideration are

integers and character strings. The number of n-tuples (or more simply, tuples) in R is the cardinality

of R.

A relation can be viewed as a table in which the rows correspond to tuples and the columns

correspond to mappings from the relations into its domains. The mappings are called attributes, and

it is possible to base more than one attribute on the same domain. An attribute value is the entry for

a particular row/column combination.

To illustrate the data definitions, consider a relation that describes characteristics of ships:

SHIPS(Ship Owner Type Length Draft Deadweight)

SHIPS is the name of a relation. The words in parentheses are the nmncs of the attributes of the

relation.

Assume that the attributes Ship, Owner, and Type are defined on the strings, and that the other
attributes take on integer values. The relation might consist of the following tuples (based on data

from lloyd's Register of Ships [Lloyds78]):

Ship Owner Type Length Draft Deadweight

"Bralanta" "Braathan" "Tanker" 285 17 154

"British Wye" "BP Shipping" "Tanker" 171 9 25

"Carlova" "Index Maritime" "Bulk" 218 12 55

"George F. Getty" "Hemisphere" "Tanker" 319 19 227

"Intellect Energy" "Energy Shipping" "Tanker" 88 6 2

Figure 2-1: Illustrative tupics in the SHIPS relation

-jI .. ..
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We take the first tuple to signify that the tanker Bralanta is owned by Braathan, that it is 285

meters long, has a draft of 17 meters, and has a deadweight (size) of 154,000 long tons. The other

tuples are interpreted similarly.

2.2 The specification of relational database queries

t
There are two broad classes of relational query languages: those based upon the relational algebra

and those based upon the relational calculus. An extensive discussion and comparison of the two

classes can be found in [Date77]. In a relational algebra language, a query is expressed by specifying

operators that transform relations into other relations, and ultimately into the desired result relation.

The relational calculus is an applied predicate calculus. Query languages based on the relational

calculus specify retrieval in terms of a calculus expression. Pirotte [Pirotte78] gives an excellent

survey of the kinds of relational query languages that are based on the predicate calculus.

The languages based upon the relational algebra and the languages based upon the relational

, tt calculus present different interfaces to a user or a program. However, Codd demonstrated [Codd7l]

that the two formalisms are equivalent. In that same paper, Codd proposed the relational calculus as

a standard against which the expressive power of query languages could be measured.

We now illustrate the specification of relational queries using a language based on the relational

calculus, the SODA language [Moore79]. We note that a query does three things:

1. It specifies what relations are involved in the query, either for checking conditions or for
retrieving specific values.

2. It specifies what conditions must be met.

3. It specifies what aspects of the qualifying data items are to be retrieved.

Our illustration uses a simple example relational database that includes two relations:

* SHIPS(Ship, Length)

CARGOES(Ship, Cargotype, Quantity)

These relations contain information about ships and the cargoes they carry. Suppose it is desired

*P to retrieve the names of ships longer than 200 meters that arc carrying more than 1000 tons of wheat.

'[he appropriate query in SODA could be expressed as:

I

I1
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(IN VI SHIPS) (IN V2 CARGOES)

((VI Ship) = (V2 Ship))

((V1 Length) > 200) ((V2 Cargotype) = "Wheat") ((V2 Quantity) > 1000)

(? (VI Ship))

The first line defines the ranges of two tuple variables V1 and V2. A tuple variable is a variable

that ranges over the tuples of a specified relation. For each tuple variable, the query specifies the

relation over which the variable ranges. Thus, V1 ranges over the SHIPS relation, and V2 ranges over

the CARGOES relation.

The next two lines of the query specify the retrieval qualification. What are the objects on which

the qualification is to be tested? They are precisely the tuples of the relation formed by taking the

Cartesian product of the relations over which the tuple variables range. lie formation of the

Cartesian product is conceptual. That is, it may not actually be necessary to form the product

completely bcfore applying qualifying conditions. Indeed, it is advisable on efficiency grounds not to

form the product. Each tuple in the Cartesian product of the example query is the concatenation of a

SHIPS tuple with an CARGOES tuple.

The first line of the qualification contains the join tenn ((VI Ship) = (V2 Ship)). A join term has

the form (X COMP Y) where X and Y are attribute specifiers, and COMP is one of the comparison

operators such as =, >, and so forth. An attribute specifier is a (tuple variable, attribute name)

pair; it is the same thing as the indexed tuple referred to in [Codd71], but restricted to a single relation

and a single attribute. The attributes specified by X and Y must be defined on the same underlying

domain. Roughly speaking, the join terms of our example query pairs each cargo with the ship that is

carrying it by equating the names of ships.

The next line contains three restriction terms, ((VI Length) > 200), ((V2 Cargotype) = "Wheat"),

and ((V2 Quantity) > 1000). that further restrict the subset of the Cartesian product that passes the

join term test. A restriction term is of the form (X COMP CONSTANT) where X and COMP are as

before and CONSTANT is a constant in the domain of the attribute specified by X. In our example,

the SHIPS portion of qualifying Cartesian product tuples must have a Length value greater than 200,

and the CARGOES portion must have a Cargotype value of "Wheat" and a Quantity value greater

than 1000. Note that there is an implicit conjunction among the join and restriction terms.

The tuples of the specified Cartesian product relation that satisfy the retrieval qualification are

called the qualifjing tuples. 'Tlie final task of the query is to say what information is sought from the

qualifying tuples. The desired output is specified in a target list. A target list is a list of attribute

specifiers. Each attribute specifier in the target list requests the retrieval of the value of the specified

attribute for all qualifying tuples. The final line of the example query specifies the retrieval of the

ship name Ship from the SHIPS portion of the qualifying tuples...
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In a standard relational calculus language, a retrieval qualification is a logical combination of

restriction tcrms and join terms, using the standard logical conncctivcs and existential and universal

quantification. The reader is referred to [Codd7l] or [Pirottc78j for a thorough discussion of

allowable qualifications. Intuitively, the join terms of a qualification most often correspond to
semantic relationships among entities and the restriction terms are additional restrictions on the

entities so related.

2.3 Optimization of simple restrict-join-project queries

Experience with relational database systems indicates that there is a subset of the relational algebra

in which a very great percentage of queries can be expressed. This subset has therefore become the
main focus of conventional query optimization research in relational databases.

In this section, we look in derail at a characteristic example of this research, the work of Blasgen

and Eswaren [13lasgen77] at IBM. Our purpose is to reveal the foundation elcments of conventional
query optimization that have been generally accepted by investigators in the field. These elementsI are noted in Figure 2-2.

1. A limited but important class of queries.

2. A model of data storage.

3. A model of access to data.

4. A cost measure related to data access.

5. A set of methods to carry out the "atomic" queries.

6. System and query parameters that are used in cost analysis.

7. Cost formulas and applicability conditions for the methods.

Figure 2-2: Elements of conventional query optimization

The queries ,inder consideration are those that can be expressed in terms of the three basic

relational algebra operations: restriction, which selects rows from a relation- projection, whicb selects

columns from a relation; and join, which matches (cross-references) two relations on compatible
attributes (attributes defined on the same underlying domain of values). Note that the discussion
applies to the relational calculus too because a corresponding class of queries in that formalism can be

translated into these algebraic terms (see [Yao79], for example). The corresponding class in relatioral

calculus terms involves range statements for tuple variables, p.us a qualification in terms of those
variables, which together correspond to restriction and join, and a target clause which corresponds to

a projection.
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The work reported in [Blasgen77] considers a general query with the following form: apply a given

restriction to relation R, yielding It and apply a possibly different restriction to relation S, yielding S:

Join Rand Sto form a (new) relation T, and project some columns from T. This query can be termed

a two-relation query, and can be viewed as the atomic unit from which all the restrict-join-project

queries can be constructed.

Blasgen and Eswaren propose straightforward models of access and storage. Because these models

are typical of the access and storage models used throughout conventional query optimization

research, we will describe them in detail.

The database is assumed to be stored on direct access secondary storage, typically on disk. Physical

storage is divided into fixed length pages. There are two kinds of pages, data pages and index pages.
The tuples of the database relations are stored as fixed length records on the data pages (under this

assumption, the terms tuple and record are used interchangeably throughout the query optimization

literature). A data page may contain tuples from more than one relation, but no tuple is broken up

across page boundaries. Each tuple has a unique tuple identifier (TID). It is assumed that the file

system can convert a TID into an address for direct access to a tuple. The TID's have the property

that accessing a set of tuples in sorted TID order accesses a data page at most once.

Secondary storage is divided into segments. A segment is a large address space that contains one or

more relations. It is implemented as a set of pages. Each tuple stored in a segment identifies the

relation to which it belongs. No relation is broken up across segment boundaries. To obtain all the

tuples of a relation, the segment can be scanned by fetching its pages one at a time and checking

every tuple on the page for membership in the desired relation. This kind of scan is called a segment

scan. A segment scan fetches every page in the segment once.

Because a segment can be large, a segment scan can be very slow. For this reason, other access

paths to the tuples of a relation may be arranged. The model described in [Blasgen77] admits an

access path based on a single-column index to a relation (another type of access path is the link). A

single-column index on a column A of a relation R is a set of pairs whose first component is a value

from A and %hose second component is the TID ofa tupic of R that has that value. The index is

stored as a B-tree of pages. Pages at the lowest level contain the actual (key, TID) pairs sorted by key.

Higher levels contain pointers to lower level pages. Because of the B-tree organization, the index

permits rapid access to a single tuple with a desired value. The rt-nber of index pages to be fetched

equals the height of the tree. Also, the lowest level index pages are linked so that all the tuples or any

key subsequence of them can readily be retrieved in sorted key order by scanning the leaf nodes of

the index. This operation is called an index scan.

The usefulness of an index for query evaluation depends upon whether the relation is clustered
with respect to the index and on the number of tuples to be retrieved. A relation is clustered with

respect to an index if the tuples of the relation are stored in the same sequence as the key sequence

given by the index. With such an arrangement, if the index is used to access tupIcs of the relation

then each data page of the relation will be fetched only once.. On the other hand, if the index is
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unclustcred with respect to the relation, it is assumed that each access of a tuple using the index

requires fetching a new data page.

Besides segment scan and i:jdex scan, the access model includes sorting tuples on the value of some

column. It is assumed that the files are large enough to require an external Z-way sort-merge.

Based on the access and storage models, Blasgen and Eswaren develop methods to carry out the

two-relation query. 'The methods differ in their use of TlDs, indexes, and sorting, and some of them

are only applicable if certain indexes exist. Two of the methods will be described.

The first method is the nested loops method. The first relation is scanned. For each tuple that

meets the restrictions on that relation, a scan of the second relation is performed. Some tuples from

* the second relation may be found that meet the restrictions on the second relation and that have the

same join column value as the current first relation tuple. Each qualifying second relation tuple is

combined with the current first relation tuple to form a composite result tuple (projecting out the

desired columns).

The second method is the merging scans method. Both relations must be scanned in join column

order. Either relation that is not indexed on its join column must be sorted into a temporary file that

is ordered on that column. The first relation is scanned in join column order. For each first relation

tuple that meets the restrictions, the second relation is scanned. However, because of join order

sequencing, it is possible to keep track of the current position of the two scans and never rescan any

portion of either relation once the current join column value exceeds the value in that portion. This

bookkeeping also makes it possible to spot situations where tuples in one relatio . have no join

partners in the other relation.

The cost mneasure for the methods is the number of pages that must be brought in from secondary

storage. This is a reasonable assumption if it is believed that input/output time dominates processor

time. Most (though not all) query optimization models make this assumption.

Given a set of methods and a cost measure, it is possible to develop cost formulas for the methods.

The formulas depend upon system parameters that arc database-dependent but independent of the

specific query, and upon other quer)-dependent parameters. The cost formulas for a method to

process a complete two-relation query are built from cost formulas for scanning a single relation. For

a segment scan, the cost is the number of pages in the segment that contains the relation. This is

obviously a system parameter, not related to the restrictions or other aspects of the query.

Unlike a segment scan, the cost of an index scan depends both on system parameters and on query

parameters. To see this, consider a scan of a key subsequence of column A of relation R using index

1. Suppose the scan starts at column value VI and ends at column value V2. That is, the aim is to

retrieve all tuples of relation R that have a value for column A that is greater than or equal to V1 and

less than or equal to V2.

The first step of the scan is to locate the first tuple with a value between Vi and V2. The index

permits rapid access to that tuple, at the cost of fetching a number of index pages equal to the height
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of the tree in which the index is stored: index tree height is clearly a system parameter. The rest of

the operation consists of chaining along the leaf index pages until tie key value exceeds V2. At each

index page, TIDs for qualifying tuples are found and their data pages are fetched. The number of

leaf index pages and the number of data pages fetched depends upon the number of tuples that have

a value between V1 and V2 for column A. This obviously depends upon the query because V1 and

V2 are specified by the query.

It is straightforward to combine scan cost formulas into cost formulas for a complete two-relation

query processing method. For example, the nested loops method consists of a scan of one relation

and for each of its qualifying tuples, a scan of the second relation. Hence, tie cost of tie nested loops

method is the cost of scanning the first relation plus the product of the number of qualifying first

relation tuples with the cost of scanning the second relation.

The work of S.B. Yao and his associates presented in [Yao78] and [Yao79] rests on the same

elements as the work of Blasgen and Eswaren. In particular, Yao's work addresses the same class of

two-relation restrict-join-project queries and presents similar storage, access, and cost models. The

work is significant in systematically building the query processing methods out of a comprehensive

set of submethods. This results in a much larger set of query processing methods than Blasgen and

Eswaren present. Yao also investigates the use of links as auxiliary access paths.

2.4 A conventional query optimizer for multifile queries

The methods that have been developed to handle two-relation queries in the restrict-join-project

class have been extended to handle queries that involve n relations, where n is greater than two. This

is the basis for the general query optimizer for IBM's System R experimental relational database

management system [Sclinger79]. The optimization methods for the INGRES relational database

system can also be viewed in this framework for most queries [Youseffi78]. We illustrate the

functioning of n-relation conventional optimizers with the System R optimizer. The discussion omits

some aspects of optimization that are specific to System R, such as the possible requirement to

present results in a specified sequence or grouping.

Processing a query that involves N relations is viewed as processing a sequence of queries that

involve two relations. ,. this view, a two-relation subqucry is processed to form a resulting composite

relation. This relation is processed with a third relation to form a new composite, and the sequence

continues until all relations in the original query have been brought in. In the actual processing, it is

not always necessary to form and store the complete composite relation bcfore the next relation is

brought in. Instead, when a composite tuple is formed from a two-relation query, it can be joined

with tuples from a third relation, and so forth. Intermediate composite relations are stored only if a

sorting operation is required in connection with the next two-relation processing step.

The extension from two-relation queries to N-relation queries outlined above has been termed

ileralive composition by Kim [Kim79]. The task of the general query optimizer based upon iterative
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composition of subqueries is twofold. First, it is necessary for the optimizcr to choose the order in
which the relations are to be brought in; that is, it must choose the sequence of two-relation

subquerics. Second, the optimizer must choose a method to carry out each subquery.

The sequence of subqueries is important in determining the overall cost, even though the size of

the result is the same regardless of the processing sequence. For a query that involves N relations,

there are N factorial permutations of the processing sequence. However, the method to bring in the

K+ Ith relation is independent of the way the first K relations are processed. The search of
sequences can therefore operate efficiently by finding good sequences for successively larger subsets

of the relations in the query. The System R optimizer uses another heuristic to reduce the number of

permutations it considers: a relation is considered as the next one to be brought in only if it is

involved in a join with one that has already been processed.

The System R optimizer grows a processing search tree by iteration on the number of relations
involved so far. First, the best method is found to scan each relation. Next, the best way is found to

involve the first relation in a two-relation query with a second relation. This continues until all

relations are involved. Unpromising paths of the search tree are pruned on the basis of the heuristics

described above and on the basis of estimated processing costs for the partially worked out queries.

An important source of information for the optimizer is the estimated selectivii' of the query
restrictions, the only place in the optimizer where semantic information is used. The selectivity of a

0 restriction on a relation is the fraction of tuples of the relation that satisfy the restriction. Both the

cost formulas for certain scans and the formulas for combined methods use the fraction of tuples that

meet the restrictions imposed by the query. To estimate selectivity, the optimizer uses information
about the range of values for attributes, if that information is available. It makes the simple

assumption that the values for any attribute are uniformly distributed within the legal range and that

the distribution of values is known with sufficiently fine granularity. This assumption enables
estimates to be made with limited statistics on database values. Youseffi [Youseffi781 has looked into

the issue of how additional statistics can improve the estimates, but the simple System R methods
appear to work fairly well [AstrahangOal. In the absence of value range statistics, the System R

optimizer makes arbitrary although intuitively plausible estimates.

2.5 Generalizations about query proce.r ,ing

In dais section, we review some general conclusions about relational query processing that can be

drawn from the kind of research described above. As we shall see, these general conclusions p!ay an

important role in the design of an effective semantic query optimization system.

The net result of conventional query optimization research is an appreciation of how the

relationship between the constraints specified by a query and the data structures comprising the

database affect the cost of processing. In many cases, this knowledge is represented in the choice of
relevant system parameters and in the cost formulas based upon them. Occasionally, though, the

knowledge is expressed as general statements about the interaction of queries and structures.
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A key factor in the cost of processing a query is the physical clustering of logically related items,
what Wiedcrhold [Wiederhold77l refers to as the binding of the data semantics. While this seems

intuitively obvious, the studies of Blas.'en and Eswaren demonstrate the degree of its importance, and

they relate it to specific kinds of queries and specific structures in the storage model. The role of

clustered indexes is highlighted. As the System R experimcnts [Astrahan80a confiim, the case of an
equality predicate on an indexed but nonclustered attribute is about tie only case in which a

nonclustercd index scan is preferred over a clustered one. In general, a query whose constraints

permit the exploitation of clustered access paths, whether indexes or links, can be answered much

more efficiently than a query whose constraints do not permit those paths to be exploited.

Conventional query optimization pays attention to avoiding catastrophically bad processing
methods. The classic example of a bad processing method is processing a join as a Cartesian product

followed by a restriction. In one of the rare glimpses into tie explicit reasoning of experts in query
processing, Youseffi and Wong [Youssefi79] discuss the formulation of processing strategies based on
this consideration. They note that, intuitively, the processing cost for a one-variable query is linear in
the size of the relation, while the cosi for a two-variable query increases faster than linearly in the
sum of the relation sizes. This line of reasoning suggests to them that it is nearly always advantageous
to restrict the individual relations prior to checking the join condition, that is, prior to accessing andIconsidering the relations together. An exception occurs when one of the relations is physically
clustered with respect to the join condition. Other factors to be considered are the sizes of the
relations and whether the relations are in the target list. In any event, it is generally true that the

stronger the restrictions that can be applied to the individual relations prior to carrying out the join,

the less expensive is the overall process.

This discussion is indicative of the body of expertise about query processing that has emerged from
research on query optimization. To restate the main idea, the cost of processing depends on the
relationship between the constraints specified by a query and the data structures implicated by the

query. Specifically, with respect to the fundamental operations discussed in this chapter, Figure 2-3
indicates some representative generalizations:

In Chapter 4, we shall see how such generalizations are used to control the way semantic

knowledge is used in semantic query optimization. Before that, however. Chapter 3 discusses the

shortcomings of conventional query optimization and describes the new approach of semantic query

optimization.
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* GI. A rcstriction on an attribute that is not indexed leads to an expensivc scan.

* G2. A rcstriction (other than an equality prcdicatc) on an indexed attribute where the
index is not a physically clustering index leads to an expensive scari.

* G3. A restriction on a physically clustering index can be processed efficiently.

* G4. The cost ofjoins generally dominates the overall cost of processing.

o G5. A join between two large and weakly restricted relations is very expensive.

* G6. The cost of a join decreases substantially as the strength of restrictions on the joined
relations increases, except on a relation which is clustered with respect to the join term
(and is therefore likely to be the "inner" relation of the join method).

Figure 2-3: Generalizations about query processing
!I
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Chapter 3
Semantic Query Optimization

In this chapter, we present the formal basis for semantic query optimization in relational databases.

* We begin in Section 3.1 by reviewing the limitations of conventional query optimization that

motivate the development of our new method. In Section 3.2 we look informally at the notion of the

semantic equivalence of two database queries that is at the heart of semantic query optimization.

Semantic equivalence is defined in terms of semantically meaningful states of the database. This in

turn is intimately bound up with with the semantic integrity constraints associated with the database.

We formally define semantic integrity constraints for relational databases in Section 3.3. In SectionI3.4, we show informally how one query can be transformed into a semantically equivalent one using a

semantic integrity constraint. Section 3.5 synthesizes the preceding sections into a foimal definition

of relational database query transformations that preserve semantic equivalence. Finally, Section 3.6

discusses additional logical equivalence transformations that can be used in conjunction with

semantic equivalence transformations to reduce the cost of processing a query.

3.1 The limits of conventional query optimization

Conventional query optimization research has identified a set of problems, has produced useful

models of data storage and file operations, has yielded insights into the factors that influence the cost

of query processing, and has in general lent support to the belief that high level query languages can

be used with acceptable efficiency.

The difficulty with conventional query optimization remains the lack of correspondence between

the logical reldionships referenced in a query and the physical relationships of the data that represei

them. One can view the manipulations of a conventional query optimizer as a hunt for opportunities,

for those parts of the query in which the logical structure corresponds well to the supporting physical

structure. For instance, the presence of indexes on the joining attributes f3r two files in a multifile

query is likely to make that join a candidate for processing before other joins. The logical/physical

correspondences are exploited to reduce as much as possible the size of the data structures that must

be handled without suitable physical support.

To maintain physical support for all logical relationships is not possible, however. The costs to

maintain that support as the database evolves are too great. In simplest terms, if a query involves a

IMlMMO PAWl x6W.or naM
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large amount of data in logical relationships that are not well structured in the physical database, then
the query can't be processed efficiently. Examples o,' poor correspondence are easy to imagine. A

constraint on an unindcxed attribute of a relation forces a sequential scan. A join between two files

for which suitable indexes or links do not exist forces a cross matching process which is almost always
very expensive.

Conventional query optimization is limited to treating the logical restrictions of the query as fixed.

If the query restrictions cannot be processed efficiently, nothing can be done.

3.2 The semantic equivalence of queries

We now begin the formal description of semantic query optimization, developed as a response to

the limitations we have just described. The key idea is that the given query restrictions are not
regarded as fixed, but as perhaps only one of several equivalent ways to pose the same question. We

said in Section 3.1 that conventional query optimization is a hunt for opportunities. The goal of
semantic query optimization is to create new search spaces in which to hunt for such opportunities.FThe heart of semantic query optimization is the process of transforming a query into a semantically

equivalent one. Two queries are considered to be semantically equivalent if they result in the same
answer in any state of the database that conforms to the semantic integrity constraints (see Section
1.2.4).

Semantic equivalence is not the same as logical equivalence. Two queries are logically equivalent if
the qualifications of one can be transformed into the qualifications of the other by the application of

standard logical equivalences such as De Morgan's Laws. Another way to put this is that two queries
are logically equivalent if they produce the same answer in any database whatsoever in which the

queries are well-defined. For instance, the query "list the names of all employees who are not both

unmarried and over forty years old" is logically equivalent to the query "list the names of all
employees who are either married or arc not over forty years old."

Logically equivalent queries are obviously semantically equivalent, but semantically equivalent

queries need not be logically equivalent. That is, two semantically equivalent queries might yield

different answers when posed to the database in a state where some semantic integrity constraint is

violated.

For example, suppose there is a semantic integrity constraint to the ef'ect that the company has no
employee under the age of eighteen. If the database conforms to this condition, then the query "list

the names of all employees between the ages of fifteen and twenty" is semantically equivalent to the
query "list the names of all employees between the ages of eighteen and twenty." The answers will be

the same because the enforcement of the scmantic integrity constraint guarantees that there is no item

in the database corresponding to an employee between the ag, s of fifteen and eighteen. However, if

a violation of the constraint is permitted and data is entered on an employee whose age is recorded as
sixteen years old, then the two queries will not produce the same answer.

i
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Another way to look at the difference between logical equivalence and semantic equivalence is that

semantic equivalence is measured against a particular set of semantic integrity rules. For instance, if

the rule requiring employees to be at least eighteen is changed so that employees must be at least

seventeen instead, then the two queries just discussed are no longer semantically equivalent. The first

query may return some seventeen year olds but the second one cannot, By constrast, logical

equivalence is unaffected by changes in the semantic integrity constraints.

We also wish to distinguish semantic equivalence from coincidental equivalence in a particular

state of the database. Semantically equivalent queries must produce the same answer in all permitted

states of the database. A simple example illustrates what we mean by coincidental equivalence.

Suppose the company happens to have one employee named "Fred Smith" and that he happens to

* be the only employee who is 47 years old. Then the queries "What is the employee number of each

employee named Fred Smith?" and "What is the employee number of each employee who is 47 years

old?" give the same answer. However, it is easy to imagine a situation in which the two questions do

not give the same answer. For instance, nothing prevents the company from hiring another 47 year

old employee whose name is not "Fred Smith". If the company does hire another 47 year old, then

the two questions do not have the same answer.

3.3 Semantic integrity constraints

The foregoing discussion of semantic equivalence underscores the point that:

The basis of semantic equivalence independent of logical equivalence and independent of
changes in state is the eaforcement of the semantic integrity of the database

Thc notion of the semantic integrity of a database is understood with respect to the relationship of

the database to some real world application. Every allowable state of the database is supposed to be a

valid "snapshot" of aspects of the application. If the database contains values that cannot be attained

in the real world application, then there is said to be a violation of the semantic integrity of the

database.

We now formally develop the notion of semantic integ..ty constraints for relational databases. In

so doing, we are also preparing the groundwork for a formal discussion of relational database queries

*b and semantic equivalence transformations.

Our point of view is a standard one in research analyzing databases in terms of formal logic (see,

for instance, [Gallaire781}. The descriptors of relations and queries are just those of the relational

calculus that we discussed in Section 2.2. A relational database is considered to be made up of two

*I parts: an extensional database (EDB), and an intensional database (1DB).

The EI)B is the set of elementary assertions or tuples contained in the relations in any particular

state of the database. For instance, any of the tuples in our example in Section 2.1, such as
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("Bralanta" "Braathan. "Tanker" 285 17 154)

is part of the EDB.

The IDB is a set of general laws expressed as closed well-formed formulas in the first-ordef

predicate calculus. The general laws, as the name implies, apply more broadly than the elementary

assertions. An example of a general law that applies to all the tuples in a single relation is a rule that
all ships over 190 thousand tons deadweight (size) are supertankers. This can be expressed as

Vx/sHIPs(x.Deadweight> 190) - (x.Shiptype = "supertanker")..

As noted above, this general rule is expressed as a closed well-formed formula in a typed first-order
predicate calculus. The variable x ranges over tuples of the SHIPS relation. The expression
"x.Deadweight" signifies the value for the Deadweight attribute of the tuple to which x is bound.

Other general laws may involve more than one relation. Suppose there is a CARGOES relation

that includes Ship and Quantity attributes. Then we can express the rule that a ship cannot carry a

greater quantity of cargo than the ship's capacity as follows:

Vx/ SHIPS VY/CARGOES (x.Shipname = y.Ship) --+ (y.Quantity s x.Capacity)

I Intuitively, most general laws involve universal quantification over relations. However, it is also
possible to express an existential law, such as the rule that there is at least one supertanker:

:x/slt1PS (x.Shiptype = "supertanker").

Why divide the database into extensional and intensional parts? The reason is the following
essential relationship between EDB and IDB:

The elementary assertions or tuples of the EDB are considered to define an interpretationt
ofa first order theory whose proper (nonlogical) axioms are the general laws of the 1DB.

From the perspective of semantic query optimization, the importance of general laws stems from

their use as integrity rules. In terms of a first-order theory and its interpretation, every operation on
the database such as adding, deleting, or changing elementary assertion, amounts to a change in

interpretation. In these terms, we have the following definition:

Semantic integrity is enforced if and ony if the only changes permitted to the database are
those that leave 1he elementary assertions of the EDB as a imodel (and not merely an
interpretation) of the semantic integrity rules of the IDB.

In other words, the enforcement of semantic integrity prevents the database from entering a state in
which any of the closed well-formed formulas of the integrity rules evaluates to false.

IScc [Nicolas78a.

. . .... ,1 . "L ., ..... " . ..
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3.4 Query transformations that preserve semantic equivalence

Our motivation in inveqidgatng semantic integrity constraints is to sre how to transform a query

into a semantically equivalent query. The significance of integrity rules for this purpose becomes

apparent if we consider the notion of satisfiability. Specifically, suppose we drop the universal

quantifier from the first general rule above. The result is an open formula in which the previously

quantificd variable now appears free. The open formula can be put in the form of a query, similar to

the form that appears in [Pirotte78]:

Qi: {x/s, IPS I (x.Dcadwcight > 190) - (x.Shiptype = "supertanker")}.

The answer to this query is a set of tuples from the SHIPS relation, namely the set of tuples that

corresponds to ships whose deadweight is less than 190 or which are supertankers. For convenience,

we omit any indication of which attributes of x should be returned.

The items in the answer set for this query arc those tuples in the SHIPS relation which, when

substituted for x in the formula, make the formula true.

The significant observation is that by enforcing the original integrity constraint, we require that

every tuple in SHIPS make the formula true. Hence, the open formula is satisfied by the entire
SHIPS rclation. That is to say, according to the rule, every ship either has a deadweight of less than

190 or is a supertanker.

Consider any other query that requests the set of tuples from SHIPS that satisfy some qualification

Q. Let T be the set of qualifying tuples. The set T is clearly a subset of the set of all tuples in SHIPS.

But all tuples in SHIPS satisfy the integrity constraint qualification Qi, so in particular, the tuples in T

satisfy it also. That is, no tuple of T satisfies the qualification Q but does not satisfy the qualification

Q . Therefore, we can replace qualification Q by the conjunction of Q and Qi, and the answer set T

remains the same. The query with this new qualification is semantically equivalent to the original

query with qualification Q.

For example, suppose we start with a query that requests all ships with a draft greater than 20

meters. We express this as:

{X/sllips I (x.Draft > 20)}.

We can drop the universal quantifier from the :integrity constraint and obtain the following

semantically equivalent query:

(XII/s1IIS I (x.Draft > 20) A ((x.Dcadwcight> 190) -- (x.Shiptype = "supertanker"))}

This new query doesn't make much sense as it stands. It asks for those ships whose draft exceeds 20

meters and which, if they have a deadweight over 190, also have a shiptype of "supertanker".

Nevertheless, this query yields the same answer as the original one. Now suppose we had started

with a query that requests all ships with a deadweight of over 190 thousand tons:

{X/s 111 S I (x.Dcadweight > 190)}.

We apply the same transformation to this query to obtain:
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{X/sllip s  (x.Dcadwcight > 190) A ((x.Deadweight > 190) (x.Shiptype = "supertanker")))

The transformation based upon integrity semantics has been completed, but we can now use the

logical axioms of first-order logic to transform this query further. In particular, we use the

equivalence expressed in the axiom schema:

(A A (A -, B)) =- (A A B)

for any terms A and B to transform the query into the simpler, equivalent form:

{x/sIII s I (x.Deadweight > 190) A (x.Shiptype = "supertanker")}.

This is indeed an interesting result. We started with a constraint on the deadweight of ships, and

found that we could add a constraint on their shiptype. If the Shiptype attribute is indexed, the new

query may be much less expensive to process. The transformation corresponds to our intuition in this

case, as it should. The integrity constraint we used says that all ships with deadweight over 190

thousand tons are supertankers. The end result looks like a simple application of modus ponens, but

it is more than this; it is a transformation that depends on properties of the database when viewed as

a model of the integrity constraints.

3.5 Formal definition of semantic equivalence transformations

We now develop a general, formal definition of the type of transformation illustrated by the

foregoing example. The idea behind the definition is also seen in the example. The transformation

should permit us to combine an integrity constraint and a query in such a way that the meaning of the

query is not changed and so that terms can be further combined by the application of logical

equivalences. Our discussion has three parts: transformation of a well-fonmed formula (wff) of the

typed predicate calculus by means of merging with a second wff; conditions under which the new wff

is semantically equivalent to the transformed wff: and the application of this type of transformation

to qucries and semantic integrity constraints in the relational calculus.

3.5.1 Merging of well-formed formulas

Consider two wffs, X and Y, of a typed, first-order predicate calculus. Suppose that X has the free

variables (x, x2 ..... xn) and that Y has the free variables (y,, y2 . .. , y.). Each variable xi and y, is

typed, that is, it ranges over a specified domain. We can write X and Y in terms of predicates P and Q
as follows:

X = P(x1, x2. . x)

Y = Q(Yir Y2we Yh) r

Under these circumstances, we have the following condition for merging X and Y:
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Formula Y can be merged into fonnula X if and only if the variables (yr....y,) can be put
into one-to-one correspondence with a subset of the variables (xr..,x) so that corresponding
variables range over the same domain. If this condition holds, then formulas X and Y are
said to be ,nerge-compatible.

Let xi be the variable in X that corresponds to variable yj in Y (x is not necessarily the same

variable as x.). Then Y can be rewritten as:

Y = Q(x*, x".... X"

We now take the conjunction Z of X and Y:

z = P(xr x2. . x.) A Q(x . .....

But the variables (xi, x' ..., xf) are a (possibly rearranged) sublist of the variables (X1, x2 . x), so

we can write Zjust in terms of the latter variables:

Z = P(xl x2 ..... Xn).

We say that the formula Z is the transfonnation of the formula X when merged with the formula

Y.

3.5.2 Semantic equivalence of transformed formulas

Let us assume that each variable x, ranges over some domain of values D. Let us further assume

that there is some set I of permitted interpretations of the the variables (x1.... x), where an

interpretation is an assignment of a value from domain D, to the corresponding variable xi, for all i

from I through n. The set I is a subset of the Cartesian product of the domains, denoted by D = D1 x

D2 x ... x D n.Under these assumptions, we have the following definition:

Two well-formed formulas F1 and F2 over free variables (xr.... x,) are semantically
equialent with respect to the permitted interpretations if and onl) if 1ll and F2 have the
same tnah value in ever), permitted interpretation.

Note in particular that it is not necessary for F1 and F2 to have the same truth value for possible

interpretations in D that are not in the subset I of permitted interpretations (as they would have to be

6 if they were logically equivalent). We expect that D is reduced to I by means of semantic integrity

constraints.

The original wffX and the transformed wff Z of Section 3.5.1 range over the same set of variables.

Under what conditions are they semantically equivalent according to the definition just given?

0 Formula Z is the conjunction of formulas X and Y. It is clear, therefore, that Z is semantically

equivalent to X if and only if the formula Y is true under all permitted interpretations of the

variables. Now, Y is defined only in terms of the variables (y j.....ym), a subset of the variables

(xl,...x,). Hence, every interpretation of(xi,...,x) includes an interpretation of(y 1 _....ym). Therefore,

.J
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The conjunction of Iwo inerge-con-paible fonnulas X and Y is senantically equ-valent to
fornula X. if and only if formula Y is true in all permitted interpretations of its variables
6'r'Ym)" For our purposes. we call this the validity requirement.

There is one more important point to consider. Suppose X is actually the quantifier-free matrix of

a quantified well-formed formula FX. Some or all of X's variables will then be bound and not free.

Call the bound variables b and the free variables f. Then F can be written as

Fx: (Q1b1)(Q2b2) ... (Qbh) X, or

FX: (Qlb1)(Q2b2) ... (Qhbh) P(bj,...,bh,f .

where each (Qib1 ) is either of the two quantifier expressions Vbi and 3bi. It is clear, however, that the

quantified well-formed formula Fz formed by substituting Z for X in FX has the same truth value as

F1 for all permitted assignments of values to the free variables f1 through fg.

3.5.3 Transformation of a query using a semantic integrity constraint

We now connect the discussion with our central interest in queries and semantic knowledge. Here,

the role of the formula to be transformed, F is assumed by a database query. The role of the

merging formula Y is played by a semantic integrity constraint. The resulting formula F is the new
z

semantically equivalent query.

We draw upon the view of a database in terms of relational calculus, described in Section 3.3. Let

P(b1 .... bM,f1 . ... f) be a well-formed formula of the tuple relational calculus [Piotte78] with free

variables b through bm and f1 through f . Every variable is understood to range over the tuples of a

single relation. As before, let (Qb) be either of the two quantifier expressions Vb and 3b. Then any

query can be expressed in the form:

Q: (Qjb1)(Q2b2) .. (Qmbm) Pq(b,.bm~ f..fn)'

Considering the query Q as a whole, variables bI through bm are bound, and variables fI through
f are free. There are two kinds of queries to consider. In a closed query, there are no free variables

(n = 0). The answer to a closed query is a yes/no answer, depending upon whether or not Q is true
with respect to the current interpretation, that is, the current contents of the extensional database

(EDB). If there are free variables (n > 0), then the query is an open query. The answer to an open

query is tie set of assignments to the free variables fI through fn that make Q true in the current

interpretation. lBecause variables range over the tuplcs of relations, the answer to an open query is a

set of n-tuples of relation tuples. An open query need not have any quantifier expressions' it must

have free variables. In either case, provision must also be made to extract tuple attributes for

comparison or retrieval purposes.

As noted in Section 3.3, a semantic integrity constraint can be represented as a closed well-formed

formula of the relational calculus. Hence, we can express a constraint as:
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C: (QIcIXQ 2c2) ... (QkCk) P,(CV,...,ck)

where there are no free variables in C taken as a whole. Constraint C has the very important property

that it evaluates to "true" in all permitted states of the database; indeed, that is the definition of

semantic integrity enforcement.

As we stated above, we want to have query Q and constraint C play the roles of formulas F and Y

of Section 3.5.1, respectively. It is evident that a query Q is very much like the kind of formula Fx
given above. The only additional specification is that the variables range over the tuples of database

relations. However, the correspondence between a semantic integrity constraint C and the formula of
type Y is not so immediate. We must confront the fact that constraint C has no free variables as it

now stands, so it can't be merge compatible with ar ,ther formula.

We remedy the absence of free variables in C in such a way that we insure the validity requirement

stated in Section 3.5.2. Namely, we allow any universal quantifier in C's prefix to be dropped. If the
quantifier Vci is dropped, then C can now be expressed as the formula PC(C,), a formula with no prefix

and the single free variable ci. The resulting formula must be true in all permitted interpretations

(assignments of a value to variable c,). This is because the original universally quantified constraint

says precisely that the formula is true for all values of variable c..
A universal quantifier can be dropped wherever it appears in the prefix, even if it appears within

the scope of an existential quantifier. This can be seen from the logical theorem

(PREFP1 )(3x)(Vy)(PREF 2)P(z.,x,yz 2) - (PREF 1)(Vy)(3x)(PR F2)P(z5 ,.x,y,z 2)

where (PREF) and (PREF 2) stand for portions of the prefix. This means that a universal quantifier

can be "-moved left' outside the scope of an enclosing existential quantifier, hence outside the scope

of any existential quantifier.

We do not permit an existential quantifier to be dropped. To see why we impose this restriction,

consider w!,jt it would mean to do so. The variable bound by the quantifier would now be free.

Whdt tuples in the range of the variable would satisfy the resulting fornula? We have no way to tell.

All we know is that at least one tuple does satisfy the formula, but we cannot assert that the formula is

true for every such assignment.

It must b noted of course that the requirement of merge compatibility means that we can only

create free variables in the constraint for which there is a corresponding free variable in the matrix of

the query.

We now have a direct parallel to the process set forth in Sections 3.5.1 and 3.5.2. We summarile

the process for transforming a query into a semantically equivalent query as follows:

Let Q be a query expressed in the tuple relational calculus:

Q: (Qlbl)(Q2b2)... (Qmbm) Pq(b1 .....bmfi ... f),

where every variable is understood to range over the tuples of a single relation and (Qjb) is either of

the two quantifier expressions Vbiand 3bi.
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Let C be a semantic integrity constraint represented as a closed wcll-formed formula of the tuple

relational calculus:

C: (Qlel)(Q2c2) ... (Qkck) Pe(c . .,Ck)

where C has the property that it evaluates to true in all permitted states of the datibase. Let (ca., cW
c,) be a subset of the universally quantified variables of constraint C, and let P (ca, cb, ... ci) be the

well-formed formula produced by dropping the corresponding universal quantifiers. Then, if and
-only if the variables (ca, cb 9.c) can be put into one-to-one correspondence with a subset of the
variables (b,...,bmf 1,....) so that corresponding variables range over the same relation, it follows

that the query Qgiven by:
Q': (Qlbl)(Q2b2)...(Qmbm) Pq(bl,...,bmf...fn) A P(ca, cb.. i)

is semantically equivalent to query Q; that is, Q'gives the same answer as Q in every permitted state
of the database. For convenience, the newly transformed query can be written as:

Q': (Qlbl)(Q2b2) ... (Qmbm) P;(b,.bm~f 1 .fn)
where P' is the conjunction of P and Pc

q q I

3.6 Logical transformations in semantic query optimization

A semantically equivalent query formed according to tie preceding definitions may well be more

expensive to process than the original query. After all, the new query apparently involves more terms

than the original. However, various improvements in efficiency may arise by a further
transformation or simplification of the new expression, based upon the replacement of terms by

terms that are logically equivalent. 'T'he effect is that terms in the new qualification expression are

subject to cancellation or combination. Simplifications can be based upon such domain-independent

properties as transitivity of numerical comparators, along the lines suggested by Youseffi

[Youseffi78].

Of great importance are simplifications that involve semantic integrity constraints in the form of
implications. To see this, consider a constraint of the form

Vx P(x) - Q(x)

where the variable x ranges over some relation R. Suppose the matrix of some query Q contains the

term P(z) where the variable z ranges over the same relation as the variable x in the constraint.
According to the procedures outlined in ie preceding sections, we can transform Q into a

semantically equivalent query Q'whose matrix contains the conjunction:

PW') A (P(z) -- Q(z)).

However, by the logical equivalence

(A A (A -, B)) c t (A A B)

we can replace this conjunction by die simpler conjunction
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P(z) A Q(z).

'lie net effect is as if the original query condition P(z) were used to infer the new condition Q(z)

by means of the semantic integrity constraint. Similarly, if the original qaery contains the term -'Q(y)
where the variable y ranges over relation R, then by the equivalence

(-B A (A - B)) - (-B A -'A)

this term can be replaced by the conjunction -Q(y) A -'P(y). Indeed, if the original query actually

contains the conjunction P(z) A Q(z), z ranging over relation R, then by using the logical equivalence

(A A B A (A -- B))= A

* we can replace this conjunction by the simple condition P(z). In other words, the condition Q(z) has

been shown to be derivable from P(z), hence it is superfluous and may be dropped from the query.

This concludes our general discussion of the formal basis for semantic query optimization. In the

next chapter, we describe the QUIST system, in which these ideas have been implemented and

tested.I
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Chapter 4
The QUIST system

In Chapter 3, we presented the formal basis for the transformation of one relational database query

9 into another semantically equivalent query. This semantic equivalence transformation is at the heart

of semantic query optimization. In this chapter, we take up the issue of creating an effective semantic
query optimization system, and we describe the operation of QUIST, an implemented semantic

query optimization system.

In Section 4.1, we discuss the factors that influence the effectiveness of a semantic query

optimization system, particularly the choice of what semantic knowledge should ever be considered

for semantic query optimization, and the way that structural and processing knowledge is used to

control the semantic transformation of queries. We begin the description of QUIST in Section 4.2,

noting the class of queries it handles and the types of semantic rules it uses. In Section 4.3 we present

an overview of system operation. We indicate that QUIST operates in a plan-generate-test mode in

which the problem of query optimization is addressed at different levels of abstraction. Finally, in

Section 4.4 we discuss the actions of the system in great detail by means of an example. We show

how the generalizations about processing queries to relational databases discussed in Chapter 2 are

incorporated in specific heuristics. We show specifically how the heuristics are used to control which

knowledge base rules are used for query transformations, and we relate the heuristics in general to

particular types of transformations of relational database queries.

4.1 The design of an effective semantic query optimization system

A quecry optimization strategy based upon semantic equivalence transformations presents bot.

opportunities and dangers. The opportunities lie in the possibility of eliminating unneeded

operations, or replacing or modifying operations with more efficient ones. The dangers arise from

what may be a large store of semantic integrity constraints. Any query might possibly be transformed

by any combination of those constraints. If not controlled in some way, the process of generating

transformations of the query can be very expensive.

There are two ways to bring the process under control: by restricting what semantic integrity

constraints will ever be considered for query transformation, and by using knowledge of database

structure and processing to guide the transformation of any particular query.

... . .... . . .. .... . ..... . ..
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4.1.1 Choosing semantic knowledge

The kinds of knowledge that are most useful for semantic query optimization depend primarily on

two factors: tie kinds of queries that are to be handled, and the physical organization of the data.

The most common kinds of queries involve access between entities and their attributes. A typical

query may be "'What is the length of the Totor?" in which an entity's name (or identifier) is given and

some attributes are sought. The direction of access is reversed in a query like "What are the names of

the French ships over 300 feet long." in which constraints are specified on the values of attributes

and the retrieval of entity identifiers is sought. Both directions of access arc combined in a quen

such as "List the draft of French ships" where a set of entities is specified by means of constraints on

one set of attributes, and retrieval of another set of attributes is sought. When the query involves

relationships and not just objects, access between entities and attributes is still crucial. For instance,

in the query "Which Italian ships are commanded by admirals?" the set of ship captains who are

considered as commanders is confined to those whose rank (an attribute) meets a specified constraint.

The importance and frequency of these queries is reflected in the physical organization of

databases, the second major factor that influences what semantics should enter into semantic query

optimization. A prime objective of semantic query optimization is to produce useful constraints. As

pointed out in Chapter 2, the physical structure of a relational database is typically organized into

records and fields that correspond to entities and attributes. In anticipation of queries with

constraints on attributes, indexes are stored that contain pointers to physical locations of records

(entities) with particular values in certain fields (attributes). Constraints on indexed attributes

obviously are useful, as are constraints on attributes of entities that have links to other entities.

In consideration of both the common kinds of queries and the typical physical organization of

databases, it is evident that constraints on the attributes of entities are of utmost importance. The
kind of semantic rules that are most useful are rules that relate constraints on attributes expressed in

queries with constraints that are usef1l in the sense just described.

This observation leads to the view of semantic query optimization as a movement of constraints

among different parts of the database. One kind of semantic rule that directly supports the

movement of constraints is what Kent [Kent78] calls general restrictions on relationships. These are

constraints on the part;-ipants in relationships that are more specific than simply designating their

entity type. They relate properties or attributes of one participant with properties or attributes of

another. One such kind states

C1 0C2

where Cl and C2 are simple restrictions on attributes and 0 is a Boolean comparator such as less-than

or greater-than. For example, there may be a relationship between a consignment of cargo and the

insurance policy that covers it, to the effect that the amount of the policy does not exceed the value of

the consignment. In this case, there is a relationship between the amount attribute of the policy and

the value attribute of the consignment. Another kind of rule that restricts relationships states
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Cl -- C2

for constraints C1 and C2. For instance, we may know that only leasing companies own ships with a

deadweight (size) over some amount. That is, given a certain constraint on a ship's deadweight,
another constraint can be inferred on the type of business of the company that owns the ship.

4.1.2 Controlling transformations with structural and processing knowledge

There is no guarantee that any semantic equivalence transformation leads to a lower cost query.

Indeed, a competent database administrator chooses database file structures that support efficient

access to frequently referenced data. Thus, assuming that a conventional query optimizer is used, it is
reasonable to expect that many queries can be answered efficiently in the form in which they are

posed.

Therefore, an effective semantic query optimization system must determine whether to seek cost
reductions via semantic transformations. If it does, it must confine its efforts as much as possible to

the transformations that are most likely to result in lower cost queries. It should not undertake costly

efforts only to find that a reasonably efficient query cannot be hiproved further.

As we discussed in Chapter 3, the ability to carry out semantic equivalence transformations rests on

the semantic knowledge about the database. As we shall see in this chapter, the ability to control the

semantic query optimization system depends upon knowledge about what transformations are likely
to yield a lower cost query. This ability rests in turn upon two kinds of kn6wledge: knowledge of the

physical file organization of the database, and knowledge of the available retrieval processes,

particularly in terms of how various aspects of those processes influence their cost.

In Chapter 2 we indicated that one of the main results of conventional query optimization is the
identification of standard file structures and an appreciation of the factors that contribute to the cost
of query processing. We can see how this intcracts with judging the potential usefulness of a

semantic transformation. Consider the query "What ships arc carrying iron ore?" posed to a database

that lists information about ships and their current cargoes. Three kinds of information can be
brought to bear to decide the usefulness of semantic transformations in this case.

* Knowledge of processing cost factors. Two way- to extract qualifying tuples from a
relation are to perform a sequential segment scan and to perform a scan by way of a
clustered index. The latter method is usually much less expensive. This means that the
presence of a restriction on a clustered index attribute significantly lowers the cost of this
kind of process.

" Knowledge of file structures. In this case, let us assume that there is a SHIPS relation
stored as one file, and that the file has a clustered index on the Shiptype attribute.

" Knowledge about the semantics of the database. Let us assume that there is a semantic
integrity constraint to the effect that the only type of ship capable of carrying iron ore is a
bulk ore carrier. That is, no tuple can exist in the SHIPS relation for which the Cargo
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field has ie value "iron ore" and the Shiptype field has some value other than "bulk ore
carrier".

From the knowledge of processing cost factors, an effective semantic query optimization systerrL
should rate as potentially useful any transformation that starts with a query that must be processed by

a segment scan and that results in a query that can be processed by an indexed scan. From the

knowledge of file structures, the system should determine for this query that there is a potential

opportunity to make this kind of transformation. What is needed is a semantic constraint that relates

the values of the Shiptype and Cargo attributes. The knowledge of the semantics of the database

gives such a constraint in this case. The query can be transformed into "What bulk ore caniers are

carrying iron ore?" The cost to process this query should be compared to the cost of the original

query to select the one to be posed to the database.

This example suggests how the flow of information and control can be organized in an effective

semantic query optimization system. The system analyzes the query with respect to processing

methods and file structures. The analysis identifies potentially useful transformations specialized to

the context of the current query. That is, they are expressed in terms of relations or attributes that are

involved in the query. If potentially useful transformations are identified, the system retrievesI appropriate semantic constraints using the specialized descriptions. The system then carries out

semantic equivalence transfornations and simplifications with those constraints. Finally, the system

evaluates the efficiency of the resuiting queries and selects for processing the one with lowest

estimated cost.

4.2 Introduction to the QUIST system

The QUIST systcm (QUery Improvement through Semantic Transformation) is a program that has

been implemented to explore the design and operation of an effective semantic query optimization

system in the context of an important class of relational database queries. The system demonstrates

the ability to transform queries by reasoning about the semantics of the database. It shows that it is

possible for a semantic query optimization system to achieve significant improvements in query

processing efficiency that are unattainable by conventional methods. It also shows that a semantic
query optimi7ation system can run with acceptable overhead compared to the overall cost of

processing queries. In doing so, QUIST demonstrates the use of specific inference guiding heuristics

based on structure and processing expertise originating in conventional query optimization research.

In this section, we describe the class of queries for which QUIST can attempt semantic query

optimization. We also indicate the kinds of semantic integrity rules that QUIST can use for this

purpose. The choice of the kinds of semantic knowledge used by QUIST follows the ideas set forth

in Section 4.1. We take up the other issue of Section 4.1. the control of semantic transformations by

means of structural and processing knowledge, later in this chapter.
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4.2.1 The class of queries handled by QUIST

The QUIST query language is a query language for relational dtabascs. It is in a class of
languages that can be termed auribule/consiraint languages. This choice reflects the importance of

constraints on attributes as described in Section 4.1. Indeed, the entire QUIST system is designed
from the point of view that the most useful semantic transformations in relational queries can be seen

as the addition, deletion, or modification of constraints on database attributes.

Attribute/constraint languages are particularly simple, hence somewhat limited, yet have been
shown to admit a significant subset of restrict-join-project relational queries (see Section 2.3). Two

examples of attribute/constraint query languages are the IDA language developed by Sagalowicz at
SRI International [Sagalowicz77] and the APPLE language developed by Carison and Kaplan at
Northwestern University [Carlson76]. The QUIST query language is modelled most closely on IDA.
In the context of the LADDER natural language database access system [Hendrix78], IDA has been
shown to admit a substantial and interesting class of queries.

* The essential distinguishing feature of an attribute/constraint language is that it presents a
relational database as if it contained just a single virtual relation, masking the real relations

underlying it. The point of this is to make the specification of relational database queries as simple as
possible. It buffers users and natural-language understanding programs from the need to know the
structure of the database and from any reorganization of the database that involves changes in the
association of attributes with relations.

The single virtual relation is formed from the real relations as follows. A subset of all the possible
joins between relations is specified such that at most one join is permitted between any two real
relations, and so that there exists one and only one logical path (sequence of joins) between any two
real relations. The set of joins is performed and duplicates are eliminated. The result is the virtual
relation. If the virtual relation is thought of as a graph whose nodes are the real relations and whose

edges are joins between real relations, then the virtual relation is a tree structure of real relations.
Any query to the database involves a subtree of this virtual relation.

The virtual relation makes possible a great simplification in the specification of restrict-join-project

queries: joins are made implicit because they have already been specified in the definition of the
virtual relation That means that an attribute/constraint query is specified solely in terms of

restrictions and projections. In other words, an attribute/constraint query consists of boolean
combinations of simple constraints on attributes, plus a list of attributes whose values are desired,
Significantly. tuple variables need no longer be used in the query, because there is only one (virtual)
relation.

The cost of this simplification is a set of limitations on the general relational model. For one thing,

attribute names must be unique throughout all relations because tuple variables are no longer
available to distinguish them. For another, no join is permitted other than those prespecified through
the definition of the virtual relation. The latter limitation implies that a relation can only be involved

II
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once in a query (for instance, it cannot be joined to itself). With respect to the concepts represented
in tie database, this means that it is possible to represent only one kind of relationship between any
two classes of entities represented as relations. Moore discusses some of these limitations in
[Moore79]. Nevertheless, as indicated above, attribute/constraint languages permit the expression oT
an important and useful range of queries.

The level of abstraction presented by an attribute/constraint query language is illustrated by an

example from IDA. Suppose a database contains two relations:

SHIP: (Shipname Shipclass Shiptype)

SHIPCLASS: (Class Type Length Draft)

where, for instance, Shipnamc is the name of a ship and Length is the length of any ship in a
particular ship class. Assume the choice is to permit SHIP and SHIPCLASS to:be joined on
Shipclass and Class, respectively.

A request for the names of all ships is merely a request to print all valucs of the Shipname
attribute. No constraints need to be specified. In IDA, this request is specified as (? Shipname). In
general, an expression of the form (? Attribute) returns the value of the specificd attribute. To
request the length of a ship whose name is "Totor", it is necessary to place a constraint on the
Shipname attribute and to request the value of the Length attribute. The IDA specification is:

(Shipname = "Totor") (? Length).

The two attributes arc on separate underlying relations, but IDA hides this from the user. The
IDA query processing system determines the logical access path between the two relations. It looks
up the prespecified join between SHIP and SHIPCLASS and, in effect, transforms the joinless form
of the query into one that includes the join term (SHIP.Shipclass = SHIPCLASS.Class).

The class of queries handled by QUIST is actually somewhat different from IDA's. The
qualification of a QUIST query is a conjunction of constraints on attributes, rather than a general
boolean combination of constraints. This limitation is compensated for by permitting the constraint
on each attribute to be, in effect, a disjunction of simple constraints. QUIST does not attempt to
perform semantic transformations on such questions as "What ships are registered in France or are
over 200 feet long?" where the disjunction involves constraints on more than one attribute. In this
case, the design decision was to avoid the added difficulties of inference with general disjunctions on
the grounds that many practical queries do not involve them and because of the low probability of
finding less expensive transformations of them.

As with IDA, QUIST queries can specify constraints onl numerical-valued attributes and
constraints on string-valued attributes. A numerical constraint is specified as the intervals in which

the attribute's value is permitted to fall. The complete constraint can be a disjunction of these
intervals. For instance, suppose a query constrains the Age attribute in a personnel database to be

greater than 20 and less than or equal to 25, or to be greater than or equal to 65 and less than 70. This
constraint is specified as

kLi
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(Age E ((20 25] [65 70))).

P This constraint is considered to be a disjunction of two intervals. QUIST checks that intervals do

not conflicL If the constraint on a numerical attribute is in fact a simple constraint. such as specifying

that Age is less than 65, then the preceding form can be abbreviated as

(Age < 65)

rather than, for instance, specifying an interval one of whose bounds is + co or -oo.

String-valued attributes can be constrained to be a member of some set of strings, or to be

excluded from some set of strings. For example, if Shiptype must be either "tanker" or "fishing", the

constraint is specified as:

(Shiptype E {"tanker" "fishing"}).

Another type of constraints for string-valued attributes is typified by the constraint that Shiptype

must be neither "bulk" nor "refrigerated":

(Shiptype V ("bulk" "refrigerated"}).

This is equivalent to a conjunction of simple inequality constraints. As with numerical constraints,

the notation for a simple constraint can be abbreviated, as for example:

(Shiptype = "supertanker")

to indicate that the Shiptype must be a supertanker.

The complete syntax of queries admitted by the QUIST system is given in Appendix A.

4.2.2 QUIST's semantic knowledge base

The QUIST system captures the important semantic integrity restrictions on attributes and

relationships described in Section 4.1. The single-relation view of the database makes it easy to

express these restrictions, subject to the limitation that only one kind of relationship can be
represented between any two kinds of entities. The restrictions are stored in a "conceptual schema"

or knowledge base where they are associated with the attributes they mention.

The simplest type of restriction is what McLeod [Mcl-eod76] refers to as domain definilion. This

type of restriction specifies the possible values of an attribute regardless of the values of any other

attributes, and regardless of any relationships involving the entity to which the attribute is associated.

For instance, if it is known that all ships in the database have a deadweight of between 20 thousand

tons and 450 thousand tons, regardless of their shipclass, their registry, the type of business of their

owner, or any other factor, then the knowledge base would associate with the Deadweight attribute

the restriction:

(Deadweight E ([20 450D).
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In terms of the more general first-order formulas described in Chapter 3, domain definition

restrictions are implicitly universally quantified over the (real) relation to which the restricted

attribute is associated. Thus, the example restriction corresponds to:

VX/SHIPS (x.Deadweight > 20) A (x.Deadweight s 450)

The other types of restrictions involve two or more attributes. Two kinds of multiattribute

restrictions are represented. One kind, called a bounding rule, asserts that the value of one attribute is

bounded by the value of another attribute. For example, the quantity of a cargo that can be carried

by a ship is bounded by the capacity of the ship. If there are two relations, CARGOES and SHIPS,

and the unique logical access path defined between them corresponds to a "carrying" relationship,

then the bounding rule can be represented simply as:

(Quantity s Capacity).

The corresponding form of this restriction in terms of a general first order formula is a universally

quantified expression in which the predefined logical access path between SHIPS and CARGOES is

made explicit.

Vx/ SHIPS VY/CARGOES (x.Shipname = y.Ship) --4 (y.Quandicy S x.Capacity)

The other type of multiattribute semantic restriction is called a production. A production is a rule

of the form:

CI(A1) A C2(A 2) A ... A Ck(Ak) - C'(A).

Every term in the rule is a constraint expression on an attribute. No attribute can appear more

than once on the left hand side. An example of a production is a rule that states that cargoes of

refined petroleum products are carried only by ships whose deadweight is under 60 thousand tons.

This rule involves the same "carrying" relationsh;9 and hence the same implicit join between

CARGOES and SHIPS as in the previous example. In this case, the rule is represented as:

(Cargotype = "refined") -- (Deadweight S 60)

where Deadweight is in units of thousands of tons. The production form used by QUIST is the Horn

clause form common in deductive databases [Nicolas78a].

As with bounding rules, the corresponding general first orde- formula is a universally quantified

expression with an explicit join term when attributes from more than one relation arc involved:

Vx/sllips VY/CARGOES (x.Shipname = y.Ship) A (y.Cargotype = "refined") --+ (x.Deadweight s 60)

The fact that the semantics of domain definitions, bounding rules, and productions can be expressed

as simply as in the foregoing examples is one of the motivations behind the choice of the QUIST data

model and language.
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4.3 Overview of the operation of the QUIST system

The QUIST system accepts a query in the QUIST relational database query language, produces a

set of semantically equivalent queries (possibly including only the original query), and returns the

query from that set with the lowest estimated retrieval cost. In this section, we present an overview of

how QUIST performs these tasks. We defer detailed descriptions until Section 4.4.

In Section 1.1, we indicated that QUISr's operates in a mode of plan, generate, and test that

appears in other artificial intelligence programs for* solving a wide range of problems

[Feigenbaum7l]. The purpose of the planning step is to identify both desirable and undesirable
characteristics of a solution to the given problem. These characteristics of a solution are used to

control the generation step in which candidate solutions are produced. Finally, the testing step

carries out detailed evaluation of the candidate solutions in order to select the one with highest merit.
Overall, the three steps are characterized by the degree of abstraction at which the problem is

addressed, and by the kind of search carried out.

4.3.1 The planning step -- identification of constraint targets

The planning step starts with the constraints specified in the input query. Using heuristics based

on structure and processing knowledge, the system determines which database relations, if any, are

constraint targets. A relation that is a constraint target is one that has attributes on which additional

constraints should be sought. Constraint targets are determined by viewing the query only in terms

of which relations it involves, either through constraints or through selection for output. The search
space is very simple, consisting merely of assignments of relations to the sets of targets and

nontargets. Incidentally, the concept of constraint targets should not be confused with the term

target list, commonly used to describe which attributes are to be output from the database. Instead of

target list, we use the term output attributes

If there are no constraint targets, QUIST merely returns the original query unchanged. In such a

0 case, QUIST has determined that it is not worthwhile to generate equivalent queries because no

equivalent query is likely to cost less to process than the original query. On the other hand, if there

are constraint targets then QUIST continues on to the generation of semantically equivalent queries.

I* 4.3.2 The generation step -- production of constraints and semantically equivalent
queries

The generation step consists of a cycle of constraint production operations repeated until no more

constraints are produced. Each cycle of constraint production retrieves relevant knowledge base

rules, filters them according to structurally-based criteria (that is, the list of constraint targets), tests

them for applicability against the current constraints, and asserts new constraints if possible. The
process terminates when some cycle fails to generate new constraints.
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The generation step treats the query less abstractly than the planning step does. It must use the

precise constraints on database attributes, not merely the names of constrained or outpua attributes.

The search at the generation level is through a space of semantically equivalent queries. Each move

consists of the production of another constraint. Only plausible moves are permitted because the"

constraint target list produced by the planning step permits only those those transformations that may

possibly lower the cost of processing.

4.3.3 The testing step -- selection of the query with lowest estimated cost

The generation step produces one or more QUIST queries that are known to produce the same

answer. In the testing step, each query is analyzed by conventional query optimization methods.
This yields an estimated lowest cost to perform each query. The query with the minimum estimated

lowest cost is determined.

At the testing level, the search is through a space of physical realizations of a single logically \

expressed query. The query itself must be analyzed in the greatest detail, in terms of the actual
database files it accesses and the sequence in which it accesses them.,

4.3.4 Summary of QUIST operations

In describing the detailed operation of the QUIST system, it is convenient to distinguish the three

steps just described plus the task of grouping inferred constraints into semantically equivalent

queries. To summarize the operations, then, the following steps take place:

1. Identification of constraint targets (the planning step)

2. Inference of new constraints (part of the generation step)

3. Grouping of constraints into the set of semantically equivalent queries (conclusion of the
generation step)

4. Estimation of the minimum processing time for each query and selection of the query
with the lowest est,!nated processing time (testing step)

We now present an example to illustrate these steps.

t"be problem is nonetheless abstracted in the sense that the actual query is not carried out. rather, the cost to perform it is
just estimated.
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4.4 Example of the operation of the QUIST system.

In this section, we begin an example of the operation of the QUIST system. The example brings

out the kinds of knowledge that semantic query optimization requires, and shows precisely how

QUIST integrates the different knowledge sources into an effective system. In particular, the

example is used to identify a set of heuristics that guide the inference of new constraints. These

heuristics are specific to relational databases as described in Chapter 2.

The example is specifically tailored to illustrate the special capabilities of semantic query

optimization. In particular, it involves both the addition and the elimination of relations from a

query. The example also illustrates how structural knowledge is used to halt a particular line of

9 constraint generation when the constraints appear to offer no hope of reducing the cost of query

processing.

QUIST's operation is illustrated using the relational database illustrated in Figure 4-1:

SHIPS (Shipname Owner Shiptype Draft Deadweight Capacity Registry)

PORTS (Portnamc Country Depth Facilitytype)

CARGOES (Ship Destination Shipper Cargotype Quantity Dollarvalue Insurance)

OWNERS (Ownername Location Assets Business)

POLICIES (Policy Issuer Coverage)

INSURERS (Insurer Insurercountry Capitalization)

Figure 4-1: Example database relations

QUIST operates with an attributc/constraint data model. Specifically, it treats the database as a
single virtual relation. It is therefore necessary to specify the unique logical access paths among the

real relations. The joins that underlie the permitted logical access paths are:

1. OWNERS.Ownername = SHIPS.Owner

2. SHIPS.Shipname = CARGOES.Ship

3. CARGOFS.Dcstination = POR'l'S.Portname

4. CARGOES.Insurance = POLICIES.Policy

5. POLICIES.Issuer = INSURERS.Insurer

which stand for, respectively,

I
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1. A ship and its owncr

2. A ship and a cargo it is carrying

3. A cargo and its destination port

4. A cargo and the policy that insures it

5. A policy and its issuing company

The database is assumed to be implemented by means of one file per relation. It is further

assumed that the SHIPS file has a clustering index on its OWNER attribute. This means that the

SHIPS file is clustered with respect to the OWNERS file; given a tuplc in the OWNERS file, the

corresponding tuples in the SHIPS file (that is, the ships owned by that owner) can be accessed much

less expensively than by a sequential search of SHIPS. In addition, the OWNERS file is much

smaller than the SHIPS file.

A very simple knowledge base of general semantic rules accompanies the database in this example.

We don't wish to claim the validity of all these rules: they are merely useful illustrations of the kinds

of rules that can be used for semantic query optimization. The rules are:

" Rule R1. Every ship over 350 thousand tons deadweight can operate only at ports with
offshore load/discharge capabilities.

* Rule R2. Only leasing companies own vessels that exceed 300 thousand tons deadweight.

* Rule R3. A cargo is never insured for more than its dollar value.

" Rule R4. A ship carries no more cargo than its rated capacity.

" Rule R5. Any cargo other than liquefied natural gas or refined petroleum products that is
worth more than 500.000 dollars is handled only at general cargo ports.

" Rule R6. The only ships whose deadweight exceeds 150 thousand tons are supertankers
or aircraft carriers.

" Rule R7. Cargoes worth over three million dollars and carried by supertankers are
insured by policies issued by Lloyds.

" Rule RS. Ships owned by petroleum companies only carry liquefied natural gas, refined

petroleum products, or crude oil.

1 ,. "ules in the example knowledge base are represented to QUIST as:

RI: (Deadweight > 350) - (Facilitytype = "offshore")

R2: (Deadweight > 300) - (Business = "leasing")
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R3: (Coverage' (Dollarvalue)

R4: (Quantity s Capacity)

R5: (Cargotype 0 {"LNG" "refined")) A (Dollarvalue > 500) -- (Facilitytype = "general")

R6: (Deadweight > 150) -4 (Shiptype E ("supertanker" "carrier"))

R7: (Dollarvalue > 3000) A (Shiptype = "supertanker") - (Issuer = "Lloyds")

R8: (Business = "petroleum") -o (Cargotype E ("LNG" "refined" "oil"})

The subject of our example is the following query:

"List the destination of cargoes worth less than one million dollars being carred by
supertankers over 400 thousand tons deadweight to ports with offshore lod/discharge
facilities."

Note that this query was invented specifically to illustrate semantic query optimization capabilities.

As motivation, consider a shipping analyst who wishes to detect cases in which very large ships are

being employed wastefully so that they can be rerouted to more profitable activities.

The representation of this query to QUIST is:

Q: (Deadweight > 400) A (Shiptype = "supertanker")
A (Dollarvalue < 1000) A (Facilitytype = "offshore");

(? Destination)

Processing query Q as given involves three relations, SHIPS, CARGOES, and PORTS, and two

joins among them: SHIPS to CARGOES, and CARGOES to PORTS. However, we readily see that

semantic rule RI makes the constraint on Facilitytype superfluous. If this constraint is eliminated,
then it won't be necessary to involve PORTS in the processing at all. PORTS is involved in Q only to

restrict tuples in CARGOES, and it turns out that this restriction is unnecessary.

Moreover, the constraint on Deadweight also makes it possible to infer a constraint on the Business

attribute of the OWNERS file. Although this introduces a join to a new file, the database is

structured so tuiat this may be advantageous. This is because this join has, in effect, been

precomputed and stored as the link from OWNERS to SHIPS.

I* In addition, a constraint can be inferred on the Coverage attribute or the POLICIES relation by

means of nle R4. However, it is not desirable to involve POLICIES in the query because the join to

CARGOES is not supported by a prestored link or index.

We now discuss how QUIST handles this query.

9 i
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4.4.1 Step 1 -Identification of constraint targets

QUIST's first step establishes inference goals. The task of this goal-setting stcp is to accept dhe list

of attributes that are constrained or designated for output by the query, and to return a (possibly

empty) list of target relations on which the placement of additional constraints may be worthwhile.

In this step. QUIST determines whether it seems worthwhile to seek to transform the given query

into an equivalent one. If it does seem worthwhile, then QUIST seeks to identify what opportunities

exist for cost-reducing transformations. However, it may be the case that it is not worthwhile to

transform the given query. For example, the query restrictions might consist of just a single

constraint which happens to be on an attribute with a clustering index. No additional constraints can

reduce the processing effort for that query. Any effort devoted to inference would then be wasted.

Even if inference is not ruled out, there will probably be only a few relations on which the placement

of additional constraints will reduce query processing effort. Pruning the set of target relations can

significantly reduce useless inference effort.

To produce a set of constraint targets from a set of constrained or output attributes, QUIST uses

constraint generation heuristics. These heuristics are based upon knowledge about the structure of

the database and about the factors that contribute to the cost of retrieval. The heuristics reflect the

expert knowledge developed from analysis of relational database query processing.

By what criterion should target relations be chosen? The greral answer is that a relation should

be the target for the generation of constraints if and only if the placement of such constraints on the

relation makes some retrieval operation less expensive or renders it unnecessary altogether.

We can make this criterion more specific in the context of the retrieval operations for restrict-join-

project queries discussed in Section 2.3. The major operations are scanning a relation, and joining

two relations.

4.4.1.1 Scanning a relation

We first consider scanning a relation. A relation can be scanned in three ways: by a segment scan,

by a scan using a nonclustered index, or by a scan using a clustered index. A segment scan looks at

every page in the segment that contains the relation. A scan with a nonclustered index looks (more or

less) at one page for every qualifying tuple.

As for a clustered index scan, we introduce the concept of restriction selectivit, [Yao79]. Selectivity

is a fraction between 0 and 1. It corresponds to the fraction of tuples in a relation that meets some

constraint. The stronger the constraint, the closer selectivity is to 0. Let attribute A have a clustered

index. If constraint C is imposed on A, and C has a selectivity value of RSEI., then a clustered index

scan via attribute A using constraint C retrieves approximately a fraction RSEL of the pages on which

the relation is stored.

Consideration of those alternatives leads to the generalizations noted in Section 2.5:
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" GI. A restriction on an attribute that is not indexed leads to an expensive scan.

* GZ. A restriction (other than an equality predicate) on an indexed attribute where the
index is not a physically clustering index leads to an expensive scan.

" G3. A restriction on a physically clustering index can bc processed effiLiently.

These generalizations give us the following inference guiding heuristic:

Hi. Try to exploit a clustered index. Try to obtain a constraint on an attribute of a relation
which is restricted in the query and which has a clustered indexed attribute thai is not
restricted in the query.

Another heuristic arises from the same generalizations. It involves a clustering link between two

relations that effectively precomputes and stores the join between thLm. There is a clustering link

from relation X to rclaton Y if each tuple in relation X has a pointer to the corresponding tuples of

relation Y and those corresponding Y tuples arc physically grouped together. The actual join can be
performed with X as the outer relation and Y as the inner relation. That is, X is scanned and for eachI qualifying tuple, the pointer gives the corresponding tuples of Y quite inexpensively. The same
effect is achieved if Y has a clustering index on the attribute by which it is joined to X.

From the perspective of scanning relation Y, however, the prestored join with X opens another

opportunity to reduce retrieval cost. If X is much smaller than Y and if an effective constraint on X
can be found, then the clustering link can be followed to extract qualifiers from Y inexpensively.

One way to look at this is to regard X as the parent of Y in a hierarchy. Constraining the parent
relation is very effective for constraining the child relation.

The surprising aspect is that it can be advantageous to scan Y via a join from X even if X does not

appear in the original query. That is, the cost of the overall query can be reduced by introducing an

additional file and an additional join. This is one case that is clearly contrary to the intuition

expressed in conventional query optimization research. The exploitation of a clustering link is

expressed in the following heuristic:

H2. Push a constraint up a hierarchy. A relation should be a constraint target if it has a
clustering link into a much larger file that is constrained in the query, even if the relation
itself is not in the original query.

For the most part, however, it is not a good idea to introduce an additional relation and extra join

operations into a query for the obvious reason that joins are normally expensive. This advice is

summed up in the heuristic:

H3. Don't introduce unlinked joins. With the exception of the clustering link

!I
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(pareni/child) case do not generate constrainls for relations that are not part of the original
query.

4.4.1.2 Joining two relations

We now consider the join operation. Regardless of the method chosen to perform the join, we

have noted in Section 2.5 that

" G4. The cost ofjoins generally dominates the overall cost of processing.

" G5. A join between two large and weakly restricted relations is very expensive.

Thus, much of our concern in finding new constraints centers on reducing the cost of joins. We have

considered performing joins by two methods: the nested loops method and the merging scans
method. For simplicity in QUIST, we assume that all joins are carried out by the nested loops

method, but much of the justification for the ensuing inference heuristics holds for either method.

In the nested loop method, one relation (called the outer relation) is scanned, and for each outer
tuplc that meecs the constraints on that relation, the second relation (called the inner relation) isIscanned. The inner scan seeks qualifying inner relation tuples that match the outer tuple on the join
attributes. We noted in Chapter 2 that "the cost of the nested loops method is the cost of scanning

the first relation plus the product of the number of qualifying first relation tuplcs with the cost of
scanning the second relation." This presents three opportunities to reduce the cost of the join by the
generation of constraints: reduce the cost of the outer scan, reduce the number of qualifying outer

tuples, and reduce the cost of the inner scan.

We've already discussed how to reduce the cost of scanning a relation, so we take up the question

of how the generation of constraints can help to reduce the number of qualifying tuples in the outer
scan. Let's first consider the underlying intuition. Suppose two relations X and Y are to be joined
and that both are restricted on some of their attributes. From the point of view of X, the join to the

restricted relation Y can simply be seen as a somewhat more indirect restriction than the simple
constraints on X's attributes. That is, for some tuples in X that otherwise meet the restrictions on X's

attributes, there are no corresponding tuples in Y, hence those tuples of X do not participate in the

join.

We would like to translate this indirect restriction into a simpler one in terms of constraints on

attributes of X so that it can be applied prior to the cross referencing scan that makes the join

expensive to perform. A constraint on an attribute can be applied much less expensively than a

constraint imposed indirectly through a join.

Let's make this clearer with an example. Suppose we request the owners of French ships carrying

cargoes of refined petroleum products:

Q: (Registry = "France") A (Cargotype = "refined"), (? Owner)
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This involves a join between SHIPS and CARGOES. The requirement that each SHIPS tuple be
joined to a restricted CARGOES tuple can be viewed as another restriction on SHIPS. However, the

subset of French ships that are carrying refined products can't be determined prior to performing the
join as the query is stated. If SHIPS is the outer relation, there will have to bc a scan of the inner
relation CARGOES for every Fr,:nch ship.

Now, suppose there is a general rule that only ships with a deadweight under 60 thousand tons
carry refined products. This is represented as the QUIST rule:

R: (Cargotype = "refined") - (Deadweight < 60)

The attribute Deadweight is on the SHIPS relation and the attribute Cargotype is on the

CARGOES relation. Rule R makes it possible to infer the constraint (Deadweight ( 60) "across the
join boundary" from the CARGOES relation to the SHIPS relation. The transformed query Q'so

obtained is:

Q': (Cargotypc = "refined") A (Registry = "France") A (Deadweight < 60); (? Owner)

Instead of having to scan CARGOES for every French ship, it is now only necessary to scan
CARGOES for every French ship of less than 60 thousand tons deadweight. This should bring about.

a substantial reduction in the cost of performing the join.

Reduction in the number of qualifying tuples is limited to the movement of constraints across the

* join boundary. No reduction is achieved if the inferred constraint depends entirely on constraints on

the same relation. This is because every tuple in the relation that meets the inferred constraint must
necessarily meet the supporting constraints. If part of the support comes from constraints on the

other relation, though, there will be a reduction in the number of qualifiers. Again, we can make this
limitation clear with an example. Suppose the general rule stated above is altered slightly, so that it

states that every French ship that carries refined products must be under 60 thousand tons
deadweight:

R: (Cargotype = "refined") A (Registry = "France") --+ (Deadweight < 60)

The constraint on Deadweight can be still be inferred and there is still a reduction in the number of

qualifying SHIPS tuples. This is because there may be ships other than French ships whose

deadweight is less than 60 thousand tons. But suppose the rule is altered again to state that all French

ships arc less than 60 thousand tons deadweight, regardless of what they are carrying or of any other
factor. Then the rule is:

R: (Registry = "France") --4 (Deadweight < 60)

and, given query Q, the Deadweight constraint can still be obtained. This time, however, the

constraint did not move across the join boundary. No reduction in the number of qualifying SHIPS

tuples is obtained, because every tuple of SHIPS with a Deadweight value under 60 already has a

Registry value of"France".

From the discussion of constraint movement between joined relations, we conclude that
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114. Move a constraint across a join boundary. A relation involved in a join to a sufficiently
strongly restricted relation is a target for constrains.

The qualification that the joining relation be "sufficiently strongly restricted" arises for the

following reason. If a relation has strong constraints on its attributes and it is Lo be joined to a
relation with very weak constraints on its attributes, then it is very unlikely that a usefully strong

constraint can be inferred from it across the join boundary. If the relatior, it is joined to is not itself
restricted, then no constraint can be moved across the boundary.

Another qualification must be added to the preceding heuristic, related to clustering links and to

another generalization from section 2.5:

9 G6. 'he cost of a join decreases substantially as the strength of restrictions on the joined
relations increases, except on a relation which is clustered with respect to the join term
(and is therefore likely to be the "inner" relation of the join method).

Suppose relation X is to be joined to relation Y and that there is a clustering link from X to

Y. Then it is extremely likely that a conventional optimizer such as the System R optimizer
[Selinger79] will choose to perform the join using X as the outer relation and Y as the inner relation

in the manner described earlier. That is, X is scanned and for each qualifying tuple, the pointer (or
equivalent index) gives the corresponding tuples of Y qiiite inexpensively. In this case, no additional

constraint on Y can be applied effectively to reduce the cost of the scan, and there is no point in

reducing the number of qualifying Y tuples by adding constraints because Y is the inner relation of

the join. Hence, Y should not be a constraint target in this case, and we have the additional heuristic:

H5. Don't push a constraint down a hierarchy. A relation should not be a target for
constraints if it is joined to a restricted file from which it has a clustering link or equivalent
index.

From our consideration both of scanning one relation and of joining two relations, we can suggest
another heuristic as well:

H6. Use a strongly restricted clustered index. If a file is strongly constrained on an
attribute with a clustered index, then it should not be a target for constrainta

This heuristic applies whether the relation is the only one in the query or is joined to other
relations. In the former case, the relation will be scanned by way of the already constrained attribute.

In the latter case, the strong constraint on the indexed attribute makes the relation a likely candidate

to be the inner relation, hence reducing the number of qualifiers is not helpful. Besides, the strength

of the constraint makes it unlikely that further reductions in the number of qualifiers can be

obtained.
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Finally, the generation of new constraints makes it possible to render some retrieval operations
unnecessary. The target in this case is a query relation that only serves to restrict another relation and

from which no information is to be outpuL If the restrictions on that relation can be found to be

superfluous, that is, derivable entirely from constraints on other query relations, then it can be

eliminated and the join to it eliminated at a great cost saving. We sum this up as follows:

H'7. Try to eliminate a dangling relation. If a relation is joined to just one other relation and
none of its attributes contribute to the output, then it is a target for constraints.

4A.1.3 Summary of QUIST's constraint generation heuristics and classes of query transformations

Let us summarize the discussion of QUIST constraint generation heuristics by grouping the

heuristics into those that designate constraint targets and those that designate nontargets. The

heuristics that designate targets are shown in Figure 4-2. With each of these heuristics, we indicate

the kind of query transformation it contemplates, in terms of changes in scanning or joining

operations.

* Hi. Try to exploit a clustered index. Try to obtain a constraint on an attribute of a relation
which is restricted in the query and which has a clustered indexed attribute that is not
restricted in the query.

o This heuristic contemplates the replacement of a segment scan by a clustering index
scan. We refer to this transformation as index introduction.

* H2. Push a constraint up a hierarchy. A relation should be a constraint target if it has a
clustering link into a much larger file that is constrained in the query, even if the relation
itself is not in the original query.

o This heuristic contemplates the addition of a join to the query, referred to as join
introduction. The effect of the added join is similar to replacing a segment scan of

the linked relation by a clustering index scan of that relation.

* H4. Move a constraint across a join boundary. A relation involved in a join to a
sufficiently strongly restricted relation is a target for constraints.

o In this case, the objective is to reduce the number of inner scans of the join by
obtaining additional restrictions prior to the cross referencing part of the operation.
Hence, the transformation is called scan reduction.

* H7. Try to eliminate a dangling relation. If a relation is joined to just one other relation
and none of its attributes contribute to the output, then it is a target for constraints.

o This heuristic is aimed at join elimination by means of inferring from other query
contraints the constraints on the dangling relation specified in the query.

Figure 4-2: Heuristics that designate constraint targets.

a.-. , -
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In Figure 4-3, we show those constraint gencration heuristics that designate relations that arc not to

be targets for constraints.

" H3. Don't introduce unlinked joins. With the exception of the clustering link
(hierarchical) case, do not generate constraints for relations that are not part of the
original query.

* H5. Don't push a constraint down a hierarchy. A relation should not be a target for

constraints if it is joined to a restricted file from which it has a clustering link or
equivalent index.

* H6. Use a strongly restricted clustered index. If a file is strongly constrainted on an
attribute with a clustered index, then it should not be a target for constraints.

Figure 4-3: Heuristics that designate nontargets.

4.4.1.4 Constraint targets for the example query

Let us now consider the identification of constraint targets for the example query:

I Q: (Deadweight > 400) A (Shiptype = "supertanker")
A (Dollarvalue < 1000) A (Facilitytype = "offshore");(? Destination)

The attributes named in the query reside on three underlying real relations. Attributes are

constrained on SHIPS, CARGOES, and PORTS, and an attribute is to be output from CARGOES.

-Each of these three relations is designated as a target for constraints by heuristic H4 (move a

constraint across a join boundary) because they are all involved in joins with another constrained

relation, and because neither of the exceptions in heuristics H5 (don't push a constraint down a

hierarchy) or H6 (use a strongly restricted clustered index) apply. Both SHIPS and PORTS are also

designated as targets by heuristic H7 (try to eliminate a dangling relation) because both are joined

just to CARGOES and neither has an attribute involved in the output.

In addition, the OWNERS relation is designated as a constraint target by heuristic H2 (push a

constraint up a hierarchy). The OWNERS file is much smaller than the SHIPS file and there is a

clustering link from OWNERS to SHIPS.

Finally, the POLICIES and INSURERS relations arc designated as nontargets by heuristic H3

(don't introduce unlinked joins). The inclusion of either of these relations would introduce a costly

join.

Now that we have designated appropriate targets for additional constraints, it remains to be seen

how to use this information to guide the semantic query transformation process. This issue is taken

up in the next section.
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4.4.2 Step 2 - Generation of new constraints

We now describe the next step of QUIST's production of semantically equivalent queries: the

process of inferring additional constraints on database attributes. QUIST's inference process is based

upon the methods of semantic query transformation of general relational calculus queries described

in Chapter 3 (see also Section B.4 of Appendix B). We first show how the inference process works on
0 the example query. Following the example, we describe QUISTs general rules for generating new

constraints and for merging new constraints with an existing set of constraints. We conclude by
noting the conditions under which it is permissible to introduce a constraint on an attribute
associated with a relation not previously involved in the query.

4.4.2.1 Selection of rules for the generation of new constraints

The constraint generation step begins with a set of query constraints and with a set of relations
designated as constraint targets. A set of rules is then extracted from QUIST's knowledge base.

These rules are used to assert new attribute constraints. To be among the rules selected for the

assertion of new constraints, a rule must pass several tests:

Relevant. The rule must be relevant to the constraints in the query. For a bounding rule,
it is necessary that one of its mutually constraining attributes be constrained in the query;
we refer to this as the relevant attribute. For a production. there are two possible ways to
be relevant: either the single attribute constrained on its right hand side is involved in the
query, or every attribute constrained on the left hand side is involved in the query. As
with a bounding rule, the term relevant attribute (or attributes) is used. If relevance is
achieved by means of the right hand side attribute, then one more condition must hold:
there must be only one left hand side constraint. The reason for this is to avoid asserting
a disjunction; this point is further discussed in Section 4.4.2.2.

o For our example, rules R4, RS, and R8 (Section 4.4) are eliminated by the relevance
test. For all rules but these, one side of the rule entirely involves constraints on
Deadweight. Dollarvalue, Shiptype, or Facilitytype. Rules R4 and R8 do not even
mention any of the attributes constrained in the query. The right hand side of rule

0 R5 constrains Facilitytype. Therefore, R5 would be relevant except that its left
hand side has more than one constraint. Rule R5 is not relevant from its left hand
side because although it contains a constraint on Dollarvalue, it also contains a
constraint on Cargotype, hence the rule fails the "entirely" part of the relevance
test.

0 Promising. If the rule is relevant, it is then tested to see if it is promising. This is a test
based on the expected usefulness of the constraint that can be asserted using the rule. A
bounding rule involves two attributes. One of them is the relevant attribute; the other is
the potential site of the new constraint, which we call the candidate attribute. For a
production, the attribute on the opposite side from the relevant attribute or attributes is

I* the candidate attribute. A rule is heuristically promising if and only if the candidate
attribute is associated with a relation in the list of constraint targets. The point of this test
is to avoid long chains of inference that have relatively little likelihood of producing a
constraint where we want one.

B
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o The constraint targets arc SHIPS, PORTS, CARGOFS, and OWNERS. Among
the candidate attributes of the relevant rules, Coverage and Issuer arc not associated
with one of these relations; they are associated with POLICIES. Thus, rules R3 and
R7 fail the test of promise: we don't wish to bring in constraints on the POLICIES
relation.

* Applicable. Every relevant and promising production must be tested to see if it is
applicable. A production is applicable if and only if each of its relevant attributes is
constrained at least as strongly by the query as by the rule itself. Every bounding rule is
automatically applicable.

o Rules R1, R2, and R6 are still possibilities. It turns out that all these rules are
applicable. For example, the query constrains the relevant attribute Deadweight
with the constraint (Deadweight ) 400). Rule R1 constrains Deadweight with the
constraint (Deadweight > 350), which is a consequence of the query constraint,
Note that rule R3 would have passed the applicability test, but that rule R7 would
not because it requires a stricter constraint on Dollarvalue than the one specified by
the query.

Every rule that is relevant, promising, and applicable can be used to determine a new constraint on an

attribute. The constraint is considered to be effeciive if the result of asserting it in conjunction with

[ the corresponding constraint in the query results in a stronger constraint than the query constraint

The following new constraints can be asserted:

From RI: (Facilitytype = "offshore")

From R2: (Business = "leasing")

From R6: (Shiptype G {"supertanker" "carrier"})

The first two of these constraints are effective in that they are at least as strong as the prior

constraint on the same attribute. The last constraint is not as strong as the query constraint (Shiptype

= "supertanker") so the constraint from R6 is not effective.

If some rules pass the three tests and some effective new constraints are obtained, then a new
round of constraint generation begins; otherwise, the constraint generation step ends. In each

succeeding round of the constraint generation step, we seek just those rules that were not applicable

in any earlier round. For instance, no applicable production is allowed to be used again. Thus, rules

RI, R2 and R6 are no longer in consideration after the first round of constraint generation.
Furthermore, attributes that have just been more tightly constrained in the last round are
distinguished from attributes that were constrained in earlier rounds; the set of relevant attributes in
the relevance test for rules must contain at least one newly constrained attribute. In this way, we

avoid the repeated retrieval of a rule whose attributes on one side are all constrained but which has

-already been used to assert a constraint or has been shown to be unpromising or inapplicable. For
instance, rule R3 will not be relevant to the second round of constraint generation as Dollarvalue was

not newly constrained after the first round. If Dollarvalue receives a stronger constraint in a later

round, rule R3 will be relevant again.
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We start the second round of constraint generation for the example query. Apart from the

eviously described elimination of rules from consideration, the major difference in this round is

that rule R8 is now relevant (because the Business attribute was constrained in the first round).

However, rule R8 is not applicable because its constraint on Business, (Business = "petroleum"),

does not follow from the newly asserted constraint (Business = "leasing"). No other constraints are

asserted in this round, so the process of constraint generation terminates.

4.4.2.2 Semantic equivalence transformations in QUIST

We now describe the general conditions related to the generation of constraints in QUIST as the

basis for semantic equivalence transformations of QUIST queries. The discussion here appeals to an
intuitive notion of inference for the particular kinds of expressions and rules admitted by QUIST. In

Appendix B, we show how semantic equivalence transformations in QUIST are actually a special case

of such transformations for relational queries, and therefore how the formal definitions advanced in

Chapter 3 ?ply to QUIST as well.

As noted earlier, there are two kinds of rules in QUIST: bounding rules and productions. Once a
rule has been selected to try to generate a new constraint, the ensuing manipulations are domain-
independent; that is, they depend only upon properties of mathematical and set operators. It should

be noted too that the result of any QUIST inference is the assertion of a single constraint on a single

attribute.

The conjunctive form of query permitted in QUIST lends itself to a simple form of semantic

equivalence transformation. The restriction portion of a QUIST query Q can be represented as

Q: CI(A1) A C2(A2) A ... A C (A,).

Query Q involves constraints on the set of attributes {A1,A2...,A n}, a subset of all the attributes in the

virtual relation. Each term Ci(Ai) is one of the constraint forms defined earlier.

Given a conjunctive query Q. the basic semantic transformation operation of QUIST is as follows:

1. Select some semantic rule R from the QUIST semantic knowledge base.

2. If possible, use rule R and query Q to produce a new constraint C'(A) on attribute A.

3. 1f a new constraint C(A) is produced, combine it with Q to form the transformed query
Q'.

We have already discussed QUIS'Ps rule selection tests and the heuristics that they use. Here we

assume that a rule R has been selected and we discuss how a new constraint C(A) can be produced.

In Section 4.4.2.3, we discuss how the new constraint can be merged with query Q to form the

semantically equivalent transformed query Q.

We examine this first in the context of a bounding rule. A QUIST bounding rule is of the form:

At eA 2

L
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where A1 and A2 arc numerical-valued database attributes and 0 is a standard Boolcan --m.parison

operator such as less-than or greater-than. The bounding rule places an upper bound nn r- c of the

attributes and a corrcsponding lower hound on the other (except in cases of equality and inequality).

If a query constrains one of the attributes by, say, placing an upper bound on it, and if the bounding

rule indicates that the constrained attribute serves as an upper bound for the other atribute, then that

other attribute inherits the same upper bound. Similar remarks hold for a lower bound.

As an example, consider bounding rule R4 from the example knowledge base. It states that a ship

carries no more cargo than its rated capacity, and is represented to QUIST as (Quantity :5 Capacity).

It is natural to think of the value of Capacity as providing an upper bound on the value of Quantity;

it is equally correct to think of the value of Quantity providing a lower bound on the value of

Capacity. Suppose a query contains the constraint (Quantity > 100); that is, the query places a lower

bound on Quantity. Then it is easy to see that a lower bound constraint on Capacity, (Capacity >

100). can be inferred. In a similar way, a query with a constraint (Capacity < 250) permits the

inference of the constraint (Quantity (250). If the query instead contains the constraint (Quantity <

100), then it is not possible to use the example rule to infer anything about Capacity, and similarly for

the constraint (Capacity > 300).

Turning now to productions, we will see that constraint generation draws on properties of both

numerical and set operators. As noted earlier, a QUIST production is a rule of the form

CI(Al) A ... A Cn(Ad) - C(A')

where each term Ci(Ai) signifies a constraint on some database attribute and where a given attribute

appears at most once on the left hand side.

With QUIST productions, it is possible to reason left-to-right or right-to-left. In reasoning left-to-

right, it is necessary to show that the query constrains all the attributes on the left hand side of the

rule, and that every such rule constraint follows from the corresponding query constraint by the

properties of numerical or set comparison. 1 If so, then the rule's right hand side constraint can be

asserted.

Reasoning right-to-left is limited to productions with a single constraint on the left hand side. This

is because right-to-left reasoning deals with the contrapositive of the rule. The negation of a

muititerm conjunction is a multiterm disjunction, but QUIST, in common with many other inference

systems, makes no inferences with disjunctions of terms. In this mode of reasoning, if it is seen that

the negation of the right hand term follows from the corresponding query constraint, then the

negation of the left hand term can be asserted. Obtaining the negation of a constraint on a string-

valued attribute is simply a matter of exchanging 0 for e, or vice versa. For constraints on

numerical-valued attributes, it is a matter of "inverting" the interval specified in the constraint. For

instance, the negation of the constraint (Age E ((18 651)) is (Age E ((-o 18] (65 oc))).

tin particular, QUISI does not ,et up inference subgoals
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To illustrate inference with QUIST productions, consider a production that states that juice and

bananas are always carried in refrigerated ships:

(Cargotype G ("juice" "bananas")) - (Shiptype = "refrigerated").

Suppose the query contains the restriction (Cargotype = "bananas"). The rule's constraint on
Cargotype follows from this corresponding query constraint because the set of values permitted in the

query is a subset of the values permitted by the rule. Therefore, the constraint (Shiptype =
"refrigerated") can be asserted. If, on the other hand, the query contains the constraint (Shiptype =

"supertanker"), then the production given above can be used to assert the constraint

(Cargotype 0 {"juice" "bananas")).

4.4.2.3 Merging a new constraint with an existing query

We have seen how QUIST generates additional constraints on attributes. In this section, we

describe in general how new constraints are combined with an existing QUIST query.

The result of any one of the inference processes just described is the assertion of a single new

constraint C'on an attribute A. The processes can be viewed as follows: given some conjunction T of
terms Ci(A), it is possible to infer a new term C'(A): that is, T --+ C From this point of view,

combining the new constraint with the old ones follows along the lines described in Section 3.6 on

logical transformations in semantic query optimization, with some additional factors arising from

QUIST's joinless representation and from the task of detecting unsatisfiable query constraints.

To be more specific, let query Q be represented as before:

Q: CI(A l) A C2(A2) A ... A Ca(An).

By the logical equivalence

(A A (A - B)) - (A A B)

query Q can be transformedt into the semantically equivalent query:

Q': Q A C(A)

The new quer. Q'is actually formed by replacing the prior constraint C(A) on attribute A by the

conjunction of C(A) and the new constraint C'(A). The resultant constraint is obtained as follows:

1. If there is no prior constraint C(A), then the resultant constraint is merely C'(A).

2. If the prior constraint C(A) is stronger than C'(A), then the resultant constraint remains
C(A).

tIn most camss: but see Section 4.4.3.1.

66
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3. If the new constraint C'(A) is as strong or stronger than C(A), then the resultant
constraint is C'(A).

4. If C(A) and C'(A) overlap in the sense that C permits some values of A that C'docs not
permit and vice versa, then the resultant constraint is the intcrscction of the values they
permit. For instance, if C(A) is (A E ("a" "b"}) and C'(A) is (A C {"b" "c"}), then the
resultant constraint is (A = "b"). An analogous combining rule is observed for numerical
interval constraints.

5. Finally, if C(A) and C'(A) conflict in the sense that there are no values of A that can
satisfy both constraints, then the original query restrictions are not satisfiable in the
datbasc; that is, the answer to the originial query must be the empty set. Note that this is
detected without recourse to the data.

4.4.3 Step 3 - Formulation of the set of semantically equivalent queries

We now discuss the last step of QUIsrs generation phase: the formulation of a set of alternative,

semantically equivalent qucr~es from the constraints generated in the preceding step. A simplified

Iway to look at the final step of query formulation is as follows. After constraint generation, there is a

set of constraints on database attributes. Some of these constraints must be part of the query while

other constraints are optional. A constraint is optional if it can be derived from other query

constraints. One of the queries in the set of semantically equivalent queries is a "kernel" query, Q0,
that includes only the necessary constraints. If no new constraints are generated, then Q0 is the

original query. If thcre are N additional optional constraints, then the set of equivalent queries

includes an additional 2N -1 queries generated by all possible choices of including or excluding those
N constraints.

This account must bc modified in several ways. First, it is not always possible to classify every

constraint as necessary or optional independently of the classification of the other constraints. What

may happen is that two sets of constraints are related, so that one set or the other may be excluded,

but not both. Second, the addition to the query of certain derivable constraints may implicitly

introduce new relations into the query. Introduction of new relations is only permitted if the

database meets certain structural constraints. Finally, QUIST assumes that once a particular (real)

relation is involved in a query, every constraint on attributes of mat relation should be part of the

query. The reason is that additional constraints on a relation cannot increase the cost of processing,

given QUIST's cost measure, the number of page fetches from secondary storage. Therefore, the

number of indcpendct)tly excludable constraints is reduced.

In the remainder of this section, we indicate how the set of equivalent queries is formulated for our

example. After that, we give the details about when constraints can be considered optional, and when

new relations can be introduced.

We started with the QUIST query
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Q: (Deadweight > 400) A (Shiptype = "supertanker")
A (Dollarvalue < 1000) A (Facilitytype = "offshore");

(? Destination)

and the constraints generation step left us with the following constraints:

(Deadweight > 400), (Shiptype = "supertanker"), (Dollarvalue < 1000),
(Facilitytype = "offshore"), (Business = "leasing").

The only new constraint derived in that step is (Business = "leasing"), although it is now known

that the Facilitytype constraint is derivable from other query constraints, namely from the constraint

on Deadweight using rule R2.

Let us denote the five constraints by C1 through C5 as follows:

C1: (Deadweight > 400)

C2: (Shiptype = "supertanker")

C3: (Dollarvaluc < 1000)

rC 4 : (Facilitytype = "offshore")

C5 : (Business = "leasing")

PI Then C, through C3 are the necessary constraints and C4 and C5 are the optional constraints. The

kernel query Q0 contains just the necessary constraints:

Q0 C1 A C2 A C3

which, incidentally, is not the original query because the constraint on Facilitytype has been

identified as optional. There are two optional constraints, each on a separate underlying relation, so

there are three other equivalent queries:

Q - Q0 A C4 (the original query)

Q2  Q0 A C5

Q3 -Q 0 A C4 A C5

The cost of the alternative queries can be estimated by determining the real relations they involve.

The kernel query Q0 involves attributes on SHIPS and CARGOES; that is, it is possible not to

involve PORTS at all, because PORTS is not involved in the output and the only constraint on one of

its attributes is derivable from constraints on other relations. All the other queries involve SHIPS and

CARGOES, while bringing in additional relations: Q, adds PORTS (Q1 corresponds to the original

query), Q2 adds OWNERS, and Q3 brings in both PORTS and OWNERS.

* The OWNERS relation is of course not involved in the original query. In order for queries Q2 and

Q3 to be equivalent to the original query, it is necessary that every tuple in SHIPS have a

corresponding tuple in OWNERS. If this condition is not met, then it is possible that some tuples in

SHIPS that satisfy the original query conditions will not satisfy the join condition.

I1
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QUIST has now generated four equivalent queries, each involving a different set of database
relations. This concludes the first phase of thce QUIST systcm. The next phase is to detcrmine which

of these queries has the lowest estimated processing cost. Before we discuss this, we discuss the
conditions under which relations can be added to a query (as OWNERS is added to get queries Q2

and Q3), and the conditions under which relations can be dropped from a query (as PORTS is
dropped from the original query to get queries Q0 and Q2).

4.4.3.1 The introduction of joins

It was noted earlier how the query Q A C(A) is semantically equivalent to query Q in most cases,
if constraint C(A) can be derived from the other constraints in Q. The possible exception arises when
the addition of C'(A) implicitly introduces a new (real) relation into the query, the relation R to
which attribute A is associated. The introduction of a new relation also introduces one or more joins
to connect R with the real relations already involved in Q.

This section discusses the conditions under which it is permissible to introduce new relations and
new joins into a query. Briefly, it is only all right to do so if no tuples in the original query fail to
satisfy the join terms that must be introduced. We illustrate this idea with an example here. It is
discussed more completely in Appendix B.

An example illustrates the introduction of joins. Suppose the query requests the destination of all
cargoes of refined petroleum products:

Q: (Cargotype = "refined"); (? Destination)

and suppose it is known that refined petroleum products are only carried by ships whose deadweight
does not exceed 60 thousand tons:

R: (Cargotype = "refined") --4 (Deadweight : 60).

Cargotype is associated with the CARGOES relation, and Deadweight is associated with the SHIPS
relation that is not involved in the original query Q. The straightforward query transformation
produces a request for the destination of all cargoes of refined petroleum products that are being
carried by ships of under 60 thousand tons deadweight:

Q': (Cargotype = "r fined") A (Dcadweight < 60); (7 Destination)

The new query Q'implicitly introduces a join between CARGOES and SHIPS. One way to process
Q'is to find all ships not exceeding 60 thousands tons deadweight, then to find the cargoes they are
carrying and indicate the destinations for the cargoes that are refined petroleum products. However,
consider some tuple x in the CARGOES relation. If the Ship attribute of x has a null value, or if it
contains the name of a ship that is not listed among the tuples of the SHIPS relation, then the join
will miss tuple x, even though a simple scan of CARGOES requested by the original query Q will
return tuple x.

The difficulty is related to the siruciural semantics [EIMasriS0b] of the database. The fact that
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there is no value for the Ship attribute of a tuple in CARGOES may be a data entry oversight, or it

may reflect a database design decision to permit null values and thus to interpret a cargo as existing
t independently of any ship that may carry it. The fact that the latter interpretation results ip a null

value in some field is an artifact of the manner in which relationships can be represented in the

relational model. The former ease, in which the value in the Ship attribute of some tuple in

CARGOES does not correspond to the value in the Shipname attribute of any tuple in SHIPS, is

much more likely to be an error in data entry.

In any event, query Q'is semantically equivalent to query Q if and only if for every tuple in

CARGOES there exists a corresponding tuple in SHIPS, where "corresponding" refers to tuples in

SHIPS that would be logically accessed from CARGOES by way of the logical access path defined

for QUISTs virtual relation.

It is assumed throughout the QUIST system that the appropriate structural constraints on the

existence of corresponding tuples are enforced, so that the introduction of joins is always permitted.t

The system could be modified to make this assumption unnecessary. It would be necessary to
incorporate another test to see if the existence condition does in fact hold when the introduction of a

tparticular join is considered.

4.4.3.2 Tie elimination of query constraints

As pointed out in Section 3.6, it is possible not only to add constraints to a query, but also to

eliminate constraints if they are derivable from other constraints in the query. A constraint on a

single attribute can be eliminated despite the fact that it was constrained in the original query,
provided that another equally strong or stronger constraint can be derived on the same attribute

based solely on initial constraints on other attributes. Similar conditions hold for the elimination of

constraints on more than one originally constrained attribute, although care must be taken to avoid

eliminating sets of constraints that support each other's derivation.

The following example illustrates the possible pitfall in constraint elimination. Let query Q

contain the constraints (A1 > 10) A (A2 > 30) A (A3 > 50). Assume there are two production rules, R,

and R2:

R1: (A1 > 5) A (A3 > 10) -* (A2 > 40)

R2: (A2 > 25) A (A3 > 40) --+ (A1 > 20)

With rule RV. it is possible to infer the new constraint (A2 > 40), with constraints on A and A3 in

its basis. With rule R2, we obtain (AI > 20), whose basis includes constraints on A2 and A3. Hence,

both A, and A2 are candidates for constraint elimination. Yet if both are dropped, yielding the query
(A3 > 50). then there is no guarantee that the items retrieved by that query satisfy the constraints on

This condition is made morc preci.% in Appendix B.

V
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either Al or A 2'lie problem is that :he derived constraint on either attribute requires a constraint

on the other one.

The details of the analysis of const:aint elimination in QU IST are as follows. Suppose that query

Q'has been formed from he original query Q through several steps of inference and merging, and

that Q'constrains attributes A1 through An. For every attribute A in this set, one of three conditions

holds:

1. Attribute A was not constrained by the original query Q. Clearly, then, the constraint C"
(A) in Q'is not essential for obtaining the desired answer and can be eliminated.

2. Attribute A was constrained by the original query Q and no other, stronger constraints
have been derived on it. Therefore, constraint C'(A) in Q'is essential and must not be
eliminated.

3. Attribute A was constrained by the original query Q but other, stronger constraints have
been obtained on A during the inference and merging that produced the constraint C'(A)
in Q:

Thus, constraints on all attributes in class 1 can be eliminated, but no constraints on attributes in classI2 can be eliminated. Whether or not constraints on class 3 attributes can be eliminated depends upon

what is called the basis of the contraints. This explicit maintenance and use of inference

dependencies to reason about the necessity of constraints is akin to the set-of-support ideas for

derived information used for "truth maintenance" systems ([Fikes75], [Doyle781).

The basis of a constraint C on some database attribute A is defined to be the set of constraints in

the original query which must hold in order for C to hold. Before any steps of inference and

merging, the basis of each constraint imposed in the initial query contains just the constraint itself.

Let Q'be the current query, and let {C1(A). CK(AK)} be the set of constraints in Q'that enable
constraint C'(A) to be asserted using some semantic rule R. The basis of C'(A) is the union of the

bases of those constraints. C(A) is now merged with Q according to the rules listed in the preceding

section. When C'(A) is strictly stronger or weaker than the prior constraint C(A), the basis of the

resultant constraint is simply the basis of the stronger constraint. When the two constraints overlap,

the basis of the resultant constraint is the union of the bases of the new and the prior constraints.

To return to the question of eliminating constraints, first consider individually each class 3

attribute, that is, each attribute that is constrained in the original query Q and upon which additional

constraints have been obtained. Let C(A) be the constraint on A in the initial query Q, and let C'(A)

be the constraint on A in transformed query Q'. Constraint C'(A) on transformed query Q'can be

eliminated if and only if constraint C(A) from original query Q is not in the basis of C'(A); in other

words, only if C'(A) is derivable entirely from query constraints on attributes other than A.

When considering the elimination of constraints from several attributes that arc constrained in the

original query, it is necessary to avoid eliminating too many constraints, as the earlier example

illustrated. That situation is avoided by retaining the rule against eliminating a constraint on an
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attribute that appcars in its own basis, and employing a procedure to keep track of the ultimate basis
of a constraint when other anstraints are eliminated. Suppose there are several candidates for

constraint elimination. Let the constraint on attribute A meet the test for single constraint
elimination. Suppose that cmstraints on attributes B and C are in the basis of the constdaint on
A. When the constraint on A is eliminated, it should be dropped from the bases of all other

constraints and replaced by the constraints on B and C (unless they already appear).

In the example, suppose we choose to eliminate the constraint on attribute A,. Its basis contains

constraints on A2 and A Vhz constraint on A2 does contain the constraint on A1 , so the constraint

on A1 replaced by the constrints on A2 and A3. Since A3 already appears in the basis, the new basis
consists of constraints on A2 ad A3. But now, A2 no longer meets de test for constraint elimination,
because it appears in its own basis. Thus, we are left with the equivalent query (A2 > 40) A (A3 > 50).
It is easy to see by producfin rule R2 that items that satisfy this query also satisfy the original
constraint (A1 > 10).

4.4.4 Step 4 - Determingthe lowest cost query

The last task of the QUISTsystem is to take the set of queries produced in the preceding steps and
to estimate which one costs the least to carry out. In a sense, this process is not an integral part of
semantic query optimization because it is merely a matter of performing a conventional query
optimization analysis for a set of queries, rather than for a single query.

QUIST's query cost estimator is derived from the one described for System R [Selinger79]. The
assumptions behind the System R query optimization were reviewed in Chapter 2. QUISTs cost
estimator differs from that of System R chiefly in assuming that a join is carried out by tie nested
loops method rather than choosing between that method and the merging scans method. This is a
reasonable simplification and does not affect the heuristics; for instance, it would still make sense to

move constraints across join boundaries prior to performing sorts. Another difference from the

System R optimizer is that QUIST's cost measure involves just the number of estimated page fetches
rather than combining this with an estimate of CPU activity. However, results reported in
[AstrahanOa] suggest that the number of page fetches is a suitable cost measure for the class of
queries admitted by QUIST.

QUIST's estimator differs from System R's in one other respect: the estimation of restriction
sclectivities (Section 4.4.1.1). System R assumes that all constraints arc independent, hence the

estimated selectivity ora conjunction of constraints is the product of the estimated selectivity of each
constraint alone. On the other hand, the QUIST estimator must distinguish between given and
derived constraints. A derived constraint is, of course, not independent from the constraints from
which it is derived. In QUIST, the estimated-selectivity of the conjunction of a given constraint and a

constraint derived from it is taken to be the estimated selectivity of the given constraint alone.

We have now concluded the description of how QUIS.T operates. In the next chapter, we discuss

the system's effectiveness.

, €
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Chapter 5
The effectiveness of the QUIST system

QUIST has been implemented to investigate the design of effective systems for semantic query
optimization. We described issues in the design of such effective systems in Section 4.1. In this
chapter, we address the question of QUIST's effectiveness from scveral different perspectives.

In Section 5.1, we present details of the cost model used in QUISTs cost estimation step (the last

step). We use this cost model to provide quantitative estimates of the reduction in the cost of
processing that is obtained by effecting each of the transformations defined in Section 4.4.1.3: index

introduction, join introduction, scan reduction, and join elimination.

We then examine timing results for a range of queries in Section 5.2. Processing of the selected
queries illustrates each of the indicated transformations, as well as te ability of QUIST to decide that
no inference is apt to be fruitful or to recognize when the original query restrictions cannot be
satisfied.

Finally, we take up the question in Section 5.3 of the continued effectiveness of QUISTs control
strategy as the size of the database or the number of semantic rules increases.

5.1 Quantitative estimates of query improvements

This section presents estimates of the quantitative improvement that can be obtained for each of
the four QUIST transformations: index introduction, join introduction, join elimination, and scan
reduction. It is possible that the application of one of these transformations results in a complete
change in the sequence of processing the complete query. Hence, it is not possible to state directly
what the overall effect on query cost will be of any given transformation. Instead, estimates are
presented for local changes, as if the transformation had no other effect. Additional changes at the

rcscquencing level would lower costs even further.

$

S
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5.1.1 Processing assumptions and cost formulas

First, we briefly review our assumptions concerning how scans and joins ore performed. Each

relation is assumed to reside on a single file that is divided into pages of P records each, where P is a

systemwide constant. Furthermore, it is assumed that each file entirely fills the storage segment in
which it resides. The effect of this assumption is that the cost to perform a sequential segment scan is

simply the number of pages in the file, because we read no pages associated with other files. This
assumption leads to underestimates of the improvements brought about by transformations that

eliminate segment scans.

A join is performed on two relations; throughout this section,we assume that R is the outer
relation and R2 is the inner relation, unless stated otherwise. R1 is scanned by means of a sequential

scan or an indexed scan. We only consider clustering indexes in this section. For every qualifying
tuple in R1, we find the corresponding tuples in R2. This is achieved either by a sequential scan of

R2, or by a clustering indexed scan if we have a constraint on an indexed attribute of R2 other than
the join attribute, or by what can be called a link scan, a clustering indexed scan in which the

clustering index is on the join attribute. "'he cost to find the corresponding records varies according
to the method of the inner scan.

Based on the processing assumptions, we develop necessary cost formulas. Let N. be the number
of records in the file that corresponds to relation R. Therefore, the file occupies Ni/P pages, and the
cost S(R1) to perform the sequential segcment scan is given by

S(Ri) = Ni/P.

Thi cost of a join depends on the number of qualifying items in the outer relation. This in turn
depends upon the selectivity of the restrictions on that relation. Let a i be the selectivity value of the
restrictions on relation Ri, where 0 < a i :s 1. Then the number ofqualifying tuples from relation Ri is

Unless otherwise stated, we assume that the outer relation of a join is scanned by means of a
sequential segment scan. Given that assumption, there are three cost formulas for the join between
relation R and R2. The appropriate formula for the cost J(R 1,R2) depends upon how tuples of R2

are found to match the current qualifying tuple ofR 1 If R2 is scanned by means of a sequential scan,

the cost is

J(R1tR 2) = N1/P + a N1N2/P.

If R2 is scanned by means of an indexed scan on a clustering index of an attribute other than the join

attribute, then the join cost is given by

J(R1,R2) = N1/P + aiNia 2N2/P.

The difference between these two costs is due solely to the fact that only a 2N2/P pages need to be

scanned for each of the a1N1 scans of R2 for an indexed scan, versus N2/P pages each time for a
sequential scan. The figure for an indexed scan relies on the assumption that the values permitted by
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the restriction on the indexed attribute arc clustered together rather thn scattered throughout the

relation. This is the case, for instance, whcn a numerical attribute is confined to some interval.

If there is a clustering index on the join attribute of R21 we assume that the query processoc. or the

underlying file system is sophisticated enough to maintain its "currcnt place" in the scan of R2 within

an in-corc buffer, so any page of R2 is read at most once. In other words, rather than scanning R2

completely for every qualifier in R1, the system first checks to see if the proper page is in the buffer.

The next page of R 2 is brought in from the disk only if it is not in the buffer or if the end of the
previous page is reached while reading matching tuples. In this case, then, the cost to perform the

join is merely the cost to scan R, plus the number of pages of R2 that hold tuples that correspond to
R, qualifiers.

To determine the fraction of pages with corresponding tuples, we make the additional assumption

that there is a I to N relationship between records of file R1 and file R2. This seems a reasonable

assumption for the kind of hierarchical link that is implemented by the index just described. Under

this assumption, every tuplc in R1 has, on the average, N2/N 1 corresponding tuples in R2. We refer

to the inverse of this as 1, so that 0 - 3 < 1. The fraction of pages of R2 which are brought in is

approximately the same fraction of pages on which there are qualifiers in R r If we assume that those.

qualifiers are bunched and not randomly scattered throughout R1 , then the fraction of R 2 pages

brought in is simply a1 Therefore, we have the following formula for the join with an indexed scan

on the join attribute:

J(R1,R2) = NI/P + alN 2/P.

The considerable saving of this method (the elimination of the Ni factor in the second term) is due to

the clustering of the two files with respect to each other.

5.1.2 Cost improvements from transformations

The join cost formulas arc used to show how different QUIST query transformations reduce the

cost of processing in selected examples.IP

5.1.2.1 Index introduction

In index introduction, a constraint is obtained on an index that was not previously constrained.

Assume in this example that the index is not on the join attribute. R1 and R2 have constraints with

selectivitcs al and a2, as usual. Suppose a new constraint is inferred on a clustering index of R, and

assume it depends at least partly on other constraints on RI so that the overall selectivity is still al. If

we keep R1 as the outer relation, then the cost of the join is

* J(R1,R2) = a1N1/P + a1NIN/P.

The original cost is

j
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J(R1,R2) = NI/P + aNN 2/P.

However, for largc files (large values of N 1 and N 2) we expect the cross product terms (the ones that
involve NIN 2) to dominate the costs, so there is only a marginal improvement. However, if there is a
constraint inferred on a clustering index of R2, then the new cost is

J(RI.R2) = N1/P + a, N 1 2N2/P

assuming that the new constraint does not change the overall selectivity of constraints on R2.
Considering just the cross product terms, if C is the original cost and C' is the cost after the
transformation, then the two costs are related by

C'F a2C

where a2 is a fraction between 0 and 1, hence there could be a substantial reduction in cost.

5.1.2.2 Join introduction

Suppose R2 is part of the original query and R1 is not, but there is a clustering link from R to R2;

that is, R2 has a clustering index on an attribute to which it is joined to R1, and R and R2 are in

proper sequence with respect to their respective joining attributes. If we infer a constraint on R, (and
if suitable structural constraints are met -- see Appendix B) then a join between R1 and R2 can be
introduced.

Consider a case where the original query includes a join between R2 and some relation Ry"
Assuming that neither relation is constrained on an indexed attribute, the cost of performing the join
is.

J(R 2,R 3) = N 2/P + a 2N 2N 3/P.

if R2 is tie outer relation. The first term is the scan of R2 and the second term is the cross matching
term of R2 and Ry

Now suppose R1 enters through join introduction. There are now two joins to be done. The cost

of the join between Ri and R2 is given by

J(RrR2) = NI/P + aiN2/P.

ii" R is the outer relation. The two joins can be cascaded so that the cost to join R2 and R3 only
includes the previous cross matching term. Therefore, the total cost is now

C'= Ni/P + a N2/P + a2 N2N3/P.

The factor in the final cross matching term is assumed to be the same after join introduction as
before; that is, it is assumed there will be as many qualifiers from R2, hence as many scans of R3.
This is bascd on the assumption that the constraints on R1 are inferred from constraints already on
R. If we denote the original cost formula as C =- J(R2,R3) and if we recall the ratio between the file
sizes asp = I/N2, then we find that the original cost C is related to the new cost C'by
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C'= C- 11- (a, + P)IN 2/P.

I* If R1 is the same size as R2, so that = 1, then join introduction clearly is not worthwhile. But if

both a1 and , aie near zero, then join introduction can be quite useful.

5.1.2.3 Scan reduction

In this transformation, constraints are inferred "across the join boundary". The point very simply

is to reduce the number of qualifiers in the outer scan. If a constraint of selectivity a'is inferred on

R1,. and if it is independent of the other constraints already on R1, then by considering the dominant

product term as we did for index introduction we find that the new cost Clis related to the old cost C

by the same relationship:

C'P aC.

5.1.2.4 Join elimination

A relation is only involved in the query to constrain another relation, none of its attributes are

desired as output and it is only joined to that ione other relation. In this transformation, the

constraints on the "dangling" relation are shown to be derivable from other constraints in the query,

so the join to that relation is simply eliminated.

Generally speaking, this should lead to a reduction in the cost of the query by about the amount
needed to perform the join. Therefore, because a join is often very expensive, join elimination may

bring about a substantial cost reduction. However, in the case of a clustering link such as supports

the join introduction transformation, the elimination of a join may actually increase the cost of the

query, so join elimination would not then be desirable.

5.2 Experiments with the QUIST system

To demonstrate the effect of semantic query optimization on the cost of processing queries, a

selection of QUIST queries, including the example query of Chapter 4, has undergone semantic

query optimiza' n with the QUIST system. The queries are specifically chosen to illustrate various

transformations that can be obtained by means of semantic query optimization, and to illustrate the

magnitude of the resulting reductions in query processing cost. The query processing cost estimates

are based on the model of query processing described in Section 5.1 and depend also upon the

assumed size of the files indicated below. The stated time to perform the analysis itself comes from

actual measurements, but depends upon the implementation of QUIST.

What these results suggest about the potential importance of semantic query optimizat'on is more
significant than the specific numbers reported here. Beyond the particular processing estimates, the
results support the contention that semantic query..cptiminwtion can bring about significant

I
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reductions in the cost of processing queries with an acceptable overhead for analysis. They also

suggest the effectiveness of the inrcrncc-guiding heuristics.

We assume the same database as the one described in Section 4.4. Physical database parameters

have been chosen in order to give some idea of processing time for a moderately large database. We
assume that each relation in the example database corresponds to a single physical file with the

following number of records:

File Size

SHIPS 20,000

CARGOES 25,000

PORTS 2,000

OWNERS 200

POLICIES 25,000

INSURERS 500

Table 5-1: Assumed File Sizes for Timing Experiments

We assume that there are twenty 'ecords per file page (the same value used in [Yao79]) and that

the time per page fetch is thirty milliseconds (extrapolated from [Gotlieb75]). We further assume

that the SHIPS file is physically clustered with respect to the OWNERS file.

The example rule base contains approximately thirty rules like the ones in Section 4.4. These rules

were obtained in part from Coupers "Geography of Sea Transport" [Couper72I.

The QUIST system is implemented in lnterlisp fTeitelman78] on a Digital Equipment Corporation
DECSystem20 model 60 computer.

5.2.1 Analysis of individual queries

We start with the example query of Chapter 4:

"List the destination of c!rgoes worth less than one nilon dollars being caied by
supertankers over 400 thousand tons deadweight to ports with offshore load/discharge
facilities."

As indicated in Section 4.4.3, three semantically equivalent queries can be generated in addition to
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the original one. These include two useful transformations of the original query: join introduction

and join elimination. First, it is worthwhile to add die OWNERS file into the query because SHIPS

is much larger than OWNERS and is physically clustered with respect to it. Second, it is possible to

show that the constraint on PORTS is superfluous. Because PORTS is only joined to one file and is

not involved in the output, it can be eliminated. Hence, the lowest cost trznsformed query turns out

to be:

"List the destination of cargoes worth less than one million dollars being caried by
supertankers over 400 thousand tons deadweight owned by leasing companie. "

QUISTs conventional query optimization subsystem determines that for the assumed file sizes and

auxiliary structures, the original query in SHIPS, CARGOES, and PORTS can be processed In 435

seconds. The query in OWNERS, SHIPS, and CARGOES that results from join introduction and

join elimination can be processed in just 19 seconds. The total time to perform this analysis is 2.1

seconds.

The reduction in cost of well over an order of magnitude for this example query comes from the

simultaneous occurrence of fortunate circumstances in the query, database structure, and semantic

rules. Indeed, the query was specifically chosen to show what can happen when circumstances are

right.

Things are not always so well-suited for semantic query optimization, but there arc many situations

in which significant improvements can be obtained. We now present a set of queries to illustrate the

specific transformations of QUIST: index introduction, join c'imination, scan reduction, and join

introduction. Othcr queries in the set illustrate two other important characteristics of QUIST. First,

QUIST can detect a query whose qualification cannot bc satisfied because of semantic integrity

constraints (and which is therefore a null query). Second, QUIST can determine rapidly when there

are no opportunities for cost reduction via semantically based transformations.

For this set of queries, it is assumed that the database has clustering indexes on the Shiptype field

of SHIPS, the Ship field of CARGOES, the Country field of PORTS, and the Issuer field of

POLICIES. The queries are presented along with the rule that is relevant to the particular

transformation, the transformed version of the query, if any, and the resulting change in processing, .

any.

1. Index introduction.

Query Q1: "List the owners of all ships with a deadweight greater than 200 thousand
tons.

Relevant rule: "Any ship over 150 thousand tons deadweight is a supertanker." (This is a
change from example rule R6).

Transformed query: "List the owners of all superiankers with a deadweight greater than
200 thousand tons."
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Result: A new constraint on the indexed Shiptype attribute of SHIPS.

2. Join elimination.

Query Q2: "List the shipper and quantity of liquefied natural gas cargoes carried by
pressurized tankers to Marseilles."

Relevant rule: "Liquefied natural gas is always carried by pressurized tankers."

Transformed query: "List the shipper and quantity of liquefied natural gas cargoes

carried to Marseilles."

Result: Elimination of the join with SHIPS because Shiptype constraint is superfluous.

3. Scan reduction.

Query Q3: "List the owners and the quantity of cargo of ships carrying refined
petroleum products to Danish ports."

Relevant rule: "Refined petroleum products are carried by ships with deadweight under
60 thousand tons."

Transformed query: "List the owners and the quantity of cargo of ships with deadweight
under 60 thousand tons carrying refined petroleum products to Danish ports."

Result: Constraint on Deadweight can be applied prior to cross matching step of join
between SHIPS and CARGOES reducing the number of qualifying SHIPS tuples and
therefore the number of scans of CARGOES.

4. Join introduction.

Query Q4: "List the owners of supertankers with deadweight over 350 thousand tons that
are carrying cargoes to French ports."

Relevant rule: "Only leasing companies own vessels that exceed 300 thousand tons
deadweighL"

Transformed query: "List the leasing company owners of supertankers with deadweight
over 350 thousand tons that are carrying cargoes to French ports."

Result: Addition ofjoin between OWNERS and SHIPS has the effect of a more efficient
scan of SHIPS.

5. Detection of unsatisfiable conditions.

Query Q5: "List the owners of all bulk cargo ships with deadweight over 200 thousand
tons."

Relevant rule: "Any ship over 150 thousand tons deadweight is a supertanker."
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Result: No transformed query. QUIST indicates that no items can satisfy the query
conditions.

6. Absence of opportunities for cost reducing semantic transformation.

Query Q6: "List the ownis of all refrigerated ships."

Result: Indexed attribute Shiptype is already constrained. No relevant rule. Query
remains the same.

We now show the estimated processing times associated with these queries on the example

database (Table 5-2).

Query Transformation Est. Proc. Time Est. Proc. Time
without SQO (sec.) with SQO (sec.)

QO join introduction 435 19

& join elimination

Q1 index introduction 30 4

Q2 join elimination 313 37

Q3 scan reduction 1125 519

Q4 join introduction 348 112

Q5 (unsatisfiable)t 30 0

Q6 (SQO deemed useless) 3 3

Table 5-2: Reduction in Processing Costs with SQO

Two times are shown. The first one is the estimated time tn process the original query optimized only

by conventional means. T e second one is the estimated time to process the transformed query, that
is, with both semantic and conventional optimization. Again, what is significant is the relative

magnitude of processing times rather than the precise times indicated. Note that the amount of

processing time for QUIST itself is about 1 second in each case. In the case of the detection of
unsatisfiable conditions, the time for QUIST analysis is under half a second. These QUIST analysis

times include all four steps described in Chapter 4, including the time it takes to carry out

t'hc qucry is a null query. QUIST would not iend it to the database for proessin.
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conventional query optimization for each alternative query. The example query of Chapter 4 is
referred to as QO.

5.2.2 The effect of inference-guiding heuristics

Another important factor in QUIST's effectiveness is the effect of the inference-guiding heuristics.
Table 5-3 indicates that QUIST spends much more time generating constraints when the heuristics

are not enforced. This effect is compounded because when more constraints are generated, more

alternative queries may be formulated, and these additional queries must each undergo conventional

optimization.

Query QUIST -- all steps QUIST -- inference only

time time time time

with without with without
pruning pruning pruning pruning

Q1 .43 sec. 6.7 .29 1.20

Q2 .90 2.6 .42 .58

•Q3 1.00 1.1 .45 .51

Q4 1.30 20.1 .22 .98

Table 5-3: Effect of Inference-Guiding Heuristics

For cach of the four queries noted here, four timing figures are given. First there are two timings for
all steps of QUIST, with and without pruning based upon heuristics; that is, with and without the use

of constraint targets. Second, there are two timings for just the inference portion of QUIST (step 2

described in Chapter 4) with and without pruning. A larger difference is seen when we look at all
steps of QUIST rather than just at QUIST's inference steps. As noted above, this reflects the effort to
estimate the cost of more alternative queries.

The effectiveness of infcrencc guiding heuristics is suggested by the number of rules tested in the
analysis of a query like query Q1 with and without pruning. Without pruning, 33 rules were tried;
these included 20 separate rules plus repetitions due to renewed eligibility as new constraints were

inferred. Of these, 11 were actually found applicable and were used to infer new constraints. When

constraint targets were established and used, however only 8 rules were found eligible, and only 1
was used to infer a new constraint. Analysis without pruning was even more ineffcicnt because cost

esctmate% had to be found for additional alternative queries.

.. .... -L
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5.3 The stability of QUIST's control strategy

One measure of the effectiveness of a strategy to control inference s how well it constrains the

search. In QUIST's case, ,hc pertinent question is how many rules are tested during the analysis of a

typical query. QUISrs control strategy has been effective for a relatively small set of approximately

thirty-five rules. Would the strategy still be effective as the size of the database or the number of

rules increases?

Our answer to the question is a qualified "yes". We shall argue that the number of rules that must

be tested for a typical query is bounded, and that the bound hardly increases at all as the database or

set of rules grow. We also offer some plausible arguments that the bound is small enough that the

rules can be tested efficiently.

We make the following assumption about the rules in order to simplify the argument:

Al. Simple rules. Each rule is a production relating two attributes. That is, each rule is of
the form C/A,) -- C A2) for two attributes A1 and A.

In Section 4.4.2.1, we described how QUIST's rules are used during the analysis of a query. In this

section, we follow that description in order to establish a suitable measure for the effort expended by

QUIST on a typical problem.

First, we establish some terminology. A rule R is associated with an attribute A if and only if A is

one of the two attributes constrained in the rule (there are just two, according to assumption Al). We

designate by S(A) the set of rules associated with attribute A; this set need not be nonempty for every

attribute.

Let us illustrate what can happen to a rule by means of an example. Suppose that attributes A1

and A2 are on constiaint target relations, and that attribute A3 is on a nontarget relation. Also

suppose that the knowledge base contains the following rules:

RI: (A1 > 40) (A2 > 200)

R2: (A1 > 30)- (A2 > 50)

R3: (A > 60) -(A 2 > 300)

R4: (A < 20) -(A 2 > 150)

RS: (A1 > 25) - (A3 > 100)

Assume that at some point in processing, it is known that (A2 > 100) but that no constraint is

known on AI orA3.

Now suppose it is concluded (by rules other than RI through R5) that (A1 > 50). All rules

associated with A1 (that is, those in S(A1 )), fill into one of five classifications illustrated by rules RI

through R5.
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First, we exclude from possible use those rules that are not promising in the sense that they

conclude a constraint about an attribute on a nontarget relation. Rule R5 is not promising because

given a constraint on attribute A1. it would conclude a constraint on attribute A3 which is on a

nontarget relation. By prior organization of the rules, it should be possible to determine unpromising

rules once and for all at negligible cost.

Next, we see which rules are applicable in the sense that the rule's constraint on A2 is implied by

the newly inferred restriction on A1. Rules R1 and R2 are applicable, but rules R3 and R4 are not.

Furthermore, rule R4 can never be applicable, so it can be excluded from consideration at any

subsequent point. By constrast, it is possible that rule R3 may become applicable if the constraint on

Al is later strengthened as a result of additional inferences. We assume one "unit" of cost to check

promising rules for applicability because of the work involved in comparing the rule constraints and.

the current restriction on the attribute. Thc test for potential future applicability falls out of the

direct test for applicability so it costs no more.

Finally, we determine if the applicable rules arc effecilve in the sense that they produce a new

constraint. Rule R2 is not effective because the constraint it yields, (A2 > 50), is weaker than the

current restriction on A2. Rule RI is effective because it yields a new and stronger constraint, (A2 >

200). In either case, another "unit" of cost is incurred comparing constraints on attribute A2. In

addition, both rules are now "used up" and excluded from further testing.

To generalize from this example, we assume:

* Unpromising rules incur no cost and are excluded from further testing.

. Inapplicable rules incur one unit of cost; only rules that are potentially applicable later
arc retained for further testing.

* Applicable rules, whether effective or not, incur two units of cost and are excluded from
further testing.

Hence. the cost of analyzing a query can be determined as follows. For every attribute that is

constrained once, either in the original query or by means of subsequent inference, the cost equals

the number of inapplicable associated rules, plus twice the number of applicable rules. For every

attribute that is constrained twice, the cost is die previous cost plus an additional cost figured only on

the basis of potentially applicable rules left over after the first constraint was asserted. Costs for

subsequent constraints are figured the same way, on the basis of a dwindling set of potentially

applicable rules.

Therefore, the problem of determining the cost of analyzing a typical query becomes a problem of

determining the following quantities:

I. the number of attributcs that are constrained

2. the number of times each attribute is constrained
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3. the number of associated rules that are promising

4. the number of promising rules that are applicable

S. the number of inapplicable rules that remain for subsequent testing.

As we stated above, we will not attempt to make an actual estimate of the cost of analyzing a
typical query, but will argue that the cost is bounded, that the bound is stable with respect to the size
of the database and the rule base, and that the bound is likely to be "reasonable". We make several
more plausible assumptions:

A2. Simple queries. Almost all queries constrain just a few attribues; no more than (say)

.... . . . .. . .. ~ f . . . .I H - ' . .fia

A3. Strong constraints. Query constraints are often likely to be quite restrictive

A4. Nonuniform distribution of rules. Some attributes have relatively many associated rules;
many have relativelyfew or none

Based on these assumptions, we make one more crucial assumption:

A5. Limited inference. Only a small numiber of attributes receive inferred constraint, and
veryfe of these are constrained more tan once

Our overall picture of inference in QUIST is as follows. A small number of attributes are

restricted in the query (assumption A2). The process of generating constraint targets therefore does
not yield a large set of targets. Consequently, only a relatively small percentage of the rules
associated with the constrained attributes are promising, are tested, and incur a cost. The query

constraint% are probably strong, at least on the "important" attributes that are involved in many rules

(assumptions A3 and A4). Therefore, very few new constraints are inferred and very few rules

remain potentially applicable. Strong constraints probably lead to other strong constraints, so that

there are few if any long chains of inference (assumption AS).

Returning therefore to the five quantities of interest described above, we are asserting that the

number of contrained attributes is likely to be small and that each attribute is likely to be constrained

no more than once. Concerning the quantities that involve numbers of rules, if the number of
spromising ruls is reasonable, then the number of applicable and retested rules is reasonable too.

It is this last question of the number of promising rules that involves the growth of the database

and the rule base. We make the following two assumptions about the effect of such growth:

tThik seems to be the experience in systems like I.ADDIFR 1I lendrix7g].
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A6. Growth of the database. The growth in the number of items in the database has no effect
on the number of rules.

This assumption is actually rather obvious as the rules merely dictate permitted configurations of

the data and are not otherwise linked to any aspect of the data, including the quantity of iL

As for whether the bound is reasonable or not, that depends on just how many rules are likely to

bc associated with the number of relations that are constraint targets in a typical query. There is no

solid evidence from prior research to suggest what that number might be, but contemporary expert

systems in artificial intelligence such as MYCIN [Shortliffe76] and PROSPECTOR [Duda78] have on

the order of a few hundred rules for the entire system. This would certainly be a manageable

number.
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Chapter 6
The significance of

semantic query optimization

In this final chapter, we discuss the significance of semantic query optimization in general and of

its formulation in the QUIST system in particular. Our work advances specific ideas about the

processing of database queries and about the organization of planning programs. It also serves as an

important example of the fruitful interaction between research in artificial intelligence and research

in databases. We also discuss the limitations of the research and make suggestions for future

investigations.

6.1 Significance for database research

Semantic query optimization is significant for database research in tying together research on

query optimization with research on the semantic integrity of databases. The synthesis provides a

new and powerful method of query optimization. We discuss this in Section 6.1.1. In Section 6.1.2,

we compare the work on QUIST with a related, more general proposal, called KBQP, of Zdonik and

Hammer. We indicate that QUIST is a significant step forward because it provides specific'answers

about how semantic query optimization should be carried out and controlled in a context where

query processing is relatively well understood, and because it has shown specifically by how much
query processing can be improved using semantic reasoning.

6.1.1 The relationship of semantic integrity to query processing

The semnantic integrity of a database is insured when the data in it are forced to meet semantic

integrity constraints that reflect the real world application modelled by the database. The

development of semantic integrity notions and the design of systems to enforce semantic integrity

were sketched in Section 1.2.4. Through the work of Chang jChang78], EI-Masri [ElMasrig0b],

Hammer and McLeod [Hammer75], Roussopoulos [Roussopoulos771, and others, declarative

formalisms have bedn applied to the purpose of stating general laws that express the semantics of a

database.

The development of the ideas about semantic integrit, constraints was motivated by one purpose,
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that of making sure that the data in the database is meaningful. Our research advances another

important and unforeseen use of these constraints. We have shown that:

The semantic knowledge about a database expressed in semantic integrity constraints can
sometimes be used to transform a database query into a semantically equivalent query that
is much less expensive to process than the original query.

This demonstration thus brings together the two apparently quite separate research areas of

database integrity and query optimization.

The notion that general rules about the database can be applied during the processing of a query,

and not just during the validation of updates, has appeared in other work, but not for the purpose of

improving efficiency. For instance, in Chang's DEDUCE2 system [Chang78], general semantic rules

are used to define virtual relations in terms of the basic relations that are stored in the database.

When a DEDUCF2 query is processed, all virtual relations are transformed into the underlying basic

relations. As with QUJST, DEDUCE2 checks whether the query poses conditions that violate

semantic integrity constraints, but DEDUCE2 does not perform transformations for the sake of

efficiency.

6.1.2 The organization and effects of semantic query optimization systems

The insight advanced by QUIST, that semantic integrity constraints can be used for efficiency

transformations, has been introduced independently by Hammer and Zdonik [Hammer80 under the

name knowledge-based query processing (KBQP). Their work resembles the QUIST work in three

essential respects. First, of course, they propose that semantic knowledge about databases be applied

to the problem of efficient query processing. Secondly, they suggest that the way to bring semantic

knowledge to bear on this problem is by means of the transformation of queries into equivalent
queries. Thirdly, they identify control of the query transformation process as crucial to the successfid

application of semantic knowledge to query processing.

However, QUIST makes important and original contributions in the introduction of the concept of

semantic query optimi".,tion and in the organization and analysis of semantic query optimization

systems. To identify these contributions, it is convenient to contrast QUIST with the KBQP

proposal.

KBQP is intented to operate in the context of an abstract data management system that treats the

database as a collection of sets of objects. The data model resembles the entity-relationship model

[Chen76]. By contrast, QUIST operates with the relational model. The difference is significant
* because, as discussed in Chapter 2, research on the relational model has produced a body of query-

processing expertise for which there is little counterpart in studies related to the entity-relationship

model. Indeed, one of the significant demonstrations of our research is that:
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Factors that govern the cost ofprocessing a relational database query can be expressed as
expert rules that can help control the query transformation process of a semantic quey

* optimizatioN rysteA.

It is worth noting that this result is the product of taking an artificial intelligence "perspective"

toward results in database research.

As noted above, the KBQP proposal recognizes that in order to maintain the overall efficiency of
the system, it is necessary to perform only those query transformations that may lead to reduced
query processing costs. Hammer and Zdonik postulate a set of what they tern', cost-reducing

techniques to control transformations. For example, the aim of one such technique, called domain
refinement, is to convert the domain of a restriction expression into a smaller one whose members are
more readily accessible. The technique of domain refinement seems intuitively plausible. Indeed, it
corresponds in the relational context to QUIST's index introduction transformation (Section 4.4.1.3).
What the research on QUIST has done is to gc beyond intuitive plausibility in the context of a well-

developed model of query processing (Section 5.1), leading to the assertion that:

Several classes of transformations of relational database queries that reduce the cost ofI processing have been identified, and the reduction they produce in the cost of processing
has been estimated quantitatively based upon well-developed inodels of query processing.

To control the application of their cost-reducing techniques, Hammer and Zdonik propose a

multiprocesssing control structure. At the start of analyzing a query, a separate process is set up for

each technique applied to each subexpression in the original query. Each process is assigned a

priority based upon heuristics that reflect the presumed likelihood that the particular technique will

succeed and produce an improvement in the particular subexpression. An example of such a
heuristic is: "assign a low priority to a process that involves domain refinement applied to an

expression that does not appear in any statements about subset relationships in the knowledge base".

Hammer and Zdonik acknowledge that the number of procezuss is apt to grow large. The reason they
propose such an elaborate control structure in spite of this is their belief that it is necessary to reason

about transformation goals at every step in the analysis of the query.

QUIST controls the transformation process quite dil.,zrently (Section 4.3). It forms constraint
targets in a separate analysis before it attempts to infer any constraints. Because of this separation,

the inferences that produce transformed queries are carried out in a data-directed rather than a goal-

directed manner. That is, QUIST reasons forward from known constraints without having a precise

goal for that reasoning. This is not to say, however, that QUIST does not identify which constraints

would be desirable. This is exactly what QUIST does when it identifies constraint targets (its so-

called planning step, Section 4.3.1). Rather, QUIST uses goal information to cut off unpromising

* lines of inference.

The result is that QUISTs control strategy is much less elaborate than the one proposed for
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KBQP. In Section 5.2, we report on experiments that show QUISTs control strategy to be effective,
at least for a limited sample of QUIST's class of relational database queries. In Section 5.3, we argue

further that the control strategy remains effective under reasonable assumptions about the complexity

of the scmantic rules and the growth of the database.

The KBQP approach to control reflects the philosophy that determining a suitable query

transformation is a very complex problem and that the possible improvement in the query warrants

an elaborate'and possibly expensive analysis. QUIST's approach reflects a different philosophy:

keep the analysis simple at the cost of missing some desirable transformations. At first glance,

KBQP's approach seems more general. Yet, QUiST's approach seems appropriate where, as in the

case of its particular class of relational database queries, where storage and access conventions are

well established and cost factors are well understood. The point is that QUIST can make reasonable

assumptions about the frequency and the consequent importance of certain kinds of constraints

(namely, those on single attributes, particularly indexed attributes). Its knowledge base and its

control strategy are based on these assumptions. It may be that as other classes of queries and other

means of storing and accessing data are better understood, new QUIST-style heuristics can be

developed and QUIST's approach will prove effective. Which philosophy is more appropriate for

semantic query optimization in general can only be determined by further research. However, it can

be said that:

There is evidence that a simple controlstrategy that uses forward reasoning limited by a set
of previously computed constraint targets is effective for semantic query optimization in
attribute/constraint relational queries.

KBQP is a design proposal that would probably require new machine architectures for cost-

effective implementation. By contrast, QUIST has been implemented and tested on a range of

queries. It builds explicitly on assumptions and models of contemporary research in query

optimization for relational databases as implemented on current generation serial architectures.

We can summarize the relationship of semantic query optimization to the methods we have called

conventional query optimization as follows:

Semantic query optimization makes it possible to achieve substantial improvements in the
efficiency of processing that are not achievable by conventional techniques. At the same
time, though, semantic query optimization can be viewed as extending the usefulness of
conventional methods in the sense that the purpose of producing semantically equivalent
queries is to create new opportunities to apply conventional query optimlzation techniques.

Finally, we should note:

The development of semantic query optimization demonstrates the fruitfulness of

mim-1
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investigating certain database problems from the point of view of artificial intelligence
research.

The development of semantic query optimization is part of a growing awareness of this point

[Brodic8l] that is highly significant for database research.

6.2 Significance for artificial intelligence research

As formulated in the QUIST system, semantic query optimization is significant in two major

respects. First, it suggests a new problem refonnulation approach to the task of producing a "good"

plan when there already is an existing planning program to produce correct plans. Second, it
provides an example of intelligent database mediation by providing intelligent assistance in the best
use of database resouices. In Section 6.2.1, we identify a conventional query optimizer as a planning

program. We discuss recent research in planning and problem solving in which the issues of

efficiency and explicit control of problem solving emerge. Finally, we contrast QUIST's approach on

these issues with the approach taken in other planning systems. In Section 6.2.2, we define the

database mediation task and note how QUIST has supplied one part of the desired function.

6.2.1 The reformulation of problems for better solutions

Given a database query stated in logical terms, the problem of query optimization is to specify an

efficient way to process that query in the physical database. That is to say, the problem of query

optimization is exactly what is referred to in artificial intelligence research as problem-solving.
10 Problem-solving is the determination of a sequence of actions to satisfy a goal. In q,. ry

optimization, the goal is to obtain some data or ,o check the truth of some assertion. The actions

through which the goal can be satisfied are operations in the physical database such as segment scans

and indexed scans (Section 2.3).

I The resemblzrce between a query optimizer and an artificial intelligence problem-solving program

is illustrated by the System R query optimizer. As noted in Section 2.4, System R's optimizer

analyzes the pr ,.essing of an n-relation query as a sequence of processing 2-ielation queries. Thus,

each 2-relation query can be regarded as an abstract stcp in the plan to perform the desired retrieval.

One of the main tasks of the optimizer is to pick the best way to carry out each 2-relation query.

There may be many ways to do this; in fact, [Yao79] dcscribes a model that can generate 339 different

methods to carry out a 2-relation query. Thus, the optimizer must refine the abstract step in the best

available way. The refinement of abstract plan steps is a fundamental part of all recent planning

programs whether they are based on hierarchical planning (NOAH [Sacerdoti77]), best-first search

* (LIBRA [Kant79]), or orthogonal planning (MOLGEN [StefikBOJ).

"hc other task of the System R optimizer is to choose the best sequence in which to perform the 2-

p
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relation queries. Sequencing and refinement are related tasks. For example, some processing steps

compute a result in an order that diffcrs from the original order of the data from a given relation.

Any index on that relation is no longer usable for later steps. Hence, certain rcfinemcent choices are.

lost. Conversely. a single refinement choice for a particular step may so dominate the alternatives as

to force the step to be performed early it, the sequence in .order to avoid possible invalidation. This

interaction between between sequencing and refinement is also seen in programs like LIBRA

[Kant79].

In the QUIST system, it is assumed that a conventional query optimizer is available to carry out

the refinement of a logically stated query into a plan for execution in the physical database. What is

significant about QUIST is the following:

A semantic reasoner can be applied as a preplanner that can result in the production of
betterplans by its associatedplanning program, without complicating the planning program
itself

To understand the significance of this for planning problems in general, let us review some recent

planning programs in more detail. The review focusses on two issues: the role of efficiency

considerations in planning, and the control of the planning process itself.

The PEGASUS program of Sproull [Sproull77] was one of the first planning programs to address

efficiency issues directly ([Garvey76] provides another example). Sproull's chief concern was to

integrate the symbolic planning methods of artificial intelligence with the considerations of utility

developed in decision theory. The basic approach taken by PEGASUS was to conduct a search of

plan alternatives using a utility function to measure the promise of partially completed plans. The

utility function did more than this, however. It also provided the basis for judging the relative value
of further planning, of obtaining more information about the (uncertain) environment, and of

carrying out proposed plan steps. Thus, the PEGASUS planner controlled its own activities using the

same utility functions it employed to select the best plan. The overall goal of PEGASUS was to

achieve optimal behavior measured in terms of the combined utility of the execution of the completed

plan and of the planning process itself.

Kant's LIBRA program [Kant79] also considered efficiency explicitly. Its goal was to take a high-

level description of a program and to transform it into an efficient program that could actually be

executed. Knowledge about how to transform a program was contained in coding rules developed by

Barstow [larstow79]. l.IBRA's task was to decide which of possibly many coding riles to apply at

any point. It used efficiency rules to do this (and in this respect is very much like QUIST). The

efficiency rules reflected both heuristic and analytical estimates of the cost of alternative refinements.

In addition, LIBRA used resource allocalion rules to decide which part of the program description to

refine first. Choosing to refine some parts before others could greatly reduce the number of

refinement alternatives that had to be considered.

The MOLGEN program of Stefik [Stcfik80j advanced the notions of inetaplanning and constraint
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posing. The idea of metaplanning is that the planning process itself should be controlled by a similar

planning process (a similar notion appears in [Hayes-Roth78]), responsible for such activities as focus

of attention at the planning level. Constraint posting is the idea that decisions should be postponed

until the constraints arising from commitments or guesses elsewhere in the developing plan are

propagated. This reduces the number of alternatives that must be considered.

These programs illustrate several major themes of current research in problem solving and,

planning:

* Planning proceeds by adding constraints to a partially completed plan.

* The programs reason explicitly about the control of the planning process.

* Decisions about how to refine a particular segment of a plan are intermixed with
decisions about what the planning program should do next.

* In many cases (PEGASUS and LIBRA, for example) it is desired to produce not just a
correct plan but a "good" plan, and furthermore, it is desired to that the planner itself be
efficient.

In query optimization, including semantic query optimization, we are obviously concerned with

the quality of the final plan, as measured by its efficiency. We are also concerned with the efficiency

of the planning process. Where QUIST differs from contemporary planning programs is in its

approach to finding an efficient plan. Rather than integrating decisions about the planner's focus of

attention with decisions about the choice of refinement, including those choices that bear on

efficiency, QUIST moves considerations of efficiency into a preplanning step. In this step,

constraints are added to the statement of the problem itself. The constraints are added not as the

result of elaboration of a plan step, but rather for the express purpose of having the planner work on

a new but equivalent problem for which a more efficient plan may be generated. In other words:

A preliminary reformulation of a problem statement can be used to achieve a more efficient
solution to the problem, thereby avoiding explicit and possibly costly analysis of efficiency
factors during the actual process of producing the solution.

The result is that the conventional query optimizer, viewed as a planner, can be much simpler than

it would have to be if it tried to add new constraints to the plan in order to make the plan more

efficient.

Is it really necessary to simplify the planner in this manner? Both Sproull and Kant have claimed

that their systems not only produce efficient plans but do so with an Zfficient planner. In fact, despite

some investigation of the issue, the cost of planning is not a crucial factor in PEGASUS's travel

planning domain nor in LIBRA's program synthesis domain. That is not to say that an integrated

control strategy may not be appropriate. It does suggest that further investigation is needed to

determine where that strategy is worthwhile. In any event, both PEGASUS and LIMRA work with

FI
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essentially fixed problem statements; new constraints enter only in the refinement to executable
plans. (interestingly, the planner reported in [Hayes-Roth78] does not have a fixed problem

statement; the planner is free to choose which of many tasks to perform. The "goodness" of the plan.
is loosely related to how many tasks can be carried out using the completed plan.)

The separation between problem refonnulation and problem solving raises an issue that is not

present in typical planning programs: how is problem reformulation controlled? In QUIST, problem

reformulation (the semantic transformation of the query) is controlled by means of the constraint

target list (Section 4.3.1). The constraint targets are determined from knowledge about the possible

opportunities for finding less expensive ways to search the files involved in the query. In the

terminology of planning:

The process of reformulation of the problem for the sake of efficiency can be guided by
knowledge about the cost of processing alternative refinements of abtract plan steps.

That is, there is a two way flow of information. Not only does problem reformulation change the

class oCpossible plans to include more efficient plans, but also the information about the cost of plan

operators that the planner uses can be abstracted to guicie the reformulation process.

To summari7e. then, semantic query optimization as formulated in the QUIST system offers a new

method for achieving a "good" solution to a problem when a method for finding correct solutions

already exists. The new method consists of reformulating the statement of the problem into an

equivalent form for which better solutions may exist. The process of reformulating the problem

statement is controlled by using an approximate model of the ki-As of solutions produced by the

associated problem solver.

6.2.2 Intelligent database mediation

A user who wishes to access a database in order to solve a problem faces several difficulties. For

one thing, the user may not know what information is contained in the database. For another, he

may not know what concepts the database uses in general ,and what terminology is used to refer to

them. Even if the user aderstands the database's structure and terminology, he may not know how

they relate to his own concepts and terms for the problem domain.

In conventional database installations, the user must either puzzle out these problems on his own,

or else he has recourse to the services of a database analyst or liaison. The analyst mediates between

the database resources and the user solving a problem. The analyst applies knowledge of both the

problem domain and of the capabilities and limitations of the database to pose the most effective and

easily processed queries that can help solve the original problem. The analyst supplies certain

knowledge about the database which the user lacks in order to make the most effective use of the

database. Of course, the analyst must know enough about the problem domain in order to do this

sensibly.
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With the development of interactive query systems, it is expected that average users will interact
more directly with databases, without the aid of a database analyst. It is clear, however, that better

facilities must be created to perform some of these intelligent database mediation functions
automatically.

Some aspects of intelligent database mediation have been explored. McLeod's IFAP (Interaction
Formulation Advisor Prototype) [McLeod78] supplies knowledge of the classes of entities known to

the database about which a user can pose queries. In the LAI)DER system [Hendrix781, a user's

natural language query is transformed into a retrieval language query to the appropriate network site

and database. That is, one of LADDER's functions is to supply knowledge of the distribution of data

among sites and databases, knowledge that the user lacks.

Semantic query optimization is significant as an application of artificial intelligence methods to one

aspect of the intelligent database mediation problem:

As an intelligent database mediator, a semantic query optimization system employs
detailed knowledge of semantic constraints on the data and detailed knowledge of the
physical organization of the database, knowledge that a user should not be expected to
know or to be able to use.

In addition,

Semantic query optimization is the first effort to apply semantic reasoning to the task of
providing efficient access to pre-existing computer resources.

We are not claiming that the present research has discovered the problem of intelligent database

mediation nor that it has devised entirely new solutions to that problem. Rather, the present research

should serve to encourage additional applications of artificial intelligence techniques to database
mediation and other database problems.

In the future, we will want romputer systems to be increasingly knowledgeable not just about the

answers to specific questions, but also about the range of knowledge sources which it can access and

the ways in which those sources can be used. The researci -eported here i. a step in that direction.

6.3 Limitations and directions for future research

Database retrieval is a very important activity. Semantic query optimization holds the promise of

substantial improvements in this activity. Therefore. it is worthwhile examining how the idea%

I advanced in this research are limited, and how their future usefulness might be extended. We are

particularly concerned with how semantic query optimization can be extended to other data models

and system architectures, how additional kinds of semantic knowledge can be employed for efficient

i L . . . . . . . I ll " " " ... •. . . . . .. . . .. .
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processing of queries, and how methods to control semantic query optimization may have to be

extended.

6.3.1 Data models and database architectu res

The QUIST system operates in the context of a subclass of the relational model of data which we

have referred to as an attribute/constrain! model (Section 4.2.1). We have indicated that this includes

an important class of queries. Yet, it may be desirable to extend the system so that it is relationally

complete [Codd7l]. To do this, it would be necessary to drop the assumption that there is a single

logical path between any two relations. This would require a somewhat more complicated
representation of semantic rules, because the logical path between relations would have to be

specified. Whether the extra complexity would be merited by the frequency of queries outside the

range now covered by QUIST would have to be studied. The difficulty would be to retain the

potential improvements of semantic transformations without adding the complexity of a general-

purpose theorem prover.

Our research centered on the relational model because that model has been the focus of attention1• of much recent research on query processing. However, semantic reasoning can certainly be applied
in the context of other data models. For example, the principle of "pushing a constraint up a

hieraichy" (Section 4.4.1.3) certainly makes sense in a hierarchical or network database.

We also adopted a conventional model of data storage and access (Section 2.3). This model or

models like it is the basis for most research in query optimization. However, there is growing interest

in query optimization in distributed databases ([Epstein78]) and in unconventional database
machines ([Shawg0]). More generally, there is recent research ([Lenat79], [Katzg0) that extends the
ideas of Wiederhold ([Wiederhold77l) on the notion of the binding of semantic knowledge to data

structures. The aim of this research is to develop abstract descriptors and rules with which to reason
about the case or difficulty of rcalizing the physical counterpart to a logical expression. If this effort

is iuccessful, it would be an appropriate vehicle to generalize the heuristics of QUIST to apply to

multiple databases and unconventional architectures.

6.3.2 Semantic knowledge

The semantic knowledge used by QUIST involves constraints on particular values stored in the

database. lowever, there arc other kinds of constraints that could be used for semantic query

optimization.

Cardinality constraints specify the minimum or maximum number of individuals in some entity
class that can be associated with an individual in some other entity class by means of a particular type

of relationship. An example is: "every freshman and sophomore must have at least two faculty

advisors." Dependence constraints can be viewed as cardinality constraints in which at least one
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related entity must exist. Dependence and cardinality constraints arc particularly significant in terms

of the structural integrilyof databascs [EFMasri8Ob]. For example, the constraint that "every manager

must manage exactly one department" regulates updates and deletionZ of manager and department

entities; the deletion of a department entity forces the deletion of related manager entities, and no

manager entity can be inserted for which the designated related department entity does not exist in

the database. However, the constraint does not determine which managers can be related to which

departments. Among the structural constraints are the widely discussed "functional dependencies"

and "multivalued dependencies" JUIlman8OJ.

To see how cardinality and dependence constraints could be used for semantic query optimization.

consider the constraint "every student except those with an independent study major has at most two

advisors." Suppose the query is: "what are the name and faculty rank of the advisors of history

majors?" One way to process the question would be to find each history major in turn, and then to

find each of his advisors and print his name and rank. However, we know that there are at most two

advisors for each student, so the search for a given student's advisors can stop when the second

advisor has been found. Notice that the ability to exploit the constraint on the number of advisors

requires a different control strategy than QUIST's. Specifically, it requires more direct control of the

query processor itself so that, for instance, a limit on the number of hits from some file can be set and

reset as needed. By contrast, QUIST works entirely at de level of transforming the "surface level" of

queries. The only thing that the semantic optimization component passes down to the query

p processor is a query, and not azy instructions on how to process it.

Another kind of semantic knowledge is what can be termed approximate knowledge, knowledge

that is probabilistic or about which there is some uncertainty. It includes the heuristics or rules of

thumb that help experts to reason effectively in their area of expertise. Approximate knowledge

could be applied to semantic query optimization by using a somewhat different strategy than QUIST

uses, one that is itself heuristic in nature. Suppose it is known that most supertankers are registered

in Panama, Liberia, or Greece, and suppose a query asks for the names of three supertankers carrying

crude oil to Italy. In that case, it is likely that the names of three qualifying supertankers can be

found merely by examining those registered in Panama, Liberia, or Greece. If the registration

information is well supported in the database (say, by an index) and if there are indeed three

supertankers registered in one of those countries and that are currently carrying crude oil to Italy,

then it is prt.,er and effective to transform the question so that it references the country of

registration.

This strategy offers no guarantee that the substituted query gives the same answer as the original

query. Therefore, a more sophisticated system is needed to apply this new strategy effectively. For

instance, suppose there are 100 supertankers. If we know that "most" supertankers are Liberian, then

it seems likely that questions that request 5 supertankers can be answered merely by referencing

Liberian tankers. However, it may not be effective to process questions that request 95 supertankers

by looking first only at Liberian tankers. If the required number of supertankers are not found

among the Liberian ones, the search must be renewed among all supertankers. The system must be

L-, A
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sophisticated enough to determine when it is probably worthwhile adding constraints to the query

based on approximate knowledge.

Finally, we consider the use of knowledge not about the semantics of the domain but about the.

relationship between concepts defined within the database itself (the familiar notion of logical views).

For instance, suppose that in a university database the predicate INSTRUCT is a derived relationship

between professors and students defined in terms of fundamental predicates TEACH and

ENROLLED-IN as follows:

Vp,s INSTRUCT(p,s) = c.(TEACH(pc) A ENROLLED-IN(sc))

This says that a professor p instructs a student s if and only if there is some class c that the

professor teaches and in which the student is enrolled. Let us now consider the query:

"What professors instruct ail the students whom they advise?"

which we render as:

{p IVs. ADVISE(p,s) -- INSTRUCTS(ps)}

The strategy for this query would be to eliminate all professors who advise more students than they
instruct, for in that case, they certainly can't instruct every student whom they advise. We can

conservatively assume that each student is enrolled in no more than one course taught by.any
professor. Then for every professor who satisfies the query, it must also be true, from the definition

of "instructs", that he instructs fewei students than the product of the maximum number of students

in any one class and the maximum number of classes taught by any professor. Let Cnt(S) stand for

the number of items in set S, and Max(x,F(x)) stand for the upper bound on function F(x) for any
value of x. In addition, let l(p) be the total number of students instructed by a professor, p. That is:

Vp l(p) = Cnt({s I lNSTRUCT(ps)))

Then the conservative upper bound can be expressed as:

Vp (p) :5 Max(c,(Cnt({s I ENROLLED-IN(s,c))))) * Max(p,(COUNT({c J TEACH(pc)})))

If, for instance, there is a maximum enrollment of 20 students in any course, and a maximum

teaching load of 3 courses per professor, then we can eliminate from consideration any professor who
advises more 'han 60 students. This conservative bound can be tightened as more information is

gathered during query processing. Thus, if professor X teaches 2 courses, one with 12 students and
one with 18, he can be eliminated if he advises more than 30 students, rather than the conservative

bound of 60. As this strategy uses cardinality constraints, it relies on more detailed control of query

processing than QUIST does.

L!
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6.3.3 Control of semantic query optimization

In Sections 6.1.2 and 6.2.1, we argued the merits of organizing a semantic query optimization

system as a preplanner. That is, we advocated performing all semantic transformations of the query

prior to generating the scqucnce of steps for actually carrying out the query in the physical database.

However, we saw an example in the last section in which knowledge about the distribution of

current data values could provide cost-reducing constraints. In this section, as in Section 6.2.1, we

recommend that further research be conducted on the question of under what conditions control of

semantic query optimization should be integrated with the processing of the query itself. As further

justification for such research, we offer two more examples of data-dependent semantic query

optimization.

Consider, for example, a database that contains data about ships and their movements. Assume

that the most frequent queries concern the current status of American ships, so that a small file

containing duplicate information about their most important current voyage attributes is maintaincd.

Whenever a position report is received on an American ship, both the regular file and the duplicate

"highlights" file are updated. Suppose that a user poses the query:

"Where is the fastest tanker?"

If the nationality of the ship is stored with its speed and shiptype, then we can check whether the

ship is American. If it is, then we only have to look for its position in the small file of American ships.

Otherwise, we have to look through the larger file of position reports for all ships. If the fastest

tanker happens to be American, then in effect the original query can be transformed into:

"Where is the fastest American tanker?"

But this transformation is only supported in the current state of the database. There is no integrity

rule prohibiting the insertion of another record representing a faster tanker of another nation. Thus,

this transformation is inherently dependent upon the current state of the database.

The preceding example and the one in the last section do not actually use any rules about the

application domain; they only use relationships internal to the database. Yet, the current contents of

* the database can affect the application of a domain rule as well, as the following example illustrates.

Assume we have simple relational database:

SHIPS: (Shipname Shiptype Length Draft Capacity)

* PORTS: (Portnamc Country Depth Facilitytype)

VISITS: (Ship Port Date Cargo Quantity)

I
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and the following two semantic integrity rulcs based on domain knowledge:

Rule R1. "A ship can visit a port only if the ship's draft is less than the
channel depth of the port."

Rule R2. "Only liquefied natural gas (LNG) is delivered to ports that are
specialized LNG terminals."

Assume that each relation is implemented as a single file on its own data pages. The VISITS file

has a clustered index on Cargo. Now consider a query that requests the ships, dates, cargoes and

quantities of visits to the port of Zamboanga. According to our semantic query optimization

heuristics, it is desirable to infer a constraint on Cargo from the given constraint on Port.

Imagine that instead of performing semantic transformations in a preplanning phase, there is

integrated control of semantic transformation and data retrieval. Control of the process of inferring

cost-reducing constraints can then be viewed as control of the moves in a space of constraints on

attributes. Constraints can be moved either by applying a rule, by retrieving items restricted on one

attribute and observing their values on other attributes, or by matching constraints on attributes

defined on the same underlying set of entities.

Continuing the example, starting with a constraint on the Port attribute of VISITS, new constraints
can be found by retrieving from VISITS or by assigning the value "Zamboanga" to the Portname

field of PORTS. The first choice is rejected because the objective is to reduce the cost of that very

retrieval. With a constraint on Portname in PORTS, a retrieval from PORTS can be performed. In

this case. just a single record will be obtained because Portname is the unique identifier in that file.

With appropriate access methods, such as hashing, the retrieval will be very inexpensive.

When the PORTS record for "Zamboanga" has been obtained, rules R1 and R2 may apply. If rule

R2 applies, that is, if Zamboanga is a specialized liquefied natural gas terminal, then a strong

constraint will be obtained on the goal attribute Cargo, and retrieval from VISITS will take place by

means of an indexed scan rather than by means of a more expensive sequential scan. If the data on

Zamboanga does not support that inference, then other inference paths beginning with rule RI will

have to be considered. This illustrates the possible dependence of retrieval planning on the current

contents of the database.

Whether or not stcl- !laborate control is worthwhile is certainly open to question. It depends in

part upon what kinds of processing options are available: it seems more likely, for instance, that an

integrated strategy makes more sense in a distributed database with redundant files. The point of

these examples is simply to indicate the value of further research on his issue.

-,- - -----
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6.4 Conclusion

This research has introduced a new method to rcduce significantly the cost of processing database
queries. The method uses semantic knowledge that is otherwise used to insure the validity of
database entries. It applies techniques of artificial intelligence to the problcm. At the same time, it
suggests a new approach to problem solving when the quality of the desired plan is important and
there already exists a generator of correct plans. This approach is to reformulate the problem
statement as an equivalent problem which may have a better solution.

To be useful in future database systems, the work presented here must be extended to additional
models of physical data storage and access and to a wider range of logical data models. Also,
experience is needed with actual database systems to test further the promising results obtained under
laboratory conditions; tests of query processing methods are generally run on small sets of invented
examples, but this is not a suitable practice for future work. Additional research is needed to

investigate when a problem reformulation strategy can be applied to the task of finding good
solutions to problems.

Whatever the particular merits or shortcomings of semantic query optimization and the QUIST.
system, the research presented here suggests the value of work at the intersection of database
management and artificial intelligence. These fields are important and exciting and have a great deal
to offer to each other.

I
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Appendix A
The QUIST query language

A.1 Syntax of the OUIST query language

In the following description, the metasymbol "+" means one or more instances of the type so

designated, and the metasymbol "I" means a choice between the items it separates. In the actual

QUIST language, the tokens ONEOF and NOTONEOF are used instead of the symbols E and ,

respectively, that are used in the examples throughout this report.

f <query> = ((selections> (restrictions>)

(selections> ::= (<attribute) +)

(restrictions>:: ((restriction> +)

(restriction> :: = (<attribute> (constraint>)

(constraint> ::= (string constraint I (integer constraint)

(string constraint> :: = (ONEOF ((string>+)) I (NOTONEOF ((string+>))

(integer constraint> :: = (<interval> +)

<interval ::= (([GT I GE] (integer>) (ILT I LE] <integer>)) I (((comparator>
(integer>))

<comparator> ::= GT I GEI LT I LE I EQ I NE

A.2 Semantic restrictions on the language

1. An attribute can appear only once among the selections or among the restrictions.

2. An integer-valued attribute can only be constrained by an integer constraint, and a string-
valued attribute only by a string constraint.

3. The intervals of an integer constraint must not conflict. This requirement is enforced as
follows. If the constraint is ((Compi Valuel) ... (CompN ValueN)), then Valuel ( Value2
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<..< ValucN. Furthermore, each OT/GE term that is not last in the list must be
followed by a LT/l.E term (possibly with some intervening NE terms), and each LT/LE
term that is not last in the list must be followed by a GT/GE term (possibly with some
intervening EQ terms).
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Appendix B
QUIST and the relational calculus

In this appendix, we show that the queries, semantic equivalence transformations, and integrity

* rules of QUIST are special cases of relational calculus queries, semantic equivalence transformations,

and integrity rules, respectively. To do this, we indicate how to determine the relational calculus
query that corresponds to a QUIST query. We also show how the process of semantic equivalence

transformation in QUIST is a special case of the process for relational queries.

B.1 Generation of a relational calculus query from a QUIST query

A QUIST query consists of a qualification, which is conjunction of constraints on database

attributes, and an output list, which is a list of attributes whose values are requested. Hence, a

QUIST query corresponds to an open query of the relational calculus, as defined in Chapter 3. A

QUISi query is simpler than a relational query chiefly in two respects: join terms need not be stated

explicitly, and only conjunctions of attribute constraints can be expressed. The major difference in

form arises from the assumption in QUIST that every attribute is associated with a single virtual

relation, hence no relation need be specified. Relational calculus queries, on the other hand, employ

tuple variables that range over explicitly specified database relations.

To generate the relational calculus query that corresponds to a QUIST query, it is therefore

necessary to determine what real relations are involved in the query and what join terms are needed

to link them together propcrly. Because only conjunctive queries are permitted, every relation in the

database that is involved in the query plays one of only four possible roles:

1. some of its attributes are constrained but none are in the output list;

2. some attributes are in the output list but none are constrained;

3. some attributes are constrained and some are in the output list;

4. its attributes are neither constrained nor designated for output, but it is joined between
two (or more) other relations.

A tuple variable must be generated for every relation that is involved in the query. If some
attributes of the relation are designated for output (Cases 2 and 3), then the variable appears in the

. .. ..I.. .. . . . .
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relational query target list. If not (Cases I and 4), then the variable appears as an existentially bound
variable within the qualification.

If some of the relation's attributes are constrained (Cases 1 and 3), then it is nc.;essary to generate a.
restriction term in the corresponding tuple variable. The restriction term is the conjunction of the
restrictions on the attributes of the relation.

A QUIST query does not mention any relations that are joined to others but are not otherwise
involved in the query (Case 4). The fact that these relations are involved is determined in the course
of generating the required mappings (join terms) among the other involved relations (Cases 1, 2, and

3).

It is fairly simple to generate the mappings among the query relations because there is one and
only one logical access path or mapping between any two relations in the database; this is a
distinguishing characteristic of QUIST and of other attribute/constraint relational query languages.
Consequently, we can choose any relation involved in a query and regard it as the root of a tree of
relations. Every other relation in the query can be reached via some unique path. Indeed, the
structure of a query should be viewed as a subtree of QUIS*Fs virtual relation. The virtual relation,
defined in Chapter 4, is a tree structure in which all the real database relations are linked by way of

uniquely specified sequences ofjoins.

B.2 The generation algorithm

We use the tree-structure property of the virtual relation to generate the relational query from the

QUIST query. The major steps of the algorithm are:

e Step 1. Determine directly from the QUIST query which database relations have either
constraincd or output attributes (Cases 1, 2, and 3).

* Step 2. Designate one of these relations as the root of the tree ofquery relations.

9 Step 3. Choose a relation found in Step 1. Generate a tuple variable for it and link it up
to the relations that have already been chosen by generating the appropriate join terms.
Generate a restriction term for the relation if necessary. Repeat until all such relations
have been chosen.

* Step 4. Formulate the relational query from the tuple variables, restriction terms, and
join terms.

We now describe *he steps of the algorithm in more detail.

1. ster ads all relations that are constrained or part of the output. Go through restrictions
in the qtUIST qualification. If the attribute in the current restriction is associated with a relation X
that has not yet been encountered, then add X to the set Sc ofconstrained relations. Next, go through
the QUIST output list. For each new relation X encountered, add X to the set Sout of output
relations. Finally, let Sall be Sc U Sout, the set of all relations so far involved in the query.
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In the second step, we doosc any relation X from Sal to be the root relation to which all the other
relations will be linked. We generate a tuple variable x for this relation. If X is in Sut the set of
relations involved in the output, then variable x is placed in set Qt, the set of variables that will be in
the target list; the subscript "free" conveys the idea that variables in the target list appear free in the
qualification of the relational qtery. Otherwise, x is placed in Q3, the set of variables that will be
existentially bound in the qualification. If X is in S., the set of relations involved in QUIST
constraints, then a restriction term P(x) is generated. P(x) is the conjunction of restrictions on
attributes associated with X. For example, if the restrictions (AlE {"a" "b"}) and (A2 e ([50 100))
are the QUIST constraints asociated with relation X, then P(x) is given by:

P(x) =_ (x.A1 = "a") V(x.A1 = "b")) A ((x.A 2 Z 50) A (x.A 2 < 100)).

The third step is the mot complicated and requires further discussion and some terminology. The
key concept is that of the logical access path or mapping between any two relations X and Y. A

QUIST mapping is the unique expression of join terms by which the two relations can be linked.
Assume that tuple variable z ranges over relation X and tuple variable y ranges over relation Y. Let

M(x.y) (= M(y.x)) denote the mapping between X and Y in terms of these tuple variables. If X and
Y are "neighbors" in the sense that they are permitted to be joined together directly, then M(x,y) is.

, simply

M(xy) J(x,y)

* where J(x,y) is the join itn ((x.A) = (y.B)) for some prespecified atributes A and 1B -of X and Y,
respectively. This specification is part of the definition of the QUIST virtual relation.

Suppose, however, that the virtual relation is defined in such a way that X and Y are only allowed
to be linked via intermediate relation Y. This means that the relational counterpart of the QUIST
query involves relation Y, as a necessary joining "bridge" between X and Y. The relational query

now involves a term that represents this mapping between X and Y:

M(x.y) = 3y, I J(x,Y1) A J(y1,y).

That is, for every qualifying pair of tuples (xy) from X and Y there must be some tuple y, in Y, that

supports the mapping by way of the two prespecified joins.

In general, some sequence of relations Y1,Y2 ,...,Yn intervenes between X and Y in the predefined
mappings of the virtual relation, where we adopt the convention that the lower the subscript, the
closer the relation is to X. The mapping expression is then given by:

M(x,y) =. 3y, ... 3y n I J(x,yl) A J(y1,y2) A ... A J(yny)

where the intermediate conjunets correspond to the prcspecified allowable joins.

Even though relations X and Y are involved in the constraints or output designated by the QUIST
query, it may be that some or all the relations Y. that connect X and Y are not involved in that way,
However, these relations must be specified in the relational query counterpart to the QWST query.

They constitute the Case 4 relations defined above.

ii.-
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Tle idea of this next step of the algorithm is to link up the relations in Sall one at a time by linking

each one to the root relation X, introducing new "bridge" relations as needed. Every time a new
relation is selected for linking or is introduced as a bridge relation, a new tuple variable is generated.

Some complications may arise in the linking process. For one thing, some or all of the necessary

mapping expression may have been generated when a previously chosen relation was linked up.

Intuitively, this occurs when the new relation lies farther out along ie same branch from X as the

preceding relation, or when the new and preceding relations have a common ancestor relation

between them and X.Therefore, each linking step only introduces as much of the mapping

expression as necessary. One other possible complication is that the new relation may have been

introduced already as part of the bridge between X and a preceding relation. In this case, a new tuple
variable should not be generated for it.

We now resume the description of the third step in the algorithm. Let Y be the new restriction in

Sall that is to be linked up. Assume for the moment that Y has not been previously introduced as a

bridge relation. Therefore, we generate a new tuple variable y to range over Y. If Y is a Case 1
relation, constrained but not part of the output, then variable y is placed in the set Q3, as it will

appear existentially bound in the relational query. Otherwise, y is placed in Qt because it will be in

the query's target list.

We must now introduce some part of the mapping expression M(xy). If we denote X by Y0, then

the definition of the virtual relation specifies that there are n relations Y0 through Yn' n >_ 0, between

X and Y. Let Yk" 0 _< k _5 n, be the relation with the highest subscript among these rclations that have

already been linked into the query. that is, Y0 through Yk have already been linked in. Therefore, it
is only necessary to complete the link from Yk to Y.

In other words, instead of generating the mapping expression M(x,y), we generate the mapping

expression M(Yky). In addition, we generate tuple variables yk+1 through Yn' and place these in the

set Q3 because they enter the relational query as existentially bound variables, Of course if n = 0,

meaning that X can be joined directly to Y, or if k = n, meaning that all intervening relations have

already been linked in, then no new tuple variables are generated.

Finally, if Y is in S , that is, if it is constrained in the QUIST query, then we generate a restriction

term P(y) in the same way that we generated a restriction term P(x) for relation X in step 2.

Now suppose that relation Y had been introduced previously as a bridging relation. We do not

need to link Y to X because every bridging relation is automatically linked to X. We do not need to
introduce a new tuple variable y, because this has already been done. However. we do have to check
whether Y is in Su, tie set of relations involved in the output. If so, we must transfer y from the set

Q3 where it was originally placed as a bridging variable, to the set Qc, so it will end up in the target

list. Also, we must generate a restriction term P(y) if Y is in S., the set of constrained relations.

This concludes the description of step 3 of the algorithm. When this has been done for all relations

in Sall' we are ready for the last step, the actual generation of the relational query.



QUIST AND TIE RElATIONAL CALCULUS 103

The targct list of the query is simply the list of variables in Q. The qualification of the query is a

conjunction of restriction terms P(y) for all relations Y in Se and join terms 3(y.y) generated in the
linking step. We can distinguish the P and J terms on whether they contain any variables in Q3T Call

the conjunctions of these terms P(Q 3 ), P(Q), (Q3), and J(Qt) . (Note that J(Q3) can have terms that

refer to both a bound and a free variable.) We generate existential quantifiers for all variables in QT"
They will be in the form

3vI3 v 2 .. vk

if vi through vk are the variables in Q3. Let us abbreviate this as 3(Q 3 ). Then the r'ational query

can be written as:

{(Qt) I P(Qt) A J(Qt) A 3(Q 3) (P(Q3 ) A J(Q 3 ))}

It really doesn't matter if we place the free variables within the quantifiers, so we can equivalently

express the query as

{(Q) I 3(Q 3) (P(Q,11) A J(Qall)).

where of course the subscript "all" refers to all variables, free or bound. This emphasizes the

similarity of the relational form to the original QUIST form: a simple conjunction of terms.

B.3 QUIST semantic rules and their relational counterparts

We now have a quite simple representation of a QUIST query in terms of the relational calculus.

Next, we consider QUIST rules and transformations in terms of their relational counterparts.

For productions, we consider all the relations associated with the attributes involved in the rule. If
we group the constraints by relation, we start with an expression like

Vx-Yl..,Yn P(x) A PI(yl) A ... A Pn(yn) - P(x)

but to this we must add the appropriate join terms to insure that the relations are properly linked.
WL select X as thc root relation. The process of generating the join terms is then very much like the

one previously described to build up a query. In particular, we may introduce additional variables

that will appear existentially bound in the rule. Let Rr refer to variables that are present without

being introduced for linkage purposes; R3 refer just to those existentially bound variables: and Ral

refer to all variables of either kind. Then, using the same kind of abbreviations as in our description

of querics, the relational form of the production is

VR, (3(R 3 ) J(Rall) A P(R,)) - P(x).

A bounding rule obviously involves either one relation X or two relations X and Y. The case of one

relation is quite simply Vx P(x) where P(x) is a comparison between two attributes of relation X. For

two relations, the proper notion is Vx,y M(x,y) -" P(x,y). That is, given the proper mapping

conditions between X and Y, possibly involving intervening relations (hence other existentially
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bound variables), then some predicate P(x,y), the comparison between attributes of X and Y, holds.
The form of the bounding rule turns out to be very similar to the form of the production. Recalling

that M(x,y) may involve some existentiaily bound variables, we can write the bounding rule as

Vx,y (3(R3) J(Rau)) - P(x~y).

B.4 QUIST transformations and their relational counterparts

QUIST transformations can now be seen to be a special case of the semantic equivalence
transformations for relational queries described in Chapter 3. We illustrate this just for the case of a

production. We start with some query in the form:

{(Qt) I 3(Q3 ) (P(Q, 1 ) A J(Qall))).

Suppose we wish to infer a constraint on the relation X using a production

VRr (3(R 3 ) J(Ra)I) A Pr(Rr)) -- P(x).

The QUIST transformation corresponds to dropping all the universal quantifiers from thisI expression, )caving one in which Rr are fi-ee variables. In order to carry out the transformation, two

conditions must be met. First, every relation ranged over by the variables in Rr must be a query
relation ranged over by some variable in Qa. This condition also guarantees that the query has the

requisite join terms. Second, every restriction term in the conjunction Pr(Rr) must be at least as

strong as the corresponding restriction term in the conjunction P(Q,,1 ). If these two conditions are

met, then upon application of the logical schema

(A A (A -- B)) - (A A B)

the constraint P(x) can be conjoined to the query expression, where x'is the variable in the query that
corresponds to x in the rule.

There is one additional case where the transformation can be made, that of join introduction. In

that case, the relation X is not already part of the query even though all the antecedent conditions of
the rule are met. We wish to add P(x) to the query. The only way to do so is to add in the necessary

join terms to link X to the existing query relations. That is, we want to link X into the query in just

the same way that we described above for constructing a query stev by step. Obviously, x itself is not

already in the target list, so x will be existentially bound in the query. Also, any intermediate

relations needed to link in x will be existentially bound. Hence, we seek to introduce a conjunction of
join terms that involve existentially bound variables, such as

3y,...3y,,3x J(y,y1) A ... A J(ynx)

whcre y is the variable that ranges over relation Y, the relation already in the query to which X can be

linked. This expression can be conjoined to the original query without altering the answer if and only

if every tuple in Y satisfies it; that is, if and only if the siruciural integrity constraint
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Vy 3y,,...,3Y I J(yy 1) A ... A J(yn,x)

holds.

: p

, P''1i
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