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SUMMARY

This report presents solutions of the one- and two-dimensional

integral equations that describe groundwave propagation. We consider

the effects of (1) terrain irregularities that are narrower than a

Fresnel zone and (2) receiver elevation. Our resulLs define the con-

ditions under which the simpler one-dimensional equation can be used,

as well as those that demand the more complex two-dimensional form.

We assume a frequency of 100 kHz throughout, although certain results

are easily scaled to other frequencies.

It is well known that the one-dimensional equation is invalid

unless the terrain is nearly uniform across a Fresnel zone. We

quantify the errors and find that, for obstacles narrower than about

10 km and typical pathlengths, the one-dimensional equation erron-

eously predicts propagation anomalies that (1) are independent of

width, and therefore too large, (2) diminish too slowly at long dis-

tances, and (3) do not exhibit a diffraction pattern. Considerable

error can be incurred by applying the one-dimensional equation to moder-

ately sized terrain features. For example, for a pathlength of 500 km,

that equation overstates by a factor of 4 the effect of an obstacle

6 km in diameter. It cannot give accurate results unless the diameter

approaches a Fresnel zone width--which exceeds 10 km for long propaga-

tion paths. Even for wide obstacles, the one-dimensional formulation

neglects reflection and interference phenomena.

The two-dimensional integral equation has different forms for

elevated and ground-based receivers. The two forms become equivalent

in the limit of zero elevation. The stationary-phase approximation

can sometimes be used to derive one-dimensional equations, which

are widely used for most applications. This reduction in dimension-

ality causes elevation-angle and end-point errors, both of which are

associated with elevated receivers.

Elevation-angle errors are large unless the elevation is much

smaller than the pathlength. End-point errors occur because the

stationary-phase approximation improperly accounts for the region
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near the receiver, and are large for elevated receivers at heights

below about one-sixth of a wavelength. The one-dimensional approxi-

mations for grounded and elevated receivers are therefore discontinuous

near the ground. Neither type of error is large for most ranges and

altitudes pertaining to airborne receivers. However, end-point errors 4

are significant below 1 to 2 km, and elevation-angle errors can be

important for pathlengths of several tens of kilometers or less. In

practice, for receivers that are above the ground but no higher than

1 or 2 km, much of the end-point error can be avoided--without the

expense of the two-dimensional solution--simply by using the one-

dimensional solution for grounded receivers.

-MON



PREFACE

This report continues Pacific-Sierra Research Corporation's

(PSR) analysis of low-frequency groundwave propagatio- over irregular

terrain. In earlier reports, Field and Allen derived validity cri-

teria for application of the one-dimensional integral equation when

the terminals are on the ground; and Gayer, Field, and D'Ambrosio

gave extensive numerical results based on this equation for ground-

based terminals and generic terrain models.t

The present report extends that earlier work by presenting and

comparing numerical solutions of the one- and two-dimensional inte-

gral equations for elevated receivers and terrain features narrower

than a Fresnel zone. In addition to identifying important two-

dimensional phenomena, the results define the conditions under which

the more convenient one-dimensional equation can be used, as well as

those that demand the more complex two-dimensional form.

E. Field and R. Allen, Propagation of the Low-Frequency Ground-
wave over Nonuniform Terrain, Rome Air Development Center, RADC-TR-
78-68, March 1978.

tS. Gayer, E. Field, and B. D'Ambrosio, An Integral Equation

Approach to the Propagation of Low-Frequency Ground Waoes over Irreg-
ular Terrain: I. Ground-Based Terminals, Rome Air Development Center,
RADC-TR-80-334, November 1980.
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1. INTRODUCTION

Historically, two theoretical approaches to the analysis of

ground-wave propagation have evolved: the differential equation

method of Van der Pol, Norton, Bremmer, and Fock (Bremmer, 19581;

and the integral equation method [Hufford, 1952; Feinberg, 1959].

The differential equation yields virtually exact solutions for plane

or spherical surfaces but is awkward for analyzing propagation over

terrain whose conductivity is variable or whose topography is uneven.

Under conditions of topographical irregularity, numerical solution

of the integral equation is the more practical approach.

The general, two-dimensional form of the integral equation is

valid provided (1) the conductivity of the earth is great enough to

justify applying impedance boundary conditions, and (2) terrain ir-

regularities are not too severe. However, because numerical solu-

tion of the two-dimensional integral equation is costly, its use has

been limited to highly idealized irregularities [de Jong, 1975], with

a much simpler, one-dimensional approximation more commonly used

[Johler and Berry, 1967; Johler, 1977; Gressang and Horowitz, 1978].

The one-dimensional equation is derived by means of a stationary-

phase integration that reduces the dimensionality of the general ver-

sion; being an approximation, it is not valid for all antenna eleva-

tions or terrain types. It is therefore necessary to define the

conditions under which the more convenient one-dimensional equation

can be used, as well as those that demand the more complex two-

dimensional form.

Field and Allen [1978] derived validity criteria for the one-

dimensional equation as applied to ground-based terminals; Gayer,

Field, and D'Ambrosio 11980] gave one-dimensional numerical results

for ground-based terminals and generic terrain models. The present

report extends the earlier work by comparing numerical solutions of

the onle- and Lwo-dimensional hitt, gral equations. For el.v;ILed re-

ceivers, we show that the one-dimensional results are invalid at

heights (1) lower than a reduced wavelength )/2n, or (2) so large
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as to constitute a significant fraction of the pathlength. For ground-

based receivers, w, quantify the differences between the one- and two-

dimenslonal solutions, finding serious disparities for terrain whoso

transverse irregularities vary significantly across the first Fresnel

zone. For long paths, there are hence severe restrictions on the

terrains to which the one-dimensional equation can apply.

Section II presents the one- and two-dimensional integral equa-

tions and summarizes the assumptions on which they are based. Sec-

tion III demonstrates analytically that the one-dimensional equation

incorrectly predicts discontinuous fields near the ground, but that

the two-dimensional equation correctly predicts continuous fields;

it also compares one- and two-dimensional numerical solutions as

functions of receiver elevation above a plane earth. Section IV

presents numerical solutions for propagation over terrain that con-

tains isolated inhomogeneities, and identifies two-dimensional phe-

nomena not accounted for by the one-dimensional formulation.

The combined results of Secs. T[I and IV define the regimes of

receiver altitude and severity of terrain irregularity for which the

one-dimensional treatment may be used. Section V summarizes the con-

clusions; the appendixes give certain mathematical details.

Lit_ -I
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II. INTEGRAL EQUATIONS FOR GROUND-BASED AND ELEVATED RECEIVERS

This section summarizes the one- and two-dimensional integral

equations for ground-wave propagation used throughout this report.

Each has two forms, according to whether the receiver is assumed on

the ground or elevated. Detailed derivations, havirg been given

elsewhere [Hufford, 1952; Field and Allen, 1978], are not repeated.

We work with the ground-wave attenuation function W, defined

by

= 2Wp 0 , (1)

where ip is the vertical Hertz potential and 10 is the Hertz potential

in free space. The function W accounts for the earth's imperfect con--

ductivity and topographic features. For a flat, perfectly conducting

earth, W = 1 and j = 240.

TWO-DIMENSIONAL FORMS

If surface impedance is small, terrain variations not too severe,

and the terminals on the ground, W satisfies the two-dimensional

integral equation.

lktrOik(r +r - r~ r/ ~
W(p) =I+ d2 rr2 W(Q) e +L

(2)

If the receiver is elevated, the following equation for W applies:

2W(P) I + fda R W(Q) e 1 + I + ) 2

(3)

LAAL_
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In Eqs. (2) and (3), the transmitter is at the origin, and

k = free-space wave number W/c,

n = unit vector normal to ground,

n = complex refractive index of ground,g

p, P = coordinates of ground-based and elevated receivers,

respectively,

rO , R0 = distance from transmitter to receiver,

da = element of area on earth's surface,

Q = integration point on earth's surface,

rI = distance between transmitter and integration point Q,

r29 R2 = distance between Q and receiver points p, P.

Formally, there is no difference between the definitions of p, r 29

r0 and P, R2, RO. However, following Hufford [1952), we use capital

letters in Eq. (3) to emphasize that the receiver is elevated above

the ground a distance zO.

Although Eqs. (2) and (3) appear similar, they differ funda-

mentally. Equation (2) is an integral equation in that the unknown

function W(p) on the left side also appears in the integrand on the

right. Equation (3) is an integral formula, rather than equation,

because the unknown function W(P) on the left refers to the attenua-

tion function above the surface, whereas the integrand on the right

contains the attenuation function as defined on the surface. Thus,

to obtain W from Eq. (3) for an elevated receiver, we must first solve

Eq. (2) to obtain W for points on the surface, then insert those values

into the integrand of Eq. (3).

Equations (2) and (3) are the most general forms of the integral

L,(uation for the ground-wave attenuation function W. The quantity

I/n (square brackets) represents the earth's surface impedance andg

accounts for its imperfect conductivity. The function ar2 3n in

Eq. (2) accounts for terrain shape. For terminals on a perfectly

conducting flat earth, both !/n and ar2/an vanish, and W = 1, as
g

before.
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The function R 2/3n in Eq. (3) accounts for both terrain shape

and receiver elevation, and does not vanish for a flat earth. A

careful limiting procedure--given in Sec. Ill--is needed to recapture

the well-known result that for a flat earth, W = I if n -9 o and
g

Zo 0.

ONE-DIMENSIONAL APPROXIMATION

The two-dimensional Eqs. (2) and (3) are expensive to solve

numerically. A major simplification results if the stationary-phase

method is used for one of the integrations, thereby reducing Eqs. (2)

and (3) to one dimension. Details of the reduction for ground-based

receivers [Eq. (2)] are presented in Hufford [19521 and Field and

Allen [1978]; the one-dimensional approximation given in those sources

is

W(x ) 1 - e- i/ 27 ( 1/2  x 0 dx [ X o 1/2

0

ill ___ 2 ik(r +r2 -r)n-]2! e , (4)

where rl, r2, and r0 are defined as above, the transmitter and re-

ceiver both lie on the y = 0 plane, and x and x0 are projections of

r and r0 on the z = 0 plane. Hufford also uses the stationary-phase

approximation to reduce Eq. (3) (for elevated receivers) to the one-

dimensional form

2w(x 0 , z0) = 1 - -i/ 4 (k,)1 /2  0  dx 12

f [x~x0 - xi-

X WW x L + (i + 1 21 ir 1+J.2-) (5n - j e (5)

, ~ ~ 2),, .. ..



Both Eqs. (4) and (5) are expressed in the classic form derived

by Hufford, which assumes that r (R ), rl, and r2 (R.) nearly equal

Xo, x, and x0 - x, respectively; that assumption requires terrain or

receiver elevation to be small compared with pathlength. Field and

Allen [1978] show that somewhat greater elevation can be accommodated

by substituting--as we occasionally do below--

r 2 1/2 X 11/2

r r2 (r I + r2 j for X(X O (6)

in Eq. (4) land in Eq. (5), if we use R0, R2 instead of r., r2 ].

APPLICATION

Although some solutions have been obtained for two-dimensional

equations equivalent to Eqs. (2) and (3) (see de Jong [1975] and

Secs. III and IV, below), most calculations for irregular terrain

have been based on the far simpler Eqs. (4) and (5) [Johler and

Berry, 1967; Johler, 1977; Cressang and Horowitz, 1978]. It is

therefore important to define the constraints on applicability im-

posed by the stationary-phase reduction of the two-dimensional

equa t ion.

In analyzing the one-dimensional equation for ground-based re-

ceivers, Field and Allen [1978] show that the reduction in dimen-

sionality is valid provided (1) the propagation path is much longer

than a wavelength, (2) terrain features have small lateral gradients

tra|nsverse to the direct propagation path (that is, gentle hills or

valley.), and (3) terrain features vary only slightly across the

first Fresnel zone. We show in Sec. IV that the third condition

severely limits the applicability of the one-dimensional equation.

The validity criteria for reducing the two-dimensional equation

lor elevated receivers to one-dimensional form have not received

much attention in the literature. We show in the following section

that Eq. (5) is valid provided (I) the receiver is not too close to

- -.. . . ..
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the ground, and (2) the receiver height is much less than the path-

length. Those restrictions are additional to the ones already given

for ground-based receivers.

Y

---------------------------------.-----.
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III. VALIDITY REGIME OF ONE-DIMENSIONAL EQUATION

FOR ELEVATED RECEIVERS

Here, we quantify the errors that result from transforming the

two-dimensional equations to one-dimensional form. We begin by

demonstrating that the two-dimensional formulation correctly repre-

sents the continuity of the Hertz potential at low receiver eleva-

tions, whereas the approximation does not. Next, we show that the

stationary-phase reduction from two dimensions to one is inaccurate

unless the elevation angle of the receiver is quite low. Finally,

we compare numerical results for both formulations and determine the

accuracy of the one-dimensional equations as a function of receiver

height and elevation angle.

Because the discussion pertains solely to the effects of the

receiver's elevation above the ground, derivations and examples are

for a smooth-plane earth. The question of the one-dimensional form's

ability to accurately represent propagation over irregular terrain is

addressed in Sec. IV.

CONTINUITY OF TWO-DIMENSIONAL EQUATIONS NEAR THE GROUND

If the receiver is on a plane earth, ar2 /3n is identically zero,

and Eq. (2) becomes

W(p) = I + fda fr W(Q) e (7)
r 2 (\ng9

however, if the receiver is a height z0 above the ground,

DR2 -z 0 -z0 (

3me2 2

and Eq. (3) becomes
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R2 z00 ik(rl+R2 -R0)
2W(P) = I+ 2J da r W(I 1 I + e

(9)

Continuity of the fields requires that Eqs. (7) and (9) become equal

in the limit z0 - 0. However, the equality is by no ',eans immedi-

ately apparent, given the 2 on the left of Eq. (9) ;ad the terms

proportional to zo/R 2 on the right.

To demonstrate the low-elevation equivalence of Eqs. (7) and

(9), we must recognize that even though

lim R0  r0  (lOa)
zoO

and

lim R+2 r2  (lOb)
zo-bO

there is a small region centered about the subreceiver point (near

r2 = 0) in which

aR2
lim 3n

is undefined [refer to Eq. (8)], and that a careful limiting procedure

is therefore required. Subtracting Eq. (7) from Eq. (9) and applying

Eqs. (8) and (10), it follows that continuity of the fields near the

ground requires

-ikr 21T2' 0) e i2z i k(rl+r 2 - r0 )

0 0 r1  \ 2 z0 )
2WP ~)= 22 e ~ J r

r0  21 W(r2, (r21

dO dr2  r r 2 ] e+kZr r3/0 )

(10)



in the limit z0o. 
The coordinate system 

for Eq. (11) is

Q

r0

where da = r 2 dr2 dO and 
the point P (not shown) 

is a height z0 di-

rectly above p.

The first term on the 
right of Eq. (11) vanishes because 

of the

well-known relations

z0-92 -- (12)
Z 

and 
oO r 2 + z02

and

r 2(r 2) 0 
( (13)

where 6(r2) denotes 
the Dirac delta function. 

The integrand in the

second term of Eq. (11) contains the term

r20

lim 2 2 '

0~ r 2  0Zo 0

which is as strongly peaked 
as the delta function 

at r2 
= 0 but is

zero elsewhere. We may therefore evaluate 
all other terms in the

integrand at r2 = 0 and factor them 
outside the integration 

sign,

giving

1im j2W(P) - W(p)1 -01- f dr0 2 r+ Z2)3/2

(14)



The r2 integration in Eq. (14)--found in standard tables--gives unity,

and the 0 integration obviously equals 2w. Thus, we have the correct

continuity relation

._im [2W(P) - W(p)] = W(p) (15)

Two Do!-ts should be noted regarding this demonstration of con-

tinuit . First, the essential term [the second on the right in Eq.

(11)' stems from (i/kR2 ) OR 2/3n) in Eq. (3). That quantity is often

ignored (e.g., Hufford [19521) on the grounds that it is a near-field

cort ,_> na unimportant for long paths--although ignoring it is clearly

.,n error for low-elevation receivers. Second, a two-dimensional inte-

gration is needed to achieve continuity of the fields.

DISCONTINUITY OF ONE-DIMENSIONAL EQUATIONS NEAR THE GROUND

The discontinuity of the one-dimensional equations is easily

demonstrated by attempting to apply the limiting procedure to Eqs.

(4) and (5) rather than to Eqs. (2) and (3). We find that continuity

of the one-dimensional equations requires

2W(x 0 O ) - W(xO, 0) = e-wi/4 ( k) 1/2  0dx W(x, 0) Xo

+ei/ ()/ f0dx W(x, O) r
0

eri/4 11i i2 _(O / 0
+ eo1kdx W x 0 R

0 R2

(16)

in the limit z0 + 0 [just as Eq. (11) is required for the two-

dimensional case]. Equation (16) incorporates Eq. (6)--the substi-

tution form--and uses the cartesian notation P - (xo, z0) and

p (xO, 0), all points lying in the plane y - 0.

It is evident that Eq. (16) cannot satisfy the continuity re-

quirement expressed by Eq. (15), since the dependence on the wave
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number k cannot be eliminated from either right-side term. For con-

tinuity to apply at all wavelengths, the k dependence must disappear

in the limit z0 -* 0--as was accomplished in proceeding from Eq. (11)

to Eq. (15) for the two-dimensional form.

The integrations in Eq. (16) produce numerical inconsistencies

in addition to the conceptual problem just mentioned. To illustrate,

we proceed as before [Eqs. (11) to (15)], arguing that I/R2 peaks

sharply about x = x0 and factoring all terms outside the integrals.

After some rearrangement and a change of variable, we have the fol-

lowing one-dimensional relation to replace Eq. (14):

lir 12W(x , z) - W(xo, 0)] = e -7 i / 4  (k)1/2

xW(Xo, 0) dx 2 + 0z2) 3 / 4
*00

+ e~x0  0) W(xo o) dxo

0

2 z) 5 / 4  (17)

(X +z0

The integrals can be evaluated in terms of the incomplete beta func-

tion [Gradshteyn and Ryzhik, 1965]. Here, we simply note that the
1/2anvaihsaz O  Oad

first integral is proportional to z and vanishes as z - 0, and

that the second is proportional to 1/z and diverges as z0 0 0.
We also recall that the second integral results from the (often ig-

uiored) near-field term in Eq. (5)--(i/kR2 )(9R 2/an).

If near-fields are retained, the one-dimensional equation for

elevated receivers thus gives an undefined result as altitude ap-

proaches zero. If near-fields are ignored, however, the right side

of Eq. (17) vanishes and continuity, as expressed by Eq. (15), is
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violated by a factor of 2. In either case, the one-dimensional equa-

tion for elevated receivers is clearly in error if the altitude is

less than what we define below.

END-POINT AND ELEVATION-ANGLE ERRORS IN ONE-DIMENSIONAL EQUATIONS

The stationary-phase reduction of the two-dimensional equations

is summarized in Appendix A. For receivers on a plane earth, the

reduction in dimensionality is accurate provided kx0 >> 1. For ele-

vated receivers, the reduction is subject to two additional constraints,

which we call "end-point" and "elevation-angle" errors.

The end-point error arises because (as discussed above) if re- )
ceiver elevation is low, the term (i/kR2 ) (DR2/n) in Eq. (3) peaks

very sharply near the end of the propagation path. The end-point

term, which is not accounted for in the standard stationary-phase

treatment, must undergo a full two-dimensional integration over a

small region centered about the subreceiver point. The correction--

details of which are given in Appendix A--that must be added to the

right side of the one-dimensional Eq. (5) is as follows:t

0),W(x0) if 2rzo/A << 1; (18)
0

end-point correction s w/k

W(xO , 0)/kz0 9 if 2rz /X >> 1. (19)

Equation (18) shows that the end-point correction will cancel

half the left side of Eq. (5) if 2z 0/A << 1, thereby removing the

factor of 2 and causing Eqs. (4) and (5) to yield the same value for

W near the ground. Omitting the correction under the same conditions

will cause significant errors. However, Eq. (19) shows that as

Although corrections to these errors are derived for a plane
earth, they pertain solely to receiver elevation and should apply

even for irregular terrain.
tTo .vold cotinLing tht, end-point regiIon (twi 'l, ;dii to ;ivo Id the

low-elevation divergence discussed in connection with Eq. (17), we
must also exclude the region surrounding x f x0 when integrating the
terms in Eq. (5) that contain DR 2/n.

I i li " _i . . ...,,, . .. .. . . . ... . i - ln - ll . ... .. . ... ! ...2
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receiver elevation increases, the end-point error in the one-dimen-

sional equation becomes smaller--being in fact negligible if

21z /X >> 1.

Certain of the approximations used to transform Eq. (3) into

Eq. (5) break down (see Appendix A) if the receiver elevation angle

z /X0 becomes too large. That constraint on elevation angle can be

combined with Eqs. (18) and (19) to give the following criteria for

the domain of validity of the one-dimensional equation:

2<< Zo << X (20)

The lower limit on receiver height is the end-point error; the upper

limit is the elevation-angle error.

NUMERICAL COMPARISON OF ONE- AND TWO-DIMENSIONAL SOLUTIONS
FOR RECEIVERS ABOVE A PLANE EARTH

The one-dimensional equations, much less complicated and costly

to solve numerically than the two-dimensional forms, should be used

whenever possible. Below, we quantify the altitude regime over which

the ,;impler equations may be used by comparing one-dimensional solu-

tions with those of the more accuraL: two-dimensional version. To

isolate inaccuracies due solely to elevation, we make the comparisons

for a plane earth. Section IV presents a complementary analysis that

compares one- and two-dimensional solutions for terrain irregularities

of various sizes.

Figure 1 shows the phase of W calculated from the one- and two-

dimensional equations for a frequency of 100 kHz and a plane earth

having a conductivity of 10-2 mhos/m. The curves trace phase as a

function of distance for several receiver altitudes between 1 m and

10 km.

For comparison, we also show the phase of W as computed from

Norton's [19371 well-known solution of the differential wave equation--

which is inherently two-dimensional. Although Norton's solution is a
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far simpler way of obtaining W for a plane earth than is either of

the integral equations, it is valid only for a plane earth, whereas

the integral equations are also valid--subject to the constraints

given in Sec. TV--for propagation over irregular terrain. The com-

parison in Fig. I is useful for defining the elevations at which each

integral solution agrees with trie classic results for the idealized

model. The integral equations are presumably also valid at the same

elevations for more realistic terrain, where Norton's solution cannot

be used.

As expected, our two-dimensional solutions agree well with

Norton's for all distances and elevations shown. The small differ-

ences are due to rounding in our numerical solution and, at very short
2 2

distances, to Norton's ignoring terms of order l/(kxo ) and (z /xo) 2 .

Also as expected, our one-dimensional results are accurate provided

the constraints on z 0 expressed by Eq. (20) are satisfied. However,

they exhibit large errors if the elevation is 1 km or less (end-point

error) or if zo/x 0 is too large (elevation-angle error). The error

in the one-dimensional results for z0 = 1 m is so great as to be off
-1/2

scale--a consequence of the z divergence discussed in connection

with Eq. (17).

The reliability of phase predictions made using the one-dimen-

sional equation is illustrated in Fig. 2, which shows contours of

constant one-dimensional errors in the elevation-distance plane. We

define phase errors as the differences (in meters) between the one-

and two-dimensional results shown in Fig. 1. Figure 2 also shows

several contours of constant elevation angle z /XO , and on the right

axis, the elevation z0 expressed in units of reduced wavelength X/2T.

The upper branches of the contours correspond to elevation-angle

errors; the lower branches correspond to end-point errors.

The contours in Fig. 2 conform closely to the locus of points

in the x0 - z domain corresponding to the validity conditions of

Eq. (20). For example, to achieve a phase error smaller than, say,

50 m, the receiver must be inside the 50 m contour. From Fig. 2, we

see that the receiver must then be below the line z /x s 0.25

(elevation-angle error) and above the line 2irX 0/Z0 s 2 (end-point
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error). An accuracy of 25 m requires the receiver to be below the

line zo/x 0 - 0.13 and above the line 2rz 0/A r 3. The usable domain

of the one-dimensional equation thus shrinks as error tolerance

tightens.

Fortunately, the end-point and elevation-angle errors caused by

the one-dimensional approximation are small at most ranges and alti-

tudes relevant to airborne receivers. Johler and Berry [19671, for

example, present one-dimensional calculations at 100 kHz for air-

borne receivers at distances of 150 to 400 km and altitudes of 2.5

to 10 km; Fig. 2 shows that range of parameters to be almost entirely

within the 10 m error contour. However, the one-dimensional equation

can yield significant phase errors at 100 kHz for receivers positioned

below 1 km or--for higher altitudes--at ranges of less than several

tens of kilometers.

In practice, much of the error for receivers that are above the

ground, but no higher than I or 2 km, can be avoided--without incurring

the expense of the two-dimensional solution--by using the one-dimen-

sional formulation for grounded receivers even though the receivers are

actually slightly elevated. The situation is illustrated in Fig. 3,

which again pertains to a frequency of 100 kHz and a plane earth of

conductivity 10- 2 mhos/m. The curves shown apply to all ranges, pro-

vided zo/x 0 < 0.1 (to make elevation-angle errors unimportant). For

an airborne receiver at an altitude of 10 km, for example, the curves

apply to all ranges beyond 100 km. The end-point error decreases

with elevation, whereas the difference between the phase on the ground

[computed from Eq. (4)] and that at z0 [computed from Eq. (3)] in-

creases. The two curves cross at 1.3 kin, where the phase error is

about 30 m.

Thus, at least for the conductivity and frequency in question,

cne-dimensional end-point errors can be kept below 30 m simply by

computing the phase as if it were on the ground [Eq. (4)] for alti-

tudes under 1.3 km, and by computing the phase from Eq. (5) for greater

heights. The accuracy that results is contained within the shaded

region in Fig. 3; greater accuracy requires numerical solution of

the two-dimensional equation.
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IV. TWO-DIMENSIONAL SOLUTIONS FOR ISOLATED IRREGULARITIES

We showed in Sec. III and Appendix A that, even if the terminals

are on the ground, the stationary-phase derivation of the one-

dimensional equation is valid only for terrain that is relatively

uniform across the width of the first Fresnel zone, and that more

severe irregularities require the two-dimensional equation. For

typical pathlengths of a few hundred kilometers, the Fresnel zone

width (Ax0 ) 1/2 is on the order of tens of kilometers at a frequency

of 100 klfz. Since irregularities in actual terrain are often smaller

than tens of kilometers, the regime of the one-dimensional equation's

applicability is quite restricted.

This section compares numerical solutious of the one- and two-

dimensional equations for propagation over surfaces having irregular-

ities smaller than a Fresnel zone. First, we modify the two-dimen-

sional equation to a form more efficient for computing the effects of

isolated irregularities than the standard form, Eq. (2). Then we

give an approximate analytic solution to this equation which--although

valid only under limited conditions--lends insight to the dependence

of W on the location and transverse dimension of the irregularity.

Finally, we present solutions to the full two-dimensional equation.

INTEGRAL EQUATIONS FOR ISOLATED IRREGULARITIES ON

A HOMOGENEOUS PLANE

Tho standard form of the two-dimensional integral equation--given

by Eq. (2)--requires integration over the entire surface. Such an

integration is necessary for continuously varying or undulating ter-

rain, but not for terrain that is uniform except for a few isolated

irregularities. In the case of mostly regular terrain, we can take

auvantage of the fact that the attenuation function is already known

on a plane or sphere having the properties of the homogeneous part

ol the surface. Specifically, we write

W = WW , (21)

I II

* T, -
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where WH is the known solution for a uniform surface, and WI is the

new unknown function. For propagation on a spherical earth, WH would

be the well-known residue-series solution [Bremmer, 19581. Here, we

consider irregularities on an otherwise uniform plane for which WH is

the Norton-Sommerfeld function [Norton, 1937] given by

WH(r) = 1 + i A'T+j e -r erfc(-i Vrr") , (22)

where

= ikr/2n 2  (23)
g

and erfc is the complement of the error function [Abromowitz and

Stegun, 19721.

Consider first a plane where the refractive index is n every-
g

where except for a certain region where it is an9 --a lake on flat landg

or a flat island in the ocean, for example. In such a case, Appendix B

shows that the integral equation governing W 1 is

ikfd r. ik(r,+r 2-ro)

(r 0 1 + JJdx dy A(x, y) rIr2 e

[WH (rl )WH (r2 )]  (24)

where

Y) 1 1 (25)
i(x, y) ng

is the impedance contrast between the lake or island and the surround-

ing region.

At first, Eq. (24) looks more formidable than Eq. (2) because

WH appears in the integrand. It is, however, much less costly to

tH
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solve numerically because the integration need be carried out only

over regions where A # 0, rather than over the entire x - y plane.

The savings are well worth the added complexity of including the

Norton-Sommerfeld functions in the integrand. Equation (24) is re-

lated to a two-dimensional integral equation derived--but not solved--

by Feinberg [1945].

As a second example, consider a uniform plane of refractive in-

dex n on which sits an isolated hill. Unlike the first example, we
g

have no impedance contrast here, but have instead a region where

3r2/ n j 0. For such a case, we show in Appendix B that WI satisfies

W (r I + k f dx d I +i Nar2 1 ro ik(r 1+r 2-r 0)
W1 (r O) = 1 + f dy l+ k 2 1

[W(r)Wr2)] W(x, y) (26)

which is similar to Eq. (24) except that terms involving ar 2/an appear

in place of terms involving A. Equation (26) is numerically more con-

venient than Eq. (2) because integration is required only where

ar2/3n is significant. However, the integration region can extend

well beyond the hill itself; Eq. (26) is thus more costly to solve

than Eq. (24), which requires integration only over the region actually

occupied by the irregularity. That is, the "irregularity" caused by

an isolated hill is characterized by ar2 /3n, which affects a region

much larger than the hill itself.

BORN-APPROXIMATION SOLUTION FOR WEAK, ISOLATED IRREGULARITY

We can solve Eq. (24) approximately for a weak impedance irregu-

larity embedded in a perfectly conducting plane, where WH is unity

and WI = W. We set W1 f I on the right side to obtain

ikfxo ik(rl+r2-xO)

W +1 I + dx dy A(x, y) rlr2 e , (27)
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for terminals on the x axis. Equation (27) is valid if the second

term on the right is small, giving a posteriori justification of our

assumption that W s 1. If the irregularity were a small hill not

too near the terminals, Dr 2/n would replace A in Eq. (27). This

perturbation solution is equivalent to the well-known Born approx-

imation.

Equation (27) requires a double integration over the impedance

contrast A(x, y). We assume the simple form

A(x, y) = A exp jj x)2  - ). (28)
(Ax) 2 (A 2y)

which allows us to illustrate the dependence of W1 on the lateral

gradients and position of the perturbation by adjusting (Ax), (Ay),

x, or y, respectively. We can perform the integrations using the

saddle-point approximation, provided kx0 >> 1, Ax << x0, and

2Ax < x < 2(x0 - Ax). The procedure is described by Field and

Joiner (19791, and the result is:

W 1 + iA((Ax) ]-/2 A1/ 2 exp A (29)
12x(% 0 - X)] (AY)2 ' (9

where

A(x, x, AY) + I (30)()[4x(Xo -

and

d= I O. (31)

In Eqs. (29) through (31), d is the maximum half-width of the first

Fresnel zone. A accounts for the width and longitudinal position of

Lm'; " ... ... ... . -- ,........... -, -- ---- "-"=
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the perturbation, and the exponent in Eq. (29) for its transverse
loctio Th fcto 4xx O - 2

location. The factor 4x(x0 - x)/x 0 in Eq. (30) accounts for the

narrowing of the Fresnel zone away from midpath, and has a maximum

value of unity when x = x 0/2. Although valid only under very re-

stricted conditions, Eqs. (29) through (31) reveal several important

characteristics of the attenuation function.

Weak One-Dimensional Irregularity

By taking the limits Ay >> d and y, we find that Eq. (29) assumes

the following form for a wide (i.e., one-dimensional) on-path pertur-

bation:

(Ax)(ikx0 )12W1 - i+ AO [2;x - ]1/2 " (32)
Ay- 0 [2-(x o - -X)]'

The denominator in Eq. (32) is largest at midpath, x = x /2, and

small near the endpoints, x F 0 or xO. The effects of the perturba-
tion are therefore greatest if it is near either terminal, and

smallest near midpath. This enhanced importance of regions near the

terminals is well known [Feinberg, 19591.

Narrow On-Path Irregularity

For perturbations much narrower than a Fresnel zone Ay << d, and

Eq. (30) becomes

A in (Ay/d)2
Ay<d 4x(x 0  -

2

The second term on the right of Eq. (32) must therefore be reduced

by a factor of magnitude

Recall that the derivation of Eq. (29) prohibits moving the
perturbation to within -2Ax of either terminal.

- .. . . .. .. . -- - --. .. . . .. . ..
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Al/Ay

24 ( o- )/x0I

to account for the limited width of the perturbation. Equation (34)

gives the intuitively reasonable result that the two-dimensional

correction factor is proportional to the fraction of the Fresnel zone

effectively occupied by the impedance contrast.

For narrow perturbations the reduction indicated by Eq. (34)--

but omitted by one-dimensional equations--can be considerable. For

example, for Ay = 3 km (a fairly sizable terrain feature), X = 3 km,

= 500 km, and x = x /2, this two-dimensional correction factor isx 0 0

about 0.27. For these parameters, the one-dimensional formulation

therefore overstates the impact of the perturbation by nearly a fac-

tor of four.

Although strictly valid only for the weak Gaussian impedance

contrast assumed above, the above discussion shows that the one-

dimensional integral equation is in serious error unless the pertur-

bation is nearly as wide as a Fresnel zone. Details will depend

on the structure of a given irregularity, but the conclusion is gen-

eral; viz. two-dimensionaZ solutions are needed unle.,s terrain fea-

tures are nearly uniform over transverse distances on the order of

A€Xx 0. The notion that the stationary-phase reduction of the two-
0

dimensional equations requires slight variation across a Fresnel zone

is certainly not new [Bremmer, 1958; Feinberg, 1945]. Nonetheless,

the inaccuracy of the one-dimensional equation at low frequencies for

terrain features narrower than, say, ten kilometers is often overlooked

in applications.

Next, we examine the dependence of W1 on pathlength by rewriting

Eq. (34) in the form

A 1• (35)

1 -A X0
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which shows that, for fixed x, the effect of the perturbation diminishes

with increasing pathlength according to 11 - x/x0 1 I'his "re-

covery" of W I occurs because the width of the Fresnel zone increases

as the path is made longer; and the fraction occupied by the perturba-

tion therefore decreases. This two-dimensional phenomena causes W

to recover beyond an obstacle more quickly than predicted by the one-

dimensional approximation.

Isolated Off-Path Irregularity

We showed above that the one-dimensional result, Eq. (32), must

be reduced by the factor in Eq. (34) to account for an on-path per-

turbation being narrower than a Fresnel zone. If a narrow terrain

feature is centered off-path, the result in Eq. (32) must be reduced

by still another factor. By combining Eq. (30) with the exponential

term in Eq. (29), we find this "off-path" factor F to be

F exp 2 id 2 (36)

(Ay)2 + Id2T

where, for simplicity, we have assumed x = x0/2. Equation (36) shows

that the "off-path" factor is governed by the Fresnel zone width for

narrow perturbations (Ay << d), and depends only weakly on off-path

distance y, for wide ones. F is related to a more complicated off-

path factor used by King and Wait [19763.

NUMERICAL SOLUTIONS OF THE TWO-DIMENSIONAL EQUATION

The algorithm used to solve Eqs. (24) and (26) is given in

Appendix C. The first two examples given below compare the numerical

solutions against analytic and experimental results, thereby validat-

ing our approach. The third example compares solutions of the one-

and twc-dimensional equations for terrain features of various widths.

Because computational expense is a consideration, all examples per-

tain to impedance--rather than topographic--irregularities.
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Weak Gaussian Impedance Contrast

Equations (29) and (32) give two- and one-dimensional analytic so-

lutions, respectively, for a weak Gaussian impedance contrast [Eq. (26)]

in a conducting plane. Their main value is to lend insight into tht.

behavior of W, since their range of validity is too restricted for

application to actual terrain. Nonetheless, if we confine ourselves

to weak perturbations where 1W1 - 11 << 1, we can use Eqs. (29) and

(32) to validate numerical solutions of Eqs. (24) and (4), respectively.

The following table gives the phase of W1 as computed by the

analytic approximations and numerical solutions. The assumed maximum

impedance contrast A0 corresponds to a conductivity U of 10- 2 mhos/m,
and the frequency is 100 kHz. The other parameters (see table) were

chosen to satisfy the validity restrictions on Eqs. (29) and (32).

If we had selected parameters to give a more substantial W1 --e.g.,

greater Ax or lower conductivity--we would have violated these re-

strictions. Moreover, since Xo12 8.7 for the case shown, our use
0

of Ly = IC km corresponds to a relatively wide perturbation that does

not cause major two-dimensional effects. Use of a much narrower per-

turbation would reduce W 1 - I to where it could not be resolved within

our numerical accuracy.

COMPARISON BETWEEN ANALYTICAL AND NUMERICAL SOLUTIONS
FOR A WEAK GAUSSIAN IMPEDANCE CONTRAST

Phase of WI (rad)

One-Dimensional Two-Dimensional

Numerical solution
Eq. (4) 1.97 x 102
Eq. (24) 1.90 X 102

Analytical solution
Eq. (32) 1.97 x 10-2
Eq. (29) 1.89 x 10-2

NOTE: Ay = 10 km, x = 50 km, y 0, Ax = 50 km,
x0 = 200 km.
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For the above reasons, the phase anomalies shown in the table

are very small and the one- and two-dimensional results do not differ

substantially. Nonetheless, these results confirm two important facts.

First, our numerical algorithms are accurate. Second, the one-dimen-

sional equation overstates the effect of an on-path irregularity that

is narrower than a Fresnel zone.

Conducting Region on Dielectric Plane

King and Tsukamoto [1966] made laboratory measurements of surface

waves propagating over a plane dielectric surface containing isolated

conducting regions. De Jong [1975] obtained good agreement with these

data by numerically solving a two-dimensional integral equation similar

to our Eq. (24), albeit of somewhat different form. To our knowledge,

his results are the only full two-dimensional solutions available in

the literature. Before proceeding to models representing groundwave

propagation, we compare our calculations with de Jong's.

Figures 4 and 5 show the propagation model and our numerical solu-

tions for the amplitude and phase of WI. A rectangular "island" of

infinite conductivity is embedded in a dielectric plane having an

impedance (ng ) of 0.11 - 9.15 x 10- 3 i. The width and length of

the island are 3 and 6.75 km, respectively, and the frequency is

100 Hz. The width of the Fresnel zone is /3 x 30 s 9.5 km for a path-

length of 30 km. The island is therefore much narrower than a Fresnel

zone, and we expect large differences between the one- and two-dimen-

sional solutions.

Our two-dimensional results are in excellent agreement with

de Jong's, if allowance is made for ni assumed transmitter and re-

ceiver being a small fraction of a wavelength above the surface.

Moreover, they agree well with the data (not repeated here) every-

where except in a narrow region beginning at the rear of the island

and extending for one or two wavelengths. Even our calculated standing-

wave structure agrees closely with King and Tsukamoto's data and

de Jong's calculations.

We concur with de Jong's explanation that the region of poor

agreement with experiment is caused by the well-known failure of
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impedance boundary conditions near abrupt conductivity changes. The

discontinuous behavior of the phase at the rear of the island indi-

cates incorrect boundary conditions. It is encouraging that this poor

accuracy persists for only one or two wavelengths beyond the boundary,

after which our results (and de Jong's) recover to the correct values.

Figures 4 and 5 quantify several defects of the one-dimensional

solution which are expected on intuitive grounds. 1irst, the one-

dimensional solution overstates the amplitude anomaly caused by the

island--a consequence of its treating the iFland as infinitely wide.

Second, it recovers too slowly beyond the island--a consequence of

not accounting for Fresnel zone widening as the pathlength increases.

Third, it omits the standing-wave patterns evident from the two-

dimensional solutions--a consequence of the stationary-phase approx-

imation neglecting terrain features beyond the receiver.

Recall that Figs. 4 and 5 pertain to W1, which accounts solely

for the effect of the island. These results must be multiplied by

WH [see Eq. (21)], given in Fig. 6, to obtain the full attenuation

function W.

Saltwater "Lake" on Poor Ground

Having verified our approach for two idealized cases, we next

consider parameters more representative of long-wave propagation on

the earth. Even here we use a simple model to avoid unnecessary com-

puter expense. Our method can readily treat more complicated situa-

tions, albeit at increased cost.

Our illustrative model assumes a conductivity C(x, y) given by

C(x, y) 10 - 3 + 4 cos 2  (x - 50 cos 2  mhos/m2\ 10 cs 2 Ay~

Ix - 501 ! 10 km

if >Y, ! Ay

= 10- 3 mhos/m , otherwise . (37)

. .. .. ' . . .. .n I- -- ill u-l - .- . - - . .
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This conductivity might correspond to a saltwater lake or bay of vari-

able depth. We assume this "lake" to be embedded in ground of con-

ductivity 10- 3 mhos/m and dielectric constant 10, and to extend from

x = 40 km to x = 60 km. Its half-width is specified by Ay, which we

will vary. The model given by Eq. (37) has the desirable feature of

continuous lateral derivatLives. However, our assumed arge conduc-

tivitv contrast causes significant impedance change,, within a fraction

of a kilometer of the boundaries.

Figure 7 shows two-dimensional solutions [Eq. (24)1 for W versus

distance for half-widths Ay of 3, 5, and 7 km. We also show for refer-

ence the one-dimensional solution [Eq. (4)]. All show little or no

effect in front of the lake, a pronounced enhancement in it, and various

degrees of recovery beyond it. The levels of enhancement and recovery

shown should bt. he generalized to other parameters. Wait [1964] gives

comprehensive one-dimensional results for land-sea-land propagation,

and shows that the enhancement in the sea portion, and subsequent re-

covery, depend strongly on virtually all parameters of the problem.

Even simple-looking one-dimensional results shown in Fig. 7 could

change drastically if we altered the lake's location or length, or the

ground's conductivity. The results in Fig. 7 must be multiplied by

WH, given in Fig. 6, to recover the full attenuation function W.

The accuracy of the solutions is poor near the rear boundary,

because the impedance boundary conditions fail near strong lateral

gradients. However, the preceding example showed that the accuracy

recovers at some distance beyond the Irregularity. Thus, we should

restrict attention to regions at least a few wavelengths from the

boundaries of our model lake.

The maximum half-width of the first Fresnel zone is about 12

and 17 km for pathlengths of 200 and 400 km, respectively. All models

shown in Fig. 7 are therefore fairly narrow, although the one having

Ay = 7 km occupies a sizable fraction of the first zone. As expected,

the two-dimensional solutions more closely approach the one-dimensional

solution as Ay increases. Also, as predicted by Eq. (35), the one-

dimensional solution recovers too slowly beyond the lake. Finally,

and most important, the one-dimensional solution erroneously gives

NA



-34-

lif

EE

I*- CD

0 S- u

0 00

~~Ic'Jw 0-

o I4

o I I4) 0
. 4

0 Ii
... . . . . . ...

. . . . . . . . . . . .. .. .... ... .... ......................... . .................J
... .. . . . .. .n .. .. ..

Ln L I4
U I'-i



-35-

the same result for all values of Ay. Even for Ay = 7 km--wider than

many natural impedance or topographic irregularities--the one-dimen-

sional solution strongly overstates the propagation anomaly for long

pathlengths.

Figure 7 shows that, although the one- and two-diwmnsional solu-

tions approach one another for wide disturbances and Long pathlengths,

they differ for several tens of kilometers beyond the lake. Thus, we

have the apparent paradox that--near a terrain feature--the solution

of the two-dimensional equation Jo,' noL approach that of the one-

dimensional equation as Ay * . We believe that this disagreement

occurs because the two-dimensional equation is more accurate, even for

a one-dimensional terrain feature--e.g., one that has no y-dependence.

One-dimensional features cause reflertions, resonances, and standing

waves--all of which are lost in the stationary-phase approximation, but

retained in the two-dimensional formulation. Such phenomena diminish

in importance as the distance from boundaries becomes large, and the

one-dimensional result should be accurate for large values of

x0 - (x + Ax). This behavior is evident in Fig. 7. Of course, the

accuracy of even the two-dimensional equation is adversely affected by

the failure of impedance boundary conditions near abrupt conductivity

changes.

Figures 8 and 9 show W as a function of transverse receiver

position y for several values of x and lakes having, respectively,

half-widths of 3 and 7 km. The function W I exhibits a classic dif-

fraction pattern of maxima and minima in the transverse direction.

That pattern is to be expected because the obstacle is smaller than

a Fresnel zone. Although the details of the signal structure shown

in Figs. 7 through 9 pertain to the model and geometric factors assumed,

a qualitatively similar structure will occur for any terrain feature

having lateral dimensions smaller than a Fresnol zone. Diffraction

patterns such as those shown in Figs. 8 and 9 are, of course, omitted

by the widely used one-dimensional equation.

This conclusion does not contradict Eq. (32) and the results in
the table (see p. 27), which are valid only for perturbations too
weak to cause significant reflection.

-- " -- " --- I I I'In.. .. a.- -I .. ..- . .
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V. CONCLUSIONS

The two-dimensional integral equation for groundwave propaga-

tion has different forms for elevated and ground-based receivers.

The two forms become equivalent in the limit of zero elevation. The

stationary-phase approximation can sometimes be used to derive much

simpler one-dimensional equations, which are widely used for most

applications. This stationary-phase reduction in dimensionality causes

so-called elevation-angle and end-point errors, both of which are

associated with elevation. We have quantified these errors by com-

paring our one- and two-dimensional numerical solutions with Norton's

attenuation function for a uniform flat earth. The two-dimensional

solutions agree closely, whereas the one-dimensional solutions fail

at certain elevations.

Elevation-angle errors are large unless the elevation is much

smaller than the pathlength. End-point errors occur because the

stationary-phase approximation improperly accounts for the region

near the receiver, and are large for elevated receivers at heights

below about one-sixth of a wavelength. The one-dimensional approxi-

mations for grounded and elevated receivers are therefore discontinuous

near the ground. Fortunately, neither type of error is too serious at

a frequency of 100 kHz for most ranges and altitudes pertaining to

airborne receivers. However, end-point errors are significant at

altitudes below I to 2 km, and elevation-angle errors can be important

for pathlengths of tens of kilometers or less. In practice, for re-

ceivers that are above the ground but no higher than 1 or 2 km, much

of the end-point error can be avoided--without the expense of the two-

dimensional solution--simply by using the one-dimensional solution

for grounded receivers.

Our numerLcal solutions of the two-dimensional equation for iso-

lated terrain features agree well with (1) approximate solutions from

first-order perturbation theory, (2) numerical solutions of de Jong

119751 for an idealized model, and (3) laboratory measurements by

King and Tsukamoto 119661.

- ...-----....
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It is well known that the one-dimensional equation is invalid

unless the terrain is nearly uniform across a Fresnel zone. Compari-

sons between our one- and two-dimensional solutions for on-path

terrain quantify the errors. For a frequency of 100 kHz and features

narrower than about 10 kin, we find that the one-dimensional equation

erroneously predicts propagation anomalies that (1) are independent of

width, and therefore too large, (2) diminish too slowly at long dis-

tances, and (3) do not exhibit a diffraction pattern in the transverse

direction.

The one- and two-dimensional solutions approach one another at

large distances beyond very wide terrain features. However, they

disagree near boundaries because the stationary-phase approximation

neglects reflections and interference effects. Therefore, even for

terrain that exhibits no transverse gradients, only the two-dimen-

sional equation accounts for detailed signal structure.IConsiderable error can be incurred at low frequencies by apply-
ing the one-dimensional equation to moderately sized terrain features.

For example, for a pathlength of 500 km, that equation overstates by

a factor of 4 the effect of an obstacle 6 km in diameter. It cannot

give accurate results unless the diameter approaches a Fresnel zone

width, which for this example is several tens of kilometers. None-

theless, the one-dimensional equation is often applied to terrain that

does not satisfy the validity requirements.

For the above reasons, we believe the one-dimensional equation

to be incapable of treating many terrains, even if the input data

were perfect. Unfortunately, routine application of the more accurate

two-dimensional equation to irregular terrain is probably impractical.

A more frui:Ful approach is to devise means of averaging terrain over

the Fresnel zone to obtain equivalent one-dimensional models. The

statistical approach of Feinberg 119441 can be used to derive a one-

dimensional -quation for the average field if the terrain has many

small, randomly located irregularities. His approach is invalid for

terrain exhibiting, say, a few hills or lakes, however.

r '.,-
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Appendix A

STATIONARY-PHASE APPROXIMATION FOR ELEVATED RECEIVERS

For terminals on a plane earth, the phase of the integrand in

Eq. (2) is dominated by the term exp [ik(r I + r,2 - r )], whose phase

is constant on a family of ellipses defined by the expression rI + r2 =

constant, but varies rapidly along the hyperbolas normal to the

ellipses (see Fig. A.1). That behavior led Hufford to use elliptical

coordinates in his solution; the hyperbolas shown in Fig. A.1 define

his transverse coordinate. The main contributions to the integral

occur within the ellipse defined by rI + r2 = X/2--that is, within

the first Fresnel zone (illustrated in Fig. A.2).

Ellipses and hyperbolas are natural coordinates for a receiver

on a plane earth, but not for an elevated receiver. For the elevated

case, we must begin with Eq. (3), which contains the term exp [ik(r I +

R2 - R0 )] and for which the relation r + R2  constant does not trace

ellipses in the plane x = 0. Another objection to elliptical coordi-

nates is that for either ground-based or elevated receivers, they are

awkward for computing higher order corrections to the stationary-phase

integration.

Field and Allen [1978], in rederiving Eq. (2) for nonelevated

receivers, used cartesian coordinates and applied the stationary-phase

approximation along the y coordinate. Despite those differences from

Hufford's approach, the two results agree. The reason is that for

either method to be valid in the case of ground-based receivers,

kr>> 1 must hold, which in turn implies r0 >> vr OX7 . The last con-
0

dition stretches the Fresnel zone into a highly elongate, lipse.

The hyperbolic trajectories, except near the ends, then conform nearly

to the paths defined by x = constant. Hence, integrating along the

hyperbolas is nearly equivalent to integrating along the y coordinate

over most of the path.

STATIONARY-PHASE RESULT FOR ELEVATED RECEIVERS

To assess the end-point and elevation-angle errors in the one-

dimensional equation, we extend the stationary-phase integration in
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cartesian coordinates so that it applies to elevated receivers, then

evaluate correction terms to the usual result. By performing the

derivation for a plane earth, we concentrate solely on effects related

to receiver elevation. We seek to determine when the two-dimensional

equation for elevated receivers,

2W(P) = 1 + ikfd RO W(Q) - I +R , (9)

can be approximated by the usual one-dimensional formula

1/2 [ 0 2 1/
0 20i/ df xR2 (x + R2 )1

2Wx0  ,0  ) 1z ed I iko+ 1R
W(x0 -0)et + e 2 (A.1)

Equation (9) is simply repeated from the text; Eq. (A.1) results

from inserting Eqs. (6) and (8) into Eq. (5) and using a cartesian

coordinate system with the ground plane at z = 0, the transmitter at

the origin, and the receiver at x0 , '" For Eq. (9), the integration
.0*

point Q has coordinates x, y, a, and the following relztions hold:

R2  0 + z2 (A.2)

0  0
2 2 2

r 2 x + y 2 (A.3)

and

2 2
2  (x0  x) +y ; (A.4)

r2  + 2
2 2 (A.5)
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For the one-dimensional equations, the same relations apply, with y

set equal to zero.

Equation (9) can be written

2W(x0 , zo) I 1 + dx dy P(x, y) exp [ikR 0  R 2

(A.6)

where

r (x, y) = ik(- W (x, y, O) -(1 + i O(A.7)

The inner integral in Eq. (A.6) is given by

00

I(x) - dx r(x, y) e ikR0h(xy)(A.8)

where

h 2 (A.9)

R0

For long transmission paths, kr0 >> 1, and the integral [Eq. (A.8)]

is of the classic form amenable to approximate evaluation by the

stationary-phase method jErdelyi, 1956], provided r(x, y) varies more

slowly than exp (ikK0 h). If it does, the stationary-phase formula

can be used to write

hikR h /

y=O

Ily inserting Eq. (A.1O) and the relations

.....
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R0h = x + R2 - R0  (A.11)

and

kR 0h"lyo (x+R 2 & (A.12)0,.0 = k / A

into Eq. (A.6), we recover the standard form of the one-dimensional

equation [Eq. (A.1)]. The x integration is terminated at 0 and x09

rather than at +-, because--as discussed below--the exponent varies

slowly for 0 : x ! x0 but oscillates rapidly for x < 0 or x > x O.

END-POINT ERROR IN ONE-DIMENSIONAL APPROXIMATION

The above treatment is valid provided r(x, y) varies only slightly

over distances the order of

1/2 1/2
6y - (kR 0h")1 2  =0 k(x + R 2) /  (A.13)

That condition is satisfied for most values of x. However, nc'_ the

receiver, where x _ x0 and R2 t Z0, Eq. (A.13) gives

6y ~ \---/2 (A. 14)27

as the distance over which r must be relatively constant; whereas the

term

i z 0 iz 0
kR 2 R 2  k (r 2 + 2

which appears in r [see Eq. (A.7)], has a peak at x = xO and a half-

width of z0. Therefore, unless
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) 1/2

or, equivalently,

z0 > X/2r , (A.16)

the stationary-phase approximation fails near the end point. Stated

more practically, the canonical form of the one-dimensional equation

for elevated receivers is inaccurate unless the receiver height ex-

ceeds about one-sixth of a wavelength. Note that this problem does

not occur for ground-based receivers, where 3r2 /an E 0.

To better quantify the end-point error caused by the stationary-

phase approximation, we again examine Eqs. (A.6) and (A.7). The

integration just outlined is valid except for a small region of dimen-

sion z0 near the end point. Even within that region, only the term

proportional to zo/R 2 in Eq. (A.7) varies so rapidly as to violate

the stationary-phase approximation. Thus, we can apply the approxi-

mation over the entire path save the end-point region, where the
2

Zo/R2 term--which stems from the (l/kR )(8R /an) term in Eq. (3)--
z0 2  2 2
requires special attention. The equation that results is identical

to Eq. (A.1), except that the "end-point correction" must be added to

the right side:

27T a

end-point correction - dO dr

0 0

(r0 0 Z2 ik(r I+R 2-Ro)

x W(r2, 6) - ei, (A.17)
29 ~ R2

where the upper limit, a, should be taken somewhat larger than zO ,

but much smaller than xo; and r2, 6, and z are cylindrical coordi-

nates centered with origin on the ground beneath the receiver. ForI

long paths, the following approximations are valid within the end-

point region, provided z0 << (xo) 0/2.

-r - -.- ------ I
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r O R0  x0 ; (A.18)

W(r 2 9 0) s W(xO ,1 0, 0) (A. 19)

With these approximations, we have

ra z0-r2 ikR2

end-point correction ; W(x0 , 0, 0) dr2 R3 e (A.20)

The integral in Eq. (A.20) cannot be evaluated in closed form

because of its finite upper integration limit. The rapid falloff

of the integrand for r2 > z0 permits us to set a = - with little loss

of accuracy. Then, by making the change of variable

=2 2

S= 1+ r 2/Z 0 ,

we find

ikz 0

end-point correction r W(x0, 0) f e 2  d4 W(x0  0) E2 (ikz 0 )

(A.21)

where E is the exponential integral whose properties are given by I
Abromowitz and Stegun 119721. By using the power and asymptotic

series for E, we find

W(x0, 0) , if kz << I , (A.22)
0

end-point correction 0 ikz0
IW(x0, 0)ze

Iz if kz >> 1 (A.23)

the magnitudes of which correspond to Eqs. (18) and (19) of the main

text. Note that adding Eq. (A.22) to the right side of the standard

L
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one-dimensional equation for elevated receivers [Eq. (A.1) or Eq. (5)1

recaptures the continuity of the fields as z0 - 0. Equations (22) and

(23) explain why, for long paths, the one- and two-dimensional numer-

ical solutions given in Sec. III agree well at elevations above a few

kilometers but differ substantially near the ground.

ELEVATION-ANGLE ERROR IN ONE-DIMENSIONAL APPROXIMATION

In addition to the end-point errors, which depend on the ratio

of receiver altitude to wavelength, the one-dimensional equation

suffers from an elevation-angle error that depends on the ratio zo/X 0

of receiver altitude to pathlength. It is intuitively evident that

several aspects of the stationary-phase integration over the trans-

verse coordinate, which reduces Eq. (9) to Eq. (A.1), breaks down at

large elevation angles. Hufford's [19521 transformation to elliptical

coordinates fails because the intersection of the Fresnel zone ellip-

soids with the ground strongly deviates from an ellipse if z /X is
*~ 0

too large. Similarly, Field and Allen's [1978] treatment encounters

errors because as z /X0 increases, the stationary-phase integration

paths--the intersection of hyperboloids with the earth's surface--

are less accurately approximated by the lines x = constant (refer

to Fig. A.1).

One way to quantify the elevation-angle error is by noting that

the approximation

f dx f dx, (A.24)

-C 0

used to reduce Eq. (A.6) to Eq. (A.1), fails unless z 0/x0 is small.

When the receiver is on the ground, the following relations apply

along the x axis--which closely approximates the line of stationary

points for long propagation paths:

Godz*nski [19611 shows that if z0 > VxO, higher order Fresnel

zones intersect the ground in a manner that deemphasizes the contri-
bution of points near the receiver.

;,A



0 O , if 0 < X ! x0 ,

ik(r I + r2 - r) = 21k(x - xo) , if x > x0 , (A.25)

-2ikx , if x < 0

The exponents in Eqs. (A.6) and (A.]) are thus invariant between

x = 0 and x = x0, but oscillate rapidly outside that range. However,

if z0 is not zero, we have the following relations:

ikz 
2

ik(rl + R2 - R 0 (x0 - x) if x0 - x > z0  (A.26)

ik(r I + R2 - R0) n ikz0 , if x0 - x << z0 .

If kz0 <« 1, no substantial oscillation arises in the region 0 _ x : xo,

and the upper integration limit may reasonably be taken as xO. Recall

however that the end-point error becomes substantial if kz0 << d.

If kz0 > 1, Eq. (A.26) shows that exp [ik(r I + R2 - R0) ] does

oscillate in the region defined by x0 - z0 < x £ x0* The implication

is that the integrand does not change abruptly from nonoscillatory to

oscillatory at x = x0 as it does for a nonelevated receiver; instead,

change occurs over a transition region of width about equal to z

around the subreceiver point. Therefore, unless

Zo/x 0 < 1 , (A.27)

the assumption that the integrand slowly oscillates between 0 and x0
will be invalid over a significant fraction of the path.

Although the criterion given as Eq. (A.27) derives from Field

and Allen's [1978] reduction to a one-dimensional equation, it applies

to any stationary-phase integration over the transverse coordinates

[Hufford, 1952; Johler and Berry, 1977]. That point Is borne out in

See. III, where the disagreement between the one- and two-dimensional

numerical results is shown to be nearly directly proportional to the

elevation angle z0/xO.
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Appendix B

INTEGRAL EQUATIONS FOR ISOLATED IRREGULARITIES

ON A UNIFORM PLANE

This appendix derives Eqs. (24) and (26), which are more con-

venient numerically than Eq. (2) for small terrain irregularities.

We use the Green's function

G(r2) = WH(r2) O(r2) (B.I)

and an auxiliary attenuation function W, defined by

(p) = 2Wl(P)WH(P)Po(P) , (B.2)

instead of G =0 and i = 2W 0 , as was done (Hufford, 19521 to derive

Eq. (2). As before, ip and 0 are the vertical Hertz potential and the

Hertz potential in free space, respectively. WH is the attenuation

function for a uniform plane given by Eq. (22). W1 therefore accounts

solely for impedance or topographic irregularities. As shown below,

use of the auxiliary function W1 instead of W itself (recall W E W1WH)

offers computational advantages.

ISOLATED LAKE OR ISLAND

We consider a plane containing no topographic features so that

Dr 2/n is everywhere equal to zero. The refractive index is i (x, y),2 g
which equals a constant, n , except over a limited region. The im-

g
pedauce boundary conditions become

= - ik (B.3)
an -g '

n. 9



nn1kG
fl - ' (B.4)

where we have used the fact that WH /n = -ikW H/ng

We apply Green's theorem to obtain

(P) G(p) - dx dy (r2) -3n 1 (B.5)

2 4rQ)JJ- 12.J

and use Eqs. (B.3) and (B.4) to cast Eq. (B.5) into the following

form

ip(p) = 2G(p) + -Lf dx dy G(r2 )W(rI) L(x, y) , (B.6)

where

A(x, y) = (B.7)
ng ng

is the impedance contrast. Then, using the fact that

ikr
Io(r) - e (B.8)

0r

and inserting Eqs. (B.1) and (B.2) into Eq. (B.6), we find

2WllP)W (ro , . e_ fik0 2W (ro) e ir0+ Lk dx dy
1 r 0  0 r0

ik(r 1 +r 2 )

x Wl(Q)WH(rl)WH(r 2 ) A e . (B.9)

wood"
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By dividing both sides of Eq. (B.9) by 2WH(rO) exp (ikr0 )/ro, we

obtain Eq. (24) in the text. Equation (24) is unchanged if more than

uI ii hi tr it ke exists, but the IintegraLion on the right must be

performed over each irregularity.

ISOLATED HILL

The derivation of the integral equation for W1 in the presence

of an isolated hill (or hills) proceeds exactly as outlined above for

an isolated lake or island. We note that here the refractive index

is equal to n over the whole plane, but r 2/an does not vanish every-g2

where. The impedance boundary conditions are:

an fl- (B.1O)
an ng

I G a aw n

= + I-- + (1 (--)-

By inserting Eqs. (8.10) and (B.11) into Eq. (B.5), and repeating the

steps leading from Eq. (B.5) to Eq. (B.9), we arrive at Eq. (26) in

the text.

L Mt
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Appendix C

ALGORITHM FOR NUMERICAL SOLUTION OF TWO-DIMENSIONAL

INTEGRAL EqUATION

This appendix gives the algorithm used to obtain numerical solu-

tions of Eqs. (24) and (26), which can be written In the form

W(x, y) = 1 +ffdx' dy' K(x, y, x', y')W(x', y') (C.I)

If terrain features are localized, the kernel of Eq. (C.1) can be

assumed to vanish outside some bounded region. The solution consists

of first solving Eq. (C.l) to find W within this irregular region,

and then integrating over the region to obtain W on the uniform por-

tion of the plane.

SOLUTION WITHIN REGION OF IRREGULARITY

We divide the isolated region into a square grid as shown in

Fig. C.1, where n and n are the number of squares in the x and yx y

directions. Equation (C.I) then becomes

n -i n-Ix y

W(x, y)= 1 + F4 O ff dx' dy' K(x, y, x', y')W(x', y') ,(C.2)

=0 j=Osj

where on the square sij, centered at xi, Yis

As +As
i 2 1 2'

(C.3)

AA'/I ;, < ' '/} -
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Here As is the length of the side of a square takcai to be small enough

that

W(x, y) - W(xi, y ) (C.4)

on each square. We can then rewrite Eq. (C.2) as

n -1 n -ix y

W(xk, Y ) I + W(xi, yf dx' dy' K(xk, Y x', Y')

i=0 j=0
(C. 5)

By defining

k ,i -ffdx' dy' K(xk, Yj. x', V') (C.0)

s i j

the solution to Eq. (C.1) can be expressed as

n -1 n -1

x y

I + 2 E W(xi, yj)M kij

i=o j=0

W(x i#k j#9 (C.7)
k' Y) 1 - Mkkkk

The integration in Eq. (C.6) is performed with standard quadrature

methods. We use a higher density of quadrature points when (i, j) =

(k, Z) to accommodate the proximity of the singularity in K at r2 = 0.

Equation (C.7) is a system of n x n linear equations, whichx y
we solve iteratively using the Gauss-Siedel method with each W initially

set equal to one. To evenly distribute errors throughout the grid,

we begin each iteration at a different point. Arbitrary (onvergenre

criteria can be used. Computation time varies as (nx x ny ) 
2
, so care

must be exercised in selecting the parameter As. In most problems,
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the optimum value for As depends on wavelength, rather than on terrain

features. Computation time then varies as the square of the area of

the perturbed region, and limits the size of irregularities that can

be analyzed at reasonable cost. For a frequency of 100 kHz, we found

the practical limit on size imposed by computational cost to be about

10 km x 10 km.

SOLUTION OUTSIDE REGION OF IRREGULARITY

Once W has been found inside the irregular region, its value out-

side is calculated from Eq. (C.5), using weli-known quadrature methods.

Here W is given by a double integral over this region, rather than by

a solution to a two-dimensional integral equation. Also, the singu-

larity at r2 = 0 causes no difficulty.
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