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SUMMARY

This report presents solutions of the one- ahd two-dimensional
integral equations that describe groundwave propagation. We consider
the effects of (1) terrain irregularities that are narrower than a
Fresnel zone and (2) receiver elevation. Our resules define the con- ]
ditions under which the simpler one-dimensional equation can be used,
as well as those that demand the more complex two-dimensional form.
We assume a frequency of 100 kHz throughout, although certain results

are easily scaled to other frequencies.

It is well known that the one-dimensional equation is invalid
unless the terrain is nearly uniform across a Fresnel zone. We
quantify the errors and find that, for obstacles narrower than about
10 km and typical pathlengths, the one-dimensional equation erron-
eously predicts propagation anomalies that (1) are independent of
width, and therefore too large, (2) diminish too slowly at long dis-
tances, and (3) do not exhibit a diffraction pattern. Considerable
error can be incurred by applying the one-~dimensional equation to moder-
ately sized terrain features. For example, for a pathlength of 500 km,
that equation overstates by a factor of 4 the effect of an obstacle
6 km in diameter. It cannot give accurate results unless the diameter
approaches a Fresnel zone width--which exceeds 10 km for long propaga-
tion paths. Even for wide obstacles, the one~dimensional formulation
neglects reflection and interference phenomena.

The two-dimensional integral equation has different forms for
elevated and ground-based receivers. The two forms become equivalent
in the limit of zero elevation. The stationary-phase approximation

. can sometimes be used to derive one-dimensional equations, which
are widely used for most applications. This reduction in dimension-
ality causes elevation-angle and end-point errors, both of which are
associated with elevated receivers.

Elevation-angle errors are large unless the elevation is much
smaller than the pathlength. End-point errors occur because the

stationary-phase approximation improperly accounts for the region
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near the receiver, and are large for elevated receivers at heights
below about one-sixth of a wavelength. The one-dimensional approxi-

; mations for grounded and elevated receivers are therefore discontinuous
near the ground. Neither type of error is large for most ranges and
altitudes pertaining to airborne receivers. However, end-point errors
are significant below 1 to 2 km, and elevation-angle errors can be
important for pathlengths of several tens of kilometers or less. In
practice, for receivers that are above the ground but no higher than

1 or 2 km, much of the end-point error can be avoided--without the
expense of the two-dimensional solution--simply by using the one-

dimensional solution for grounded receivers.
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PREFACE

This report continues Pacific-Sierra Research Corporation's
(PSR) analysis of low-frequency groundwave propagatior. over irregular
terrain. In earlier reports, Field and Allen derived validity cri-
teria for application of the one-dimensional integral equation when
the terminals are on the ground;* and Gayer, Field, and D'Ambrosio
gave extensive numerical results based on this equation for ground-
based terminals and generic terrain models.+

The present report extends that earlier work by presenting and
comparing numerical solutions of the one- and two-dimensional inte-
gral equations for elevated receivers and terrain features narrower
than a Fresnel zone. 1In addition to identifying important two-
dimensional phenomena, the results define the conditions under which
the more convenient one-dimensional equation can be used, as well as

those that demand the more complex two-dimensional form.

*

E. Field and R. Allen, Propagation of the Low-Frequency Ground-
wave over Nonuniform Terrain, Rome Air Development Center, RADC-TR-
78-68, March 1978.

TS. Gayer, E. Field, and B. D'Ambrosio, An Integral Equation
Approach to the Propagation of Low-Frequency Ground Waves over Irreg-

ular Terrain: I. Ground-Based Terminals, Rome Air Development Center,

RADC-TR-80-334, November 1980.
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1. INTRODUCTION

Historically, two theoretical approaches to the analysis of
ground-wave propagation have evolved: the differential equation
method of Van der Pol, Norton, Bremmer, and Fock [Brommer, 1958];
and the integral equation method {Hufford, 1952; Feinberg, 1959].

The differential equation yields virtually exact solutions for plane
or spherical surfaces but is awkward for analyzing propagation over
terrain whose conductivity is variable or whose topography is uneven.
Under conditions of topographical irregularity, numerical solution
of the integral equation is the more practical approach.

The general, two-dimensional ferm of the integral equation is
valid provided (1) the conductivity of the earth is great enough to
justify applying impedance boundary conditions, and (2) terrain ir-
regularities are not tooc severe. However, because numerical solu-
tion of the two-dimensional integral equation is costly, its use has
been limited to highly idealized irregularities [de Jong, 1975], with
a much simpler, one~dimensional approximation more commonly used
[Johler and Berry, 1967; Johler, 1977; Gressang and Horowitz, 1978].

The one-dimensional equation is derived by means of a stationary-
phase integration that reduces the dimensionality of the general ver-
sion; being an approximation, it is not valid for all antenna cleva-
tions or terrain types. It is therefore necessary to define the
conditions under which the more convenient one-dimensional equation
can be used, as well as those that demand the more complex two-
dimensional form.

Field and Allen [1978] derived validity criteria for the one-
dimensional equation as applied to ground-based terminals; Gayer,
Field, and D'Ambrosio [1980) gave one-dimensional numerical results
for ground-based terminals and generic terrain models. The present
report extends the earlier work by comparing numerical solutions of
the one- and two=dimensional integral equations. For elevated re-
ceivers, we show that the one~dimensional results are invalid at

heights (1) lower than a reduced wavelength A/2m, cr (2) so large

L -y
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as to constitute a significant fraction of the pathlength. For ground-
based receivers, we cuantify the differences between the one- and two-
dimensional solutions, finding serious disparities for terrain whose
transverse irregularities vary significantly across the first Fresnel
zone. For long paths, there are hence severe restrictions on the
terrains to which the one-dimensional equation can apply.

Section II presents the one- and two-dimensional integral equa-
tions and summarizes the assumptions on which they are based. Sec-
tion III demonstrates analytically that the one-dimensional equation
incorrectly predicts discontinuous fields near the ground, but that
the two-dimensional equation correctly predicts continuous fields;
it also compares one- and two-dimensional numerical solutions as
functions of receiver elevation above a plane earth. Section IV
presents numerical solutions for propagation over terrain that con-
tains isolated inhomogeneities, and identifies two-dimensional phe-
nomena not accounted for by the one-dimensional formulation.

The combined results of Secs. TIT and IV define the regimes of
receiver altitude and severity of terrain irregularity for which the
one~dimensional treatment may be used. Section V summarizes the con-

clusions; the appendixes give certain mathematical details.




TI. INTEGRAL EQUATIONS FOR GROUND-BASED AND ELEVATED RECEIVERS

This section summarizes the one- and two~dimensional integral
equations for ground-wave propagation used throughout this report.
Each has two forms, according to whether the receiver is assumed on
the ground or elevated. Detailed derivations, havirg been given
elsewhere [Hufford, 1952; Field and Allen, 1978], are not regeated.

We work with the ground-wave attenuation function W, defined

by

V= 2, (1)
where ¥ is the vertical Hertz potential and wo is the Hertz potential
in free space. The function W accounts for the earth's imperfect con-
ductivity and topographic features. For a flat, perfectly conducting

earth, W =1 and ¢ = 2¢0.

TWO-DIMENSIONAL FORMS

If surface impedance is small, terrain variations not too severe,
and the terminals on the ground, W satisfies the two-dimensional

integral equation.

. r ik(r,+r,~r.) ) or
_ ik 0 17727%’ | 2 i 2
W(p) =1+ I da W(Q) e [;— + (1 + E;—)-SE—]

) . )
(2)
1f the receiver is elevated, the following equation for W applies:
R ik(r +R,-R.) dR
ik 0 172 1 i 2
2W(P) =1 + - [ da wWQ) e [——-+ (1 + ———)._—_]
2m R, ng kR, / 3n
(3)

>
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In Egqs. (2) and (3), the transmitter is at the origin, and

k = free-space wave number Ww/c,
n = unit vector nmormal to ground,
n_ = complex refractive index of ground, !
p, P = coordinates of ground-based and elevated receivers,
respectively,

RO = distance from transmitter to receiver,
da = element of area on earth's surface,
Q = integration point on earth's surface,
r. = distance between transmitter and integration point Q,

r2, R2 = distance between Q and receiver points p, P.

Formally, there is no difference between the definitions of p, Ty

r. and P, R2, R However, following Hufford [1952], we use capital

lgtters in Eq. ?3) to emphasize that the receiver is elevated above

the ground a distance zo.
Although Eqs. (2) and (3) appear similar, they differ funda-

mentally. Equation (2) is an integral equation in that the unknown

function W(p) on the left side also appears in the integrand on the

right. Equation (3) is an integral formula, rather than equation,

because the unknown function W(P) on the left refers to the attenua-

tion function above the surface, whereas the integrand on the right

contains the attenuation function as defined on the surface. Thus,

to obtain W from Eq. (3) for an elevated receiver, we must first solve

Fq. (2) to obtain W for points on the surface, then insert those values

into the integrand of Eq. (3).
Equations (2) and (3) are the most general forms of the integral

cquation tor the ground-wave attenuation function W. The quantity

l/ng (square brackects) represents the earth's surface impedance and

accounts for its imperfect conductivity. The function Brzlan in '

Eq. (2) accounts for terrain shape. For terminals on a perfectly

conducting flat earth, both 1/ng and Brz/an vanish, and W = 1, as

before.

St v e eav——"
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The function BRz/an in Eq. (3) accounts for both terrain shape
and receiver elevation, and does not vanish for a flat earth. A
careful limiting procedure--given in Sec. I111-~is needed to recapture
the well-known result that for a flat earth, W= 1 if ng + ® and
>
z0 0.

ONE-DIMENSIONAL APPROXIMATION

The two-dimensional Eqs. (2) and (3) are expensive to solve
numerically. A major simplification results if the statiomary-phase
method is used for one of the integrations, thereby reducing Eqs. (2)
and (3) to one dimension. Details of the reduction for ground-based
receivers [Eq. (2)] are presented in Hufford {1952) and Field and
Allen [1978]); the one-dimensional approximation given in those sources

is

Yo r 1/2
. 1/2 X
-mi/4 [ k 0

w(xo) ~1-e (ﬁ) / dx Lx(xo — x)]
0
or ik(r,+r.-r,)
xw(x)[%ak(“ﬁ—)s-n-ﬂe 1ot (4)
g 2 §

where rl, rz, and r  are defined as above, the transmitter and re-

0

ceiver both lie on the y = 0 plane, and x and x, are projections of

0

T and r, on the z = 0 plane. Hufford also uses the stationary-phase
approximation to reduce Eq. (3) (for elevated receivers) to the one-

dimensional form

X

1/2 0 ~ X 1/2
2W(x z,) =1- e_vi/h L3 dx S —
0’ “0 2n x(xO - x)
0 e
3R, ik(r +R,-R )
1 4 \%* 1" R27Rg
x W{x) [;‘—— + (1 + R ) nle . (5)
4 2 o
Aenssestistatdiatiinetanete - T anbit mm‘ -<h—‘t- i-" - ey ' .\' A]

ke



Both Eqs. (4) and (5) are expressed in the classic form derived
by Hufford, which assumes that rO(RO), T and r2(R7) nearly equal
xo, X, and x0
receiver elevation to be small compared with pathlength. Field and

- X, respectively; that assumption requires terrain or

Allen [1978] show that somewhat greater elevation can be accommodated

by substituting--as we occasionally do below--

r2 1/2 < 1/2
0 for S (6)
rlrz(r1 + fz) x(xO - x)

in Eq. (4) land in Eq. (5), if we use RO, R2 instead of e r2].
APPLICATION

Although some solutions have been obtained for two-dimensional
equations equivalent to Egs. (2) and (3) (see de Jong [1975] and
Secs. ITI and TV, below), most calculations for irregular terrain
have been based on the far simpler Egs. (4) and (5) [Johler and
Berry, 1967; .Johler, 1977; Gressang and Horowitz, 1978]. It is
therefore important to define the constraints on applicability im-
posed by the stationary-phase reduction of the two-dimensional
equation.

In analyzing the one-dimensional equation for ground-based re-
ceivers, Field and Allen [1978] show that the reduction in dimen-
sionality is valid provided (1) the propagation path is much longer
than a wavelength, (2) terrain features have small lateral gradients
transverse to the direct propagation path (that is, gentle hills or
valleys), and (3) Lerrain features vary only slightly across the
Tirst Fresnel zone. We show in Sec. IV that the third condition
severcly limits the applicability of the one-dimensional equation.

The validity criteria for reducing the two~-dimensional equation
tor elevated receivers to onc-dimensional form have not received
much attention in the literature. We show in the following section

that Eq. (5) is valid provided (1) the receiver is not too close to




r

the ground, and (2) the receiver height is much less than the path-
length. Those restrictions are additional to the ones already given

for ground-based receivers.

.
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I1I. VALIDITY REGIME OF ONE-DIMENSIONAL EQUATION
FOR _ELEVATED RECEIVERS

Here, we quantify the errors that result from transforming the
two~-dimensional equations to one~dimensional form. We begin by
demonstrating that the two-dimensional formulation correctly repre-
sents the continuity of the Hertz potential at low receiver eleva-
tions, whereas the approximation does not. Next, we show that the
stationary-phase reduction from two dimensions tec one is inaccurate
unless the elevation angle of the receiver is quite low. Finally,
we compare numerical results for both formulations and determine the
accuracy of the one-dimensional equations as a function of receiver
height and elevation angle.

Because the discussion pertains solely to the effects of the
receiver's elevation above the ground, derivations and examples are
for a smooth-plane earth. The question of the one-dimensional form's
ability to accurately represent propagation over irregular terrain is

addressed in Sec. IV.

CONTINUITY OF TWO-DIMENSIONAL EQUATIONS NEAR THE GROUND

If the receiver is on a plane earth, Brz/an is identically zero,

and Eq. (2) becomes

. ik(r +r,-r
_ ik ‘o 1) YT
W(p) = 1 + I da r]rz w(Q) (“g) e . (7N

owover, if the receiver is a height 25 above the ground,

-z
: : = 8

2

an 2, z2)1/2

ld]
N
(@]

and Eq. (3) becomes

A e ———— et s = et G




2m r.R g kR R2

. R z ik(r,+R,-R.)
@) =1+ faga -2 wy |2 -(1+-L)2fe 120
12 n 2

9

E Continuity of the fields requires that Egs. (7) and (9) become equal
i ' in the limit zZ, + 0. However, the equality is by no rcans immedi-
ately apparent, given the 2 on the left of Eq. (9) :ad the terms
proportional to zO/R2 on the right.

To demonstrate the low-elevation equivalence of Eqs. (7) and

(9), we must recognize that even though

zli:z) RO * T (10a)
0

and
lim R2 T, (10b)
zo+0

there is a small region centered about the subreceiver point (near
r, = 0) in which
8R2

lim Ta

zO*O

is undefined [refer to Eq. (8)], and that a careful limiting procedure

- is therefore required. Subtracting Eq. (7) from Eq. (9) and applying

Eqs. (8) and (10), it follows that continuity of the fields near the

ground requires

2 o
-ikr w(r,, 6) r.z ik(r 4r, -r,.)
2W(P) - W(p) =< 2"0>/ do f dr2 i < 22 0 2) e 17270
0 1 Tyt 2

0

-+
+‘£9 i i W(rz, 8) r,2, e1k(r1+r2-r0)
2n 2 r 2 2\3/2
0 1 r, + 2z

(11)
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in the limit z5 ~ 0. The coordinate system for Eq. (11) is

not shown) is a height z, di-

where da = T, dr2 d8 and the point P (

rectly above Pp.

The first term on the right of Eaq. (11) vanishes because of the

well-known relations

0
Hm 55 = W5(r2) 12)
20»0 ry + zg
and
r26(r2) =0, (13)
where 6(r2) denotes the Dirac delta function. The integrand in the

gsecond term of Eq. (11) contains the term

r.z
zli-:n() r2 +zzg)3/2 '
4] 2 0

ta function at T, = 0 but is

which is as strongly peaked as the del
11 other terms in the

We may therefore evaluate a

zero elsewhere.
m outside the integration sign,

integrand 8t T, = 0 and factor the

giving
2 x
W rzz
lim (2W(P) - W(P)1 = Wip) a8 dr .
2.+0 2n 2(.2, z2)3/2
0 0 0 2 1]
(14)
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The r, integration in Eq. (14)--found in standard tables--gives unity,
and the 0 integration obviously equals 2m. Thus, we have the correct

continuity relation

-im [2W(P) - W(p)] = W(p) . (15)
z >0

0
Two noi~ts should be noted regarding this demonstration of con-
tinuity. First, the essential term [the second on the right in Eq.
(11)} stems from (i/kRz) (8R2/3n) in Eq. (3). That quantity is often
ignored (e.g., Hufford [1952]) on the grounds that it is a near-field
corr.. «;vat unimportant for long paths--although ignoring it is clearly
on error for low-elevation receivers. Second, a two-dimensional inte-

gration is needed to achieve continuity of the fields.

DISCONTINUITY OF ONE-DIMENSIONAL EQUATIONS NEAR THE GROUND

The discontinuity of the one-dimensional equations is easily
demonstrated by attempting to apply the limiting procedure to Egs.
(4) and (5) rather than to Egs. (2) and (3). We find that continuity

of the one-dimensional equations requires

x
0 1/2
1/2 X z
ZW(xo, zo) - w(xo, 0) = e-“i/(’ (-l(—) f dx W(x, 0) (-—9—\ ﬁg

2T xR
0 2/ 2
X
0 1/2
1/2 x z

mif4 (1 0 0
+ e (Zﬂk) f dx W(x, 0) (xR2> ;2—
0 2
(16)

in the limit zy * 0 {just as Eq. (l1) is required for the two-
dimensional case]. Equation (16) incorporates Eq. (6)--the substi-
tution form--and uses the cartesian notation P = (xo, zo) and
p = (xo, 0), all points lying in the plane y = 0.

It is evident that Eq. (16) cannot satisfy the continuity re-

quirement expressed by Eq. (15), since the dependence on the wave
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number k cannot. be eliminated from either right-side term. For con-
tinuity to apply at all wavelengths, the k dependence must disappear

in the limit z, > O--as was accomplished in proceeding from Eq. (11)

to Eq. (15) fog the two-dimensional form.

The integrations in Eq. (16) produce numerical inconsistencies
in addition to the conceptual problem just mentioned. To illustrate,
we proceed as before [Eqs. (11) to (15)], arguing that l/R2 peaks
sharply about x = x0 and factoring all terms outside the integrals.
After some rearrangement and a change of variable, we have the fol-

lowing one-dimensional relation to replace Eq. (14):

-mi/4 (J£)1/2

lim [2W(xg, z)) - W(xy, 0)] = e o

200

X

0
%0
x W(xo, 0) / dx m
0 0
X
0
. 1/2
wifa [ 1
+ e (an) w(xo, 0) f dx
0
%0

X

T 77 - (17)
(XZ + 25)5/4

The integrals can be evaluated in terms of the incomplete beta func-

tion [Gradshteyn and Ryzhik, 1965]. Here, we simply note that the
1/2
0

that the second is proportional to 1/2

and vanishes as z, -+ 0, and
3/2 and diverges as z, -+ 0.
We also recall that the second integral results from the (often ig-

nored) near-field term in Eq. (5)——(i/kR2)(3R2/3n).

first integral is proportional to z

I1f near-fields are retained, the one-dimensional equation for
elevated receivers thus gives an undefined result as altitude ap-
proaches zero. If near-fields are ignored, however, the right side

of Eq. (17) vanishes and continuity, as expressed by Eq. (15), is

¢
4
4
i
[
{
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violated by a factor of 2. 1In either case, the one-dimensional equa-
tion for elevated receivers is clearly in error if the altitude is

less than what we define below.

END-POINT AND ELEVATION-ANGLE ERRORS IN ONE-DIMENSIONAL EQUATIONS

The stationary-phase reduction of the two-dimensional equations
is summarized in Appendix A. For receivers on a plane earth, the
reduction in dimensionality is accurate provided kx, >> 1. For ele-

0
vated receivers, the reduction is subject to two additional constraints,

which we call "end-point" and "elevation-angle" errors.*
The end-point error arises because (as discussed above) if re- ,J

ceiver elevation is low, the term (i/kRz) (BRz/an) in Eq. (3) peaks

very sharply near the end of the propagation path. The end-point

term, which is not accounted for in the standard stationary-phase

treatment, must undergo a full two-dimensional integration over a

small region centered about the subreceiver point. The correction--

details of which are given in Appendix A--that must be added to the

right side of the one-dimensional Eq. (5) is as follows:+

W(x., 0) , if 2mz /A << 1 ; (18)
6 0
end-point correction s

w(xo, O)Ikz0 . if szo/k > 1, (19)

Equation (18) shows that the end-point correction will cancel

half the left side of Eq. (5) if ZHZO/X << 1, thereby removing the i
factor of 2 and causing Eqs. (4) and (5) to yield the same value for
W near the ground. Omitting the correction under the same conditions

will cause significant errors. However, Eq. (19) shows that as

*

Although corrections to these errors are derived for a plane
earth, they pertain solely to receiver elevation and should apply
even for irregular terrain.

+'l'n avold counting the end-point reglon twice, and to avold the
low-elevation divergence discussed in connection with Eq. (17), we
must also exclude the region surrounding x = X when integrating the
terms in Eq. (5) that contain 8R2/8n.
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receiver elevation increases, the end-point error in the one-dimen-
sional equation becomes smaller--being in fact negligible if
21rzO/A > 1,
Certain of the approximations used to transform Eq. (3) into
Eq. (5) break down (see Appendix A) if the receiver elevation angle )
zO/xO becomes too large. That constraint on elevation angle can be
combined with Eqs. (18) and (19) to give the following criteria for

the domain of validity of the one-dimensional equation:
Locc 7 << x (20)

The lower limit on receiver height is the end-point error; the upper

limit is the elevation-angle error.

NUMERICAL COMPARISON OF ONE- AND TWO-DIMENSIONAL SOLUTIONS
FOR RECEIVERS ABOVE A PLANE EARTH

The one~dimensional equations, much less complicated and costly
to solve numerically than the two-dimensional forms, should be used
whenever possible. Below, we quantify the altitude regime over which
the simpler equations may be used by comparing one-dimensional solu-~
tions with those of the more accuraie two-dimensional version. To
isolate inaccuracies due solely to elevation, we make the comparisons
for a plane earth. Section IV presents a complementary analysis that
compares one- and two-dimensional solutions for terrain irregularities
of various sizes.

Figure 1 shows the phase of W calculated from the one- and two-
dimensional equations for a frequency of 100 kHz and a plane earth
having a conductivity of 10_2 mhos/m. The curves trace phase as a
function of distance for several receiver altitudes between 1 m and
10 km.

For comparison, we also show the phase of W as computed {rom
Norton's (1937 well-known solution of the differential wave equation--~

which is inherently two-dimensional. Although Norton's solution is a

i N s S TS
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Phase of W (rad)

0.1 ~— . — 2-dimensional
— — — 1-dimensional
Norton
/
0 i | L |
10 50 100 200

Distance, xg (km)

Fig. 1--Phase of W versus distance xg for several receiver heights 2gt

plane earth, ¢ = 10-2 mhos/m, frequency = 100 kHz

Aok B
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far simpler way of obtaining W for a plane earth than is either of
the integral equations, it is valid only for a plane earth, whereas
the integral equations are also valid--subject to the constraints
given in Sec. 1V--fur propagation ovver irregular terrain. The com- !
parison in Fig. 1 is useful for defining the elevations at which each i
integral solution agrees with tne classic results for the idealized

model. The integral equations are presumably also valid at the same

elevations for more realistic terrain, where Norton's solution cannot
be used.

As expected, our two-dimensional solutions agree well with
Norton's for all distances and elevations shown. The small differ-
ences are due to rounding in our numerical solution and, at very short
distances, to Norton's ignoring terms of order 1/(kx0)2 and (zo/xo)z.
Also as expected, our one-dimensional results are accurate provided
the constraints on 24 expressed by Eq. (20) are satisfied. However,
they exhibit large errors if the elevation is 1 km or less (end-point
error) or if zo/x0 is too large (elevation-angle error). The error
in the one-dimensional results for z, = 1 m is so great as to be off

0
-1/2 . - . .
0 divergence discussed in connection

scale--a consequence of the z
with Eq. (17).

The reliability of phase predictions made using the one-dimen-
sional equation is illustrated in Fig. 2, which shows contours of
constant one-dimensional errors in the elevation-distance plane. We
define phase errors as the differences (in meters) between the one-
and two-dimensional results shown in Fig. 1. Figure 2 also shows
several contours of constant eievation angle zo/xo. and on the right
axis, the elevation z, expressed in units of reduced wavelength A/2w.
The upper branches ufbthe contours correspond to elevation-angle
cerrors; the lower branches correspond to end-point errors.

The contours in Fig. 2 conform closely to the locus of points
in the Xy T %, domain corresponding to the validity conditions of
Fqg. (20). For example, to achieve a phase error smaller than, say,
50 m, the receiver must be inside the 50 m contour. From Fig. 2, we
see that the receiver must then be below the line z,./x_ =~ 0.25

00

(elevation-angle error) and above the line 2ﬂk0/z =~ 2 (end-point

0




r
zo/x0—01
3 10m
X
<L
2
=y
Y}
£
‘;’ phase etror
§ 10m <44.0
« 25m 430 ’f?
50 m 420 &
&
410 2
100m Jo8 B
N
40.6 E
404 5
200m _03 Z
01 1 1 L 1
0 50 100 150 200

Distance, xg (km)

brg. 2--Contours of constant phase error for the one-dimensional
equation and contours of constant elevation angle: plane
earth, o = 10-" mhos/m, frequency = 100 kHz. Note the
conversion 1 radian s~ 477 m,
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error). An accuracy of 25 m requires the receiver to be below the

line zo/x ~ 0.13 and above the line 2ﬂzO/A s 3. The usable domain

of the ong-dimensional equation thus shrinks as error tolerance
tightens.

Fortunately, the end-point and elevation-angle errors caused by ;
the one~-dimensional approximation are small at most ranges and alti-
tudes relevant to airborne receivers. Johler and Berry (1967], for J
example, present one-dimensional calculations at 100 kHz for air-
borne receivers at distances of 150 to 400 km and altitudes of 2.5
to 10 km; Fig. 2 shows that range of parameters to be almost entirely
within the 10 m error contour. However, the one-dimensional equation
can yield significant phase errors at 100 kHz for receivers positioned
below 1 km or--for higher altitudes--at ranges of less than several
tens of kilometers.

In practice, much of the error for receivers that are above the
ground, but no higher than 1 or 2 km, can be avoided--without incurring
the expense of the two-dimensional solution--by using the one-dimen-

sional formulation for grounded receivers even though the receivers are

actually slightly elevated. The situation is illustrated in Fig. 3,
which again pertains to a frequency of 100 kHz and a plane earth of
conductivity 10-2 mhos/m. The curves shown apply to all ranges, pro-
vided ZO/XO < 0.1 (to make elevation-angle errors unimportant). For
an airborne receiver at an altitude of 10 km, for example, the curves
apply to all ranges beyond 100 km. The end-point error decreases

with elevation, whereas the difference between the phase on the ground
[computed from Eq. (4)] and that at 20 [computed from Eq. (3)] in-
creases. The two curves cross at 1.3 km, where the phase ervor is
about 30 m,

Thus, at least for the conductivity and frequency in question,
cne-dimensional end-point errors can be kept below 30 m simply by
computing the phase as if it were on the ground [Eq. (4)] for alti-
tudes under 1.3 km, and by computing the phase from Eq. (5) for greater
heights. The accuracy that results is contained within the shaded
region in Fig. 3; greater accuracy requires numerical solution of

the two-dimensional equation.
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IV. TWO-DIMENSIONAL SOLUTIONS FOR ISOLATED IRREGULARITIES

We showed in Sec. III and Appendix A that, even if the terminals
are on the ground, the stationary-phase derivation of the one-
dimensional equation is valid only for terrain that is relatively
uniform across the width of the first Fresnel zone, and that more
severe irregularities require the two-dimensional equation. For
typical pathlengths of a few hundred kilometers, the Fresnel zone
width ()\xo)l/2 is on the order of tens of kilometers at a frequency
of 100 kHz. Since irregularities in actual terrain are often smaller
than tens of kilometers, the regime of the cne-dimensional equation's
applicability is quite restricted.

This section compares numerical solutious of the one- and two-
dimensional equations for propagation over surfaces having irregular-
ities smaller than a Fresnel zone. First, we modify the two-dimen-
sional equation to a form more efficient for computing the effects of
isolated irregularities than the standard form, Eq. (2). Then we
give an approximate analytic solution to this equation which~-although
valid only under limited conditions-~lends insight to the dependence
of W on the location and transverse dimension of the irregularity.

Finally, we present solutions to the full two-dimensional equation.

INTEGRAL EQUATIONS FOR ISOLATED 1RREGULARITIES ON
A HOMOGENEOUS PLANE

The standard form of the two-dimensional integral equation--given
by Eq. (2)--requires integration over the entire surface. Such an
integration is necessary for continuously varying or undulating ter-~
rain, but not for terrain that is uniform except for a few isolated
irregularities. 1In the case of mostly regular terrain, we can take
aavantage of the fact that the attenuation function is already known
on a plane or sphere having the properties of the homogeneous part

ot the surface. Specifically, we write

W= W (21)

e M e e

[T T
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where wH is the known solution for a uniform surface, and wl is the

new unknown function. For propagation on a spherical carth, WH would
be the well-known residue-series solution [Bremmer, 1958]. Here, we

consider irregularities on an otherwise uniform plane for which wH is
the Norton-Sommerfeld function [Norton, 1937] given by

Wy(r) = 1+ 1 /im e " erfe(-1 /n) , (22)
where
. 2
n = 1kr/2ng (23)

and erfc is the complement of the error function [Abromowitz and
Stegun, 19721.

Consider first a plane where the refractive index is ng every-
where except for a certain region where it is ﬁg——a lake on flat land
or a flat island in the ocean, for example. In such a case, Appendix

shows that the integral equation governing wl is

r ik(r,+r,-r.)
~ ik 0 17 2 %0
Wl(ro) =14+ b7 /dx dy A(x, y) rr, e
W, (r,)W, (r )]
H1""H" 2
X | ————— W, (x, ¥) , (24)
[ WH(rO) 1
where
Ax, y) = —+— - L (25)

ﬂg(XQ y) 4

is the impedance contrast between the lake or island and the surround-
ing region.
At first, Eq. (24) looks more formidable than Eq. (2) because

WH appears in the integrand. It is, however, much less costly to
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solve numerically because the integration need be carried out only
over regions where A # 0, rather than over the entire x - y plane.
The savings are well worth the added complexity of including the
Norton-Sommerfeld functions in the integrand. Equation (24) is re-~
lated to a two-dimensional integral equation derived--but not solved--
by Feinberg [1945].

As a second example, consider a uniform plane of refractive in-
dex ng on which sits an isolated hill. Unlike the first example, we
have no impedance contrast here, but have instead a region where

or,/dn # 0. For such a case, we show in Appendix B that W, satisfies

1
, . ar r ik(r.+r, ~r,)
- ik i 21_0 1270
wl(rO)-l+2n[/dXdy|:(l+kr)8n]rr €
2 172
W, (1, )W, (r.)
H'1"H 2
— | W, (%, ¥) , (26)
wH(rO) 1

which is similar to Eq. (24) except that terms involving Brzlan appear
in place of terms involving A. Equation (26) is numerically more con-
venient than Eq. (2) because integration is required only where

8r2/3n is significant. However, the integration region can extend

well beyond the hill itself; Eq. (26) is thus more costly to solve

than Eq. (24), which requires integration only over the region actually
occupied by the irregularity. That is, the "irregularity" caused by

an isolated hill is characterized bv 3r2/3n, which affects a region

much larger than the hill itself.

BORN-APPROXIMATTON SOLUTION FOR WEAK, ISOLATED IRREGULARITY

We can solve Eq. (24) approximately for a weak impedance irregu-
larity emhedded in a perfectly conducting plane, where WH is unity
and w1 = W. We set w1 s~ 1 on the right side to obtain

x ik(r_ +r,-x,.)
wow 1438 ffaxay a2 120, (27)
1 2n T,

, m————— . o
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for terminals on the x axis. Equation (27) is valid if the second
term on the right is small, giving a posteriori justification of our
assumption that Wl s# 1. If the irregularity were a small hill not
too near the terminals, 3r2/9n would replace A in Eq. (27). This
perturbation solution is equivalent to the well-known Born approx-
imation.

Equation (27) requires a double integration over the impedance

contrast A(x, y). We assume the simple form

~.2 ~2
Ax, ¥) = A exp [— eox Loy ] , (28)
(6x) (y)

which allows us to illustrate the dependence of wl on the lateral
gradients and position of the perturbation by adjusting (Ax), (4y),
;, ar ;} respectively. We can perform the integrations using the
saddle-point approximation, provided kxo >> 1, Ax << Xy and

2Ax < x < 2(x0 ~ Ax). The procedure is described by Field and

Joiner [1979], and the result is:

1/2

ikxo 1/2 -2
W)~ 1+ 18 () | ———— A exp |- A5, 29
2x(x0 - x) (ay)
where
— 1
A(xoi xs A)’) = _— —_ (30)
i (d )2 QX(XO x)
1+
Ay x2
Q
and
A
0
d = 3 . (31)

In Eqs. (29) through (31), d is the maximum half-width of the first

Fresnel zone. A accounts for the width and longitudinal position of
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the perturbation, and the exponent in Eq. (29) for its transverse
location. The factor 4;(x0 - ;)/xg in Eq. (30) accounts for the
narrowing of the Fresnel zone away from midpath, and has a maximum
value of unity when x = x0/2. Although valid only under very re-

. stricted conditions, Eqs. (29) through (31) reveal several important

characteristics of the attenuation function.

Weak One-Dimensional Irregularity

By taking the limits Ay >> d and y, we find that Eq. (29) assumes
the following form for a wide (i.e., one-dimensional) on-path pertur-

bation:

(Ax)(ikxo)l/z
W, — 14+ A

. (32)
1 Ay 0 [2-;()(0 _ ;)] 1/2

The denominator in Eq. (33) is largest at midpath, X = x0/2, and
small near the endpoints, x = 0 or Xg The effects of the perturba-
tion are therefore greatest if it is near either terminal, and
smallest near midpath. This enhanced importance of regions near the

terminals is well known [Feinberg, 1959].

Narrow On-Path Irregularity

For perturbations much narrower than a Fresnel zone Ay << d, and

Eq. (30) becomes

A _ wi‘T\'(A!/d)z o (33)
Ay<<d z&(xo - ?)/x(z)

The second term on the right of Eq. (32) must therefore be reduced
by a factor of magnitude

*
Recall that the derivation of Eq. (29) prohibits moving the
perturhation to within ~2Ax of either terminal.
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'Al/Zl /;(A&x) (36)
2‘lx(x - x)/x

to account for the limited width of the perturbation. Equation (34)
gives the intuitively reasonable result that the two-dimensional
correction factor 1is proportional to the fraction ¢f the Fresnel zone
effectively occupied by the impedance contrast.

For narrow perturbations the reduction indicated by Eq. (34)--
but omitted by one-dimensional equations--can be considerable. For
example, for Ay = 3 km (a fairly sizable terrain feature), A = 3 km,
Xy = 500 km, and x = x0/2, this two-dimensional correction factor is
about 0.27. For these parameters, the one-dimensional formulation
therefore overstates the impact of the perturbation by nearly a fac-
tor of four.

Although strictly valid only for the weak Gaussian impedance
contrast assumed above, the above discussion shows that the one-
dimensional integral equation is in serious error unless the pertur-
bation is nearly as wide as a Fresnel zone. Details will depend
on the structure of a given irregularity, but the conclusion is gen-
eral; viz. two-dimensional solutions are needed unless terrain fea-
tures are nearly uniform over transverse distances on the order of
/X;B. The notion that the stationary-phase reduction of the two-
dimensional equations requires slight variation across a Fresnel zone
is certainly not new [Bremmer, 1958; Feinberg, 1945]. Nonetheless,
the inaccuracy of the one-dimensional equation at low frequencies for
terrain features narrower than, say, ten kilometers is often overlooked
in applications.

Next, we examine the dependence of Wl on pathlength by rewriting

Eq. (34) in the form

1/2
(35)

|A1/2| /by 1
L= x/x

cEe T % g e aas e ¥ e — e - —
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which shows that, for fixed ;} the effect of the perturbation diminishes
-1/2

with increasing pathlength according to [] - ;/xoj This "re-

covery" of Wl occurs because the width of the Fresnel zone increases
as the path is made longer; and the fraction occupied by the perturba-
tion therefore decreases. This two-dimensional phenomena causes wl
to recover beyond an obstacle more quickly than predicted by the one-

dimensional approximation.

Isolated Off-Path Irregularity

We showed above that the one-dimensional result, Eq. (32), must
be reduced by the ractor in Eq. (34) to account for an on-path per-
turbation being narrower than a Fresnel zone. If a narrow terrain
feature is centered off-path, the result in Eq. (32) must be reduced
by still another factor. By combining Eq. (30) with the exponential
term in Eq. (29), we find this "off-path" factor F to be

Fr~exp |- _—_-y—-__f (36)

where, for simplicity, we have assumed x = x0/2. Equation (36) shows
that the "off-path" factor is governed by the Fresnel zone width for
narrow perturbations (Ay << d), and depends only weakly on off-path
distance y, for wide ones. F is related to a more complicated off-~

path factor used by King and Wait [1976].

NUMERICAL SOLUTIONS OF THE TWO-DIMENSIONAL EQUATION
The algorithm used to solve Egs. (24) and (26) is given in

Appendix C. The first two examples given below compare the numerical
solutions against analytic and experimental results, thereby validat~
ing our approach. The third example compares solutions of the one-
and two-dimensional equations for terrain features of various widths.
Because computational expense is a consideration, all examples per-

tain to impedance--rather than topographic--~irregularities.

T T e o e s
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Weak Gaussian Impedance Contrast

Equations (29) and (32) give two- and one-dimensional analytic so-
lutions, respectively, for a weak Gaussian impedance contrast {Eq. (26)]
in a conducting plane. Their main value is to lend insight into the
behavior of W, since their range of validity is too restricted for
application to actual terrain. Nonetheless, if we confine ourselves
to weak perturbations where le - 1| << 1, we can use Egs. (29) and
(32) to validate numerical solutions of Eqs. (24) and (4), respectively.

The following table gives the phase of W1 as computed by the
analytic approximations and numerical solutions. The assumed maximum
impedance contrast AO corresponds to a conductivity o of 10-2 mhos/m,
and the frequency is 100 kHz. The other parameters (see table) were
chosen to satisfy the validity restrictions on Eqs. (29) and (32).

If we had selected parameters to give a more substantial wl-~e.g.,
greater Ax or lower conductivity--we would have violated these re-
strictions. Moreover, since /X;SIZ ~ 8.7 for the case shown, our use
of Ay = 1C km corresponds to a relatively wide perturbation that does
not cause major two~dimensional effects. Use of a much narrower per-
turbation would reduce W, - 1 to where it could not be resolved within

1
our numerical accuracy.

COMPARISON BETWEEN ANALYTICAL AND NUMERICAL SOLUTIONS
FOR A WEAK GAUSSIAN IMPEDANCE CONTRAST

Phase of wl (rad)

One-Dimensional Two-Dimensional

Numerical solution -2
Eq. (4) 1.97 x 10 -2
Eq. (24) 1.90 x 10

Analytical solution -2
Eq. (32) 1.97 x 10

Eq. (29) 1.89 x 1072

NOTE: Ay = 10 km, x = 50 km, y = 0, Ax = 50 km,

xg = 200 km.

S Ny g e e -
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For the above reasons, the phase anomalies shown in the table
are very small and the one~ and two-dimensional results do not differ
substantially. Nonetheless, these results confirm two important facts.
First, our numerical glgorithms are accurate. Second, the one~-dimen-
sional equation overstates the effect of an on-path irregularity that

is narrower than a Fresnel zone.

Conducting Region on Dielectric Plane

King and Tsukamoto [1966] made laboratory measurements of surface
waves propagating over a plane dielectric surface containing isolated
conducting regions. De Jong [1975] obtained good agreement with these
data by numerically solving a two-dimensional integral equation similar
to our Eq. (24), albeit of somewhat different form. To our knowledge,
his results are the only full two-dimensional solutions available in
the literature. Before proceeding to models representing groundwave
propagation, we compare our calculations with de Jong's.

Figures 4 and 5 show the propagation model and our numerical solu-

tions for the amplitude and phase of W A rectangular "island" of

infinite conductivity is embedded in aldielectric plane having an
impedance (ng)_l of 0.11 - 9.15 x 10-3 i. The width and length of
the island are 3 and 6.75 km, respectively, and the frequency is
100 Hz. The width of the Fresnel zone is v/3 x 30 =~ 9.5 km for a path-
length of 30 km. The island is therefore much narrower than a Fresnel
zone, and we expect large differences between the one- and two-dimen-
sional solutions.

Our two-dimensional results are in excellent agreement with
de Jong's, if allowance is made for ni~ assumed transmitter and re-~
ceiver being a small fraction of a wavelength above the surface.
Moreover, they agree well with the data (not repeated here) every-
where except in a narrow region beginning at the rear of the island
and extending for one or two wavelengths., Even our calculated standing-
wave structure agrees closely with King and Tsukamoto's data and
de Jong's calculations.

We concur with de Jong's explanation that the region of poor

agreement with experiment 1s caused by the well-known failure of

e s s - ow———.
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impedance boundary conditions near abrupt conductivity changes. The
discontinuous behavior of the phase it the rear of the island indi-
cates incorrect boundary conditions. It is encouraging that this poor
accuracy persists for only one or two wavelengths beyond the boundary,
after which our results (and de Jong's) recover to the correct values.
Figures 4 and 5 quantify several defects of the one-dimensional
solution which are expected on intuitive grounds. lirst, the one-
dimensional solution overstates the amplitude anomaly caused by the
island--~a consequence of its treating the icland as infinitely wide.
Second, it recovers too slowly beyond the island--a consequence of
not accounting for Fresnel zone widening as the pathlength increases.
Third, it omits the standing-wave patterns evident from the two-
dimensional solutions--a consequence of the stationary-phase approx-
imation neglecting terrain features beyond the receiver.

Recall that Figs. 4 and 5 pertain to W., which accounts solely

1
for the effect of the island. These results must be multiplied by
Wy [see Eq. (21)], given in Fig. 6, to obtain the full attenuation

function W.

Saltwater '""Lake'" on Poor Ground

Having verified our approach for two idealized cases, we next
consider parameters more representative of long-wave propagation on
the earth. Even here we use a simple model to avoid unnecessary com-
puter expense. Our method can readily treat more complicated situa-
tions, albeit at increased cost.

Our illustrative model assumes a conductivity o(x, y) given by

o(x, y) = 10_3 + 4 c052 g-(ﬁ—%aég) cos2 % i%l mhos/m ,
|x - 50| < 10 km
Moyl sy,
= 107> mhos/m , otherwise . 37
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This conductivity might correspond to a saltwater lake or bay of vari-
able depth. We assume this "lake" to be embedded in ground of con-
ductivity 10-3 mhos/m and dielectric constant 10, and to extend from
X = 40 km to x = 60 km. Its half-width is specified bv Ay, which we
will vary. The model given by Eq. (37) has the desirable feature of
continuous lateral derivatives. However, our assumed .arge conduc-
tivity contrast causes significant impedance changes within a fraction
of a kilometer of the boundaries.

Figure 7 shows two-dimensional solutions [Eq. (24)] for Wl versus
distance for half-widths Ay of 3, 5, and 7 km. We also show for refer-
ence the one-dimensional solution [Eq. (4)]. All show little or no
effect in front of the lake, a pronounced enhancement in it, and various
degrees of recovery beyond it. The levels of enhancement and recovery
shown should ncot be generalized to other parameters. Wait [1964] gives
comprehensive one-dimensional results for land-sea-land propagation,
and shows that the enhancement in the sea portion, and subsequent re-
covery, depend strongly on virtually all parameters of the problem.
Even simple-looking one-dimensional results shown in Fig. 7 could
change drastically if we altered the lake's location or length, or the
ground's conductivity. The results in Fig. 7 must be multiplied by
wH. given in Fig. 6, to recover the full attenuation function W.

The accuracy of the solutions is poor near the rear boundary,
because the impedance boundary conditions fail near strong latcral
gradients. However, the preceding example showed that the accuracy
recovers at some distance beyond the irregularity. Thus, we should
restrict attention to regions at least a few wavelengths from the
boundaries of our model lake.

The maximum half-width of the first Fresnel zone is about 12
and 17 km for pathlengths of 200 and 400 km, respectively. All models
shown in Fig. 7 are thercfore fairly narrow, although the one having
Ay = 7 km occupies a sizable fraction of the first zone. As expected,
the two-dimensional solutions more closely approach the one-dimensional
solution as Ay increases. Also, as predicted by Eq. (35), the one-

dimensional solution recovers too slowly beyond the lake. Finally,

and most important, the one-dimensional solution erroneously gives
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the same result for all values of Ay. Even for Ay = 7 km--wider than
many natural impedance or topographic irregularities--the one-dimen-
sional solution strongly overstates the propagation anomaly for long
pathlengths.

Figure 7 shows that, although the one- and two-dir.nsional solu-
tions approach one another for wide disturbances and iong pathlengths,
they differ for several tens of kilometers beyond the lake. Thus, we
have the apparent paradox that--near a terrain feature--the solution
of the two-dimensional equation Jocs not approach that of the one-
dimensional equation as Ay > m.* We believe that this disagreement
occurs because the two-~dimensional equation is more accurate, even for
a one-dimensional terrain feature--e.g., one that has no y-dependence.
One-dimensional features cause reflections, resonances, and standing
waves--all of which are lost in the stationary-phase approximation, but
retained in the two-~dimensional formulation. Such phenomena diminish
in importance as the distance from boundaries becomes large, and the
one-dimensional result should be accurate for large values of
xo - (; + Ax). This behavior is evident in Fig. 7. Of course, the
accuracy of even the two-dimensional equation is adversely affected by
the failure of impedance boundary conditions near abrupt conductivity
changes.

Figures 8 and 9 show wl as a function of transverse receiver
position y for several values of x and lakes having, respectively,
half-widths of 3 and 7 km. The function wl exhibits a classic dif-
fraction pattern of maxima and minima in the transverse direction.
That pattern is to be expected because the obstacle is smaller than
a Fresnel zone. Although the details of the signal structure shown
in Figs. 7 through 9 pertain to the model and geometric factors assumed,
a qualitatively similar structure will occur for any terrain feature
having lateral dimensions smaller than a Fresncl zone. Diffraction

patterns such as those shown in Figs. 8 and 9 are, of course, omitted

by the widely used one-dimensional equation.

This conclusion does not contradict Eq. (32) and the results in
the table (see p. 27), which are valid only for perturbations too
weak to cause significant reflection.




P

ZHY 001 = Aouanbauay :ylaea aue|d Bulyonpuod ALuood P U0 WY € YIpLm-j|ey
40 uOLB3U 4I3eMEIS B U0 UOLILSOD UBALBD34 BSABASURUT SNSUIA ly jo0 apnjtubey--g b4

(w)A

T T Y T T T 7 T T T T T Y T T ™ T T T T T T T 160




ueid fu13onpuod Apsood e uo U L UIPLM-JLBY
A\ 30 apniiuben--6 6ty

. Aouanbadj Yaee ]
3AL3I34 aSsJ40ASURA] SNSUI

zWy 001
e 404 uoritsod 4

30 uorbad Ad1eME3S

() A

~37-

N

JV "N



-38-

V. CONCLUSIONS

The two-dimensional integral equation for groundwave propaga-
tion has different forms for elevated and ground-based receivers.

The two forms become equivalent in the limit of zero elevation. The
stationary-phase approximation can sometimes be used to derive much
simpler one-dimensional equaticns, which are widely used for most
applications. This stationary-phase reduction in dimensionality causes
so-called elevation-angle and end-point errors, both of which arve
associated with elevation. We have quantified these errors by com-
paring our one- and two~dimensional numerical solutions with Norton's
attenuation function for a uniform flat earth. The two-dimensional
solutions agree closely, whereas the one-dimensional solutions fail

at certair elevations.

Elevation-angle errors are large unless the elevation is much
smaller than the pathlength. End-point errors occur because the
stationary~phase approximation improperly accounts for the region
near the receiver, and are large for elevated receivers at heights
below about one-sixth of a wavelength. The one-dimensional approxi-~
mations for grounded and elevated receivers are therefore discontinuous
near the ground. Fortunately, neither type of error is too serious at
a frequency of 100 kHz for most ranges and altitudes pertaining to
airborne receivers. However, end-point errors are significant at
altitudes below 1 to 2 km, and elevation-angle errors can be important
for pathlengths of tens of kilometers or less. In practice, for re-
ceivers that are above the ground but no higher than 1 or 2 km, much
of the end-point error can be avoided--without the expense of the two-
dimensional solution-~~simply by using the one-dimensional solution
for grounded receivers.

Our numerical solutions of the two-dimensional equation for iso-
lated terrain features agree well with (1) approximate solutions from
first-order perturbation theory, (2) numerical solutions of de Jong
{1975] for an idealized model, and (3) laboratory measurements by
King and Tsukamoto [1966].

-
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It is well known that the one-dimensional equation is invalid
unless the terrain is nearly uniform across a Fresnel zone. Compari-
sons between our one-~ and two-dimensional solutions for on-path
terrain quantify the errors. For a frequency of 100 kHz and features
narrower than about 10 km, we find that the one-dimensional equation
erroneously predicts propagation anomalies that (1) are independent of
width, and therefore too large, (2) diminish too slowly at long dis-
tances, and (3) do not exhibit a diffraction pattern in the transverse
direction.

The one- and two~dimensional solutions approach one another at
large distances beyond very wide terrain features. However, they
disagree near boundaries because the stationary-phase approximation
neglects reflections and interference effects. Therefore, even for
terrain that exhibits no transverse gradients, only the two-dimen-
sional equation accounts for detailed signal structure.

Considerable error can be incurred at low frequencies by apply-
ing the one-dimensional equation to moderately sized terrain features.
For example, for a pathlength of 500 km, that equation overstates by
a factor of 4 the effect of an obstacle 6 km in diameter. It cannot
give accurate results unless the diameter approaches a Fresnel zone
width, which for this example is several tens of kilometers. None-
theless, the one-dimensional equation is often applied to terrain that
does not satisfy the validity requirements.

For the above reasons, we believe the one-dimensional equation
to be incapable of treating many terrains, even if the input data
were perfect. Unfortunately, routine application of the more accurate
two-dimensional equation to irregular terrain is probably impractical.
A more frui:ful approach is to devise means of averaging terrain over
the Fresnel zone to obtain equivalent one-dimensional models. The
statistical approach of Feinberg [1944] can be used to derive a one~
dimensional ~uation for the average field if the terrain has many
small, randomly located irregularities. His approach is invalid for

terrain exhibiting, say, a few hiils or lakes, however,
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Appendix A

STATIONARY-PHASE APPROXIMATION FOR ELEVATED RECEIVERS

For terminals on a plane earth, the phase of the integrand in

2

Eq. (2) is dominated by the term exp [ik(rl +r, - rO)], whose phase

is constant on a family of ellipses defined by the expression r + r, =
constant, but varies rapidly along the hyperbolas normal to the
ellipses (see Fig. A.l1). That behavior led Hufford to use elliptical
coordinates in his solution; the hyperbolas shown in Fig. A.l define
his transverse coordinate. The main contributions to the integral
occur within the ellipse defined by r, + r, = A/2--that is, within
the first Fresnel zone (illustrated in Fig. A.2).

Ellipses and hyperbolas are natural coordinates for a receiver
on a plane earth, but not for an elevated receiver. For the elevated
case, we must begin with Eq. (3), which contains the term exp [ik(rl +

R, - RO)] and for which the relation r, + R2 = constant does not trace

eilipses in the plane x = 0. Another ibjection to elliptical coordi-
nates is that for either ground-based or elevated receivers, they are
awkward for computing higher order corrections to the stationary-phase
integration.

Field and Allen [1978], in rederiving Eq. (2) for nonelevated
receivers, used cartesian coordinates and applied the stationary-phase
approximation along the y coordinate. Despite those differences from
Hufford's approach, the two results agree. The reason is that for
either method to be valid in the case of ground-based receivers,

kro >> 1 must hold, which in turn implies r, >> Xro. The last con-

dition stretches the Fresnel zone into a highly elongate.: <llipse.

The hyperbolic trajectories, except near the ends, then conform nearly
to the paths defined by x = constant. Hence, integrating along the
hyperbolas is nearly equivalent to integrating along the y coordinate

over most of the path.

STATIONARY-PHASE RESULT FOR ELEVATED RECEIVERS

To assess the end-point and elevation-angle errors in the one-

dimensional equation, we extend the stationary-phase integration in
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- : » | e e e - X e eman R L .
RO N ¥ Y - - . M .




r UL O T

~4f-

Hyperbolas along which rq + 79
change most rapidly.

Fig. A.1--ETliptical coordinate system

Fig. A.2--Geometry of first Fresnel zone
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cartesian coordinates so that it applies to elevated receivers, then
evaluate correction terms to the usual result. By performing the
derivation for a plane earth, we concentrate solely on effects related
to receiver elevation. We seek to determine when the two-dimensional

equation for elevated receivers,

R R . z ik(r ,+R,-R.)
_ ik 0 1 i 0 17270
W) =1+ S da TR W(Q) [“n (1 + —*kR?‘)"—RZ]e ,» (9)

can be approximated by the usual one-dimensional formula

X0

2
. 1/2 R
_ -mi/4 { k 0
Wxgs z5) =1~ e (“"zn) ,[ dx Ry (x + R,)

0

1/2

] ik (x+R,-R.)

1 i \%o 27"

x W(x, 0) [n- - (l + —-——kR )—‘R ]e . (A1)
g 2 2

Equation (9) is simply repeated from the text; Eq. (A.l) results
from inserting Egqs. (6) and (8) into Eq. (5) and using a cartesian
coordinate system with the ground plane at z = 0, the transmitter at

the origin, and the receiver at x For Eq. (9), the integration

o’ zo.
point Q has coordinates x, y, 0, and the following rel: tions hold:

2 _ .2 2 .

Ry = Xg + 24 3 (A.2)
2

ry =X + y7 3 (A.3)

and

2 2

L (x0 -x)“+y° (A.4)
2 2 2

R2 r, + ?0 . (A.S)
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For the one-dimensional equations, the same relations apply, with y
set equal to zero.

Equation (9) can be written

' ' et bt rl + R2
I; ZW(XO, zO) =] +f dx f dy T(x, y) exp ikRo (—-————— - l) .
®o
-00 -0
' (A.6)
where
K z
ik 0 1 i 0
M'(x, y) = == (————)W(x, y, ) — ~ (1 + ——)———] . (A.7)
2w rle ng kR2 R2
The inner integral in Eq. (A.6) is given by
[ o]
ikROh(x,y)
I(x) = [ dx T'(x, v) e . (A.8)
-0
where
r. + R
N B (8.9)
0

For long transmission paths, kr, >> 1, and the integral [Eq. (A.8)]

0
is of the classic form amenable to approximate evaluation by the

stationary-phase method [Erdelyi, 1956], provided I'(x, y) varies more

slowly than exp (ikROh). I[f it does, the stationary-phase formula

can be used to write ‘

ikR_ h 1/2
ni/4 o 0 ( an) r ) (A.10)

I(x) = e ﬁ{oh"

y=0

By inserting Eq. (A.10) and the relations




- R (A.11)

and
<x + R2>
kR .h" = k{—— (A.12)
0 ’y=0 sz

into Eq. (A.6), we recover the standard form of the one-dimensional
equation [Eq. (A.1)]. The x integration is terminated at 0 and Xq»
rather than at *«, because--as discussed below--the exponent varies
slowly for 0 € x < X but oscillates rapidly for x < 0 or x > Xq-

END-POINT ERROR IN ONE-DIMENSIONAL APPROXIMATION

The above treatment is valid provided I'(x, y) varies only slightly

sz )1/2
=l —— . (A.13)
y=0 <k(x + RZ)

That condition is satisfied for most values of x. However, ne¢’. the

Eq. (A.13) gives

over distances the order of

receiver, where x &~ x_. and R2 ~ z

0 0’

20} 1/2
8y ~\5— (A.14)

as the distance over which I' must be relatively constant; whereas the

term

0 0
—_— e —_——_— (A.15)
kR, R 2 2
2 72 k (rz + zo)

which appears in I' [see Eq. (A.7)], has a peak at x = X and a half-

width of zo. Therefore, unless

- - e e e g W g
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or, equivalently,

z, > A2m o, (A.16)
the stationary-phase approximation fails near the end point. Stated
more practically, the canonical form of the one-dimensional equation
for elevated receivers is inaccurate unless the receiver height ex-
ceeds about one-sixth of a wavelength. Note that this problem does
not occur for ground-based receivers, where 3r2/8n = 0.

To better quantify the end-point error caused by the stationary-
phase approximation, we again examine Eqs. (A.6) and (A.7). The
integration just outlined is valid except for a small region of dimen-
sion ~z, near the end point. Even within that region, only the term
proportional to zO/Rg in Eq. (A.7) varies so rapidly as to violate
the stationary-phase approximation. Thus, we can apply the approxi-
mation over the entire path save the end-point region, where the
zO/Rg term--which stems from the (l/kRz)(aRz/Bn) term in Eq. (3)~--
requires special attention. The equation that results is identical
to Eq. (A.l), except that the "end-point correction" must be added to
the right side:

a
. . =1
end-point correction 2“/ dB/ dr2
0 0

r PR o ik(r.+R, -R.)
X W(r,, 6) (—;9)—9—33 e 120
1

]

where the upper limit, a, should be taken somewhat larger than zo,
but much smaller than X3 and Ty 0, and z are cylindrical coordi-
nates centered with origin on the ground beneath the receiver. For

long paths, the following approximations are valid within the end-

point region, provided z, << (xxo)l/z:
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T, Ry & xXg 3 (A.18)
W(rz, 0) = W(xo, 0, 0) . (A.19)

With these approximations, we have

a

end-point correction ww(xo, 0, 0) f dr2 032 e 2 . (A.20)
R
0 2

The integral in Eq. (A.20) cannot be evaluated in closed form
because of its finite upper integration limit. The rapid falloff

of the integrand for ry >z permits us to set a = @ with little loss

0
of accuracy. Then, by making the change of variable

_ 2, 2
L—‘/1+r2/zo.

we find
w ikzoﬁ
end~point correction & W(xo, 0) S~—§—-dL = W(xo, 0) Ez(—ikzo) .
4
1 .

(A.21)

where E2 is the exponential integral whose properties are given by

Abromowitz and Stegun [1972]). By using the power and asymptotic

series for EZ’ we find

W(xo, Q) , if kzo << 1, (A.22)
end-point correction = ikzo
W(xo, 0) e
> .
1kzo . if kzo >1, (A.23)

the magnitudes of which correspond to Eqs. (18) and (19) of the main
text. Note that adding Eq. (A.22) to the right side of the standard
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one~-dimensional equation for elevated receivers [kq. (A.1) or Eq. (5)]
recaptures the continuity of the flelds as zy > 0. Equations (22) and
(23) explain why, for long paths, the one- and two~dimensional numer-
ical solutions given in Sec. III agree well at elevations above a few

kilometers but differ substantially near the ground.

ELEVATION-ANGLE ERROR IN ONE-DIMENSIONAL APPROXIMATION

In addition to the end-point errors, which depend on the ratio
of receiver altitude to wavelength, the one~dimensional equation
suffers from an elevation-angle error that depends on the ratio zo/x0
of receiver altitude to pathlength. It is intuitively evident that
several aspects of the stationary-phase integration over the trans-
verse coordinate, which reduces Eq. (9) to Eq. (A.1), breaks down at
large elevation angles. Hufford's {1952] transformation to elliptical
coordinates fails because the intersection of the Fresnel zone ellip-
soids with the ground strongly deviates from an ellipse if zolx0 is
too large.* Similarly, Field and Allen's [1978] treatment encounters
errors bhecause as zo/x0 increases, the stationary-phase integration
paths--the intersection of hyperboloids with the earth's surface--
are less accurately approximated by the lines x = constant (refer
to Fig. A.1).

One way to quantify the elevation-angle error is by noting that

the approximation

o0 0
/ dx = / dx , (A.24)
-0 0

used to reduce Eq. (A.6) to Eq. (A.1l), fails unless zo/x0 is small.
When the receiver is on the ground, the following relations apply
along the x axis--which closely approximates the line of stationary

points for long propagation paths:

. .

Godzinski [1961] shows that if zg > kao, higher order Fresnel
zones intersect the ground in a manner that deemphasizes the contri-
bution of points near the receiver.
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o, if 0 ¢« x < x0 R
ik(rl + r, - rO) = { 2ik(x -~ xo) . if x > Xy s (A.25)
-2ikx , if x <0 .

The exponents in Eqs. (A.6) and (A.]1) are thus invariant between
x =0and x = Xy but oscillate rapidly outside that range. However,

if z0 is not zero, we have the following relations:

oy 2
1kz0
+ - —_— ; - .
ik(rl R2 RO) A (xo mp g if Xy ~ X > 2,3
(A.26)
+ - i -
ik(rl R2 RO) N ikzo , if Xy = X << Z4

If kzO << 1, no substantial oscillation arises in the region 0 < x < xo,
and the upper integration limit may reasonably be taken as xo. Recall

however that the end-point error becomes substantial if kz _ << 1.

0
If kz0 21, Eq. (A.26) shows that exp [ik(r1 + R2 - Ro)] does
oscillate in the region defined by x, - z, < x < x The implication

is that the integrand does not changz abrgptly froz nonoscillatory to
oscillatory at x = x0 as it does for a nonelevated receiver; instead,
change occurs over a transition region of width about equal to z0
around the subreceiver point. Therefore, unless

zolx0 << 1, (A.27)

the assumption that the integrand slowly oscillates between 0 and X
will be invalid over a significant fraction of the path.

Although the criterion given as Eq. (A.27) derives from Field
and Allen's [1978] reduction to a one-dimensional equation, it applies
to any stationary-phase integration over the transverse coordinates
{Hufford, 1952; Johler and Berry, 1977)., That point is borne out in
Sec. 111, where the disagreement between the one- and two-dimensional
numerical results is shown to be nearly directly proportional to the

elevation angle zO/xo.
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Appendix B

INTEGRAL EQUATIONS FOR ISOLATED IRREGULARITIES
ON A UNIFORM PLANE

This appendix derives Eqs. (24) and (26), which are more con-
venient numerically than Eq. (2) for small terrain irregularities.

We use the Green's function

G(r,) = WH(rz)wo(rz) (B.1)
and an auxiliary attenuation function wl, defined by
bp) = 2w, (MW (P, (p) (B.2)

instead of G = wo and § = wao, as was done [Hufford, 1952] to derive

Eq. (2). As before, { and wo are the vertical Hertz potential and the

Hertz potential in free space, respectively. WH is the attenuation

function for a uniform plane given by Eq. (22). wl therefore accounts

solely for impedance or topographic irregularities. As shown below,

use of the auxiliary function W, instead of W itself (recall W = wle)

1
offers computational advantages.

ISOLATED LAKE OR ISLAND

We consider a plane containing no topographic features so that

3r2/3n is everywhere equal to zero. The refractive index is ﬁg(x, y),

which equals a constant, ng, except over a limited region. The im-

pedance boundary conditions become

. _ ik
on ﬁg ’
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LI
on 0 9n
. (B.4)
n
g

where we have used the fact that BWH/Bn = —ikWH/ng.

We apply Green's theorem to obtain

a(Q) 9G(r,)
&%fl = G(p) —-ﬁ; J(}x dy [é(rz)-7;;-- Yy(Q) anz ] (B.5)

and use Eqs. (B.3) and (B.4) to cast Eq. (B.S5) into the following

form
¥(p) = 2G(p) + —;—“‘Sffdx dy G(ry)¥(r)) A(x, ¥) , (B.6)
where
Ax, y) = = -1 (8.7)
n n
g g

is the impedance contrast. Then, using the fact that

ikr
e (B.8)
T

¢0(r) =

and inserting Eqs. (B.l1) and (B.2) into Eq. (B.6), we find

ikr ikr
e 0 e 0 ik dx d
= 4+ =
Zwl(p)WH(ro) T ZWH(rO) T T x dy

ik(r +t2)
x wl(Q)wH(rl)wH(rz) Ae

1 (B.9)
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By dividing both sides of Eq. (B.9) by ZWH(rO) exp (ikro)/ro, we
obtain Fq. (24) in the text. Equation (24) is unchanged if more than
utie it ur luke exlsts, but the Integration on the right must be

performed over each irregularity.

ISOLATED HILL

The derivation of the integral equation for W. in the presence

1
of an isolated hill (or hills) proceeds exactly as outlined above for

an isolated lake or island. We note that here the refractive index

is equal to ng over the whole plane, but Brz/an does not vanish every-

where. The impedance boundary conditions are:

%%=-~i—nk—‘k. (B.10)
8
on H 9n 0 on
- 16 -.1.+(1+§_)]. 510>
ng 2

By inserting Eqs. (B.10) and (B.1l) into Eq. (B.S5), and repeating the
steps leading from Eq. (B.5) to Eq. (B.9), we arrive at Eq. (26) in

the text.

4
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Appendix C

ALGORITHM FOR NUMERICAL SOLUTION OF TWQ-DIMENSIONAL
INTEGRAL EQUATION

This appendix gives the algorithm used to obtain numerical solu-

tions of Egs. (24) and (26), which can be written in the form

Wix, y) =1 +J(7ﬁdx' dy' K(x, y, x', yOW(K', v") . (c.1)

If terrain features are localized, the kernel oi Eq. (C.1) can be
assumed to vanish outside some bounded region. The solution consists
of first solving Eq. (C.1) to find W within this irregular region,
and then integrating over the region to obtain W on the uniform por-

tion of the plane.

SOLUTION WITHIN REGION OF IRREGULARITY

We divide the isolated region into a square grid as shown in
Fig. C.1l, where nx and nv are the number of squares in the x and y

directions. Equation (C.1) then becomes

n~1ln-1
X y
W(x, y) =1+ E E ﬂdx' dy' K(x, y, x', yOW', y") , (C.2)
i=0 j=0
Sij

where on the square s,,, centered at X yj,

ij

Bs _ As
xi - 2 < X Sxi+ 7
(€.3)
, Ay ' As
A T
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Here As is the length of the side of a square takea %o be small enough

that

W(x, y) wa(xi, yj) (C.4)
on each square. We can then rewrite Eq. (C.2) as

n -1 n -1
X y

W(xk, yn) s 1+ E E w(xi, yj)/]dX' dy' K(x,s vy x', v")
i=0  j=0 £
Tij (¢.9)

By defining

y = L} L] ] v .
Hkﬁij .—‘/:/.dx dy K(xk, Yoo X's ¥ ) (C.6)

Sij

the solution to Eq. (C.l) can be expressed as

n-ln-1
X

y
1+ E E W(xi, yj)Mkiij

=0 =0
itk j#8
WOy = e pRs
TakL

(C.7)

The integration in Eq. (C.6) is performed with standard quadrature

methods. We use a higher density of quadrature points when (i, j) =

(k, 2) to accommodate the proximity of the singularity in K at r, = 0.
FEquation (C.7) is a system of n X ny linear equations, which

we solve iteratively using the Gauss-Siedel method with each W initially

set equal to one. To evenly distribute errors throughout the grid,

we begin each iteration at a different point. Arbitrary converpence

criteria can be used. Computation time varies as (nx x ny)z. s0 care

must be exercised in selecting the parameter As. In most problems,
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the optimum value for As depends on wavelength, rather than on terrain
features. Computation time then varies as the square of the area of
the perturbed region, and limits the size of irregularities that can
be analyzed at reasonable cost. For a frequency of 100 kHz, we found
the practical limit on size imposed by computational cost to be about
10 km x 10 km.

SOLUTION OUTSIDE REGION OF IRREGULARITY

Once W has been found inside the irregular region, its value out-
side is calculated from Eq. (C.5), using weli~known quadrature methods.
Here W is given by a double integral over this region, rather than by
a solution to a two~dimensional integral equation. Also, the singu-

larity at r, = 0 causes no difficulty.

2
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