

NONELECTRONIC PARTS RELIABILITY DATA

D
SUMMER 1981

Reliability Analysis Center rome ar development center

$$
\begin{array}{llll}
81 & 12 & 10 & 001
\end{array}
$$

the reliagility analysis center is a dod information analysis center
the information and data contained herein have been compiled from government and nongovernment technical reports and from material supplied by various manufacturers and are intended to be used for reference purposes. neither the united states government nor IIt research institute warrant the accuracy of this information and data. the user is further cautioned that the data contained herein may not be used in lieu of other contractually cited references and SPECIFICATIONS.

PUBLICATION OF THIS INFORMATION IS NOT AN EXPRESSION OF THE OPINION OF THE UNITED STATES GOVERNMENT OR OF IIT RESEARCH INSTITUTE AS TO THE QUALITY OR DURABILITY OF anY product mentioned herein and any use for advertising or promotional purposes of this information in conjunction with the name of the united states government or ilt research institute without written permission is expressly PROHIBITED.

NONELECTRONIC PARTS RELIABILITY DATA

Prepared by:

Robert G. Arno
IIT Research Institute

Under Contract to:
Rome Air Development Center
Griffiss AFB, NY 13441

Ordering No. NPRD-2

The Reliability Avalysis Center is a Dod Information analysis Center, operated by IIT Research Institute under contract to the Rome Air Development Center, AFSC.

The Reliability Analysis Center (RAC) is a Department of Defense Information Analysis Center sponsored by the Defense Logistics Agency, managed by the Rome Air Development Center (RADC), and operated at RADC by IIT Research Institute (IITRI). RAC is charged with the collection, analysis and dissemination of reliability information pertaining to parts used in electronic systems. The present scope includes integrated circuits, hybrids, discrete transistors and diodes, microwave devices, optoelectronics, and selected nonelectronic parts employed in military, space and commercial applications.

In addition, a System/Equipment Reliability Corporate Memory (RCM) is also operating under the auspices of the RAC and serves as the focal point for the collection and analysis of all reliability-related information and data on operating and planned military systems and equipment.

Data are collected on a continuous basis from a broad range of sources including testing laboratories, device and equipment manufacturers, government laboratories, and equipment users, both government and nongovernment. Automatic distribution lists, voluntary data submittal, and field failure reporting systems supplement an intensive data solicitation program.

Reliability data documents covering most of the device types mentioned above are available annually from RAC. Also, RAC provides reliability consulting and technical and bibliographic inquiry services which are fully discussed at the end of this document.

REQUESTS FOR TECHNICAL ASSISTANCE
AID IMFORAATION ON AVAILABLE RAC SERVICES AND PUBLICATIONS MAY be DIRECTED TO:

Charles E. Ehrenfried Reliability Analysis Center Rome Air Development Center (rBRAC) Griffiss Air Force Base, NY 13441 Telephone: 315/330-4151 Autovon: 587-4151

ALL OTHER REQUESTS SHOULD BE DIRECTED TO:

Rome Air Development Center RBE/Charles F. Bough Griffiss Air Force Base, NY 13441
Telephone: 315/330-4920
Autovon: 587-4920

1981, IIT Research Institute
All Rights Reserved

UNCLASSIFIED

secunity clasmfication of this Pacermion Dete Enionod)

This is the second edition of a series of data publications dealing with nonelectronic reliability at the part level. NPRD-2 updates NPRD-1 by expanding the scope and quality of data.

The data presented in these reliability publications are intended to compliment such documents as MIL-HDBK-217 and MIL-STD-883. The user is cautioned, however, that the data contained herein may not be used in lieu of contractually cited references. It should also be noted that the data contained in this document is failure data, not part replacement data. Only verified failures were used in the calculations of the failure rates.

TABLE OF CONTENTS

Page
INTRODUCTION 1
SECTION 1: NONELECTRONIC GENERIC FAILURE RATES 3
Definitions of Terms 5
Index for Generic Failure Rates 10
Generic Failure Rate Tables 21
SECTION 2: NONELECTRONIC PARTS DETAILED DATA 117
Nonelectronic Parts Detailed Data 119
Index for Detailed Data 121
Detailed Data Tables 125
SECTION 3: NONELECTRONIC PARTS DATA FROM COMMERCIAL 209
EQUIPMENT APPLICATIONS
Nonelectronic Parts Data From Commercial 211
Equipment Applications
Index for Commercial Equipment Application Data 213
Commercial Equipment Application Data Tables 215
SECTION 4: FAILURE MODES AND MECHANISMS 229
Operational Failure Modes and Mechanisms 231
Batteries 231
Lead-Acid 231
Nickel-Cadmium 232
Bearings 233
Circuit Breakers 234
Connectors 234
Coolant Hose 235
Electron Tubes 236
Fuses 236

TABLE OF CONTENTS (Cont'd)

Page
SECTION 4: FAILURE MODES AND MECHANISMS (Cont'd)
Gaskets and Seals 237
Gyroscope 238
IC Sockets 239
Motors 241
Printed Circuit Board 241
Pumps 243
Hydraulic 243
Pneumatic 244
Quick Disconnect Couplings 244
Relays 245
Armature 245
Reed 247
Solder Connections 248
Switches 249
Valves 250
Dormant Failure Modes and Mechanisms 252
Bearings 252
Connectors, General 252
Clutches 252
Gyros 252
Magnetrons 253
DC Motors 253
Relays, Latching 253
Relays, Nonlatching 253
Seals 253
Switches, Sensitive 254
Transformer 254
Part Failure Mode Distribution 255
APPENDIX: ADDITIONAL RAC SERVICES 259

INTRODUCTION

This nonelectronic reliability data publication provides failure rate and failure mode information for mechanical, electromechanical, electrical, pneumatic, hydraulic and rotating parts. The data utilized in the development of this publication were collected by the RAC and represent equipment level experience under field conditions in military, industrial and commercial applications.

It has been necessary to accept the assumption that the failures of nonelectronic parts follow the exponential distribution; that is, such parts display a constant failure rate. This assumption is necessary due to the virtual absence of data containing individual times or cycles to failure.

Section 1 of this publication provides summarized generic part level failure rates. Section 2 consists of detailed entries by part type and environmental application in unsummarized form. In Section 3, failure rates for parts unique to or frequently used in computer peripherals, point of sale equipment, and test instruments are tabulated. Section 4 presents the distribution of failure modes for a number of major nonelectronic part families.

NONELECTRONIC PARTS RELIABILITY DATA

SECTION 1

NONELECTRONIC GENERIC FAILURE RATES

Section 1

DEFINIIIONS OF TERMS

This section presents summaries of field reliability experience for nonelectronic parts. The summaries are presented in alphabetical order by major family classes and alphabetically by type within each family class.

A careful reading of the description of the presentation format and entry codes employed will aid the user of this publication. The circled numbers shown in the tabulation furm below are referenced to the explanatory text which follows.

$$
\begin{array}{r}
\text { ment ans ((I) } \\
\text { ires (}
\end{array}
$$

invironumi			tallure mate/10 ${ }^{\text {c majes }}$						
	aramenion		$\hat{\lambda}$	STOM URER R CONF IOENCE	609 contidemit interval		Number or	Mallit	
	Hil.	OMI			Lower	urper			
(3)		,	(5)	(6)			(8)	(9)	(10)

(3) ENVIRONMENT:

DOR - Dormant

A major family of parts having or providing the same function.

The identification of the part type.

The coded entries are as follows:

The state wherein a component or equipment is connected to a system in the normal operational configuration and experiences below normal and/or periodic operational stresses and environmental stresses. The system may be in a dormant state for prolonged periods (up to five years or more) before being used in a mission.

DEFINITION OF TERMS (Cont'd)

SAT - Satellite	Earth orbital, approaches benign conditions without access for maintenance. Vehicle neither under powered flight nor in atmosphere re-entry.
GRF - Ground Fixed	Conditions less than ideal to include installation in permanent racks with adequate cooling air, maintenance by military personnel and possible installation in unheated buildings.
GRM - Ground Mobile	Conditions more severe than GRF, mostly for vibration and shock. Cooling air supply may also be more limited, and maintenance less uniform.
A - Airborne	The most generalized aircraft conditions.
AI-Airborne Inhabited	General conditions in inhabited areas without environmental extremes.
AIT - Airborne Inhabited Transport	Conditions in inhabited areas of subsonic aircraft such as transport, cargo, heavy bomber, and patrol.
AIF - Airborne Inhabited Fighter	The conditions to be found in the cockpit area of fighters and interceptors.

AU - Airborne Uninhabited	General conditions typical of such areas as cargo storage areas, wing and tail installations where extreme pressure, temperature and vibration cycling exist; also, may be aggravated by contamination from oil, hydraulic fluid and engine exhaust.
AUT - Airborne Uninhabited Transport	Conditions in uninhabited areas of subsonic aircraft such as transport, cargo, heavy bomber, and patrol.
AUF - Airborne Uninhabited Fighter	Conditions in uninhabited areas of fighters and interceptors.
HEL - Helicopter	Conditions most severe for vibration, temperature and humidity.
SHS - Ship Sheltered	Surface conditions similar to GRF but subject to occasional high shock and vibration.
SHU - Ship Unsheltered	Normal surface shipboard conditions but with repetitive high levels of shock and vibration.
SUB - Submarine	Conditions normal to operation aboard a submerged vessel. Temperature and humidity controlled.

DEFINITIONS OF TERMS (Cont'd)

MIS - Missile Launch

(4) APPLICATION:

MIL. (Military)

COML. (Commercial)

N/A
(5) $\hat{\lambda}$
(6) 60% UPPER SINGLE-SIDED CONFIDENCE

Severe conditions of noise, vibration and other environments related to missile launch, and space vehicle boost into orbit, vehicle re-entry and landing by parachute. Conditions may also apply to installation near main rocket engines during launch operations.

Data resulting from a military or satellite application.

Data resulting from a commercial or industrial application.

Not applicable. The nature of the hardware application is unknown.

The maximum likelihood estimator when the exponential distribution is assumed.

The 60% upper single-sided confidence limit estimate of the failure rate, computed from the Chi-square distribution, is provided for those entries for which zero failures have been recorded.

DEFINITION OF TERMS (Cont'd)

(7) 60% CONFIDENCE INTERVAL, LOWER AND UPPER:
(8) NUMBER OF RECORDS:
(9) NUMBER FAILED:
(10) OPERATING HOURS ($\times 10^{6}$):

The lower and upper limits of the 60% confidence interval about $\hat{\lambda}$ computed from the Chi-square distribution.

The number of records merged to provide the failure rate information. The merged records represent only those accepted by a test statistic based on the F distribution at the 5% level.

The total number of failures observed in the merged records.

The total hours at the part level. Derived by multiplying the part population by the equipment hours of operation observed during the period covered by each record. An asterisk (*) in the $\hat{\lambda}$ column indicates that, for this entry, the failure rate information is given in terms of per 10^{6} cycles and the total operating hours in the last column should be read as cycles x 10^{6}.

INDEX FOR GENERIC FALLURE RATES

Page
Accelerometer 21
Angular 21
General 21
Linear 21
Pendulum 22
Accumulator 22
General 22
Hydraulic 23
Actuator 23
Explosive 23
General 24
Hydraulic 24
Linear 25
Rotary 25
Battery 26
Lead Acid 26
Mercury 26
Nickel Cadmium 26
Non-Rechargeable 27
Rechargeable 27
Bearing 28
Ball 28
Bushing 28
General 29
Needle 29
Roller 30
Spherical 30

INDEX FOR GENERIC FAILURE RATES (Cont'd)

Page
Bellows 31
Diaphragm Burst 31
Explosive 31
General 31
Brake 32
General 32
Magnetic 32
Brush 33
Electric 33
Circuit Board 33
Plated Through Holes 33
Printed Circuit Board 34
Single Layer 34
Multilayer 34
Terminal 34
Circuit Protection Device 35
Fuse 35
Fuse Holder 35
General 36
Molded Case Circuit Breaker 36
Power Switch, Circuit Breaker 37
Spark Gap, Surge Protection 37
Undervoltage 37
Compressor 38
Air 38
General 38

INDEX FOR GENETIC FAILURE RATES (Cont'd)

Page
Connection 39
Solder Connection, General 39
SoIder, Hand Lap 39
Solder, Wave 39
Wirewrap 39
Connector 40
Circular 40
Coaxial 40
General 41
Phone 41
Pin 42
Power 42
Printed Circuit Board 43
Radio Frequency 43
Rectangular 44
Test Jack 44
Controls and Instruments 45
Air Pressure Gauge 45
Altimeter 45
Ammeter 46
Compass 46
Indicator 47
Magentic Sensing 47
Rate of Flow Instrument 48
Tachometer 48
Page
Emergency Light 48
General 48
Fan 49
Axial 49
Centrifugal 49
General 50
Filter 50
Fluid 50
Gas 51
General 51
Gasket and Seal 52
Gasket, Shielding, RFI 52
General 52
O-Ring 53
Packing 53
Generator 54
AC 54
DC 54
Diesel Engine 54
Gas Engine 55
General 55
Hot Gas 55
Motor/Generator 56
Turbine/Generator 56

INDEX FOR GENERIC FAILURE RATES (Cont'd)

Page
Gyroscope 56
Directional 57
General 57
Rate Integrating 58
Heater 58
Electric, General 58
Electric, Space 59
General 59
Heat Exchanger 60
General 60
Hose 60
Fittings, General 60
Hydraulic 61
Lamp 61
Incandescent 61
LED 62
Neon 62
Manifold 62
General 62
Mechanical Device 63
Clutch 63
Coupling 63
Gear 63

Page

Mechanical Device (Cont'd)
Gear Assembly 64
Gear Shaft 64
Joy Stick Assembly 64
Mechanism, Power Transmittal 65
Speed Drive 65
Spring 66
Miscellaneous 66
Coil, Cooling-Chilled Water 66
Engine 66
RF Cable Assembly 67
Safe \& Arm Device 67
Motor 67
Fractional H. P. 67
Full H. P. 68
General, A. C. 68
General, D. C. 69
Induction 69
PM 70
Sensor 70
Solenoid 70
Step 71
Torque 71
Pump 71
Boiler Feed 71
Centrifugal 72
Coolant 72
Pump (Cont'd)
Electric Motor Driven 72
Engine Driven 73
Fixed Displacement 73
Fuel 74
Geroter 74
Hydraulic 75
Hydraulic Motor Driven 75
Impeller 76
Oil 76
Turbine Driven 77
Vacuum 77
Variable Displacement 77
Water 78
Regulator 78
Fuel 78
General 78
Oxygen Demand 79
Pressure 79
Tension 79
Thermostat 80
Voltage 80
Relay 81
Armature 81
Coaxial 81
Crystal Can 82

INDEX FOR GENERIC FAILURE RATES (Cont'd)

Page

Relay (Cont'd)
Current Sensitive 82
General 83
High Voltage 83
Latching 84
Motor Driven 84
Power 85
Reed 85
Thermal 86
Time Delay 86
Rotary Joint 87
Microwave 87
Sensor 87
General 87
Shock Absorber 88
General 88
General, Mount 88
Isolator 89
Slip Ring Assembly 89
General 89
Socket 90
Dual-In-Line (Per Pin) 90
High Power Tube 90
Lamp 90
Relay 90
Solenoid 91
General 91
Sprinkler Head 91
General 91
Switch 92
Centrifugal 92
Coaxial 92
Dual-In-Line (DIP) 92
Flow 93
General 93
Humidity 93
Inertial 94
Key 94
Liquid Level 94
Pendant-Hoist 95
Pressure 95
Push Button 96
Reed 96
Rotary 97
Sensitive 97
Shaft 98
Snap Slide 98
Stepping 98
Thermal 99
Thermostat 99
Thumb Wheel 100
Toggle 100
Wave Guide 101Page
Synchro 101
Differential 101
General 102
Receiver, Transmitter 102
Resolver 103
Tank 103
Fuel Cell 103
General 104
Oil 104
Pressure Vessel 105
Storage 105
Time-Totalizing Meter 106
Counters 106
Timer, Electro-Mechanical 106
Transducer 106
Fluid Flow 106
General 107
Motional 107
Pressure 108
Tach Generator 108
Temperature 109
Valve 109
Ball 109
Butterfly 109
Check 110
Diaphragm 110

INDEX FOR GENERIC FAILURE RATES (Cont'd)

Page

Valve (Cont'd)
Fuel 111
Gate 111
General 112
Globe 112
Hydraulic 113
Needle 113
Oil 114
Plug 114
Pneumatic 114
Relief 115
Servo 115
Solenoid 116
Water 116
generic failure rate tables
PART class: ACCELEROMETER
tYpe: ANGULAR

			falture rate $/ 10^{6}$ hours						
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	66\% uppri	60 c con	nitrval	NUMA! :R GF RECOHOS	number failet:	$\begin{aligned} & \text { OPFRATING } \\ & \left(\times 10^{5}\right) \end{aligned}$
	MIL.	COML.		CONFIDENCE	Lowfe	UPtip			
DOR	X		---	0.177	---	---	3	0	5.182

part class: ACCELEROMETER

			fallure rate/ $10{ }^{6}$ hours						
Environment	Application		入	608 UPPER SINGLE-SIDED CONFIDE.NCE	608 confidence interval.		number of RECORDS	number failfo	opfrating huurs$\left(\times 10^{6}\right)$
	MIL.	COML.			Lower	UPPER			
DOR	x		0.419	---	0.389	0.452	6	138	329.240
SAT	x		--	8.179	---	---	2	0	0.112
GRM	X		35.078	---	33.373	36.883	3	303	8.638
AI	X		153.749	---	146.965	160.901	1	367	2.387
AI		X	10.796	---	7.535	15.408	2	8	0.741

part class: ACCELEROMETER

			failure rate/ 10° hours						
Environment	APPLICATION		$\hat{\lambda}$	608 UPPER SINGLE-SIDED CONF IDENCE	608 Cont idence interval		NUMBER OF	number fallet	$\begin{aligned} & \text { OFERATING MHURS } \\ & \left(\times 10^{6}\right) \end{aligned}$
	MIL.	COML.			LOWER	UPPER			
DOR	X		---	0.324	---	---	4	0	2.826
AI	X		525.641		476.385	580.671	1	82	0.156

Part class: ACCELEROMETER
trpe: PENDULUM

part class: accumulator
trPe: GENERAL

environment			Fahlure rate/10 ${ }^{6}$ mours					numbit ralliti	
	APPLICATION		$\hat{\lambda}$		608 conflotme limfrya				
	MLL.	come.			Comer	uppre			
DOR	x		0.324	---	0.276	0.381	5	33	102.003
SAT	x		--	1.693	---	--	1	0	0.541
GRM	x		29.851	---	12.143	64.524	1	2	0.067
AU	x		0.229	---	0.193	0.272	1	30	131.000
AU		x	193.097	---	181.738	205.280	3	207	1.072
HEL	x		500.000	---	338.580	733.614	1	7	0.014

pakt class: ACCUMULATOR
trpe: HYDRAULIC

part class: ACTUATOR
TYPE: EXPLOSIVE

			failure rate/10 ${ }^{6}$ hours				NUMBER OF RECORDS	number taileu	operating hours$\left(\begin{array}{ll}10^{6}\end{array}\right)$
environment	application		$\hat{\lambda}$	608 UPPERSINGLE-SIDED CONFIDENCE	508 Confidence interval				
	MIL.	COML.			LOWER	UPPER			
DOR		X	0.063	---	0.048	0.082	1	13	207.100
GRF	x		218.765	---	156.468	305.193	1	9	0.041

part class: ACTUATOR
tYPE: GENERAL

part class: ACTUATOR
trpe: LINEAR

environment			Failure rate/ 10^{6} hours				$\underset{\substack{\text { mamer } \\ \text { Rectiris }}}{ }$	number failed	$\begin{gathered} \text { operating } \\ \left(\times 10^{6}\right)^{\prime \prime 2 l} \\ \hline \end{gathered}$
	application		$\hat{\lambda}$	$\begin{gathered} \text { 608 UPPER } \\ \text { SINGLE.SIDED } \\ \text { CONF IDERCE } \end{gathered}$	608 confimenct inizrval				
	MIL.	coml.			LOWER	urpt ${ }^{\text {P }}$			
DOR	N/A	N/A	0.168	---	0.142	0.200	12	29	172.234
GRF	χ		14.398	---	13.212	15.705	9	106	7.362
GRM	X		50.459	---	37.464	67.948	1	11	0.218
A	x		174.767	---	170.328	179.342	7	1104	6.317
AUT		x	69.801	---	68.195	71.452	5	1345	19.269
AUF	x		48.132	---	43.446	53.389	1	76	1.579
HEL	x		370.370	---	270.321	506.931	2	10	0.027
HEL		x	159.459	---	147.017	173.109		118	0.740
SHS	x		10.707	---	6.622	17.014	1	5	0.467

PART CLASS: ACTUATOR
type: ROTARY

environment			failure rate/10 ${ }^{6}$ hours						
	APPLICATION		$\hat{\lambda}$	609 UPPERSINGLE-SIOEO SINGLE-SIDEOCONFIDENCE idence	608 confidence interval		$\underset{\substack{\text { Number } \\ \text { RECOROS }}}{\text { of }}$	number caileo	OPERATING HOURS$\left(\times 10^{6}\right)$
	MIL.	coml.			Lower	UPPER			
A	x		405.405	---	382.536	429.865	1	225	0.555
AUT		x	87.935	---	81.374	95.103	1	129	1.467
SUB	X			0.484	---	..-	1	0	1.893

Part class: BATTERY
trpe: LEAD ACID

			failure rate/10 ${ }^{6}$ hours				nUMBER of RECORDS		$\begin{aligned} & \text { OPERATING HoURS } \\ & \left(\times 10^{6}\right) \end{aligned}$
environment	application		^	609 UPPERSINGLE-SIDED CONFIDENCE	608 conf idence interval			number failed	
	MIL.	coml.			Lower	UPPER			
GRF		X	0.440	---	0.298	0.645	2	7	15.917

part class: BATTERY
TYPE: MERCURY

			Failure rate/ 10^{6} hours				$\underset{\substack{\text { number } \\ \text { RECOROS }}}{ }$		operating hours$\left(\times 10^{6}\right)$
environment	Application		$\hat{\lambda}$	608 UPPERSINGLE-SIDED CONFIDENCE	608 conf Ioence interval			number failed	
	MIL.	coml.			Lower	UPPER			
GRF		X	0.742	---	0.559	0.986	4	12	16.154

part class: BATTERY
trpe: NICKEL CADMIUM

			FAILURE RATE/ 10^{6} mours						
fnvironment	Application		$\hat{\lambda}$	608 UPPER	60% CONF	nitirval	$\underset{\substack{\text { Himpar } \\ \text { Recordo }}}{\text { af }}$	number failiti	operating hours$\left(x \quad 10^{6}\right)$
	MIL.	COML.		CONFIDENCE	LOWER	UFPER			
SAT	x		0.047/CELL	---	0.027	0.078	2	4	85.862
GRF		X	0.251/CELL	---	0.235	0.268	9	171	681.593

part class: BATtERY
trpe: NON-RECHARGEABLE

			failure rate/10 ${ }^{6}$ hours						
environment	Application		$\hat{\lambda}$	$\begin{gathered} 608 \text { UPPER } \\ \text { SINGLLEETIED } \\ \text { CONF IDENCE } \end{gathered}$	608 confldence interval		NUMBER OF RECOROS	number faitel	opt Rating$\left(\times 10^{6}\right)$
	MIL.	coml.			LOWER	upper			
GRM	X		333.333	---	66.047	1013.579	1	1	0.003

PART CLASS: BATTERY
rype: RECHARGEABLE

environment			failure rate/ $10{ }^{6}$ hours						
	application		$\hat{\lambda}$	60\% UPPER SINGLE-SIDED CONFIDENCE	608 confioence interval		$\underset{\substack{\text { Number } \\ \text { RECORDS }}}{ }$	number failei)	operating hours$\left(x=10^{6}\right)$
	MIL.	coml.			R	UPPER			
DOR	x		0.016	---	0.013	0.022	3	12	732.564
GRF	x		1.498	---	1.046	2.138	1	8	5.339
GRM	X		15.748	---	6.406	34.040	2	2	0.127
A	X		348.852	---	342.921	355.955	3	2810	8.055
HEL	X		676.768	---	636.364	720.148	2	201	0.297

PART CLASS: BEARING
trpe: BALL

fart class: BEARING
irpe: GENERAL

			Failure rate/10 ${ }^{6}$ hours						
environment	apflication		入	60\% UPPER SINGLE-SIDED CONFIDENCE	60\% confidence inierval		numbir of records	number tailio	UPFRATING HOIRS ($\times 10^{6}$)
	MIL.	COML.			LOWER	UPPE.			
GRF		X	4.068	---	3.200	5.180	2	16	3.933
GRF	x		1.378	---	1.084	1.754	1	16	11.614
GRM		X	21.921	---	18.721	25.719	1	34	1.551
A	X		8.260	---	7.828	8.720	1	261	31.598
AUT		X	11.468	---	7.093	18.224	1	5	0.436
AUF	x		3.101	---	1.261	6.702	1	2	0.645
HEL	X		12.591	---	11.735	13.520	1	155	12.310

\footnotetext{
PART class: BEARING
trPE: NEEDLE

			FAILURE RATE/ 10^{6} HOURS						
EMVIROMMENT	APPLICATION		$\hat{\lambda}$	608 UPPER SINGLE-SIDED CONFIDENCE	60\% CONFIDENCE INTERVAL		NUMBER OF RECORDS	Number failed	OPERATING HOURS$\left(x \quad 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
A		X	---	2.718	---	---	1	0	0.337

part class: bearing
TYPE: ROLLER

environment			failure rate/ 10^{6} hours				NUMBER OF RECORDS	number failed	operating hours ($\times 10^{6}$)
	APPlication		$\hat{\lambda}$	608 UPPER SINGLE-SIDED CONFIDENCE	608 CONFIDENCE INTERYAL				
	MIL.	COML.			LOWER	UPPER			
GRF	χ		0.280	---	0.195	0.400	1	8	28.562
GRM		X	207.328	---	195.811	219.633	1	232	1.119
A	x		0.863	---	0.641	1.162	1	11	12.745
A		X	---	0.628	---	---	1	0	1.459
AU	x		---	0.037	---	---	1	0	24.570
SHS	X		1.206	---	0.693	2.039	1	4	3.317
HEL	χ		24.000	---	15.634	36.457	1	6	0.250

PART CLASS: BEARING
TYPE: SPHERICAL

environment			Failure rate $/ 10^{6}$ hours				number of pecords	number ratled	$\begin{aligned} & \text { OPERAIING HOURS: } \\ & \left(\times 10^{6}\right) \end{aligned}$
	APplication		$\hat{\lambda}$	60% UPPER SINGLE-SIDED CONFIDENCE	608 CONFIDENCE INTERVAL				
	MIL.	COML.			Lower	UPPf R			
GRM	x		0.206	---	0.169	0.252	1	22	106.731
A	x		8.260	---	7.828	8.720	1	261	31.598
AUT		X	9.000	---	7.524	10.787	1	27	3.000
HEL	X		53.220	---	49.623	57.119	1	157	2.950

part class: BELLOWS
rype: OIAPHRAGM BURST

PART CLASS: BELLOWS
 rype: EXPLOSIVE

PART CLASS: BELLOWS
rrpe: GENERAL

			fallure rate/ 10^{6} Hours						
invipotment	APP位ATION		$\hat{\wedge}$	6OB UPPER SINGLE-SIOED CDNI IDENCE	609 confidenet imitrval		numbse of REGGPits	NIMBER :Allit	
	MIL.	COML.			10 WEP	UPrap			
						---		0	13.520
DOR	x χ		---	$\begin{array}{r} 0.068 \\ 65.429 \end{array}$	--	---	1	0	0.014

PART ClASS: BRAKE
tYPE: GENERAL

Environment			Fallure rate 110^{6} hours						
	APPLICATION		$\hat{\lambda}$	60? UPPERSITGGE-SIOEO CONF IDENCE	608 conflichice interval		numberRectione:	number fahef	OFEPATING HIUUS$\left(\times 10^{6}\right)$
	Mal.	COML.			LOWER	uprer			
GRF	x		4.274	---	0.847	12.995	1	1	0.234
A	x		766.250	---	760.349	772.207	1	11,965	15.615
AU	x		213.143	---	209.249	217.123	1	2,131	9.998
AUT		X	11.570	---	7.835	16.976	3	7	0.605
HEL	X		100.000	---	94.333	106.062	1	223	2.230

> irpe: ELECTRIC

			failure ratios, ${ }^{6}$ hours						
environment	APPLICATION		$\hat{\lambda}$	60 UPPERSINGLE-SIDT: confidence	608 CONF I	nienval		thmbit rambin	
	MIL.	coml.			Lower	upler			
A	x		4.749	---	4.461	5.058	1	195	41.062
SHS	X		---	0.152		---	1	0	6.030

CIRCUIT BOARD

				fallure rait	${ }^{6}$ mours				
NVIRONMENT	APPLICAIION		$\hat{\lambda}$	608 urper SINGTE-SIDED CONF IDENCE	608 cont	INITRyAI		',$\cdots$$\cdots$	$\begin{gathered} \text { (1)RAlly } \\ \text { H1ust } \\ \left(10^{b}\right) \\ \hline \end{gathered}$
	M1L.	COML.			LOWF R	UPPiR			
DOR	X		0.826	---	0.184	2.479	1	1	1.210
GRF		X	0.163	---	0.036	0.490	10	1	6.119
GRF	X		---	0.017	---	---	1	0	54.700
GRM		x	0.036	---	0.007	0.110	9	1	27.420
A	X		0.004	--	0.001	0.012	1	1	249.000
AIT		X	1.849	---	0.412	5.545	14	1	0.541
AIF	X		5.091	---	1.138	15.306	22	1	0.196
SHS	X		1.682	---	1.203	2.336	1	9	5.350

PART CLASS: CIRCUIT BOARD
tYPE: PRINTED CIRCUIT BOARD, MULTILAYER

FAILURE RATE $/ 10^{6}$ HOURS									
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	60% UPPER SINGLE-SIDED CONF IDENCE	60\% CONFIDENCE INTERVAL		Number ofRFCGRDS	NIMPERFAILED	OPERATIHG hOURS (10^{6})
	MIL.	COML.			LOWER	UPPER			
DOR	X		0.083	--	0.017	0.254	134		11.985
GRM	X		0.131	---	0.100	0.181	213	13	99.608

part class: CIIRCUIT PROTECTION DEVICE

part class: CIRCUIT PROTECTION DEVICE

environment			failure rate/ 10^{6} hours				number of recoros	number failed	operating hours$\left(\begin{array}{ll}\left.10^{6}\right)\end{array}\right)$.
	application		$\hat{\lambda}$	$\begin{gathered} 60 \text { UPPER } \\ \text { SINGLE-SIOED } \end{gathered}$CONFIDENCE	608 confidence interval				
	MIL.	coml.			Lower	UPPER			
GRM	x		0.016	---	0.007	0.035	2	2	124.181
AIF	x		---	9.142	---	---	1	0	0.100
SHS	X		---	0.021	---	---	1	0	44.480

part class: Circuit protection device
TYPE: GENERAL

part class: CIRCUIT PROTECTION DEVICE
TYPE: MOLDED CASE CIRCUIT BREAKER

part class: CIRCUIT PROTECTION DEVICE
type: POWER SWITCH, CIRCUIT BREAKER

			fallure rate/ 10^{6} hours						
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	608 UPPER SINGLE-SIDED CONFIDENCE	602 CON	nterval	number af RECOPDS	number failed	orerating mours ($\times 10^{6}$)
	MIL.	COML.			LOWER	UPPER			
GRF	X		2.879	---	1.876	4.373	3	6	2.083

part class: CIRCUIT PROTECTION DEVICE

type: SPARK GAP, SURGE PROTECTION

PART CLASS: COMPRESSOR

PART CLASS: COMPRESSOR
TYPE: GENERAL

				fallure rate	0^{6} mours				
environment	APPLICATSON		入	$\begin{aligned} & \text { 608 UPPER } \\ & \text { SINGI E-SIDED } \\ & \text { CONF IDENCE } \end{aligned}$	608 conftolnc intepval		NHMBER OF recraps	number falled	oferating hopps (x 10^{6})
	MIL.	coml.			LOMER	upper			
DOR AU	X X		1992.793	3.742	1942.226	2044.922	1	0 1106	$\begin{aligned} & 0.244 \\ & 0.555 \end{aligned}$

COM: ECTION
GENERAL SOLDER

F. . Mramemi	APrthathma		'	603 UPPIP UnSH TDE NCF	got cona thence mitepain		Nus.:	\cdots	
	M11.	, 6M1			1 1/WFP	lupet			
DOR	X		---	0.000151	---	---	1	0	6101.826
GRF	X		0.000644		0.000497	0.000835	1	14	21740.000

PAPI CLASS: CONNECTIOR
ryPE: WAVE, SOLDER
CONNECTION
ruFF WIRE WRAP

Part class: CONNECTOR
TYPE: CIRCULAR

ENVIRONMENT			failure rate $/ 10^{6}$ hours				number of RECORDS	number failed	operating hours$\left(x 10^{6}\right)$
	APPLICATION		$\hat{\lambda}$	$60 \$$ UPPER SINGLE-SIDED CONFIDENCE	608 CONFIDENCE INTERVAL				
	MIL.	COML.			LOWER	UPPER			
DOR	x		---	0.026	---	-	1	0	34.627
SAT	X		---	0.016	---	---	10	0	57.509
GRF	X		0.366	---	0.338	0.395	31	130	355.656
GRM	X		--	16.357	--	---	5	0	0.056
A	X		0.839	---	0.798	0.882	2	308	367.203
AI	x		---	3.664	---.	---	15	0	0.250
AU	X		1.248	---	1.181	1.303	3	257	205.916
AUF	X		---	0.920	---	---	5	0	0.996
SHS	x		0.071	---	0.055	0.092	81	14	197.465
SUB	X		---	1.196	---	---	59	0	0.766

PART CLASS: CONNECTOR

			FAILURE RATE/ 10^{6} hours						
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	60\% UPPER SINGLE-SIDED CONFIDENCE	60% CONFIDENCE INTERVAL		NUMBER OF RECORDS	number failet	operating hours$\left(x \quad 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
SAT	x		0.023	---	0.005	0.070	12	1	43.262
GRF	X		0.187	---	0.164	0.215	31	45	240.318
GRF		X	---	0.019	0.164	. 21	5	0	48.700
A	N/A	N / A	0.672	---	0.610	0.740	5	86	128.000
HEL		X	10.000	---	1.981	30.407	1	1	12.100
SHS	X		0.017	---	0.003	0.053	6	1	57.253

part class: CONNECTOR
trpe: GENERAL

Environment			failure rate/ 100^{6} hours				NUMBER OF RECOROS	number failed	
	application		$\hat{\lambda}$	608 UPPERSINGLE-SIDED CONFIDENCE	608 Conf idence interval				
	MIL.	coml.			Lower	UPPER			
DOR	x		0.001	---	0.001	0.002	10	17	11,624.494
SAT	x		---	0.023	---	---	1	0	40.000
GRF	x		0.036	---	0.024	0.053	14	7	195.446
GRF		X	0.689	---	0.154	2.067	1	1	1.451
GRM	X		---	6.596	---	---	3	0	0.139
GRM		x	---	0.271	---	---	1	0	3.380
A		X	0.351	---	0.334	0.369	1	305	868.805
AI	X		0.130	---	0.026	0.394	42	1	7.717
AI		X	---	3.915	---	---	15	0	0.234
AUT		X	---	0.387	---	---	5	0	2.368
HEL	x		10.270	---	8.261	12.794	1	19	1.850
SUB	X		0.051	---	0.041	0.063	64	20	391.136

part class: CONNECTOR

part class: CONNECTOR
type: PIN

environment			failure rate/10 ${ }^{6}$ hours						$\begin{gathered} \text { OPERAIING, HURS } \\ \left(\times 10^{6}\right) \end{gathered}$
	APPlication		$\hat{\wedge}$	$\begin{gathered} 608 \text { UPPER } \\ \text { SINGE-SDED } \\ \text { CONF IDENCE } \end{gathered}$	608 confidence interval			number failed	
	MIL.	coml.			LOWER	UPPER			
DOR	X		---	0.0003200	-.	---	1	0	2798.310
SAT	x		-..	0.0004200	---	---	2	0	2208.930
GRF	X		---	0.0010000	---	---	1	0	1514.246
GRM	X		0.011	---	0.007	0.017	1	6	529.200
AIT	X		---	0.0000904	---	---	1	0	10130.000

part class: CONNECTOR
TYPE: POWER

$-$
PART CLASS: CONNECTOR
type: PRINTED CIRCUIT BOARD

ENVIRONMENT			fatlure ratel 10^{6} Hours				$\underset{\substack{\text { NuMber } \\ \text { RELORDS }}}{\text { of }}$		
	APPLICATION		$\hat{\lambda}$	${ }^{608}$ UPPER CONFIDENCE	608 CONF LDENCE INIERVAL			number falled	
	MiL.	coml.			Lower	upper			
DOR	X		---	0.065	---	---	1	0	14.140
SAT	x		---	0.044	-	---	2	0	20.797
GRF	x		---	0.031	---	---	12	0	3.044
GRM	${ }^{x}$		--	0.025	--	--	2	0	36.745
AI	X		0.171	---	0.308	0.512	2	1	5.860
AIF	X		---	0.026	---.	---	19	0	34.890
SHS	x		0.011	--	0.005	0.024	2	2	176.678
SUB	x			12.053	---	---	4	0	0.076

PART CLASS: CONNECTOR

			failure rate/10 ${ }^{6}$ mours				NuMEER Of		
environment	APPLICATION		λ	608 UPPERSINGLE-SIDEDCONFIOENCE	608 conflience inierval			number failed	
	MIL.	coml.			Lower	upper			
GRF	x		0.062	---	0.052	0.074	1	27	434.534

part class: CONNECTOR

ENVIRONMENT			fallure rate 110^{6} hours						
	APPLICATION		$\hat{\lambda}$	60 UPPER SINGLE-SIDED confsoence	608 conf IDENCE INTERVAL		number of RECORDS	number failed	OPERATING HOURS ($\times 10^{6}$)
	MIL.	coml.			LOWER	UPPER			
SAT	x		---	0.402	---	---	3	0	2.279
GRF	X		0.097	---	0.060	0.155	12	5	51.315
GRF		x	---	0.007	--	---	1	0	140.018
A	X		1.087	---	0.988	1.200	5	85	78.128
A		x	1.273	---	1.156	1.404	1	85	66.762
AI	x		---	0.554	---	---	19	0	1.653
SUB	x		---	3.084	---	---	16	0	0.297

\footnotetext{
PARI CLASS: CONNECTOR

FAILURE RATE $/ 10^{6}$ hours							number of RECORDS	number failed	OPERATING(x $\left.100^{6}\right)$
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	${ }^{60 \%}$ UPPER	608 CONF	nterval			
	MIL.	COML.		CONFIDENCE	LOWER	UPPER			
GRF	X		0.003	---	0.002	0.004	6	14	4515.305
AIF	X		---	0.119	-.-	---	1	0	7.715
SHS	X		0.011	---	0.008	0.015	1	9	8444.861

PART class: CONTROLS AND INSTRUMENTS

Part class: CONTROLS AND INSTRUMENTS
trpe: ALTIMETER

			failure rate $/ 10^{6}$ hours						
Enviponment	application		入	60% UPPER. SINGLE-SIDED confidence	60% CONFIO	Interval	number of Rf copors	"mmbap railfi	$\begin{aligned} & \text { (itralifu mides } \\ & \text { (. } 10^{6} \text {, } \end{aligned}$
	MIL.	coml .			L.OWER	UPpte.			
AI	N/A	N/A	130.506	---	121.768	139.967	4	160	1.226
HEL	X		269.608	---	254.226	286.071	3	220	0.816

part class: CONTROLS AND INSTRUMENTS
rype: AMMETER

part class: CONTROLS AND INSTRUMENTS
type: COMPASS

failure rate 100^{6} hours									
Environment	APPlication		$\hat{\lambda}$	60\% UPPER SINGLE-SIDED CONF IDENCE	608 CONFIDENCE INTERVAI		number uf ractopds	number falled	operating hours ($\times 10^{6}$)
	MIL.	coml.			LOHER	upfer			
AIT	x	X	36.090 252.941	---	$\begin{array}{r} 29.812 \\ 220.137 \end{array}$	$\begin{array}{r} 43.782 \\ 291.147 \end{array}$	3 1	24 43	$\begin{aligned} & 0.665 \\ & 0.170 \\ & \hline \end{aligned}$

par: class: CONTROLS AND INSTRUMENTS
TYPE: INDICATOR

ENVIRONMENT			Fallure rate $/ 10^{6}$ hours						
	APPLICATION		$\widehat{\lambda}$	60\% UPPER Single-sidei CONFIDENCE	60\% CONFIDENCE INTERVAI		numbtre of recoros	numblr failitn	$\begin{aligned} & \text { Dif RATH: } \\ & \left(x 10^{6}\right) \end{aligned}$
	MIL.	COML.			LOWER	upprer			
SAT	x		---	0.904	--	--	1	0	1.013
GRF	x		3.907	---	3.585	4.262	4	106	27.130
GRM		X	70.413	---	64.696	76.709	2	109	1.548
AI	X		165.406	---	163.744	167.087	1	7039	42.556
AIT		X	163.747	---	160.608	166.960	8	1935	11.817
HEL	X		166.956	---	162.167	171.912	18	866	5.187

part class: CONTROLS AND INSTRUMENTS

			FAIt.ure rate/ 10^{6} mouks				number of Rec(o)	number failed	offraing mours$\left(\begin{array}{ll} x & 10^{6} \end{array}\right)$
ENVIRONMENT	application		$\hat{\lambda}$	603 UPPER SINGLE-SIDED CONF IDENCE	608 Confidmae inierval.				
	MIL.	COML.			LOWER	UPPER			
SAT	X		---	1.825	---	---	2	0	0.502
AIT		X	246.429	---	221.241	274.848	1	69	0.280

part class: CONTROLS AND INSTRUMENTS
rrpe: RATE OF FLOW INSTRUMENT

part class: CONTROLS AND INSTRUMENTS
trPe: TACHOMETER

part class: EMERGENCY LIGHT
trpe: GENERAL

PART CLASS: FAN
trpe: AXIAL

PART CLASS: FAN
TYPE: CENTRIFUGAL

PART CLASS: FAN
TYPE: GENERAL

ENVIRONMENT			Failure rate $/ 10^{6}$ hours				NUMBER OF RECOROS	number falled	OPERATING HOURS$\left(\times 10^{6}\right)$
	APPLICATION		人	60% UPPER SINGLE-SIDED CONF IDENCE	608 CONF IDENCE INIERVAL				
	M1L.	COML.			LOWER	UPPER			
OOR	X		-	0.416	---	---	2	0	2.200
GRF	X		2.518	---	2.289	2.773	6	87	34.557
GRF		X	2.795	---	2.217	3.530	4	17	6.082
GRM	X		6.253	---	5.604	6.986	1	67	10.715
A	x		36.895	---	36.072	37.741	1	1428	38.704
AU	X		74.627	---	46.157	118.592	1	5	0.067
AIT		X	71.634	---	69.208	74.160	2	622	8.683
AIF	x		---	5.234	---	---	1	0	0.175
HEL	x		9.091	---	6.938	11.922	1	13	1.430
SHS	x		13.761	---	12.659	14.973	2	112	8.138
SUB	X		0.456	---	0.282	0.725	2	5	10.953

part class: FILTER
trpe: FLUID

ENVIRONMENT	APPLICATION		入	60% UPPER SINGLE-SIDED CONFIDENCE	60\% COHFIDENCE INTERVAL		NUMBER OF RECORDS	number failed	OPLRAIING HOURS$\left(x 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
DOR	X		---	0.922	---	---	1	0	0.993
GRF	X		2.997	-.-	2.566	3.507	3	35	11.679
GRM	χ		2.977	---	2.560	3.467	3	37	12.430
GRM		X	64.236	-	57.898	71.359	2	74	1.152
AU	X		22.954	---	20.997	25.118	7	99	4.313
AUT		X	66.496	---	60.967	72.598	3	104	1.564
AUF	X		8.547	---	1.694	25.989	1	1	0.117
HEL	X		49.519	---	42.495	57.813	4	36	0.727

PART Class: FILTER
TYPE: GAS

			FAILURE RATE/ 10^{6} HOURS						
ENVIRONMENT	APPLICATION		入	60 UPPER SINGLE-SIDED CONFIDENCE	604 CONFID	INTERVAL	fumber of RECORDS	number faileo	OPERAIING HOURS$\left(x \quad 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
GRF	X		1.201	--	0.813	1.763	1	7	5.827
GRM	X		2.746	---	2.120	3.562	1	14	5.098
AUT		X	2.193	---	0.435	6.668	1	1	0.456
HEL	X		25.974	---	10.566	56.144	2	2	0.077

PART class: FILTER
TrPE: GENERAL

			Fallure rate $/ 10^{6}$ hours						
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	60% UPPER SINGLE-SIDED CONFIDENCE	60\% CONFIDENCE INTERVAL		Number of RECORDS	NUMBER FAJLED	operating hours ($\times 10^{6}$)
	MIL.	COML.			LOWER	UPPER			
DOR	x		---	0.035	---	---	2	0	25.867
SAT	X		---	0.206	-	~-	1	0	4.450
GRM		x	66.185	-	58.602	74.865	2	55	0.831
AU		X	---	0.954	---	---	1	0	0.960
AUT		X	54.490	.	49.000	60.673	1	71	1.303
HEL	X		1.265	---	1.024	1.566	1	20	15.810

part class: GASKET AND SEAL

part class: GASKET AND SEAL
TYPE: 0-RING

part class: GASKET AND SEAL

PART CLASS: GENERATOR

IYPE: $A C$

failure rate $/ 10^{6}$ hours									
ENVIRONMENT	APPLICAIION		λ	60\% UPPER SINGLE-SIDED CONF IDENCE	608 CONF	nterval	number of RECORDS	number tailed	operating houfs$\left(x 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
DOR	X		0.806	---	0.598	1.082	2	11	13.641
SHS	X		0.023	---	0.016	0.033	1	8	341.000

PART CLASS: GENERATOR
type: DC

part class: GENERATOR
TYPE: DIESEL ENGINE

failure rate/ $10{ }^{6}$ hours							NIMBER OF RECORDS		
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	60\% UPPER SINGLE-SIDED CONF IDENCE	608 con	nterval		Number fallefo	OPERATING YOURS$\left(x 10^{6}\right)$
	MIL.	COML.			LOWE.	UPPER			
DOR	X		1.292	---	0.875	1.895	1	7	5.418

PART CLASS:	GENERATOR
TYPE:	GAS ENGINE

PART CLASS:	GENERATOR
TYPE:	GAS ENGINE

				failure rate	${ }^{6}$ hours				
Environment	APPLICATION		$\hat{\lambda}$	609 UPPER SINGLE-SIDED CONFIDENCE	608 CONF	nterval	number of RECORDS	number falled	operaling holirs$\left(x \quad 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
DOR	x		2.702	---	1.099	5.840	2	2	0.740

Part class: GENERATOR
TYPE: GENERAL

part class: GENERATOR
TYPE: MOTOR/GENERATOR

			failure rate/ 10^{6} hours						
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	60: UPPER SINGLE-SIDED CONFIDENCE	601 CONFIOENCE INTERYAL		number ofRECOROS	number failed	operating mours $\left(x 10^{6}\right)$
	M/L.	COML.			LOMER	UPPER			
						~--	3	0	4.353
DOR	x		27.778	0.210	---952	46.957	1	4	0.144
GRF	χ		27.778	---	15.952 67.797	360.259	1	2	0.012
GRM	x X 		166.667	---	67.797	360.259	1	0	0.351

part class: GENERATOR
TYPE: TURBINE/GENERATOR

			Failure rate/ 10^{6} mours						
environment	APPLICATION		$\hat{\lambda}$	60\$ UPPER SINGLE-SIDED CONFIDENCE	609 CONFIDENCE INTERVAL		numger of RECORDS	number failed	operating hours$\left(x 10^{6}\right)$
	MIL.	coml.			LOWER	UPPER			
						70.488	1	3	0.078
OOR	x		38.052	--		656.639	1	338	0.539
GRF	x		626.217	---	597.420 10.462	656.639 13.616	1	48	4.025
GRF		X	11.925 14.409	---	10.462 11.661	13.616 17.840	1	20	1.388
SHS	X		14.409	---	11.661				

part class: GYROSCOPE
trPe: DIRECTIONAL

			Failure rate/ 10^{6} hours						
ENVIRONMENT	Application		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONFIDENCE	608 CONFID	interyal	number of RECORDS	number failed	operating hours$\left(\times 10^{6}\right)$
	Mil,	COML.			LOWER.	UPPER			
AI	X		513.917	---	507.464	520.469	6	4505	8.766
HEL	X		300.000	---	264.296	341.075	3	51	0.170

part class: GYROSCOPE

environment			failure rate/ 10^{6} hours						
	application		$\hat{\lambda}$	601 UPPER SINGLE - SIDEDCONF IOENCE	601 confloence interval		number of RECOROS	number failed	$\begin{aligned} & \text { OPERATING Hours } \\ & \left(\begin{array}{ll} & \left.10^{6}\right) \end{array}\right. \end{aligned}$
	M!L,	coml.			Lower	UPPER			
DOR	X		0.247	---	0.229	0.267	1	128	518.000
SAT	X		3.503	---	1.425	7.571	3	2	0.571

part class: GYROSCOPE

type: RATE INTEGRATING

environment			failure rate/ 10^{6} hours				number of RECORDS	number falied	operating hours$\left(x 10^{6}\right)$
	Application		$\hat{\lambda}$	604 UPPER SINGLE-SIDED CONFIDENCE	603 CONFIDENCE INTERVAL				
	Mll,	coml.			LOWER.	UPPER			
DOR	x		0.409	---	0.368	0.454	15	73	178.654
SAT	x		---	5.295	---	---	1	0	0.173
GRM	x		31.051	---	29.530	32.664	4	298	9.597
AI	X		352.023	---	347.857	356.248	7	5073	14.411
AI		X	4.167	---	1.695	9.006	2	2	0.480
AIF	x		288.156	---	272.286	305.103	1	236	0.819
HEL	X		75.000	---	53.643	104.630	1	9	0.120
SUB	x		70.919	---	68.468	73.474	1	597	8118
MIS	X		541.667	---	451.157	651.686	1	26	C ${ }^{1} 8$

TYPE: ELECTRIC, GENERAL

environment			failure rate $/ 10^{6}$ hours				,		
	APPLICATION		$\hat{\lambda}$	608 UPPER SINGLE-SIDED CONFIDENCE	601 CONFIDENCE INTERVAL		number ofRecordos	number failed	operating hours$\left(\times 10^{6}\right)$
	Mil,	coml.			LOWER.	UPPER			
SAT	X		0.450	---	0.089	1.369	3	1	2.221
GRF	X		2.286	---	1.313	3.864	3	4	1.750
GRM	X		---	4.468	---	-..	1	0	0.205
A		x	---	1.454	---	---	1	0	0.630
AIT		x	17.738	---	15.352	20.532	3	40	2.255
HEL	x		50.000	---	25.520	92.621	1	3	0.060
SUB	X		7.595	---	3.876	14.069	1	3	0.395

part class: heater
rrpe: ELECTRIC, SPACE

Failure rate/ 10^{6} hours									
environment	application		$\hat{\lambda}$	601 UPPER SINGLE-SIDEO CONFIDENCE	601 conf	NTERVAL	number of RECORDS	number failed	operating mours$\left(x 10^{6}\right)$
	MIL,	COML.			LOWER	UPPER			
GRF	X		1.157	---	0.883	1.517	4	13	11.239

part class: heater
TYPE: GENERAL

part class: hEAT EXCHANGER

ENVIRONMENT			failure rate/ 10^{6} mours						operating hours$\left(\begin{array}{ll} & \left.10^{6}\right) \end{array}\right.$
	APPLICATION		$\hat{\lambda}$	601 UPPE, SINGLE-SIL:O CONFIDENCE	601 CONFIDENCE INIERYAL		number of RECORDS	number failed	
	M!L,	COML.			cower	UPPER			
GRF	X		0.904	---	0.461	1.675	1	3	3.318
GRM	X		3.876	---	2.525	5.888	1	6	1.548
A	X		1.116	---	1.074	1.160	1	505	452.369
AU	X		2.899	---	2.152	3.903	2	11	3.795
AUT		X	5.344	---	3.618	7.840	1	7	1.310
AUF	x		21.898	--	17.058	28.029	3	15	0.685
SHS	X		---	1.667	---	---	1	0	0.549
SUB	X		---	4.447	---	---	1	0	0.206

part class: hOSE
rrpe: FITTINGS, GENERAL

part class: HOSE
trpe: HYDRAULIC

Environment			failure rate/ 100^{6} hours				Number orRECOROS	number failed	operating hours$\left(\times 10^{5}\right)$
	application		$\hat{\lambda}$	${ }^{6} 60$ UPPER SINGLE-SIDEDCONFIDENCE	609 confioence interval				
	MIL,	сомl.			Lower.	UPPER			
DOR	x		1.613	---	1.092	1.613	2	7	4.339
GRF	X		---	1.105	---	---	1	0	0.829
GRM	x		0.240	---	0.189	0.305	2	16	66.766
A	X		115.830	---	97.821	137.433	1	30	0.259
HEL	X		32.941	---	30.789	35.267	1	168	5.100

Part class: LAMP

failure rate/ 10^{6} hours									
Environment	application		$\hat{\lambda}$	60 UPPER SINGLE-SIDED CONFIDENCE	601 confldence interval		number of RECORDS	number failed	operating mours$\left(x 10^{6}\right)$
	M/L,	COML.			LOWER	UPPER			
GRF	X		---	0.006	---	--	1	0	141.538
GRF		χ	0.906	---	0.590	1.376	2	6	6.623
GRM	X		10.171	---	4.137	21.985	1	2	0.196
GRM		χ	---	0.054	-.-	---	2	0	16.900
SHS	\times		18.624	---	18.029	19.241	1	700	37.586

Part class: LAMP
TYPE: LED

PaRt Class: LAMP
TYPE: NEON

part class: mechanical device
rype: CLUTCH

			Failure rate/ 100^{6} mours						
environment	APPLICATION		$\hat{\lambda}$	601 UPPERSINGLE-SIDED CONF IDENCE	601 confioence interval		number of Records	number failed	$\begin{gathered} \text { OPERATING HOURS } \\ \left(\times 10^{6}\right) \end{gathered}$
	MIL,	coml.			cower.	upper			
GRF		x	0.594	---	0.571	0.619	1	478	804.347
SHS	X		---	1.708	---	---	1	0	0.536

part class: MECHANICAL DEVICE
trpe: COUPLING

part class: mechanical device
TYPE: GEAR

part class: mechanical device
ryPE: GEAR ASSEMBLY

			fallure rate/ 10^{6} hours						
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	60 UPPER SINGLE-SIDED CONFIDENCE	603 CONFIDENCE INTERVAL		NUMBER DF RECOROS	NUMBER FAILED	OPERATING HOURS ($\times 10^{6}$)
	Mil,	COML.			LOWER	UPPER			
	x		51.503	---	40.515	65.578	3	16	0.310

part class: MECHANICAL DEVICE

TrPE: GEAR SHAFT

\footnotetext{
part class: MECHANICAL DEVICE
type: $30 Y$ STICK ASSEMBLY

environment			FAILURE RATE/10 ${ }^{6}$ Hours						
	application		$\hat{\lambda}$		601 CONF IDENCE INTERYAL		number of recoros	numaer failed	$\begin{gathered} \text { OPERATING } \\ \left(x \quad 10^{6}\right) \end{gathered}$
	MiL.	COML.			LOWER	upper			
SHS	X		14.482	---	5.967	31.064	2	2	0.138

part class: MECHANICAL DEVICE
TYPE: MECHANISM, POWER TRANSMITTAL

ENVIRONMENT			Failure rate/10 ${ }^{6}$ hours				NUMBER OF RECORDS	number failed	operating hours$\left(x \quad 20^{6}\right)$
	application		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONFIDENCE	601 confloence interval				
	MIL,	COML.			LOWER	UPPER			
DOR	x		0.112	---	0.022	0.341	2	1	8.929
SAT	X		---	6.836	---	---	2	0	0.134
GRF	X		1.670	---	1.379	2.024	7	24	14.370
GRF		X	54.054	---	42.480	68.709	2	16	0.296
GRM	X		11.528	---	10.927	12.168	2	263	22.814
GRM		X	41.622	---	39.374	43.864	4	272	6.535
AU	X		10.987	---	10.842	11.135	9	4057	369.258
AUT	.	X	9.256	---	8.653	9.908	9	169	18.258
AUF	X		1.960	---	1.125	3.313	1	4	2.041
HEL	X		986.655	---	961.652	1012.428	8	1109	1.124
SHS	X		1.776	-	0.352	5.401	1	1	0.563

part class: MECHANICAL DEVICE

			Fallure rate/ 10^{6} hours						
environment	application		$\hat{\lambda}$	609 UPPER	603 CONFID	interval	NUMBER OF RECOROS	number failed	OPERATi:i: HOURS$\left(x 10^{6}\right)$
	MIL,	coml.		CONFIDENCE	LOWER	UPPER			
AUT		X	131.108	---	120.511	142.772	2	110	0.839

part class: MECHANICAL DEVICE

TYPE: SPRING

environment			Fallure rate/ 10^{6} hours						
	Application		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONFIDENCE	608 confidence interval		number of RECORDS	number failed	operating hours (x 10^{6})
	Mil,	coml.			LOWER	UPPER			
GRF	x		---	5. 551	---	---	1	0	0.165
AIF	X		---	1.406	---	---	2	0	0.651

part class: MISCELLANEOUS
TYPE: COIL, COOLING-CHILLED WATER

part class: MISCELLANEOUS
TYPE: RF CABLE ASSEMBLY

				failure rat	${ }^{6}$ Hours				
enyironaent	APPLICATION		$\hat{\lambda}$	609 UPPER SINGLE-SIDED CONFIDENCE	601 CONFIDENCE INTERYAL		number of RECORDS	number failed	operating hours$\left(x \quad 10^{6}\right)$
	Mil,	coml.			LOWER.	UPPER			
GRF	X		---	0.545	---	---	1	0	1.681

part class: MISCELLANEOUS
trpe: SAFE AND ARM DEVICE

			failure rate/ $10^{\circ} \mathrm{C}$ hours						
environment	APPLICATION		$\hat{\lambda}$	660 UPPER	601 CON	NTERYAL	NUMBER OF RECORDS	number failed	operating hours$\left(x 10^{6}\right)$
	MIL,	COML.		CONFIDENCE	LOWER.	UPPER			
DOR	X		0.482	---	0.414	0.563	5	36	74.706

part class: MOTOR
trpe: FULL H.P.

environment			failure rate/10 ${ }^{6}$ hours				$\underset{\substack{\text { number } \\ \text { REOROS }}}{\text { of }}$		$\left(\begin{array}{ll} x & 10^{6} \end{array}\right)$ $\underset{\left(x 10^{6}\right)}{\substack{\text { operating } \\ \text { hours }}}$
	application		$\hat{\lambda}$	601 UPPERSING E-SED CONfIDENCE	609 confidence interyal			number failed	
	M/L,	coml.			Lower.	upper			
DOR	X		0.499	---	0.099	1.517	1	1	2.004
GRF	x		0.913	---	0.773	1.080	12	31	33.967
GRM	X		4.238	---	3.468	5.191	2	22	5.190

Part class: MOTOR
TYPE: PM

			failure rate/10 ${ }^{6}$ hours						
environment	APPlication		$\hat{\lambda}$	608 UPPER SINGLE-SIDED confidence	608 Confloence interval		number of RECORDS	number failed	operating hours ($\times 10^{6}$)
	M12.	COML.			LOWER	UPPER			
GRF	X		---	4.202	---	---	1	0	0.218

PART CLASS: MOTOR
 trPE: SENSOR

			failure rate/10 ${ }^{6}$ mours						
enyironment	APPLICATION		$\hat{\lambda}$	SOG UPPER SINGLE-SIDEO confioence	609 CONF IDENCE INTERYAL		$\underset{\text { Number of }}{\substack{\text { Records }}}$	number failed	OPERATING HOURS$\left(\times 10^{6}\right)$
	MIL,	coml.			LOWER.	upper			
GRM	X		0.792	---	0.322	1.713	1	2	2.524
A		x	8.152	---	4.161	15.101	1	3	0.368
SHS	x		---	0.389	---	---	1	0	2.357
SUB	χ		10.487		10.112	10.879	1	557	53.114

\footnotetext{
part class: MOTOR
TYPE: SOLENOID

			faillure rate/10 ${ }^{6}$ hours						
environment	application		$\hat{\lambda}$	601 UPPER SINGLE-SIDED confidence	601 CONFIDENCE INTERYAL		nUMBER OF RECORDS	number failed	operating hours ($\times 10^{6}$)
	MIL,	coml.			LOWER.	upper			
DOR	X		---	2.379	---	---	1	0	0.385
SAT	X		*	0.034	---	---	1	0	26.975

PART class: MOTOR
TYPE:
FAILURE RATE/ 10^{6} HOURS

			FAILURE RATE / 10^{6} HOURS						
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	60\% UPPER SINGLE-SIDED CONF IDENCE	60\% CONF	NTERVAL	NUMBER OF RECORDS	Number falled	OPERATING HOURS$\left(x 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
GRF		X	1.373	- - -	0.568	2.956	1	2	1.451

PART class: MOTOR
TYPE: TORQUE

PART GLASS: PUMP
TYPE: BOILER FEED
part class: Pump
TYPE: CENTRIFUGAL

failure rate/ 10^{6} hours							($\underset{\substack{\text { NUMBER } \\ \text { RECOROS }}}{ }$	number faileo	operating hours$\left(\times 10^{6}\right)$
environment	APPLICATION		$\hat{\lambda}$	SO UPPERSINGLESTIDEO confidence	606 CONF LOENCE INTERYAL				
	MIL,	coml.			lower.	upper			
GRF	x		12.013	---	10.176	14.211	5	31	2.580
GRF		x	5.777	---	4.500	7.408	3	15	2.596
SHS	x		298.122	---	282.298	314.980	1	254	0.852

part class: Pump
rrpe: COOLANT

			failure rate/ 100^{6} hours						
Environment	Application		$\hat{\lambda}$	601 UPPER SINGLE-SIDED confioence	601 CONFIDENCE INTERYAL		${ }_{\text {NUMEER }}^{\text {RECOROS }}$	number failed	OPERATING HOURS$\left(x 10^{6}\right)$
	MIL,	COML.			LOWER.	UPPER			
A	X		657.251	---	648.831	665.803	1	4328	6.585
AUT		x	154.545	---	122.563	195.215	1	17	0.110

\footnotetext{
rype: ELECTRIC MOTOR ORIVEN

environment			failure rate/ 10^{6} hours				number of RECORDS	number failed	operating maurs (× 10^{6})
	Application		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONfIDENCE	609 CONFIDENCE INTERVAL				
	MiL,	COML.			LOMER.	UPPER			
A		x	6.889	---	5.576	8.530	4	20	2.903
AIT		x	387.352	-.-	354.168	424.080	1	98	0.253
AU	x		354.817	---	341.710	368.516	3	523	1.474
AUT		x	10.000	---	1.981	30.407	1	1	0.100
HEL	x		20.000	---	3.963	60.815	1	1	0.050

part class: PUMP
TYPE: ENGINE DRIVEN

environatit			failure rate/ $10{ }^{6}$ hours				number of records	number failed	operating hours
	application		$\hat{\wedge}$	601 UPPERSINGE-SIDED CONfIDENCE SINGLE-SIDED	601 Conf	interval			
	Mil.	comb.			LOWER	UPPER			
			18.519	---	9.452	34.304	1	3	0.162
AIT		x	443.137	-..-	418.195	469.810	1	226	0.510
AUT		X	231.343	-.-	195.964	273.660	1	31	0.134
HEL	x		86.667	---	72.185	104.270	1	26	0.300

part class: Pump
rrpe: FIXED DISPLACEMENT

Part class: Pump
type: FUEL

			failure rate/10 ${ }^{6}$ mours						
environment	APPLICATION		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONFIDENCE	601 Confidence interyal		number of RECORDS	number failed	operating hours ($x 10^{6}$)
	Mll	COML.			LOWER.	UPPER			
DOR	X		---	0.057	---	---	3	0	16.140
GRF	X		176.471	--..	149.034	209,383	1	30	0.170
GRM	x		6.683	---	5.879	7.608	2	50	7.482
GRM		x	181.001	---	168.088	195.057	1	141	0.779
A	x		71.879	---	70.166	73.642	3	1253	17.432
AU	x		37.539	---	33.783	41.766	1	72	1.918
AUT		x	10.471	---	9.555	11.487	7	94	8.977
AUF	x		130.342	---	116.167	146.457	3	61	0.468
HEL	X		334.821	---	302.005	371.668	1	75	0.224

part class: PUMP
TYPE: HYDRAULIC

			failure rate/10 ${ }^{6}$ hours				number of RECORDS	number failed	operating hours$\left(x 10^{6}\right)$
environment	application		$\hat{\lambda}$	601 UPPERSINGLE-SIDED CONF IOENCE	601 confidence interyal				
	Mil.	COML.			LOWER.	upper			
DOR	x		0.178	---	0.155	0.204	15	43	242.136
GRF	X		1.675	---	1.036	2.662	1	5	2.985
GRM	X		42.437	---	41.241	43.675	4	897	21.137
A	x		573.711	---	565.297	582.275	1	3304	5.759
AIT		x	6.289	---	5.295	7.486	4	29	4.611
AUF	x		799.145	---	749.673	852.400	1	187	0.234
HEL	X		395.022	---	377.544	413.448	4	365	0.924

part class: Pump

part class: pump
TYPE: IMPELLER

			failure rate/ $10{ }^{6}$ hours						
ENVIRONMENT	application		入	60% UPPER SINGLE-SIDED CONFIDENCE	608 CONFIDENCE 1 NTERVAL		number of recoros	numbir fallfd	operaitng huurs$\left(x 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
GRF	X		---	1.741	---	---	1	0	0.526

part class: pump
type: OIL

EnyiRonment			failure rate/10 ${ }^{6}$ hours				number of recoros	number failed	operating hovas (x 10^{6})
	APPLICATIUN		$\hat{\lambda}$	601 UPPER SINGLE-SIDED confioence	601 CONFIDENCE INTERYAL				
	M1L.	COML.			LOMER	UPPER			
GRM		x	28.241	---	23.108	34.586	1	22	0.779
A	x		59.459	---	50.648	69.941	1	33	0.555
AIT		x	11.687	---	9.610	14.243	1	23	1.968
HEL	x		45.455	---	26.103	76.839	2	4	0.088
SHS	x		78.975	---	71.183	87.732	1	74	0.937

Part class: PUMP
type: TURBINE DRIVEN

FAILURE RATE/ 10^{6} 4OURS

environment	APPLICATION		$\hat{\lambda}$	608 UPPERSINGLE-SIOED CONFIDENCE	608 Confidence interval		NUMBER OF RECORDS	number failfo	$\begin{gathered} \text { operating hours } \\ \left(\times 10^{6}\right) \end{gathered}$
	MIL.	coml.			Lower	UPPER			
	X		78.189	---	69.391	88.236	1	57	0.729
GRM			0.342	---	0.325	0.361	1	265	774.000
AUT		X	66.667	---	53.262	83.601	1	18	0.270

FAILURE RATE/ 10^{6} HOURS

ENVIRONMENT	APPLICATION		$\hat{\lambda}$	60% UPPER SINGLE-SIDED CONF IDENCE	60\% CONFIDENCE INTERVAL		NUMBER OF RECORDS	number failed	OPERATING HOURS$\left(x 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
GRF A	X	X	$\begin{aligned} & 27.027 \\ & 15.464 \end{aligned}$	---	$\begin{array}{r} 5.355 \\ 7.893 \end{array}$	$\begin{aligned} & 82.182 \\ & 28.646 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	1 3	$\begin{aligned} & 0.037 \\ & 0.194 \end{aligned}$

tYPE: VACUUM
PART CLASS: PUMP
Part class: PuMP
rype: VARIABLE DISPLACEMENT

			FAILURE RATE/ 10^{6} hours						
environment	APPL	cation	$\hat{\lambda}$	608 UPPER SIngle-sided CONFIDENCE	608 CONFIOENCE INTERVAL		NUMBER OF	number inilio	ofiraling thatrs ($\times 10^{6}$)
	MIL.	COML.			LOWER	UPPER			
DOR	X		0.200	---	0.162	0.248	2	20	100.000

Part class: PUMP
type: WATER

part class: REGULATOR
TYPE: FUEL

			failure rate $/ 10^{6}$ hours				number of RECORDS	number failed	OPERATING HOURS$\left(x \quad 10^{6}\right)$
Environment	APPLICAIION		$\hat{\lambda}$	60% UPPER SINGLE-SIDED CONFIDENCE	60% CONFIDENCE INTERVAL				
	MIL.	COML.			LOWER	UPPER			
AU	X		178.807	---	174.107	183.657	1	1031	5.766
HEL	X		136.213	---	118.118	157.363	2	41	0.301

[^0]Part class: REGULATOR
trpe: OXYGEN DEMAND

tYPE: PRESSURE
PART CLASS: REGULATOR
PART class: REGULATOR
TYPE: TENSION

part class: REGULATOR
trpe: THERMOSTAT

environment			Failure rate/ 100^{6} hours						
	Application		$\hat{\lambda}$	$\begin{aligned} & \text { 608 UPPER } \\ & \text { SINGLE-SIDED } \\ & \text { CONF IDENCE } \end{aligned}$	608 confidence interval		$\underset{\substack{\text { Number } \\ \text { Records }}}{\text { Of }}$	number fallef	OPErating$\left(\times 10^{6}\right)$
	MIL.	coml.			Lower	UPPER			
SAT	x		3.484	---	0.690	10.595	1	1	0.287
GRF	x		4.858	---	4.369	5.410	5	71	14.613
GRF		X	17.386	---	14.535	20.838	1	27	1.553
A	X		233.746	---	230.308	237.245	1	3286	14.058
AIT		x	22.562	---	21.248	23.971	3	211	9.352

PART class: REGULATOR

			failure rate $/ 10^{6}$ hours				Number ofRECORDS	number failed	operating hours$\left(x \quad 10^{6}\right)$
Environment	APPLICATION		$\hat{\lambda}$	60% UPPER SINGLE-SIDED CONF IDENCE	608 CONFIDENCE INTERVAL				
	MIL.	COML.			LOWER	UPPER			
GRF	X		2.998	---	2.188	4.103	1	10	3.336

PART class: RELAY
type: ARMATURE

environment			Failure rate/ 10^{6} hours						
	application		$\hat{\lambda}$	608 UPPER SINGLEE SIREDCONFIDENCE	608 CONF IDENCE INTERVAL		$\underset{\substack{\text { number } \\ \text { Recoros }}}{\text { of }}$	number failed	operating hiours$\left(x \quad 10^{6}\right)$
	MIL.	coml.			LOWER	UPPER			
GRF	χ		0.375	---	0.326	0.432	17	43	114.702
GRF		x	0.015	---	0.003	0.044	2	1	68.807
GRM	x		1.229	---	0.243	3.736	1	1	0.814
GRM		x	---	0.271	---	---	1	0	3.380
AIT	x		0.054	---	0.044	0.066	2	21	392.000
SHS	x		0.915	---	0.843	0.995	2	116	126.716
SUB	X		1.030	---	1.020	1.041		6953	6750.051

part class: Relay
rype: COAXIAL

			failure rate/ $10{ }^{6}$ mours				NUMBER OF RECORDS		
environment	APPlication		$\hat{\lambda}$	608 UPPERSINGLE-SIDED SINGLE-SIDEDCONFIDENCE	608 confidence interval			number failfo	
	MIL.	coml.			LOWER	UPPER			
GRF	X		---	3.923	---	---	1	0	0.233

part class: RELAY
tYPE: CRYSTAL CAN

ENVIRONMENT			FAilure rate 110^{6} hours				NUMBER OF RECORDS		
	APPLICAIION		$\hat{\lambda}$	60\% UPPER SINGLE-SIDED confidence	602 CONFIDENCE INTERVAL			number failed	operating hivrs$\left(x \quad 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
DOR	x		---	0.021	---	---	1	0	43.469
GRF	X		0.156	---	0.105	0.228	2	7	44.954
GRF		x	0.082	---	0.068	0.100	11	23	279.663
AIT	X		7.407	---	6.256	8.789	2	30	4.050
SHS	X		---	0.920	---	-.-	1	0	0.996

PART CLASS: RELAY
type: CURRENT SENSITIVE

PARt class: RELAY
TYPE: GENERAL

\footnotetext{
Part class: RELAY

FAILURE RATE $/ 10^{6}$ hours							number of RECORDS	number failed	operating hours$\left(x 10^{6}\right)$
Environment	APplication		$\hat{\lambda}$	60% UPPER	608 CONF	nterval			
	MIL.	COML.		CONF IDENCE	LOWER	UPPER			
$\begin{aligned} & \text { GRF } \\ & \text { GRF } \end{aligned}$	X	X	$\begin{aligned} & --- \\ & 0.551 \end{aligned}$	0.545	0.109	1.674	1 3	0 1	$\begin{aligned} & 1.681 \\ & 1.816 \end{aligned}$

part class: RELAY
TYPE: LATCHING

\footnotetext{
part class: relay

			failure rate/ 10^{6} mours						
cnvironment	application		$\hat{\wedge}$	$\begin{aligned} & 606 \text { UPPER } \\ & \text { SINGIE-SIDED } \end{aligned}$CONFIDENCE	608 conf ioence interval		$\underbrace{\text { of }}_{\substack{\text { Number of } \\ \text { RECORDS }}}$	number failed	$\underset{\substack{\text { OpErating } \\\left(x: 10^{6}\right.}}{ }$
	MLL.	come.			LOWER	UPPER			
GRF		X	22.222	---	15.048	32.605	1	7	0.315

Part class: RELAY
TYPE: POWER

Part class: RELAY
tYPE: THERMAL

			failure rate 110^{6} hours						
Environment	APPlication		$\hat{\lambda}$	60% UPPER SINGLE-SIDED CONFIDENCE	60% CONFIDENCE INTERVAL		number of RECORDS	number failed	operating houks$\left(x 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
DOR	X		---	2.000	---	---	1	0	0.458
GRF	x		13.089	-.-	8.096	20.800	1	5	0.382
GRF		x	0.435	---	0.177	0.941	1	2	4.596
AIT	X		25.641	---	5.081	77.968	1	1	0.039
SHS	X		0.746	---	0.304	1.613	1	2	2.680
SUB	X		10.667	---	7.445	15.223	1	8	0.750

part class: RELAY
type: TIME DELAY

				failure rate	6 hours				
envirunment	APPLICATION		入	608 UPPER SINGLE-SIDED CONF IDENCE	608 CONFIDENCE INTERVAL		$\underset{\substack{\text { numberr of } \\ \text { Recorns }}}{ }$	number falled	operating hours ($\times 10^{6}$)
	MIL.	COML.			LOWER	UPPER			
GRF	x	X	1.567	---	1.164	2.110	4	11	7.019
GRF			--	1.908	---	---	1	0	0.480
GRM	χ		4.246	---	1.727	9.179	1	2	0.471
AIT	x		26.620	---	21.889	32.442	1	23	0.864
SHS	X		1.014	---	0.862	1.196	2	3	4.950
MIS	X		---	1.953	---	---	1	0	0.469

part class: ROTARY JOINT
type: MICROWAVE

part class: SENSOR
TYPE: GENERAL

part class: SHOCK ABSORBER
trpe: GENERAL

part class: SHOCK ABSORBER
tYpe: GENERAL, MOUNT
Part class: SHOCK ABSORBER
tYPE: ISOLATOR

Part class: SOCKET
rYpe: DUAL-IN-LINE (PER PIN)

			failure rate/ $10{ }^{6}$ hours				Number ofRecords	number failed	operating hours$\left(x 10^{6}\right)$
environment	application		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONFIDENCE	601 CONFI	interval			
	Mll.	COML.			LOWER	UPPER			
GRF SHS	X	X	0.00056	---0.05	0.00012	0.0017	1	1	$\begin{array}{r} 1801.200 \\ 200.500 \end{array}$

trpe: HIGH POWER TUBE

part class: SOCKET
TYPE: LAMP
fallure rate $/ 10^{6}$ hours

			failure rate/ $10{ }^{6}$ hours						
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	604 UPPER SINGLE-SIDED CONFIDENCE	608 CONFIDENCE INTERVAL		NUMBER OF RECORDS	number failed	operating hours$\left(x 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
GRF	x		---	0.007	---	---	1	0	124.942
SHS	x		---	0.012	---	---	1	0	76.218

Part class: SOCKET
trpe: RELAY
PART CLASS: SOLENOID
tYPE: GENERAL

part class: SWITCH

PaRT Class: SWITCH
trPe: FLOW

FAILURE RATE/ 10^{6} mours							nUMBER Of RECORDS		
ENVIROMHENT	APPLICATION		人	608 UPPER SINGLE-SIDED CONF IDENCE	608 CONFIDENCE INTERVAL			mumber failed	OPERATING HOURS$\left(\times 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
	X		4.492	---	4.023	5.024	5	66	14.691
SHS	X		---	1.839	----	--	1	0	0.498
SUB	X		2.542	---	1.721	3.718	1	7	2.754

PART CLASS: SHITCH
TYPE: GENERAL

part class: SWITCH
trpe: hUMIDITY

part class:SWITCH
TYPE:INERTIAL

			fallure rate/ 10^{6} hours						
ENVIRONMENT	application		入	60% UPPER SINGLE-SIDED CONFIDENCE	608 CONFI	nterval	number ufRECORDS	number failed	OPERATING HOURS$\left(\times 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
DOR	X		0.066	---	0.047	0.092	1	9	137.100

part class: SWITCH
type: KEY

$=$
Part class: SWITCH
IYPE: PENDANT-HOIST

			Failure rate 110^{6} hours						
Environment	application		$\hat{\lambda}$	60\% UPPER	608 CONF	INTERVAL	NUMBER OFRECOROS	number failed	operaiting hours$\left(\times 10^{6}\right)$
	MIL.	COML.		CONF IOENCE	LOWER	UPPER			
GRF	X		6.155	---	3.142	11.402	1	3	0.487

PART Class: SWITCH
TYPE: PRESSURE

part class: SWITCH

			failure rate/ 10^{6} hours						
environment	APPLICATION		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONF IDENCE	601 CONFIOENCE INTERYAL		nUMBER OF RECORDS	number failed	$\begin{aligned} & \text { OPERATING MOURS } \\ & \left(\times 10^{6}\right) \end{aligned}$
	MIL.	COML.			LOWER.	UPFER			
DOR	x		---	1.519	\cdots	---	1	0	0.603
GRF	x		0.144	---	0.101	0.206	28	8	55.533
GRF		X	27.155	--	26.694	27.700	3	21102	777.089
GRM	N/A	N / A	--	0.226	---	---	5	0	4.053
A	N/A	N/A	7.353	---	6.738	8.031	7	103	14.009
HEL	X		---	0.712	---	---	1	0	1.286
SHS	x		0.448	---	0.398	0.506	2	57	127.097
SUB	X		0.078	---	0.053	0.114	3	7	90.228

Part class: SWITCH
TYPE: REED

ENVIRONMENT			failure raie/10 ${ }^{6}$ mours				NUMBER OF	number fallefo	operating imurs$\left(x \quad 10^{6}\right)$
	APPLICATION		$\hat{\lambda}$	604 UPPER SINGLE-SIDED CONF IDENCE	601 conf loence interval				
	MIL.	COML.			LOWER	UPPER			
DOR	x		---	0.950	---	---	1	0	0.964
SAT	X		---	2.018	---	---	1	0	0.908
GRF		X	---	0.001	---	---	1	0	1200.000
GRM		X	0.123	---	0.050	0.266	1	2	16.252

part class: SWITCH
trPE: ROTARY

ENVIRONMENT			failure rate/ $10{ }^{6}$ hours				NUPHIFR OF picordos	number rialen	opfrating hours$\left(\times 10^{6}\right)$
	APPLICATION		$\hat{\lambda}$	603 UPPER SINGLE-SIDED CONF IOENCE	601 Confldemie literval				
	MIL.	coml.			LOWER	UPPER			
SAT	X		0.418	---	0.083	1.272	1	1	2.391
GRF	X		0.691	---	0.610	0.785	15	52	75.242
GRM	x		---	9.347	---	---	8	0	0.098
A	x		16.001	---	15.098	16.966	2	225	14.062
AI	x		37.313	---	21.428	63.076	2	4	0.107
AIT	X		--	0.205	---	---	1	0	4.460
AIT		x	131.579	---	102.581	169.017	2	15	0.114
HEL	x		21.739	---	8.843	46.990	2	2	0.092
SHS	x		1.465	---	1.329	1.616	4	84	57.344
SUB	X		2.406	---	2.685	3.000	17	67	24.955

Part class: SWITCH
type: SENSITIVE

Part class: SWITCH
IYPE: SHAFT

Part class: SWITCH
type: SNAP SLIDE

PART CLASS: SWITCH
TYPE: STEPPING

			FAILUPE RATE $/ 10^{6}$ hours						
Environment	APPLICATION		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONF IDENCE	608 Conr	inierval	NUMBER OF RECORDS	number failito	OPFRATING HOURS$\left(\times 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
DOR	X		0.400	---	0.163	0.865	1	2	5.000
SUB	X		21.368	---	13.216	33.956	1	5	0.234

part class: SWITCH
TYPE: THERMAL

part class: SWITCH
rvpe: THERMOSTAT

part class: SWITCH
trpe: THUMB WHEEL

			fatlure rate/10 ${ }^{6}$ hours				NUMBER OF RECOROS		
environment	Application		$\hat{\lambda}$	608 UPPERSINGLE-SIDED CONF IDENCE	609 Confldence interval			number failed	OPERATING HOURS$\left(x \quad 10^{6}\right)$
	MIL.	сомl.			LOMER	upper			
GRM AIT	X	X	15.856	3.299	8.093	29.372	11	0 3	0.277 0.189

part class: SWITCH
trfe: TOGGLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{environment} \& \& \& \multicolumn{4}{|l|}{Tailure ratt/ \(10^{6}\) hours} \& \multirow[t]{3}{*}{number of records} \& \multirow[t]{3}{*}{number faileo} \& \multirow[t]{3}{*}{\begin{tabular}{l}
operating hours \\
(× \(10^{5}\))
\end{tabular}} \\
\hline \& \multicolumn{2}{|l|}{APPLICAIION} \& \multirow[t]{2}{*}{\(\hat{\lambda}\)} \& \multirow[t]{2}{*}{608 UPPER
SINGLE-SIDED CONFIDENCE} \& \multicolumn{2}{|l|}{608 Conf idince inierval} \& \& \& \\
\hline \& MIL. \& Coml. \& \& \& tower \& upper \& \& \& \\
\hline DOR \& X \& \& -- \& 0.907 \& --- \& --- \& 1 \& 0 \& 1.010 \\
\hline GRF \& X \& \& 0.270 \& --- \& 0.254 \& 0.292 \& 19 \& 163 \& 598.769 \\
\hline GRM \& X \& \& 0.243 \& --- \& 0.054 \& 0.720 \& 6 \& 1 \& 4.166 \\
\hline A \& x \& \& 7.194 \& --- \& 6.813 \& 7.600 \& 4 \& 255 \& 35.446 \\
\hline AI \& X \& \& 29.732 \& --- \& 19.369 \& 45.164 \& 6 \& 6 \& 0.201 \\
\hline HEL \& X \& \& 18.605 \& --- \& 12.985 \& 26.552 \& 1 \& 8 \& 0.430 \\
\hline SHS \& \(x\)

\times \& \& 0.553 \& --- \& 0.495 \& 0.619 \& 16 \& 66 \& 119.306

\hline SUB \& X \& \& 0.041 \& --- \& 0.032 \& 0.051 \& 18 \& 18 \& 443.176

\hline
\end{tabular}

Part class: SWITCH
trpe: WAVE GUIDE

ENVIRONMENT	APPLICATION	
	MIL.	COML.
GRF	X	
GRM	X	

PART Class: SYNCHRO
rrpe: DIFFERENTIAL

				failure rat	${ }^{6}$ hours				
environment	APPLICATION		$\hat{\lambda}$	608 UPPER SINGLE-SIDED CONFIDENCE	60% Confldence interval.		numbrr or recoris	number faltst	areratimg ine:ps ($\times 10^{6}$)
	MIL.	COML.			LOWER	UPPER			
SUB	X		1.313	---	1.124	1.537	$?$	35	26.658

part class: SyNCHRO
TYPE: GENERAL

			fallure rate/ $10{ }^{6}$ hours			
Environment	APPLICAYIION		^	608 UPPER SINGLE-SIDED CONF IDENCE	608 Cont loence interval	
	MIL.	coml.			Lower	UPPER
GRM	x		4.198	---	3.534	4.997
A	X		336.831	---	320.935	353.648
A		x	---	2.544	---	---
AUT		χ	---	10.178	---	---
AUF	X		102.857	---	82.175	128.984
HEL	X		150.000	---	116.942	192.679
SUB	X		0.353	---	0.180	0.653

part class: SYNCHRO
TYPE: RECEIVER, TRANSMITTER

fallure rate/10 ${ }^{6}$ Hours							number of RECOROS	number tallet	opfrating mours$\left(x \quad 10^{6}\right)$
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	608 UPPER SINGLE-SIDED CONF IDENCE	602 Conf 10	interval			
	MIL.	coml.			LOMER	UPPER			
A	χ	X	0.649 7.426	---	$\begin{aligned} & 0.129 \\ & 2.948 \end{aligned}$	$\begin{array}{r} 1.975 \\ 15.663 \end{array}$	1	1	$\begin{aligned} & 1.540 \\ & 0.276 \end{aligned}$

Pary class: SYNCHRO
TYPE: RESOLVER

ENYIROMMENT			Tallure rafe/10 ${ }^{6}$ hours				(number or	number tailed	operating milups
	APPLICAIION		$\hat{\lambda}$	60 UFPER SINGLE-SIDED CONF 1 DENCE	608 cont idence initrval				
	MIL.	COHL.			LOWER.	UPPER			
OOR	x		0.135	---	0.055	0.291	3	2	14.858
GRF	x		---	2.398	---	---	1	0	0.382
A	X		9.032	---	7.802	10.476	1	39	4.318
A		x	3.378	---	1.940	5.711	2	4	1.184
SHS	x		55.556	---	22.599	120.086	1	2	0.036
SUB	X		1.986	---	1.899	2.066	7	348	175.215

\footnotetext{
PART ClASS: TANK
ryPE: FUEL CELL

			failure rate 110^{6} mours						
ENVIRONMENT	applicarion		$\hat{\lambda}$	60\% UPTER SINGLE-SIDED CONF IDENCE	603 conrioence interval		nUMPER OF RECOROS	number failed	operaling hours$\left(x 10^{6}\right)$
	MIL.	coml.			LOWER	UPPER			
GRM	N/A	N/A	7.745	---	7.019	8.555	3	82	10.588
A	χ		152.358	---	149.440	155.345	1	1938	12.720
HEL	X		108.824	---	93.600	126.762	1	37	0.340

Part class: TANK
TYPE: GENERAL

			Fallure rate 110^{6} hours						
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONFIDENCE	608 CONFIDENCE INTERVAL		NUMBER OF RECORDS	number failed	OPERATING HOURS$\left(\times 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
AUT		X	---	6.887	---	---	1	0	0.133
HEL	X		5.000	---	0.991	15.204	1	1	0.200

part class: TANK
type: OIL

failure rate/ $10{ }^{6}$ hours							NUMBER OfRECOROS	number falled	opfrating inuors$\left(x \quad 10^{6}\right)$
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONFIDENCE	609 CONF:	interval			
	MIL.	COML.			LOWER	UPRER			
GRM	N / A	N / A	4.058	---	2.510	6.449	2	5	1.232
A	X		45.404	---	43.956	46.909	1	701	15.439
AUT		X	14.604	---	12.533	17.051	5	36	2.465
AUF	x		238.636	---	207.318	275.177	1	42	0.176
HEL	X		159.322	---	145.384	174.782	2	94	0.590

part class: TANK
TYPE: PRESSURE VESSEL

			failure rate/ 10^{6} hours						
ENVIRONMENt	APPLICATION		$\hat{\lambda}$	608 UPPER SINGLE-SIDED CONFIDENCE	601 conr	interval	NUMBER OF RICORDS	number fallito	offrating helurs$\left(\times 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
DOR	X		0.237	---	0.047	0.722	1	1	4.211
AU	N/A	N/A	53.659	---	43.871	62.974	3	22	0.410
HEL	X		260.000	---	198.427	340.972	1	13	0.050

Part class: TANK
ripe: STORAGE

			Failure rait $/ 10^{6}$ hours						
Environment	APPLICATION		$\hat{\lambda}$	608 UPPER SINGLE-SIDED CONf IDENCE	608 CONF	nterval	NUMBER OT RECORDS	nimber fallfo	OFERAIING MOURS$\left(\times 10^{5}\right)$
	MIL.	coml.			LOWER	UPPER			
GRF	X		1.616	---	1.094	2.370	1	7	4.333

part class: TIME-TOTALIZING METER
TYPE: COUNTERS

part class: TIME-TOTALIZING METER
TYPE: TIMER, ELECTRO-MECHANICAL

part class: TRANSDUCER
TrPE: GENERAL

			failure ratf 110^{6} hours				number of PECORUS		
ENVIRONMENT	Application		$\hat{\lambda}$	608 UPPER	601 CONF	interval		number fail.fo	OPERAIING *WHRS$\left(x 10^{6}\right)$
	MIL.	COML.		CONF IOENCE	LOWER	UfPER			
SAT	x		---	0.588	---	---	2	0	1.558
A		X	91.917	---	87.067	97.082	3	257	2.796
HEL	x		100.000	---	87.031	115.105	1	43	0.430

Part class: TRANSOUCER

			fallure rate/ $10{ }^{6}$ hours						
environment	application		$\hat{\lambda}$	608 UPPER SINGLE-SIOED CONF IDENCE	608 conf	interval	numbre of RF CORIS	number failed	oferating ilimur:$\left(\times 10^{5}\right)$
	MIL.	coml.			Lower	UPTER			
GRF	x		3.925	---	2.427	6.237	1	5	1.274
AUF	X		254.237	---	198.207	326.575	1	15	0.059
HEL	X		71.429	---	61.940	82.520	1	41	0.574

part class: TRANSDUCER
rrpe: PRESSURE

environment			failure rate/ 10^{6} hours				Number of	number faileo	operating hours (x 10^{6})
	Application		$\hat{\lambda}$	SING UPPER CONF IDENCE	602 confidence interval				
	MIL.	сомl.			OWER	UPPER			
DOR	X		1.998	---	1.147	3.378	1	4	2.002
GRF	x		6.757	---	1.339	20.546	1	1	0.148
GRM	N/A	N/A	79.055	---	72.247	86.593	2	97	1.227
A	X		151.815	---	146.046	158.200	2	506	3.333
AUT		x	54.106	---	51.611	56.743	3	336	6.210
HEL	χ		154.622		140.948	169.805	5	92	0.595

part class: TRANSDUCER

			failure rate/10 ${ }^{6}$ hours				number of recoros		
ENVIRONMENT	Application		入	S 080 UPPER	608 CONFI	interval		number failed	oferating hours$\left(x \quad 10^{6}\right)$
	MIL.	coml.		CONF IDENCE	Lower	UPPER			
$\stackrel{\text { A }}{\text { HEL }}$	$\underset{X}{N / A}$	N/A	$\begin{aligned} & 54.331 \\ & 57.944 \end{aligned}$	--	$\begin{aligned} & 51.173 \\ & 51.694 \end{aligned}$	$\begin{aligned} & 57.715 \\ & 65.042 \end{aligned}$	5 1	212 62	$\begin{aligned} & 3.902 \\ & 1.070 \end{aligned}$

PARI CLASS: TRANSDUCER
trpe: TEMPERATURE

			failure rate $/ 10^{6}$ hours						
ENVIRONMENT	APPLICATION		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONFIDENCE	608 CONF	INTERYAL	NUMBER OF RECORDS	number failed	opfrating minura$\left(\times 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
GRF	X		2.413	-	0.981	5.215	1	2	0.829
GRF		X	21.964	_--	18.758	25.768	1	34	1.548
A	N/A	N/A	86.938	---	83.977	90.022	4	615	7.074
HEL	X		62.992	---	57.016	69.678	1	80	1.270

part class: VALVE

trpe: BALL

			FAILURE RATE/ $10{ }^{6}$ hours						
ENVIROMMENT	APPLICATION		$\hat{\lambda}$	608 UPPER SINGLE-SIDED COMFIDENCE	60% confluenct. Intirval		NUMAEP or pectorus	number failero	operating houps$\left(\times 10^{6}\right)$
	MIL.	COML.			LOWER	UPPER			
DOR	X		---	0.374	---	---	1	0	2.447
GRF	X		0.647	---	0.400	1.029	2	5	7.723
GRM	X		1.441	---	0.891	2.290	2	5	3.469

rYPE: BUTTERFLY

PART CLASS: VALVE
TYPE: CHECK

part class: VALVE

PART Class: VALVE
type: FUEL

environment			Failure rate 110^{6} hours				number of RECORDS	number failed	$\begin{aligned} & \text { oferating hours } \\ & \qquad\left(x 10^{6}\right) \end{aligned}$
	APPLICATION		$\hat{\lambda}$	60 UPPER SINGLE-SIDED CONFIDENCE	608 CONFIDENCE INTERVAL				
	MIL.	COML.			LOWER.	UPPER			
DOR	X		---	0.127	---	---	1	0	7.220
GRF	χ		-	8.327	---	---	1	0	0.110
AU	X		42.645	---	38.810	46.910	5	89	2.087
AUT		X	3.056	---	2.487	3.762	7	21	6.872
AUF	X		24.450	---	19.787	30.271	1	20	0.818
HEL	X		40.000	---	16.271	86.462	1	2	0.050

part class: VALVE
TYPE: GATE

				failure rat	${ }^{6}$ hours				
Environment	application		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONF IDENCE	601 CONFIDENCE INTERVAI.		NUMAFR or RECORDS	number falled	operaling hours ($\times 10^{6}$)
	MIL.	COML.			Lower	UPPER			
GRF	χ		1.336	---	0.975	1.829	4	10	7.484
A	x		32.448	---	24.092	43.695	1	11	0.339
HEL	X		71.429	---	44.179	113.510	1	5	0.070

part class: VALVE
TYPE: GENERAL

ENVIRONMENT			FAILURE RATE $/ 10^{6}$ HOURS				NUMBER OF RECORDS	NUMBER FAILED	OPERATING HOURS$\left(x 10^{6}\right)$
	APPLICATION		$\hat{\lambda}$	601 UPPER SINGLE-SIDED CONFIDENCE	608 CONFIOENCE INTERYAL				
	Mil.	COML.			LOWER.	UPPER			
DOR	X		---	0.006	-	---	7	0	148.475
SAT	X		---	0.640	---	---	1	0	1.432
GRF	X		---	0.175	---	---	2	0	5.248
GRF		X	15.121	---	13.463	17.008	2	60	3.968
GRM	X		14.423	---	7.362	26.718	4	3	0.208
A	N / A	N / A	101.086	-	100.154	378.907	8	8353	82.633
HEL	X		98.804	---	93.205	104.793	2	223	2.257

PARt CLASS: VALVE
TYPE: GLOBE

part class: Valve
TYPE: HYDRAULIC

PART CLASS: VALVE
type: NEEDLE
part class: valve
TYPE: OIL

			failure rate/10 ${ }^{6}$ huurs				NUMBER or RECORUS		$\begin{aligned} & \text { orranting hours } \\ & \left(\times 10^{6}\right) \end{aligned}$
environment	application		^	608 UPPERSINGLE-SDRED conf loence	601 confidence interval			number failetio	
	MIL.	coml.			Lower	upper			
GRF	X		2.412	---	1.571	3.663	1	6	2.488
A	X		32.895		20.345	52.274	1	5	0.152

part class: valve
TrPE: PLUG

\footnotetext{
part class: VALVE
rrpe: PNEUMATIC

part class: VALVE
type: RELIEF

part class: VALVE
irPE: SERVO

Part class: VALVE
TYPE: SOLENOID

Environment			fallure rate/ 10^{6} hours					number fallic	
	application		$\hat{\lambda}$	SNG UPPER Single-sided CONF IDENCE	608 CONTIDEACE INIEPVAI				
	MIL.	coml.			LOWER	UPPER			
DOR	x		0.009	---	0.006	0.013	14	7	807.376
GRF	x		1.640	---	1.486	1.812	9	82	50.002
GRM	x		18.519	---	3.669	56.310	1	1	0.054
A	χ		28.128	---	26.221	30.196	4	156	5.546
AUT		X	18.990	---	16.468	21.939	4	41	2.159
HEL	X		124.611	--.	107.850	144.239	4	40	0.321

PART Class: VALVE
TYPE: WATER

FAILURE RATE $/ 10^{6}$ hours							number uf RECORDS		
enditrunment	APPLICAIION		$\hat{\lambda}$	$\begin{aligned} & 608 \text { URFER } \\ & \text { SINGLE-SIUED } \\ & \text { CONFIDENCE } \end{aligned}$	60\% CONF DIDENCE INTIRVAI			Nimber failfu	
	MIL.	COML.			LOWER	UPPER			
GRF	X		1.895	---	1.630	2.208	4	37	19.521

NONELECTRONIC PARTS RELIABILITY DATA

SECTION 2

NONELECTRONIC PARTS DETAILED DATA

Section 2

NONELECTRONIC PARTS DETAILED DATA

The detailed data entries presented in this section are arranged in alphabetical order by major family class and alphabetically by type within each family class. The environmental codes described on page 5 are utilized in this section.

Failure rate estimates are not presented for those entries having zero failures and less than 0.5×10^{6} hours. The user of this document who wishes to derive the 60% upper single-sided confidence limit estimate for the zero failure case may do so by dividing the value 0.916 by the operating hours provided for that entry.

INDEX FOR DETAILED DATA

Page
Actuator 125
Linear 125
Rotary 130
Battery 131
Carbon - Zinc 131
Lead Acid 132
Mercury 133
Nickel Cadmium 134
Bearing 135
Ball 135
Circuit Protection Device 136
Circuit Breaker 136
Molded Case Circuit Breaker 137
Power Switch Circuit Breaker 138
Undervoltage Circuit Breaker 139
Compressor 140
Air 140
Connector 141
Circular 141
Coaxial 148
Power 149
Printed Circuit Board 150
Rectangular 152
Controls and Instruments 157
Compass 157
Indicator 158

INDEX FOR DETAILED DATA (Cont'd)

Page
Emergency Light 161
Stand-By 161
Emergency Power 162
General 162
Fan 163
General 163
Generator 164
General 164
Gyro 166
Rate Integrating 166
Heater 167
Electric 167
Mechanical Device 168
Gear Assembly 168
Power Transmittal 169
Motor 170
Full Horsepower 170
Solenoid 172
Pump 173
Centrifugal 173

INDEX FOR DETAILED DATA (Cont'd)

Page
Regulator 174
Pressure 174
Thermostatic 176
Relay 177
Armature 177
Crystal Can 178
General Purpose 179
Latching 182
Power 183
Reed 184
Time Delay 185
Socket 186
Pin, DIP 186
Sprinkler Head 187
General 187
Switch 188
Centrifugal 188
Diaphragm 189
Flow 190
Humidity 191
Keyboard 192
Push Button 193
Reed 194
Rotary 195
Sensitive 196
Thermostat 197
Thumbwheel 198
Toggle 200

INDEX FOR DETAILED DATA (Cont'd)

Page
Time-Totalizing Meter 202
Timer, Electro-Mechanical 202
Valve 203
General 203
DETAILED DATA TABLES

PARI Class: ACTUATOR
rae. Linear
INV $\begin{aligned} & \text { SPEC NUMBER } \\ & \text { PART NUMBER }\end{aligned}$
z
DOR
DOR
DOR
$\stackrel{8}{8}$ DOR oof Dor \% g部 g 눙
Part class: actuator

Env	SPEC NUMBER PART NUMBER manuFacturer	characteristics	$\hat{\lambda}$	GO8 UPPERSINGLE - SIDEOCONFIDENCE	608 CONFIDENCE INTERVAL		number falleo	$\begin{aligned} & \text { OPERATING } \\ & \text { MOURS } \\ & \left(\times 10^{6}\right) \end{aligned}$
					LOWER	UPPER		
DOR		Pneumatic	---	1.458	---	---	0	0.628
GRF		Hydraulic	---	---	---	---	0	0.014
GRF		Preumatic	3.2050*	---	0.635	9.746	1	0.312
GRF		Pneumatic	15.7480*	---	11.866	20.909	12	0.762
GRF		Hydraulic	15.2280*	---	7.773	28.210	3	0.197
GRF		Hydraulic Servo	125.4160	---	110.666	142.845	51	0.446
GRF		Pneumatic, 4 inch dia, 18 inch Stroke, 25 PSI	1.206	--	0.497	2.586	2	1.659
GRF		Pneumatic, 4 inch dia, 18 inch Stroke,25 PSI	2.411	---	0.993	5.172	2	0.829
GRF		Pneumatic, 3 inch dia, 36 inch Stroke, 125 PSI	9.500	---	4.459	11.500	23	2.421
GRF		Pneumatic, 3 inch dia, 36 inch Stroke, 125 PSI	15.745*	--	11.856	20.810	12	0.762
GRM		Pneumatic, Piston Rolling Diaphragm	0.0015	--	0.001	0.002	10	6636.000
GRM		Hydraulic	368.421	-	249.480	540.558	7	0.019

pmer class: ACTUATOR
trpe: Linear (continued)

env	SPEC NUMBERPART NUMBER MANUFACTURER	characteristics	fal lure rate/ $/ 0^{6}$ hours				$\underset{\text { Namber }}{\substack{\text { alied }}}$	
			ヘ	608 UPEER	608 conf	E interval		
			\wedge		LOWER	UPPER		
GRM		Hydraulic	50.459	---	37.464	67.948	11	0.218
GRM		Hydraulic	2.207	---	0.437	6.712	1	0.453
GRM		Hydraulic	826.087	---	664.439	1029.050	19	0.023
A		Electrical	209.009	---	192.560	227.068	116	0.555
A		Electrical	285.714	---	116.224	617.586	2	0.007
A		Hydraulic	5608.696*	---	5190.240	6065.905	129	0.023
A		Hydraulic	149.948	---	139.400	161.417	145	0.967
A		Hydrualic	483.660	---	435.935	537.935	74	0.153
A		Hydraulic	97.087	---	81.993	115.195	30	0.309
A		Hydraulic	319.672	---	276.123	370.774	39	0.122
A		Hydraulic	500.887	---	494.793	507.072	4798	9.579
A		Hydraulic	235.294	---	201.921	274.707	36	0.153
A		Hydraslic	198.485	--	183.790	214.529	131	0.660
A		Hydraulic	164.807	---	159.283	170.556	635	3.853
A		Hydraulic	0.163	---	0.162	0.165	7776	47,561.000

part class: ACtuator
trpe: Linear (continued)

			failure rate/ $/ 0^{6}$ hours				NUMBERFAJLED	$\begin{gathered} \text { OPRRAIIN } \\ \text { HOUMS } \\ \text { (X10 } \left.10^{6}\right) \\ \hline \end{gathered}$
env	SPEC NUMBER PART NUMBER MAMUFACTURER	characteristics	$\hat{\wedge}$		608 CONFI	interval		
			\star	(LOWER	UPPER		
AIt		Electrical, Passenger Door	21.280	---	---	---	---	---
AUT		Hydraulic Servo	498.335	---	484.298	512.854	898	1.802
aut		Hydraulic Servo	56.454	---	54.334	58.672	506	8.963
aUt		Hydraulic	80.086	---	76.785	83.774	374	4.670
aUt		Mechanical Spoiler, Slot Control	43.480	---	---	---	---	---
AUT		Mechanical, Aileron/ Rudder	2.000	---	---	---	---	--
AUT		Mechanical Driven	5.503	---	4.991	6.076	83	15.082
aut		Mechanical Driven	227.829	---	221.926	233.918	1061	4.657
AUT		Electrical	40.291	---	38.131	42.594	249	6.180
AUT		Electrical	86.051	---	82.320	89.980	380	4.416
AUT		Hydraulic	23.445	---	22.780	24.133	886	37.790
AUT		Hydraulic	65.854	---	55.057	78.931	27	0.410
AUT		Pneumatic	227.829	---	221.926	233.918	1061	4.657
aut		Pneumatic	71.605	---	63.617	80.715	58	0.810

Pakt class: ACTUATOR

PART Class: BATTERY
IYPE: Lead Acid

高

132
part class: battery

1
part class: BATTERY

Part class: BEARING
trPE: Ball

Part class: CIRCUIT PROTECTION DEVICE

Part class: CIRCUIT PROTECTION DEVICE

pant class：CIRCUIT PROTECTION DEVICE

		$\rightarrow \sim m$
	蒟	
		$1 \quad 1$
	＜	
	$\frac{3}{4}$	岑 宮 董

Pary class: CIRCUIT PROTECTION DEVICE
trpe: Undervoltage Circuit Breaker

PARt class：COMPRESSOR
trpe：Air

	$\begin{aligned} & 0 \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\mu} \end{aligned}$	$\underset{\underset{\sim}{7}}{\underset{\sim}{7}}$	$\begin{aligned} & \vec{O} \\ & \dot{0} \end{aligned}$	\circ 8 0	∞ 0 0 0	$\begin{aligned} & \text { is } \\ & 0 \\ & 0 \end{aligned}$
	응	$\stackrel{\square}{-}$	¢	∞	\pm	¢	〇－
	1 0 0 \sim	$\xrightarrow[\sim]{\sim}$	0 0 0 \sim \sim	$\begin{aligned} & \text { B } \\ & \text { m } \\ & \text { N } \end{aligned}$	O R ¢	¢ $\stackrel{\text { ® }}{ }$ \sim	$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \dot{0} \\ & \underset{\sim}{\circ} \end{aligned}$
	$\underset{\sim}{\underset{\sim}{J}}$	$\stackrel{\infty}{\infty}$	No	¢ $\stackrel{8}{+}$ $\stackrel{+}{9}$	8 8 0 0 \sim	8 ∞ \sim \sim	$\begin{aligned} & \text { O} \\ & \hline 0 \\ & 0 \\ & \end{aligned}$
	\vdots	1	；	；	；	！	i
＜	O 	\circ \sim \sim i	¢ N $\stackrel{\text { d }}{ }$ \sim	8 8 $\dot{8}$ -1	\％	－	$\begin{gathered} \mathcal{O} \\ \dot{8} \\ \tilde{O} \\ 0 \end{gathered}$
$\underset{3}{3}$	岩	宕	중	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	n	\sim

CONNECTOR
circular
pary ciass：

			N	0 0 0 0	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	$\stackrel{ \pm}{\sim}$	$\begin{aligned} & \stackrel{\sigma}{7} \\ & \dot{J} \\ & \dot{J} \end{aligned}$	$\stackrel{g}{\square}$	$\begin{aligned} & \mathbf{\infty} \\ & \mathbf{m} \\ & 0 \end{aligned}$	$\begin{aligned} & \sim \\ & \infty \\ & \sim \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \hline \end{aligned}$	$\underset{\sim}{\dddot{\sim}}$	$\begin{gathered} \tilde{\sim} \\ \stackrel{\sim}{0} \end{gathered}$	\pm 0 0	$\begin{aligned} & \dot{\Delta} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \hat{8} \\ & \dot{0} \end{aligned}$	－
		込	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\stackrel{J}{\sim}$	\bigcirc	\bigcirc	\pm	0	0	\bigcirc	0	0	\bigcirc	\bigcirc
		crers	$!$	！	$!$	i	O \sim 0	i	i	$\begin{aligned} & \circ \\ & \hline \infty \\ & \infty \\ & \dot{\sigma} \end{aligned}$	1		$!$	－	；	！	i
		気总号	！	！	！	；	$\stackrel{\sim}{m}$	！		$$	i	\vdots	！	！	！	！	1
	$\frac{E}{2}$		$\begin{aligned} & \bar{O} \\ & 0 \\ & 0 \end{aligned}$	；	＇	¢ 0 0	！	；		！	$\stackrel{\cong}{\circ}$	！	i	！	！	；	；
		＜	！	i	1	1	－	i	！	$\xrightarrow[\sim]{\sim}$	！	！	；	！	！	1	＇
						$\begin{aligned} & 0 \\ & \stackrel{y}{4} \\ & \stackrel{N}{N} \\ & \stackrel{N}{E} \end{aligned}$			$$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{む} \\ & \stackrel{4}{心} \\ & \stackrel{U}{E} \end{aligned}$	́ㅗ 응 ய 芯号 \leftrightarrows					$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{\leftrightarrows} \\ & \stackrel{\sim}{\leftrightarrows} \\ & \vdots \end{aligned}$	
											$\begin{aligned} & \underset{U}{U} \\ & \underset{\sim}{\dddot{N}} \\ & \underset{\Sigma}{N} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\Psi} \\ & \underset{\sim}{\dddot{~}} \\ & \underset{\sim}{\dddot{N}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{\Sigma}{\Sigma}} \\ & \stackrel{\rightharpoonup}{N} \\ & \underset{\Sigma}{\sim} \end{aligned}$		$\begin{aligned} & \stackrel{n}{0} \\ & \stackrel{1}{4} \\ & \stackrel{1}{x} \end{aligned}$		
－		立	\％	$\stackrel{\leftarrow}{\text { ¢ }}$	$\stackrel{\square}{4}$	$\stackrel{\text { ¢ }}{\sim}$	容	$\stackrel{4}{8}$	容	능	宮	彩	峖	중	$\underset{\text { 중 }}{\text { 장 }}$	$\sum_{\text {웅 }}$	중

Part class: CONNECTOR

ENV	SPEC MUMDER PART MUMBER MANUFACTURER	Characteristics	$\hat{\lambda}$	$\begin{gathered} \text { G09 UPPER } \\ \text { SINGLE-SIDED } \\ \text { CONF IDENCE } \end{gathered}$	608 Conf IDENCE INTERYAL		MUMBER FAILED	operating HOURS $\left(\times 10^{6}\right.$)
					LOWER	UPPER		
GRM	MIL-C-26482	$\begin{aligned} & \text { Insert } D, 55 P, 20 G, \\ & 7.5 \mathrm{~A} \end{aligned}$	---	---	---	---	0	0.014
AI	MIL-C-26482	$\begin{aligned} & \text { Insert } A, 1 P, 20 G, \\ & 7.5 A \end{aligned}$	---	---	---	---	0	0.004
AI	MIL-C-26482	$\mathrm{Insert}_{7.5 \mathrm{~A}}^{\text {In }} 1 \mathrm{P}, 20 \mathrm{G},$	---	---	---	---	0	0.004
AI	MIL-C-26482	${ }_{22 A}^{\text {Insert } A, 3 P, 16 G,}$	---	---	---	-	0	0.004
AI	MIL-C-26482	$\begin{aligned} & \text { Insert } A, 6 P, 16 G, \\ & 22 A \end{aligned}$	---	---	---	---	0	0.004
AI	MIL-C-26482	$\begin{aligned} & \text { Insert } A, 15 P, 20 G, \\ & 7.5 A \end{aligned}$	---	---	--	---	0	0.004
AI	MIL-C-26482	$\underset{7.5 \mathrm{~A}}{\text { Insert } \mathrm{A}, 16 \mathrm{P}, 20 \mathrm{G},}$	---	---	---	---	0	0.004
AI	MIL-C-26482	$\begin{aligned} & \text { Insert } A, 16 P, 20 G, \\ & 7.5 \mathrm{~A} \end{aligned}$	---	---	---	--	0	0.004
AI	MIL-C-26482	$\begin{aligned} & \text { Insert } A, 30 P, 20 G \text {, } \\ & 7.5 A \end{aligned}$	-	---	--	---	0	0.004
AI	MIL-C-26482	$\begin{aligned} & \text { Insert } B, 32 P, 20 G, \\ & 7.5 A \end{aligned}$	---	---	-	---	0	0.004
AI	MIL-C-81511	Insert B, 30P, 22G	---	---	---	---	0	0.004

part class: CONNECTOR
trpe: Circular (continued)

Env	SPEC NUMBER PART MUMBER MANUFACTURER	CHARACTERIStics	$\hat{\lambda}$	60% UPPER SINGLE --SIDED CONF IDFNCE	608 Cont idence interval		${ }_{\text {chen }}^{\substack{\text { numater } \\ \text { FAILEd }}}$	OPERATING HOURS ($\times 10^{6}$)
					LOWER	UPPER		
AI	MIL-C-81511	Insert B, 68P, 20G	--	---	-	---	0	0.004
AI	MIL-C-81511	Insert B, 85P, 23G	---	---	---	---	0	0.099
AI	MIL-C-81511	Insert B	---	---	---	---	0	0.099
AI	MIL-C-81511	Insert B, 55P, 22G	---	---	---	--	0	0.004
AI	MIL-C-81511	Insert B, 68P, 22G	---	---	---	---	0	0.004
AU	MIL-C-5015	Insert D	0.961	---	0.890	1.038	133	138.465
AU	MIL-C-5015	Insert D	1.893	---	1.699	1.992	124	67.423
AU	MIL-C-26482	Insert D, 21P, 16G	0.281	---	0.183	0.426	6	21.387
AU	MIL-C-38999	Insert D	0.017	---	0.013	0.022	15	866.817
AU	MIL-C-81511	Insert D	---	---	-	---	0	0.028
AUF	MIL-C-38999	5P, 16G, 13A	---	---	--	---	0	0.096
AUF	MIL-C-38999	Insert B, 13P, 22G, 3A	---	1.23:	---	---	0	0.744
AUF	MIL-C-38999	Insert B, 22P, 22G, 3A	--	.--	---	---	0	0.060
AUF	MIL-C-38999	Insert B, 37P, 22G, 3A	-	---	-	---	0	0.036
AUF	MIL-C-38999	Insert B, 128P, 22C, 3 A	---	---	--	---	0	0.060

Part class: CONNECTOR
Circular (continued)

ENY	SPFC MUMAER PARI NUMBER manufacturer	characteristics	$\hat{\lambda}$	G01 UPYERSINGLE-SIDEOCONF IDENSI	60\% Comfinfect inifrval			OPERAIING HOURS ($\times 10^{6}$)
					10 mf R	urap		
SHS	MIL-C-5015	Insert D	0.691	--	0.397	1.168	4	5.791
SHS	MIL-C-38999	Insert D	0.650	-	0.129	1.976	1	1.539
SHS	MS3106A28	Insert D, 37P, 16G	---	0.920	--	---	0	0.996
SHS	MS3102R22	```Insert D, 19P, 18G, Solder, Environmental, Gold Plate Contacts```	-	---	---	--	0	0.498
SHS	MS3102R28	Insert D, 37P, 16G, Solder, Gold Plate Contacts	-	0.368	---	---	0	2.490
SUB	:AIL-C-5015	Insert B, 3P, 16G, 22A	---	---	-	-	0	0.009
SUB	MIL-C-5015	Insert B, 3P, 16G, 22A	---	---	---	---	0	0.003
SUB	MIL-C-5015	Insert B, 4P, 16G, 22A	--\%	---	---	---	0	0.009
SUB	MIL-C-5015	Insert $\mathrm{B}, 4 \mathrm{P}, 16 \mathrm{G}, 22 \mathrm{~A}$	---	---	-	---	0	0.018
SUB	MIL-C-5015	Insert $\mathrm{B}, 4 \mathrm{P}, 16 \mathrm{G}, 22 \mathrm{~A}$	---	---	-	---	0	0.007
SUB	MIL-C-5015	Insert $\mathrm{B}, 4 \mathrm{P}, 16 \mathrm{G}, 22 \mathrm{~A}$	---	-	---	---	0	0.003
SUB	MIL-C-5015	Insert B, 5P, 12G, 41A	---	-	---	---	0	0.009
SUB	MIL-C-5015	Insert B, 5P, 12G, 41A	---	---	---	---	0	0.003
SUB	MIL-C-5015	Insert B, 10P, 16G, 22A	---	---	---	---	0	0.009
SUB	MIL-C-5015	Insert B, 10P, 16G, 22A	---	---	---	--	0	0.003
SUB	MIL-C-5015	Insert B, 14P, 16G, 22A	-	---	---	---	0	0.009
SUB	MIL-C-5015	Insert B, 14P, $66 r_{2}, 22 N$	-	--	-	--	0	0.016
sue	MIL-C-5015	Insert 8, 14P, 16G, 22A	---	--	- -	---	0	0.003
SUB	MIL-C-5015	Insert $\mathrm{B}, 14 \mathrm{P}, 16 \mathrm{~F}, 22 \mathrm{~A}$	-.-	---	---	---	0	0.007

PART CLASS: CONNECTOR
typr: Circular (continued)

env	SPEC NUMBER PARI NUMBER MANUFACTURER	characteristics	$\hat{\wedge}$	602 UPPER1NGEEEEDEDCONFIDENCE	608 confidenct interyal		NUMAFR FAIIED	
					Lower	UPPER		
SUB	MIL-C-5015	Insert B, 28P, 16G, 22A	---	---	---	---	0	0.016
SUB	MIL-C-5015	Insert B, 28P, 16G, 22A	---	---	---	---	0	0.007
SUB	MIL-C-5015	Insert B, 37P, 16G, 22A	---	---	---	---	0	0.003
SUB	MIL-C-5015	Insert B, 37P, 16G, 22A	--	---	---	---	0	0.018
SUB	MIL-C-5015	Insert B, 37P, 16G, 22A	---	---	---	---	0	0.016
SUB	MIL-C-5015	Insert B, 37P, 16G, 22A	\cdots	---	---	---	0	0.007
SUB	MIL-C-5015	Insert B, 37P, 16G, 22A	---	---	---	---	0	0.007
SUB	MIL-C-5015	Insert B, 48P, 16G, 22A	---	---	---	---	0	0.003
SUB	MIL-C-5015	Insert B, 48P, 16G, 22A	---	---	---	---	0	0.016
SUB	MIL-C-5015	Insert B, 48P, 16G, 22A	---	---	---	---	0	0.007
SUB	MIL-C-26482	$\begin{aligned} & \text { Insert B, 4P, 16G, 22A; } \\ & 8 P, 20 G, 7.5 A \end{aligned}$	---	---	---	---	0	0.032
SUB	MIL-C-26482	$\begin{aligned} & \text { Insert } B, 4 P, 16 G, 22 A ; \\ & 8 P, 20 G, 7.5 A \end{aligned}$	---	---	---	---	0	0.032
SUB	MIL-C-26482	Insert B, 6P, 20G, 7.5A	---	---	---	---	0	0.013
SUB	MIL-C-26482	Insert B, 6P, 20G, 7.5A	---	---	---	---	0	0.029

PART class: CONNECTOR
rrpe: Circular (continued)

part class: CONNECTOR
trpe: Circular (continued)

part class: CONNECTOR
trpe: Coaxial

PART CLASS: CONNECTOR

part class: CONNECTOR
irpe: Printed Circuit Board

ENv	SPEC NUMBER PART NUMBER MANUFACTURER	characteristics	$\hat{\lambda}$	$\begin{gathered} \text { G08 UPPER } \\ \text { SINGLE-SIOED } \\ \text { CONF IOENCE } \end{gathered}$	608 CONf IOENCE INTERVAL		NUMBER FAILED	operating HOURS (x 10 ${ }^{6}$)
					LOWER	UPPER		
DOR	$\begin{aligned} & \text { MIL-C-55302 } \\ & \text { /23, } / 24 \\ & \text { AMP } 202 \end{aligned}$	$75^{\circ}-125^{\circ} \mathrm{C}$	--	0.0648	---	--	0	14.140
SAT	$\begin{aligned} & \text { MIL-C-55302 } \\ & \text { /23, } / 24 \\ & \text { AMP } 202 \end{aligned}$		---	0.0881	---	---	0	10.397
GRF	MIL-C-21097	Insert B, 44P, 5A	---	---	---	---	0	0.022
GRF	MIL-C-21097	Insert B, 44P, 5A	---	---	---	---	0	0.023
GRF	MIL-C-21097	Insert B, 44P, 5A	---	---	---	---	0	0.028
GRF	MIL-C-21097	Insert B, 44P, 5A	---	---	---	---	0	0.013
GRF	MIL-C-21097	Insert $\mathrm{B}, 50 \mathrm{P}, 5 \mathrm{~A}$	---	---	---	---	0	0.026
GRF	MIL-C-21097	Insert B, 72P	---	--	---	---	0	0.009
GRF	MIL-C-21097	Insert B, 72P	---	---	---	---	0	0.013
GRF	MIL-C-21097	Insert B, 72 P	---	---	---	---	0	0.066
GRF	MIL-C-21097	Insert B	---	0.630	---	---	0	1.454
GRF	MIL - C-21097	Insert B, 72P, 5A	---	---	---	---	0	0.016
GRM	MIL-C-21097	$\begin{aligned} & \text { Insert B, 80P, } 5 \mathrm{~A}, \\ & 30^{\circ} \mathrm{C} \end{aligned}$	---	0.058	---	---	0	15.714
GRM	MIL-C-21097	$\begin{aligned} & \text { Insert B, 80P, } 5 \AA \text {, } \\ & 30^{\circ} \mathrm{C} \end{aligned}$	---	0.044	---	---	0	21.031

PART class: CONNECTOR
ITPE: Printed Circuit Board (continued)

ENY		FAILURE RAIE/10 ${ }^{6}$ Hours					FUMAER AILED	operatimg HOUR 5 $\left(\times 10^{6}\right.$)
	SPEC MMMAER	CHARACTERISIICS	$\hat{\lambda}$	608 UPPER	601 CONTIDENCE INTERVAL			
	MAWUFAC TURER			CONF TOENCE	LOHER	UPPER		
AI	MIL-C-55302	Insert B, 96P, $55^{\circ} \mathrm{C}$	---	---	---	--	0	0.090
AI	MIL-C-55302	Insert B, $112 \mathrm{P}, 45^{\circ} \mathrm{C}$	0.173	---	0.034	0.527	1	5.770
AIF	MIL-C-55302	Insert B, $16 \mathrm{P}, 40^{\circ} \mathrm{C}$	--	0.495	---	---	0	1.850
AIF	MIL-C-55302	Insert $\mathrm{B}, 32 \mathrm{P}, 40^{\circ} \mathrm{C}$	--	0.603	-	---	0	1.520
AIF	MIL-C-55302	Insert $\mathrm{B}, 41 \mathrm{P}, 40^{\circ} \mathrm{C}$	--	0.565	--	-	0	1.620
AIF	MIL-C-55302	Insert $\mathrm{B}, 62 \mathrm{P}, 40^{\circ} \mathrm{C}$	-	0.077	--	-	0	11.930
AIF	MIL-C-55302	Insert B, 62P, $40^{\circ} \mathrm{C}$	---	0.090	--	---	0	10.200
AIF	MIL-C-55302	Insert $\mathrm{B}, 64 \mathrm{P}, 40^{\circ} \mathrm{C}$	---	1.735	---	---	0	0.528
AIF	MIL-C-55302	Insert $\mathrm{B}, 71 \mathrm{P}, 40^{\circ} \mathrm{C}$	---	0.45	---	---	0	1.930
AIF	MIL-C-55302	Insert $\mathrm{B}, 72 \mathrm{P}, 40^{\circ} \mathrm{C}$	---	0.190	-~	-	0	1.870
AIF	MIL-C-55302	Insert $\mathrm{B}, 77 \mathrm{P}, 40^{\circ} \mathrm{C}$	---	n. 391	---	--	0	2.340
SHS	MIL-C-21097	Insert $\mathrm{B}, 30^{\circ} \mathrm{C}$	0.011	--	0.002	0.034	1	88.339
SUB	MIL-C-55302	$\begin{aligned} & \text { Insert 3, 110P, 26G, 3A, } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	---	---	--	---	0	0.018
SUB	MIL-C-55302	Insert B, 110P, 26G, 3A	---	---	---	---	0	0.036
SUB	MIL-C-55302	Insert B, 110P, 26G, 3A	---	---	---	---	0	0.008
SUB	MIL-C-55302	Insert B, 110P, 26G, 3A		---	---	---	0	0.014

Part class: CONNECTOR
irpe: Rectangular

Part class: CONNECTOR
rrpe: Rectangular (continued)

Part class: CONNECTOR
irpe: Rectangular (continued)

ENV	$\begin{aligned} & \text { SPEC MMAEER } \\ & \text { PART MOMER } \\ & \text { MAMWFACTURER } \end{aligned}$	charactertstics	Fallure rate/ 10^{6} hours				mumber falled	$\begin{gathered} \text { OPERATING } \\ \text { HOUNS } \\ \text { H } \left.\times 0^{6}\right) \\ \hline \end{gathered}$
				${ }^{601}$ LPPER	609 con	interval		
			\wedge		Lower	UPPER		
AI	MIL-C-24308	Insert $\mathrm{B}, 55 \mathrm{P}, 45^{\circ} \mathrm{C}$	---	---	---	---	0	0.024
AI	MIL-C-24308	Insert B, $55 \mathrm{P}, 45^{\circ} \mathrm{C}$	---	---	---	---	0	0.075
AI	MIL-C-24308	Insert B, $66 \mathrm{P}, 45^{\circ} \mathrm{C}$	---	---	---	---	0	0.050
AI	MIL-C-24308	Insert B, $168 \mathrm{P}, 45^{\circ} \mathrm{C}$	---	---	---	---	0	0.447
AIF	MIL-C-83733	$\begin{aligned} & \text { Insert } B, 131 \mathrm{P}, 22 \mathrm{G}, \\ & 5 \mathrm{~A}, 40^{\circ} \mathrm{C} \end{aligned}$	---	---	---	---	0	0.144
AIF	MIL-C-83733	$\begin{aligned} & \text { Insert } \mathrm{B}, 185 \mathrm{P}, 22 \mathrm{G}, \\ & 5 \mathrm{~A}, 40^{\circ} \mathrm{C} \end{aligned}$	$\therefore-$	---	---	---	0	0.048
AIF	MIL-C-83733	$\begin{aligned} & \text { Insert } B, 185 \mathrm{P}, 22 \mathrm{G}, \\ & 5 \mathrm{~A}, 40^{\circ} \mathrm{C} \end{aligned}$	---	0.877	---	---	0	1.044
SUB	MIL-C-24308	$\begin{aligned} & \text { Insert B, 9P, 20G, 5A, } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	---	---	---	---	0	0.032
SUB	MIL-C-24308	${ }_{35}{ }_{35} \mathrm{O}_{\mathrm{C}} \mathrm{er} \mathrm{~B}, 9 \mathrm{P}, 20 \mathrm{G}, 5 \mathrm{~A},$	---	---	---	---	0	0.013
SUB	MIL-C-24308	$\begin{aligned} & \text { Insert B, 25P, 20G, 5A, } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	---	---	---	---	0	0.014
SUB	MIL-C-24308	$\begin{aligned} & \text { Insert } B, 25 P, 20 G, 5 A, \\ & 25^{\circ} \mathrm{C} \end{aligned}$	--	---	---	---	0	0.086

pant class: CONNECTOR
rrpe: Rectangular (continued)

part class: CONTROLS AND INSTRUMENTS

		$\stackrel{\sim}{\sim} \times \stackrel{\stackrel{\circ}{\sim}}{\sim}$
		$\begin{array}{llll} \infty & \stackrel{\sim}{\infty} & \tilde{\sim} \\ \underset{\sim}{0} & 0 & \stackrel{\sim}{0} \\ \underset{\sim}{\sim} & \infty & \stackrel{\sim}{m} & \underset{\sim}{\sim} \\ \hline \end{array}$
	<	
	\sum_{4}	

part class: CONTROLS AND INSTRUMENTS

ENV	spec mumber PPART MMHERMANUFACTURER	characteristics	fallure rate/ 10^{6} mours				MUMBERFAILED	$\begin{gathered} \text { OPERATING } \\ \text { HOUS } \\ \left(\begin{array}{c} 106 \end{array}\right. \\ \hline \end{gathered}$
			$\hat{\lambda}$	$\begin{gathered} 60 \text { UPYR } \\ \text { SHGLE-STED } \\ \text { CNF IONCE } \end{gathered}$	602 confidence interval			
					LOMER	UPPER		
GRF		Liquid Level	11.905	---	4.843	25.733	2	0.168
GRF		Liquid Quantity Storage Tank, Float Type	6.718	---	4.541	9.827	7	1.042
GRF		Meter	0.363	---	0.208	0.608	4	11.028
GRM		Temp Gauge	62.016	---	54.406	70.807	48	0.774
GRM		Fuel Quantity	78.811	---	70.240	88.556	61	0.774
AI		Fuel Quantity	35.124	---	27.855	44.367	17	0.484
AI		Vertical Speed	942.197	---	879.700	1009.821	163	0.173
AI		Slip Turn	1346.939	---	1247.601	1455.368	132	0.098
AI		Slip Turn	---	---	---	---	0	0.090
AIT		Fuel Quantity	170.492	---	164.176	177.094	520	3.050
AIT		Fuel Quantity	145.902	---	132.782	160.495	89	0.610
AIT		Fuel Quantity	191.892	---	178.250	206.736	142	0.740
AIT		Temp	24.490	---	20.229	29.709	24	0.980
AIT		Temp	242.574	--	229.463	256.558	245	1.010
AIT		Temp	66.667	---	61.420	72.427	116	1.740

part class: CONTROLS AND INSTRUMENTS
rrpe: Indicator (continued)

env		characteristics	tallure rate/ 10^{6} meurs					$\begin{gathered} \text { orfrating } \\ \text { Hours } \\ (\times 106) \end{gathered}$
	SPEC MUMBER part mumber manufacturer		$\hat{\lambda}$	$\left[\begin{array}{c}\text { 60 UPTER } \\ \text { SHGLE-STOED } \\ \text { CONF IDENCE }\end{array}\right]$	608 conf idence interval			
					LOMER	UPPER		
AIT		Vertical Speed	275.000	---	250.130	302.679	88	0.320
AIT		AIM Control System	69.451	---	64.531	74.803	143	2.059
HEL		Vertical Speed	41.958	---	27.333	63.736	6	0.143
HEL		Vertical Speed	27.273	---	13.920	50.521	3	0.110
HEL		Temp	133.816	---	120.611	148.653	74	0.553
HEL		Temp	126.829	---	111.882	144.002	52	0.410
HEL		Fuel Quantity	305.419	---	272.474	342.834	62	0.203
HEL		Fuel Quantity	10.938	---	7.406	16.048	7	0.640
HEL		Fuel Quantity	4666.667	---	3915.458	5573.458	28	0.006
HEL		Fuel Quantity	150.000	---	136.113	165.494	84	0.560
HEL		Fuel Quantity	285.714	---	164.074	482.985	4	0.014
HEL		Engine Torque	75.000	---	56.510	99.581	12	0.160
HEL		Engine Torque	84.416	---	64.424	110.705	13	0.154
HEL		Engine Torque	275.862	---	255.200	298.446	128	0.464
HEL		Engine Torque	666.667	---	576.998	771.680	40	0.060
HEL		Engine Torque	357.143	---	220.894	567.550	5	0.014

PARI Class: CONTROLS AND INSTRUMENTS
ryPE: Indicator (continued)

		으우 \sim°
	管	
		$\vdots \quad \vdots \quad i \quad i$
	<	
	${ }_{\text {\% }}$	퐆 포 포포 式

part class: EMERGENCY POWER

part class：FAN
trpe：General

	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { O } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{m}{m} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	∞ \sim \sim	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{O}{0} \end{aligned}$
品曾	\sim	\simeq	m	0	0	\bigcirc
	$\underset{\sim}{\approx}$	$\begin{gathered} \underset{m}{m} \\ \infty \\ \infty \end{gathered}$	$$	i	！	
苞	$\begin{aligned} & \text { m } \\ & \dot{\sigma} \\ & \dot{0} \end{aligned}$	$\stackrel{\circ}{\underset{\sim}{8}}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{0} \end{aligned}$	！	1	$!$
	i	i	！	$\xrightarrow{\text { O }}$		－
＜	$\underset{\sim}{\underset{\sim}{j}}$	$\begin{aligned} & \stackrel{9}{4} \\ & \dot{\oplus} \end{aligned}$	8 8 0 0		1	
				츤 $\underset{\sim}{\sim}$ 	$\begin{aligned} & \sum_{i}^{\prime} \\ & \text { N } \\ & \underset{\sim}{n} \\ & \stackrel{x}{\infty} \end{aligned}$	$\frac{\pi}{x}$
\sum_{*}	는	容	衣	宕	訔	宕

Part class: GENERATOR
itpe: General

	$\begin{aligned} & \text { o } \\ & \hline \\ & \dot{\circ} \\ & \hline \end{aligned}$	9 0 0 0	$\stackrel{\underset{\sim}{7}}{\underset{\sim}{7}}$	$\begin{aligned} & \hat{M} \\ & \stackrel{\vdots}{0} \end{aligned}$	$\underset{\underset{\sim}{\underset{\sim}{\sim}}}{\substack{2}}$		$\begin{aligned} & \text { M } \\ & \stackrel{1}{N} \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{q} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{0} \\ & 0 \end{aligned}$	$!$
$\stackrel{\underset{U}{0}}{\stackrel{0}{4}}$	$\stackrel{\sim}{\sim}$	m	\bigcirc	\sim	F	$\underset{\sim}{\underset{\sim}{\infty}}$	\sim	\bigcirc	$\stackrel{\infty}{\sim}$!
	$\begin{aligned} & \underset{\sigma}{r} \\ & \underset{\sim}{6} \end{aligned}$	$\begin{aligned} & \sim \\ & O \\ & \dot{O} \end{aligned}$	8 0 \cdots \cdots	$\begin{aligned} & \vec{\sim} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \widetilde{O} \\ & 0 \\ & 0 \end{aligned}$	8 8 8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{8}{\mathrm{e}} \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$,
	$\begin{aligned} & \stackrel{\rightharpoonup}{\sigma} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \dot{\sim} \end{aligned}$	$\stackrel{m}{\infty}$	$\begin{aligned} & \text { of } \\ & \text { 6 } \\ & \dot{\sigma} \end{aligned}$	~ 	$\begin{aligned} & \mathrm{8} \\ & \stackrel{8}{\mathrm{~N}} \\ & \stackrel{\mathrm{~N}}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \sim \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \\ & \underset{8}{8} \\ & \text { or } \end{aligned}$!
	1	;	i	;	1	1	1	;	i	i
<	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\%	$\xrightarrow[\sim]{\text { O}}$	$\widetilde{\circ}$ \sim \sim	$\xrightarrow{\circ}$	8 8 $\mathbf{0}$ $\underset{\sim}{0}$	앙 ∞ 0	!	O	$\begin{aligned} & \text { i} \\ & \stackrel{N}{0} \\ & \dot{N} \end{aligned}$
	n 0 0 0 0 0 0 0 0 0 0 0 0 0.0 20									
$\underset{\sim}{3}$	$\stackrel{9}{8}$	$\stackrel{\text { ¢ }}{8}$	\%	$\stackrel{\square}{8}$	$\stackrel{\circ}{8}$	$\stackrel{8}{8}$	$\stackrel{8}{8}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	岕	䂇

Part class: GENERATOR

PaRt class: GYRO

Pant class：HEATER
trpe：Electric

\sum_{4}	容 宸 岕

PART class：MECHANICAL DEVICE

		$\stackrel{n}{\underset{0}{0}}$	$\begin{aligned} & \vec{O} \\ & 0 \\ & 0 \end{aligned}$	0 0 0 -	$\begin{aligned} & 0 \\ & \dot{O} \\ & \sim \end{aligned}$
			\sim	\bigcirc	－
		$\begin{aligned} & \text { 응 } \\ & \text { M } \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\sigma} \\ & \underset{\sim}{\circ} \\ & \dot{O} \end{aligned}$		
		$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\mathbf{N}} \\ & \dot{\sim} \end{aligned}$		
		！	$!$	$\stackrel{0}{\infty}$ 0 0	∞ $\stackrel{\infty}{\infty}$ 0
	＜	N N －	O 0 $\dot{\square}$		
	\sum_{w}^{*}	～	\sim	容	皆

part class: MECHANICAL DEVICE
rrpe: Power Transmittal

PART Class: MOTOR

PART CLASS: MOTOR

PART class: MOTOR
irpe: Solenoid

part class: Pump

REGULATOR
iri Pressure

	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\infty}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{9}{\infty} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sigma}{\circ} \\ & \dot{m} \end{aligned}$	$\underset{\sim}{\square}$	$\underset{\sim}{N}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \end{aligned}$
	\square	\sim	σ.	\sim	\sim	－	ω
	$\stackrel{\infty}{\stackrel{\infty}{0}} \underset{\infty}{\circ}$	$\underset{\sim}{N}$	$\underset{\sim}{\underset{m}{~}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \sim \end{aligned}$	$\begin{aligned} & \stackrel{N}{O} \\ & \cdots \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \dot{m} \end{aligned}$	$$
	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { m } \\ & \AA \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \hat{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{O}{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \hat{\infty} \\ & \stackrel{0}{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \sigma \\ & \underset{\sim}{0} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \sim \\ & \sim \\ & \sim \\ & \sim \end{aligned}$
	i	：	：	1	$!$	：	$!$
＜	$\begin{aligned} & \infty \\ & \infty \\ & \dot{\sim} \end{aligned}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \bar{n} \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\pi} \\ & \underset{\sigma}{\prime} \end{aligned}$	$\begin{aligned} & \bar{\sigma} \\ & 0 \end{aligned}$	$\stackrel{\curvearrowleft}{\stackrel{\varrho}{¿}}$	$\frac{\widehat{e}}{\mathbf{n}}$
$\underset{2}{2}$	号	$\stackrel{\text { u }}{\stackrel{y}{0}}$	$\underset{~}{\text { L }}$	$\stackrel{\text { 山 }}{\underset{\sim}{\circ}}$	皆	宕	资

part class: REGULATOR

PART CLASS: RELAY

RELAY
General Purfose
PART CLASS:
TYPE:

ENV	SPEC MUMBER PARI NUMber MANUFACTURER	Characteristics	$\hat{\lambda}$	TAILURE RATE/ $10{ }^{6}$ hours		
				60\& UPFERSINGLE-SIDEUCONFIDENCE	60% CONFIDENCE INTERVAL	
					LOWER	UPPER
DOR	$\begin{aligned} & \text { MIL-R- } 39016 \\ & 432-850 \\ & \text { Teledyne } \end{aligned}$	DPDT	---	--	-	---
SAT	MIL-R-39016	DPDT, $125^{\circ} \mathrm{C}$	---	---	---	---
SAT	$\begin{aligned} & \text { MIL-R-39016 } \\ & 432-850 \\ & \text { Teledyne } \end{aligned}$	DPDT	---	---	-	---
GRF	MIL-R-5757		---	---	---	---
GRF	MIL-R-6016	SPST, 50A	---	---	-	---
GRF	MIL-R-6016	4PDT, 10A	---	---	-	---
GRF		DPDT	0.435	--	0.177	0.941
GRF		3PDT	0.109	---	0.022	0.332
GRF		3PDT	0.046	---	0.009	0.140
GRF		6PDT, 10A	---	1.182	---	---
GRF		6PDT, 10A	---	0.303	---	---
GRF	MS25269	6PDT, Hermetic, 5A	---	---	---	---
GRM	MIL-R-39016		---	--	---	---
GRM	MIL-R-39016	ER, DPOT, $125^{\circ} \mathrm{C}, 1 \mathrm{~A}$	---	---	---	---

part class: RELAY
type: General Purpose (continued)

Env	spec mumber PART NUMBER manufacturer	characteristics	$\hat{\lambda}$	$\begin{aligned} & 601 \text { UPPER } \\ & \text { SINGLE-SIDED } \\ & \text { CONF IOENCE } \end{aligned}$	608 CONF IDENCE INTERVAL		(namber	OPERAIING HOURS ($\times 10^{6}$)
					LOWER	UPPER		
GRM	MIL-R-5757	DPDT, $125^{\circ} \mathrm{C}, 2 \mathrm{~A}$	-	---	---	---	0	0.007
GRM	MIL-R-5757	DPDT, 2A	---	---	---	---	0	0.035
GRM		SPST	0.211	---	0.047	0.633	1	4.742
AIT	MIL-R-6016	4PDT, $125^{\circ} \mathrm{C}, 10 \mathrm{~A}$	---	---	---	---	0	0.004
AIT	MIL-R-5016	4PDT, $125^{\circ} \mathrm{C}, 10 \mathrm{~A}$	---	---	---	---	0	0.008
AIT		10A	---	1.741	---	---	0	0.526
AIT	MIL-R-39016	DPDT	0.054	---	0.044	0.066	21	392.000
SHS	MS27401	2PDT, Hermetic	0.287	---	0.006	0.860	1	3.487
SUB	MIL-R-5757	DPDT, $125{ }^{\circ} \mathrm{C}, 2 \mathrm{~A}$	---	--	---	---	0	0.018
SUB	MIL-R-5757	6PDT, $125^{\circ} \mathrm{C}, 5 \mathrm{~A}$	---	---	---	---	0	0.010
SUB	MIL-R-6016	DPDT, $125^{\circ} \mathrm{C}, 10 \mathrm{~A}$	---	---	---	---	0	0.073
SUB	MIL-R-6016	DPDT, $125^{\circ} \mathrm{C}, 10 \mathrm{~A}$	---	---	---	---	0	0.029
SUB	MIL-R-6016	DPDT, $125^{\circ} \mathrm{C}, 10 \mathrm{~A}$	---	---	---	---	0	0.006
SUB	MIL-R-6016	OPDT, $125^{\circ} \mathrm{C}, 10 \mathrm{~A}$	-	---	---	--	0	0.015
SUB		OPOT, 2A	-	-	---	---	0	0.013
SUB	MIL -R-6016	4PDT, $125^{\circ} \mathrm{C}, 10 \mathrm{~A}$	---	-	--	--	0	0.044

PART class: SOCKET
rype: Pin, DIP

PART Class: SPRINKLER HEAO

part class: SWITCH
Push Button
TYPE:

env	SPEC mUMBER Part mumber MANUF AC TURER	characteristics	failure rate/10 ${ }^{6}$ hours				(number	$\begin{gathered} \text { OPERATING } \\ \text { HOURS } \\ \left(\times 10^{6}\right) \\ \hline \end{gathered}$
			ヘ	609 UPPER	601 conf Idence interval.			
			λ	STCLLE-SDEO	Lower	ufife		
GRF	MIL-S-8805	4PST	0.218	---	0.043	0.662	1	4.590
GRF	MIL-S-8805	4PST	---	0.088	---	--	0	10.400
GRF	MIL-S-22885		---	---	---	---	0	0.218
GRF	MIL-S-22885	SPST, 5A	---	---	---	---	0	0.135
GRF	MIL-S-22885	Illuminated	---	---	---	---	0	0.010
GRF		Push On-Push Off, Snap in mount, 30 or 115VDC at 2A Res., 1A Inductive Actuation $=$ 100,000, Lighted	3.160	---	2.057	4.793	6	1.899
GRF	MS25089	Pushbutton Switch, 2PDT Push-Pull Operation, Dustproof Construction, 125 VAC at 10 A RES.	---	---	---	---	0	0.028
GRF	MS25089	Pushbutton Switch, 2PDT Momentary Operation, Dustproof Construction, 28VDC at 10A RES.	-	--	---	---	0	0.029
GRM	M1L-S-8805	4PST, 4A	---	---	---	---	0	0.007
GRM	$\begin{aligned} & 701222 \\ & \text { C.P. Clare } \end{aligned}$		---	-	--	---	0	0.298
GRM	701222 Clare Pendar		---	---	--	---	0	0.301
AI		4PDT, 5A, 28VDC	2.28	---	0.508	6.840	1	0.439
SUB	MIL-S-3950	5A	---	---	---	---	0	0.029

PART Class: SWITCH
TrPE: Rotary
fallure rate $/ 10^{6}$ hours

ENV	SPEC MUMBER PARI MUMBER manufacturea	Characteristics	$\hat{\lambda}$	G01 UPPER SINGLE-SIDED CONFIDENCE	608 CONF IOENCE INTERVAL		NUMBER FAILED	$\begin{aligned} & \text { OPERATING } \\ & \text { HOURS } \\ & \left(\times 10^{6}\right) \\ & \hline \end{aligned}$
					LOWER	UPPER		
GRF	MIL-S-3786		0.218	---	0.043	0.662	1	4.590
GRF	MIL-S-3786		---	---	---	---	0	0.021
GRF	12L22 Digitran		---	---	--	---	0	0.241
GRF	67-1950 JANCO		---	---	---	---	0	0.069
GRM		1 Deck, 1 Pole, 3 POS	---	---	---	---	0	0.014
GRM		1 Deck, 1 Pole, 4 POS	---	--	---	---	0	0.014
GRM		1 Deck, 2 Pole, 5 POS	---	---	---	---	0	0.007
GRM		1 Deck, 1 Pole, 5 POS	---	---	---	---	0	0.007
GRM		1 Deck, 1 Pole, 7 POS	---	---	---	---	0	0.014
GRM		1 Deck, 1 Pole, 8 POS	---	---	---	---	0	0.028
GRM		5 Deck, 1 Pole, 9 POS	---	---	---	---	0	0.007
GRM		1 Deck, 1 Pole, 11 POS	---	---	---	---	0	0.007
AI	$\begin{aligned} & \text { MIL-S- } 3786 \\ & \text { M3786/20-089 } \\ & \text { M3786/20-093 } \end{aligned}$	```6 \mp@code { P o s i t i o n ~ \& } 10 Position, 1/5 A, 28 VDC```	---	---	---	---	0	0.017
AIT	MIL-S-3786	4P, 3 POS 6P, 2 POS	---	0.205	---	---	0	4.460

PARI Class: SWITCH

PART CLASS: SWITCH

ENV		characteristics	FAILURE RATE/10 ${ }^{6}$ hours				(nvmaer	OPERATIMG HOURS (x 20^{6})
	SPEEC MUMBER		$\hat{\lambda}$	608 UPrer	603 confidence interval			
	manufacturea			-INGLE-STIED CONF IOENCE	LOWER	UPFER		
GRF	MIL-S-3950	```Environmentally Sealed```	---	---	---	--	0	0.083
GRF	MIL-S-3950	```Environmentally Sealed```	---	---	---	---	0	0.042
GRF	MIL-S-3950	```Environmentally Sealed```	---	---	---	---	0	0.010
GRF	MIL-S-8834	5A	---	---	---	---	0	0.177
GRF	MIL-S-8334		---	0.239	---	---	0	3.840
GRM		SPST, 5A	---	---	---	---	0	0.167
GRM		DPDT, 5A	---	---	---	---	0	0.083
GRM		DPDT, 5A	---	---	---	---	0	0.007
GRM	MIL-S-8834	DPDT, 25A	---	---	---	---	0	0.12
AI	$\begin{aligned} & \text { MIL-S-8834 } \\ & \text { MIS90310-231 } \end{aligned}$	SPDT, 4A, 28 VDC	116.000	-	59.535	213.953	3	0.026
AI	$\begin{aligned} & \text { MIL-S-8834 } \\ & \text { MS } 90311-211 \end{aligned}$	SPDT, 4A, 28 VDC	--	--	---	---	0	0.052
AI	$\begin{aligned} & \text { MIL-S-8834 } \\ & \text { MS90311-231 } \end{aligned}$	SPDT, 4A, 28 VDC	--	---	--	-	0	0.017

Part class: SHITCH
Toggle
LIAS5:
TYPE:

part class: TIME-TOTALIZING METER

Part class: VALVE

TYPE: General

ENV	SPEC MUMBER PART MUMBER manufacture	Characteristics	failure rate/10 ${ }^{6}$ hours				number raileo	$\begin{gathered} \text { OPRRATING } \\ \text { HOURS } \\ \left(\times 10^{6}\right) \\ \hline \end{gathered}$
			$\hat{\lambda}$	608 urper	601 Confioence interval			
				SINGLE-STEED CONT IOENCE	LOWER	UPPER		
GRF		```Ball - 1 in., 250 lb., SCRD Stainless Steel Body```	1.441	---	0.891	2.283	5	3.469
GRF		Butterfly - 3 in., 150 lb., Wafer Type, Steel	3.617	--	1.852	6.655	3	0.829
GRF		Butterfly, 3 in., 150 lb., Wafer Type, Steel	1.206	-	0.269	3.617	1	0.829
GRF		$\begin{aligned} & \text { Check - Swing, } 2 \text { in., } \\ & 150 \text { lb., FLGD } \end{aligned}$	2.399	-	1.483	3.800	5	2.084
GRF		$\begin{aligned} & \text { Check - Swing, } 2 \text { in., } \\ & 150 \text { lb., FLGD } \end{aligned}$	2.858	---	1.464	5.260	3	1.050
GRF		Check - Swing, 2 in., 200 1b., FLGD	2.873	-	2.051	3.990	9	3.133
GRF		$\begin{aligned} & \text { Check - Swing, } 1 / 2 \text { in., } \\ & 200 \text { lb., SCRD } \end{aligned}$	1.206	---	0.269	3.617	1	0.829
GRF		$\begin{aligned} & \text { Check - Swing, } 1 / 2 \text { in., } \\ & 200 \text { lb., SCRD } \end{aligned}$	5.997	---	3.904	9.905	6	1.001
GRF		$\begin{aligned} & \text { Check - Swing, } 1 \text { in., } \\ & 150 \text { Ib., SCRD } \end{aligned}$	2.880	---	1.475	5.300	3	1.042

part class: valve
General (continued)
trPE

Part class: VALVE
rrpe: General (continued)

EMV	SPEC Mumber PART MUHBER MANUFACTURER	characteristics	failure rate/10 ${ }^{6}$ hours				NUMBER FAILED	$\begin{gathered} \text { OPERATING } \\ \text { HOURS } \\ \left(\times 10^{6}\right) \\ \hline \end{gathered}$
			$\hat{\lambda}$	G01 UPPER SINGLE-5IDED CONF JDENCE	609 CONF IDENCE INTERVAL			
					LOWER	UPPER		
GRF		$\begin{aligned} & \text { Plug - } 1 / 2 \text { in., } \\ & 150 \text { 1b., SCRD, Steel } \\ & \text { w/stainless steel plug } \end{aligned}$	3.840	---	2.204	6.433	4	1.042
GRF		$\begin{aligned} & \text { Plug - } 1 \text { in., } 150 \text { lb., } \\ & \text { SCRD, Steel } \\ & \text { w/stainless steel plug } \end{aligned}$	0.969	---	0.216	2.908	1	1.032
GRF		$\begin{aligned} & \text { Plug - } 2 \text { in., } 300 \text { lb., } \\ & \text { SïRD, Steel } \\ & \text { w/stainless steel plug } \end{aligned}$	1.206	---	0.269	3.617	1	0.829
GRF		$\begin{aligned} & \text { Plug - } 2 \text { in., } 300 \text { lb., } \\ & \text { SCRD, Steel } \\ & \text { w/stainless steel plug } \end{aligned}$	5.767	---	4.338	7.614	12	2.083
GRF		$\begin{aligned} & \text { Relief }-3 / 4 \mathrm{in} ., \\ & 150 \mathrm{lb} \text {., Set } 80 \mathrm{PSI} \text {, } \\ & 56 \mathrm{PM} \end{aligned}$	2.411	---	0.993	5.172	2	0.829
GRF		$\begin{aligned} & \text { Reliaf - } 3 / 4 \text { in. } \\ & 150 \mathrm{ib} ., \text { Set } 80 \text { PSI, } \\ & 56 \mathrm{PM} \end{aligned}$	1.568	---	0.350	4.705	1	0.638
GRF		$\begin{aligned} & \text { Relief - } 3 / 4 \text { in. } \\ & 150 \mathrm{lb} . \text {, Set } 80 \mathrm{PSI} \text {, } \\ & 56 \mathrm{PM} \end{aligned}$	1.206	---	0.269	3.617	1	9.829
GRF		$\begin{aligned} & \text { Relief }-1 / 2 \text { in. } \\ & 150 \mathrm{lb} . \text { Set } 85 \mathrm{PSI}, \\ & 20 \text { SCFM } \\ & \hline \end{aligned}$	1.808	--.	0.926	3.328	3	1.654

NONELECTRONIC PART RELIABIL:TY DATA

SECTION 3

NONELECTRONIC PARTS DATA FROM COMMERCIAL EQUIPMENT APPLICATIONS

Section 3

NONELECTRONIC PARTS DATA FROM COMMERCIAL EQUIPMENT APPLICATIONS

The detailed data presented in this section have been selected and grouped on the basis of direct applicability to electronic data processing, point of sales and test equipments. Data from these areas have proven to be limited and have been grouped in this section in order to improve visibility for the user of the databook. The environmental codes described on page 5 are utilized in this section.

The user should take care to note the terms in which the failure data are given, i.e., hours or cycles, since this is a variable in this section. An asterisk (*) to the right of the data line is provided to alert the user to note that the column headings are in cycles.

INDEX FOR COMMERCIAL EQUIPMENT APPLICATION DATA

Page
Teflon Sleeve Bearing 215
Bearing (Pair) 215
Belt 215
Ceramic Bushing and Spring 216
Spring Clutch 216
Memory Disk 217
LED Display, 7 Segment 217
LED Display, Dot Matrix 218
Fan 220
Vacuum Fan 220
Gear 221
Magnetic Tape Head 221
Motor 221
Relay 222
General Purpose Relay 222
Keyboard Switch 223
Key Push Button Switch 224
Push Button Switch 225
Rocker Switch 225
Toggle Switch 226
Switch 227
COMMERCIAL EQUIPMENT APPLICATION DATA TABLES

PART description	failure raie/10 ${ }^{6}$ hours				$\underset{\substack{\text { numbrr } \\ \text { FAlifid }}}{ }$	$\begin{gathered} \text { OPERATING } \\ \text { HOURS } \\ \left(\times 10^{6}\right) \end{gathered}$
	^	$\begin{aligned} & 608 \text { UPPER } \\ & \text { SINGL-50ED } \\ & \text { CONF } 10 E \text { ENCF } \\ & \hline \end{aligned}$	609 contidince inierval			
			LOWER	UPPER		
PART: Belt	0.456	---	0.419	0.498	106	232.406
APPLICATION: Data Entry, Data Preparation Equipment						
APPLICATION CONDITIONS: GRF						
FAILURE MODES: ------------------						
PART: Ceramic Bushing and Spring	33.409	---	29.060	38.290	43	1.287
APPLICATION: Tape Guide, Magnetic Tape Unit						
APPLICATION CONDITIONS (450 C Internal)						
FAILURE MODES: Worn Bushing, Spring Tension Lost						
PART: Spring Clutch	0.594	---	0.572	0.619	478	804.347
APPLICATION: Data Entry, Preparation Equipment						
APPLICATION CONDITIONS: GRF						
FAILURE MODES: -----------------						

PRR1 Df:cription	tallure rate/to heurs					$\begin{aligned} & \text { OPERATING } \\ & \text { HOURS } \\ & \left(\times 10^{6}\right) \end{aligned}$
	$\hat{\lambda}$	GOb URTE ; INGLE - SIOFI CONF IDENCF	got conflierne mimitrva.			
			LOwf R	urper		
PART: LED Display, 7 Segment, 5 Character	0.114	---	0.077	0.166	7	61.529
APPLICATION: Test Instruments						
APPLICATION CONDITIONS: GRF						
FAILURE MODES: ---------------						
PART: LED Display, 7 Segment, 9 Character	---	1.559	---	---	0	0.588
APPLICATION: Test Instruments						
APPLICATION CONDITIONS: GRF						
FAILURE MODES: ----------------						
PART: LED Display, Dot Matrix, 1 Character	0.163	---	0.137	0.193	29	178.303
APPLICATION: Test Instruments						
APPLICATION CONDITIONS: GRF						
FAILURE MODES: ----------------						

Part defcriprion	lallyet rata/a 0^{6} mulus					
	$\hat{\wedge}$					
				uerer		
PART: $\begin{gathered}\text { LED Display, Dot Matrix, } \\ 3 \text { Character }\end{gathered}$	---	7.190	---	---	0	0.127
APPLICATION: Test Instruments						
APPLICATION CONDITIONS: GRF						
FAILURE MODES: ----------------						
PART: LED Display, Dot Matrix, 4 Character	0.962	---	0.214	2.885	1	1.040
APPLICATION: Test instruments						
APPLICATION CONDITIONS: GRF						
FAILURE MODES: ----------------						
PART: LED Display, Dot Matrix, 5 Character	--	0.157	---	---	0	5.829
APPLICATION: Test Instruments						
APPLICATION CONDITIONS: GRF						
FAILURE MODES: .---------.-----						

PNRT OESCRIPTION	fallure rate/ 10^{5} hours					$\begin{gathered} \text { OPERATING } \\ \text { HOUQS } \\ \text { (X10 } \left.10^{5}\right) \end{gathered}$
	$\hat{\lambda}$	60 UMPERSINGLE-SDEDCONFIDENCF	608 confioence inierval.			
			Lower	UPPER		
PART: Gear	0.169	---	0.130	0.218	14	83.067
APPLICATION: Data Entry, Preparation Equipment						
APPLICATION CONDITIONS: GRF						
FAILURE MODES: ----------------						
PART: Magnetic Tape Head	43.510	---	36.479	52,184	28	0.644
APPLICATION: Magnetic Tape Head						
APPLICATION CONDITIONS: GRF ($45^{\circ} \mathrm{C}$ Internal)						
FAILURE MODES: Signal Distortion, Head Worn						
PART: Motor	1.499	---	1.401	1.619	154	102.789
APPLICATION: Data Entry, Preparation Equipment						
APPLICATION CONDITIONS: GRF						
FAILURE MODES: ----------------						

PRRT DESCRIPTION	FAILURE RATE $/ 10^{6}$ hours				TJUMBERFALIED	OPERATING moURS ($\times 10^{6}$)
	$\hat{\wedge}$	G08 UPPERSINGLE-S1DEDCONF IOENCE	609 cont idence interval			
			LOWER	UPPER		
PART: Push Button Switch Contacts - Silver Plate; Contact Resistance Initial 0.015Ω at $2 \mathrm{~A}, 30 \mathrm{VDC}$; After Life Test 0.030 8	3.000	-	1.953	4.550	6	2.000*
APPLICATION: Electronic Data Processing						
APPLICATION CONDITIONS: Test						
FAILURE MODES: Contact Resistance 6						
```PART: Rocker Switch C&K Components - 5101, 5103, 5108```	---	0.916	---	---	0	1.000
APPLICATION: -------------------						
APPLICATION CONDITIONS: Test 105 cyc each 15 cyc per minute; duty cycle - 1 sec . on, 3 secs. off; resistive load, 20mA, 2OVDC						
FAILURE MODES:						




NONELECTRONIC PARTS RELIABILITY DATA

## SECTION 4

FAILURE MODES AND MECHANISMS

## OPERATIONAL FAILURE MODES AND MECHANISMS

The following discussions provide information which serves to identify the major problem areas associated with the failures of certain nonelectronic parts under operational conditions. To a limited extent, guidelines are provided for limiting the failure modes identified.

## Batteries

There are two basic types of batteries, primary and secondary. Primary batteries are nonrechargeable, discarded when the energy runs out. Secondary batteries are rechargeable batteries and can be used time and time again. This discussion is limited to specific secondary batteries such as lead-acid and nickelcadmium.

## Lead-Acid Batteries

Lead-acid systems are not new; they have not been used widely in electronic systems because of packing problems, their weight and size, and the danger of acid leakage. The newly developed gelled lead-acid system, however, has overcome most of the drawbacks of its predecessor (except packaging inadequacies), but it is new and not yet in great supply and usage.

Lead-acid batteries have one area which greatly affects their useful life, the recharge cycle. Recharging efficiency is a function of temperature and charge rate. To properly recharge many secondary batteries the charge rate must be tapered with time. Not doing so shortens the life of the battery and can lead to overcharging. In lead-acid batteries, overcharging will cause the generation of gases ( $\mathrm{H}_{2}$ and $\mathrm{O}_{2}$ ) within the cell to dangerously high levels. Though almosi all lead-acid batteries have venting techniques to allow the gases to escape and thereby reduce cell pressure, the loss of these gases can greatly reduce the life of the cell. Several manufacturers of lead-acid batteries utilize a separate compartment to recombine the gases into water via a catalyst. This is done at the expense of compactness. In the worst case, if the gases are not vented or are vented at too high a pressure, the cells will explode.

Charging, and especially overcharging, also causes the battery cells to generate heat. It should be noted that many rechargers use this condition to increase the tapering of the charge rate and so reduce the possibility of overcharging.

Other reliability considerations lie in the packaging and basic design of leadacid cells. Examining packaging first, it is incorrect to assume that any battery is hermetically sealed. Corrosion can be found on lead-acid cells that have never been used and have been left in storage. Lead-acid batteries have been known to leak acid either through the case itself or through the terminal seals.

The basic design of the lead-acid battery is also responsible for several problems. The nature of the lead-acid system does not lend itself well to being packaged in a cylindical package. This tends to lower the energy density per cell and also to cause the package failures mentioned previously.

## Nickel-Cadmium Batteries

The charging information stated for lead-acid can be applied to the nickelcadmium. There is also specific information which only applies to the nickelcadmium.

Memory effect is a reversible failure mode that causes a nickel-cadmium battery to fall below its rated performance because of certain modes of operation. It is caused by repetitive discharge to a shallow depth. A nickel-cadmium battery repeatedly discharged only $25 \%$ ( $75 \%$ of charge unused) and then fully recharged will, after 50 or more of such cycles, deliver $25 \%$ of its rated capacity when a deep discharge is then attempted. A nickel-cadmium battery exhibiting memory effects can be restored to normal capacity simply by deep discharging it and then fully recharging it. Memory effect is not a problem when the battery is subjected to random depths of discharge or is overcharged for random periods of time. It occurs only when a precise, repetitive pattern of shallow discharge and full recharges is followed. This is not a prevalent problem in all NiCd battery systems but is the product of several design techniques.

Cell polarity reversal is another hazard of the NiCd battery. If a battery (consisting of several cells in series) is discharged to too low a level and one or more of the composing cells is completely depleted of charge, there is the chance that the depleted cell's polarity may reverse. In this instance, the reversal cell would accept a charge from the remaining charged cells, generate internal heat and pressure, and destroy the battery.

Chemical breakdown of the nylon separator is the most frequent failure of nickel-cadmium batteries. Oxygen produced continuously while the cell is in an overcharge mode reacts with the nylon; as a result, a NiCd cell at $50^{\circ} \mathrm{C}$ has a useful life about half that at $40^{\circ} \mathrm{C}$. NiCds for emergency power are almost always run in such a continuous low-rate overcharge mode.

## Conclusions

Part level failure problems associated with batteries can be lumped under four basic categories: catastrophic short; catastrophic open circuit; deviations in electrical performance; and mechanical anomalies. The most predominant failure mode is a mechanical anomaly, leakage from a cell seal.

System level failures in charge control or thermal design, while not caused by the battery, may be falsely interpreted as a defect in the battery.

## Bearings

The predominate failure modes of bearings are related to their lubrication. Much emphasis has been placed on the study of bearing fatigue life and reliability and the types of lubrication systems used to enhance long life, since bearings are acknowledged as the life-limiting elements of most motors. To reach the longest motor life possible, bearing wear must be reduced to a minimum, usually by the application of lubricants. The selection of lubricants is almost always a compromise, since there are so many significant characteristics to consider. Some of the important application considerations include: operating temperature range,
oxidation and thermal stability properties, type of environment, evaporation rate, and viscosity. Depending on the specific application certain tradeoffs are inevitable, as in the case of silicon, which has an excellent viscosity index rating but poor boundary condition lubrication.

The failure mechanisms of bearings usually result in the reduction of lubrication. These mechanisms include: excessive bearing load, excessive temperature, bearing misalignment, brinnelling (plastic deformation of raceways), fretting corrosion, contamination of raceways (gear wear debris, brush wear debris, corrosion products), evaporation or migration of lubricant, high viscosity (operating temperature lower than anticipated) and spalling or galling.

## Circuit Breakers

The function of a circuit breaker is to protect electrical circuitry by acting as a manual switch that can open itself under overload conditions. The major circuit breaker problem is mechanical failure due to the complexity of some activation mechanisms. Contamination caused by the formation of oxides or loose metal particles is also a problem and could result in an open or short condition. Contact corrosion due to external impurities (such as solder resin, body oils, sulfides, or wire lubricants) can also create the same condition. Poor process control can cause deformed, loose, or broken contacts, and termination separation.

## Connectors

A device consisting of a plug and a receptacle that provides a disconnect capability between the various components in an electrical circuit is classified under the general heading of connector. The plug or receptacle is the termination of the internal circuit leads. The connection made between the connector and the conductor itself is made by several different methods: crimping, soldering, welding, and the clamping action of mechanical closures. The type of connector depends on the style of the coupling system. Some of the common connector types are radio frequency, cylindrical multipin, rectangular, and printed wiring.

Connector failure problems may be lumped into three basic categories: mechanical parameter deviation, electrical parameter deviation, and mechanical damage. It should be noted that catastrophic opens and shorts are worst-case conditions of certain electrical parameter deviations. These failures may be the result of several different failure mechanisms. The prevelant failure mode for all connectors is an electrical parameter deviation (open condition) generally caused by contamination interfering with normal operation. Corrosion is another failure mechanism resulting in an open circuit: the oxides formed may tend to act as an insulator. Even gold plated contacts have corrosion problems: the base metal may diffuse through the gold and form an oxide on the surface. Mechanical damage is often the result of improper installation techniques. Wear factor is also a major problem. With hard gold you can expect mating and demating cycles of 200 or more. With tin plating or solder coating, the cycles may drop to 50 or more. This can be a problem when using high density connectors. Other common failure modes are creep or relaxation of the materials in the connection and overheating of the termination by the flow of current.

## Coolant Hose

A coolant hose failure often results in the shutdown of a whole system which, in many cases, could have been avoided by routine inspection and replacement. Most equipment owners have established maintenance schedules that include the cooling system. By recognizing the signs of coolant hose failures and eliminating their causes, equipment downtime can be reduced.

Coolant hose failures may be attributed to five major failure mechanisms. Excessive heat, one of the more prevalent failure mechanisms, causes hardening or cracking of the hose cover. Hose "overcure" due to excessive internal or external heat will result in the hose becoming stiff and failing. Weathering and cracking can result from pollution in the environment around the hose; ozone especially has an adverse effect. Large irregular cracks in the hose cover without hardening are caused by vibration. To correct vibration problems, use a flex or humped hose or
dampen the vibration source. Coolant deterioration will cause the interior of the hose to crack and flake off and enter the coolant. These particles can clog the cooling system and cause a failure. The final failure mechanism is contamination of the hose. This occurs primarily when oil or grease soaks the hose, causing it to become soft or spongy. An oil-softened hose can collapse under sudden application of vacuum as in sudden acceleration. To correct this problem, eliminate the'source of the oil (may be external or internal) and replace the hose.

## Electron Tubes

Electron tubes are devices sealed in a gas-tight envelope or "tube" using the motion of electrons through a gas or vacuum for the desired effect. The first class of electron tubes is the vacuum tube, where a vacuum or a near-vacuum is employed. The second class is gas tubes, where the electrons impact atoms of the gas, which then ionize. Many electron tubes have had extensive military use, and failure rates are available in MIL-HDBK-217C.

Four primary modes are associated with electron tubes: deterioration or destruction of the seal, wearout of electron emission surfaces, evolution of gas, and contaminated or damaged emission surfaces resulting in increased electron emission. The failure mechanism most likely to be directly or indirectly responsible for all four failure modes is excessive heat. Both heat from the environment around the tube and heat generated within the tube create this adverse effect. Internal heat rise is due to one of two sources: the current flow from one element of the tube to another element, and power used to raise the electron-emitting cathode to operating temperature.

## Fuses

The basic function of a fuse is to protect electrical circuits. When the current flow through the circuit exceeds the rated capacity of the fuse, the circuit is opened by the fuze element. Fuses provide safety against overload conditions which could result in either damage to the electrical system or a fire.

Fuses have two principal failure modes: open, and failure to open. Any premature interruption of the current flow such as a mechanical breaking of the fuse element would be classified as an open. A failure to open is when current flow levels exceed the fuse rating and the fuse element does not open the circuit. Failure to open is most commonly caused by electrically conductive material shorting the fuse terminals together. The principle failure mechanism is contamination including corrosive products. The source of the contaminants is dependent on the type: conductive and nonconductive. The conductive contaminant can come from solder balls or metal flashings and is usually detectable by x-ray screening. However, the nonconductive material, which can cause failure to open as well as open, is difficult to detect. The source of nonconductive contaminants is sometimes the fuse case or body.

Slow blow fuses are treated a little differently. Slow blow fuses are used when a high in-rush of current is desired to initially start a system and after initial start-up, to maintain the system at a lower current level. If the fuse blows too fast the system will not start or energize. If the fuse blows too slow, damage may occur to the system. Therefore, the most, prevalent failure mode of slow blow fuses is the delay time.

## Gaskets and Seals

Fluid seals are devices used to effect separation of gaseous or liquid environments at points of structural transition and at movable component interfaces. Seals used in applications where the involved surfaces do have relative motion are commonly called gaskets. An example of structural transition seal is the gasket used in the internal combustion engine between three distinctly separate environments, ambient air, cooling fluid, and combustible gases. An example of a seal for a movable component interface is the gland seal around the shaft of a rotary pump, separating the fluid being pumped from the ambient surroundings. This type of seal is commonly known as a dynamic seal and is used to effectively separate the various environments at movable interfaces where there may be reciprocating longitudinal movement as well as rotary motion.

The most common failure mode for fluid sealing devices is leakage, classified into three basic types: (1) permeation, (2) molecular, and (3) viscous flow. Permeation, as the name implies, is a capillary flow directly through the material. This is primarily because of the degree of porosity of the batch material from which the seal was fabricated. Molecular flow is a similar phenomenon, but it occurs at the interface surfaces and is caused by a finite unoccupied space between the two surfaces of the interface. Molecular flow is proportional to the pressure differential between the separated environments. Viscous flow also occurs on the interface surfaces and is encountered when the minimum cross-sectional area of the leakage path becomes large in comparison to the mean free path requirement for gas flow. Viscous flow leakage rate is proportional to the difference between the square of the internal pressure and the square of the external pressure.

In addition to leakage (limited loss of contained fluid), fluid sealing devices fail by rupture because of inadequate back-up rings or excessive pressures and the introduction of corrosion products or other contaminants. Rupture may be caused either by excessive pressure differentials applied to the sealing device or by shearing mechanical forces applied in an unforeseen rotational mode or as an excessive transverse force. Corrosion products and other contaminants may be caused by normally anticipated environmental considerations, or they may be the result of galvanic corrosion and/or contaminants in inadequately filtered fluid.

## Gyroscope

A gyroscope is a device developed to detect angular motion with respect to inertial or Newtonian space. Each design is somewhat unique; however, the usual construction is a spinning wheel with one or two degrees of freedom. A gyroscope normally consists of six functional components: wheel, spin bearings, spin motor, gimbel, pickoff and torquer. The primary source of failures are the spin bearings. The normal life of each gyroscope is dependent on the environment it is used in and the conditions it operates under. The prevalent failure mode of gyros using ball bearings is deterioration of the lubricant or running surface due to contamination.

Gas bearings are excellent for continuous operation because of no wear under run conditions. The major failure mechanism occurs during starting and stopping. Grease bearings offer a greater tolerance to contamination and potentially much longer life. Drift instability is also a problem since a very small amount of creep in the gyro float material can cause a drift equivalent to a nautical mile. Material creep is caused by instability due to time and temperature cycling effects.

## IC Sockets

There are two basic types of contacts in IC sockets: screw machined, closedentry sleeves with screw machined or stamped-and-rolled four-leaf contact inserts; or one-piece stamped and formed contacts with single or dual-leaf contacts. Either socket type is available with solder tail on wire-wrapable terminations.

Sockets with stamped contacts come in two configurations. In one, the contacts mate with the broad sides of the leads. In the others, the contact mates with the side and are called side-wipe or face-grip. The merits of these two approaches have been debated at great length.

Zero insertion force connectors have a sliding mechanism that provides effortless insertion and withdrawal of ICs when the sockets are in the open position but locks them securely in place when the mechanism is closed. Zero insertion force sockets are expensive but not compared to a 40 pin IC with a broken lead. Therefore, these sockets are mainly used in "high pin" ICs.

For contact materials, beryllium copper when used for high reliability application is an excellent choice. It retains good spring qualities, although it requires plating because of a tendency to form surface oxides. Phosphor bronze provides excellent spring qualities, adequate conductivity, and generally gives the best combination of economy and reliability. It also usually requires plating with solder lead contacts in order to aid solderability.

Socket bodies are commonly made of thermoplastic materials like glass nylon, glass polyesters and polycarbonates. Thermosets like DAP and phenolics are also used. They provide excellent dimensional stability and heat resistance but are generally more expensive.

One of the major failure modes for sockets is high resistive connections. If the application is in a high contamination area there is the risk of oxidation forming on the contacts or of the accumulation of dust or dirt particles. This condition creates a high resistive connection which may result in a false indication when using sensitive circuitry.

Intermittents are even a larger problem due to problems of location of the intermittents. This is especially difficult in digital systems where there are either high or low logic levels.

The contact must maintain its spring qualities after several removal and insertion cycles. The amount of pressure exerted on the IC lead must be adequate to break through any oxidation which may have formed.

Sufficient caution must be taken during soldering to insure that solder does not enter the barrel of the IC socket, preventing proper installation of the IC.

The following is a listing of failure modes for IC sockets:

1) Increase in contact resistance with repeated insertion because of fatigue and deformation of spring material in contact fingers
2) Damage to contact and pin plating with repeated insertion and exposure of base metal to corrosive atmosphere
3) Corrosion of contact and pin surfaces because of porous plating, plating that is too thin, diffusion of base metal into plating, scratched plating, etc.
4) Insulation resistance failure of plastic socket housing because of water absorption or change of mechanical properties of housing at high temperatures
5) Electrochemical reaction between socket contact and IC pin
6) Poor contact resistance caused by surface films on socket contacts and IC pins

## Motors

Motors can be classified into two basic types, ac motors and dc motors. In direct-current motors, speed adjustment is inexpensive and easily obtained; therefore, a wide variety of industrial applications use DC motors. Alternatingcurrent type motors are frequently used in aerospace applications. Overheating causing premature motor failure can be the result of the selection of too small a motor for the given application or of a unit unsatisfactory for the given environment. Therefore, it is important to implement a proper selection and application program for reliable motor operation.

The principal failure modes associated with motors are related to the lubrication of the bearings or the commutation of the brushes. Bearing failure can be caused by various failure mechanisms, of which the most common are: inadequate lubrication due to migration or evaporation or severe operating conditions, brinnelling (plastic deformation of the raceways), fretting corrosion, raceway contamination, and spalling of raceways. Bearings have proven to be the life-limiting items in motors. Most dc motors have the additional failure modes associated with brushes (i.e., fracture, rapid brush wear due to high altitudes, and bearing failures due to contamination from brush wear) and in general are more prone to failure than ac motors.

## Printed Circuit Boards

There exists a variety of printed circuit boards commercially available. The choice of interconnection board depends on many different factors. Required packaging density, desired delivery time, cost limitations, usage environment and
size of production run are all factors which can be used to determine the optimal type of interconnection board for a particular application. Circuit board reliability is also an important consideration, and this section includes failure modes and mechanisms for double sided, multilayer, multiwire and wirewrap interconnection boards.

The plated through hole is used in double sided, multilayer and multiwire printed circuit boards to connect component leads to board circuitry. The plated through hole is the largest contributor to circuit board failures for these types of boards. Problems arise because of the differences in thermal expansion of the epoxy glass base material and the copper plating. The epoxy glass and the copper expand and contract at different rates during thermal cycling. This results in axial strains on the plated through hole barrel wall, weakening the mechanical properties of the copper plating and eventually leading to open circuits. In the case where the ductility of the copper plating is already poor, this process is accelerated. Additionally, poor drilling or excessive acid etching during the plated through hole cleaning process can lead to imperfections in the barrel wall. These imperfections will amplify the level of axial strain in the plated through hole and contribute to possible open circuits.

Multilayer boards, as compared to double-sided boards have additional layers of circuitry separated by epoxy glass laminations. This allows for higher packaging density but also creates additional plated through hole problems. Electrical connections to the plated through hole can be made at a number of different layers in the circuit board. This adds to the number of areas which are affected by strains related to thermal cycling. At each layer where a copper run must connect to the plated through hole, a shearing force is applied to the copper run - plated through hole interface, resulting in possible open circuits.

The multiwire type of interconnection board is unique because insulated wire is laid down on the epoxy glass as an alternate to the copper runs used in doublesided and multilayer printed circuit boards. This results in high packaging density because the insulated wires can be crossed on a single level of circuitry. There are several advantages in this type of system but there are also different failure modes
which must be considered. Problem areas are the points of wire crossover and the wire to plated through hole connection. Under extreme environmental conditions, the wire insulation and the wire deform at a point of wire crossover and potentially cause short circuit. The wire to plated through hole can be the source of an open circuit if exposed to vibration and thermal cycling.

One advantage of wirewrap interconnection boards is the absence of plated through holes and the associated problems. However, several failure modes do exist. Insufficient tension in the wire can result in a poor connection between the wire and the wirewrap post. This occurs particularly when applied to a high vibration environment. Additionally, caution must be observed concerning wire insulation cold flow; adjacent wires or contact with a part can result in short circuits due to cold flow. Some materials which exhibit cold flow are teflon, polyvinyl chloride, etc.

## Pumps

## Hydraulic Pump

Nearly all hydraulic pumps work in rotary fashion. As a pump is rotated, it develops a partial vacuum on the inlet (suction) side, permitting fluid under atmospheric pressure in the reservoir to flow into the pump inlet. Then the pump ejects this fluid, usually at a higher atmospheric pressure. It is worth noting that a pump does not create pressure; it merely moves fluid, causing the flow. Pressure is created by the load on the fluid; if no load exsits, the fluid will have very little pressure. As the load is placed on the fluid, the pressure at the outlet side of the pump increases to a value that is normally indicated as the pump maximum.

Failure modes for hydraulic pumps include:

1) Bearing or bushing failure
2) Incorrect fluid used, causing excessive wear
3) Seal deterioration
4) Cavitation causing pump internal part failures

## Pneumatic Pumps (Compressors)

An air compressor delivering air to a pneumatic system performs the same job as a hydraulic pump. The main substantive difference between pump and compressor is that the fluid delivered by the compressor-air is compressed and under pressure at the time it is delivered, even if there is no load on the system. The only other substantive difference between the two is that most hydraulic systems are powered by a single pump that is actually part of the system, whereas the hose of the pneumatic systems is often powered by a single compressor, which is almost a "utility" in the plant, like water or electric service.

Failure modes for pneumatic pumps (compressors) include:

1) Bearing or bushing failure
2) Seal deterioration and leakage
3) Foreign material entering pump, causing damage or excessive wear to internal parts
4) Check valve leakage (when valves are integral with the pump)

## Quick Disconnect Couplings

The malfunction modes of quick disconnect couplings are:

1) Failure to open or remain open
2) Failure to close or remain closed, including leakage, while uncoupled
3) External leakage while coupled

The possible causes for mode 1 include deformation or failure of the actuation plunger of connectors and binding of the movable engaging clamp ring. The possible causes for mode 2 include binding or cocking of the moving assembly of the connectors and failure or permanent deformation of the plunger return spring. Possible causes for mode 3 include leakage of the sleeve O-ring and leakage at the lip seal.

## Relays

A relay is basically a remotely controlled, electrically operated switch which contains two or more contacts arranged so as to control external circuits. This broad definition applies to all relays regardless of type and internal construction. Most relay types, with the exception of simple thermal time delay and reed types, are complex electromechanical devices. Experience with these devices has indicated that, because of imperfections in materials and workmanship, a relay cannot be satisfactorily specified by contact rating alone. Physical considerations force us to recognize such compromising characteristics built into a relay as operate and release time, temperature effects on pickup and dropout voltages, dielectric breakdown, contact resistance, and insulation resistance. These characteristics are not simply design controlled but are directly affected by the materials employed and the care with which the relay is assembled. The factors of design, materials, and workmanship are the ones usually associated with relay failure.

Part level failure problems associated with relays may be lumped under four basic categories:

1) Failure of contacts to Wahe or break
2) Short
3) Electrical farameter deviation
4) Mechanical anomaly

These categories are used for both latching and nonlatching type relays. For this discussion, relays have been grouped into two categories according to their basic internal construction-armature and reed types.

Armature Relays

The relay style most often used in high reliability application (and considered here) is the balanced armature type because of its demonstrated ability to withstand mechanical shock and vibration. In these relays the armature is pivoted at
its center of mass so as to place it in equilibrium with the static and dynamic forces which act upon it during operation. The moving contacts are either mounted on the armature or activated by movement of the armature.

Almost all armature type relays use copper magnet wire in the coil windings. In such copper windings the coil resistance is directly proportional to the temperature of the windings. The ampere-turns required for the coil to actuate the armature is, therefore, proportional to temperature since the coil resistance varies with coil temperature. To maintain the required ampere-turns, the pickup and dropout voltages will vary over the application temperature range.

One of the most crucial and troublesome areas in armature relay reliability is that associated with the contacts. Many of the problem areas result from the users' lack of understanding of the parameters which affect contact performance. As a consequence, contacts are operated under a wide spectrum of load conditions and a multiplicity of performance criteria which, when reviewed singularly or in combination, are inconsistent with the design parameters of the contacts.

There is a wealth of information available on contact theory and the various materials used in obtaining specific contact characteristics. The user of relays in high reliability applications should be thoroughly familiar with the information since reliability is frequently achieved through carefully limiting certain service applications.

Contamination is also a major concern in high reliability relays because it is a prime contributor to relay failures. Contamination is predominantely introduced during the assembly of the relay. The contamination level can be reduced by careful selection of materials which are used for fabrication of the end product. The user should pay particular attention to the materials used for spacers, washers, insulators, and coil insulation, as well as plating requirements, before specifying a particular manufacturer's relay for his applications. These areas are considered critical to the reduction and control of contamination.

The above discussion has served to define a few of the characteristics associated with armature relays. These and other limitations can be described as specification limits for manufacturers and designers. Deviations from the limitations can lead to equipment failure.

## Reed Relays

Reed relays are made from one or more reed capsule switches inside a common actuating coil. In those cases where the reed capsule switch is used in conjunction with a coil, it is generally classified as a relay; and in those cases where the reed capsule switch is used in conjunction with permanent magnet actuation, it is classified as a magnetic switch.

A basic magnetic reed switch consists of a pair of low reluctance ferromagnetic, slender flattened reeds, hermetically sealed into a glass tube with a controlled atmosphere, arranged in cantilever fashion so that the ends align and overlap with a small air gap in between. The overlapping ends assure opposite polarity when brought into the influence of a magnetic field. When the magnetic flux density is sufficient, the attraction forces of the opposing magnetic poles overcome the rged stiffness, causing them to flex toward each other and make contact. The restoring force provided by the elasticity of the reeds returns the reeds to their original position when the magnetic field is removed. Reed capsule switches, when used within their rated limits, generally have contact life ratings in the one to one hundred million cycle range, depending on contact voltage and current loads used.

The reed switch is inherently a low current, low voltage device. Its contact areas are small and contact pressures are low because the reeds become magnetically saturated; therefore, ..'ditional contact force cannot be developed by increasing the applied magnetic flux. These factors limit the continuous current rating of the switch. The interruption rating of the switch is limited by the gap between fully open contacts and by the restoring force provided by the elasticity of
the reeds. Low contact pressures and small contact gap between fully open contacts limit the reed capsule switch use in severe vibration and shock environments.

The unpredictable random occurrence of contact sticking inherent in these switches is caused by tiny magnetic wear fragments accumulated at, and sometimes binding, the contact gap. Arcing caused by dc loads between the contacts causes metal transfer, resulting in spike and crater formation which sometimes results in contact sticking due to friction between the spike and crater surfaces. For these reasons, application should be limited to those uses where an occasional contact miss is not considered a catastrophic event and those uses where voltage and current loading of the switch contacts minimizes spike and crater formation. Careful handling of the switch is a mandatory requirement. The switch contact members extend beyond each end of the glass capsule and are used as switch terminals. Bending, cutting, or applying excessive heat to the switch leads during soldering and installation changes the switch operating sensitivity. Operating one reed switch adjacent to another or in a stray magnetic field can also change its sensitivity. Magnetic shielding around reed relays is relatively ineffective in reducing the effects of uniform stray magnetic fields. Reed relays are inherently more sensitive to stray magnetic fields by one or two orders of magnitude than any other type of sealed relay in common use today. Stray magnetic fields in the order of 5 to 10 gauss have been known to cause reed relays to malfunction.

In those special applications where usage of reed switch capsules occurs, the above factors should be carefully reviewed and considered with respect to each application prior to usage.

## Solder Comnections

One of the most prevalent modes of failure for solder connections is the cracking of the connection due to thermal fatigue. In many instances, it is very difficult to distinguish between solder cracking as a result of thermal fatigue and
solder cracking because of poor workmanship (cold solder joints). But there are differences and they become apparent upon very close investigation. Thermal fatigue cracks will predictably occur on sequentially manufactured items and will also propagate with storage time. Solder cracks due to poor workmanship will appear randomly on sequentially produced items. These failures can be reduced by applying and controlling appropriate design criteria. The following list of criteria is provided as a guide to minimize solder connection problems:

1) Use only silicone or polyurethane based conformal coatings; the coatings should be of minimum thickness.
2) Avoid gold-plated boards; use solder-plated or solder-coated boards.
3) Do not use rigid encapsulating systems to secure and/or protect connected parts on printed wiring boards.
4) Resilient spacers, when used, should be of minimum thickness between the solder connected part and printed wiring board.
5) Do not hard mount parts to printed boards with mechanical fasteners unless leads are parallel to the board and of sufficient length as to provide strain relief. Also, do not hard mount parts by using minimum lead length inserted through feed-through holes.
6) Use terminals only when necessary and then only use terminals designed to be used on printed wiring boards.

## Switches

The most consistently documented failure modes for switches are opens and shorts. The mechanism most of ten responsible is contamination both of the particulate and oxide nature. Particulate material in the form of solder balls or loose metal flashings can produce varied conductive paths or shorts and switch lockup due to wedging or jamming. Nonconductive particulate contamination could result in contact interference or opens as well as switch lockup. Corrosion of the contact surface due to the introduction of external sources such as polluted or heavy industrial environment, moisture and salt, body oils, solder resin, and wire lubricants also can cause high contact resistance and opens. Successful deterrents to this corrosion include: using corrosive resistive metals (gold, platinum, and palladium) and their alloys, using hermetically sealed switches, stringent control of the cleanliness of the package.

Switch screening inspections and tests are recommended to discover failures before actual part implementation. MIL-STD-202 has many effective tests ranging from temperature cycling to hermeticity and radiographic inspection.

## Valves

Valves are used to control the flow of fluids, either liquids or gases, with respect to amount and direction. Industry employs many varieties of valves, such as gate, glove, poppet, plug, and needle valves, plus specialized varieties like check, metering, and relief valves. A common feature of all these valves is that they contain a solid movable member (gate, disk, poppet face, needle, or plug) that impinges on, or into, an orifice in such a manner as to create a fluid-tight separation between the entry and outflow sections of the valve. The contacting surface of this orifice, i.e., valve seat, is normally of an elastomeric material. Where this is not true, the contacting surface of the movable member is deformable or elastomeric in nature or the seat is of a deformable material and the movable member is hard.

The most prolific problem or failure mode detected and described for the valves is leakage. Deterioration of the contacting surfaces, whether due to wear, damage during installation, chemical attack, misalignment, etc., will result in imperfect sealing resulting in internal leakage. All valves, with the exception of relief and check valves, are actuated by an external mechanical force that is transferred to the movable member by a stem or riser. This actuating mechanism is subject to failure by seizure as the result of corrosion, contamination or failure. The required opening into the valve body for entry of the operating stem is an additional source of leakage, due to inadequate design and/or packing. As the valve body is generally formed from a casting, valves are subject to all of the hydrostatic problems associated with castings such as porosity and fracture from mechanical damage or pressure stress fracture due to inadequate section thickness.

Supports for valves and their associated piping are fabricated from flatbar, channel, or angle configurations. These supports should be installed in such a manner that they do not impose undue stresses on the valve piping. Valve actuating media, such as a handwheel, crank or bar should be unhindered by support
installation, permitting a complete clearance radius. When a system is subjected to stress imposed by high temperature and pressure, the supports and hangers should be designed to "walk" with the system, imposing minimal loading and maintaining support integrity.

Primary consideration in the selection of valves includes knowledge of the physical property of materials from which the valve is manufactured in order to assure compatibility with: (1) applicable fluids, (2) operating temperatures, and (3) pressure limits. The function the valve must perform and its dimensional limitations are also important considerations. Life and wear factors must be taken into account as well as maintainability. The valve should be designed to facilitate replacement of gaskets, seals and seat. The applicable limits that are the result of design considerations should be delineated at the design review that is conducted at time of first approval and should be confirmed by proof testing. Furthermore, these limits should be reflected in resulting specification and design handbooks as application notes in order that the system design does not inadvertently contribute to premature failure of the finished system.

## DORMANT FALIURE MODES AND MECHANISMS

## Bearings

The primary dormant failure mechanism is inadequate lubrication. Some of the common causes of this problem are: evaporation loss, migration loss, and contamination of the lubricant. To eliminate or minimize these failure modes use an oil or grease with a lower evaporation rate or a sealed motor. Periodic rotation every six months will reduce the problem of migration.

## Connectors, General

Improper cleaning of connector sockets or pins prior to plating results in plating flaking on subsequent mating/demating. This results in circuit resistance increases or possible short circuits.

## Chutches

Drying out of the clutch fibers lowers the required frictional coefficient and results in slippage. Conversely, if clutch faces are left in compression, the clutch materials tend to equalize out any surface roughness, but this causes interlocking of the fibers from each face and sticking. This problem can be overcome by exercising the clutch at least once each year so that the plate fibers are realigned.

## Gyros

Gyro drift is the primary aging concern and is usually caused by molecular metallic interchange of the spin bearing detail parts. This phenomenon is similar to cold welding and results in excessive bearing friction that produces drift. The molecular interchange at points of metallic contact is minimized by maintaining a constant temperature on the gyros. Periodic operation at 6 to 12 month intervals is essential in preventing migration of the lubricant away from the wear path and subsequently prevents metal to metal contact.

## Magnetrons

The filaments tend to become gaseous unless the unit is operated periodically. The outgassing is a result of time-oriented liberation of gas molecules that have been absorbed on the walls of the magnetron. When enough gas molecules have been generated, activation of the magnetron imparts high velocities to these molecules; they strike the filament and possibly cause shorting.

## DC Motors

Brush-type motors are prone to cold welding of the brushes to the armature. The cold welding is caused by brush pressure and the galvanic coupling of the two materials in contact. Periodic operation of this type of motor is recommended.

## Relays, Latching

The use of anodic materials such as tin, copper or silver as contact materials have resulted in cold welding or highly resistive contacts after sustained periods of dormancy/storage. The use of more cathodic materials, such as gold as the contact material, overcomes these problems.

## Relays, Nonlatching

The same comments that were used for Relays, Latching also apply here. In addition, if the nonlatching relay is a miniature relay, e.g., TO-5 can package, an additional failure mechanism is possible. Cold welding of the relay armature to the backstop has occurred and was caused by plating incompatibility. If the activating coil voltage is in the low range, this age-oriented cold weld is more readily exposed, e.g., no transfer.

## Seals

Inherent porosity tends to let seals dry out and become semi-brittle unless kept wetted. The resultant embrittlement creates leakage paths as a function of
osmosis. Ozone (caused by electric motors or electric welding) concentrations also tend to accelerate seal aging by breaking down the seal fibers. All system containing seals should be activated at least once a year to assure rewetting of seals.

## Switches, Sensitive

The same comments that apply to Relays, Latching also apply here except that the consequences may be more severe for switches. The wiping action of the contacts is about $50 \%$ less than for relays. Thus, resistive oxides or contaminants are less likely to be scrubbed from the contacts.

## Transformer

Coil shorting can be caused by improper removal of cleaning agents that erode the dielectric off the wire windings or by cold flow of the insulation material covering the wire windings.

## PART FAILURE MODE DISTRIBUTION

The failure mode information presented in this section is limited to those modes considered to have a significant frequency of occurrence. Failure modes resulting from workmanship, inadequate inspection, screening and misapplication have not been included.

## PART FAILURE MODE DISTRIBUTION

FREQUENCY OF

PART TYPE

## ACCELEROMETERS

## FAILURE MODE OCCURRENCE IN PERCENT

BINDING ..... 33
DRIFT ..... 27
OPEN ..... 23
UNSTABLE ..... 17
BATTERIES
Lithium-Sulfer Dioxide
INTERNAL SHORT ..... 21
INTERNAL OPEN ..... 7
LARGE STARTUP DELAY ..... 50
LOW ENERGY CAPACITY ..... 2
HERMETICITY ..... 20
BEARINGS
WEAR ..... 73
BINDING ..... 20
SCORED ..... 7
CIRCUIT BREAKERS
SHORT ..... 38
OPEN ..... 38
UNSTABLE ..... 19
ARCING ..... 5
CONNECTORS
OPEN ..... 36
MECHANICAL DAMAGE ..... 24
INTERMITTENT ..... 22
CONTACT RESISTANCE ..... 9
SHORT ..... 9
CYLINDERS, ACTIVATING
LEAKING ..... 52
WEAR ..... 18
STRUCTURAL ..... 13
MECHANICAL DAMAGE ..... 11
DRIFT ..... 6
FUSES
SLOW OPEN ..... 75
EXCEEDS AMP RATING ..... 15
PREMATURE OPEN ..... 10

PART FAILURE MODE DISTRIBUTION (Cont'd)

FREQUENCY OF
PART TYPE
FAILURE MODE OCCURRENCE IN PERCENT

## GEAR BOXES

LEAKING 40
MATERIAL FAILURE 35
BINDING 25
GENERATORS
WEAR 44
CONTAMINATION 17
DRIFT 16
BEARING 13
ELECTRICAL 10

GYROS
DRIFT/UNSTABLE 64
BINDING 16
OUT OF TOLERANCE 8
UNBALANCED 6
BEARING 4
RATE ERROR 2
MOTORS
BRUSH BREAKAGE 32
OR WEAR
CONTAMINATION/LOSS 31
OF LUBRICANT
OPEN/SHORT STATOR 14
COMMUTATOR FAILURE 12
OPEN/SHORT ROTOR 11
PUMPS
LEAKING 53
INTERNAL PART FAILURE 20
IMPROPER OPERATION 13
WEAR 8
BEARING FAILURE 6
RELAYS
CONTACT RESISTANCE 25
OPEN 24
DRIFT 16
NO TRANSFER . 16
CONTACTS BURNED 7
MECHANICAL 5
INTERMITTENT 4
SHORT 3
257

## PART FAIL- ${ }^{-}$MODE DISTRIBUTION (Cont'd)

FREQUENCY OF PART TYPE
FAILURE MODE OCCURRENCE IN PERCENT

## SEALS

PHYSICAL DAMAGE ..... 54
LEAKING ..... 39
DETERIORATION ..... 7
SOLENOIDS
SHORT ..... 52
BINDING ..... 29
WEAK SPRING ..... 19
SPRINGS
FATIGUE ..... 45
WEAK ..... 28
WEAR ..... 23
DISTORTED ..... 4
SWITCHES
MECHANICAL ..... 51
INTERMITTENT ..... 13
FAILED TO OPERATE ..... 9
OPEN ..... 9
SHORT ..... 9
DRIFT/UNSTABLE ..... 8
CONTAMINATION ..... 1
SYNCHROS
DRIFT ..... 28
MECHANICAL ..... 22
OUTPUT ERROR ..... 22
INTERMITTENT ..... 17
OPEN ..... 11

## APPENDIX

ADDITIONAL RAC SERVICES

## ADDITIONAL RAC SERVICES

## Search Services

Retrospective Searches are conducted at a flat fee of $\$ 125$ per search. If no references are identified, a $\$ 50$ service charge will be made in lieu of the above. For best results, please call or write for assistance in formulating your search question. An extra charge, based on engineering time and costs, will be made for evaluating, extracting or summarizing information from the cited references.

## Consulting Services

Consulting Service fees are determined by the costs incurred in the conduct of the designed work, including staff time and overhead, materials and other expenses. Work will be initiated upon receipt of a signed purchase order. We will be pleased to prepare firm cost proposals.

## Full Service Participating Plans

Two plans are offered to both government and industry
Participating Member (PM)
$\$ 1,600$
Participating Associate (PA).
400
Services provided to a Participant in either plan are:
o Automatic receipt of one (1) copy of each RAC microcircuit and semiconductor device databook issued over twelve months at a savings of $\$ 70$.

- Availability of additional copies of each of the above databooks at $20 \%$ off list price.
o Discount on registration fees for RAC sponsored training courses, seminars, workshops, etc.

In addition, the Participating Member may access RAC resources as needed without issuing purchase orders. Up to 50 man-hours of professional consultation are authorized.

## Blanket Purchase Order

The Blanket Purchase Order option enables you to write a single Purchase Order for a stipulated maximum dollar amount (depending on your needs) and active time duration (a one-year period is suggested), but you pay only for services rendered or documents purchased.

Military Agenciess Blanket Purchase Agreement, DD Form 1155, may be useful for ordering RAC reports and/or services. Please stipulate maximum dollar amount authorized and cutoff date on your order. Also specify services (e.g., publications, search services, etc.) to be provided. Identify vendor as IIT Research Institute (Reliability Analysis Center).

## Ordering Information

Place orders or obtain additional information directly from the Reliability Analysis Center. Clearly specify the publications and services desired. Except for blanket purchase orders, prepayment is required. All foreign orders must be accompanied by a check drawn on a U.S. bank. Please make checks payable to ITTRI/RAC.


Por air mail shipment to points outride North and Central Americe, edd $\$ 10.00$ par item

* Por air mail shipment to points outside North and Central Americe, add $\$ 15.00$ per item

Quantity Purchase Discoumts - Discounts on multiple copies of a single titie ordered at one time) are:

Quantity
Discount

$1-2$	list
$3-6$	$15 \%$ off list

6-9 20\% off list

Quantity
$10-19$
$20-49$
$50-99$
100 or more

Diseount
33-1/3\% off list
45\% off list 60\% off list negotiable

## ORDRE PORM

Enclosed find \$ $\qquad$
Send order and check to:

## Relimbility Amalysis Conter RADC/RBRAC Griffis APB, NY 13441

Please send me the documents checked above.
Name/Title $\qquad$
Organtzation $\qquad$
Address $\qquad$
City/State $\qquad$ Zip $\qquad$
Phone: 315/330-4151 Autovon: 587-4151
Prepayment de ardere is required. Please make checks payable to ITTRI/RAC. Foreign orders must be accompanied by check drawn on a U.S. bank.

> The Reliobuty Analyte Ceriter ts a DoD information Analyis Center apareted by IT Resaerich hatitute, Chicago, $I I$


[^0]:    part class: REGULATOR
    TYPE: GENERAL
    

