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ABSTRACT 

Several alternate sets of parameters that represent the 

linear predictor are investigated as transmission parameters 

for linear predictive speech compression systems.   Althouqh 

each of these sets provides enuivalent information about the 

linear predictor, their properties  under  quantizatiop  are 

different.   The  results  of a comparative  studv of the 

various paranetor sots aro  reported.   Specifically it is 

concluded that the reflection coefficients are the host set 

for use as  transmission  parameters.   A more   detailed 

investiaation  of  the  quantization properties of the 

reflection coefficients is then carried out usina a spectral 

sensitivitv  measure.   A method of ontimaliy quantizing the 

reflection coefficients is also derived.  Using this  method 

it  is demonstrated  that  logarithms  of the ratios of the 

familiar area  functions  possess  approximately  optimal 

quantization properties.  Also, a solution to the problem of 

bit allocation amonq the various parameters  is  presented, 

based on the sensitivitv measure. 
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The use of another snectral sensitivitv measure renders 

logarithms of the ratios of normalized errors associated 

with linear predictors of successive orders as the optimal 

quantization parameters. Informal listening tests indicate 

that the use of log area ratios for quantization leads to 

better synthesis than the use of loa error ratios. 
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I.  INTPODUCTTOII 

In recent years the method of linear prediction has 

been quite successfully used in speech compression systems 

[1] - [5].  In this method, speech is modeled by an all-pole 

filter H(z) as shovm in Fiq. 1.  The input to the filter is 

either a sequence of pulses separated by  the pitch period 

for voiced sounds, or white noise for fricated (or unvoiced) 

sounds.  The parameters a^  l5k<p,  are known as  the 

predictor coefficients,  and Q is the filter qain.  For a 

particular speech secrment the filter parameters are obtained 

by passina the speech siqnal through the inverse filter A(z) 

(as  in Fia. 2)  and then minimizinq the  total-squared 

orediction error 

E - 5 •' - ^n*^ «k Vk» (1) 

with respect to a^ If the siqnal sn is assumed to be  zero 

for n<0 and n>H (e.q.  by multiplying it by a finite 

window), the error minimization results  in the  set of 

equations 

1 

n 

* ak ^i-k1 

k=l 

-Ri , l<i<p (2) 

i  , ■ tm^mti 
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VOICED 

LI H(z) = 

1+5!   akz 
-k 

FRICATED 

(a)      FREQUENCY- DOMAIN MODEL 

f-^ix 

2 ak sn_k 
k=l LINEAR PREDICTOR 

OF ORDER p 

(b)    TIME-DOMAIN MODEL 

♦ s, 

Fiq. 
1. Discrete model of speech production as emoloved in 

linear prediction. 
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P    -k 
A(z)= 1 + 2 a. z R 

k = l k 

e_ss + Das . 
n n L-I K n-K 

I 
I 

Fiq.  2. The error sequence e as the output of an inverse 
filter AU). 

*a^HMata*MMa|Mteaian<^-^dri>K^_1MaM4J4*»lM_l^ 
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where 

N-|l| 
Ri = l

n      Sn Sn+|i n=0 

(3) 

is the autocorrelation function of the signal s^ The set 

of equations (2) can be recursively solved for the predictor 

coefficients ak  as follows: 

Eo = Ro ' 
(4-a) 

i-1 
k = -(R +  Z  a 
i     1   j=l  ■' 

(i-1) 
Vj)/Ei-1  ' 

(4-b) 

a.  ■ Xi , 

.(i) = a!1-^ * ai ' = a.   ' + ki ai_:j 
(i-1) i   i<j<i-l  ,  (4-c) 

E. = (l-kj) Ei-i  ' (4-d) 

Equations (4-b,c,d) are solved recursively for i-l,2,...,p. 

The final solution is given by 

a. = a<p) ,   ISJSP  • 
1   ^ 

(4-e) 

The filter H(z) with the predictor coefficients obtained 

from (4) is always stable, i.e. the poles of H(z) lie 

inside the unit circle in the z-plane. Since H(z) is an 

all-pole filter, stability also implies that H(z) is minimum 

.., ^J~..^...,. .  .-- . _ ■—^-■- 
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phase. 

The intormediate quantities k., l^iip, in (4) are 

called the reflection coefficients (or partial correlation 

coefficients [3,10]). Reflection coefficients occur 

naturally in the treatment of the vocal tract as an acoustic 

tube with p sections, each with a different cross-sectional 

area [2,9]. An important result that will be used in the 

sequel is that the conditions 

-l<k.<l ,   Isi^P , (5) 

are both necessary and sufficient for the stability of H(z). 

The quantity E obtained from (4) is the minimum value 

of the prediction error given in (1). By expanding the 

squared terms in (1) and using (2), it can be shown that the 

minimum error is given by 

= R +  Z  a. R. 
o  k=1  

k  k 
(6) 

Of interest also is the normalized er;.or V which is the 

ratio of the minimum error to the enerqv of the input speech 

signal, i.e. 

V = E /RÄ 
P   P  0 

(7) 

-j- ■ ^ 
--  ^—^—^-^—^-^ ~^iMt»^t~—-^ h_- 
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From (4-a) , (4-d) and (7) we obtain 

P     2 
v - n d-^ ) 

r  j=i 

(8) 

The gain G of the filter n(z) is obtained by conserving 

the total enerciy betv/een the speech signal and the impulse 

response of H{z).  The gain can be shown to satisfy [6] 

G = Ep = Vp = v 
P 
I     a 

k=. 
k Rk 

(9) 

Equations (2), (3) and (9) completely specify the filter 

parameters. It can be shown that (for a well chosen p) the 

resulting linear prediction all-pole spectrum is a good 

match to the envelope o^ the signal spectrum [6]. 

Above we assumed that the speech signal was multiplied 

by a finite window. The shape of window is of importance if 

the signal spectrum is to approximate the transfer function 

of the vocal tract. This issue is discussed in detail 

elsewhere [71. A smooth window such as the Hamming or 

Manning window is adequate. 

When applyinq the linear prediction method to speech 

compression, the model parameters - predictor coefficients, 

gain and pitch frequency for voiced sounds - have  to be 

D 
- ■ - - 
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extracted, quantized and transmitted to the receiver. The 

rate of such parameter extraction is usuallv on the order of 

50-100 Hz to follow the time-varying overall characteristics 

of the input spref*. signal. At the receiver, speech is 

reconstructed (or synthesized) using the speech production 

model given in Fiq. 1. 

The optimal choice and quantization of transmission 

parameters   is  of  prime  importance  if the  resulting 

synthesized speech is to be of good quality.  In this paper, 

several  alternate  sets of  transmission parameters  are 

considered and their quantization properties are compared.* 

This  comparative  study has  indicated that the reflection 

coefficients possess manv desirable quantization properties. 

An  optimal method of quantizing the reflection coefficients 

is derived usino a snectral  sensitivity measure.   The 

sensitivity measure  is also  used for allocatinq a fixed 

number of bits amonq the various parameters  in an optimal 

manner  (in a minimax sense).  Finally, the use of ^ second 

spectral sensitivitv measure for the ontimal quantization of 

the reflection coefficients is investiqated. 

*As the quantization properties of pitch and qain are well 
understood we have not considered them in this studv. 

ii if       Tüifiniiii iiiiiiiiifi'An min i iiiiiiimrt«MiiMaiiii»iiiiii i 
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II.  ALTERNATE TRANSMISSION PARAMETER SETS 

The all-pole model used in a linear predictive  system 

has a transfer function 

H(Z) = i£rr= Khn z"n ' 
n=0 

(10) 

where the inverse filter A(z) is given by 

P     -n 
A(z) = 1 + 2 a z 

n=l 

(11) 

Given below is a list of possible sets of parameters  for 

characterizing uniquely the linear prediction filter H(z): 

(1) Impulse response of the inverse filter A(z)f  i.e. 

predictor coefficients an, Isnsp. 

(2) impulse response of the all-pole model hn, 0-n<p, 

which are easily obtained by long division. Note 

that the first p+1 coefficients uniquely  specify 

the filter. 

(3) Autocorrelation  coefficients of   {a^/G}, 

1     P-Ül 
bi " "T    Z        ai 1       GZ   j=0 

,Vlil   '  V1'0^-'12' 

- ■"- -- - ■       ■•■■■■'        ■ -  - -      
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(4)   Autocorrelation  coefficients  of   {hn} 

ri = ^jVul    '    05i5p    ' 
(13) 

It can bo shown that r. is equal to 1^ in (3)  for 

n<i*p [6,7] . 

(5) Spectral coefficients o^ A(z)/n,  Pi,  Osisp,  (or 

equivalently spectral coefficients of H(z), 1/P^) 

p  L      2TTij    0< P. = b„ + 2 I  b. cos raf ,   0- 
i 0 4ml      * 

l-P » (14) 

1 

i 

whoro b. are as defined in (12).  In words,  {1^ 

is  obtained  from {b^ through a discrete Fourier 

transform  (DF,T,) .   Traditionally,  vocoders  that 

transmit the spectrum at selected frequencies have 

been known as channel vocoders.  Thus, use of  the 

spectral coefficients  as transmis5ion parameters 

loads  to a  linear prediction channel vocoder. 

While  in the classical channel vocoder different 

channel  sianals  are derived  from  rontiquous 

band-pass  filters,   in the  linear prediction 

channel vocoder a selected set c' p+1 points  from 

the all-pole spectrum constitute the  "channel 

outputq."  The main advantage of  the   linear 
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prediction channel vocoder, however, is that we 

are able to regenerate exactly the all-pole 

spectrum from a knowledqo of the p+1 spectral 

coefficients, unlike in the classical channel 

vocoder. 

(6) Cepstral coefficients of A(z), c , l^n^p, (or 

equivalently cepstral coefficients of n{z)/G, -c ) 

1  /log A(e^)  e^nw dtü  . 'n " 57 
-IT 

Since A(z) is minimum phase, we obtain usin*.,  the 

results given in [8, p. 24f] 

n-1 m 
c = a_ - Z r c_ a. 

m=l 
, I5n5p . (15) 

(7) Poles of H(z) (or equivalently zeros of A(z)). 

(8) Reflection coefficients k-, lsi*p, or simple 

transformations thereof, e.g. area coefficients 

[2,9],  The area coefficients are given by 

1+k, 
Ai ■ Ai+i r^r  ' Vi= 1 ' :'i5p   * (16) 

Although the  reflection  coefficients  are    obtained 

10 
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as a byproduct of the solution in (4), they can 

also be* computed directly from the predictor 

coefficients usinq the following recursive 

relations: 

ki = "i '       i    . 

a(i)- a!*
5 a™ 

a(i-i) . !J—-^-^ 
j i - ^i 

lsj<i-l (17) 

where the index i  takes  values p, p-l,...,l  i" 

that order.  Initially, ajp)= a., l<j<p. 

I 

Some  of  the  above  sets  of  parameters   have   p+1 

coefficients  while  others  have  only P coefficients. 

However, for the latter sets the signal energy (or gain  G) 

needs  to be transmitted, thus keeping the total number of 

parameters as p+l for all the  cases.   Although the  above 

sets  provide  equivalent  information about  the  linear 

predictor,   their  properties  under  nuantization  are 

different.   Certain aspects  of the sets (1), (4), (7) and 

(8) have been studied in the past [2,10].  Our purpose  in 

this paper  is  to Investigate  the  relative quantization 

properties of all these parameters with a  particular 

emphasis on the reflection coefficients. 

11 
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It should be emnhasized that the predictor coefficients 

can be recovered from any of the various sets of parameters 

listed above. The required transformations for such a 

recovery are given below only for the sets (3), (5), (6) and 

(8) since they are well-known for the others. 

The sequence {b.} is transformed through an FFT after 

appending it with an appropriate number of zeros to achievn 

sufficient resolution in the resulting spectrum of the 

filter A(z)/G. The spectrum of the all-pole filter H(z) is 

then obtained bv simply inverting the amplitudes of the 

computed spectrum. Inverse Fourier transformation of the 

spectrum of H(z) vieldr; autocorrelation coefficients {r^} 

defined in (13). The first p+1 autocorrelation coefficients 

Ti, 0<i<pf are thnn used to compute the predictor 

coefficients via the normal equations (2) with R^=r., 0<i5p. 

The predictor coefficients  are  recovered from the 

spectral  coefficients  {P^} by first takinq the inverse DFT 

of the sequence {P^} to get  the  autocorrelation  sequence 

0^}.   The process of getting the predictor coefficients 

from {b.} has been discussed above, 
i 

Rearranqing (15) provides the necessary transformation 

from cepstral coefficients to predictor coefficients: 

a =c + I    ?can. l^nfp n   n    , n m n-m 
m=i 

(IB) 

12 
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Il 
1. 

1. 

Equations (15) and (18) also suggest the use of the modified 
A 

cepstral  coefficients  c =nc  as  possible transmission r n  r. 

parameters. 

The predictor coefficients can be recovered from the 

reflection coefficients using the relations (4-c) with 

i=l,2,...p, then (4-e). 

13 
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.1 

HI,  PREPROCESPIIin METHODS 

Before we discuss the quantization properties of  the 

different parameters we should mention that such properties 

can be improved by proper preprocessing,  which is  later 

undone at the synthesizer.  For each set of parameters (1-8 

above) we have observed that the short-time spectral dynamic 

range of  the  speech signal  is the single most important 

factor that affects the quantization properties.  We use two 

methods of preprocessing to reduce  the spectral dynamic 

range and thereby to improve  the quantization properties 

[111.  in the  first method,  optimal (linear predictive) 

preemphasis is applied to the speech  signal which reduces 

the  spectral dvnamic range by reducing the aoneral spectral 

slope.  The second method, called the SIGMA method, involves 

multiplying the impulse response of the inverse fil er Kit) 

by a decayinp exponential, which increases  the  pole 

bandwidths, resulting in a redaction of the spectral dynamic 

range*.  Preprocessing by either of  these methods  can be 

done after the linear prediction analysis, so that it can be 

viewed as part of the encoding process. 

*Tf"höwever"""ä"'growing exponential is used,  the pole Sri ^u^^Ä.ssr'Sir = 
tracking  [6,7] . 

14 .1 
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IV.  QUANTIZATION PROPERTIES 

For the purpose of  quantization,   two  desirable 

properties  for a parameter set  to have are: (a) filter 

stability upon quantization and (b) a natural ordering of 

the parameters.   Property (a) means that the poles of H(z) 

continue to be inside the unit circle even after parameter 

quantization.  By (b) we mean that the parameters exhibit an 

inherent ordering,  e.g.   the predictor coefficients  are 

ordered as a,, a ...., a .   If a and a are interchanged 
12      p       1     * 

then H(z) is no longer the same in general, thus 

illustrating the existence of an ordering. When such an 

ordering is present, a statistical study on the distribution 

of individual parameters can be used to develop better 

quantization schemes. It is clear that property (a) is more 

important than (b). Only the poles and the reflection 

coefficients ensure stability upon quantization, while all 

the sets of parameters except the poles possess a natural 

ordering. Thus, only the reflection coefficients possess 

both of these properties. 

We have investigated experimentally the quantization 

properties of the sets of parameters discussed in Sec;ion 

II, with and without preprocessing of the speech signal. 

The absolute error between the log power snectra of the 

unquantized and the quantized linear predictors was used as 

a criterion  in this  study,  since we believe that a good 

15 
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spectral match is necessarv for synthesi zing speech with 

good quality. A summary of the results is provided in the 

following. 

The impulse responses {a } and {h } are highly 

susceptible to causing instability of the filter upon 

quantization. This is well known from discrete filter 

analysis. Positive definiteness of autocorrelation 

coefficients {b.} and {r.} is not ensured under 

quantization, which also leads to instabilities in the 

linear prediction filter. An attempt to synthesize speech 

with quantized autocorrelation coefficients {r^} resulted in 

distinctly perceivable "clicks" ir the synthesized speech. 

Our conclusion is that the impulse responses and 

autocorrelation coefficients can be used only under minimal 

quantization, in which case the transmission rate would be 

excessive. 

In the experimental investigation of the spectral and 

cepstral parameters, we found that the quantization 

properties of these parameters are generally superior to 

those of the impulse responses and autocorrelation 

coefficients. The spectral parameters often yield results 

comparable to those obtained by quantizing the reflection 

coefficients. However, for the cases when the spectrum 

consists of one or "lore very sharp peaks (narrow 

bandwidths),  the  effects of  quantizing  the  spectr-! 

16 
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coefficients often cause certain regions in the 

reconstructed spectrum to become negative, which leads to 

instability of the filter. Preprocessing the speech signal 

by the SIGMA method remedies this situation, bui- the 

spectral deviation in tht,«?e regions can be relatively large. 

Quantisation of cepstral parameters can also lead to 

instabilities. As before, with proper preprocessing 

stability is restored, but at the expense of increased 

spectral deviation. 

As mentioned earlier, the stability of the filter H(z) 

is  guaranteed under quantization of the poles.  This makes 

the poles potentially a good set of  parameters  for 

transmission.   Unfortunately,  the poles  do not possess a 

natural ordering: a property that is  necessary  if a low 

transmission rate  is desired.  Traditionally, poles have 

been ordered in terms of vocal tract resonances  (formants). 

Since the ranoes  of  freauencies for the various formants 

have been well established, their quantization can be done 

with improved accuracy.  In addition, the formant bandwidths 

may be quantized less accurately than  formant  frequencies, 

which  leads  to  further savings  in  transmission rate. 

However,  experience has  shown  that  the  problem  of 

identifyinq the poles as ordered formants is computationally 

complex and involv«-. a fair amount of dacision making which 

is  not completely  reliable.   In addition, computing the 

poles requires findinq the roots of a pth order polynomial 

17 
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(p~12): not a straightforward task. 

Based on the rnsults of our experimental study of  the 

spectral  deviation  duo  to quantization, on computational 

considerations,  and on  stability and natural  ordering 

properties, we conclude that the reflection coefficients are 

the best set  for use as  transmission parameters.   The 

question now is, what is an optimal quantization scheme for 

the reflection coefficients which gives the best results  in 

terms of the quality of the synthesized speech? To this end, 

we perform in  the  next section a  spectral  sensitivity 

analysis of the  reflection coefficients,  since we have 

assumed that good quality  speech depends  on an accurate 

representation of the power spectrum.  Based on the results 

of this study we present in Section VI an optimal scheme for 

the quantization of the reflection coefficients. 

I 
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V.  SLNSITIVITY ANALYSIS OF REFLLCTIOM OOEFPICIENTS 

In order to understand the effects of parameter 

quantization on the all-pole model spectrum, we study in 

this section the sensitivity of the spectrum to «^mall 

changes in the reflection coefficients. If AS is the 

spectral deviation due to a change Aki in the reflection 

coefficient ki, then we define the spectral sensitivity for 

the coefficient k. as 

3S Lim AS (19) 

The definition of spectral deviation AS can be arbitrary, 

but for it to be useful it must somehow relate in a 

proportional manner to the corresponding effect on 

perception of the svnthesized speech. Here we employ a 

measure of spectral deviation that has been found to be 

useful in speech research, namely, the average of the 

absolute value of the difference between the two log spectra 

under consideration. Thus thn spectral sensitivity is 

defined by 

3S Lim 
Ak ̂ 0 ^7 [7? 4 

log PCk^u) - log P(ki+Aki,ü)) da> 

I 19 
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or 

88    Lim  1 
W7 ^ Ak.-O WT — IT  I 1    X 

, (20) 

where 

P(.,u)) = |H(e:|u,) 

is the spectrum of the all-pole model H(z). The quantity 

between brackets in (20) is the spectral deviation AS due to 

a perturbation in thn ith reflection coefficient. 

Experimentally, l|- is computed by replacing the integral 

by a summation, and by using a sufficiently small value  for 

A . 

1 

Typical sensitivity curves are shown in Fia. 3.   (For 

display purposes we have plotted 10 log ^JJ- in decibels.) 

These curves were obtained from a 12-Dole linear predictive 

analysis of a 20 msec frame from a 10 kHz sampled speech 

signal. Each curve in Fiq. 3 is a plot of the spectral 

sensitivity for one of the 12 reflection coefficients as its 

value is varied over the range (-1,1) while the other 11 

reflection coefficients are kept constant. We have 

performed this tvpn of sensitivity analysis for a larqn 

number of different sounds recorded from different speakers. 

The resulting sensitivity curves were similar to those shown 

in Fig. 3.   The  sensitivity curves have  the  following 

I 
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1 

-1.0 

Fiq. 

8 .6 
i r   T 

.4   -.2    .0    .2    .4 
REFLECTION COEFFICIENT.K 

8   1.0 

3. Typical spectral sensitivity curves for the 
reflection coefficients of a 12-pole analysis 
of a 20 msec sneech frame. 
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properties in conmon: 

(i) Each sensitivity curve ££— versus k. has the same 

general shape  irrespective of  the  index i and 

irrespective  of  the  values  of   the  other 

coefficients k , n^i, at which the  sensitivity is 

compute3. 

(ii) Each sensitivity curve is U-shaped.  It is 

even-svmmetric about k.=0, and has large values 

when the magnitude of k. is close to 1 and small 

values when the magnitude of k. is close to zero. 

It has been observed bv some researchers that the first 

few reflection coefficients are the most sensitive to the 

effects of quantization. While this is true, it is clear 

from the results of our sensitivity analysis that the high 

sensitivity is not due to the fact that these reflection 

coefficients are the leading ones but because on the average 

they assume magnitudes closer to 1 than the others. 

The sensitivity properties given above strongly suggest 

the existence of a prototype sensitivity function which 

would apply approximately to every reflection coefficient 

and for different speech sounds. Such a prototype function 

could then be used in developing an optimal quantization 

scheme that would apply to all reflection coefficients all 

the time. Due to the above sensitivity properties, it is 

meaningful to obtain this prototype sensitivity function as 

22 

  -  -■" 



1 
! 

i 
I 

:; 

: 

BBN Report No. 2000 Bolt Beranok and Newman Inc. 

the simple average of the sensitivity curves over different 

reflection coefficients and for a large number of different 

speech sounds. Such an averaged sensitivity function is 

defined below: 

^S 
3Tc 

i  N 

PN til 
as p (21) 

k.^k 

where  t  refers  to  the  number of     the    analysis     frame     (time 

averaging). The       averaged    sensitivity     function    for    a 

representc^tive speech sample is shown plotted as the solid 

curve in Pig, 4. In this plot the sensitivity values are 

given in decibels relative to the sensitivity at k=0. In 

the next section, wn develop an optimal quantization scheme 

for the reflection coefficients using the averaged 

sensitivity  function  in Fig.   4. 

I 
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• 0.6 0.2 0      0.2 0.6 
REFLECTION  COEFFICIENT k 

Fiq. 4. Averaqed ipactral ^n3^^1^/"^0/^.^ 
reflection coefficients (solid line) and an 
analytical function that approximates it 
(dashed line). 
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VI.  OPTIMAL QUA1ITIZATION OF REFLECTION COEFFICIENTS 

In view of the sensitivity properties of the reflection 

coefficients discussed in the previous section and depicted 

in Fiqs. 3 and 4, it is clear that  linear quantization of 

the reflection coefficients is not satisfactory, especially 

when some of thorn take values close to 1 in magnitude.  What 

is  needed  is  a nonlinear quantization scheme that is much 

more sensitive (has more steps) near  ±1 than  near 0.  A 

nonlinear  quantization of  a reflection coefficient is 

equivalent to a linear quantization of a different parameter 

that is related to the reflection coefficient by a nonlinear 

transformation.  We define an optimal transformation as one 

which results in a transformed parameter that has a flat or 

constant spectral sensitivity behavior.  We  shall now use 

the results  of  the previous  section  to determine this 

op'-Tnal transformation. 

Denoting the transformed parameter as g, we have 

g.f(k)  . (22) 

where f(-) is the underlying nonlinear mapning. The optimal 

mapping is one where the transformed parameter g has 

constant spectral sensitivity, i.e. 

3S _ T 

I?  L constant (23) 

25 
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where the sensitivity is defined in an analoqous manner to 

(20).  Writinn formally, 

3S  3S dk _ 3S /df (k) 
7g = sir a? ' 3F / ~air~  • 

(24) 

Thus,   from   (2 3)   and   (24)   we  have 

df(k)       1 as 
-3£ L ^T^ 

(25) 

Equation (25) provides the condition for  a  mapping  to be 

optimal.  The  optimal mapping f(k) is obtained by simply 

intogratino (25).  It is clear that (25) may be  applied to 

each reflection  coefficient separately.  However, for the 

reasons mentioned in the last section we shall consider the 

averaqed sensitivity  function in Fig. 4  and derive the 

mappincr that  is  optimal  on the average  for all the 

reflection coefficients. 

Although it is possible to obtain the optimal 

transformation bv integrating the solid curve in Fig. 4 

directly, we have found it simpler and ultimately more 

useful to anproximate the avnraqed sensitivitv curve by a 

well specified mathematical function which could then be 

integrated to obtain an anproximately optimal f(k). An 

experimental fitting of the averaged sensitivity  curve in 

26 [J J 



BDN Report No. 2 800 Bolt Beranek and Newman Inc. 

Fig. 4 has revealed that the function l/(l-k2) approximates 

the sensitivitv function reasonably well (to within a 

multiplicative constant), as shown by the dashed curve in 

Fig. 4 (Note that the plot is given in t'^cibels). Thus, 

from (25), the approximately optimal transformation is given 

by 

df (k) 
"air- 

L(l-k2) 
(26) 

Intearatinq (26) we obtain 

f(k) =^log£| (27) 

As  L is  arbitrary,   an  interesting transformation  is  obtained 

by   substitutina  L=l/2: 

f(k)   -   log£|    . (28) 

From (16), the ratio of  consecutive area  coefficients  is 

given by 

Ai 1+k 

■ T=rr  ' Vi'1 ' l5i-p   * VTi    ^i   ' ' P
+ 

(29) 

Therefore,  the  transformation in  (28)  is  simply  the 

27 
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logarithm of the area ratio.-. Thus, wo have shown that the 

logarithms of the area ratios (henceforth called log area 

ratios) provide an approximately optimal set of coefficients 

for quantization. 

Fiq. 5 shows sensitivity curves for the log area ratios 

using the sane example as in Fig. 3. A comparison of 

Figs. 3 and 5 shows that the sensitivity curves are 

relatively flat for the log area ratios. Our experimental 

investiqations into the quality of the synthesized speech 

also indicate that the loq area ratios possess good 

quantization properties. 

Fiq. 6 shows a plot of the loq area ratio as a function 

of  the  reflection  coefficient.   We have a]so plotted in 

Fig. 6 a linear characteristic  that passes  through  the 

intersection of  a  vertical line at k=0.7 and the loq area 

ratio curve.  For values of k less than  0.7  in maqnitude, 

the  loq area ratio  curve  is almost linear.  Thus, if a 

certain reflection coefficient takes values always less than 

0.7  in magnitude, one could auantize it linearly to obtain 

approximatelv flat sensitivity characteristics.  In practice 

it  is  found that the reflection coefficients k. , i>3, have 

in qeneral maani.tudes less than 0.7.  However,  use  of  the 

loq  area  ratios   automatically leads  to  the  de.ired 

quantization irrespective of the reflection coefficient  and 

the ranqe of values it soans. 
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0.1 0.2      0.3      0.4      0.5      0.6      0.7 
REFLECTION COEFFICIENT   k 

0.8  0.9  1.0 

Fiq. 6. Log aron ratio plotted as a function of the 
reflection cocfficiont(solid line) and a 
linear characteristic that intersects it at 
k=0.7 (dashed line). 
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interpretation in terms of Pole Locations 

While the spnctral sensitivity measure given bv (20) is 

useful  in quantlf-inn the overall .levlatlon in the spectrum 

due to perturbation» in the reflection coefficients or the 

loc area ratios, it does not, however, explain correspondinq 

deviations in the polo locations of  the  linear prediction 

filter.  Much  is known  about the relations between tho 

accuracy of  pole   (or  foment)   locations  and  the 

correspondinn effects  on  speech quality.   Therefore, it 

„ould be useful to examine the pole deviations  due  to 

quantization of the transmi»sion parara-ters.  Pnfortunatelv, 

the problem is quite untractablo in qeneral.  However,  some 

insiqht can still be  qained bv examlninn a 2-oole model. 

Althouqh  it  is possible  to  examine  this  model   in 

mathematical  terms, here we shall take a qraphlcal approach 

duo to Kitawakl and Itakuti 1121. 

For the secon. order  linear predictor,  the  inverse 

filtoi la given by 

A{z) = 1 ♦ k^l+k^ z'1 ♦ k2 z' 
(30) 

The zeros of Ml are the pole, of our nodel filter HU). 

We shall restrict our discussion to the cases whore the 

zeros forn WloK conjugate pairs.  Fron (30) we  see  that 
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A{z) has a complex zero whon 

Bo It Beranek and Nnwwan Inc. 

(31) 

1^     is 
Fie   7  shows  a plot of only     tho    eo*>lex    zeros     a. 

v  In tho   interval   I-.99,   .991   in  oqual   steps 

led  uniformly   In  the   interval   10,   .99] 
varied unifornl 

of .01 while k2 is var 

also in oonal »top» of .01. Lot 

l+k. 

li ■  1O' v^i i- ,   i=l,2. (32) 

be the loo .re« ratios eorroepondlnq to kj and k,. Fin. 0 

depicts tho complex .«O» of A(.) when a, is varied over 

(.IP, 199, loo 1991 and ^ over 10, loo 199!  unifor.lv  and 

as in the previous case.  Relative to Pin. 7,  Fin. 8 shows 

that there l» d»n.er clueterln, of the zeros near the unit 

eirclo and for anoles close to 0 and ..  This means that  In 

the«  rooions, «uantization errors in the loo area ratros 

lead to a smaller deviation in tho position of zeros of M.) 

than that ohtained »y  the ouantization of the reflection 

coefficients,  assumino  the same numher of .uantization 

leVols  in both cases.   Fie 9  shes the complex roota 
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obtained by a second order linear predictive analysis of 

several sentences of speech material sampled at 10 kHz. An 

inspection of Fiqs. 8 and 9 reveals that the roots of the 

second order linear predictor for the continnous speech 

occur mainly in the areas where there is a dense clustering 

of zeros in Fiq. 8. We view this as further independent 

evidence supporting our earlier findings of the desirable 

quantization properties of the log area ratios for the 

purpose of speech compression, 

Kitawaki and Itakura considered still other nonlinear 

mappings of the reflection coefficients but concluded that 

the log area ratios lead to the best overall quantization 

accuracy [12]. Our results make the stronger statement that 

the log area ratios are actually optimal in the sense 

discussed earlier. 

' 

Optimum Bit Allocation 

In the following we investigate the use of the spectral 

sensitivity measure for allocating a fixed number of bits 

among the various parameters. Let ^f ^2'"" % be the 

parameters chosen for quantization. These may be the 

reflection coefficients or the log area ratios or any other 

set of parameters. Given toe total number of bits for 

quantization as M, the problem is to distribute this among 

the  p parameters as M. , l<i<p, in some optimal manner.  In 

36 
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terms of quantization levels, the above problem may be 

restated as the allocation of N = 2^ levels among the p 

parameters as N., l<i<P, in some optimal manner.  Therefore, 

we have 

P      P 
2  M. =  I ^oq2  Ni = M  , 

l-l  1   l-l 
(33) 

M, 
n N. 
l-l 1 

= N , N;=2 
x , 121SP 

We propose to derive the optimal bit allocation by 

ndnimizina the maximum spectral deviation due to 

quantization. The total spectral deviation AS due to 

changes Aq. in the parameters c,., l^i.P, is given 

approximately by 

P 
AS =  i 

l-l 
™     Aq. (34) 

Define the quantization step size for qi  as 

«i " li 
6. = -^   , 

(35) 

1 
i 

□ 
1 

where q. and q. are the upper and lower bounds on q^ 

respectively. ' Then, for a linear quantization of q. using 

round-off arithmetic, the maximum quantization error is 

37 
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equal to half the quantization step size: 

Aq, 
max 

K 
Thus 

P 
(AS)    ■ I 1  'max  ^i 

9S qj - ^i 
■^2ir (36) 

Let 

K. ■ 
i 

^i " ll 3S 

^i 
, liisp (37) 

Then 

P  K 
I       77=-   • (ÄS)__V "-     N max   • i "^ 

(38) 

We wish to minimize (AS) _ with respect to (M ) subject  to 

the constraint 

I     loq, N. = M 
l-l    *     1 

(39) 

Th is is a simple problem in  constrained minimization  [ 13] 

38 
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and its solution is given by 

r 

N1 = K1 

K. 

M 

P 
n K. 

i/p 

L -^ J 
(40) 

N. = -i N, , 25i-p  • 
i   i^i  ■L 

The bit allocation stratoqv given in (40) is thus optimal in 

a minimax  sense  since  it minimizes the maximum spectral 

deviation due to auantization.   Mete  that  if  truncation 

arithmetic  is  used,  the  constants  K^  in  (37)  will be 

doubled, but that will not affoct the bit allocation results 

from (40). 

The optimal bit allocation  in  (40)  effectively  nays 

that  the  contributions  of the different parameters to the 

maximum spectral deviation in (38) must bo equal.   We  know 

9S 
that  for  the Ion area ratios the spectral sensitivity 

is approximately a constant and is the same for all the 

coefficients. From (35), (37) and (40), this implies that 

the quantization step size 6. should be the samo for all the 

log area ratios, which is intuitivelv clear. For this case, 

tiie bit allocation can be done as follows. Compute the 

constant step size 6 from 

I 6 = 

P 
n,    (q- *!> 

1/P 

(41) 

39 
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Then the number of levels N for each coefficient is 

computed from (35). We have found it convenient and useful 

to begin with a particular step size. That automatically 

determines the total number of bits needed, as well as the 

maximum spectral deviation which, in tarn, determines the 

resulting speech quality. One can then study the chanqe in 

speech qualitv as a function of only one variable, namely 

the step size. 

40 
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VII.  COMMENTS ON ANOTHER SPECTRAL SENSITIVITY MEASURE 

In Section V we introduced a spectral sensitivity 

measure to study the quantization properties of the 

reflection coefficients. Other types of sensitivity 

measures may also be used. In particular we have considered 

a measure which is similar to the total-squared error used 

for minimization in linear predictive analysis. By using 

Parseval's theorem in (1), the total-squared error is given 

by 

r2    IT P (u) 
L " 2? ^ PUT" 

-IT 

du (42) 

where P (w) is the power snectrum of the input speech signal 
o 

and P(a)) is the power spectrum of the all-pole filter: 

P(u) = H(e^) 
AU3W) 

(43) 

I 
I 
1. 

The gain G is given by (9). 

Properties of the error measure E have bnen studied in 

detail elsewhere [6,7,14]. In particular, the minimization 

of E results in an all-pole model spectrum P(u) that is a 

good approximation to the envelope of the signal spectrum 

P (w).  Because of this property, it seemed reasonable to 

41 
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study the use of this error E as a measure of the deviation 

between the two spectra.  For the sake of normalization we 

have  chosen to work with an error measure E' obtained from 

2 
(42) by eliminating the factor G : 

,   IT P1(u)) 
du (44) 

where P, (w) and P2(u) are now any two spectra. Also, the 

two spectra are normalized such that they have equal total 

energy. 

For our study of spectral sensitivity we let 

P U)=P(k. ,u)) and P0 (ü))=P(k.+Ak. f u) , where P(. ,u)) is given 

by (43).  The error between the two spectra is then given by 

TI   P(k. rw) 
1   , i 

E* ^^i1 = H _i ~Pliq+Äk77^) 

We define the spectral deviation, then, as 

AS' ■ log E'(Aki)  . 

—„   du (45) 

(46) 

The definition of the new -..easure of  spectral  sensitivity 

follows from (46) and (45) as 

as* 
3k, 

it   P(k. #tü) 

Ak.-O AkT l0g 27 _{  P(ki+Aki,u)) 
du (47) 

42 
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The spectral  sensitivity in (47)   can  be  derived 

analytically,  without the need to resort to experimental 

data as was the case for the study of |^- in (20).  This is 

done below. 

E,(Aki) in (45) can be interpreted as the arithmetic 

mean of the ratio of the two spectra. For snail Ak., the 

arithmetic mean is approximately equal to the geometric 

mean, which is given b* 

E" (Aki) = exp 
P(ki,a)) 

L 
2TT 

-IT 
f     log P(k.+Ak;,u) 

du) 
l   l 

(48) 

As  Akj^O,   the   arithmetic mean becomes  equal  to  the  geometric 

mean.     Using this  result,  we  have  from   (45),   (47)   and   (48), 

9S' Lim       1 
W7 " Ak.H.0  Ak. 
ill 

1 
2TT 

71 

; 
P(ki,u)) 

dtü 
l0g  P(ki+Aki,a)) 

(49) 

Substituting   (9)   and   (43)   in   (49),   there  results 

3S'   _    Lim 1 
W7 * Ak.-ü    TSC? 
ii i 

log 

vD(ki) 

p * i   i * -TT 

A(ki+Aki,e
:,u,) 

A(ki,   e^) 
du (50) 

I 
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It can lye  shown [7] that if the zeros of A(z) lie inside the 

unit circle, then 

/ loq|A(ejW)|2 du) = 0 
■n 

(51) 

Substituting (51) in (50), and noting that Vp is independent 

of wr we obtain 

as-       Lim     log vD(V - log Vp(VAV 
airr " ^ki-o WT~ (52) 

or 

33' 3 Hog Vp(ki)l 

3k, 

I! 

Using (8) in (52) we obtain the desired result 

3S' 
3k. 

2k; 

1-k 
(53) 

It is important to note that this is an exact result and it 

is  true for each reflection coefficient, independent of the 

3S' 
values of the other coefficients.   Also,  a plot of -j^- 

versus k giver,  a U-shaped curve.  Therefore, the spectral 

sensitivity in (53) has the same general properties as the 

spectral sensitivit"  || obtained experimentally in Section 

V.  The only difference between the two is the actual shape 
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of the sensitivity curve. 

Substitutinq (53) in the optimality condition (25) and 

inteqratinq it with L-l, we obtain the following optimal 

mappinq for the sensitivitv measure (47): 

f (JO = log 
1-k' 

(54) 

From (8) and (54), it is interesting to observe that  fM^) 

is  equal  to the  logarithm of the ratio of the normalized 

errors (or loq error ratio)  associated with  the  linear 

predictors of ordnrs i-1 and i, 

V 

i: 
r I* 

i: 

c 

i 

f (ki) = log 
i-1 
Vi 

(55) 

Me have experimentally investigated the quantization 

properties resulting from the mappings given by (28) and 

(55). Through informal listening tests we have found that 

the use of the log area ratios for quantization leads to 

uniformlv better speech quality than that obtained using the 

log error ratios. 

It is interesting to note that the only difference 

between the two sensitivity moasures given bv (20) and (49) 

is the lack of an absolute value sign inside the integral in 
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(49). This makes the sensitivity measure in (49) less 

powerful, because spectral deviations vhen 

P(k. fw) >P(k.+Ak. ,(»)) can cancel deviations when 

P(ki+Ak. ,u>)>P(k. »a»). Both of these cases contribute to the 

total spectral deviation in (20), This is another reason 

why (20) is to bo preferred over (49) as a definition of 

spectral sensitivity, and therefore why the loq area ratios 

are to be preferred over the loq error ratios as 

transmission parameters. (See [14] for further comparison 

of the spectral deviations in (20) and (47).) 
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VIII.  CONCLUSIONS 

We have dealt with the problem of auantizaticn of 

transmission parameters in linear predictive speech 

compression systems. Several alternate sets of transmission 

parameters were considered and their relative quantization 

properties were presented. The results of this study have 

shown that the reflection coefficients are the best set for 

use as transmission parameters. Specifically, the 

reflection coefficients preserve the stability of the linear 

predictor under quantization, and possess a natural ordering 

which property can be used in the desiqi. of better 

quantization schemes. The quantization of the reflection 

coefficients was then examined in more detail using a 

spectral sensitivity measure. 

The spectral sensitivity of a given reflection 

coefficient was defined in terms of the absolute spectral 

deviation due to a small perturbation in the reflection 

coefficient. Experimental study of this spectral 

sensitivity measure has: shown that a reflection coefficient 

has a high sensitivity for magnitudes close to 1 and a low 

sensitivity near 0. Further, all the reflection 

coefficients have approximately the same sensitivity 

behavior, irrespective of the particular speech sound to 

which they correspond.  A prototype sensitivity function was 
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obtained experimentally by averaging the sensitivity values 

over the various  reflection coefficients and over a large 

number of speech sounds.  We have then developed an optimal 

quantization procedure  for the reflection coefficients. 

This consisted of finding a suitable mapping that transforms 

the  reflection coefficients to a set of parameters having a 

flat or constant sensitivity behavior.  Using an  analytical 

function that well approximates the averaged sensitivity of 

the  reflection coefficients, we  demonstrated that  the 

logarithms of  the ratios of area coefficients (or log area 

ratios)   possess  approximately   optimal   quantization 

properties. 

An optimal solution was then derived for the problem of 

bit allocation among the different parameters. This was 

done by minimizinq the maximum spectral deviatioi. due to 

quantization. For the log area ratios, this optimal 

solution reduces to using equal quantization steps for all 

the parameters. 

Finally, motivated to use an error measure similar to 

the one used in linear predictive analysis, we have provided 

an alternate definition of spectral sensitivity. An 

analytical evaluation of this spectral sensitivity for the 

reflection coefficients has shown that the logarithms of the 

ratios of normalized errors of linear predictors of 

successive orders (on  log error ratios)  exhibit optimal 
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quantization properties.  However, informal ll.tenin«, tests 

have indicated that the use of loq area ratios  for 

quantization leads to better synthesis than the use of lo- 

error ratios. This further inplies that the definition of 

spectral sensiavitv that resulted in the loq area ratios 

qives a superior neasur. of spectral sensitivitv for the 

purpose of quantization studies. 
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