
AD-AIO? 463 MASSACIHUSETTS INST OF TECH CAMHRIDGE ARTIFICIAL INTE--ETC FIG 9/2
THE CONNECTION MACHINE (COMPUTER ARCHITECTURE FOR THE NEW WAVE IETC(U

SRP AI W 0 HILLIS NII II0OCIIIOS
UNCLASSIFIED A -M-b~b NL,

) hEE I, mmml-I

I c ~ III 111112.2

IIIJIL25I18

MICROCOPY RESOLUTION TEST CHART

UNCLASSIFIED -

SECURITY CLASSIFICATION OF THIS PAGE (When Dt.. Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETNGF

. REPORT NUMBER Z. GOVT ACCESSION NO. 3. RECIPIENT°S CATALOG NUMBER

A.I.-temo #646 5 3
4. TITLE (and S.brt,..) 5. TYPE OF REPORT " PERIOD COVERED

C " (
I The Connection Machine Memorandum
" § (Computer Architecture for the New Wave),

C.PIORCTM ORG GRPT NUMER

*1 ' 7. AUTHOR(S) CNRC RGATNME~)

N-- IW. Daniel/Hil is NO0014-80-C-0505

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Artificial Intelligence Laboratory AREAe WORK UNIT NUMBERS

545 Technology Square "
Cambridge, Massachusetts 02139 /_-_ _

1. CONTROLLINa OFICE NAME AND ADDRESS 12. REPORT DATE

Advanced- Research Projects Agency September 1981
)400 Wi lson Blvd ,3. "UMSE"O PPAES

Arlington, Virginia 22209 29
-4. mONiTO tNG AGENCY NAME & AODRESS(I, dillerent from Controlling Olfc&) IS. SECURITY CLAS. (fa this r'epor

Office of Naval Research UNCLASSIFIED
Information Systems "
SArl1ington, Virginia 22217 1o. FAIICATION/DOWNGRADING
ArigoVrii 21 SCHEDULE

j S. DISTRIBUTION STATEMENT (of thl Report)

.' . * Distribution of this document is unlimited. -

," .7. DISTRIBUTION STATEMENT (of the abstracl entered In Block 20, It different from RePort) W

IS. SUPPLEMENTArRY NOTES

I None . "-. -". : .

'I. KEY WO..S.(Cflmman rev.,.. eld. II noc...r1 and identify by block number)

* Concurrent Architecture
Multiprocessing
Associative Memory

* Parallel Computer
6LW 2k BSTPACT (Continue on revre side it necesear and identity by block number)

This paper describes the connection memory, a machine for concurrently
manipulating knowledge'stored in semantic networks. We need the connection
memory because conventional serial computers.cannot move through such
networks fast enough. The connection memory sidesteps the problem by provid-

ing processing power proportional to the size of the network. Each node &
lnk i thnetwork has its own simple processor. These connect to form a

uniform locally-connected network of perhaps a million processor/memory cell s

DD I 1473 EDITIONor 1NOV56 IS ORSOLRT C UNCLASSIFIED / / j /.
JIAN 0102-014"6601 I __________- ___________________

.Y W [11*qe .e ...',&T .t--- " - -I, '

!4

f p
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL .NTELLIGENCE LABORATORY

A.I. Memo No. 646 September, 1981

The Connection Machine Acee., 7cr

(Computer Architecture for the New Wave) L ,

by W. Daniel Hillis ..

ABSTRACT: This paper describes the connection memory, a machine for concurrently
manipulating knowledge stored in semantic networks. We need the connection memory
because conventional serial computers cannot move through such networks fast enough.
The connection memory sidesteps the problem by providing processing power proportional
to the size of the network. Each node and link in the network has its own simple processor.
These connect to orm a uniform locally-connected network of perhaps a million
processor/memory cells.

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the Artificial Intelligence Laboratory's
artificial intelligence research is provided in part by the Advanced Research Projects
Agency of (ie)eparnment of Defense under contract with the Office of Naval Research
contract N00(114-80-C-(505. 11e author is supported by a fellowship provided by the
Fannic and John I lcrtz Foundation.

-2-

T IE CONNECTION MACHINE

This paper describes the connection memory, a machine for concurrently manipulating
knowledge stored in semantic networks. We need the connection machine because
conventional serial computers cannot move through such networks fast enough. The
connection memory sidesteps the problem by providing processing power proportional to
the size of the network. Each node and link in the network has its own simple processor.
These connect to form a uniform locally-connected network of perhaps a million
processor/memory cells.

The connection memory is not meant to be a general-purpose parallel computer. It is fast at
a few simple operations that are important for artificial intelligence, such as property
lookup in a semantic inheritance network. I will discuss the need for such a machine, what
it will do, and how it will work. I describe progress already made toward its design and a
plan to actually build a hundred-thousand-cell prototype.

Our Machines are Too Slow

On a serial machine, the time required to retrieve infonnation from a network often
increases with size of the network. Thus paradoxically, programs become slow as they
become smart. Today, we write artificial intelligence programs that use a few hundred facts.
We would like to increase this to a few million, but the programs already take minutes to
make decisions that must be made in seconds. Scaled up, they would take years. Von
Neumann machines, even if they are built of exotic ultrafast components, are unlikely
candidates for solving these problems, since they are limited by the speed of light. A
supercomputer inside a six-inch cube would take one nanosecond to send a single signal
from one corner to the other. A nanosecond cycle time is less than a factor of a hundred
better than currently available machines, not nearly enough to solve our million-scaled
artificial intelligence problems.

The Potential Solution is Concurrency

The light at the end of the tunnel is concurrency. Integrated-circLiit technology makes it
economically feasible to produce millions of computing devices to work on our problems in
parallel. Artificial intelligence mechanisms have been proposed that are suitable for such
extreme parallel decomposition [Fahlman, Minsky, Shank, Rieger, Winston, Steels, Steele,
I)oyle, l)reschcr, ctc.]. These systems represent in ilbrination as networks of interconnected
nl()cJ'. Maon1 tof thir flolalti)ns are (lcpecm (only on local in Iorniation at the nodes.
SIIl () o rali ll c iild, pok-iniialy, hc pi'i h ICiiictl III On 111,111yn n(cs a1 onCe.
IW i. kiii II 0e '.1Ccd (&l lilt- S. A',li1 iIIlclcnde1ivfi the slic ol 'he icIw ,oik.

".3-

9 Jnfortunately, the word-at-a-time von Neumann architecture is not well suited for
exploiting such concurrency. When performing relatively simple computations on large
amounts of data, a von Neumann computer does not utilize its hardware efficiently; the
number of interesting events per second per acre of silicon is very low. Most of the chip
area is memory and only a few memory locations are accessed at a time. The performance
of the machine is limited by the bandwidth between memory and processor. This is what
Backus [I] calls the von Neumann Bottleneck. The bigger we build machines, the worse it
gets.

The bottleneck may be avoided by putting the processing where the data is, in the memory.
In this scheme the memory becomes the processor. Each object in memory has associated
with it not only the hardware necessary to hold the state of the object, but also the
hardware necessary to process it.

A Few Specific Operations Must be Fast

Knowledge retrieval in Artificial Intelligence involves more than just looking up a fact in a
table. If the knowledge is stored as a semantic network, then finding the relevant
information may involve searching the entire network. Worse yet, the desired fact may not
be explicitly stored at all. It may have to be deduced from other stored information.

When retrieving knowledge, programs often spend most of their time repeating a few
simple operations. These are the operations that we want to be fast:

o We need to deduce facts from semantic inheritance networks, like KLONE[2],
NETL.[6], OWL[21] or OMEGA[91.

o We need to match patterns against sets of assertions, demons, or productions. If there
is no perfect match we may need the best match.

o We need to sort a set according some parameter. For instance, a program may need to
order goals in terms of importance.

o We need to search graphs for sub-graphs with a specified structure. For instance, we
may wish to find an analogy to a situation.

'ools have aready been developed Ibr describing for these operations in terms of
c' mcilrrcnt pi(rocesscs. II (' otd's relational database alp-eha, [41 database queries arc
SpeC'ilicd in) eIrms ol " 1-Iw simple, pll t'liil I>-C't)ICl rec)primilivcs. Anlehr examnple,
MolC diiccil\ c()nIIcctl h natificial iilclligcilcC, is Vldilndis 16] work oii nwi kcr

-4-

propagation. Fahlman has shovn that many simple deductions, such as property
inheritance can be expressed in tenas of parallel operations. Schwartz [17] has developed a
language based on set operations. Woods has developed a more powerful extension of
marker propagation. By providing a few powerful primitives that can be evaluated
concurrently, each of these descriptive systems allows a programmer to express concurrent
algorithms naturally. The connection memory is designed to exploit the parallelism
inherent in these operations.

Marker Propagation was a Good First Step

In 1968, Quillian [25] proposed that information stored in a semantic network could be
manipulated by concurrently propagating markers through the network. Such a system
would be able to retrieve information in a time that was essentially independent of the size
of the network. This basic idea was extended considerably in the late 1970's by Fahiman
[6] and by Woods, [241 who worked out ways of controlling the marker propagation to
perform deduction and retrieval operations on inheritance networks. Fahlman also
proposed hardware for actually implementing his system concurrently.

Unfortunately, many of the marker propagation strategies are just heuristic. In
complicated cases they give the wrong answers. [6,12] Systems with well-defined semantics,
like OWL [21] and OMEGA [8], have never been successfully expressed in terms of
markers. I believe that marker propagation systems, while on the right track, are not
sufficiently powerful to implement these systems.

The Connection Memory

The connection memory architecture captures many of the positive qualities of marker
propagation, without sonic of its weaknesses. It is a way of connecting together millions of
tiny processing cells so that they can work on a problem together. Each cell can
communicate with a few others through a communications network. The communication
connections are configured to ihimic the structure of the specific problem being solved. For
a particlic ntwork, the cells are connected in the same way as the data in die

network. Thus, each chunk of data has its own processor, connected to processors of related
data.

If the connections were physical wires, the machine would have to rewir.d for every
problem. Since this is impractical, the processing cells are connected through a switching
network. The communicate by sending messages. Receiv'ing a message causes a cell to
change its state, and perhaps to transmit a few more messages. As in Hewitt's actor srstems,
all conliptitalion lakes place ihrough Ihc exchange of messages.

-5-

Below 1 describe how this all works: the communication network, the algorithms for
computation and the formation of connections, and the operation ol the cells. The most
important features of the connection memory are:

o It is fast. Most of the chip area is usefully active during a computation. The system
may execute several million operations at a time.

o It is wireable. The communication network is locally connected. All wires are short
and pack efficiently into two dimensions. The ratio of wires to active elements can be
independent of the size of the system.

o It is useful. The connection memory seems to be able to implement all of the
operations of the relational algebra, as well as structured inheritance networks such as
KLONE [2], OMEGA [81, and OWL [211.

Structures In the Machine at Different Levels of Abstraction

CELL LEVEL TREE LEVEL NODE LEVEL

Figure 1.

-6-

\1l Communication Is Local

At the lowest level, the connection machine is a uniform array of cells, each connected by
physical wires to a few of its nearest neighbors. Each cell contains a few words of memory,
a very simple processor, and a communicator figure 2. The communicators form a
packet-switched communications network. Cells interact through the network by sending
messages. Each cell knows the addresses of a few other cells. When two cells know each
other's addresses, they can communicate. This establishes a virtual connection between the
cells. Connected cells behave as if they were linked by a physical wire, although messages
actually pass through the network.

Each cell contains a simple processor.

rigure 2.

Since the physical wires are all short, message must reach their destinations in incre:n.nital
steps, through intermediate communicators. A cell addresses a message by specifying the
relative displacement of the recipient (example: tip two and over five). This does not
specify the route the message is to take, just its destination. When a communicator receives
a message it decides on the basis of the address and local infornation which way the the
message should go next. It modifies the address and sends it to the selected neighbor. For
example, a coimmunicalor receiving a mcssagc addressed "tnp two and over lite" can
changc it to "ip one and ove'r fie" and send the messagc to tht comintilnicator aho\e.
W\\hen the :adhllc-' is aIl t'lt., the n.ssag is ai its desiInation and can bc dcli \cred..,

-7-

single message step is illustrated in igure 3.

*1-

A Single Step of a Message toward its Destination.

2A4

--- ,5- -[

Figure 3.

Cells are Simple

Most of the hardware in a cell is memory. Each cell has a few registers, a state vector, and a
rule table. The rule table is identical for all cells, so a single table can be shared among
multiple cells on a chip. The registers and state vector are duplicated for each cell. Registers
hold relative addresses of other cells. A cell normally has three virtual connections, so
three registers are needed. There are also two or three extra registers for temporary storage
of addresses and numbers. The state vector is a vector of bits. It stores markers, arithmetic
condition flags and the type of the cell. A cell may have 10 to 50 bits of state vector.
Addresses in a million word machine are 20 bits long, so there will be a total of about 150
bits per cell, not including the shared rule table,

The rule table tells the cell how to behave when it receives a message. Each message
contains an address or number and a type field. The way a cell responds to a message
depends on the state of the cell and the type of the message. When a message is received,
the state and the message type are combined aund used as an index into the rule table. The
appl olpriate resp(osC is (ICtelrlimctl Infron the iable entry. It may involve changing the cells
MI :e Ict~ 'c it tl . ,wrig',i n tl+ I W w ii ict'.es n, or Ii!inlh| ,,i 11 alit ll]iCtic pCrAtiIn. or somIC

-8-

;ombination of these operations. The cell's state vector usually changes as a result of
receiving a message.

If a cell is to transmit a message, the rule table must indicate the type of the message, the
pointer of the message, and the address of the recipient. The pointer and the address
normally come from the registers, although they may also be loaded with numerical
constants, such as the cell's own address. Since the addressing scheme is relative, the cell's
own address is always zero. The addresses of immediate neighbors are also simple
constants.

Arithmetic operations take place on the contents of the pointer registers, and the result can
be stored back into a register. The state vector has condition-code bits which are set
according to the result. For instance, there are bits indicating a zero result, a negative
result, and a carry overflow. Since these bits are treated as part of the state vector, they can
influence the future behavior of the cell. This is useful for numerical sorting operations.

Storage is Allocated Locally

Data in the connection memory is stored as the pattern of connections between cells. This
is similar to Lisp, where dat.a is stored as structures of pointers. The connections represent
the contents of the memory.

Unconnected cells can establish a connection by a mechanism called message waves.
Assume cell JOHN wants to get a pointer to cell MARY, but has rio idea where cell 14ARY is.
joHN can get such a pointer by broadcasting a message wave through the network,
searching for MARY. Eich message in the wave contains the address of the cell that
originated the wave. 1lie wave is propagated by the individual cells, each cell forwarding
the wave to its neighbors, incrementing or decrementing the backpointer appropriately.
The is illustrated in figure 4. When the wave reaches cell MARY, MARY sends her address back
to JOHN, using JOHN's address as specified in the wave. JOHN then sends out a second wave
to cancel the still spreading request. The cancel ve trav'.els at twice the speed of the
request wave, so it overtakes the request and prevents it from propagating further.

A similar technique may be used to connect to a cell of a particular type, rather than to a
specific cell. This happens most often %lhen building new structures from unused cells. In
this case handshaking is nccessary to insure that only a single cell is found, even though
several satisflictory cells may have replied to the retlqest before it was canceled. A unused
cell which secs a ICLtLt',I Wave I ransniits ain AVAll A I ' me.'ssagc back to the originator.
Ih Oh liei.iahor rcplics 0 11t lirst such incssar.c wilh an A('('II' I, and to all subsqluent
Iuessl'es it[I R I I"(I mcssa es.

-9-

A Message Wave!+
.

-0 0 i'0 a"0 "0 at0

Vc-
Figure 4.

It is possible to calculate just how far the request message travels before the cancel wave
catches up. The space-time diagram in figure 5 shows how far each message must travel. If
the request wave propagates at half the rate of the other messages, it will travel twice the
necessary distance before it is canceled. This means that when connecting to an unused
node, if we assume that the free nodes are unilbrmly distributed, it will be necessary to
refuse about three AVAILABLE messages per connection.

This method of allocating storage may allow the machine to continue to operate with
defective cells. Cells are connected on the basis of availability, not address, so bad cells
need never be built into the network. Assume each cell has some way of knowing which of
its neighbors are functioning properly. Since a cell only interacts with the system through
its neighbors, a malfunctioning cell can be cut off from the rest of the system, The
neighbors never route a message through the bad cell and ignore any messages it tries to
transmit. None of the connection memory's algorithms depend on a cell existing at specific
addresses. A system with a few faulty cells could continue to function, with a slight
degradation in performance.

1I have not yct stidicd this dcl 'cit-tolcratnc sc'hcnic in dclail" so there may ' bc bugs. It will
bc(,)Inc illl))ll ,tt if'we cvcr ile(to b1ild vely l3are machincs or very Ilrge (%k alr-siled)
ehips.j

- 10-

Space-time Diagram of Storage Alkcation.

Time

Originating 1
Cell C

0(

Space >

Figure 5.

Trees Represent Nodes

A node in a semantic network can be linked to an arbitrary number of other nodes. A cell,
on the other hand, can only connect to a few other cells. Since the network is to be
represented as a structure of connected cells, there must be some way of representing nodes

with an arbitrary number of connections. This is accomplished by representing each node
as a balanced binary tree of cells.

In this scheme, each cAl. only needs three connections. One connection links the cell to
those above it in the tre and the other two connections link to the subtrees below. Each
node is a tree of cells. The depth of the tree is equal to the logarithm of the number of
connections to the node. The total number of cells required to represent a node is equal to
the number of connectiot minus one.

The links in the network are also represetited as connected cells. In this case, there is no

Ilinoi, prohlci. lClI liff connects to Cx;Iwfl) lthrec nodcs: the Iwo linke-d nodes, plus tile
11 pe ' lilic link. 'I hlir. a Iinl, cin h C reClCSclicd by a singlk cell, 111:11 o, ci)11hl. YC vCs of 1lhC

.1 Jiil

- 11 -

appropriate node trees. The representation of a small net is shown in figure 6.

Representing Nodes in terms of Cells.

B C

B C

Snodes cells

Figure 6.

Operations which add connections to the node tree must leave it balanced. To help with
this, each cell carries a bit indicating if new connections should be added to the left or right
side of the cell. This bit ieis left-heavy, clear if it is right-heavy,

and may be either if it is perfectly balanced. When adding a new connection, a message
starts at the top of the tree and move left or right as it goes down according to the balance
bit. As it passes though, it complements the bit, as shown in figure 7. This operation not
only selects the correct terminal of the tree, but also leaves the balance bits in a consistent
state, ready for the next insertion. A similar algorithm must be used for deletion. ([his
elegant algorithm was invented by Carl Feynman and independently by Browning at the
California Institute of Technology.)

The algorithm can be generalized to make a number of connections simultaneously. To do
this, we send the number of connections to be made to the top cell of the tree. The cell
divides this number by two and passes the retislt to the lit and right sub-cells. If the
itinhcr does Iot di idec iily the cxtra comnt is passed to the Iiin side of tile tree. If each

- 12-

The Feynman/ Browning Tree-Balancing Algorithm

ii_

V Vl V V V VL V

Figure 7.

node repeats this process the numbers that reach the terminal nodes will indicate how
many connections are to be made to those points. Again, the balance bit must be toggled as
the numbers pass through.

Objects Can Move to Shorten Distances

It is sometimes useful to make a distinction between the hardware of a cell and the
computational object that is stored in a cell. I will call the object a cons, by analogy to Lisp.
A cell with no cons is free, and may be used to build new structures.

Connections are all bidirectional, so each cons knows the address of all conses that know its
address. Knight has pointed out that a cons is free to move from cell to cell, as long as it
informs its acquaintances where it is moving. 'Ihis would allow conses with frequent
communication to move nearer. Conses in the configuration shown in figure 8 could swap
places. Conses that do not wish to swap could act as intermediaries, negotiating swaps
between conses on either side (fig 8 c). If conses keep track of their utilization, an often
used cons may force a swap even if it is to a less-used cons's disadvantage. This would allow
implementation of a virtual network, analogous to virtual memories on conventional
computers. Little used conses would gradually be pushed away from the center of activity
and eventually fall off into a sccondarN storage device. As in virtual memory, there could

bubbles, and disk.

- 13-

Conses Swapping to Shorten Path I engtbs

j '

AB
B A1

I
i~

[a] [b] [cJ

Figure 8.

I have not yet studied these migration schemes in detail. Whatever system we use, memory
management in a connection machine should be easier than in conventional systems
because each object is referenced only by a small, well-defined set of acquaintances. It can
be safely moved after informing those acquaintances.

The Connection Memory Operates on Sets

In this section I present a register-machine description of the connection memory. This is
only one possible interface between the connection memory and the outside world. It is
included here because it shows specifically how the connection machine can perform
certain retrieval operations.

This model does not capture the full power of the connection memory. The instructions
described below are implemented by loading the. rule tables of the cells, starting the
machine, and waiting for the calculation to complete. Tlis mode of operation fails to take
flull advantage of the memory's parallelism.

The connection memory is connected to a conventional computer in the same way as any

other memory. Its contents can be read and written with normal array-like read and write

operations. There are also other ways of accessing and modifying the contents. To take
advantage of these adldiLional functions, the programmer must follow certain conventions
for the format of stored data. The machine treats the data as as set of namerd nodes,

Coi edt'I h\ mnmied liIIV. Ii arftri l ia intl ic, p Ie a l ,las IhL. nodcs ol'sm.i a network

!q

- 14-

usually represent concepts and the links represent relations between those concepts. The
connection memory, however, knows nothing about the semantics ot networks, only their
structure.

The abstract machine has several registers. Unlike the registers of a serial machine, which
hold numbers or pointers, the connection memory registers hold sets or functions.

Set-registers contain sets of nodes in the network. These sets can be arbitrarily large. The
basic operations of the machine take place on every member of a set simultaneously, which
accounts for most of the machine's concurrency. The letters A, B, C, and so on, will refer to
set-registers. Each set-register is implemented using one bit in the state vector of every
node. A set-register contains contains exactly those nodes that have the corresponding bit
set.

There are also function-registers. These contain functions mapping nodes to nodes, nodes
or to numbers. The letters F, G, H, and so on will be used to refer to function-registers. Each
function-register is implemented by storing an address in every node. The address
indicates where that node is mapped under the corresponding function. It is relatively
expensive to store an address at each node, so there are only a small number of
fu nction-registers.

The instructions of the register machine fall roughly into four groups: set operation,
propagation, function manipulation and structure modification, and arithmetic.
Instructions in the first two groups give the machine the power of a parallel marker
propagation machine such as Fahiman's. The other instructions give the machine
additional capabilities involving function manipulation, pointer passing and arithmetic.
Each instruction group will be discussed separately below.

Group I: Set Operations

Since the set-registers of the connection memory hold sets of objects, natural
register-to-register operations are the standard set operations. In the connection memory,

A - INTERSECT(B,C)

represents a single instruction, where ",-" indicates that the value on the right is deposited
into the register on the left. This particular instruction intersects the contents of two
set-registers and loads the result into a third. The other standard set operations (UNION,

DIFFERENCE, COMPLEMENT) arC also single instructions. "Complement" in this case means
ct llCinlll it Ih respt'dcto tile sct o'all o Ihe nodes in thc network.

- 15-

Registers may be initialized to the empty set with the CLEAR instruction.

These set instructions all operate simply by performing the appropriate Boolean operations
on the state vectors of all the nodes in the network. No messages need to be sent.

Group I1: Propagation

Consider the following equivalent descriptions of links in a network:

o Each link is a directed connection between two nodes, with a label specifying the type
of link. There are no redundant connections, i.e. no two connections with the same
label start and end at the same nodes.

o Each link type is a predicate on pairs of node, selecting pairs that bear the specified
relationship.

o Each link type is a relation which maps each node to a (possibly empty) set of nodes.
Specifically it maps a node into the nodes to which it is connected by a link of that
type.

o Each link type is a function that maps sets of nodes into sets of nodes connected by
that type of link. The function is additive in the sense that ifA=B u C then F(A)=F(B) U
F(C). Thus, the function is defined by its behavior on the singleton sets.

These descriptions are all equivalent, in that they all describe the same mathematical
object: an arbitrary set of ordered pairs of nodes. Let LIs call such an object a relation, but
when we speak of applying a relation to a set, the last description is most useful in
understanding what is really happening. I will be careful to not call this object a function,
because that would confuse it with the things kept in function registers.

As an example, assume that the network contains nodes representing physical objects and
nodes representing colors. Each object node has a color-of link connecting to the node
that represents the object's color. Given such a network, we may find the color of an object
by applying the color-of relation to a set containing the object. When we apply a relation
we are treat it as a function fiom sets to sets, as in the last viewpoint above. For instance, if

-. register A contains the singleton set {app le then,

1) APPIL Y FH I Al ION((:oI r -of .A)

- 16-

will load register B with (red). Of course, the registers do not need to be loaded with
singleton sets. If A had contained {apple, banana, cherry) the same instruction would
have put (red, yellow} into B. Here both apples and cherries are red, so both nodes
would map into tile same color node.

The applied relation may map several sets into one. color-of, for example, will map both
{apple) and (cherry) into (red). This means that the relations do not always have
inverses when viewed as functions. There is however always a reverse, which corresponds
to moving backwards along the link in the same way that the standard relation correspond
to moving forward along the link. For example, if A contains {red) then

B +- APPLY-REVERSE-RELATION(color-of,A)

will load B with set of all red things. The inverse relation has the property that it will always
get back at least what you started with:

A c APPLY-REVERSE-RELATION(relation,APPLY-RELATION(relation.A))

Another useful associated relation is the transitive closure. This does not make much sense

with respect to the color-of relation, so instead imagine a genealogy network in which

nodes representing individual people are connected by parent-of links. In such a network,
if register A contained {John),

B * APPLY-RELATION-CLOSURE(parent-of,AU)

would load B with the set of all of the ancestors of John. The third argument u, specifies the
set over which the relation is closed. In this case, u specifies the set of all nodes. If we are
interested only in John's matriarchal ancestry, this third argument would be the set of
females. There is also an APPLY-REVERSE-RELATION-CLOSURE instruction, which would find
all of John's descendants. All of the instructions in this section work by transmitting
messages from node to node containing selected bits-from the node's state vector. Thus, for
example, the APPLY-RELATION instruction works by having all nodes in the specified set
(that is, all nodes with a specific bit in their state vector set) transmit messages to this effect
through color-of links. Nodes receiving such messages can then set the appropriate bit
indicating that they are a member of the answer set.

.. t~- m ~~ m m ~ m m

- 17-

Example: Property Inheritance in a Virtual-Copy Hierarchy.

Assume that colors and types of objects are represented in a network. The are two types of
links in this network, color-of links and vi rtual-copy links. The vi rtual-copy links
represent class membership. This is a transitive property: crab-apples are a kind of apple,
apples are a kind of fruit, so crab-apples are fruit. The color-of links connect an object to
its color. If there is no explicitly stored color-of link then the color is inherited though the
vi rtual-copy hierarchy; crab-apples are red because crab-apple is a virtual copy of apple.

Here is a sequence of connection memory operations that finds all of the red things stored
in such a virtual copy network:

A - APPLY-REVERSE-RELATION(color-of,{red)) ;A is all explicitly red things.
B COMPLEMENT({red))
B APPLY-REVERSE-RELATION(color-of,B) ;B is all explicitly non-red things.
B - COMPLEMENT(B) ;B is all red or possibly red things.
C - APPLY-REVERSE-RELATION-CLOSURE(virtual-copy,A,B) ;C gets all red things.

This code will properly inherit the color of all super-types. It will also allow inherited

properties to be explicitly overridden.

Group III: Instructions for Manipulating Functions

The instructions mentioned so far, allow the machine to do anything that can be done with
a content-addressable memory or a marker-propagation machine. Marker programs that
use n marks can always be translated into a connection-memory program using n
set-registers. Unfortunately, not all easy-to-partition algorithms can be expressed in terms
of set operations. For example, in the genealogy network above it is would be impossible
to find every man who is his own father. To compute this function the machine must
consider each node independently. A marker-propagation machine would require a
separate marker for each individual. In relational database terms, a marker propagation or
a set machine can concurrently compute projections and restrictions, but not joins.

This motivates the introduction of the next group of instructions, which give the connection
memory additional power for handling these soils of problems. The source of this
additional power is the connection memory's ability to manipulate arbitrary functions.
Such functions, fiom nodes to nodes, are held in the function-registers. In the sample
instructions below, the letters F, G and i represent function registers.

The easiest way to load a function register is from a relation stored in the network. Since1 flinctions must be single %alticd and a relation can be multiple valued, they cannot always

oe loaded directly. The connection memory handles the problem by selecting among te
mnultiple values by an "indexing" operation. For example, if r is a single-valued relation,
then

F +- FUNCTION(r,1)

will load function register F with the function that maps each node onto its r-related node,
if there is one. If there is more than one, it will choose a single value according to the
index. This second argument indexes the choice among the multiple values by using it to
determine a unique path through the various fan-out trees in the representation of the
network. The exact details of this algorithm are unimportant, except in that it guaranteesthat the FUNCTION instruction executed twice with the same index will return the same

result. This allows a k-valued relation to be treated as a k-long vector of functions.

One thing to do with a function is to apply it, so there are APPLY-FUNCTION and
APPLY-FUNCTION-CLOSURE, which are analogous to the APPLY-RELATION and
APPLY-RELAT ION-CLOSURE instructions for applying relations.

A function may also be used to modify the structure of the network. This is the only
available mechanism for building structure concurrently. For any relation r, the
instruction

INSERT(F,r)

will add to r all pairs in the contents of function-register F. Similarly DELETE will delete
pairs from a relation.

Since functions can be viewed as sets of ordered pairs, they may also be combined using
INTERSECT-FUNCTIONS and DIFFERENCE-FUNCTIONS. UNION-FUNCTIONS may also be used if
the result is actually a function, as in the union of functions with disjoint domains.

The COMPOSE instruction can be used to compose a relation with a function. Since such a
composition is multiple valued in general, it too takes an index like the FUNCTION

* instruction:

G 4- COMPOSE(r,Fn)

cL()in)OCS 11hc rhit ion V with the functioll V and chllooes a Ihn1li Ililun tile rcsulti using

- 19-

The final way to create one funcion from another is to delete portions of it with the

RESTRICT instruction. This instruction restricts the domain of function to a set contained in
one of the set registers. For example,

F +- RESTRICT(G,A)

will load F with the portion of the function in G that maps from the contents Of A.

A function register may be initialized to the null function with the CLEAR-FUNCTION

instruction, or to the identity function with the IDENTITY- FUNCT ION instruction.

The instructions in this section are the first ones that require nodes to send pointers in
messages. An instruction like COMPOSE, for example, works by passing the contents of one
register in each node backwards through selected links. Other instructions, such as INSERT,
must actually allocate new cells and splice them into the existing network, by the
message-wave mechanism described earlier.

Instructions like UNION-FUNCTIONS which do not send messages at all. Instead, they are
implemented by register-to-register operations wiihin each node. These instructions are
similar to those in the first group (Set Operations).

Example: Relational Join

Given a genealogy network with parent-of and sex-of links, we wish to insert
grandfather-of links between appropriate nodes. We assume that each person has only
one sex and two parents (one of each sex).

A - APPLY-REVERSE-RELATION(sex-of,(male}) ;A gets the set of all males.
F 4- IDENTITY-FUNCTION()
F - RESTRICT(FA) ;F is the identity function for males only.
F C COMPOSE(parent-of,F,l) ;F is now the father function.
G - COMPOSE(parent-of,F,1) ;G is one of the. grandfather functions.
INSERT(G,grandfather-of) ;build G into the network.
G +- COMPOSE(parent-of,F.2) ;G is now the other grandfather function.
INSERI(G,grandfather-of) ;build your other grandfather into the network.

This example is a special case of the relational database equi-join operation. The code
takes advantage of the fact that grandfather-of is a two-valued relation. Join on an
n-valued relational would require repeating an operation n times. T'his is to be expected,
sin'c in the worst case the cqIlli-join opcration produces the Cartesian prodthct of its inputs.

-20-

Group IV: Arithmetic Instructions

The arithmetic instructions manipulate functions from nodes to numbers. Numbers are
just special nodes. The only thing that distinguishes them from ordinary nodes is that they
are recognized by the arithmetic instructions. Thus node-to-number functions can be held
in function-registers and manipulated by all of the function manipulation instructions
mentioned above. They can also be manipulated by the arithmetic instructions.

The first set of arithmetic instructions are similar to the FUNCTION instruction. Like
FUNCT ION, they load a specified function register from a relation. The function instruction
derives a single value from the potentially many-valued relation by choosing among them
according to its index argument. The arithmetic instructions derive a single value by
combining the values with an arithmetic operation. Thus,

F *- SUM(r,I)

will load F wtli the l'unction that maps each node into the sum of all its r-related nodes.
Another way 's-tying this is that it associates with each node a number, which is the sum
of the n,.5e that can reached fiom it over r-links. The second argument to SUM indicates
how to get a number from the node. In the example, I (for identity) indicated that the
node i*sclf 's to be used as the value. This make sense, of course, only if these nodes are
numbers. Otherwise an error condition would be flagged.

MAXIMUM and MINIMUM are two other instructions that require the r-mapped nodes to be

numbers. These instructions have the same format as SUM, but instead of adding the

numbers, they reduce the set to a single value by choosing either the largest or the smallest
value.

AND and OR are classified as arithmetic instructions because they operate on and produce
numbers. These instruction perform bit-wise logical operations on the binary
representations of numbers. They have the same format as SUM, and produce a function in a
similar manner.

These five instructions (sUM, MINIMUM, MAXIMUM, AND, OR) are just examples of plausible
arithmetic instructions. Any function which turns a set of objects into a single number
Would make sense as an instruction. Any symmetric and associative arithmetic operation

will do. llhcre could be a MUtl IPLY instruction, for instance. Asymmetric functions, like
subtract, do not make sense in this context because it would not be obvious what should be
subtracted from what.

-21-

This first class of arithmetic instructions operate by utilizing the fan out trees to actually

perforn the required arithmetic. They are thus similar to the pointer passing functions of
the last section, except instead of selecting a single answer from those arriving at a fan out
tree based on an index, the answers are all combined in some manner.

There is a second class of arithmetic instruction for which asymmetric operations make
sense. These instructions combine two functions into a single functions, or to put it another
way, they associate with each node a value that depends on other values already associated
with the node. So, for example,

F +- FUNCTION-SUBTRACT(G,H)

will load F with the function that maps each node to the difference of the values of the G
and H functions applied to that node. Similar instructions are FUNCTION-SUM,
FUNCTION-MAXIMUM, FUNCTION-MINIMUM, FUNCTION-AND, and FUNCTION-OR.

This class of arithmetic instruction involves no message passing. These instructions are all
executed as register-to-register operations at each node.

How To Connect A Million Processors

The most difficult technical problem in constructing a connection memory is the
communications network. The memory's speed is limited by the bandwidth of the network.
This bandwidth depends on the topology of the network, which is limited by physical
layout and wiring constraints. Highly connected structures, such as the Boolean n-cube, are
difficult or impossible to wire for such large numbers of nodes. Constraints on wiring
density suggest simple tessellated structures, such as the grid or the torus. These grid-like
structures are easy to wire, but the large average distance between nodes slows
communication.

Instead of choosing either of these extremes, I have developed a compromise that allows us
to take best advantage of the available wiring density. It is a family of connection patterns
that spans the gap between the low-performance grid, and the unwireable n-cube. Given a
set of engineering numbers, such as the number of pins on available connectors or the
maximum wire density, we can choose from the family the highest performance connection
pattern that satisfies the constraints.

A method for genlraling the (la1ihily connection patterns is shown in figure 9. I illustrate
here only the one-dimensional case. [he two or three-dimensional layout is generated by
repealin. th1is p:ItrIi in each din iemlu indcpendcently. "l'he Ir'st member of the filtmily is

- !-

- 22 -

the torus. In two dimensions this is just a grid with opposite edges connected, as in the
ILLIAC IV. [191 This pattern can easily be projected into a line, as shown. The second
member of the family is generated from the torus by connecting each node to the node
farthest away as shown. The nodes may be rearranged for efficient wiring by first twisting
the torus and then folding it, so that each node is adjacent to the node half-way around the
torus from itself. This pattern may now be projected into a line as shown.

Generating the Folded Torus

a b

C d

Figure 9.

This operation of connecting, twisting and folding results in a connection pattern with one
half the maximum distance and twice the density of-wires. The procedure may be repeated
as many times as necessary to achieve an optimal tradeoff between performance and
wireability. If the torus is twisted log(n) times, where n is the number of nodes, the
resulting structure will be an augmented Boolean n-cube. hle number of parallel wires in
the connecting buses may also be varied, generating a two-parameter family of
interconnection patterns.

The resulting connection pattcrn has thc following desirable properties:

- 23-

o Uniformity. The network looks similar from the viewpoint of each node.

o Extensibility. More nodes can be added by plugging more cells on at the edges.

o A maximum wire length. Short wires allow synchronous operation.

o A maximum wiring density, chosen to match available technology.

o A maximum number of pins per module, chosen to match available technology.

For an integrated circuit or a printed-circuit board the pattern would be repeated in two
dimensions. It is also extendable to three dimensions if such a technology becomes
available.

According to our initial calculations, the maximum performance network built with

off-the-shelf 1981 components is a twice-folded torus with five-bit data paths.

What Can the Machine Do?

One goal of the proposed research is to formalize just what the connection memory can and
cannot do. here already exists one well-worked-out formalism for describing retrieval
operations: relational database theory. Codd's relational calculus allows queries to be
described the form of a predicate calculus. The relational algebra provides a set of
operations for computing these queries. [4]

We do not expect to convert artificial intelligence knowledge representations to relational
databases, because they do not provide a natural way of expressing artificial intelligence
knowledge manipulation. But relational database theory does address a well-specified set of
problems that are similar to those that we must solve for semantic networks. I believe that
relational database formalisms will provide theoretical tools for describing the operations of
the connection memory.

The notion of relational completeness, for example, provides a measure of the expressive
power of a retrieval language. If a machine can concurrently process all of the operations
of the relational algebra, which is relationally complete, we know that it can compute any
query that is expressible in the relational calculus. This gives us confidence that our system
has no hidden weaknesses.

p.1

- 24-

Comparison with Other Concurrent Architectures

A useful way to characterize the machine is to contrast it with other systems that are similar
in form or purpose. Here is a list of such near misses, several of which have been important
sources of ideas.

o It is not a way of hooking together a collection of general-purpose computers as in
[19,7,11, 3,20,23,18,8]. The connection memory shares many features with these
systems, such as extensibility, concurrency, and uniformity, but the individual
processing elements in the connection memory are smaller. Since each
connection-memory cell contains only a few dozen bytes of memory there can many
more of them, allowing for a higher degree of concurrency. The penalty is that theconnection memory is less general-purpose; it must be used in conjunction with a

conventional machine.U!

o It is not a marker-propagation machine, as proposed by Fahiman. [61 The connection
memory is able to execute marker-type algorithms, but its pointer manipulation
capabilities give it additional power.

o It is not a simple associative memory. [15] The elements in content addressable
memories are comparable in size to connection memory cells, but the connection
memory's processing operations arc far more general, due to its ability to
communicate between cells.

o It is not a systolic array [14,131. In the connection memory, cells may operate
asynchronously. Uniformity is not critical: some cells may be defective or missing.
The connection memory is also more flexible than a hard-wired systolic-array,
although for problems that can be done on both it is likely to be slower. Systolic array
algorithms can all be executed efficiently on the connection memory.

o It is not a database management machine like RAP [161 or CASSM. [5] They are
designed to process a more restricted class of queries on a much larger database.

o It is not a cellular array machine [22,10] L.ike these machines, the connection memory
has a regular repetitive layout, but unlike them it also has a mechanism for arbitrary

* communication.

The machine is designed for symbol manipulation, not number crunching. It does have
limited parallcl arithmetic capabilities because they arc oftent uscfil in symbol
imaiipulation, 1ir exam ple, il Colllpliting a SCO[C for a)bcst-m1tcllh r ric al. Similar

i7

-25-

architectures may have application n numeric processing, but we do not at this time plan to
investigate these possibilities.

What We Have Done so far

0 We have specified an algebra for expressing network pattern matching operations,
and we have shown that all expressions of the algebra can be efficiently evaluated on
the connection machine. One result is that the machine can concurrently search a
graph for an acyclic subgraph matching a specified pattern. This may be a first step
toward a theory of the connection machine's operations.

0 o We have written several simulation programs of various portions of the machine.
These simulations have allowed us to discover and correct weaknesses in the
machine's instruction set. We have run a few simple test programs on the simulators,
although we have not yet written a complete simulation of the machine.

o We have extensively simulated the communication network. We have used these
simulations to measure the performance of various routing algorithms. Specifically,
we have tested six different algorithms on a grid, plus one algorithm for a
twice-folded torus. All of these algorithms performed well as long as the number
messages in transit remained significantly less than the number of message buffers.
Algorithms that used several buffers per cell performed best.

0 We have designed a message-routing chip for the machine. This was mostly an
exercise to give us some design experience, but we did work out circuit techniques
which should be useful in the construction of an actual machine. Specifically, the chip
included a crossbar and a novel incrementcr/decrcinenter. We received chips,
through MOSIS, in January. The chips /'unction correctly, in spite of a design-rule
error. We also learned things by measuring the timing of the actual chips that should
allow us to make a faster chip the next time around.

We Plan to Build a Prototype

In 1967 the MI'T Artificial Intelligence Laboratory commissioned the construction of the
world's first 256K-word core memory. The cost was approximately hailfa million dollars, or
about Iwo dollars a word. Ihe "old nioby" is actully still in use, alihough it is now Ilanked
by 250K &oitls olfscmic hnductor mcnimory tIha t' (, literally onc httidredth as much.

111C proposcd 128K conne(iLtci iln mcmy will cost about as nluth per processor as the cire
kost PI W 1 d. I'alI l 0'his WcI'CUscIIts a nc-1in h L. 14)li .t'oS.l, htll by far the lal'I, C\ cp ise

- 26-

is the fabrication of the chips. These fabrication estimates assume tht low yields and short
runs appropriate for a first-time project. If the architecture proves successful and is
duplicated on a larger scale, the per-cell costs would drop dramatically. Fundamentally, a
connection memory should only cost a constant factor more than a similar-sized
semiconductor random access memory. If, say, half of the area of a connection memory
chip is pointer memory, then storing a given amount of data would take twice as many
connection memory chips as RAM chips. The RAM, of course, would only store the data,
not process it.

We plan to design in detail a million-element connection memory, and then actually build
and program one 128K slice of it. This is enough to to let us test the concept without
needlessly replicating the inevitable mistakes of a first-time design. Because the connection
memory is incrementally extendable, like ordinary memory, it would be possible to build a
million element machine by simply plugging together eight duplicated sections, although
we will probably never actually do this with this first machine. We will try, however, to
actually solve the problems that would be encountered in constructing a larger version.
Since packaging problems are significantly different for a larger machine, we will actually
build the mechanical package for a million element machine. Address sizes,
communication protocols and clock speeds will all be designed for a million cells.

According to our current plans, the million-element machine will fit into a single rack. [he
rack will contain eight card cages, four on the front and four on the back. Each cage will
contain sixteen cards, each twenty-one inches wide by fourteen inches deep. One-hundred
twenty-eight chips will be mounted on each card, in socketed sixty-eight-pin square
ceramic packages. Each chip will contain sixty-four cells. The cells on a chip will share a
single off-chip communicator, arithmetic unit and rule table.

I0

- 27.-

%cknowledgments

Many of the ideas in this paper came directly from discussions with Tom Knight, Alan
Bawden, Carl Feynman, Gerald Sussman and Hal Abelson. Scott Fahlman (through his
thesis) and Ivan Sutherland (through a talk) started me thinking about the problem in the
first place. Carl Feynman, Dan Weinreb, Neil Mayle and Umesh Vasirani wrote the initial
simulations. For discussions, suggestions and encouragement I would also like to thank
John Batali, Howard Cannon. David Chapman, Gary Drescher, Michael Dertouzos,
Richard Feynman, Richard Greenblatt, Carl Hewitt, Neil Mayle, David Marr, Margaret
Minsky, David Moon, Brian Silverman, John Taft, Patrick Winston and especially, Marvin
Minsky.

1. Backus, J., "Can Programming be Liberated from the Von Neumann
Style?", Communication of the ACM, Vol. 21 no. 8. (August 1978)
613-641

2. Brachman, R.J. "On the Epistemological Status of Semantic
Networks" Report No. 3807, Bolt Beranek and Newman Inc.,
Cambridge, MA, (April 1978)

3. Browning, S. A. "A Tree Machine" Lambda Magazine, April 1980.
Vol. 1. No. 2. pp. 31-36.

4. Codd, E.F. "Relational Completeness of Data Base Sublanguages" in
Rustip R. (ed) "Database Systems" Courant Computer Science
Symp. Oseries, Vol. 6, Prentice Hall, 1972

5. Copeland, G.P., Lipovski, G.J. and Su, S.Y.W. "The Architecture of
CASSM: A Cellular System for Non-numeric Processing" Proc. 1st
Annual Symp. Com. Arch. 1973, pp. 121-128

6. Fahlman, Scott, "NETL,: A System for Representing and Using
Real-World Knowledge", MIT Press (1979)

7. Gritton. E.C. et all "Feasibility of a Special-Purpose Computer to
Solve the Navier-Stokes Equations" Rand Corp. r-2183-RC (June
1977)

D.

-28-

8. Hewitt, C. E., "The ipiary Network Architecture for Knowledgeable 9
Systems", Proceedings of Lisp Conference Stanford. (August 1980)
pp. 107-118.

9. Hewitt,C., Attardi, G. and Simi, M. "Knowledge Embedding in the
Description System Omega" Proc. First Nation Conf. on A.I. (August
1980) pp. 157-164

10. Holland, John H. "A Universal Computer Capable of Executing an
Arbitrary Number of Sub-Programs Simultaneously" Proc 1959
E.J.C.C. pp 108-113

11. Halstead, R.H., "Reference Tree Networks: Virtual Machine and

Implementation", MIT/LCS/TR-222, MIT Laboratory for
Computer Science, Cambridge, MA. (June 1979)

12. Koton, P.A., "Simulating a Semantic Network in LMS", Bachelor
Thesis, Dept of Electrical Engineering and Computer Science, MIT,
Cambridge, MA. (January 1980)

13. Kung, H.T. abd Lehman, P.L. "Systolic (VLSI) Arrays for relational
database operations" Int. Conf. on Management of Data, May 1980

14. Kung, H.T. and Leiserson, C.E. "Systolic Arrays", In Itro. to VLSI
Systems by C.A. Mead and L.A. Conway, Addison-Wesley, 1980,
Section 8.3

)

15. Lee, C.Y. and Paul, M.C. "A Content-Addressable Distributed-Logic
Memory with Applications to Information Retrieval" IEEE Proc.
51:924-932, June 1963

16. Ozkarahan, S.A., Schuster, S.A. and Sevcik, K.C. "A Data Base
processor" Tech. Rep. CSRG-43, Comp. Sys. Res. Group, U. of
Toronto, Sept 1974

17. Schwartz, J.T., "On Programming, An Interim Report on the SETL
Project" Computer Science dept., Courant Inst. Math. Science., Ney
York University. (1973)

- 29 -

18. Rieger. C. "ZMOB: A mob of 256 Cooperativ-. Z80a-based
Microcomputers" Univ. of Maryland C.S. TR-825, Coliege Park, MD
(1979)

19. Slotnick, D.L., Et.AI. "The ILLIAC IV Computer", IEEE

*Transactions on Computers. Vol. C-17, No. 8, (august 1978), pp.
746-757

20. Swan, R. J., Fuller, S. H., and Siewiorek, D. P. "Cm*--A Modular,
Multi-Microprocessor" AFIPS Conference Proceedings 46. 1977.

21. Szolovitz, P., Hawkinson, L., and Martin, W.A. "An Overview of
OWL, a Language for Knowledge Representation",
MIT/LCS/TM-86, MIT Laboratory for Computer Science,
Cambridge, MA. (June 1977)

22. Toffoli, Tommaso, "Cellular Automata Mechanics," Tech. Rep. No.
208, Logic of Computers Group, CCS Dept., The University of
Michigan (November 1977)

23. Ward, S. A. "The MuNet: A Multiprocessor Message-Passing System
Architecture" Seventh Texas Conference on Computing Systems.
Houston, Texas. (October 1978)

24. Woods, W.A. "Research in Natural Language Understanding,
Progress Report No. 2" Report No. 3797, Bolt Beranek and Newman
Inc., Cambridge, MA, (April 1978)

25. Quillian, M., "Semantic Memory," in Minsky (ed.) "Semantic
Information Processing," MIT Press (1968)

