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Isotope Effect in Gas-Surface Vibrational Energy Transfer.

Cyclopropane and Cyclopropane-d6 Isomerization by the VEM Technique+

by W. Yuan,# R. Tosa, K-J. Chao# and B. S. Rabinovitch

Department of Chemistry BG-IO, University of Washington

Seattle, Washington 98195

Abstract

The study of the effect of varying molecular structure upon

the efficiency of vibrational energy transfer between initially

cold molecules and a hot surface has been extended to the reaction

pair, cyclopropane/cyclopropane-d6 , The latter member is somewhat

less efficient in energy loss, as corresponds to the greater

vibrational eigenstate density. Conversely, the probability of

energy up-transitions is enhanced; in thermal low pressure uni-

molecular reactions this corresponds to the inverse statistical

weight secondary isotope effect. Comparison is made with other

molecules.
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Introduction

The Variable Encounter Method (VEM) has been shown to be a useful tech-

1 ,2
nique for the study of gas-wall vibrational energy transfer in the transient

regime of a reacting system. In this method, an initial vibrationally-cold

ensemble of molecules is excited into a vibrationally-hot distribution by a

known, and variable sequence of successive collisions with a hot surface. To

date, we have used seasoned fused-quartz surfaces. The rate of vibrational

excitation,i.e. the rate of transient relaxation, is derived from the rate of

unimolecular reaction.

VEM has been applied to the study of a number of substrate hydrocarbon
3 1

species, such as the reactions of cyclopropane, cyclopropane-d2, cyclo-

butane,2 '3 methylcyclopropane,4 and cyclobutene.5,6  These molecules have

similar critical thresholds (E0 nu 60 kcal mole-1 ), except for cyclobutene for

which the value of E0 is approximately one-half. As described in refs. 1-4,

the efficiency of energy relaxation decreases with increasing temperature;

also, the average amount of energy transferred per collision from a molecule

to the wall, i.e. the size of an energy down-jump, <AE'>,declines with increas-

ing molecular complexity (while a concomitant increase in the probability of

up-transitions also occurs). It was pointed out4 on the basis of a quasi-

statistical accommodation model that such behavior should follow with increase

in the number of, and reduction of the frequencies of the vibrational modes of

the substrate molecules.

To clarify further the effect of vibrational frequency pattern and vibra-

tional energy level density on the energy relaxation process, and especially

to simplify the comparison, a study of a simple isotopic pair, cyclopropane and

cyclopropane-d6 seemed desirable. Furthermore, in order to reduce the effect

of experimental vagaries, it was desirable to study both species simultaneously

in the same reactor and thus under identical conditions of seasoning and of
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surface. The isomerization reaction has been shown previously to be free

from surface catalytic effects under our conditions.
1'3

The isotope effect and reaction parameters for this pair has previously

been studied in a homogeneous steady-state thermal system over a range of

pressures and degree of fall-off.8 The activation energy for D-reaction is

higher (,u 1.4 kcal mole - ) than for H-reaction, but it was found that the

quantum statistical secondary isotope effect overtakes the primary isotope

effect as the second order, low-pressure region is approached. In the low-

pressure regime, the reaction coordinate is, of course, simply collisional

energy transfer and the low pressure thermal unimolecular rate constant is

the inverse of the steady state mean first passage time,9 ko = I/tfp.



Experimental

The apparatus used in this study was similar to that of previous VEM

studies. The reactor vessel consisted of a 1-liter spherical quartz reservoir

flask with two cylindrical reactor fingers blown on. Each finger had an

inside diameter of 4 cm and either could be heated independently with a stain-

less steel block furnace. For finger lengths of ,, 5 cm and , 14 cm, the average

numbers of sequential collisions, m, made by a molecule after entering the

reactor and prior to returning to the reservoir (termed an encounter), was 5.0

and 14.4, respectively. Reaction temperature was varied from 876°K to 1060°K.

Reactor temperature was measured with use of five chromel-alumel thermocouples

cemented to the outside of the reactor finger. The temperature variation during

the run time was ± 20C, and that along the finger length was ± 50C. The tempera-

ture of the reservoir flask wall (which fell in the range 100' -150 °C) was

measured at several points, and being in the Knudsen region, the temperature

of the reservoir gas was simply averaged with suitable weighting for surface

area (i.e. by sin2e, where 8 is the angular deviation from the perpendicular to

the entrance area of the reactor finger).

Cyclopropane (Matheson, 99.9% with 0.08% propene as the major impurity)

and c',clopropane-d 6 (Merck, 98% isotopic purity) were degassed and stored in

a reactant bulb as a 1:1 molar ratio gas mixture. Before a run, the reactor

was evacuated to approximately 10-6 torr. Reaction run pressures were in the

range l-2xlO "4 torr. Reaction time varied from several minutes to ten hours,

depending on the reaction temperature. The reaction percentage varied between

5% and 40%. At the end of a run, the reaction mixture was expanded from the

reactor into a liquid nitrogen trap. Separation of the reaction products was

made at OC on a 20 m column of 3 mm nylon tubing packed with a 25% silver

nitrate-ethylene glycol solution on 40-60 mesh Chromosorb P. A very short

* -7a~
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column of mineral oil on Chromosorb P followed in order to protect the FID

detector from contamination due to bleeding of ethylene glycol. Standard

mixtures of light and heavy cyclopropanes and propenes were used for the

calibration of peak areas. No side products were observed.
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Results and Discussion

The isomerization reaction of cyclopropane and cyclopropane-d6 to propene

and propene-d respectively, follow the first order law.2  The apparent rate

constants are summarized in Table 1. Each tabulation is the average of from

2 to 4 determinations from separate runs. As Figure 1 shows, the Arrhenius

relation (which no longer has a simple meaning here) was satisfied for this

limited temperature range. The apparent activation energies calculated from
1

Figure 1 are given in Table 2 and agree well with earlier measurements made

in a different reactor.

The experimental ratios of production of the products, R(D6/H6 ), were

corrected for the differential numbers of collisions with the reactor, i.e.

by the inverse ratio of the square roots of the molecular masses. The values

are shown in Table 3 and plotted in Figure 2.

The average probability for isomerization per collision with the hot wall,

Pc(m), was calculated from the apparent first order rate constants and the

known reactor dimensions. The results are shown in Table 4 and Figure 3.

There appears to be fairly good agreement between our Pc(m) values for cyclo-

propane and those of earlier measurements.3 Unfortunately, the values of m in

the earlier work were m = 2.6, 8.5 and 27.2 so that a direct comparison is not

easily made; however, the present values fall in correct juxtaposition in

Fig. 1 of ref. 3, relative to P c(m) values plotted vs T(K) for the several

m-values of the earlier work.

In order to fit the ratio data of Fig. 2 to theoretical stochastic calcu-

lations of the kind described in refs. 1-3, we have adopted the Gaussian form

for the transition probability distribution described in ref. 3. The values

for <AE'>, the average amount of energy transferred from a hot cyclopropane

molecule by collision with the wall, that fit the data are <AE'> (cm-l) = 2400

(900 K); 2100 (1000 K) and 2000 (1100 K); the values given in ref. 3 are 2500,

4



7

2170, and 2040, respectively, in good agreement. The value of <E'> D for

cyclopropane-d6 required to fit the experimental ratios in the m = 5.0

reactor are given in Table 5. The values are less than those for light

cyclopropane and decrease with increasing temperature as has been found in

earlier work. These values of <AE'> were then utilized to calculate

predicted values of R(D6/H6) for m = 14.4. These are shown in Fig. 2 as X.

The values are low but in fair accord with the experimental m = 14.4 curves.

The required fit values of <AE'> D to give exact concordance with the latter

experiments are also given in Table 5 and differ only modestly from the

m = 5 values. This signifies the near-reproducibility of our seasoned surfaces
for present purposes.

A listing of various substrate molecules is provided in Table 6, together

with the values of <AE'> measured at various temperatures. It is evident

that <AE'> decreases with increase of molecular complexity and/or decrease

in vibrational frequencies. At the same time, there is an increase in the

value of P (). The latter effect was characterized a number of years ago,
c

as it appears in thermal unimolecular low pressure reactions for the case
an inverse

of replacement of H by D, as a rate enhancement due to A statistical weight

secondary isotope effect.8,11,12 For the general case, such enhancement of

low pressure thermal rate, due simply to change (increase) in vibrational

eigenstate density of the molecule with increase in its molecular complexity,

has been termed a generalized quantum statistical weight effect:13 the centroid

of the Boltzmann distribution shifts to higher energies, and the probability

of energy up-transitions to the region of E is enhanced. The inverse decline

in <AE'> also follows on the basis of a (quasi-)statistical energy transfer

model7 as the effective heat capacity of the molecular heat sink increases.

The decline in <AE'> with rise of temperature accords with our earlier
1-4,14

measurements and explanations'1and follows from a quasi-statistical accommodation
model, especially as limited by decreased surface residence time at higher

temperatures.7,14



Table 1. Apparent rate constants for isomerization

m T(K) 106 kH (sec- ) 106 kD (sec-l)

5.0 910 5.1 (0 .7)a 5.1 (0.7)

970 24.0 (2.7) 25.5 (2.5)

1044 113 (8) 121 (8)

14.4 876 26.8 (0.3) 35.4 (0.4)

879 25.5 (1.6) 33.6 (3.1)

945 175 (4) 242 (4)

1053 2360 (40) 3340 (10)

1063 2810 (110) 3950 (60)

a) Standard deviation of an individual measurement



Table 2 . Arrhenius activation energies for

isomerization of cyclopropane.

E E(kcal mole- 1  ED(kcal mole-

5.0 42.7 (42.5)a 44.01

14.4 46.5 (50 O)b 47.0

a) Value in ref. 1 fcr cyclopropane-d 2 9 m =5.0

b) Value in ref. 1 for m =22.



Table 3. The product ratios R(D6 /H6) for properne-d 6 /propenea

m T(K) R(D6/H6)

5.0 910 1.09

1 .11

1 .06

1.04 Av. 1.08 t 0.02 b

970 1.18

1 .09

1 .11

1.15 Av. 1.13 ± 0.03

1044 1.10

1.14

1.18

1.16 Av. 1.15 ± 0.02

14.4 876 1.40

1 .43

1.41 Av. 1.41 ± 0.02

879 1.39

1.43 Av. 1.41

945 1.49

1.49

1.47 Av. 1.48 - 0.01

1053 1.53

1.51 Av. 1.52

1063 1.54

1.47 Av. 1.51

a) Products brought to the same collision basis

b) Standard deviation of the mean
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Table 4. Experimental values of P (m)
C

m O8 PH(m) 108PD(m) P D/P H
n T(K) c c c c

5.0 910 1.35 (0 .18 )a 1.44 (0.18) 1.07

970 6.18 (0.70) 7.02 (0.69) 1.14

1044 27.5 (2.0) 31.6 (2.1) 1.15

14.4 876 2.50 (0.03) 3.53 (0.04) 1.41

879 2.38 (0.15) 3.35 (0.31) 1.41

945 15.8 (0.03) 23.4 (0.4) 1.48

1053 202 (3) 306 (3) 1.51

1063 241 (9) 362 (6) 1.50

a) Standard deviation of an individual measurement.



Table 5. Values of R(D/H) and <AE'> D(cm
- )

T(K) R(D/H) a <AE,>D(cm-I

900 1.07 1980 a  2040b

1000 1.14 1850a, 189 0b

1100 1.18 c  1800a 'c  18 6 0b

a) from fit to m = 5.0 ratio data

b) from fit to m = 14.4 ratio data

c) Value obtained by extrapolation to permit
comparison with ref 3.
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Figure Captions

Fig. 1 Arrhenius plots of log kH 9 , and log kDE , versus

lI/T for the m = 5.0 and m = 14.4 reactors.

Fig. 2 Plot of R(D6/H6 ) versus T for the m = 5.0, A , and
m = 14.4, , reactors. The values of <AE'> that fit

the data in the m = 5 reactor give the predicted curve

(shown by the dashed line) for the m = 14.4 reactor.

Fig. 3 Plot of P (i) versus T(K) for cyclopropane, ZN, and

cyclopropane-d 6, E , for the m = 5.0 and m = 14.4

reactors.
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