
AD-AI06 282 AIR FORCE INST OF TECH bWRIHTPATTERSON APS 044 F/S 9/2THE SOURCE TO SAMK CONVERSION SYSTEN. (U)DEC 78 ~J L STEVENS
UNCLASSIFIED AFIT-CI-79-262T

N

I ***
*n 9E

I ***I*EII I .
Imsoommm

LEVELII (400 f

THE SOURCE TO S2K CONVERSION SYSTEM

J NATHAN LEE STEVENS, .S. DTI
ELECTE!r\

SOCT 2 g 1981

E
REPORT

Presented to the Faculty ot the Graduate School ot

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

M THE UNIVERSITY OF TEXAS AT AUSTIN

Decemuer, 1978

aid salo Us

iunlimited&

'JNCLASS
- - .Q...L& TY CLASSIFICATION OF THIS PAGE (Whort ntrrrd)

- _ I "REPORT DOCUMENTATION PAGE R1Al) INS .k i(r, .NS
i '- -- •IWI-Ol. Ol ('I)NI1I.I,1IINt, IORM

I. REPORT NUMIiER 2 GOVT ACCESSION NO. 3 R CIPIENT'S CATALOG NUMBER

79-262T
L TLELd Subeitle i) S TYPE OF REPORT & PERIOD COVERED

he Source K Conversion System THES IS/ IA'VIMT7Y

6 PERFORMING O:4G, REPORT NUMBER -

4AUTHQfCSI 0.. CONTRACT*ft GRANT NUMBER(S)

Jonathan Le Stevens , / 'K /

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA 8 WORK UNIT NUMBERS

AFIT STUDENT AT: The University of Texas at

Austin
I. CONTROLLING OFFICE NAME AND ADDRESS , -ReP" --- -

AFIT/R /1, Dec 078/
WPAFB OH 45433 307107

14. MONITORING AGENCY NAME A ADDRESS(II dlleront from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASS
IS1. DECL ASSIFICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of Shia Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

Is. SUPPLEMENTARY NOTES RJU C L, CH ,r .SAX
V.&'Wtox of Public AffairsAPPROVED FOR PUBLIC RELEASE: JAW AFR 190-17
)Ur Fore@ Institute of Technology (ATcI
WIhttPatterson AFB, OH 45433

19. KEY WORDS (Continue on faver*. side if necessary end Identify by block number)

20. ABSIRACT (Continue on reverse aide If necessary and identify by block number)

ATTACHED

81 10 26 222

FORMDD JAN 3 1473 EDITION OF NOV 65 IS OBSOLETE UNCLAs

SECURITY CL. TION OF THIS PAGE (When Date

;'- j .,.

C d

D1 it

ABsTPACTr

Dist p Spoia

/ f
The most common method of creatinq and loading a new database is

to write a program using the host lanquaqe macros the database

mandgement system Provides. As for all software production, the cost of

writing this program is high, particularily considering it may be

executed only once. The "Source to S2K (System 2000) Conversion System"

will generate a FORTRAN program which will load the described source

file into the described System 2000 database. The user inputs these

tile descriptions ano the source to target mapping transformations. The

system's design is based on a common architecture developed through

research of seven current conversion system implementations. This

report will present this architecture, detail the design and languages

of the "Source to S2K Conversion System" and comment on its

implementation. Appendicies include a User's Manual, and examples of

qeneratea command files. rhe system has been implemented in PASCAL in a

Control Data 6000 series computing environment. ,

iii

I III I I

TAbLE OF' CONTENTS

page

1. iNTRODUCTION

1. Statement of Problem I

2. Report Objectives 2

3. Design and Implementation Objectives 3

4. A Common Architecture for Data Conversion Systems 4

5. Comparison of Implementations 7

b. Common Architecture Details 11

1. The Definition Section Functions 11

2. The Logic Section Functions 13

3. The Execution Section Functions 15

7. Summary ot Common Architecture lb

2. DLSIGN AND IMPLEMENTATION

1. System Description 18

2. Detinition Section Design 19

1. Source File Definition Language Design 19

2. Conversion Language Design 22

3. Viscellaneous System Input 24

3. Logic Section Design 24

1. The Read Module Design 2b

2. The Conversion module Design 28

3. The write Module Design 31

iv

- -

TABLE OF CONTENTS (cont.)

page

2. DESIGN AND IMPLEMENTATION
(cont.)

4. Execution Section Design 32

5. implementation Details 34

1. Implementation Philosophy 34

1. Programminq Concepts 34

2. Programming Techniques 3b

2. Basic Program Structure 39

3. Data Structures used in the Program 41

4. Itemized List ot Program's Procedures 44

b. Final Comrrents
55

APPENDIX A: USEHS' MANUAL 58

APPENDIX b: EXAMPLE GENERATED COMMAND FILES 101

PEFlEPENC S
104

VITA
107

v

94

Li

CHAPTER 1

Introduction

1.1 Statement O(f Problem

An apolication which stores data under the control of a database

management syster (DMS) must initially "load" its data. The process of

loading tnis data can be viewed as a data conversion problem -- how to

convert the raw application data from its present form and format to one

Ahich is required ty the DMS. Most established DMSs provide two initial

load capabilities 110]. The first is an automatic load function.

Typically this requires the raw data to be in a specific format, usually

with delimiters surrounding each field value. In addition, the load

function usually requires more computer processing time to load the same

amount or data than the second conversion method -- a user written

program. The user written program utilizes the DMSs file manipulation

macrocommands in one of several host lanquages. A user written program

also enables the user to include validation and conversion routines.

These routines rarely are part of the DMS"s load function. Even though

i1

_ ___

2

there are major advantages in processor time and flexibility, the user

written program is expensive to produce, especially if it is executed

only once. A method is needed, theretore, which will allow a simple,

flexible, and cost effective means of converting initial load data into

its underlying DMS data structure without requiring any special data

formatting or high sottware production costs.

1.2 Heport Objectives

The objectives of this report are to document the design,

implementation and correct usage of the "Source To S2K Conversion

System". This system is a solution to the previously stated problem.

It is a simple, flexible system which allows automatic generation ot

initial load programs for MRI's System 2000 (S2K) database management

system. secause it generates a complete FOPTRAN program, it has the

advantages of efficient processor utilization, validation and conversion

routine capabilities, and no special formatting of the input data.

Because the prograR is generated from a small amount of user input, it

is also cost effective, compared to writing the program by hand.

As all systems, however, the Source To S2K Conversion system has

its limitations. The generated program can read in only one input

source file at a time. Subsequent programs can be generated which will

allow updatinq of the initial database, but from only one file per

Program. The target database must be an S2K defined database. Because

52K supports a hierarchical data model, the data transformations frox

tne input source file to the target database are also based on a

3

hierarchical data model. As a consequence of this design, the input

source file must be describable in a hierarchical manner. All

validation and conversion routines must be written by the user in ANSI

Standard FORTAI,. 4ithin these limitations, however, lie a great number

ot source tile to target 52K database conversion capabilities.

1.3 uesi(In and Irlementation Objectives

The design and implementation objectives of the Source To S2K

Conversion System were not to develop new approaches or methodologies.

rne objectives were to study existing data conversion implementations,

gleaning from them the required components and functions of a conversion

system, design the source to S2K system based on this research, and

3 findlly, implement the system using disciplined, structured software

engineering principles. In order to properly document how these

oojectives were accomplished, the remainder of Chapter 1 will discuss a

common architecture for data conversion systems. This architecture was

developed from tt.e study of seven different data conversion system

* implementations. Lased on this common architecture, the Source To S2K

Conversion System was designed. Chapter 2 will report this design and

0 details of its implementation. Appendix A is the system's user's

Manudl. It also contains execution Instructions and a complete example.

Appendix b is an example of generated UT-2D command files needed to

execute the system.

S

4

1.4 A Common Architecture For Data Conversion Systems

It
Seven different data conversion implementations were studied to

find tneir common functions and components. The implementations studied

were: IBM's FXPRISS System, 1977 (191; SDC's CODS System, 1975 [3,18);

University ot Michigan's Data Translation Prolect, 1976 [b,11,12]; J.A.

Ramirez's (University of Pennsylvania) Conversion System, 1974 (15,16);

CLU[)AbYL Stored Data Definition and Translation (SDDT) Task Group

C(bUL-IO-NIPS/360 Prototype, 1973 (7]); Honeywell's File Translator

Prototype, 1975 M1]; and the ASAP-TO-REL System (University of

Pennsylvania), 1975 E2,17]. Although the seven systems studied aitter

* in purpose, basic approach and architecture, they all contained tne same

functional components. These components have been grouped into three

sections: Definition, Locic, and Execution (see fiqure 1). rhe

* Definition section is composea of the definition languages the

conversion system uses, Since most systems use the hierarchical data

rrodel, the Data Definition Language (DDL) used to describe the source

* and target files looks much like a COBOL Data Definition. The required

steps of restructuring the source file to produce the target file are

usually contained in the "conversion" language. Any special source

• translation and value conversions may appear in the DDL (seen in the

Ramirez System) or in the conversion language (seen in EXPRESS).

*A transition function between the Definition section and the

Logic section is the Language Processor. The DDL and Conversion

langudge statements must be parsed and checked for syntax. Some systems

4(CUDS), have elegant semantic analysers which guard against ambiguous

conversion statements and redundant or impossible constructs. All

S

DEFINITION SFCTIONI

SDEFINE ULJCEl DEFINE SOURCE TO TARGET DEFE
FILE MAPPINGS AND CONVERSION FILE

REQU I REMENTS

LANGUAGE PROCESSoiR

syntax
S semantics

Symbol Tables

LOGIC SECTI(N

(bUJLO) READ LOGIC (BUILD) CONVERSION, TRANS- (BUILD) WPITE
hASED UrO SOURCE LATION, AND RESTRIJCTURING LOGIC BASED ON

, DL POCDURE F ICRGT 0D ANt,

* Ex C UTIN NCT I N

P EAL) IN1~P- PERFORM CONVER- INTER%- iPITE
SOUPCI; MIJAIE SION FROM SOURCE MEDATETEF IL~.S SU~CE INTEMEDIATE IE TARGET iE

F L F TO TARGET INTER- FILE
MEDIATE FILE.

*Fijure 1. Basic Components of a Generalized Data Conversion
System.

.---------- -_ ; - - ' .---- -- , -.....---.

b

systems must cortaine the information gained from the definition and

S conversion statements and build a series of symbol tables. These symbol

tables may be used in both the Logic and Execution sections.

rne Logic section performs three functions: what format to reau

the source tile, what is required to restructure, translate and convert

each source recoro, and what format to write the target file. The reai

and rite logic takes information from the symbol tables ano file

descriptions to determine the structure of the record and the location

of specific tielos. An example of this is the logic required to read a

record containing a repeating group. Some type of vHILE LOOP would nave

to be executed (or generated, for non-interpretive systems) until a

given delimiter had been received.

ne Conversion logic is more difficult. If the conversion

language is procedural (a small set of primitive conversion functions),

the conversion logic is usually a set of generalized procedures

corresponoing to the conversion functions. This is the case for EXPRES

ann LU)S. Non-procedural conversion languages rely on derivina tne

conversion reuquired by comparing the source and target DDLs. Any

complex restructuring is accomplished by user written procedures (seen

in Ndmirez's System). For this approach, the conversion logic is

reduced to simple Rapping and proper procedure binding.

The Execution section contains the functions performed during

the actual conversion. Before describing this, the interpretive vs

,4enerative approach must be explained. Generative Systems generate

programs ahich, wMen comniled, will perform the conversion desired.

II

7

interpretive systems determine how to convert each record and perform

I the conversion all in the same step. Thus, interpretive systems nave

their Logic and Execution sections Combined. A generative system would

have a compiler cet*een the LOgiC and Lxecute sections.

rne Execute section performs the actual conversion. Tnis

incluaes reading the file, writing it in an intermediate source format,

converting the filp to an intermediate target format, and finally,

writing the taraet file. Let us now look at the details of several

implementations and see how they map to the common architecture just

presented. 1he specific details studied will be the purpose of each

* system, the number of tiles it can handle, the data model it uses, and

whetner it generates code or is interpretive. These attributes, for the

seven systems studied, are summarized in figure 2.

1.5 Comparisor Of Implementations

The number and type of files a conversion system will support is

* gredtly influenced ly its purpose. For example, the purpose of CUD5 is

to convert a source oataoase to a target database, using the source and

target database iTanaqeient systems to do the storage and physical level

*conversion. The Pamirez System converts a source sequential tile to a

target sequential tile. His system can not use a database file, nor can

C-i[W convert a file without the DMS. The ASAP-TO-REL System converts

Sflat tiles produced by ASAP (a sequential file management system) to

relational database load strings in REL (Relational English) format.

rrus, its purpose is to allow a subset of a very large sequential file

I

Rameriz,j tile to file I input Hierarchical Generate PL/I
(i. ot Penn) I output proarax

Cux DMS to DMS 1 DMS to Hierarchical Interpretive
0sLC) 1 DMS

Expklsb tile to file multiple Hierarchical Generate PL/I

(IhM) and DMS to DMS inputs and procedures
outputs

Data I rans- tile to file Multiple Relational Interpretive
lation proJ. inputs and
(i. ot Micn.) outputs

CODA61xL tile to file 1 input CODASYL Interpretive
(SrDi Gc) i 1 output

Honeywell file to tile I input Hierarchical Generate As-
I output semoly lana.

ASAP-TO-REL ASAP tile to I input Relational Interpretive
(11. of Perin.) PFL load string I output

Figure 2. CcRparison of Studied Implementations.

I.l6
p.-- ~ --- ------ ____ ____

9!

to be converted into a relational database and aueried against by the

system REL (2]. Although the purposes and tiles of these data

conversion systems vary greatly, they functionally are the same. Eacn

system reduces tte source files to one consolidated intermediate tile.

the format of this file is known. The target file's format is known,

and a single target file is produced. IBM's EXPRESS further illustrates

this process. EXPRESS can convert multiple input files, database

supported or not, into multiple output files. It utilizes a "Peader"

step to read all source tiles into a single intermediate file. The

conversion step converts the source intermediate file into a single

intermediate target file. The "%riter" step then *rites out this

Intermeaiate target tile into the size and format the user wants. Thus,

although the purpose, number and type of files differ amona systems,

they tunctionally execute the same.

9

The data model used by a system will affect its Data Description

Language (DDL) and restructuring language more than its functional

architecture. As previously mentioned, most systems use a hierarchical

model. The ratlorale is that this model is familiar to the user (CUBUL

programmer), the restructuring dynamics are well known [13], and the

major commercial database management systems support the model.

vichigan University's Data Translation Project, however, uses a

relational data model. The relational model allows for a normal form of

*data for its intern ediate source and data file. This allows for more

general and efficient conversion [6]. If, for instance, a relational

source file needs converting to a hierarchical target file, the

conversion would require a total reading of the source file before the

conversion began. However, it the majority of the time the system is

10

converting hierarchical to hierarchical files, it probably would not be

efficient to use the Michigan approach. In summary, the hierarchical

model is the most popular model supported. It non-nierarchical files

need converting, either a complete read step is required (as done by the

Michigan System and EXPRESS) or software support outside the conversion

system (as in CODS) is required.

The final feature to discuss is whether the conversion system is

* interpretive, or whether it generates code to be compiled. Although the

approaches are clearly different, the logic reguired in the systems are

ti.e same. Aith the interpretive approach, the system programs are

g qeneralizeo, whereas for the generator approach, the method of

constructing programs is generalized. In both cases the logic, for

instance, to read all ot the occurrences of a particular record vs

* generating the ccoe to do the same function requires the same amount ot

kno*ledge about tre record and its structure. Thus, the read step for
S

an interpretive system reads the source record, while the generative

* system produces the code to read the source record. Functionally, and

logically, they are the same. There are, however, some run time

differences between the two approaches. Interpretive systems must

*execute logic usirg the DDL to determine how to read, convert, and write

eacn record. Generative systems perform the reads, conversion, and

writes directly since a specific program has been generated and compiled

*to do sucr). Better run time efficiency can be expected from the

generative system due to the direct execution. There is, however, the

system overhead of creating and compiling the generated program.K Literature on actual performance comparisons is not known.

i
I

.........- -

SECURITY CL. - TION OF THI1S PAGE (fts. Dae. E,,.,*d, /

- ,-. e/

11

l.b Common Architecture Details

It has beer shown that the common architecture is a valid

representation of the required functions and components of a data

conversion system. This section will examine each functional component

in more detail. Examples from the studied implementations will be used

to illustrate functional component specifics.

r
1.b.1 The Definition Section Functions

S

A data description language (DDL) must be capable of descriDing

5i the structure of the source and target files, (a hierarchical model will

oe assumed for this discussion). Shoshani [18) describes three levels

5 of data structure description: logical, storage, and physical. The

logical description itemizes the entities of the record, the relations

a'ong them, and the size and type of the fields. The storage level

describes such things as file indexing organizations, access paths, and

5 fixed or varitle length records. Finally, physical level descriptions

indicate how and wtere data is to be read and written, such as device

type, blOCKSize and lapel information. If the conversion system

converts the storage and physical level as well as the logical level,

* the DLL must have the capability of describina all three levels. This

Is the type of AD the Ramirez and Michigan svstems use. CODS, on the

Other hand, uses the source and target database management system

facilities to perform the storage and physical conversion. The CODS DDL

is therefore much smaller and simpler. If the source and target storage

and pnyslcal levels are fixed (but not necessarily the same), the DLL,

C

~12

again, would not have to describe all three levels. This is the case

I witn the ASAP-TO-FEL system where the input is always an ASAP tile and

the output is always Relational English Lanquaqe strings.

There are two basic approaches for describing conversion

* specifications -- procedural and non-procedural. The non-procedural

approach requires the user to describe the source file, the desired

target file ard the translation rules. Michigan's Translation

* Definition Landuage (TDL) is an example of the non-procedural approach.

ihe procedural approach requires the user to specify, in terms of the

conversion language primitives, the specific steps required to enact the

conversion and tte order in which to execute them. Examples ot

procedural conversion languages are EXPRESS' "CONVEFT", and CODS'

1"CDTL". Proponents of the non-procedural approach believe it is less

*restrictive and easier to use [15]. The procedural languages proponents

believe it is more powerful, efficient and direct (18].
I

The CODS Common Data Translation Language (CDIL) is

representative of the procedural conversion languages studied. it

consists of eleven primitive operations (EXPRESS' "CONVERT" has nine

primitives). The primitives describe the basic data transformations

required to restructure hierarchical data model structures, Plus varied

validation and conversion capabilities. The data transformation

* operations are of three types: 1.) moving values across on the same

level, 2.) movinq data values down and repeating them in each of its

memoers, and 3.) pertorminq an operation on a set of lower level values

and moving this new single value up, or moving a specific occurrence of

a lower level value up. Details on the meanings of these

,1

1, 13

transformations are in Appendix A -- User's manual.

* The final function in the Description section is the parsinq,

syntax checking and symbol table builoing. The literature gives little

detail on these implementations. It is assumed that basic compiler

*principles are used.

l.b.2 The Logic 5ection Functions

~ Ahen discussing the next two sections the reader is reminded

that the interpretive and generative systems will diter slightly. Tne

interpretive system will ertec.p. the code corresponding to the logic it

Just performed. The generative system will QlLtpL high level code

Corresponding to the logic it just performed.

• The read function Is usually implemented by traversing the adta

descriptions and previously built symbol tables. As each field is

parsea, a position in the input buffer is filled. For systems requiring

* storage conversion, the read function must have a subroutine

corresponding to each possible access method. For physical level

conversion most systems take advantage of the operating system they are

* executed on by merely setting appropriate file attributes. This may be

done dynamically for interpretive systems, or in the generated Job

Control Language (JCL) for generative systems.

S
The conversion logic is implemented differently based on the

procedural/non-procedural characteristic of its conversion language, as

I

-w- - - - - --C_

14

previously discussed. CoDS uses the CLTL statements and the CDOL symool

I tables to build a conversion table. Each table entry consists of tne

primitive's IV nurber and the relative address of the source and target

fzelas. During execution (CODS is interpretive) each conversion table

entry is executed by a CASE statement using the primitive number as the

key. The Famirez System uses a non-procedural conversion language

(DML). it is a generative (non-interpretive) system. Its

implementation requires the user to specify the maximum number o

* occurrences any repeating qroup may have. The strategy is to build the

source anr target record butters large enough to hold the largest

possible source/target record. During execution the read function

* expands the source record Into a large fixed format record. The

conversion tuncticn will then execute the data transformation operations

from the source input butter to the taraet output buffer. Input

0 vdiadtions or special conversions must be written by the user in PL/I

Proceoures and sutnitted as part ot the conversion statements.

• Some systens (ASAP-TO-REL) use the operating system to perform

"value" conversions, such as Hollerith to EBCDIC code conversion. Other

systems (EXPPESS and the Michigan systems) perform the conversions

* themselves. CODS has a separate language, Common Format Definition

Language (CFUL), and a separate functional component which performs the

"value" conversions. Most systems support table look-up vdlue

* translations, but, obviously, the user is required to fill the table

(for interpretive systems) or write the translation subroutine (for

generative systems).

rv

S

C
. . .v " ______ ' _"$4;, o. '" " '

!F

lb

1.b,3 The Execution Section Functions

I
The first function during execution is to read the source tile.

It the syster can handle several files, most implementations read all of

the tiles and comtine them into a single intermediate source tile. This

is done uy the Michigan, EXPPESS, and CODS systems. It is not necessary

to reaa the entire source tile before converting. The Hamirez and

ASAP-T-kLEL systems read a source record, convert it, and write the new

target record out one at a time. These systems usually can handle only

one input source file and are guaranteed it will be in a specific

storage format, (i.e. sequential file with variable length records).

I

The implementation of the conversion step is usually motivated

by efficiency factors. The number of 1/O operations must be kept to a

minimum as well as memory to memory data moves. EXPRESS implements a

"pipelining" technique to increase its efficiency. The Michigan system

has been making efforts towards bypassing the conversion step for

*records which do not require conversion, (aggregate schema facility).

Most of the "minor" implementations have not introduced any significant

efficiency features and execute the conversion step quite straight

*foroaraly.

A final comment should be made on execution flexibility.

* flexibility in ttis sense means: 1.) the ability to handle the hard to

describe, very unusual conversion requirement, and 2.) the ability to

execute the conversion in incremental steps. The generative systems

(usually allow more flexibility in regard to handlinq the unusual

conversion case. This is because the generated code can usually be

t

accessed and modified prior to its execution. EXPRESS produces separate

read, conversion and write PL/I procedures tor each Job. During

execution the EXPRESS system calls these procedures based on the

conversion phase it is in and the data bein operated on. the Pamirez

system produces a complete, self-contained PL/I program. The execution

step is conducted completely free of any conversion system support. The

EXPHESS system could be difficult to alter, particularly if the aesired

change was in the control portion of the program. The Ramirez system,

* however, would be much easier to modify since it is a complete,

self-contained program. The advantage of the Ramirez self-contained

program is also a disadvantage in terms of incremental step execution.

* The only way to break-up the Ramirez conversion is to stop its execution

and rely on some "restart" mechanism to start it at a later time. Otner

systems, such as EXPRESS, Michigan and CODS, allow separate reading,

* converting ano writing of the tiles to be converted, With this

tlexinility, the conversion can run even though a large block ot

computer time is not available.

* 1.7 Summary of Common Architecture

Based on the examination of seven data conversion

*imolementations, the common functions of a data conversion system have

oeen identified. These include a DDL to describe the source and target

tiles, a conversion language to describe the source to target field

* mappings, and read, conversion and write modules. Differences in DDLs

were tound to be based on the data model the language used, and how many

data structure levels it converted (logical, storage, and physical).

S

U EU I II ll l -

Conversion lano'aaoe differences arose dependina on whether the languaqe

approach was Procedural or non-procedural. Pead and write module

diterences were tased on how many source/tarqet files the system could

handle. Conversion module implementations differed due to the

procedural/non-procedural language approach, and efficiency factors

introaucea. Finally, whether the system took an interpretive or

generative approach appeared to affect its output (converted records or

a conversion program) more than its architecture. based on this common

arcnitecture, the Source to S2 Conversion System was desiqned.

*

U

p

*

p

*

'S
Str.I~

- r------.-----

CHAPrfLP 2

DESIGN AND IMPLEMENTATION

rhis chapter will discuss the desian of the Source to 52K

*Conversion Systea and document its software implementation. The design

discussion *ill tollow the organization of the common conversion system

architecture, as presented in Chapter 1. The implementation discussion

wili present the neneral software organization, major data structures#

and itemize the main procedures, their functions, inputs and outputs.

2.1 System Description

I

* Fhe Source to S2K Conversion System design lent itself well to a

"top-down" development. The system's purpose, to convert source files

to 62K aatabases, Aas well defined. because the 52K system provides a

* conversion facility thrOUgh execution of a Program Language Intertace

(PLI) prolram, generating a new program for each conversion job appearea

I

- m - w -I I -

_ _l_ _i_ _ _

19

to be the best aprroach. Using the hierarchical data model also was a

5 natural choice since the target file would always be an S2K database.

In order to simplify the implementation, the number of source files was

restricted to one, as 'has the number of different target databases.

Generating a PLI F(ThTPAN program was decided over generating a PLI COBUL

program due to local support. Thus, startinq with the purpose of the

system and some basic decisions, the design of the system developed, It

woula taKe as input a description of the source file, S2K database, dfa

conversion mappings, and produce a PLI FORTRAN program which, when

executed, would perform the actual conversion. Figure 3 shows this

design. Oesign details of the system's Definition, Logic, and Execution

sections are now presented.

52.2 Definition Section Design

Languages had to be designed which allowed the user to input the

necessary information needed to generate the FORTRAN program. These

languages included one to describe the source file, one to describe the

mappings between the source and target files, and a third for

miscellaneous system input. A special target description language was

not necessary as the required S2K database description input could be

used.

2.2.1 Source File Definition Language Design

As discussed in Chapter 1, there are three levels of data

structure that must ne described: logical, storage, and physical.

Since the Source to 82' system, has a limited scope, extensive

€

"*m m l m

*lo
20

D*~ D~ILb 17ICN SEC[rION

SO)URCE I Lk S2$ DATABASk. CONVEkI.O1LN ?MISC SYS'IHM

LSPII) ECPIP I k PIG ~

LOI E U

*OPE1 2 0VFI)
SYTMGEEAE

FUIA

PFGFA
FLP1+A

CUPIE

p OG

PPGRU

description capatility for all levels was not necessary. Specifically,

Ithe U r-21) operating system has no direct means of aescrioing tile

storage cnaracteristics, other than stating the file is "local" or

"foreign". Secondly, since the target file is an S2K aatabase, commonly

stored on disk, the Physical conversion requirements will be small.

1heretore the storage and physical level descriptions can be simple,

consisting of keywords followed by user input. For example,

FILE = INPUT/1234/9876.

DEVICE = DISK.

indicates the input source tile name is "INPUT" and it resices on

permanent disk library number "1234" (password "9876").

The source file logical description is also simple, due to two

restrictions. First, the file must De describable in a hierarchical

manner. Secondly, since the UT-2D storage structure capabilities are

limitea, all source records must be fixed length. Inis implies all

repeating groups rave a defined maximum number of times they may repeat.

SIne logical description is thus reduced to field names, field

soecitications, arc the maximum number of times a group may repeat. The

tiela names consist of the letter "S" followed by an integer, starting

with one, increasing oy one tor each new field. A comment tield is

FroVloed to make the field name more meaningful (i.e. "S3 A20. Company

'ame."). 6ince EHdTPAN FOHIAT statements will be generated from tne

* source input, the field specifications use the same notation as the

format statements. An example of a logical structure description is

given in figure 4. More examples mny be found in the User's Manual,

3J Section 2.C.

S°

22

51 AtI. DAD Name.
F'P AT !(I. Start CHILDikN Repeating Group (Wax=5).

0 A1O. CHILD Name.

53 Iz. AGk.
d EPKAT 3 BEG1N. Start PET Repeating Group (Max=3).

S4 A12. PET Kind.
S5 AS. PET Name.

vr ,P. End of PET Repeating Group.
ENU. End of CHILDkFN Peoeatinq Group.

Fijure 4. Eource Description Language E:xample.

2.2.2 Conversion Language Design

A procedural lanouaqe approach was taken for the conversion

language. Fased on the systems studied, it appeared to be the least

ambiguous tor the user ana easiest to implement. Seven primitives were

designed, each corresponding to either a data transformation operation,

a conversion or validation operation, or the special STORE operation.

OCjL)S's conversion language, [18J, strongly influenced this design. COVS

* is a DM5 to DM5 conversion system, requiring the source and target WAis

to ndndle all physical and storage structure conversions. its

conversion language r)rimitives are concerned only %ith the logical level

*conversion, and focus on the three basic hierarchical model data

transformations needed to map source to target data structures. These

transformdtions are discussed in Chapter 1, Section l.b.1, and the

User's "anual, Section 2.E.

Along with the data transformation primitives, conversion

language primitives for validation and conversion were also designed.

I

C

the conversion primitive allows the user to write FORTPAN code which

I will be included in the generated program. This code should perform a

unique conversion on one, or several, source fields to produce a single

target value. The validation primitive allows the user to input FORTFAN

code tor tne purpose of validating a particular input source field. The

user also specifies an option that execution should take (reject

validdted field or reject data set occurrence) should the validation

tail. rhe validation primitive is a feature not seen in any of the

* implementations studied. Ramirez's system allows users to input PL/l

procedures in order to perform validation checks, but provides no

canability of altering trie control of the execution should tne

* valiaation fail. Since most conversion efforts desire some editing of

the source data, the validation primitive is an important, practical

feature.

0 The final conversion primitive is the special STOPE operation.

The user is expected to input a data transformation primitive for eacn

target field in the order the fields are defined. After the

transtormation for the last field in a particular group is input, the

priatitive STOPF must be input. *his specifies to the system that all

tdryet fields for this group have been "filled" and the new data set

should be written. A data transformation primitive for the first target

field of the next group should then be input. The last input for this

group should, agair, be followed by a STORF: primitive. This process

should be continued until the end of the defined target database is

reachel. Further details of the conversion language and examples are

contained In the User's Manual, Section 2.E. Figure 5 contains a

cotie0nteUe'

K

24

summary of the conversion language primitives.

2.2.3 miscellaneous System Input

Information on the S2K database file name and several system

options were neeoedi to complete the generated FORTRAN program, and

generdted UT-2D command files. A keyword followed by user input formrat

was designed to give the user this input capability. For example

RUh = S

is an option card specifying the run is for syntax only. The proper

input to specify the run is a full generation run is

RUN = F.

All of the key words and user input options are discussed in Section 2.H

ot the User's Manual.

2.3 Logic 5 -tior Design

For generative conversion systems, the logic section is where

the conversion program is generated. Using the user's input, read,

conversion, and write modules must be generated. In addition other

required code must be generated, such as database schema ano local

declarations, opening and closing of the database, and error detection

procedures. This required code is fairly static, requiring little

change irom job to job. rhe read, conversion and write modules are tar

*rrore dynamic and require more complex algorithms. Their design will ve

discussed here.

ft

I.ll l|

I PRIMITIVE
NAME TYPE UNCTIUN

DIPiECT TRANSFORMATION The transtormation used to move source
* to target fields that are In

correspondence.

RHkvEAT TRANSFORMATION The transformation used to move a
source field In an ancestor data

* set to a target field.

*LLVLLUP TRANSFORMATION The transformation used to move a
specific occurrence of a source field
in a Subordinate set to a target

*field.

IUPOT TRANSFORMATION The transformation used to apply an

UP T TRANSFORMATION hoperation asainst all occurrences

of a source field in a subordinate
set. The results of the operation
are moved to the target field.

CULVLSIUN US F ARITTEN Signals the Input of a user written
FORTRAN module. The module will
perform a conversion on one or severd
source fields.

VALIDJATE USER oRITTEN Signals the input of a user written
LRIkAN module and instructions
for execution should the validation
module return a "false" value.

SIURE SPECIAL Signals the end of the conversion
primitives for the target data
Oset being built.

SFigure 5. Summary of the 7 Conversion Languaoe Primitives.

sorefils
4

VASAE UE RTE inl h nu faue rte

IDIA ~ueadisrcin
tote-cuio-S-ul te-aldaio

2b

2.3.1 The Pead Module Design

The purpose of the read module is to read a complete source

recora and separate each field so it can be individually moved to a

target field. These two operations could be accomplished by a FOHIHAN

formattea read, but this statement restricts the source input to 150

ctridacters. Since this restriction is unacceptable, an unedited IORTAN

read statement is used to read the source record and several DECODE

statements are used to separate the fields. The number of words read by

the unedited read is calculated from the source input description. The

decode statements *ill separate the fields from the input buffer and put

them in a temporary array, one tield for each array word. Since the

decode statement also has a 150 character limit, several statements may

be necessary. After execution of the unedited read and decode

) statements, each source field resides in a separate array word and can

be directly addressed. During the Parsing of the input source file

~ description, a symbol table is filled which maps the source field names

and their corresponding temporary array addresses. For example,

consiaer a source file consisting of the field DAD (18 characters), a

* repeating group CHILDREN (max=2, each 10 characters), ana a repeating

group PETS (max=3, each 8 characters) within the group CHILDPEN. The

source name to temporary array location mappings are shown in figure b.

S
S

0

27

6LI4CI- FILE DFSCPIF-TIUN

I LAD I CHILDPEN IG I

II

CHILD IPETS PG

PET-NAME I

SC)UHCE NAME TC APPAY LOCATION MAPPING

Field Name Array Address• DAD 1
CHILE a1 3
P E T-NA M E 1 4

2 5
#36

CHILE #2 7
PET-N AiE , 8

#2 9

#3 10

* Figure 6. Exanple of source tile to temporary array mapping.

CHILL I starts ir location 3 instead of 2 because DAD is qreater than

* 10 characters. Array word 1 and 2 are used to store the DAD field. ihe

symbol table does not itemize each field occurrence and its

corresponding tea orary array address, as shown in figure 6. Rather,

* the address of the first occurrence of each field, the number of words

oet*een the first and second occurrences, and the maximum number of

Occurrences is stored. This information is Passed down from each level

4to Its subordinate levels, The symDol table for the previous example

S

S

*ould be:

--- level 1 ----- -- level 2------
I I I

Field Name 1st 0cc Size between Max 0cc. Size Between Max Occ.
DAD 1 0 0 0 0
C ChILL) 3 4 2 0 0
PET-NAME 4 4 2 1 3

Acidresses tor CHILD are tne original (3) and the original plus the size

Let*een occurrences (3+4=7). Addresses for PET-NAME are the original

" .

..(4) plus the size between occurrences tor level 2 (4.15, 5.1) and the

same iteration for the second occurrence of level 1 (4+4=8, 8+1=9,

9+1=10). ihis algorithm is used when generating the conversion

eassignment statements.

In summary, the read module logic consists of generating an

unedAted read statement to move an entire source record into an input

butter. Decode statements are then generated which convert each field

to its proper internal representation, and moves the value to a

temporary array word. The previously build symbol table allows

retrieving the proper temporary array word for any occurrence of any

source field.

m2.3.2 The Conversion module Design

The conversion module is responsible for generating the FORTRAN

Code tor the data transformations and validation/conversion procedures.

Since the user Is responsible for the validation and conversion code,

tne only action the system takes is to replace the source field

references with their Proper temporary array locations. This is done

I.
souceie_ _

•- 2.. heCne-vMdleDsg

29

using the symbol table mappings built during the source definition

parsing, and a set of indexes, one index corresponding to each source

* data group. The value of the indexes represents the "current"

occurrence of its corresponding group. by computing

INDEX = <orig. pos.> + (<curr indexl>*<qroup! size>) +

for all groups the field in question is subordinate to, the correct

temporary array Subscript is found. This computation statement is

generated before each source field reference. Then the field name is

replaced with the temporary array name, subscripted by the variavle

INDEX (i.e. TEMF(INDEX)).

The data transformation algorithms must also generate similar

* statements for all source field references. Before a source data value

is moved to a target field, INDEX must be computed. Then the value of

the temporary array, subscripted by INDEX, is moved to the target tield.

•]he Other task the data transformation algorithms must accomplish is

generating proper looping statements. These statements are needed so

that the data transformations are executed for all source field

* occurrences. The DIRECT data transformation (moving values on the same

level) requires a loop for the group the source field is in, plus a loop

for each group the source field is subordinate to. Consider the DAD,

* CHILDHEN, PETS data structure in figure b as a source file, and the

target is a "1:IS" dataoase, one pet per record. In order to address

all of the pets contained In a single input record, the CHILDREN group

*must be looped throulh as well as the PETS group. Thus, this example

would require qeneration of two IURTRAN DO loops.

.1
I

30

The PEPEA1 data transformation (movinq upper level values down)

requires no additional loop statement generation. The current

occurrence of the parent group will contain the correct source field

value. Using the VAD, CHILDREN, PETS example aaain, consider moving the

CHILU (name) into the target "pet" record. The proper occurrence o the

* CHILdREN group must be used. Since the previous DIRECT statement

generated a loop for the CHILDPEN group, the proper index is guaranteed.

The argument for this is the following. it a source value is oeing

movea "down" to a field in a target group, the target group must have a

correspondinq source group. At least one field in this correspondlng

source group must be moved to the target group using the DIRECT

transformation. Since DIRECT generates loops for all groups above it,

the p arent group the REPEAT refers to will be properly incremented.

The UPOP (Up Operation) data transformation is designed to

perform an operation on all field values contained in a subordinate

group. Here again loops must be generated for the group itself plus all

groups superior to it up to the group level which called the

transformation (the DIRECT group level). Consider the previous example,

cut tnis time the target database is a "DADS" database rather than a

*"PEIs" database. In this case the source level 0 fields would be moved

to the target level 0 fields using the DIRECT transformation. Consider

a target field defined "NUM-PETS-OwNED", with the desire to store in

• eacn DAD's target record the number of pets he owns. A loop for the

CHILUHN group as well as the PETS group must be generated in order to

count all of the pets belonging to each source DAD record. it is not

sufficient to generate only a single loop for the PETs group.

I

Sm

31

In summary, the conversion logic algorithms must accomplish t*o

tasKs. The first is to generate code which will Compute the correct

* temporary array subscript for each source field occurrence. The second

is to generate loopin4 statements so that a data transformation is

executed for all source field occurrences.

2.3.3 The 6rite Pcdule Design

All target database "writes" are accomplished using the S2K PLI

statement 11,SEPT (schema name>. The semantics of the INSERT statement

are to attach the <schema name> data set to the database, Positioning it

according to the current values of each S2K set occurrence pointer.

Thus, if the level 0 occurrence pointer equaled 3, an INSERT on a level

I data set would Lecome a subordinate set of the third occurrence of the

level U data set. The entire write logic is, therefore, cased on

insuring the order of INSERT commands is correct. Using the DAD,

* CHILUREN, PETS data structure as a target database, an INSERT for the

first UAD is followed by an INSEPT for the first CHILD which is followed

by as many INSEPIS as there are PETS belonging to the first CHILD. Then

*tne next CHILD INSERT is issued, followed again by as many INSERTS as

there dre PETS belonging to the second child. This order is continued

until all CHEDFEEN for the first DAD have been inserted. then the order

• repeats, startina %ith an INSERT for the second DAD, etc.

S

*

3 ~

I_ _ I

32

2.4 Lxecution Section Design
g
* The Source to 52K Conversion System generates a complete,

self-contained PFJTPAN proqram *hich will pertormr the entire conversion

job. This is in contrast to generating unique conversion procedures and

*then callina them when needed, as done by the EXPRESS system. In order

to support the execution phase, the Source to 52K System generates two

tiles containing lT-2D control commands. One tile is needed to support

* generation ot the FORTRAN program and the second to control its

execution. because several users may be usinq the system, unique names

for the generated programs and the command files must be assigned. The

* rules tor these names are contained in Section 3.2 ot the User's Manual.

In order to generate these unique tiles, as well as simplify the user's

input, a single, fixed command tile was desiined. This tile, named

"GEkAIE", is called vy the user. It will take the user's description

input and execute the Source to S2K Conversion System (see figure 7).

Here the FUPTPAN program and the two command files are generated. Next,

* tile (,E14ATF. calls tne first command file Just generated. The commands

in this file will sort the generated FORTRAN program, (see section

2.5.2), compile it, change the program's name to a unique name for that

*user, ana save it. Anen the user is ready to execute the conversion

job, the second generated command file is called. This file will

compile toe F (RTPAN program, ready the source input, target database and

*S2K software, execute the program and save all files. Details and

examples of executing the system are contained in Section 3 of the

user's Manual. The command statements for the tile GENRATE, and an

* example ot the two generated tiles, is contained in Appendix H.

* [.
I,

33

GENERATION PHASE:

Userl cdl

GENEFATED FORTRAN
* SOURCE CODE

COMMAND executes SOR TILITJ

EAFORTRAN PROGRA

User Calls UNIQUE I.XECU- FORTRAN EXECUTABLE
Execution 1ION FILE COMPILER CD

File

Source

saves

DATABASE

tigure 7. Files and tasks involved in each Source to S2KI Conversion Job.

34

2.5 implementatior Details

uetails of the system*s design and major algorithms nave dlready

been presented. This section will present details on the software

implementation of these algorithms. Specifically, the imrlementation

philOSophy, basic program structure, major data structures, and dn

itemization of each procedure, its function and inputs/outputs are

presentea.

2.5.1 Implementation Philosophy

The Programming philosophy usea for this implementation is a

result ot the author's 12 years Programming experience and recent

grauuate work in Frogramminq Methodology. While it Is beyond the scope

ot this report to document the entire philosophy, it may be of interest

to highlight certain programming concepts and techniques used to

implement the Source to S2K Conversion System. The programming concepts

aiscussed can be thought ot as guidelines to Hgood" program

construction. The proqram techniques are specific rules and procedures

Anicni complement the concepts ana help realize the program construction.

2.5.1.1 Proaramming Concepts

Reliable Frogramming is not an easy task. Most systems are verV

large and very complex. Due to this size, few programs can oe

*completely tested where all possible input and output states are

examined. In light ot these facts, it is believed reliable programs

must be constructed in a disciplined and systematic manner. This is the

O firSt dnd rost important Programming concept. The second concept is to

3

! I I

construct proarams usin4 a hierarchy of abstractions. This means to

I suppress the details ot a function to the lowest level Possible. fne

purpose ot this is to improve both the clarity and understandability ot

the progrdm. [;ijkstra states, "The purpose of abstraction is not to be

vague but to create a new semantic level in which one can be absolutely

precise" [4]. How to recognize when a new semantic level is desirable,

as well as the total organization of the program, should be guided by

specitic reasonina rather than intuition. The third concept, therefore,

is to use Parnas' work [14] in program module decomposition as a

criteria for determinin the modules of a program. briefly, this

cliteria includes:

I. E priasize the interface between the modules rather then the
traoitlonal functional modularization.

2. From a given set of requirements, select the set of assumptions
that are likely to change. Desiqn modules around these
assuirptiors and "hide" them in the module. ihen select the
assumptions that are unlikely to change and design the module
interfaces around them.

Ihe final concept is that of developing the Program using a

* "stepise refinement" approach, as introduced by Wirth [201. Stepwise

retinement means that proaram construction should be viewed as a

sequence of refinement steps. In each step a task is broken up into

several suotasks. As the descriptions of each subtask are refinea, so

shoulo the data structures used to support the tasks. Thus, the program

ana supportina data structures are developed in parallel. he important

* aspect ot this concept is to recognize the possiblity of improvinq an

algorithm hhen the data structures are refined. Pather than design the

4ata structures separately, they should be designed using the same

I

hierarchical process as that used to design the algorithm's logic.

2.5.1.2 Proaramming Techniques

mie four concepts discussed, constructing the program in a

disCiplineo, systematic manner, using a hierarchical level of

abstractions, decompose the program modules based on their interfaces,

and aevelor the rrogram and data structures using a stepise refinement

approach, must have specific programming techniques to support them.

Ihe tirst techricue used was to ensure all requirement specifications

6ere completed, reviewed, and accurate before any system design worK

coMmTienced. Ihe emprrasis here was to study the elements in the system

*nicr were likely to chanle ad those which were likely to remain

stable. 1ror this study a better decomposition ot the system could ne

7ade during the design phase.

F
6tructureo flowcharts were used to design the entire system

petore coJfa tegan. Fiqure 8 is an example of a structurea flowcnart

for an algorithm to merge two sorted arrays into a single array. these

charts encourage a structured organization ana the use of levels of

aostractlon. The only programming constructs allowea are the

assignment, if..then..else, and case statements, procedure calls, and

"1hiie" loops. Ie "while" looping invariant is clearly stated at the

top of each loov. Using this limited number of primitives encourages

simplier programming, tewer "tricks" and no GOTO statements.

The third technique used was to select a programming lanqua~e

3 suited to the tilosophy. PASCAL was selected because of its 0lOCK

S
p. --

3'

I (I < 101) AND (j < 101)

5I C(KJ:=A(IJ I CCK]:=EBtJ]

I eeeeeeeeeeeeeeeeeeee--- ---m ----- ------------------ I

I I1+ I JK+1 I

I 1 10

I I (K] : B (J JI I (K]:1 0I

... je- -- -

CLUSI:--P-O--A--

Fijur 101 Stutue 101h o mrigtosotaary
(A--n-----i-to-a-single--rray----

I CU=EJCK :AI
-- - - - -- - - - - - - - - - - -

.38

structure, its control mechanisms (FUH, WHILE, and PEPEAT..UNIIL

I statements) and its capability to define heteroaeneous data structures.

PASCAl's weaknesses, string manipulation and input/output, caused some

croulems in parsing the user input. However, the capability to define

elaborate symbol tables (see section 2.5.3) compensated for these

weaKnesses.

The final technique was to use the work in program verification

(see kloya [5], Hoare [8], and Yeh (211) as a guiae towards writing

correct code. Indiviaual procedures in the Source to 52K conversion

system were not formally proven. However, each procedure was written

with certain veritication rules and steps in mind. These steps were:

1. Examine the algorlthm/task to be programmed and find the loop.

2. If there is a loop, establish a loop invariant. This invariant
is that condition (B) which remains true throughout the

processinq of the loop, and becomes false when the loop
terminates.

3. Initialize all variables before enterina the loop, insuring the

invariant (h) remains true. If it does not, the initialization
* is in error or the invariant is not correct.

4. Ensure tre code contained within the loop approaches the

* conditior NOT (B). This step is taken to guarantee the loop
*ill terminate.

• 'The above steps, as well as the other techniques discussed,

qIves credence to tne programming philosophy presented. rhese

tecnniques were not just investigated, but faithfully used. As a

* result, the Source to S2K Conversion System implementation is well

structured, can accommodate modification and is believed to be correct.

U

-,--.--.r

39

2.5.1 Basic Program Structure

IL
Figure 9 Is a structured flowchart of the Source to S2iK

Conversion System program. The PAPSE module reads all of the user

*input, checks for syntax errors and builds the symbol tables. If an

error is found in the user input, no FORTRAN program is generated. It

no errors are fourd and the user "asked" for program generation, a

series of generation modules are called, as shown in figure 9. Data

needed to generate the FORTPAN statements are in the symbol tables and

other variables *hich were filled by the PAPSE. module. A line of code

is generated and then written to the program output file FLIfTSRC,

(fflklhAN Source). Several situations arose where a line of code needed

to ue generated inediately, but its subsequent write put it out of

orier. Examples of this are generating a subroutine before all of tne

J "aill" code is complete, and generating the beqinning and ending of a DO

loop before generating the code contained in the loop. To solve this

problem, each generated line of code is written with a leading tag.

Inis tag represents the logical position of the generated line. When

the program is completely generated, a sort utility is called to sort

* the program in proper tag sequence. This moves all generated lines of

coie to their proper location in the program.

All comior parsing and generation functions were written outside

of tne main structure of the program and made global to the procedures

neeoing triem. These functions include searching for a particular

*character in an input string, putting a series of characters into an

output line buffer, generation of leading tags, and all input and

output. rhis allowed placing the details of many functions in a single

S

40

INITIALIZE GLUBALS
- . I

- I PARSE USER INPUT
S---

I FULL GENERATION TRUE
AND hOT(ERPHRFOUND)

.. yes no
I------------------------------- --------------- --------- I

I INITIALIZE FILES

1 GEr, PAIE FORTRAN HEADER I
I-------------------------------I

I GENERAIE SCHEMAS
I--------------------------------I
I GFNEFATE INITIALIZATION I

CODE I

GENEHA'E DATABASE OPEN I
B I----------------------------------I

GENERAIE SOURCE REAb
I----------------------------I

1 GENi.RATE CONVERSION
EIATEMENTS

• GENEPAIE DATABASE CLOSE I
I---------------- --------------- I
I GENEPATE ERROR SIJ8-1

PO(UTINES
i------- ----- w - ----------

GENERAIE COMPILE COIM-
IMANDS FILE
----------------- ------------I
I GE RATE EXECUTION I

* COMMANDS FILE
I---------------------------I

CLUSE ALL FILES I

Figure 9. Hasic program structure of the Source to 52K Conversion
iSyster.

3

9i I I I I I | i I

41

location, niding them from the main logic of the program. Uther program

details may be found in the Itemized Procedure Listing (section 2.5.4).

2.5.3 Data Structures Used in the Program

A numrber of global data structures were declared in order to

facilitate communications between the PARSE and GENEPATION routines.

These global structures may he considered the symbol tables of the

system. The parse routines "fill" the symbol tables with data received

from the user. Ihe generation routines then "read" this data, thereny

generating a unioue PL1 FORTRAN program for the user. This section will

aescribe the layout and meaning of the important global data structures.

The Source to 52K Conversion program declared three primary data

U structures: the Source, the Target and the Conversion Symbol Tables.

Several other sinale word arrays were globally declared, but their usage

and description is evident upon examination ot the program listing.

* Because PASCAL's declaration notion is exceptionably concise and

readable, the actual PASCAL declarations for each symbol table will be

presented, with explanation.

TYPE
6PCTBLTXPE = RCORD

GPPNUM : I..MAXGROUPS;
PARENTINDEX : I..MAXSRC;

(§PIGPOSITION : 1..MAXRECSIZE;
EDITSPEC : CHAR;
DECIMALSPEC : INTEGER;
FLUSIZE : INTEGER;
IEPEATAPPAY : ARRAY[I..MAXREPEATS J OF REPTYPE.;

I

42

IEPIPE RECOPD
IEPNUkl : INTEGER;

S EPINCREMENT : INTEGER;

VAR
SUUCETABLE : A['PAY[I..MAXSkC I Of' SHCTBLTYPE;

The meaning of the declared fields are:

SPCIBLTIPE - The name of the record type description for the

Source Symbol Table.

GRP[-UM - The group number of the group the field resides in.

PARENTINDEX - The Symbol Table index number of the fleld's group's

parert.

UPIGPUSlTIUN- The index number of the first occurrence of this field

in the temporary array SRC.

EDIISPEC - The field's input edit specification.

DECIPALSPEC - The decimal specification for a type REAL.

E'LDSIZE - The size of the field.

PEPLATAPkAY - Repeat array data tor the level the field is at and

all levels above it.

kEPIXFL - The name of the type description for the repeat array.

HKPNUM - The number of times this group repeats.

PFPI,*L - Total size of the group.

SUUMCkIhL - The name of the Source Symbol Table with the layout

as described in the type description SRCIBLTYPE.

IAHIBLIYPE RECORD
NAME : ALFA;

-J

43

TARGETTYPE : CHAR;
SIZE : INTEGER;
PEPEATED : BOOLEAN;

VAR
TANGETTbL : ARFAY[I..MAXTARGET] OF TARTBLTYPE; -"

The meanings of the declared fields are:

]AR|ILTYPE - The name of the type description of the Target

Symbol Table.

NAME - The component name for this field, or the data set

name if the entry is a repeating group header.

TARGETTYPE - The field's type (i.e. integer, real or character).

SIZL - The size of the field in 10 character words. (Type

real and integer always are SIZE = 1 word).

HEPEATED - A flag to indicate whether the field is contained in

a repeating group.

IAHGETTBL - The name of the 'arget Symbol Table as described by

the type description TARTHLTYPE.

I

TYPE
C0NVThLTYPE: RECORD

CUNVTYPE : CHAR;
SPCNUM : O..MAXSRC;
IRGNUM : ALFA;
IEMPTYPE : CHAR;
OPER : 0..5;
MISC : ALFA;

END;

S VAR
CUNVT8bL : ARPAY1 I..MAXCONV I OF CONVTBLTYPE;

'ne meaning ot the declared fields are:

$

|1

44

CONVTbLTfPE - The type description for the Conversion Symbol

Table.

CUNTI'PE - The type of conversion statement this entry Is,

(i.e., a DIRECT, REPEAT, LEVELUP, etc.).

SRCNUM - The Source component for the conversion transformation.

It SPCNUM = 0 the source is in the temporary variable.

TRGNUm - The 52K component number for this conversion trans-

forration. It CONVTYPE = STORE, this is the Repeating

Group name to store.

TEMPIYPE - If S1CNUM = 0, this indicates which temporary variable

holds the source value, (i.e. TEMPREAL, TEMPINT or

TFNMUCHAF).

UPE - It CONVTYPE = LEVELUP, UPER:O if the term "LAST" is

F input. If CONVTYPE = UPOP, OPER inoicates the oper-

ation to apply, (i.e. I=MAX, 2=MIN, 3=AVG, 4=COUNI,

5=TGIAL).

MISC - If CONVTYPE = LEVELUP, MISC holds the specific oc-

currence numbers for each repeating group. It

CONVTYPE = DIRECT, MISC holds the optional constant

to be moved.

CONVIHL - The name of the Conversion Symbol Table as described

ny the type description CONVTHLTYPE.

2.5.4 itemized list of Program's Procedures

As detailed in Section 2.5.2, the Source to S2K program is

S

- v

45

diviaea into two nain modules, (the PARSE and the GENERATION), with the

global symbol tables providing the communication between the two. This

section will discuss each module separately, presenting a "top-down"

view ot the procedures, and give some details of the most important

ones.

SRCTOS2K Program (Source to S2)

* A ain Procedures *)
INIT(;LtJALS
PARSE

GENERATEALL

(* Utility Procedures Global to All *)
CUNVTOCHR (Convert to Character)
CONVTOINT (Convert to integer)

iFUNIC/IUN -- All glonal data structures are initialized.

* INPUTS/OU[PUTS -- No formal parameters. Global data structures needing

Initialization are altered.

FUNCIIUN -- To read the user input, ensure correct syntax and semantics,

(where possible) and fill the symbol tables.

INPUI]/OUTPUTS -- The user's input descriptions are the input. The

output are filled symbol tables.

*

V

4b

!

FUNCTIUi4 -- To generate the PLI FORTFAN Proiram and control command

tiles.

lNPUTS/OUFPUTS -- The input are the tilled symbol tables. The output

are the text files containing the kORTHAN Proqram and control coimands.

FUNC[IUN -- To convert the inputted integer to its character form.

INPUfS/OUTPUTS -- Formal parameter "INT" is the input integer to be

converted to character form. The global word "token" is the output word

where the character form of the integer is stored.

FUNCTIUN -- To convert the Inputted character word to its integer value.

CWNVIUINI is declared a type integer function.

1'4PUIS/OUTPUTS -- The formal parameter is a 10 character word. The

output is the function name itself, where the binary value of the

inputted cnaracter form is stored.

PARSE

(* Main Procedures *)
CUMMANDMODE
UUP CEMODF.

3

47

SiKMODE
CUNVER I I.)NMOVE

(4 Utility Procedures Global to PARSE. *)
HEADACAHD
GETTUKEN
SkiPbbiS

EUALUK
C riKPER I UD
14 UR

Lfl-m A - (Command Mode)

FUNC11ON -- The user's commana language inputs are parsed and

appropriate global data structures are filled with data.

INPUTS/OUTPuTS -- The input is the user's description input file. The

output dre globally declared single word arrays filled with data the

generation module will use.

5j takj" (Source Mode)

FUNCTIUN -- The user's source input description is read and the source

* syrnLol taole is build.

114PUIS/UUIPUTS -- The input is the user's source file descriptiOn. The

output is the completed source symbol table.

*52"ijaL (6yster 2000 Mode)

FUNCTIUN -- The useres 52K target file description input is parsed here.

[he target symbol table is also build.
*

LNPU'S/OUTPUIS -- The input is the user's tarqet tile description. The

output is the CoIpleted target symbol table.

S

S

, T

48

I
CLu'1iiS.WXLL (Conversion Mode)

FUNCIIUN -- 1he user's conversion statements are parsed ana the

conversion symbol table build.

INPUiS/UUtPUIS -- The input is the user's conversion statements. The

output is the coRpleted conversion symbol table.

kLAJ iW (Pead A Card)

FUNCIIUN -- To read a record from an input file and place the record in

a temporary text file. This text tile will act as an input recora

butter, 80 characters lonq.

INPUTS/OUTPUTS -- Input formal parameter "FNAMF;" is the text file to be

reaa. he output is the text record butter "LINE".

~ .~((et loken)

UCTIUN -- The function is to scan a line of text ana return the next

"toKen". A token is defined as a string of alphanumeric characters

seoaratea bY nelilniters, where a delimiter is any non-alphanumeric

character.

INPUTS/oUTPUTS -- Input formal parameter "FNAME" is a text file. [he

file is 80 characters long and represents a single input character

bufter. Output is the global word "TOKEN" where the found token is

stored left justified, blank filled.

I

S|

49

HiNCIION -- The function is to pass over all consecutive bldnk

Icharacters in the Input record buffer "LINE", starting with the current

character pointer.

i NPUIS/UIPUTS -- Ihe input is the current Character position of text

tile "LINE". 1he Cutput is the new character position of "LINE".

"LAL" (Equal)k?)

IUNCIIUN -- The tunction is to syntax check the Presence of an equal

sign, used in nany of the user input statements. If the equal sign is

not present, the proper error message is given.

INPUIS/oUTPUTS -- The input is the current Position of the text tile

"LINE". The output is the new position of "LINE". If the check for the

b eQudl sign tails, the output also includes an error message.

Lk L (Check Period)

*FUjClIUN -- The function ano Inputs/outputs for CHKPERICD are the same

as those for ECUALOK. The difference in the two procedures is that

CHPPLJqIOD checks for the presence of a period (.).

HiNCIIUN -- lte Et:hC'IUN Is to write tUhe error message passed it and set

the global error flag "EHROPFOUND".

INPUIS/UUIPUTS -- The input is an error message constant, 50 characters

long. The ouput is the error message veing written to the printer ana

S

TI

50

the boolean "FPPUI4UUND" beinq set to true.

I

GENhEPAI E:A[L

(4 , ain Procedures *4

,L.,SC HEMA8S

JENINIIIAL

cKNiPEAL)
(ENCUNVEk S I u".
UErCLUSED L t I ER Pu St i b
GENEC kULHF L FS"tNCNLFILE S

(* Utility Proceoures (;lobal to (;ENEPATEALL *)
,I lAG

,P I1 ' EGK, P

6-llECUN1

ALL.i.LAkh (Generate Header)

bU ,WCilu -- This roceaure generates the heading of the PLI FOiRIHAN

program.

INPUTb/UUTPITS -- The Inputs are globally defined single woro arrays

containing oata aLout the source inputs file. The output is the FOFIkAN

program statement, which includes the declaration of external files, and

a program commert explaining the purpose of the program.

li.L.Lk" . (Generate 6cnema Declarations)

FUNC'ION -- This procedure generates the common block declarations for

O.

I I

51

the necessary System 2000 communication areas. Une common block

I declaration is required for each aeclared database repeating grouu.

INPUTS/UUIPUTS -- The input data is the target symcol table. 1he outrut

is the generated common block declarations.

Li.".U 1AL (Generate Initialization Code)

FUNCIION -- rhis procedure performs six generations: 1. generation of

real aeclarations for target database components of type REAL; 2.

aeneration of the glonal arrays "HUF" and "SPC"; 3. generation of a

parameter declaration for the "EMPTY" character; 4. generation ot

FuFMAT statements used in the FORTRAN Proaram; 5. generation of

initialization code for the global buffers, ana b. generation of a

print header for the FOPTANJ program.

PW[PUIb/OUTPUTS -- the corresponding inputs for the six generations are:

I. tne target Symbol table; 2. the source symbol table; 3. the

globally aefineO wora "EMPT1"; 4. no input--a constant; 5. source

symbol tacle, arc b. globally defined words "DBNAME", and "FILENAME".

lIne outputs are tre generation of the code, as describea above.

jG.L (Generate Latabase ropen Coae)

FtU(1i1UN -- This procedure generates the code for opening the target S2K

datdbase. All of this code is the same for each jot, with only the

database ndme and password being ditterent.

INPUi6/uUTPuTS -- The inputs are the words "DBNAME", and "USEHID)",

containin, the database name and the password respectively. The output

is the generated code, as described above.

B
GL"k.4L (Generate Fead Code)

FUNCIIUN -- This procedure generates the unformatted read statements,

the decode statements and the format statements used by the decode

statements. kten generating this code, each decode statement must

decode less than 150 characters of the input record, ano must terminate

each decode statement on an even 10 character word boundary.

lliPU'15/uuTPUITS -- The input is completely contained in the source symbol

table. The output is tne generated code, as described above.

LLLLUhk~ii (Generate Converson Code)

p UNCiIUN -- Each entry of the conversion symbol tatle is read and code

is generated tor it. A procedure tor each conversion statement is

declared *ithin G NCCJNVEPSION, and is called depenaing on the statement

type ot tne conversion symool table entry.

INPUlb/UUTPUT5 -- The inputs are the conversion symbol table and the

source symbol tatle. The source symbol table is needed to determine

which array woro of "SPC" the source *.'alue resides. The output is the

code to move the source fields into their respective target fields, to

store the data sets using the S2 INSF.PT command, and generate FUkTRAN

vL LUtiPS wnich will properly iterate through the entire source tile.

Q;U"Lit (Generate Database Close Code)

IUNC[IUN -- This procedure produces the Code to close the database and

I

,j-

53

produce d summary Print out ot the job*
I

INPUTS/OUTPUIS -- This code generation is the same for all job. the

differences are the database name and the print header generated. The

)input, therefore, is the word "DVENAME", and the output the generated

code, as described above.

0 AL1LU (Generate Error Subroutine Code)

FUNCTION -- This procedure generates the code for the error subroutine.

This subroutine is called in the FORTRAN proaram for all S2K database

errors detected ouring execution. because this is a standard

* suoroutine, the sane code is generated for all jobs.

jGLUEmA1.LL4 (Generate Command Files)

FUNCTION -- Itis procedure aenerates the tiles "COMPILC" and "EXECC".

these tiles contain the unique UT-2D control commands necessary for the

user to generate the FORTRAN program (tile "COMPILC") and execute it

(tile "EAECC"). [etails on these processes are contained in the User's

*manual.

* INPUTS/UUTPUTS -- The inputs are many globally declared words containing

information on the source input file, the target database tile name and

location, and execution options availible to the user. 'his data is

* gained primarily from the user's Command Language input and the first

portion of the user's Source Language input. The output are the two

control command files. A complete example of these tiles can be found

In Appendix B.

£

-- i-v !- ---. -- .z'

54

&T"AGL (rite Tag)

FUNCIION -- This rrocedure writes the leadinq tag for each qeneratea

line ot FORTPAN code. This tag is later used to sort on in order to

* rearrange the generated FOPIPAN code in proper sequence.

INPUIS/UUIPUTS -- Ihe input is the formal parameter "INTAG" which

contains an integer value to output. The output is a 10 character

Sinteger written to the file "FURTSPK", right Justified, zero filled.

&RI Lrite String)

FUNClIUN -- This procedure writes the strina passed to it, to the

current line of tile "FOFTSFC". EORTSRC is the file containing the

generated FOFTPAN program.

INPU'TS/UUTPU15 -- The input is the formal oarameter "SIRING". This

string is a 50 cYharacter constant 6hich will be written, either in full

or until the first percent (%) is found. 7he output is the constant

string being written to the file "F(JHTSKC".

I jiikT-kJ) (hrite Nora)

* uNCiUUN -- 1his procedure performs the same function as ART, except it

oill 4rite a word to the file "FORTSPC" instead of a string.

S INPU'16/UUTPUS -- 'he input is the formal parameter "IAOD" which is a 10

character word. The output is writing this entire word to the tile

"F..I)8bHC" or until the first blank is encountered.

I

C

- - w - -i-i---I-nilII

- - - - -- - - I - - - -

ib5

&1111 Q (write Integer)

FUNCIIUN -- This procedure performs the same tunction as WRT, but it

write an inteaer, in character form, to the file FOPTSkC.

INPUIS/OUTPLUTS -- The input is the formal parameter 'IN" which is an

integer. Thls integer will be converted to its character torm, then

written to FUPTSPC. Only as many characters the integer is long will be

written.

! D a11k.X (Arite Continue)

FUJNCIIUN -- ihis Frocedure will generate a FURTRAN CON1'1NbE statement

*ith the taq and label as Input in the parameters.

INPUIS/OUTPUTS -- The inputs are the formal para'reters "INTAG" ana

"E')!'.!AiNdM". The output is a FORTRAN CONTINUE statement with the tag ot

IIAU and the label ot FORMATNUM. This statement is usea as a label to

Inaicate the end ot a DO LOOP.K
2.b tinal Comments

* This report concentrated on a specific subset of the aata

conversion reauirement. This subset was converting a source file to a

defined target database. The source tile must be hierarchically

• describable and the target database must be defined and maintained by

the System 2000 DBVS. Although the solution to this subset is a system

limited only to the specific requirement, the ideas, system

$

I
.-- - _ _.. .. ._ _ _ _ __. - . .

5 6

architecture, and algorithms presented here are applicable to many data

conversion requirements. The idea of implementing a small, simple

* system to satisfy a specific conversion requirement gives the system a

better chance of succeeding and being used. As an example, the user's

manual for vichigan's Data Translation system is 355 pages long. Tile

*user may be able to write a unique program to satisfy his conversion

need taster than learninq a system as large as Michiqan's. The common

architecture Of data conversion systems presented in tnis paper nay be

* usea as a baSiS for design of any new conversion system. The specific

design options taken ny the Source to 52K System appear to be tre best

choices, however, a new conversion requirement would, obviously, oictate

the best choice for the design of its system. Finally, tne alqoritnms

for implementinq the data transformations are sir ple and satisfactory

for a procedurally oriented system.

The transportability of the source to S2K Conversion System is

one of its weakest points. The system was written in PASCAL ana

* generates a non-ASCII standard FORTRAN program and Job control commands

executable only by the UT-2D operating system. These languages were

chosen because they are the best supported languages at the

implementation site. It a conversion system of this type is Intendea

for more than one organization and/or machine, the system should be

written in COBOL or ALGUL 60, generate a COBOL PLI program, and generate

job control commands for a standard operating system. COBOL allows for

easier record description and editing than FORTRAN. ALGOL 60 does not

otter any advantages over PASCAL, but it is supported on more machines

fthan PASCAL.

57

The tinal comment to be made is on the philosophy of the Source

Ito S2i Conversion system. It was designed with the philosophy of aiding

the user in the conversion task rather than completely accomplishing it.

This philosophy has several advantages. First, the implementation is

simplified by not designing for unusually complicated conversion

requirements which might arise. Second, the user's input is reduced and

simplified since he does not have to translate some complex portion o±

his conversion requirement into an even more complex user's language.

Finally, the conversion execution may be imvroved when the user is

allo~ea to access the generated program prior to its execution.

1 Designing and implementaing these conversion systems with the idea of

helping the user rather than ensuring completeness will give the system

a better chance ot being used. The Source to S2K Conversion System has

achieved tnat goal.

1*

p

B

p

pr

$

S"

APPENDIX A

IHE SOURCE TO S2K CONVERSION SYSTEM

USER'S MANUAL

Deceaber 1978

5
(

r 58

i m i • I I mI I1

- _ ! ! -

USEP*S MANUAL £

6TABLE OF' CONTENTS

* page

1. GENERAL DESCPIPTION

A. introduction 60

B, System, Characteristics bi

C. System Usaqe bl

D. Loaainq Data To Existing Databases 62

2. LANGUAGE DESCPIP7IONS

A. General Pules and Restrictions b4

b. Command Description Language b5

C. Source File Definition Language b9

U. Target S2 Database Input 77

L. Conversion Definition Language 78

3. SYSTEM USAGE

A. How to Generate a FORTRAN Program 89

b. how to Modify the Generated FORTRAN Program 90

C. How to Execute the Generated Program 90

U. Complete Example 92

1 f DL X 99

59

-w-*w- ! . -m

| I

SOURCE TO S2K CONVERSION SYSTEM USERS MANUAL

SECIION I -- GENERAL DESCRIPTION

I.A INTRODUCTION:

The Source to S2F Conversion System gives The user the

capability of gererating a complete S2K PLI FORTRAN program which, when

executed, will load his defined 52K database with his described source

input. The UT-2D control commands needed to execute the PLI program are

also automatically generated. when the user wishes to perform the

actual database load, a single card input is all that is needed. This

two step process, aeneration of the load program and actual execution,

provides the user with added flexibility. Because the generated program

is stored as a permanent file and is accessible to the user before

execution, the user may modify the generated program as much or as

little as he desires. For example, should the user wish to generate

only d "skeleton" load program and then write his own conversion

routines, this can be done. Or the user mav generate the complete

program and then optimize heavily used routines for improved efficiency.

60

- - - - -

General Description b1

0
The intent is to automatically generate all source code, yet give the

a 4user complete control of the final program.

4 i
1.b SISTEM ChAFACIEFISTICS:

.| rhe system is designed to convert a sinqle source input tile

into a single S2 defined database. It is also possible to append new

source data sets to an existing database. This feature is discussed in

Section I.D. The system supports a tree like hierarchical data model.

Thus, all input data must be in a form that can be described in a

hierarchical manner. Since S2 is the tarqet database, all database

terminology will be consistent with that used in the S2K documentation.

i.Z SSTELM USAGE::

In order to generate a complete PLI load program, the user is

required to make several inputs. First, descriptions of the source and

target files are necessary. The source file is described using the

Source Description Lanquage, as defined in Section 2.C. The target

database is described using the same input as that used when the target

52K database was described to the S2K system. Documentation of this

input is contained in the Basic S2K documentation (see Define Module).

Next, a procedurally oriented Conversion Language is used to define the

mappings between the source and target data fields. Since no data

movement is automatically assumed, each target field must have at least

one conversion statement describing how its data values are attained.

General Description b2
S

The three major inputs, the source, target, and conversion

l- descriptions, constitute the majority of the user required input. In

* addition, a Command language is used to tell the system general

characteristics about the job (user code, password, etc). All of these

languages are tully described, with examples, in Section 2. A

• comprehensive example of an entire run is contained in Section 3.

1.0 LUADING DATA 10 EXISTING DATABASES:

uccasionally an initial load may have several source input

tiles. It it is not oractical to combine these files into a single

tile, it is possible to generate several PLI FORTRAN conversion programs

which will initially load the oatabase and then continue to append data

sets to the existing database. A boolean expression is input which will

identify a level 0 data set (see Section 2.B -- TYPE card). If the

level 0 data set exists, the new data sets will be appended to it. if

the booloean expression is not satisfied, (i.e. the level 0 data set

does not exist), a new level 0 data set will be created that does

satisfy the expression. Then the input data sets will be appended to

the newly created level 0 data set. Note the restriction that the

booloedn expression identities a JL& 9 data set. This means that the

adding of data sets starts at level I (if the level 0 data set already

exists), or level 0 (it it does not already exist). For example,

suppose the input source consists of two files, one of DEPARTMENT data

and the other of EMPLOYEE data. Suppose the target database desires

level 0 data sets of DEPT data and level 1 data sets of the employees

working in that Department. First, the DEPT data would be loaded,

General Description t3
I

followed by a run for the EMPL data. Each employee record would be read

and a search would be made for the department he works in. The search

a is expressed by a boolean expression, such as C3 EQ S3 where C3 is

the 52K component number for Department Name, and 53 is the Employee

file component nunrter for DEPT- %ORIS-IN. Obviously, If the employee

tile did not have a field specifying which department he worked in, it

*ould De impossible to realize the desired tarqet database. Additional

restrictions on the creation of the boolean expression are contained in

Section 2.b -- TYFE card.

' 1'

Languaye Descriptions b4

SECIION 2 -- LANGUAGE DESCRIPTIONS

* 2.A GEIERAL PULES and RESTRICTIONS:

1. Ihere dre 4 recuired lanquaqe description modes. before submitting

input to any wode, input the following card (* starts in col 1):

** <mode name>

inere <mode name> = COMMAND (general description)
SOUkCF (source input tile description)
S2K (62 schema description)
CONVEPSION (source to target mappings)

2. All input niust ie suumitted on cards. Each language statement must

be terminated Aith a Period (.), and contained on a single card.

ohenever a single blank is syntactically legal, any numoer of

consecutive blanks are also legal.

3. The formal syntax is described using a "railroao track" notation.

Syntactically legal statements are derived by traveling the track from

left to right. All required entries are in bold print. Entries

contained in brackets (]) indicate there are several options and to

choose one.

4. Any error found in any description will prevent generation of the

FORIPAN proqram. All source input will, however, continue to be checked

for syntax.

1. Ihis notation is used by the burrouahs Corporation in their

Programming Language Manuals. Niklaus Wirth alsO uses this notation in
his description of PASCAL, referring to it as "svntax diagrams" 1].

Commdnd Language b5

2.K CUMMAND DE:SCRIPI JON LANGIiAGE

4

PURPuSL :

• The Commard Description Language is used to provide general

intormation needeo by the system. The only card required is the

LOICAIIUN card.

The UT-2D system reauires the s2K database to be Stored under a

specific tile nane and Permanent library ID. The LOCATION Card is used

to specify these inputs.

S YNI AX:

---- LUCATICN = --- <filename>--/--<libr. id>--/--<pasSword>----

Anere <filenare> = The file name the S2 definition is stored and
and the 52K database itself will be stored.

<libr. id> = The permanent librarv id number where the
above file name resides.

<password> = The password for the Permanent library id.

EXAMPLE:

LOCATION = DUNSDb/9294/1234.

Tne following optional cards may be input:

Comndnd Lanquaae 66

* The PUN type card specifies whether to generate a FaHsPAN

program and the iJ-2[) control commands, or check for syntax only.

Default is full generation.

SYNIAX:

---- RUN = . .I I-. .
I F I

where S = Syntax only
v = Full oeneration (default)

EXAMPLE:
PUN S.

The TYPE generation card specifies whether the generated program

is an initial load or an update program. If it is an update program

(see Section I.D), a correct boolean expression must be included which

identities a level 0 data set the new data is to be attached to. It the

boolean expression is not satisfied, a new level 0 data set is created

which does satisfy the expression. If more than one data set satisfies

the bOoledn expression, the first data set found will be used to attach

the new data to. The user is advised to select a boolean expression

which will uniauely identify the desired level 0 data set. This will

Command Lanquaqe b7

preclude erroneous database construction due to unknown input file

,. record order. Since the boolean expression will be included in the

FORTkAN proaram unaltered, its syntax should be the same as that

aescribed in the basic 52K Documentation, (see Procedural Language

Fortran, PLF b.6). The following additonal restrictions should be

folloved:

a.) No more ttan 10 S2K components may be used in a single boolean

expression.

b.) Use complete Source component numbers (see Section 2.C) and 52K

component numbers, (no component names allowed).

c.) All 52K components must be in the level 0 data set.

SYNTAX:

ii I

T.'FE --- I I-..
I U <boolean expr> I

*here I = initial load (default)

U = update load

<boolean expr> = a boolean expresxion which identifies
a level 0 data set.

[EXAMPLE:

TYPE = 1.
TYPE =Li C2 .EQ. 10HPPOGPAMMER.

I-

!

C;

---LS-

Command Lanouae b8

* This card is used to identity which input source character will

signify null, or effpty data, The default empty character is blanK.

SYNI AX:

EMPTY = --- character>---

*here <character> = Any lecal CDC character.

EXAMPLE:
EMiPTY : %

COMMAND LANGUAGE EXAMPLE:

** COMMAND. (enter commana mode.)
LoUAIION = hU/9b92/1234. (the S2K file name and location)
pJN V . (generate FORTRAN proaram)
TYPE = I. (initial load run)

0EPly 0. (the input source character 0 means no data)

tI,

L

Source Definition Larjuage b9

2.C SOURCE FILE DEFINITION LANGUAGE

PURPOSE:

The purpose of the Source Definition Language is to provide a

means of descriting the logical, storage, and physical characteristics

of the incominq file. A thorough knowledge of the incoming source tile

is necessary.

GENELIAL RULES and FESTPICTIONS:

1. The first input statement must be ** SOURCE.

2. All Source statements must be on a single card, one per card, each

ending with a period. All input after the period is treated as a

comment,

3. No variable length records may be described.

4. If the source file originated on the UT CDC 6400-6600 under control

of the operating system UT-2D, the system will handle the file without

any user intervention. If, however, the file originated elsewhere, the

user may have to examine the generated FORTRAN READ module prior to

actual execution of the conversion. This is because the UT-2D file

system uses unioue end-of-line and end-of-file markers. Foreign file

r formats may need to be read in an unorthodox manner to get the proper

results. The user is advised to get the "foreign file" into a

compatible CDC and UT-2D format.

Source Detinition Language 70

OU1CL DEFINITION LANGUAGE STATEMENTS:

The StoLage and Physical characteristics of the tile are input

first. These include the File ID and the Device Type. If the Device

Type is TAPE, several additional statements must be input describing the

z tape's characteristics.

The FILF lo card is used to indicate the name of the input

source file ana its permanent library id or local tape Id. If the file

is a tape, input its tape nu-ber and password in place of the permanent

liorary Id and password. If the tile has no name (such as a card file)

then input the word NONE.

b N lAX:

---- FILL = --- <file name)--/--<libr. id>--/--<password>---

where <tile name> = The name of the input source file.
<libr. id> = The permanent librarv id or the local tape

Id for disk and tape files.
<password> = The password for the permanent library Id or

local tape id.

EXAMPLES:

FILE: = DATAI/9294/1234. (disk file)
FILE = NONE. (card deck)
FILE = NONE/1234/5555. (unlabeled tape)

f-

Source Definition Language 71

The input file device type can be either READER, DISK, or TAPE.

No other device types can be handled.

SYNIAX:

I READER I
---- DEVICE = --- I DISK I----

I TAPE I

EXAM PL E
DEVICE = READER.

It the Device Type is TAPE, the following statements should be input,

where appropriate.

The tape's origin must be identified. This will tell the system

whether the tape is In UT-2D tape format or a "foreign format".

SYNTAX:

I UT I
---- ORIGIN --- I I---- .

I OTHER I

where UT = The tape was written under
UT-2D control (default).

OTHEP = The tape was not written under
UT-2D control.

EXAMPLE:
ORIGIN = OTHER.

Source Definition Language 72

it the tape origin is not UT, then the file's physical record

size must be qiven. This card should not be used if the tape origin is

UT.

SYN'1AX:
---- PECOPD --- <n>-

where n The decimal integer value of
the physical record length in
units of 12-bit bytes.

EXAMPLE:

RECOPD = 100.

The system must be notified if the input source file is more

than one reel long. The default is single reel.

SYNTAX:
(

I-YES-I
f. ULTIPEEL = ---I I. .

I NO I

where YES = The file is more than 1 reel lonq.
NO = The tile is I reel long (default).

EXAMPLE:

MULTIREEL YES.

(

4-.

Source Definition Language 73

JJNSITY rArU

The tape's density must be input It it Is not the default value

4. of 55b bPI.

SYNTAX:

I LU I

---- DENSITY " I HI I---
I HY I

Anere Lu = 220 BPI.hl = 55b BPI.

HY = 800 BPI.

EXAMPLE:

DENSITY LO.

The option of continuing processing after a parity error has

been encountered is availible. The default option is to terminate the

run if a parity error occurs.

5YNIAX:

I YES I
---- CONTINUE I - .c I NO I

C where YES Processing will continue regardless

of num of parity errors.
NO = Processing will halt on occurrance of

first parity error. (default)

EXAMPLE:
CONTINUE = YES.

f

Source Definition Languaqe 74

EXAMPLES OF STORAGE and PHYSICAL DESCRIPTIONS:

1. Source tile is a card deck.

*4 SOURCE.
FILE = NONE.
DEVICE = HEADER.

11. Source file is a single reel, UT Produced tape.

* 0UHCE.

FILE = DATA2/1346/1441.
DEVICE = TAPE.
DENSITY = HI.
ORIGIN = UT.
CONTINUE = YES.

Ili. Source file is a foreign multireel tape. Each record contains
1440 bits.

* SOURCE.

FILE = NUNE/1334/1234.
DEVICE = TAPE.
DENSITY = HY.
ORIGIN = 'IHEP.
RECU8D = 120.
MULIIHEEL = YIS.

LOGICAL DESCRIPTION of the SOURCE FILE:

The loqical aescription of the tile is, essentially, its file

layout. Since only fixed length records may be defined, the description

language is quite straight forward. All fields must be identified with

(an "S" and a unioue integer, starting with 1 and incrementinq by 1. To

describe the field's contents, an editing identifier is used, followed

by the field's size. For example, it the first source field were

p • •. -I

source Definition Language 75

-NAME-, a 25 alphanumeric character field, the source definition would

kbe 51 A25. This syntax is very simlllar to FORTRAN FORMAT conversion

* and editing specifications. if a field or group of fields repeat

themselves in the file layout, the REPEAT <n> BEGIN ... END verbs may be

usea. The fields described between the BEGIN and END statements will be

* repeated n times. when using the REPEAT verb, the REPEAT, the field

description statements, and the END card must all be on seperate cards.

SY fi AX:

I-- REPEAT <n> bEGIN -- I (--<field desc>--I I-- END -- I
I I I I I I

----I------------------I---;sssssssssssssssssss----l------------.

wnere I I
10 1

<field aesc>::= --- S <sn> --- I Z #--<field wd>---
IA I
I F 1

<n> = The numoer of times the fields are to be
repeated.

<sn> = the unique field number, starting with i,
incrementinq by 1.

<fla wd> = This integer represents the number
Of bytes in the field. If the
editing specification is F, the
number of digits to the right of
the decimal point must be input,
le, 9.3.

Editing Specifications:

I = Field's bytes represent an integer.
0 = Field's bytes represent 3 bit octal integers.
Z = Field's bytes represent 4 bit hexidecilmal Int.
A =Field contains alphanumeric characters.
F = Field is a decimal number. Number of

decimal characters must be given in the
<fld wd> specification . ie. 9.3 would
nean the field is 9 bytes long, with 3
digits to the right of the decimal point.

I'

Source Definition Language 7b

EXAMPLE:

Inut kecord--
I-..I--I - I-...---I - I- --I--I-.I--I

lijon 1291 3.bOI 26415141BI 315144AI 215116AI101

LUGICAL DLSCPIPTIJN--

SI Ab. Name (this is a comment field)
52 12. Age

S3 k5.2. Salary per hr.
54 U4. Days worked
REPEAl 3 bEGIN. Start -SKILLS- PG

55 AS. Skill code.
6b 12. NuM years experience at this skill.

L , D. Ena -SKILLS- PG

I

S2K larget Input 77

2.1) TARGET 52K DAIABASE INPUT

PU~PPUSE

The purpose of inputting the 62K database definition is to

detine, for the program, the tarqet database. The cards Suomitted here

must ue the same define cards useo to define the S2K database. These

include the datatase name and database password declaration cards.

Since these inputs should Since these inputs should have already been

submitted to tre S2K system, they are assumed to be syntactically and

semdntically correct. If the user described his database interactively

and aoes not have card input, a proper deck mav be produced by

1. Charae tte S2K REPOPT tile to a temporary disk file.

2. issue a DESCPIBE command.

3. Uump the temporary disk file to PUNCH.

S2K UA[AbASE DEFINITION INPUT EXAMPLE:

** 62K.

< S2K dataoase definition card deck >

I

q

Conversion Definition Lanquage 7H

2.F, CUNVEPSION UEAINITION LANGUAGE

PURPUSE:

The purpose ot the Conversion Definition Language is to describe

how each target field's data value is derived and whether there are any

conversion or validation rrocedures to be applied to it.

GEiW4-iAL PULES ana FESTPICTIONS:

1. The first input statement must be ** CONVEPSION.

2. Lacr, conversior statement must ne contained on a single card, one to

a card, ending with a period. Text after the period is treatea as a

comment.

3. Unly component numbers may be used when referring to the target

fielus. No component names may be used.

4. Nio movina of source to target data will taKe place without an

exclicit conversion statement. Therefore, there must be at least one

conversion statement for each defined target tile field.

5. Ine system 7akes no semantic analysis of the conversion statements.

usel trust ensure the logical correctness of its statements.

,1 - .il t in the order of the inputted conversion statements.

%: p •jippr to ensure all desired data transformations are stated

-- , .,T, statement is input.

Conversion Definition Language 79

IA!4GUAGE DESCRIP11ON:

Ihere are 7 different conversion statements, grouped into three

citegories: Data Transformations, Conversion and Validation Operations,

Sman tne special STURE statement.

0

DATA fkANSFUPMATION STATEMENTS:

The basic transformations required to restructure hierarchically

modelled data structures are:

1. Lateral--Yove values from source to taroet fields which are on
the same corresponoing level.

2. Uown--Move a single source value into each of its lower level
(descendant) target fields.

3. UP--vove a single occurrence of a lower level source repeating
group field up to a target entity, or perform an operation on all
members of the source repeating group field and move this sinqle result
uv to the target field.

The central concept necessary to comprehend data transformations

is tnat of "correspondence" between the source and target data group

levels. Although a source and a target group may be on different

reirarchical levels, they may be in correspondence. A more formal

definition of this concept is:

correspondence: A target group X corresponds to a source
group Y it for every group instance in X there exists
a unique oroup instance in Y.

Consider tne following source and target file descriptions:

.9

Conversion Definition Lanquage 80

SOUICE FILE DESCFIPTION

---------- ----------------------------------
I DE-NAME I DEPT-ADDP I EMPLOYEE PG I
-------------------------- -----------

L-AGE I SKILL PG I JOB-HIST RG I.. _T_ T __ ------..I" i~
SSKILL-CODE I YPS-EXP I COMP I YR I SAL I

SI A10. Department name.

82 A20. Department address.
REPEAT 10 BEGIN. Start EMPLOYEE RG (max 10 sets)

S3 A15. Employee Name.

54 12. Employee Age.

REPEAT 3 BEGIN. Start SFILL PG (max 3 sets).

b5 AS. SKill Code.
b 12. Years experience at this skill.

END. End of SKILL PG.

PEPEAT 5 BFGIN. Start JOB-HIST RG.

67 A15. Company name.

58 12. Year started with company.
59 F9,.2, Yearly Salary.

END. End of JOB-HIST PG.

END. End EMPLOYEE PG.

TAPGEL (52K) FILE DESCRIPTION

I EMPL-NAME I AGE I DEPT I #-SKILLS I PRIM-SKILL I JO8HIST kG I
--------------------------- --------------------- ------- ------ -------

SCOMPANY I SALARY I YEAR I

1* EMPL-NAME(NAPF X(15))
2* EMPL-AGE (IN7F:GER 9(2))

3* PRESENT-DEPI (NAME X(1O))
4* NUM-UF-SKILLS (NON-KEY INTEGER 9)
5* PRlMAPY-SVlLL (NAME X(5))

b* JUBHIST (PG)
7 7* COMPANY (NON-KFY NAME X(15) IN b)

H* SALARY (NON-PEY MONEY 9(9).99 IN b)

9* YEAH-STAPTED (NON-KEY INTEGER 99 in b)

- .--

Conversion Definition Language 81

The source file contains three hierarchical levels, while the

target file contains two. rhe source file's second level (EMPLOYEE

record) corresponds to the target's first level (EMPLOYEE). Thus,

desired data on the first source level would have to be moved "down" to

tne target file (i.e. DEPT-NAME to DEPT). Likewise, desired level 3

source data would either be moved up (i.e. NUM-OF-SKILLS) or moved

laterally across (i.e. all fields in JOBHIST repeating group).

Specific examples of these operations are presented with the discussions

of each data transformation operation.

DIRECT will perform the "lateral" data transformation, as

previously detined. both source and target fields must be on the same

corresponding levels. If a constant value is desired in a target field,

the constant may be input in place of a source component number. This

should be a legal EOPTRAN constant, i.e. nH should precede character

typed data.

SYnIAA:
..... -<temp>-l

1 <constant> I I I
-bIRECT -- I - -I -- - - -I~ TO -- <trgt s>-- .

I <src #> I

wnere <src > A component number from the
source file definition.

<constant> = Any legal value which will be placed in
all occurrences of the target field.

<temp> = A FORTRAN variable used in a user
written CONVERSION statement.

<trgt #> z A comoonent number from the target
S2K database definition.

Conversion Definition Languaae 82

EXAMPLES:

t DIPRCT 53 TO C1. Employee Name.
DIRECT 57 TO C7. Company name (JOBHIST HG).
DIRECT S9 TEMPREAL TO C8. Converted salary.
DIRECT 9999.99 TO C8. Constant put in Salary.

REPEAT will perform the "down" data transformation, as

previously defined. The source field, which is at a higher

corresponding level then the target field, will be moved "down" to the

target field.

SYNI'AX:
!- temp>-I
I I

--- REPEAT -- <src #>-I -------- I--IN -- <trqt #)--

%here <src #> = A component number from the
source file definition.

<temp> = A FORTRAN variable used in a user
written CONVERSION statement.

<trgt #> = A component number from the
S2K database definition.

EXAMPLES:

REPEAT S1 IN C3. Dept-name.
PEPEAT SI TEMPINT IN C3. Converted Dept-name.

Conversion Definition Language 83

LiI" 44I 5ZALkz.

LEVELUP performs the "up" data transformation for the case of

moving a specific occurrence of a source repeating group field up to the

target field. The specific occurrence is indicated by the clause

"l=<nl,n2,...nn>". The values of <nl,n2,...> represent the specific

occurrences of each of the field's ancestor data sets, with the last

value <nn> representing the occurrence of the field's repeating group

itself. 'Ine order of "n" should be input in the same hierarchical order

as the oatabase schema. Therefore, the first occurrence of a field

which is two levels down would be indicated bY "I=n,1", where "n"

represents the occurrence of the field's parent. If the parent's third

occurrence is desired, "1=3,1" would be the proper input. In most

cases, the LEVELUP transformation will move source fields that are only

one level away. For example, the proper input for the second occurrence

of a repeating group only one level down would be "1I=2". All

occurrences must be referenced by an integer except the "last"

occurrence in a repeating group. Since the last occurrence may be a

different relative number for each set, the term "LAST" may be used in

place of the integer "n".

f SYN IAX:
I -<tem'>- I
i I

-- LEVELUP -- <src *>-- I<nl,n2,...nn> -- I -------- I-- TO -- <trgt *>--.

where <src #> = A component number from the
source definition.

<temp> = A FORTRAN variable used in a user
written CONVERSION statement.

<trqt 0> = A component number from the target
S2K database definition.

<nl,n2..>= 7ie relative occurrence number for the field's
ancestor groups and the groups the field resides
In. "n" may also be the term "LAST".

Conversion Definition Language 84

E XAMPLE:

LEVELUF S5 1=1 TO C5. First Skill Code.
LEVELUP S5 I=LAST TO C5. Oldest (last) Skill Code.
LEVELUP S5 1=1 TEMPCHAk TO C5. Converted Skill Code.

UPOP (Up-operation) performs the "uP" data transformation for

the case where an operation is performed on all occurrences of a source

reoeating group field, deriving a single result from the operation.

This single result is then moved up to the target field. The avallible

operations include MAX, MIN, AVG, COUNT and TOTAL.

SYNTAX:
I IMAX I i-<temp)-I

I MI I I I
-- UPUP -- I AVG I--<src #>--I -------- I-- TO -- <trgt #)--.

I COUhi I
I TOTAL I

where MAX = The source field's largest value in the RG.
MIN = The source field's smallest value in the PG.
AVG = The source field's average value.
COUNT = The number of sets in the source PG where the

source field's value is anything but -null-.
TOTAL z The total of the source field's values in the PG.

EXAMPLL:

UPOP COUNT S5 TO C4. Number of Skills

--- " L - -,

Conversion Definition Language 85

VALIDATION AND CONVERSION STATEMENTS:

Occasionally the source data values are not In the format or

content desired for the target record. Also, editing of the source

I input Is sometimes desired to provide increased data Integrity. These

£ two capabilities are provided by the CONVERSON and VALIDATE statements.

Because it is Impossible to predict the type of conversion or validation

routine a user may need, these statements only provide the means for the
r

user to write the actual conversion/validation code necessary. The user

written code is incorporated in the generated FORTRAN program~unaltered

(except for the source component number). Thus, the user must adhere to

proper syntax, column spacing, etc.

The CONVEPSION statement gives the user the capability of

inputting FORTPAN source code which will execute desired conversions on

source fields. If possible, the results of the conversion should be

placed in the original source field. If however the result is a value

which will not legally fit in the original source field, the result

shoula be placed in a temporary variable. This temporary variable

should be one of tte following, depending on the type of the result:

(integer TEMPINT

real TEMPREAL
character TEMPCHAR(I..N)

(I

Ittersl scaate,(t.utf h haatr,(0caatr

iI
Conversion Definition Language 8b

per word), in the variable "TEMPCHAP" startinq with index number 1. The
I

proper TEMPCHAP subscripts must be used in the user written FORTAN

code. However, no subscript should be input when referring to TEMPCHAR

in a data tra forration statement. Subscript "1" wiljoe assumed.

Sa
* Since the CONVERSION statement only alters the value of the

source field, a data transformation statement must be used to actually

move the converted value to a target field. It a temporary variable is

used, both the original source field component number and the temporary

name must be included in the transformation statement. The temporary

name must be in the statement to tell the system the source value is in

the temporary and not the source field.

SYNTAX:

---- CONVERSION BEGIN.

---- (user written FORTRAN code>----

.... END.

(EXAMPLES:

CONVERSION BEGIN.
CCC
C Add I year to each EMPLOYEE-AGE.
CCC TEMPINT = S4 + 1

END.
£ DIRECT TEMPINT TO C2.

CONVERSION BEGIN,
CCC
C Change all "5blB" skill Codes to "9661B"
g IF (S5.EO.5H5bbiB) S5=5H96blB

END.
LEVELUP 55 1=1 TO C5,

,- \~--- ~ .--

Conversion Definition Language 87

1a fIaLt 4zdetP.L.L

VALIDATE gives the user the capability of validating a

Particuiar source field value before it is stored in the database. The

user must write the validation code, just as is necessary for tne

Conversion statement. Somewhere within the user written code the

FOHIPAN variable FAIL must be set to TRUE or FALSE. If the validation

*of the source field fails (i.e. FAIL = TRUE), the user may choose to

reject the data set being processed (REJSET) or put nulls in the source

field and continue processing the data set (REJFLD). It the user wishes

no action to be taken on a validation failure, the Conversion statement

should be used instead of the Validation statement. No data

transtormation operation is associated with the Validation statement, as

is the case with the Conversion statement. Thus, the proper data

transtormation operation must be input following the Validation

statement.

SYNIAX:
S--- VALIDATE BEGIN.

---- <user written FORTRAN code>----

I REJSET I
--- END FAIL . . I--- .

I REJFLD I

EXAMPLE:

VALIDATE BEGIN.

CCC
C Validate AGE-- 18<=AGE<=75

r CCC

k'AIL:.FALSE.
IF (S4.LS.18 .OP. 54.GT.75) FAIL=.TRUE.

(END FAIL = REJFLD.
DIECI S4 TO C2.

Conversion Definition Language 88

S2K data sets must be built in the hierarchical order that they

are defined. A Level 0 data set must be created before its descendant

data sets may be "attached" to it. Data sets are created by loading the

fields with the desired data and "storing" the data set. using this

system, the user loads the data fields using the data transformation

stitements Previously defined. He must also "store" the data set by
inputting the SICRE statement. These statements should be input

immediately after the data transformation statement for the last field

in each data set. 'The set name should be the same as that used in the

S2K database definition. Use the name "LEVELO" for the Level 0 set

name,

SYVTAX:

---- STORE -- data set nahe>--- .

where <data set name> The name of the data set, as defined
in the S2K databaseinput.

EXAMPLES:
STORE LEVELO.
STOPE JOBHIST.

1(

U.I

- --,-!

F- -

System Usage 89
I

SECIIUN 3 -- SYSTEP USAGE

4

This section will give instructions on how to generate a FORTRAN
I

program, how to review and modify it, and how to execute it. A complete

*example input and resulting generated program is then presented.

I 3.A HOO TU GENERATE A FORTRAN PROGRAM

To generate a FORTRAN program, the user must first have a card

deck containing the required Command language input, Source and Target

file descriptions, and the Conversion language inputs, (see Sections 1

and 2 ot this manual). This deck will serve as input to the system,

Ine complete Job set-up is shown below. Note that the user is required

to input only a single command card with the input card deck. All of

the other commands needed are supplied by the source to S2K System.

Job Set-up for Generating a VOFTFAN Program:

<user id>
<password card>
<run card> (optional)
READCCF', 9294, GENPATE
7/8/9 (multi-punched)
<users complete input card deck>
6/7/8/9 (multi-punched)

The user will receive output from the system showing what was input and

any error messages, It there were no errors, a FORTRAN program is

generated and Passed to the compiler. The user will then receive the

compiler output. It is possible to have FORTRAN syntax errors in the

Systen, Usage 90

generated program due to erroneous user input the Source to S2K System

did not find. The user may correct these errors in two ways. The first

is to correct the original input ano generate a new FORTRAN program.

The second is to modify the generated FORTRAN program itself. This

procedure is described in Section 3.B.

3.4 HOW TO MODIFY THE GENERATED FORTRAN PROGRAM

Each aenerated FORTRAN program must have a unique name,

otnerwise different users would be erasing each others's files. Thus,

the name of the generated FORTRAN program is the first four letters of

the database name followed by the letters "SRC" (for source). For

example, if the database name is EXAMPLI, the generated FORTRAN program

Woula be stored under file name "EXAIASRC". All source files are stored

on permanent library 9294. Thus, in order to edit the FORTRAN Program

tor the E.XAPPLI database, the command

READPF, 9294, EXAMPLI

is all that is needed. The user can then modify this file using the

iT-2D editor EDIt. If batch editing is required, dumping the file to

(- PUNCH will produce a card deck of the source FORTRAN program.

g

3.C HUw TO EXECUTE THE GENERATED PROGRAM

Once the generated program is free of errors, the user is ready

to perform the actual conversion. A file containing all of the required

r

I

system Usage 91

control commands for each job is qenerated bV the Source to S2K System

at the same time it generates the FORTRAN program. Since the file must

* have d unique name, it is made up of the letters "EX" (for execute)

followed bV the first four letters of the database name. Using the

example database EXAMPLI, the generated command file name would be

"KXLXAM". This file will also be stored on permanent library 9294. The

only input needed to execute the generated conversion program is shown

below. if tbe source InDut is on cards, thev should be included in the

deCK after the 7/6/9 multi-punched card.

Joh bet-up for Executing the Generated FORTRAN Program

<user id>
<pdssword card>
<run card> (optional)
kEAUCCF, 9294, EXEXAY (file name will be different for each Job)
7/R/9 (multi-punched card)
<it source input is cards, input them here>
b/7/8/9 (multi-punched card)

Execution of the above job deck would result in execution of the

generated FORTPAN program as well as savinQ the S2K database on the

permanent library (as directed by the LOCATION card, see Section 2.8).

Should the user need to modify the generated command file, it may be

done in the same manner as modifying the generated FORTRAN program (see

Section 3.b).

t

AO-AlO6 282 AIR FORCE INST OF TECH WRIUHT-PATTEASC4 AF6 ON , /
THE SOURCE To UK CO#EVERSIom SYSTEM. (Ul F/L/

DEC 76 .J L STEVENS
UNCLASSIFIED AFIT-CI_79-262T NL2llffflll llff

EIIE7Z

System usage 92

3.D CUMPLETE EXAPPLE

* This example will use the source and target databases described

in Section 2.F. The system will generate a program to convert the

source input file "DBINPUT" to the 52K database "EXAMPLI". The S2K

* database description is stored in tile "EXIDESC" on permanent library

9899 (password 1221). The source file (DBINPUT) is a disk file on

permanent library 6656 (password 1334). A null field will be indicated

by the blank character.

Job Input tor Datatase EXAMPLI.

** COMMAND.
LOCATION 1EXIDESC/9899/1221.
RUN = F.
TYPE = I.
EMPTY=
** SOURCE.

FILE = DbINPUT/bb56/1334.
DEVICE zDISK.
S1 A1O, Department name.
S2 A20. Department address.
EEPEAT 5 BEGIN. Start EMPLOYEE PG (max 5 sets).

53 A15. Employee name.
54 12. Employee age.
REPEAT 3 BEGIN. Start SKILL PG (max 3 sets).

55 A5. Skill code.
Sb 12. Years exp. at this skill.

END. End of SKILL PG.
AEPEA 3 BEGIN. Start JOBHIST RG.

S7 A15. Company name.
S8 12. Year started with company.
659 k9.2. Yearly salary.

END. End of JOBHIST PG.
END. End of EMPLOYEE RG.
** S2K,
USEH,PASSI
NEO DATA BASE IS EXAMPLI
1* LMPL-NAME(NAME X(15))
2* EMPL-AGE (INTEGER 9(2))
3* PRESENT-DEPT (NAME X(10))
4* NUM-UF-SKILLS (NON-KEY INTEGER 9)
5* PRIMAKq-SKILL (NAME X(5))

- b* JUBHIST (PG)
7* COMPANY (NON-FEY NAME X(15) IN 6)
H* SALARY (NON-$EY MONEY 9(9).99 IN b)

I

£mm

System Usage 93

9* YEAR-STARTED (NON-KEY INTEGER 99 IN 6)
** CONVERSION.

DIRECT S3 £0 C1. (Employee Name)
DIRECT S4 ro C2. (Employee age)
REPEAT 51 IN C3. (Department name)
UPOP COUNT S5 TO C4. (Number of skills)
LEVELUP S5 1=1 TO C5. (Primary skill)
S'OkL LEVELO, (End of LEVELO data set)
DIRECT S7 TO C7. (History-company name)
DIRECi S9 TO C8. (History-salary)

* DIRECT S8 'To c9. (History-year started)
STOHE JOBHIST. (End of JOBHIST data set)

S

The following FORTRAN program was generated by the Source to 82K

Conversion System as a result of the above input.

PROGHAM PROGEXI (DBINPUT, OUTPUT, TAPEIsDBINPUT)

IMPLICIT IN7EGER (A-Z)

C

C

C * THIS PROGFAM WILL READ FILE "DBINPUT" AND CONVERT
C * IT TO THE S2K DATABASE "EXAMPLi". THE NEWLY
C * BUILT DATABASE WILL BE STORED UNDER THE FILENAME
C * "EXIDESC" ON PERMANENT FILE NUMBER 9899.

(C

C

C -- COMMON BLOCK DECLARATION --

*PL COMMBLOCK/EXAMPLI/ SCHNME, RCODE, FILLER, LDSET, PASSW, NUMPG,
*PL RGPOS, LEVEL, TIMEX, SDATE, CYCLE, SEPSYM,
*PL ENDTERM, STATUSX.
C
C SCHEMA NAME -- LFVELO --
*PL SCHEMA/LEVELO OF EXAMPL1/ C1(2), C2, C3, C4, C5.

£ C
C SCHEMA NAME -- JOBHIST --
*PL SCHEMA/JOBHIST OF EXAMPLI/ C7(2), C8, C9.

C
*PL EN=D SCHEMAS.
C
C -" REAL DECLARATIONS FOR SCHEMA --

REAL C8, TEMPREAL, AVG
d C

C -- GLOBAL DECLARATIONS --

DIMENSION BUF(61), SRC(108)

r

S -~ i ! ,i

system Usage 94

C
*C -- PARAMETER DECLARATIONS --

EMPTCHR = 1
C
C -- MISCELLANEOUS FORMATS --

DO FORMAT(X,* INITIAL LOAD OF THE EXAMPLI DATABASE*,//)
62 FORMAT(X,* TIME = *,AIO,/,X,* DATE = *,AtO,/)

1300 FORMAT(//,X,*-- EOF -- *,I/)

1320 FORMAT(//,X,*-- CLEARED DATABASE. CYCLE x *,14)

1500 FORMAT(//,X,*-- PARITY ERROR ON LAST READ. BUF ,

1520 FORMAT(//,X,*-" FORMAT ERROR ON LAST DECODE. BUF =

5000 FURMAT(//,X,*-- SUMMARY OF INITIAL LOAD RUN FOR EXAMPLI*,/)
5010 FORMAT(X,*NUPBER OF SOURCE RECORDS READ = *,Ib)

g 5020 FORMAT(//,X,*NUMBER OF I/0 ERRORS *,16)

C -- INITIALIZE LOCAL DATA --
Do 55 l=l,l08

SRC(i) = lIO
55 CONTINUE

ERR 0
ICNT 0

C
C -- PRINT INITIAL PROGRAM HEADER --

PRINT 60
CALL TIME(I,J)
CALL DATE(J)
PRINT 62, I, J

C
C -- OPEN DATABASE --
*PL START S2K.

PASSW = 10HPASS1
*PL OPEN EXAMPLI.

IF (RCODE.EQ.0 ,AND. STATUSX.EQ.O) GOTO 70

CALL PFTEPR(1,1,RCODE)
GOTO 999

70 CONTINUE
C
C -- PUT IN QUEUE MODE

*PL QUEUE.
* C

C -- MAJOF READ LOOP --

100 CONTINUE
IICNT = ICNT + I

READ(ENDi900,1) HUF
C

£ C -- CHECX FOR PARITY ON LAST READ --

IF (iOCHEC(1).NE.0) GOTO 950
C

£ C -- ECHO PRINT INPUT (EVERY TENTH RECORD) --

I:MUD(ICNT,10)

IF (I .EQ. 0) PRINT *, BUF
CC

C -- DECODE STATEMENT NUMBER I --
NUMChAR = 120

I

g

S.-" 2.7. - -I I

System Usage 95

DECODE(.EPR.=9bO, NUMCHAP, 2010, BUF) (SPC(I), 1=1,20)

2010 FORMAT(AlO,A20,AI5,I2,A5,I2,A5,I2,A5,I2,A15,12,
ft F9.2,A15,I2,F9.2)

C

* £C -- SHIF] REST OF' BUFFER TO WORD ONE --

J=1
D0 151 I = 13,61

BUF(J) = BUF(I)
J=J+l

151 CONTINUE
C
C -- DECODE STATEMENT NUMBER 2

NUMCHAR z 90

VECODE(.EPP.=960, NUMCHAR, 2020, BUF) (SRC(I), I=21,37)

2020 FORMAT(A15,12,F9.2,A15,I2,A5,I2,A5,12,A5,12,A15,
- 12,F9.2)

C
C -- SHIFT REST OF BUFFER TO WORD ONE ""

Jz1
10 152 I = 22,61
8UF(J) = BUF(I)
J=J+1

152 CONTINUE
C

C -- DECODE STATEMENT NUMBER 3 -

NUMCHAR z 90
DECODE(.ERR.=960, NUMCHAR, 2030, BUF) (SPC(I), I=38,54)

2030 FORMAT(AI5,12,F9.2,AI5,12,F9.2,A15,12,A5,12,A5,12,
* A5,12)

C -- SHIFI REST OF BUFFER TO WORD ONE --
J=1

DO 153 I = 31,61
BUF(J) = BUF(I)

r 15=3
153 CONTINUE

C

C -- DECODE STATEMENT NUMBER 4 --

NUMCHAR Z 100
DECODE(.ERR.=960, NUMCHAR, 2040, BUF) (SPC(I), 1=55,70)

2040 FORMAT(A15,12,F9.2,A15,12,F9.2,A15,12.F9.2,A15,12,A5)
C

C -- SHIFT REST OF BUFFER TO WORD ONE -"
J=l

DO 154 I = 41,61

BUF(J) = BUF(1)
tJ=J 1

154 CONTINUE

C
c C -- DECODE STATEMENT NUMBER 5 --

NUMCHAP = 130
DECUDE(,EPR.&960, NUMCHAR, 2050, BUF) (SPC(1), 1=71,95)

2050 FORMAT(12,A5,12,AS,12,A15,12,F9.2,A15,12,F9.2,A15,
- 12,F'9.2,AI5,I2,A5,12,AS,12,A5)

C

Q

1 - -

System usage 96

C z -- SHIFT REST OF BUFFER TO WORD ONE

00 155 1I 54,61BUF(j) =BUF(I
J=J+1

155 CONTINUE
C

* C -- DECODE STATEMENT NUMBER 6 -

NUMCiNAR a 80
DECOI)E(.ERR.=9b0, NUMCHAR, 2060, BUF) (SRC(I), 1=9b,108)

* 20bU FORMAT(I2,A15,I2,F9.2,AI5,I2,F9.2,A1S. 12,F9.2)
C
C -- CONVERSION PROCESSING -

* C
C -- LEVELO DATA SET -

300 CONTINUE
* DO 320 12 =1,5

1NUEX2 =4 4 (12-1)*21
Cl =SPC(INDEX2)

INIJEX2 =5 + (12-1)*21
C2 =SPC(INDEX2)

C
INDEXI 1
C3 =SRC(INDEX1)

* C
COUNT=0
DO 330 13 =1,3
1NDEX3 =7 + (12-1)*21 + (I3-1)*2
IF (SPC(INDEX3) .EQ. EMPTCHR) GOTO 330
COUNT=CUUNT. 1

330 CONTINUE
C4 =COUNT

C
1NDEX3 =7 + (12-1)*21 +' (1-1)*2
C5 SRC(INDEX3)

C
(PL INSERT LEVELO.

IF (ACODE.NL.0) CALL PPTEPP(2,1,RCODE)
C
C -- JORHIST DATA SET -

C400 CONTINUE
DO 410 14 = 1,3

g INDEX4 z28 + (12-1)*21 + (14-1)*12
C7 z SRC(INDEX4)

C
INDEX4 a 30 + (12-1)*21 + (14-1)*12
Co SPC(INDEX4)

C
g INDLX4 x 29 +' (12-1)*21 + (14wl)*12

C9 = SFC(INDEX4)

s pi, INSER4T JObHIST.
IF (RCUDE.N1t.0) CALL PPTERP(2,2,PCODE)

410 CONTINUE

97

System usage

C
320 CONTINUELOPBCU.

C I- FINISHED WITH THIS RECORD. LOOP BACK UP. --

Go TO 100I c
C -- Eop DETECTED ON LAST READ --

90 PRINI 1300
C
C -- CLOSE UP DATABASE

4PL IERMINATE.
IF (RCODE.NE.0) CALL PRTERR(4#1,RCODE)

*PL CLEAR.
* PRINT 1320, CYCLE

*PL CLOSE EXAMPLI.
IF (RCODE.NE.0) CALL PRTEPR(3,1,RCODE)

*PL END PROCEDUPE.
GOTO 999

C
C
C -- PARITY ERROR DUPING LAST HEAD -

950 PRINT 1500
PRINT *, BUF

GOTO 100
C

C -- FORMAT ERROR DUPING LAST DECODE --

900 PRINT 1520
PRINT *, BUF
EHR=ERR+I
GOTO 100

C
C
C -- PRINT JOB SUMMARY

999 CONTINUE
PRINT 5000
PRINT 5010, ICNT
PRINT 5020, ERR
END

C
C -- SUBROUTINE PRTERP (PRINT ERROR)
C

C THE PARAMETERS ARE:

C INST I INSTRUCTION NUMBER, WHERE

C IXOPEN, 2zINSELT, 3"CLOSE, 4=TEPMINATE

C LOC THE LOCATION IN THE PROGRAM THE ERROR

C *AS DETECTED.

C pTNC INE RETURN CODE THE S2K SYSTEM RETURNED.

SUBROUTINE PPTERR(INST, LOC, RTNC)

9000 'ORMAT(/X,* -a-. DATABASE ERROR 9/)

9010 t'ORMAT(X.*INSTRUCTION a *,13,* LOCATION x a*13,

- PETURNCODE x *,13)

C
(

.1- _ __

System Usage
98

PRINT 9000
PHINT 9010, INSTP LOC, RTNC

Ip KETURN
~END

,

il

(.

E L ,i I |.

Index 99

t

g INDEX

page

I

Command 65

Continue 73

Conversion 85

Conversion. 78

Density 73

Device 71

Direct 81

Editing 75

Empty 68

l End 75

Fielo 75

(.File 70

Levelup 83

Location 65

Logical 74

-. Mode name o , . . * , * , . . , b4

C

Index I00
(

Multireel 72

6 Origin 71

Record 72

S Repeat 75, 82

Run b b , . , , . . .

Source. b9

Store 88

System usage 61

Target , . 77

Transtormations . . , , 79

Type b b . * , , , . b

Upop 84

Validate 87

I

(

APPENDIX b

Generated Command File Examples

rhe following example tile listings contain UT-2D commands

generated by the Source to S2K Conversion System.

F'ILE "ENFA'IE"

File "GENRATF-" Is Called by the user to read his input

* and generate a conversion program.

"(ENPATE"'s commands, as listed below, are the same for each user

and database.

6
File GFrNPAIE

FXECPF, 9294, SRCT52K* PEADCCF, 9294, CONMPILC

6

* FILE "CUMPILC"

File "COMPILC" is called by file "GENRATE" during the
* conversion Program generation Phase. This tile is unique to each
/1,

101

t-
e l mu n I O I .. u m n -

101

database user. The database name for this example Is "DUNS".

INote the name of the qenerated conversion program ("DUNsSPC") and

generated execution commands file ("EXDUNS").

* File CUMPII.C
PEWIND FORTSRC

S(JRTPRG
PENAME FORTSRC DUNSSRC
SAVEPF, 9294, 3217, DUNSSPC

RENAME EXECC EXDULNS
SAVEPF, 9294, 3217, EXDUNS
PEWIND DUNSSRC
PUNLIC, PLF, I=DUNSSPC, B=DUNSOBJ, PE=3

0 FIlLL 11EXDOfSO"

File "EXDUNS" is a unique file and unique file name for

each datatase user. Note the file recompiles tne generated

conversion program, readies the database files, readies the input

source tile, executes the generated conversion program and

tinally, saves the database. The following data is relevent to

this example:

Database Name: DUNS
File ?nare Database Is Stored Under: DUNSDB
Database File Library Number and Password: 9299/3b42

Source File Name: INFILE
Source File Device: TAPE
Source File Tape Number and Password: 8Rb8/1b48
Source File Characteristics: Foreign Tape; Density=BOOBPI;

Record Length = 1200 bytes

Ir

(
--1 m

I 103

F~ile 'FXVUNIS"
PEADPF, 9294, DUNSSRC

F PUBLIC, PLE, 1=DUNSSRC, B=DUNSDHJ, P,E=3
PEADPF, 9299, DUNSDB

* 521(RS, DR~, DUNSDFH
REQUE~ST, INFILE, 8868/1648, PO, HI, B, 100.
I) U N6
S2t(RS, DS, DUNSDH
SAVEP', 9299, 3b42, VUNSDIA

RE EEENCES

[1] bAKKOM, David E.,
"Implementation of a Prototype Generalized File Translator",

Honeywell Information Systems, Inc., pj ", 17 AU ap." [a.L.
rnn±. an 64gtipeanL aL "L , San Jose, Cal., 1975, pp. 99-110.

[2] BUNEMAN,, Peter U., et al.,

"ASAP to PEI; Efficient Relational Data Bases from Very Large

Files", University of Pennsylvania, haxa.L R""Z" x.ctala.L.

ekL.L L= AJ.A, January 1975.

Systems Development Corporation, November 14, 1975.

[4J DlJKSTPA, L.A.,

"The Humble Programmer", CQZ al LUA AL, Vol. 15, NO.
10, pp. 859-866, October 1972.

[5] VLOJD, P.A.,

"Assignina Meanings to Programs", 2.rZ x.Q Lsd. QL Ama.ciran
lb LL~aZAL±g~a. "Cj&LW. S4ZpjUX. A"14 L4A~ZL~l± Vol. 19,
pp. 19-31, 19b7.

(bi FRY, James F., et al.,

"A Developmental Model for Data Translation", P.r. .-922

-,WjEjL1 j~rr-a QA "La "&C..ntinn. AcC41 A Canrrnj.,
Denver, Colo., pp. 77-105, 1972.

(7) FRY, James P., et al.,

"An Approach to Stored Data Definition and Translation",

University of Michigan, AIL Forro QlfL at cLt 4 Me.aL

0 ..AZZ 122=221.2, December 1972.

* (H1 HOAHE,, C.A.P.,

"An Axiomatic Basis for Computer Programming", C. m AtL±nfl al

.l AU, Vol. 12, No. 10, pp. 576-583, October 19b9.

191 JENSFSI, ., and WIPTH, N.,
,} q.AL I£ lankta. Ra. L, Sprinqer-Verloa, New York, 1974.

S HOM KOEH,, G.J., et. al.,

IL&Ld VAZla.AL ageiem.% CULA1.Q.g, The Mitre Corporation, Bedford,

*MaSs., January 1973.

104

I$

C ... I i il I | I -

II

I [11J MERTEN, Alar, G., et.al.,
"A Data Description Language Approach to File Translation", Data

Translation Project, p".C&&4.LLA .LL & Qfl a
£ L1CL a." A. e.ii a CAZ."A.LJW. , Ann Arbor, Michigan, ppo.
191-205, May 1974.

(12) MERfEN, Alar G.,
"A Theoretical Analysis on Data Definition and Translation", A.L
Vnr.-e L111 c- al al±U." fi-=BC Lk Alt.L.. - , December
197b.

(13J NAVAHE, Shamkant B., et. al.,
"Restructuring for Large Databases: Three Levels of

Abstractions", ACM Z:An1aCL±.% ,a L&abaZ LL£m1, Vol. 1, u.

2, pp. 138-158, June 197b.

[14J PARNAS, D.L.,
"On the Criteria To Be Used In Decomposing Systems Into Modules",
rnIMDz1CIjz-% Q1 =& ACE, Vol. 15, NO. 12, pp. 14b-151,
December 1972.

(151 RAMklZ, J.A., et. al.,

Amfrn&LJ LAzUL al "4La rnnyprgin~n pZaZ." LLSLng a LI4Ld
Lr.rx-LULZ±Z LdaQgae... Q1 1 .. 11, University of Pennsylvania,

Philadelphia, Pa., May 1973.

[I61 PAMEPIZ, J.A.,

9 "Automatic Generation of Conversion Programs Using a Data
Description Language (DOL)", Ph.D. Dissertation, University ot
Pennsylvania, 1793.

[17j HOT, David J.,

"Converting from Rectangular to Relational Data Bases",
University of Pennsylvania, ff f ip al UJyl .. L.tLL

* LL U = .222, September 197b.

(1h) SI-USHANI, A.,
*"A Logical-Level Approach To Data Base Conversion", Systems

Development Corporation, Ernv-.dnc ±-U. ACA ZIGXL" CLgZXeJ=&
au MaP.m£L al Aa.a, San Jose, Cal., pp. 112-122, 1975.

[191 SHU, N.C., et. al.,

"EXPPESS: A Data EXtraction, Processing and REstructuring
* system", ACA ILa.La4I& " nQ, .ah.aba Aie.ma, Vol. 2, No. 2,

pp. 134-174, June 1977.

* (20] AIRTH, N.,
"Prograr Development by Stepwise Refinement", AaM1nlto.A1n al
IZA ACZ, Vol. 14, No 4, pp. 221-227, April 1971.

C

• v-

I..

10o

2J YEH P1, and BAS l, S.K.,10

"Stronq Verification of Programs", .LiFkE Zianart.iLnns a Lgjtw.4_
S kg e tz. i .n ., Vo l . SE -i , No . 3 , pp . 339 -346 , Sep tembe r 19 75 .

e
i

t

b
S

S

S

0

S

4-

S

I I I I I I

(

VITA

S

Jonathan Lee Stevens was born in Poswell, New Mexico on

July 24, 1948, the son of Jack D. and Yvonne K. Stevens. After

graduating trom baKenheath High School, Lakenheath England, he

attended the University of Washington, Seattle Washington, for

one year. He then received a Presidential appointment to the

United States Air Force Academy, entering in June 1967. He

graduated with the degree ot bachelor of Science in Computer

Science and the rank of 2nd Lieutenant In the United States Air
YForce. From August 1971 to October 1973 he was assigned witn the

4629th Support SAGE Squadron as a Computer Programmer, and was

promoted to Ist Lieutenant. From October 1973 to August 1977 he

S worked as a Systems Analyst at the Military Personnel Center and

*was promoted to Captain. In August 1977 he entered the Graduate

School of the University of Texas.

* Permanent Address: 9117-189th Place, S.W.
Edmunds$, ashington, 98020

107

S

t

IAI

