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SECTION I

INTRODUCTION

Crystalline barium titanite (BaTi0 3) is known to undergo a series

of phase transformations. On cooling, its crystal structure goes from

cubic to tetragonal at 1200 C, tetragonal to orthorhombic at 00 C and

orthorhombic to rhombohedral at -900 C. In the tetragonal phase, there

is an opposite shift of the titanium and oxygen sublattices so that for
.4 0

this phase, at approximately 00 C, the lattice parameters are a = 3.990 A

and c = 4.035 A (- 1 = 0.0113). In the cubic phase, crystalline asa
well as polycrystalline BaTiO 3 is paraelectric, while it is ferroelectric

in the tetragonal phase. At the Curie temperature, 1200 C, the dielectric

constants vs. temperature curve shows a sharp peak. For polycrystalline

specimens, the magnitude of the relative dielectric constant at the peak

is 12,000-4000 and 2500-200 at room temperature (Reference 1). Crystalline

tetragonal BaTiO 3 has a dielectric constant of 200 in the c direction and

4000 in the a direction at room temperature.

BaTi0 3 crystals are birefringent. The refractive index of BaTi03

had been studied on single crystals only. The average value of the two

principle indices for single ferroelectric domain crystals is reported

to be 2.40 at room temperature in the visible [no = 2.428, ne = 2.371

(XNa _ (Reference 2). A jump of 1.3% is found for the ordinary n at the

Curie temperature, no = 2.368 to 2.398 for X = 589.3nm (Reference 3).

This behavior of the index is in accordance with Mott's relation

2

n < E < DK (1)

where n is the refractive index, c is the dielectric constant and DK

is the static dielectric constant (Reference 4). Optical changes of the

refractive index by intense laser flux were reported in BaTiO 3 single

crystals (Reference 5).

1
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The production and dielectric properties of BaTi0 3 thin films were

studied by many investigators because of their potential application as

a high dielectric constant material in microelectronic elements of high

capacitance per unit area. Films of BaTi0 3 were produced with various

vacuum techniques of which rf sputtering appears to be the most repro-
ducible method.

It has been reported that both amorphous and tetragonal BaTiO 3

films can be produced by rf sputtering depending on the substrate

temperature and ratio of oxygen to argon. The latter controls the

stoichiometry of the film. Rf sputtering in pure argon on substrates

held at room temperature resulted in BaTiO 3 films which showed no

crystalline patterns in the X-ray diffraction, i.e., amorphous films

(Reference 5). The relative dielectric constant of such films was

low, in the range of 10-20 (Reference 6).

When BaTiO 3 is sputtered in an oxygen/argon mixture (about 5%

oxygen/95% argon) on substrates held at temperatures above -600' C,

X-ray diffraction patterns of the films show an amount of tetragonal

crystalline structure (Reference 7 and 8). The dielectric constant

increases by an order of magnitude. The higher the substrate temperature,

the larger the amount of tetragonal phase observed. Sputtering on

substrates at temperatures up to 10000 C were reported (Reference 7).

In the framework of studying the behavior of optical parameters

of materials undergoing phase transformations, the present work was

aimed at studying the optical parameters of ferroelectric films, speci-

fically of sputtered BaTi0 3 in the region of the tetragonal to cubic

transformation. The main objective was to investigate the dependence

of the refractive index of sputtered BaTiO 3 films on various sputtering

conditions. Various material characterizations were undertaken to

establish correlations of optical properties to other physical parameters.

The dielectric constant and electrical conductivity were measured

because their magnitude is a very sensitive property of the state of

BaTi0 3 films or bulk material. In addition, apparent densities we-e

measured for various sputtering conditions to determine film compactness.

2
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Other measurements included spectrophotometric measurements of

film absorption and reflection, refractive index, scanning electron

microscopy and X-ray diffraction. All of the above measurements in

thin BaTi0 3 films were also conducted for comparison on hot pressed

ceramic* and single crystal** samples. This provides information for

comparison of thin films to the bulk and sets an upper limit for values

expected from the thin films.

* Provided by K. S. Mazdiyasni, AFWAL/MLLM.

** Provided by Dr. Perry of Northeastern University.

3
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SECTION II

EXPERIMENTAL

In the present study, BaTi0 3 films were produced under several

conditions: amorphous films--sputtered in argon on substrates not

preheated (later referred to as room temperature); and tetragonal

films--sputtered in a mixture of 5% oxygen/95% argon on substrates

preheated to 6000 C or to 8000 C.

1. THE SPUTTERING SYSTEM

The sputtering system used in these studies was an R. F. Sputter-

Etch Module, model SEM-8620 manufactured by Material Research Corporation

in Orangeburg, New York. The unit was operated in the diode rf sputtering

mode for all film dispositions, as opposed to the rf bias sputtering

mode. A fully rotatable triple shutter design provides full protection

of substrates and unused targets during sputtering operations and con-

tamination protection of targets during etch operations.

A "J"-shaped rotatable, water-cooled assembly, as shown in Figure
1, acts as either an anode or cathode and does double'duty as an etch

platform and substrate holder.

The target used for these experiments was "MARZ" grade (99.99%)

sintered ceramic disc of BaTi0 3 150 mm diameter and 4 mm thick. Sub-

strates could be heated during deposition by an electric plate heater

up to 8000 C.

2. SUBSTRATES

Three types of substrates were used in the present study:

a. Optically polished sapphire discs, 25 mm in diameter, 1.5 mm

thick.

b. Optically polished quartz plates 3 mm thick and about 20 x 20 mm.

Quavstz and sapphire substrates for refractive index measurements

were abraded on one side.

~1 4
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Figure 1. Sputtering System
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c. 0.25 mm thick platinum foils about 12 x 25 mn. The platinum

foils were polished with Buehler's 6, 3 and 1 micron diamond

polish paste and 0.3 to 0.05 micron alumina powder micropolish.

Substrates went through three stages of ultrasonic cleaning: Alcanox,

distilled water and ethyl alcohol.

3. OPTIMIZING SPUTTERING CONDITIONS

In order to establish sputtering conditions for films of uniform

thickness distribution, the thickness of amorphous films sputtered on

quartz and sapphire substrates was measured as a function of anode to
cathode distance and of argon total pressure at various sputtering

power levels. The anode plane was a copper pallet on a water cooled

platform. The sputtered film thickness was determined by measuring

the height of a step etched in the film using stylus instruments. A

"Dektak" and a "Tallysurf" surface profile measuring system were used

to measure step heights. Well-defined steps were obtained on both

quartz and sapphire by etching the BaTi0 3 with Krolls solution (5% HF,

10% HN0 3 + water). Prior to etching, a strip of the film was masked with

mylar tape and then the entire film was coated with Apiezon wax. Removing

the tape exposed the film to etching. The wax was removed later with

trichloroethylene and the film was cleaned with ethanol. Since ultrasonic

cleaning removes pieces of the film, it was not used. Thickness

measurements were reproducible to within 2% on both instruments.

Interference thickness measurements with a M-l0 Angstrometer confirmed

the stylus instruments measurements. The best results for Angstrometer

measurements were obtained for films with steps coated (by sputtering)

with a platinum film. This produced high contrast interference fringes

across the step. Figure 2 shows thickness profiles of BaTi0 3 films

sputtered under various condition. A constant thickness region of

about 60 mm diameter is obtained at an anode to cathode distance of

30 mm (substrates were 3 mm thick) and for an argon pressure of 15

mTorr independent of sputtering power in the range from 50 to 300 watts

(rf voltage 460-1100 volts). Film thickness within the 60 mm diameter

6
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were constant within the experimental error of thickness determination

(i.e. within -2 %). During all -Further sputtering of BaTiO3 films,
substrates were placed within the 60 mm region of constant thickness.

All sputtered films looked transparent, homogeneous and flawless.

To clean its surface, the BaTiO 3 target was always presputtered

at 250 watts for about 10 minutes prior to the sputtering run. After

sputtering at high temperature, the substrates were cooled at a rate of

7-8 0C/min to room temperature. This was done to prevent cracking of

the film due to the different thermal expansion of film and substrate.

4. MEASUREMENTS OF FILM GROWTH RATE

In the fixed 30 -m anode to cathode spacing, the rate of film

growth was measured as a function of sputtering power in pure argon and

in a mixture of 5% oxygen/95% argon, both at a total pressure of 15 mTorr.

Identical results were found for quartz and sapphire substrates as is

discussed in Section III "6Results".* However, the rate of growth on

platinum foils was found to be considerably lower. Unlike the quartz

and sapphire, the platinum foils were maintained at ground potential

and at room temperature due to superior electrical arid thermal conduction.

5. MEASUREMENTS OF SUBSTRATE SURFACE TEMPERATURE DURING SPUTTERING

Since film properties are strongly dependent on substrate surface

temperature during deposition, it was desired to determine the tempera-
ture of the substrate surface during sputtering. Quartz and sapphire

are poor heat conductors and their surface temperature during sputtering

* was expected to be higher than the cooled copper pallet. The resistance

* change of a platinum film deposited on a 3 mm thick quartz plate was

used to monitor the surface temperature while BaTiO3 was sputtered on

it at various power levels. The platinum thermometer is shown in

Figure 3. Four holes were drilled in the quartz plate and were painted

with platinum paint (Hanovia liquid bright platinum).

*The RF power was momentarily switched off durinq measurement.

8
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Thin platinum wires (0.1 mm) were then wrapped through the holes.
0

A platinum film of -2000 A was then sputtered on the quartz substrate

using a mask. Calibration of the platinum film thermometer was made

at 00 C (ice + water mix), 1000 C (boiling water) and up to 300' C

against an accirate thermocouple. The calibration graph is given in

Figure 4. The thermometer equation for constant current of 2.8 ma is

given in Equation 2.

T(*C) = 43.5 x V(mv) - 548 (2)

This gives a temperature sensitivity of 0.023 mv/*C.

Measurements of substrate temperature during sputtering in 15 mTorr

argon pressure were made at various power levels in the range of 50 to

300 watts sputtering power. After approximately 10 minutes the quartz

substrate surface reached equillibrium (see Figure 5). The substrate

upper surface temperature differs appreciably irom the water cooled

base temperature (150 C) and it increases rapidly with the power

(see Figure 7). Investigators using sputtering techniques are usually

referring to the base temperature as substrate temperature not realizing

the large discrepancy for substrates of low heat conduction.

The surface temperature during sputtering on a preheated quartz

substrate was also measured by the same method. A 5% 02/95% Ar mixture

at 15 mTorr was used and the sputtering power level was varied from

50 to 300 watts. The substrate (platinum resistance thermometer) was

preheated to 6150 C. Temperature vs. sputtering time plots are

presented in Figure 6. Equillibrium is still reached after about 10

minutes. Note that the upper surface substrate temperature at 300 watts
is considerably higher than the pallet temperature.* This "true"

temperature (see Figure 7) has a marked effect on the resulting film

properties. Figure 7 gives the surface equillibrium temperature for

both unpreheated and preheated (6150 C) quartz substrates.

* One surface temperature determination was made for preheating to 8000 C
at 300 watts sputtering power. In this case the surface temperature
reached close to 10000 C.

10
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Figure 5. Rate of Increase of Substrate Surface Temperature at Various
Sputtering Power Levels for Unpreheated Substrates
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6. FILM DENSITY MEASUREMENTS

The apparent density of sputtered BaTi0 3 films on quartz and sapphire

was calculated from the added weight and the thickness after deposition

and the substrate area. A concentric alumina ring was placed around the

sapphire disc and four quartz bars were placed along the sides of the

quartz plate to prevent deposition on the substrate sides.

The added weight was determined by a Mettler microbalance. The

overall error in the density measurement is estimated to be within 5%

(+2.5 %). In each run, the apparent film density was determined both on

quartz and on sapphire. The agreement was within 2%.

7. SEM AND EDAX EXAMINATIONS

Films of various thicknesses deposited at various rates on platinum

foils were examined with Scanning Electron Microscopy (SEM). SEM at 5K

and 10K magnifications showed the films on platinum to be homogeneous,

smooth and flawless. No pores were revealed at that magnification.

EDAX showed only Ba and Ti characteristic lines with no other contribu-

tion.

8. X-RAY DIFFRACTION ANALYSIS

X-ray diffraction intensity (CuKa) vs. diffraction angle were

measured for amorphous, partially crystalline films and the ceramic

hot pressed reference. Lattice parameters were calculated using a

least squares fit to the characteristic diffraction lines.

9. DIELECTRIC CONSTANT AND ELECTRICAL CONDUCTIVITY MEASUREMENTS

The dielectric constants of the BaTi0 3 films and a ceramic hot

pressed pellet were measured with a Hewlett Packard automatic capaci-

tance bridge, model 4270 A, which operates at 1.0 KHz and 1.0 V test

voltage. The platinum foil served as one plate of the capacitor. The

other plate was a conductive contact applied on the film.

15
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Platinum contacts applied by sputtering were usually shorted
0

probably due to film porosity, which was less than a 1000 A in

accordance with the SEM results. Even unshorted contacts could not be

considered reliable because possible metal penetration might alter film

electrical properties. The best way to apply unshorted contacts

independent of their size (contacts up to 8 mm2 were tested) was to

apply a viscous conductive paste. A silver conductive epoxy was used.

A series of four contacts of known area, A, from 1 to 7.5 mm2 were

applied through a mask. The dielectric constant, E, was determined

from the slope E/d of the capacitance, C, vs. A, (C = E), where d

is the film thickness. The temperature dependence of c was determined

at room temperature using a sample holder with spring loaded contacts

against a teflon base. The electrical conductivity, a, was determined

in a similar way from the slope of R-1 (as measured by the bridge)

vs. A, since R-1 = (a/d)A. Here R is the electrical resistance.

A typical C vs. A plot is shown in Figure 8. The results of the

dielectric constant measurements on the ceramic pellet are presented in

Figure 9. Pellet thickness was 2.67 mm and diameter 13.46 mm. Contacts

were made with Hanovia liquid bright gold.

10. TRANSMISSION SPECTROPHOTOMETRY OF BaTiO 3 FILMS

BaTiO 3 films on optically polished transparent quartz and sapphire

and a 1 mm thick single crystal were examined with a Perkin-Elmer model

621 spectrophotometer in the range of 2.5 to -50 pm and with a Varian

Cary 14 spectrometer in the range 200 nm - 2.5 pm. Figure 10 shows a

typical transmission spectra. The energy gap, Eg, was calculated from

the sharp absorption edge found in the range 250 - 400 nm.
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SECTION III

RESULTS

1. RATE OF BaT'1O 3 GROWTH AS A FUNCTION OF THE SPUTTERING POWER

In order to control film thickness, the rate of BaTiO 3 growth (in4 A/min) on quartz, sapphire and platinum substrates was determined as a
function of sputtering power from 50 to 300 watts in pure argon and in

a 5% 02/95% Ar mixture (total pressure IS mTorr). Substrates were pre-

heated to various temperatures: room temperature, 6200 C and 8000 C.

Anode to cathode spacing was 30 mm.

From Figure 11 and Table 1, it appears that the deposition rate

* is linearly proportional to the sputtering power. The rate decreases

about 16-22% with the addition of oxygen. Such a decrease of sputtering

yield is expected due to the capturing of secondary electrons by the

oxygen. Similar results were reported elsewhere (Reference 6). The

substrate temperature does not appreciably affect the yield.* The rate

of growth on the platinum substrate is lower than that on sapphire or

quartz which might be attributed to enhanced back sputtering from

platinum (see Table 1).

2. DIELECTRIC CONSTANTS AND ELECTRICAL CONDUCTIVITY

The room temperature dielectric constants and electrical conductivity

of BaTiO3 films sputtered on platinum foil substrate under various condi-

tions are as shown in Table 2. The data on the dielectric constant in

Table 2a are in agreement with the results found for amorphous BaTiO3

films (Reference 6). The data in Table 2b are in agreement with the
results on tetragonal films (Reference 7 and 8). The conductivity

of the ceramic pellet was found to be 2.2 x 10-8 ohm-lcm-1. The low

conductivity of the films indicates a low level of impurities, high

stoichiometry and very low optical absorption. The problem of electrode

*This result was consistent for preheating up to 6020 C (surface tempera-
ture 8500 C). One run on sapphire pr heated to 8000 C (surface tempera-
ture 10000 C) yielded a rate of 60 .1 A/min.
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TABLE 2

ELECTRICAL PROPERTIES OF SPUTTERED BaTiO 3 FILMS

a. Films Sputtered in Pure Argon on Substrate Held at Room
Temperature. Sputtering Power: 150 Watts.

Film Thickness Dielectric Constant Electrical Conductivity
(A) (MKS) (ohm-' cm-1 )

28,800 +2000 16
1.4 x 10-10

48,000 30

b. Films Sputtered in 5% 02/95% Ar on Substrate Preheated
to 6200 C. Sputtering Power: 150 Watts.

Film Thickness Dielectric 'Constant Electrical Conductivity

(X) (MKS) (ohm' cm-1 )

20,000 160 314 x 10- 1°

7,500 210 4.0 x 10- 11
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shorting found in this work and reported by other authors is probably

caused by back sputtering of the film by negative oxygen ions (Reference

6). The bombardment by these ions causes pin holes in the film. No

improvement of contact shorting was found on reducing the rf voltage

from 1000 to 460 volts or by changing the atmosphere from 5% 02/95% Ar

to pure argon, both at a total pressure of 15 mTorr. Therefore, to

produce some unshorted metal contact by sputtering, one has to apply

many contacts of very small area. In the present work, we successfully

used very viscous silver epoxy instead.

3. TRANSMISSION SPECTRA AND ABSORPTION EDGE

In the wavelength range 400 nm - 6.5 pm, the transmittance of

BaTiO 3 films on quartz and sapphire was high and showed no absorption

bands. The same behavior was found essentially for the single crystal

(see Figure 10). The sharp absorption edge of BaTiO 3 around 250 - 400 nm

is caused by direct, allowed band-to-band transitions. For such a

transmission absorption edge, the relation of the absorption coefficient,

a, to the band gap, Eg, is

a2 (hv) 2 - (hv-E 9 (3)

where hv is the photon energy, and (hv) 2 is practically constant in

the range where Equation 3 is valid (Reference 9).

For amorphous semiconductors, Fritzsche gives a relation (Reference
10)

(hN,- E )2 h-v (4)

Thus, from these relations, values of E can be found by extrapolatingg
to zero the linear portions of either a 2 vs. hi or v vs. hiv,

a 2 vs. hv being more appropriate for the bulk material and Vahv vs.

hv for the amorphous thin films. Transmission spectrophotometric
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measurements yield the optical density, 00 -log T, where T is the

transmittance. Since T/(l-R) e"Ld where R is the reflectance and

d is the film thickness, we have

= (d log e)_1 [OD + log(l-R)] (5)

R can be estimated from the relation

Rtotal = 2RF/(I+RF) (6)

rln-li
where R is the Fresnel reflectanceF [n+lJ

The transmission spectra in the vicinity of absorption edge for

various films on sapphire and quartz and that of the single crystal

are shown in Figure 12.

Plots of a2 vs. hv calculated'from the above data are given in

Figure 13. Similarly, in Figure 14 a plot of 'wiih vs. hv is shown.

The values of E were reasonable as found from the two types of extrapo-
g

lations.

It is seen from Table 3 that the absorption edge energy gap of
BaTi0 3 films deposited on non-preheated substrates is independent

of the substrate. Since under these conditions amorphous BaTiO 3 films

are produced, we conclude that the energy gap for such films is 4.12 eV

in good agreement with the value of 4.3 eV obtained by Onton and
LJ Marrello (Reference 11) and slightly lower than the value 4.6 eV found

by McClure and Crowe (Reference 6) for similar films.

In a sputtering atmosphere of 5% 02/95% Ar and a substrate surface

temperature 6500 C, where according to X-ray diffraction, a very small

amount of crystallinity is introduced into the films, the absorption

edge value of films is 4.10 eV. A decrease of Eg is observed with

25
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TABLE 3

ABSORPTION EDGE ENERGY GAP FOR BaTi0 3 FILMS SPUTTERED
UNDER VARIOUS CONDITIONS AND A BaTi0 3 SINGLE CRYSTAL

Run Film Sputtering Substrate E (eV)
No. Thickness Conditions E0 Equation Equation

(A) (3) (4)

Crystal 3.10 2.93
1mm

0318 4510 800'C preheating at Sapphire 3.86 3.58
300 Watts -10000 C
surface temperature
5% 02/95i Ar

0324 6900 450oC preheating at Sapphire 4.43 4.10
200 Watts -6500C quartz 4.43 4.10
surface temperature
5% 02/95% Ar

0323 5580 No preheatinq at 200
Watts - 3000C surface Sapphire 4.43 4.12
temperature pure argon quartz 4.43 4.12
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a further onset of crystallinity in the films, E 9 3.58 eV. The

value for a single crystal BaTiO 3 was found to be 3.10 eV. This is

lower than the value 3.6 eV previously reported (References 6 and 11).

4. DENSITY MEASUREMENTS

Quartz, sapphire and platinum foils were used as substrates fork density determination of BaTiO 3 films. The substrates were weighed
before and after the sputtering process by a microbalance. Side edges
of the substrate were masked so only the upper substrate surface

collected sputtered material. The film thickness was determined by

etching a step as previously described. Weight gains were in the
0

range of 1200-7000 i gm for film thickness of 500-30,000 A.

We found that platinum lost weight during the sputtering process.

Quartz and sapphire substrate weights were unchanged during sputtering

and etching* within the experimental error of weight measurement (+10 j gin).

Results on Pt were therefore excluded.

The handbook density of tetragonal crystalline BaTiO3 is 6.017 gm/cm3

(5.806 gm/cm3 for cubic). The apparent density of the high temperature
sintered ceramic samples (Reference 1) used in the present work as reference

is 5.82 gm/cm3, 96.7% of the crystalline material, where the apparent density

is defined by the weight of the sample divided by the apparent volume of the

4 sample. From Table 4a it is seen that the value of 4.30 +0.08 gm/cm3 found

for amorphous BaTiO 3 films is only 71.5% of the bulk tetragonal crystalline

density. A marked increase of apparent density is found for films with

crystalline characteristics as seen in Tables 4b and 4c. The apparent

density for films prepared on substrates preheated to 6200 C is 4.86 +0.15

i.e., 80.1% of the crystalline density and 83.5% of the high density hot

pressed polycrystalline material. The higher apparent film density, 5.61

2T (93% of the single crystal) was obtained for 8000C preheating where

substrate surface temperature approached 1000' C.

*Quartz lost weight during the etch step; however, the etch step was done
after the weight was determined so that the etch step does not affect
the apparent density measured.
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TABLE 4

APPARENT DENSITY OF BaTi0 3 FILMS SPUTTERED UNDER VARIOUS CONDITIONS
ON QUARTZ AND SAPPHIRE SUBSTRATES IN 15 mTorr TOTAL PRESSURE

a. Films Sputtered in Pure Argon on Substrates at Room Temperature
(Not Preheated)

Run Sputtering Sputtering Thickness Density
No. Substrate Power (Watts) Rate (A/min) (A) (gm/cm3 )

0190 Quartz 160 54 8140 4.33

0192a Sapphire 300 89 3100 4.35

0197 Quartz 50 20 2780 4.22

b. Films Sputtered in 5% 02/95% Ar Mixture on Substrates Preheated
to 6200 C

Run Sputtering Sputtering Thickness Density

No. Substrate Power (Watts) Rate (A/min) () (gm/cm3 )

0202 Quartz 300 73 7490 4.86

0202 Sapphire 300 70 7220 4.77

0204 Quartz 150 43.5 7925 5.01

0204 Sapphire 150 43 7811 4.79

c. Film Sputtered in 5% 02/95% Ar Mixture on Substrate Preheated to
8000 C (Surface Temperature -10000 C)

Run Sputtering Sputteing Thickness Density
No. Substrate Power (Watts) Rate (A/min) (A) (gm/cm 3)

0318 Sapphire 300 60.1 4510 5.61
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The apparent density of 4.3 +0.08 gm/cm3 measured for BaTi0 3 films

sputtered at room temperature on substrates in the 5% 02/95% Ar mixture

indicates that the increase of apparent density is solely due to the

substrate temperature. The measurements of the apparent density reveals

a high porosity of the amorphous films. If the porosity is defined by

V/V 1 - Pap where V0 is the pores volume in the film, p app and V
app appapp Px

the measured density and volume and p is the X-ray density, then the

porosity of the amorphous films is 27% compared to 5% of the highly

crystalline films.

5. X-RAY DIFFRACTION

X-ray diffraction intensity vs. diffraction angle was measured

for BaTi0 3 films on sapphire, quartz, and platinum. The quartz substrate

was excluded since its X-ray line overlapped the BaTi0 3 film line at

20 = 21.50. X-ray diffraction intensity vs. diffraction angle is presented

in Figure 15 for the ceramic pellet and films deposited under various

conditions. A least squares computer fit to the diffractive angles

yielded the following lattice parameters:

0 0

(1) Ceramic pellet: a = 3.994 A, c = 4.038 A in agreement

with the standard values quoted for bulk BaTiO 3.
10

(2) For 4510 A thick films (run 0318) produced on sapphire and

platinum at 10000 C surface temperature in 5% 02/95% Ar
o 0

atmosphere. On Pt; a = 4.04 A and c = 4.120 A
0 0

On Sapphire; a = 4.047 A and c = 4.14 A
0

(3) For non-preheated film 5580 A thick (run 0324) on sapphire,

only an estimation could be made since only the 20 = 31.00

+.15 could be correlated with the reference ceramic sample
0

(see Figure 15). Here a = c = 4.016 A + 0.06.

A film 6900 A thick prepared at 450°C, 200 watts, i.e. 6500 C

surface temperature, in 5% 02/95% Ar (run 0323) showed

practically the same diffraction pattern as the non-preheated

run with only slightly more developed lines (see Figure 15).
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This last result proves two important points:

a. There is a threshold surface temperature above 7000 C for growth

of tetragonal crystalline BaTi0 3 films.

b. The crystallinity of the films is due to the temperature and not

to the presence of oxygen as can be seen from the results of runs

0323 and 0324 shown in Figure 15.

6. INDEX OF REFRACTION MEASUREMENTS

a. Method of Index Measurements

Preliminary measurements of the refractive index of BaTi03

films were made at room temperature using a Gaertner automatic
ellipsometer. A value of n = 1.9 with He-Ne laser light was found

0

for 1000 A thick BaTiO 3 film sputtered at room temperature in argon

on a Si wafer (n = 3.6 and k = -0.80 was assumed for Si). This result

is in agreement with the value given by Panitz for similar film

(Reference 8).

No other reported index measurements of BaTi0 3 films were found

in the literature. The above ellipsometer was essentially designed for
0

thickness measurements of thin films on Si substrates (d < 1000 A). It

was found that for other substrates like sapphire and quartz and film
0

thickness larger than a 1000 A, the computed results were unreliable.

Further ellipsometric measurements were made using a standard Rudolph

manual ellipsometer. Results were in agreement with those obtained

with the Gaertner ellipsometer. Ellipsometric measurements can provide

a complete set of parameters for a thin film (i.e. n, k and thickness)

however, these types of measurements are tedious and involve lengthy

numerical calculations.

In the present case, the thickness of BaT10 3 films could be

determined satisfactorily by stylus instruments and preliminary

spectrophotometric measurements showed that the films are only

weakly absorbing. Therefore, the simple and very precise method
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of Abeles could be employed to study the refractive index of BaTi03

films as a function of wavelength and temperature (Reference 12).

By this method, the film index is found from the Brewster angle

of the film, (nf = tan ef). At this angle the reflection of

substrate and film are equal for TM polarized flux. In other words,

as long as the film is unabsorbing and optically homogeneous, the

reflected TM polarized flux at e0 behaves as if the film were not
- B

there.*

The absorption of partially crystalline BaTi0 3 films was estimated

from spectrophotometric measurements at normal incidence in reflectance

and transmittance. For weakly absorbing films,

T/(l-R) = exp ( 4kd) (7)

where T = transmittance, R = reflectance, k = extinction coefficient,

d = film thickness, and x = wavelength (Reference 13).

A sharp absorption edge was found near 350 nm, the exact position

depending on film preparation and on the substrate (see Figure 12). For
0

a film of 2340 A sputtered in 5% 02/95% Ar on sapphire preheated to

6200 C at 200 watts, the extinction coefficient was calculated at

A= 520 nm (the middle of the wavelength range for index measurements)

from Equation 7 to be k = 0.011. The analysis of Abeles for weakly

absorbing films shows that for k = 0.01 the apparent index will decrease

by only 0.5% for films of index 2.3 on a substrate of index 1.5

(Reference 12). Thus, we felt that Abeles method was suitable for

BaTiO 3 films in the wavelength range X > 400 nm.

The dependence of the reflectance (p-component) on the angle of

incidence in the neighborhood of ef for a nonabsorbing homogenous filmB

* The back side of the substrate was abraded to eliminate secondary

reflections.
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is given for various film thicknesses (phase thickness = 2  nf df Cos )

f
in Figure 16. aB can be determined by using a goniometric setup at

the position of equibrightness (as determined by eye) of the two halfs

of a beam reflected from the boundary between the coated and uncoated

substrate. However, as seen in Figure 16 the sensitivity depends on

the optical thickness of the film. The greatest sensitivity is obtained

for an odd multiple of quarter wavelength where the phase thickness is

S7/2. Sensitivity decreases, also, when nf differs from nsub by more

than about (Reference 13)

nb 0.3 < nf < nb + 0.3

For the preceding reasons, an alternative technique was used to determine

eB. A set of reflectance measurements were taken from both the filmsfim

and bare substrates in a range of a few degrees around B The

intersection of the plots of the reflectances vs. angle of incidence

f
yield eB arc tan nf/n0 (where n is the index of air). Here only the

relative reflectances need to be measured. In addition of being

independent on the above restrictions, the reflectante plot also

provides information on the precision of the measurements. Furthermore,

in the present work, the Brewster angle of the substrate was also

determined from the minima of the substrate reflectance curves (ns = tan e )

thus providing an additional check on the cleanliness of the substrate

surface and the validity of the measurements. The last technique was

also used to study the dependence on wavelength and temperature of the

refractive index of ceramic and single crystal samples of BaTi0 3.

The precision of this technique depends on the accuracy of measuring

the reflectance amplitude and angle. To determine the influence of an

error in reflectance measurements on the resulting nf for actual condi-

tions i.e. 1% (+0.5%) in reflected intensity and +0.01% in the incident
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* angle, a computer program calculating the reflectance equations from4 the bare substrate and film plus substrate was employed for a film

A phase thickness of 0.9" Two substrates having indices of n = 1.5
and n = 1.7 were chosen to represent quartz and sapphire and a film
index of 2.24 represented the BaTiO 3. The computed results are given in
Figures 17 and 18. The error bars indicate experimental error of 1% (+0.5%)
in the reflectance measurements. It is found in this case that the index

of a BaTiO 3 film on sapphire can be determined within +0.06%, i.e. An
+0.0013, and on quartz substrate the error is +0.08%, i.e. An =+0.002.

* -~.JFor this accuracy, the precision in the incidence angle reading should
be within 0.5 minutes of arc. As long as the films are non-absorbing,
this method is not affected by the film thickness and can be used for very

- -, thin films. This is in contrast to the less accurate method (N%)
suitable for thick films (above him) by which the index is determined
from the wavelength position of the interference maxima of the

transmission spectra.

The determination of the index from the minimum reflectance at the
Brewster angle* was, however, less sensitive. For the best resolution

of the reflected intensity at the minimum of AOB=+ . The error

introduced for sapphire substrates was +0.5% of the index. The error

introduced for the ceramic BaTiO3 was +0.6%, i.e. An =+0.015.

b. Optical System for Index Measurements

A standard manual ellipsometer manufactured by Rudolph Research
(type 43603-200E) was modified to allow index measurements to be made by

Abeles method. This instrument provides the following features: a
well-collimated beam, turning arm positional accuracy of 0.01 degree of
arc, Nicol prism polarizers and general ease of handling. Since in the
neighborhood of the Brewster angle, the reflected intensity is very low,
we desired a high intensity source. We used a xenon arc lamp and a 3
mw He-Ne laser. The high intensity of the xenon source enabled us to

*Used to determine the index of the substrates and that of a ceramic
pellet and single crystal.
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utilize a series of narrow-band bypass filters to measure the dispersion

from 400 to 600 nm. The He-Ne laser provided the X = 632.8 nm.

To cover this spectral range, we used the original RCA IP21 photo-

multiplier tube.* To facilitate the setting of the inciden angle (as

measured by the maximum signal of the PMT) a fine worm-driven rotational

table was added to the sample stage. The sample mount has, additionally,
x, y, z, and tilt controls. The z control provides reflections from

the bare substrate and/or the film at the same angle. The sample is

mounted on an aluminum block containing a heater which can be heated to

"3000 C.

c. Results of Refractive Index Measurements

The refractive indexes of BaTiO 3 films, the ceramic and single

crystal samples are given in Tables 5 to 10 as a function of the wave-

length in the range 400-632.8 nm at room temperature. Figure 19 summarizes

the dispersion data on bulk and thin films of BaTi0 3. This data is in

general agreement with the index measurements of Wohlecke et al., on thick

(l-51m) rf sputtered BaTi0 3 films derived from the wavelength position of

the interference maxima in the transmission spectra (Reference 16). However,

in that study the highly crystalline state was not achieved due to the low

substrate temperature 300C and 130 0C. Thus, the values of the indexes of

the "micro-crystalline" state were 13-14% below the single crystal values

as compared to 4.5% of the highly crystalline films in the present study.

The index of the films was measured by Abeles method and that of the ceramic

pellet and single crystal determined from the minima of the relative

reflectivity vs. incidence angle. In the last case, a regression parabolic

fit was used to determine 0B for broad curves, for example at 404 nm in

Figure 20. Figure 20 demonstrates how eB was determined for the ceramic

sample at two wavelengths. Figures 21 and 22 show the relative

reflectivity vs. incidence angle at two wavelengths for which the

Brewster angle of sapphire and its index were also determined. Figures

23 and 24 show how the index of the films was determined for a narrow

range around the intersection.

* An RCA 4832 PMT will directly replace the original IP21 tube of limited
response and will enable, in future work, extention of the spectral range
to 900 nm.
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The index of BaTi0 3 films on a preheated substrate and the ceramic

pellet is given as a function of temperature in Table 11 and in Figures

25 and 26. Here a xenon lamp was used without filters.
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TABLE 5

REFRACTIVE INDEX OF BaTiO 3 SINGLE CRYSTAL
IN THE SPECTRAL RANGE 400-590 NM

Wavelength Brewster Angle Refractive Index
(nm) (degree of Arc)

H 404 68.20 2.500

423 67.76 2.446

436 67.70 2.438

486 67.30 2.390

520 67.10 2.367

589 66.93 2.345

I4
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TABLE 6

REFRACTIVE INDEX OF BaTiO 3 HOT PRESSED CERAMIC
PELLET IN THE SPECTRAL RANGE 404 - 632.8 NM

Wavelength Brewster Angle Refractive Index
(nm) (degree of Arc)

404 68.0 +0.12 2.475 +0.015

450 67.75 2.44

500 67.00 2.35

550 66.60 2.31

589 66.50 2.30

632.8 66.35 2.28

(He-Ne laser)
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TABLE 7
0

REFRACTIVE INDEX OF BaTiO 3 FILM 5320 A THICK, SPUTTERED
AT 300 WATTS ON SAPPHIRE PREHEATED TO 6200 C IN 5%

02/95% Ar (15 mTorr)

Wavelength Brewster Angle Refractive Index
(nm) (degree of Arc)

404 66.90 +0.02 2.344 +0.002

423 66.24 2.272

436 65.45 2.190

450 64.25 2.073

486 66.15 2.262

520 66.00 2.246

589 65.06 2.156

-I

45



AFWAL-TR-81-4049

TABLE 8

REFRACTIVE INDEX OF BaTi0 3 FILM 4800 A THICK, SPUTTERED
AT 100 WATTS ON SAPPHIRE PREHEATED TO 5800 C in 5% 02/95%
Ar (15 mTorr)

Wavelength Brewster Angle Refractive Index
(nm) (Degree of Arc)

404 65.08 +0.02 2.152 +0.002

405 64.62 2.108

423 64.12 2.061

436 63.57 2.012

450 62.47 1.918

486 63.58 2.013

500 64.42 2.089

520 64.90 2.135

550 64.80 2.125

589 64.68 ?.114

600 64.25 2.073

632.8 63.85 2.036
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TABLE 9

REFRACTIVE INDEX OF AMORPHOUS BaTiO3 FILM, 4550 A THICK,
SPUTTERED AT 300 WATTS ON SAPPHIRE NOT PREHEATED IN PURE
ARGON (15 mTorr)

Wavelength Brewster Angle Refractive Index
(nm) (Degree of Arc)

404 63.31 +0.03 1.989 +0.003

450 62.85 1.950

550 62.811.4
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TABLE 10

TEMPERATURE DEPENDENCE OF THE REFRACTIVE INDEX OF A BaTiO 34CERAMIC PELLET USING A XENON LIGHT SOURCE
4 f *

0B n T
Brewster Angle Refractive Index Temperature (OC)

67.10 +0.1 2.367 +0.012 20

67.15 2.373 50

67.15 2.373 80

67.32 2.393 120

267.35 2.396 127

67.15 2.373 150
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Figure 20. Relative Reflectivity vs. Incidence Angle of BaTi03

Ceramic Pellet at 404 nm and 632.8 nm
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Figure 21. Relative Reflectivity vs. Incidence Angle of an Amiorphous

BaT1O 3 Film on Sapphire at 404 nm
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Figure 22. Relative Reflectivity vs. Incidence Angle of an Amorphous
BaT1O 3 Film on Sapphire at 632.8 nm

52



AFWAL-TR-81 -4049

400- sapphire

300

U. 300-

w

C e8.(FILM)

B

Figure 23. Relative Reflectivity vs. Incidence Angle of an Amorphous
BaTIO3 Film on Sapphire at 436 nni
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Figure 24. Relative Reflectivity vs. Incidence Angle of BaTI0 3 Film

on Sapphire Sputtered at 800*C Surface Temperature at

Two Wavelengths
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Figure 25. Temperature Dependence of Average Refractive Index of a
BaT1O 3 Ceramic Pellet (Xenon Light Source, No Filter)
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Figure 26. Relative Reflectivity vs. Incidence Angle of a BaTiO 3
Film on Sapphire Sputtered at -1000*C Surface Temperature
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SECTION IV

SUMMARY AND CONCLUSION

Synthesis

1. BaTiO 3 films of uniform thickness (up to -10 jim) and with reprodu-

cible composition can be produced by rf sputtering (Figure 3).

2. Films are transparent and look flawless in SEM up to 20 K

magnification. Films formed in argon on unpreheated substrates

are colorless. Films on preheated substrates formed in oxygen/

argon mixtures appear yellow.

3. Evidences were found for back sputtering which caused pores in the

films, both in argon and in the oxygen/argon mixture.

4. Pore sizes were estimated to be less than 1000 A.

5. Pores caused contact shorting in films sputtered on conductive

substrates. Shorting was found for both sputtered and evaporated

contacts and could be readily overcome using a viscous conductive

paint. It is possible that back-sputtering effects can be reduced

with increasing the total pressure (fromi 15 mTorr to =100 mTorr).

6. Back sputtering was found to be enhanced on the platinum substrates.

*7. The rate of film growth is proportional to the sputtering power

(Figure 11).

8. The rate of growth in the oxygen/argon mixture is lower than that

in pure argon due to capturing of secondary electrons by the oxygen.

In the present study, the rate of growth in 5% 02/95% Ar was found

to be 20% lower than that in pure argon.

9. The upper surface temperature of poor heat conducting substrates

like quartz, glass, and sapphire increases rapidly with the

sputtering power.
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10. Equilibrium surface temperature is reached after -10 minutes of

sputtering.

11. An increase of surface temperatures up to 300' C above the

preheating temperature was measured for sputtering powers of

300 watts (Figure 7). Substrates could be preheated to 8000 C.

Characterizations

1. Physical properties of BaTi0 3 films differ greatly whether they

are deposited on substrates having surface temperatures above or

below "700 ° C. Films formed at surface temperatures below 7000 C

manifest X-ray diffraction patterns of amorphous characteristics

while those formed above that temperature exhibit partially and

strong crystalline characteristics as compared to crystalline

diffraction patterns (Figure 15). The apparent density measure-

ments indicate a 27% porosity for the amorphous films compared

with only 5% porosity of the highly crystalline films. The

transition from amorphous to high crystallinity happens rather

abruptly as can be seen from the X-ray and spectrophotometric

absorption edge data.

2. No evidences of anistropy of the crystalline film on sapphire were

found in the X-ray diffraction on in polarized flux spectrophoto-

metry. The film crystallinity as appears from X-ray diffraction

(Figure 15) and spectrophotometric data (Figure 12) does not

depend on the substrate crystallinity as the same results are

found on sapphire, quartz, and platinum, nor does it depend

on the presence of oxygen in the argon atmosphere.

3. The following table summarizes physical constants of sputtered

films in relation to bulk polycrystalline and single crystal

BaTi0 3.

4. The high electrical resistivity indicates high material purity,

*. high stoichiometry and low optical absorption.
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5. BaTi0 3 sputtered films are weakly absorbing in the spectral range

350-650 nm with an extinction coefficient of approximately k = 0.01

at X = 520 nm.

6. A sharp absorption edge is found in the spectral range 250-400 nm

which depends on the preparation conditions.

7. Precise measurements of the films' refractive index are readily

made by Abeles method using a suitably modified standard ellipso-

meter. The proper combination of light source and detector yield

an accuracy of 0.06% for index measurements in the spectral range

400 < X < 632.8 nm.

8. The refractive index of the ceramic polycrystalline, partially and

highly crystalline films shows strong dispersion in the visible.

9. The dispersion curves of partially crystalline films, measured by

Abeles method, exhibit an anomalous dip around 450 nm. No explana-

tion can be provided since no absorption band was found in this

particular wavelength region. The more crystalline the film, the

narrower is the dip.

10. The capability of producing BaTi0 3 films of large variation in the

refractive index, from 1.9 to 2.4, depending on the sputtering

conditions, is attractive for multilayered dielectric stacks.

11. The ceramic BaTi0 3 sample shows a slight increase (- 1%) of the
refractive index at the Curie temperature, 1200 C (Figure 25).

This behavior relates to the large (4.5 times) increase of the

dielectric constant at that temperature (See Figure 9).

12. No temperature dependence of the index was found for crystalline

films in the temperature range 15-1500 C (See Figure 26). This

result is also in accordance with the weak temperature variation

of the dielectric constant reported for similar films. The

absence of ferroelectric behavior of the crystalline films may

be attributed to strong clamping of the films to the substrate

as suggested by Verne (Reference 17).
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13. It appears that the DC dielectric constant is a most sensitive

property for indicating a change of the index caused by external

1 stimulations like temperature, electrical field, stresses, etc. in

ferroelectric materials.

14. Preliminary experiments showed no effect on the index from an

external electrical field up to 1500 volts either parallel or

perpendicular to a partially crystalline film.

15. All the techniques developed in this investigation of BaTiO 3 are

equally applicable to the study of other sputtered films and

constitute a viable method for screening materials for usefulness

as candidates for laser hardened optical systems.
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SECTION V

SUGGESTIONS FOR FURTHER WORK

1. The spectral range for index measurements should be extended to

-900 nm by employing an RCA 4832 photomultiplier tube.

2. Photoelectric effects in BaTiO3 should be investigated. It is

suggested to start first with the single crystal to establish an

upper limit of any such effects. If results are positive, try

highly crystalline sputtered films.

.1 It is suggested to look for changes of index under the influence

of electric fields either parallel or perpendicular to the film
or crystal. The same applies to spectrophotometric tfransmission

or reflection.

3. Changes of the refractive index under intense laser flux were

reported for BaTiO 3 crystals (Reference 5). It might be worth-
while to investigate the method of "writing" and "probe" lasers

on BaTiO 3 sputtered films.

4. Large changes of the resistivity were reported in both BaTiO3
treated in halogens or doped with samarium (Reference 14 and 15).
Correlation to optical parameters might be of interest.

5. A major characterization of material suitability for laser hardened

* j applications is the defect areal density; defects arising from the

substrate cleaning process, dust, pores due to back sputtering,

*1 etc. It was already established and also confirmed in the present

work that sputtering synthesis produces pores and probably other

defects in the films. It is therefore highly recommended to further

examine the BaTiO 3 films by SEN means to establish the relation

between the various preparation conditions and the areal density

and types of defects.
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This would indicate if there are steps that can be taken to

improve films quality such as increasing total sputtering pressure,

eliminating dust by changing cathode-anode configuration, removing

traces of cleaning materials, etc. Or it might be found that

sputtering is altogether not a suitable technique for producing

films for laser hardened applications.

6. Though there are several indications for large structural differences

between films sputtered below ~7000 C to films sputtered above ~700*

C, film morphology has not been studied. A cross section SEM

examination might reveal the structure, size of grains and orienta-

tion (columnar or otherwise) of such things in the sputtered

films.

.1
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