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DIFFERENCE METHOD IN FLUID DYNAMICS

I. NUMERICAL SOLUTION OF TWO-DIMENSIONAL
VORTICITY EQUATION

Guo Benyu

Shanghai University of Science and Technology

ABSTRACT

With the two-dimensional vorticity equation as an example,

this paper systematically discussed the theoretical problem of

difference equations in fluid dynamics. Many schemes are

constructed in this paper based on the conservation laws and

transport properties. Generalized stability is introduced.

The error of periodic solutions is rigorously estimated. The

effect of error in boundary values on the stability of compu-

tation and the boundary shape, boundary conditions and its

treatment in the initial/boundary problems are analyzed.

The computational problem of non-viscous flow and large

gradient solution is treated according to the conservation

laws. Lastly, the convergence of dynamic relaxation and the

existence of solutions of steady flow computational schemes

are studied. All the results in this paper are proved rigor-

ously, and the method used is also applicable to the general

fluid dynamic problems. Examples are used to illustrate the

applications of these results in fluid dynamic computations

and numerical weather forecast.

i
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The theoretical study of difference method basically

consists of five aspects: (1) the principles of scheme;

(2) stability of solution against perturbation on the RHS and

the initial values; (3) non-viscous flow calculation;

(4) effect of boundary shape, type of boundary condition, and

error in boundary value on the solution of initial/boundary

value problems; (5) steady flow calculation [1-5]. A large

amount of work has been done in foreign countries but there

are only a few very special theoretical results. Based on

the work of Ref. [6-8], we discuss in this paper all aspects

of the five problems quoted above with the two-dimensional

vorticity equation as an example, and obtain a more systematic

result. The method is applicable to the general fluid dynam-

ical problems.

I. Symbols and Lemmas

R represents an open region in (xl, x2 ) plane with

boundary r. The grid step length along x direction is h.

The coordinates of the grid point Q are 1.(Q)-&(Q)A, where

k (Q) is an integer. The coordinate of k.(Q) is

,(Q,)-8,(Q)±j.,. R& represents the set of internal grid

points with boundary r. r' (or rm) is the set of boundary
h' iM 3m

points that makes Q-'i (or Q+" ) belong to R R (or R)
h* jM jm

represents the set of all internal points at distance h from

rJM (or P). r-rM+r,., R,m R, + R, :-R.+ R,. T is the

step length along r, --r9,,,Q,k) represents the value of the

net function w at time kT and position Q. Sometimes it is

simply denoted by ,(Q, w(k) or ,,,. Z-- (k)-- t(v+I). w,,,,,

represents the forward, backward and central difference coeffi-

! "cients along to . ,(Qj is the outer normal difference coeffi-

cient on R: • When QER,1 , , .-- .. ,(Q) • When J..

wo( )----,(Q), represents the tangential difference coefficient

on R . * When QtM -r,, , i-,()-w,,(Q), • When QR,.+r ,.
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a,(Q)-- w(Q). When Q9 Rau am , w,(Q)-- w.(Q) When

Q E R,. +I I,,,, ,,,,(Q) - ,,.

If 2'P: , we shall denote by Q the point on fa at
distance h from Q, and also denote , (w(Q)v(Q)+ w(Q),(Q)I

simply as I:(ua,'+ ) , etc. ea:

We further define /130

sV;., - - /(v , ) I ~,), ~s

Denote , , is an ADE type operator, i.e.

(,)-(,,) is taken according to a certain order, where

2 2
m -- + (v+ ")W,,,

w,(,,.,)+ -- 0w8 +--y .,+. .,,

2 I + + C+HCw) - - -1_ (C + v,',)w,,, + - (a' "f" .a ")w',,,

2 21 (, + *a\ '.,.-- ± (a',+ 'I'a

We define the following internal products and norms:

(w,.V) - 'OW(O)e(Q). UaItj - Ow. W)

f1,,,11~. -- ¢l / I - i ,'. + II4/- w,,l1') if y am , then simply

denote by I1-'U .

I,,I - .% (,11w,,,I11 + IIw,IIt), fI11-, - , hu( )In J s' * + Of) '



II

Denote also

22

+ +
B M$$, O WN.+)

,( w,,) - . ' ( w" 1- up'ww -i --, w) (u ,w

+ + Rt ,AT g 4

- ,, ( .- -pw' - .,

- 11 -~(o + ") (I',,,Im), - oQr,,,,Ii: 1- o, Il,,Il

where

so 'aXm

2 2

2( w,- w, IIai') i , (.1

twot

A.2(,, ,,a) (l,,l'), + nII,,,II' (1. /1 3

2(.,,,,,,) -(11,11), rl.,ll'(1.2) /131

2(w, i,)'S fl-'l1,- l1,,,' - II.,,,II'
(1.3)

(1.14)
2(. C ! , 4- (1 vs.,, s,,) + (vaw,,, v,,) - 2B,(v , u, ,re) 0

(,,,, .,) + IIl;. -B,:(V, .,, . - 0 (1.5)

2(au.,, A.',) + (11 .,f1!.), - tilel,Ll. - - (,p,, ;: + ; ,)

-BI O #vs, two) -(1.6)

- 2ha~p(s,, 5', ,.) 0
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2(k, Il'w)) + AIIw, lI?. - (,,e,, ,,,) - hD.(,,,) -0 (18

Lemma 1. If q > ' > 0, , then 11w4j1' < IuI4 (' -' )

Lemma 2. If WIr, - t1r; 0 , then liuvJ1 < 411,,ilIlIIl wiIoI t'I .

Lemma 3. If N-Ir, 0 , then 1wII1 ) II< wtI'
Lemma 4. Assume: (1) u.(k), v(k) is a non-negative net
function. p(T) is non-negative, T is suitable small,

-o , J,, 0; ')''.(&, - )LP + a,(k)h-0 I+L*,i()]& (&) 8 < MoA-,

t(' 0; (3) w(0) (T)- when 1 k < +r ? '  (4+

peN,' , ,'ph. M0o',) , then when kr < 7 T. , ",M < pe.7

II. Basic Principles of Scheme Construction

Let (a,,,,, and 4(x,,X, represent vorticity and

flow function. Then the 2 dimensional vorticity equation is

-~ .2 2-L------+ P- --k a -- ( j -/, R X 10, T]}
O Ox, x,, Ox, Ox, . )xi )x0

V1'4 - e--i, R x 10, TJ (2.1)

Where t,(,, x,, t) is known, , is coefficient of vis-
cosity, 0

'ft<V<V* We also denote

a'. - Iwf,(Q), o" - ,,O (A: -(V

and assume and J- are bounded.

The principle of scheme construction is to express physical

laws with suitable separation form, for example, if vwf.-0

then we get from (2.1) the conservation laws for vorticity and

its square:

F ipf(x, , idxd, J mflx, ,,O~z,3r



/132

dl ~'( 0 dx+ d.,) dr i 1, 2

As for the difference scheme, since the step length is non-

zero, we oannot simultaneously simulate both conservation

laws. The h1 conservation law is simulated by the Lax scheme.

We[6 - 81 simulate the E2 conservation property. Let us define

J,.,.e, as) - -(', w).,, j.,e', w) - -(, ),
S,.,(v, w) - -',w,, , , ) -a,,w),

J:, ,(e', w) - -(gw,).,, J;,"e' as) -Ga',),.
J,.,(s', u ) - ( ,),, J;,.,(u, w) - , )

J ',"<a, w) - ? J,;(e' W) + )
2 2

J(u, J(, a) + X J7(v, W)
2 2

J(u, a,) - aJ:(', a), t(v, 'W) - a 3 ,;(V, a)

S

-t I-I

where aO.Z a,- . It can be proved that

.s, )1. 1 ', 'a )) + (u, J.r., w)) - 55 1(u,, p, 1) (2.2)

(a., (,P,.)) ± C, J w , )) - - :(, wr', 1)- Ba:(h, wu,, I)

(2.3)

If -. , then

(. , 9')) t (t., J(s., w)) - a Ba(a. ' , 1) + aBa:(ws,, ., I)

(24

Ssb:(u, wp',9 1)- aB:, W6619 1)(2



If one the the 2 following conditions are satisfied on the

boundary I' :I

A. The vaiious quantities are periodic with periodicity L,, R,

along the direction --, Rh is the rectangle [0, L,-A;0, L,-A];

B. Rh is a limited region and the flow along I, is zero.

For example, u -s--w-0 , then the RHS of equation (2.4) is

zero. If we now use q,- and ](?,W) to approximate to4 and

the Jacobi operator in equation (2.1), then when a,,-aj

the conservation law

(1,J(.,j, 9')) - , ( p,, ,1) - aB*;(,i, ,V 1)(25
(2.5)

is well described.

If condition A or B is satisfied on the boundary, and

, then
2

(q , J,,(t, q,)) 0 o(2.6)

The weighted average conservative scheme for computing

equation (2.1) is

L,(17, I,. '7 4 Orq., J(, + 8r,7,, 9) ''(,j + or,,)- Xrh-'H'(ij) -j, 1

L,(q. jp) - - q , (2.7) /133

where e 1,, (4) L r 1,0 < 8(k) < 1,0 <X() 1I, - - < 8(/) L 0

but when Pi1 is calculated, we always take 0(0)-0 . In

the explanation below, we might as well assume that condition

A is satisfied.

1. The function of 6 is to maintain the conservative

property. If fact, if -,-O---0, t,-a , we still

have LqII -T!;q,11' . Hence each step of the computation will

L . , mt



see a small increase of the virtual energy which will cause

energy explosion and computational overflow when it exceeds

some critical value through long term accumulation. But if

8-1/2 , thcr n 1101-0 and the conservation is strict.

2. The function of 0 is to filter. It equivalently

filters the n in n1 to be n* "1-T'0,, . If the harmonic

function of the computer error P(4)sAc"4  , then

.'(k)-(I + 4Osins-) '(k)

Because -
[ <0< 0 , hence I*lJJl <111 , so that its growth

is suppressed. Robert has used explicit filtering and 0 - 0.01

See [14].

3. If X40 , then equation (2.7) is the successive

overrelaxation scheme which is used to improve computational

stability. Usually the H:(n) are used in turn to obtain I,,

and then let

4

which is the Larkin method
[1 ] "

4. In (2.7) we can also use the linear combination of

fi and fi to replace o.p All the results in this paper will

also hold.

The weighted average conservation method may be used in

conjunction with the splitting method, namely with n* as the

supplement value.

i + -M j, (" + q*, y) + .- A'1(i + y) + T t,

of + I *.*+.8
2 (2.8)



If I, ,. ,.,. " u, "
, then from equation (2.6), I' -II'2

Since equation (2.8) not only -trictly satisfies the conser-

vation laws, but also may be computed explicitly, it is to

be recommended.

Another principle for scheme construction is the trans-

port property. Let Q be an internal net point. Form tne

triangle D with Q, Q"*, 9Q" as the vertices, D., with

Q, Q*',, Q-- as vertices, and similarly for D,,D,. If

q,,'0, , then the wind blows toward Q in ) . Denote

it by a(D,,y)-- i else e(Dj, p)-0 Similarly the other e(D,, p)

may be computed. We shall construct the difference operator

F(,7,q'j for the following three cases:

1. 6(D,, p8,.* , indicating that the wind blows uni-

directionally toward Q. For example, if ji-2- , then

2. There are several c(D,,,)l , indicating that Q

lies between several opposite currents. For example,

t(D,, qg)--,. + ,.z, , then let F(, , )-,F( 7, 'p)+(1-r)Fa('i.q)

in which 0 r , F,(i, )--q,,,.-

3. All e(D,,)-O- , indicating that Q is the center /134

or source of vorticity, and therefore F(),q)-O . From this
[7,22]may be obtained the modified counter-wind scheme

L,(, v) - i, + Orl, - F(7, ip) -, '(1 + ar.7,) - Xrh-'H,(,j) -t (2.9)
L,(i, up) .-1 t

III Error Estimation in Problems with Periodic Solution and the

Generalized Stability

Let the difference scheme be LAs,(k)I - 1(k) where 1(k)
is the condition for solution determination. The error of 1,

will induce an error, Q, in v . Ordinarily, stability means

that there exists an absolute constant M such that lH1 lM11111

However most non-linear schemes do not have such properties.
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The author [7, 21, 22] suggested a generalized stability,

namely that there exists positive numbers M, N and constant

" independent of 4, r such that when v N', kr <T T.C T&) ,

i t 11a1i . The hig-hest lower bound is called the index s ol' the

generalized stability. Some explanations are offered below[2 1] "

1. For non-linear mechanical systems, generally only

when 11111 satisfies certain conditions will there exist a

unique solution which is only stable against perturbations

within certain range, e.g. the 3 dimensional Navier-Stokes

Problem. But if L,10-O, so , then when II<N ,

1lI11 < At jjlf! and when f1111 < N INII < A!t I I Clearly the

value of s reflects exactly the properties stated above and

therefore is suitable for non-linear systems.

2. The value of s may be used semi-quantitatively to

reflect on the stability of round off errors. For example,

the accuracy of a computer word is 2-', L in equation (2.7),

b-2- , N1 arithmetical computations are required for

each 11 value calculated. Therefore, corresponding to

UhiJ Nh-2-' - ,  , we should have T,<ANNT -'2...' to guar-

antee stability. Obviously the smaller s is, the more stable

is the calculation, and the longer is the time of stability,

To, and the more relaxed are the requirements on the computer

word length and the step length.

3. For linear schemes, the generalized stability is

equivalent to ordinary stability but they are not equivalent

for non-linear schemes. Also if the formal approximate error

of the scheme is O(h').> 0 , then when jEC$S ,, the

th order difference coefficient of n converges and is

bounded.

10
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4. In recent years, Weinberger et al.(see
[10 - 1 2])

raised the problem of the optimization of scheme and they

concentrated mostly on increasing the I. of linear schemes.

In this author's opinion, generally a non-linear scheme has

weak discontinuities so sa is not large. Hence the main

direction of optimization is lowering the value of s. This

will also improve the stability. Besides when sa is small,

we also have s-<. , therefore is convergent. For detail,

see [21, 22].

We shall estimate the upper bound of s below. q,', ,

denote the computational error of V,Th L, M, N, M
i

are positive numbers,unrelated to h, T, a, b are suitable

positive numbers, m, a are positive numbers yet to be deter-

mined.

M* - m~x (2(2a + X - 1)-', (20 + I + 12Xv, + a)(1 + 270)-')
M**(b) - [80 + 4a + 4 + 48X + 321.va + 2 v,a[89 + 4

+ 321v," + 2b).v,a - 16.y, - blvy, + 16X).v, + bX ,,1
-1

Condition (a,,, xO, b) shows that (I -X)/2 , other-

wise A <(80 + 4)p1'(16 - 16X - 2 + 6- Xb - 2b)-' . Condition

u, lX, , b). shows that not only the conditions above hold,
but also 28> m* when a,>(-x)/ 2 , and 25 > m"(b) when

.(I -- X)/2

The error equations of scheme (2.7) are

Z.(Q. p) - ,,(, 0) - S( + Brij.. 9,) - J(v) + arq.. q-) -
L,(Q, #)-LIQ, , ,)- ,,(3 )

Detailed calculation of (2, + mr,, ,(P, 4)) gives from

equation (1.1) - (1.8) /135

B...(',) + 211111'.. + - - -,

- ± X,,,,,h- ,. ,, i:) + ,.)q P"('P ..) - ('')(.)
2 01oe(3.2)

11j



where

,- -2B 8:(,, ,], ,n.), F, - -,.rD M:(,, , , ,].)
P - -2qrBa:(v, I fj.)s - Mr'u:(Vs, , ,.)

1. - 3115 + Old

.o - (2, + ,.r,. J(r, + Brit,) + I,)

- (2l, J(] + 6r,),. ,)), -.2s.,! (2,4, JQ. + 8rl,, q,))

,- -r(ij,, J(,l + ar,,, @)), - ,r(,l,, J(,] + drij,, p))

We can decompose I- 2A + 94. For example
2Q, , - (q, , )), , - 2 6r(, , j(l,, i)), , 2 Q,, A( , 90), Z,j - 2 6r(l, J(I,, y))

etc. If Oaa , then we get ,- + jy;" from equation

(2.4), etc. Here

2a~ , 1)- 2a, Bit:(I, , ,1)
26a~rBa;G* Qip, 4,e, 1) + 21arx(^ q, 1)

- 25G j54.1(, 1)- 20rk 9.q . ) (3-3)

-2a.Baq( fp9, 4, 1)- 2ajDa;O).Q,, 1)
(3.4)

It can be proved that

l11r'll.,111' 2 lO IlII' t. .101, 4, (3.5)
I2XsA-'(A, H"(,))I 4 A_ II,.+ 12i I*Ii~dIa + XM,lq~i'

" ," "(3.6)

2ut (3.7)

We shall first estimate the periodic problem. To

determine 4 , let r(Q*) anc. at some point Q' , .

Theorem 1. Let scheme (2.7) satisfy conditions (q,A,X,D9)

and boundary conditions (A). Then 1. When U,112 and

4, ___ 12



p(q, Its ,O, 09 are not greater than Nh" , then for all

kr < T 4 T9(p) , we always have 1(1)t10, - Mc ' P. If when

Ah--0 , I17,11-O(p)-o(h') then T is arbitrary. Here,

when ve >Q or a -a , 1 . If ".>O and also

a, - , then o 2. If the conditions (U, AX, 0,0),

are also satisfied, and at-0, , then for all 1,P,To,

the above equation holds.

Proof: Equation (3.2) holds. From periodicity,

D, Bx:(, , 0, , )= 4 = O  
. Multiply the second equa-

tion of equation (3.1) by @ and find the inner product,

from equation (1.5) and P(Q*) 0  , it can be proved that

there exists a constant mo related only to the diameter

Rh such that

IIII m lll 2m,(11111' +  Vaill') (3.8 )

From the Cauchy inequality and equation (3.8), we can get the

estimation equation

1,1 + 11,1 < M.011111 + 11411, + 111,11, + 111,11, + '[]11 )' (3.9) /136

If -.&- .. , but ",'> , then from the Cauchy inequality,

lemma 1 and equation (3.8), we can get as in [6]

IAi + I ,1 g -! I1itj' + a 1111fL + (I + ) Aa 1111' (3.10)

IRI + III + +I+ +MA(/i1

If aa, , from the periodic condition (A) and equation

(3.3), (3 .J4) we get f-a-t---; ; from lemma 1 and

equation (3.8) we also get

(3.12)

13
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II li,' + M,- J , + 1I1 1 , for Yo > 0
I~J,, *-. .

i- Ij ,ll' + ri,'lll, ' + 111,P'), for Y, - 0 ( 3.13 )

Sirilarly, we can estimate J i, . Substituting

equation (3.5) - (3.13) into equation (3.2), we then obtain

B,.,.(.) + rmOlkrIIl' + r(mO - XMI - 12XJ., - aM,4)jlq,IJ

+ h A(,1, o) + 1(, o)IiiI1, (3.14 )

In this paper, let us denote

I . + X + 26 + (I - signpl, - )(Af th,-'l.IIl
2

+ A,,A!IeIIi + M 1,,," sign 30(0011l' + I12II))
( I) - Mal, '(1 - sign Yo + sign Jai - calI)II II' + M,-'(IIIII-

- r'1i410 1 (ll'0ll' * + I') + M,,(llqil' + IllPl + i,,.1'
+ I1711 -+ A'Iii h+ rll ]

Let be suitably small, and multiply equation (3.14) by

t and find the sum over i0,,2, , we then get

c-I 4-I

c-I

- XA IA)l,()ll' . r, 1 Z t (, , O)Uqll;,.+ RCIJ(), 0)]

+)+ + II)1 ++)IIio

+ (3.15)

Let h be sufficiently small. If ,> ( -)/2 , then

take as > .te Now coefficients of the 2nd and 3rd terms on

the LHS of equation (3.15) are non-negative and may be neglec-

ted. And finally we only need to invoke lemma 4 and let

14



IIMIS, Vk I(kYI.,.' -0 If , - a and

> C then take .,--0 Otherwise a,--2 If

a, < (I - X)12 , then take "I > .,"(o) . Because rIf@,I1, 8A,',Jj@1jJ1
therefore the sum of the 2nd and 3rd terms on the LHS of

equation (3.15) is non-negative. The proof below is similar

to the above.

If further conditions (a,A.X,8,0), are satisfied, then

we may take m-28>m(0) From condition (A) and equation

(2.5), . After similar analysis we still get
4-2

(3.14), but with M,--M, -- 0 The rest of the proof may

follow theorem 2 in [6].

Note 1. If v,>O , then <1 for the explicit /137

scheme. If a-aa , then in order to make the principle

part of the non-linear error ,:J(,4,))- , and thus sro

In this way, as long as p does not exceed a certain constant,

the computation will be stable. At the same time, even if

some singularities occur in AL I etc. on the determinable
0a

long curve, as long as we still have the formal approximate

error OLD i-o(1) , the scheme still converges. If P.-O

then as long as a,- , then for sufficiently smooth

solutions, s-2 >s- , the scheme will also converge. This

explains why stability and the 2 conservation properties

agree with one another. a,-cs is optional for both.

Note 2. For suitable X,7 , the limit on A may be

relaxed. Suitable 6 may eliminate non-linear error altogether

so that the scheme may be used for the global solution calcula-

tion as well as being perfectly stable.

Note 3. If the modified counter-flow method is used,

can be proved as in [8, 22].

15



IV. Two Step Method in the

Computation of Non-viscous flow

Two problems exist for non-viscous flow: 1. When

0-8-0 , even if a,-a,, ,-O , we still have IS'711" . rT1 7,11

If the gradient is large, then the virtual growth of the

energy is fairly rapid and computational overflow occurs. If

an artificial viscosity term is used, the resolution in front

of the wave will be lowered. Hence it is desirable to design

a scheme that will automatically suppress this kind of growth.

2. In the explicit scheme of the last section, i<i but the

true solution of the differential equation of non-viscous flow

usually have weak discontinuities. In general s,<1 There-

fore we wish to design schemes with ,<0 to guarantee conver-

gence.

Method I. Let i* be the supplementary value.

Predictor 1 -- nj + rJ(n,q')
Corrector 07(+ Y)+ -(v*, 90 (4.1)

2 2

If - , this is equivalent to the Maccormack [13]

method, but when 4. , Dfla.,IIa-rIJ (,, q)jf Since

equation (4.1) approximates equation (2.1), (when -- aW )
therefore when f,,f' is increased, generally fJ*(,)q)h also
increases and therefore the virtual growth of the energy is

automatically eliminated, giving a better result.

Method II. Split according to conservative type and

non-conservative type. Equation

~(4.2)

It satisfies the energy relation

I, ,j1 - r6~.tI' -, 4IIlJ',. 6)11'

11



Computational experience shows that when j+,J7 is used,

the relationship between the order of Jt, J- and the direction

of wave propagation will markedly affect the computational

accuracy. Therefore for systems with multi-directional wave

propagation, we should use the average form, e.g. with J

substituting for J+ etc.

Method III.

, 1 4-- grj(), ) + r"'A,, q - ,7 + J(o',0q') (4.3)

if P a- , r---h'r-J , this is Lax-Wendroff scheme [' ]

If _la--,,r-0 this is Matsuno scheme [ 14].

If P-a,.- a;-,r--r , then it is conservative and gives
2

computational stability. Sometimes a may be taken to be

slightly larger than 1.

Theorem 2. If in equation (4.3), -, -a -I/2,$> /138

(3. + 1)12, a > 0,

I < (2# - 3a - !)Ispj(3a I- l)ilqij]-'#

then when 11,11' and p(,, I., Is* O, k) are not greater than N, we
have j(4YQ)I0-Afe'Tp for all kr<?<T.(p)

Proof. Let the computational error on the LHS be

Then we have the following error equations:

4, - ;4 , qi t J-(u4, €) + jrJ(j , 9 + €),tp + 9 )

-P ,.J(.,,. qp ~ + €3+ prJ(J(, q), f) + I,

Multiplying the above equation with 21 .1 ,rtq, and calculating

the inner product, we get

17
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i','!f - (.m - ~I )rjjtjj' + 29rIIJ(i, p + 0)li' - '

where

- (2, + mr,, J('I, (P) + PrCJ(2 9), f + 7,)
C, -- or(J(', P), J(, 'p + 4))

, mr'rl. M(J(, , + ) )

We can prove

I . U.,! I1101 + I1111 + II4ll11 + 111.111]

Ii 1 reijQi,' + 0)1I' + i,1

(G,41 e r(3a + I)IIJ(q, ', + .)II + -. ' 1,3
4(3a + 1)

jaj < orll ,' + 16Jrao- ' lJ(fh'p + +)I('lll ± Ili'[l;), a, , rllfjl' + M,?Pr'.-'h-m(Ili~!j' + I!'pIJ')I1ql1:

and hence

Itll: .- ir(m - I - 3a - - ml(3 + 1~')II,U' + r(2p - sg -s3 -

+ I i ,11' + TA- F'l1'm + 'mt?Ull')ll ' ±

Now let m6,-f JLt kI:' be smaller than some constant, then

the coefficient of the 2nd and 3rd terms of the RHS of the

above equation are positive. Finally we use lemma 4 with
w()- ),k

Note 1. We can combine the weighted average conservative

method with the Pycahob method, and the Kutler-Lomas-Warming

18



method as well as the method in [13].

Note 2. The method in this section is also suitable for

shock wave computation. The author has applied it to calcu-

late the double shock ,roblern of the Burgers equation. The

results show that the two step method can be used for many

problems where one step methods cause overflow. The calculated

result for a,-a is the best. For system with multi-

directional wave propagation, equation (4.3) is better than

(4.1). The situation described by Theorem 2 is far better than

the Lax-Wendroff scheme. For details, see [241].

Note 3. If equation (2.9) is used for non-viscous flow,

then when r < ,Nh , < 1 1

V. Effect of Boundary Value Error and /139

Boundary Shape on Stability

Assume that on r, , '- S. - C. i, represents the error

in gi" For convenience, let is'.0.

Theorem 3. Assume in equation (2.7) of the boundary value

problem mentioned above, the conditions (u,,X,6,1) are

satisfied. In addition, if i14 (, then i.>0, is bounded,

therefore 1. When 1l1,l, A-1,IjlI, and (1 it, ?s, io-, k) not

greater than Nh1 , for all kr 4 T t r,(P , we have

(), p , where s is the same as in Theorem 1; 2.

If Oja, and the conditions (uALO. , are also satis-

fied, then when 11j,11IC- NA the above equation holds.

Proof. Multiply the second equation in equation (3.1) by

-4 and find the inner product. From equation (1.5), we

get
lil; 4" < 2.i;1 l11l1, + I1,I'])

(5.1)

19



where

.- suI)

Therefore the results similar to equation (3.1) - (3.13) all

hold. 1)

It can be proved that

2 4 #1

0, ; (I - 6) y. ' M (h- + hs-')lljJll14

MT-, - .
4 : & ' 4,~ :a

- ,,"lil ~ll1. + (aA)"l 1-, + 0111' + ll~llJ

+ + + ,'
- , t I - - U -Il ,,, + +A')rA iI 11%

12,u,, ,,(,-qi~p, ., 1)1i , 4(H(llIl' + Ar,'Ui,OIl~l.' - .

,, +
I~~ai~a;C~, <,i 1) 1 f111. + 6 V Yf~ + csi(ehv.)'t1ji11,

(5.2)

Also because

J .. . X u'.. + ,. A-,'itIIa,uil

a: 28 2

Therefore

12,,.. , V .3 + , III -.

I2~. a: ~ '~ 111 ~46i'bA

iWhen - , an additional term A10."'-lla.,(l l'+ l1,1'), i. added to
the RHS of equation (3.13). Similarly, equation (3.12) may
be estimated.

20
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128a,,rD :(, , 1)1 < i +' + A ,

I25,r8a:(s , 9 ,,', 1)1 ' v + J_ ILI Ij~ II3

.ha~rB&;(i ~F, V ) ~~ + !!atLI4IIJ

Substituting equation (3.5) - (3.7), equation (3.9) - (3.13)

and the equations above into equation (3.2), we obtain

b,....5*(iO r + r+ rmO - 12X)4'1 - AM1X% - PM,,)tIj 1II'

4-(a~I~ + 2.C)r <f +Q (11 + 5s Q B') jjj"

where

+ 55.. -~ see

4 2 2 4 4

a- ,h' 11110( - signla, -ai)
Let c be sufficiently small, and multiply the above equation

with T and also sum over i-0,1,2,..., If a,>(1-)/2

then we take m >.Me o aO j2,-9 2 I.M.MA~th n w ake14.1 m1 Now p, ;?. 0, ps + 2me - 0 - 12X v, - OU14 -- A &'a 0

and if is sufficiently small, then p,Q0;)9O

If ar 0 then we take m > m"(1) . Since

therefore
TA Ol + (p, + 2me - 0- iz., -M, A- AX)lli, I

+ 11; 2Cone

21



The rest of the proof is similar to that used in Theorem 1.

Note 1. The effect of boundary value error on n is

more proncunced. If jis,0 , then when p<NP , 111,111 <M1"

the explicit scheme calculation is stable. If i0 , then we

also need to have IiII1 <Nha * 
. Also if we take i,j. as

the formal approximate error, then to guarantee convergence,

we only require [iiO,- O(w ) but on the boundary, we need to

require Irlh -OC(h11 1 ) But ae, still reaches the

optimums as far as error control and the two conservation

properties are concerned. It makes s decrease by 1, and when

is- .)fv!A , the scheme converges.

Note 2. If A "0 then when v, O , the explicit

scheme computation of (2.7) still converges. If j,ko , then

we require -0, ao to be bounded. In the language of numeri-

cal weather prediction, it means that there should be a smooth-

ing process from the outside toward the inside, gradually

decreasing in strength in the neighborhood of J4 . The

calculation of Oliger and Sundstroun proved this[151  /141

Note 3. By using methods similar to that in [8], it can

be proved that if a,-aj-l/2, P,>O , scheme (2-8) has the

same stability property as the implicit scheme (2.7), There-

fore it is worthy of recommendation.

Note 4. If we calculate by using the modified coun'ier-

flow method, it may be proved similar to [8] that when

It'-0('), i,|. - 0(A') , the calculation is stable and conver-
gent. But this condition is too restrictive. The author
proposes that in the vicinity of r. , equation (2.9) should

be used to be in agreement with the transport properties, and

in the interior, equation (2.7) for as--a, should be used to

lower the s value. Shapiro and O'Brien, Williamson and



Brownln, had similar ideas.

Suitable boundary shape may lower the estimation of the

upper bound of s.

Theorem 4. If the parameters in equation (2.7) satisfy

the requirement of Theorem 3, Rh is a rectangle and there is

no error in the boundary values, then even if 8- 0 , when iI1,II'

and p(, ? ,,, 0, k) do not exceed NM" , for all kr"<T<T.(p),

we have Ik0) 1(1&. < AfeTp , where if al - al then s<0.5

if ve>0 . then ,-0 , and if a,- j and v,>0 ,

then ''< -0.5

Proof. Similar to Theorem 3, but with j1=O0 If
- then 4 - (, J(, 0)) - , and if a,1 4a

then from lemma 2.3 and equation (5.1)

2 eye
< _Illh1, + 6nj IiU I + 171'

2. ,

Further

2

When v,. C , lA l , otherwise not greater

than '*"A1 1IIII After the estimation by using the above

method, we can finish the proof as in Theorem 3.

VI. Effect of the Type of

Boundary Conditions

Assume that on r 31 + 6 -g where b'. 0 Its
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difference approximation is

+ ± I + 11(0" t + A). Q(Ra (6.1)

For convenience, let 6 - X -, Yconst. ,and the boundary shape

be sufficiently regular.

Theorem 5. Assume that in scheme (2.7), and (6.1),

0 V > 0 and conditions (0'9 it0 O ) are satisfied,

then when I1711 and pAfj, 1, , , s k not Creater than Nh'

for all kr < T < U.P) ,we have IWO(&114 e c~p.

Proof. Because

Therefore /142

Substituting II+I + ~ II 611he0bov

equtios itoequation (3.2), we then get

~mI;.,I'4 ~nOa m,. - i'MM - T'ji'j

+ (2 -- 2F - Ms-M.e-M.)III- rjiI(a
+ +i)' l.(II'* II + h(ifI*+ I1J'J~J

The rest of the proof follows similar lines as Theorem 3.

For proof, see another paper of mine. From this get

I28*16Z( Mg4 Coflst -(1011 I .' r + 4 . ". +

2L4



Finally in lemma 4, let w(k)-il'()J,1, u, 2 , ,0

Theorem 6. If in schemes (2.7), and (6.1), b>o,si>o

and conditions (, ,O,O.O) are satisfied, then when 11,!'

and p(,lI,,ll ,,) nct greater than N j  , for all

r 4 7' < T(p) we have

Proof. Since on r,

-- C~+ ff) + ~ ~ ,)
2

therefore

h'nri' I Q,~ + 01 ~rA1 . Y- ~ij
--vorA o +A (

4 4a

F. i'ui0 - 6) t~

Substituting equation (3.5), (3.9) - (3.11) and the above

equations into equation (3.2), we get

8.,...,(fq) + - 11O1l' + r(,,O - AM,4.)i,0 1I + 2( - )l14lI1.

2 4: 2

.t - - -- rn-08 as ) (, + ,
2 2''

f , r ,.i l 1 Ijql + a-lql(llqll + II+ +1lllF,+ r+l1g,.)+r, ,

The rest of the proof is similar to that for Theorem 5.

Note 1. From Theorems 5 and 6, if b 0 then when
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l7, ll,p<4'& the cc-putation is stable. If i,,n then

we need to require ',.,f6'&Nh' in order to guarantee stability.

If we treat ,,i. a.- formal approximate error, then when

lIL,]=o.'),j,,,, o(hj) , schemes (2.7), (6.1) converge. This

can be achieveJ by suitably choosing r*

Note 2. The following externally imposed boundary /143

conditions are often used in numerical weather forecast:

or
2((") - (Q), Q E

where o**ER,-R: and distance h from Q. These 2 conditions

may be considered as conditions (6.1), with accuracy 0 (i)

and O(h) respectively. Theorem 5 cannot guarantee the conver-
gence in long term calculations. The calculation of Platzman
and Mastuno proved this. For reference, see [14].

Note 3. The method in this paper may be used to prove

the suitability of many boundary treatment methods in aero-

dynamics. For example, 4 P1 -, 9, g is often given on

r according to the famous Thom method, i.e.

11W) - Q(9*) - -2( (')-i(9))h-' + O(A)

-2hg,+ O(h)

This is equivalent to the boundary value conditions of the
first kind of n with error o(h) . From Theorem 3, this

method of treatment will lead to a convergent result.

Note 4. We may also adopt various boundary conditions of

. For example, ,-1-94 with error 14 Let us construct

2b
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a function , such that . Also let *-+ ,

then a- +, 0 Hence we can prove that there

exists a constant m; only dependent on the diameter of
the region such that

II ~ lt 11 11 -; < 2 ,6 '1 c .1} + Sm ," ( 11f,111 + 1112111 + I ! '

By substituting this estimation equation into the earlier

theorems as Ilq4f , we will get the corresponding result.

Note 5. By combining the various methods in this paper,
we can prove the convergence of the computational methods of
many practical problems, for instance the example of a wind

tunnel calculation on page 140 in Reference [1]. From

symmetry, we know 4---0. on the center line r, of the

wind tunnel. On the surface I' of the object, we know
4,-0 from fixed wall boundary. & is treated by using

Thom's condition. At f, upstream, u-, ,v-, . There-

fore i is known, and icon't by Daugherty's method. On the
fixed walls of the wind tunnel, since v-0 , ip is known.

is calculated by Mueller's method. At r, downstream,

0.O

This method of treating boundary conditions will lead to a

stable and convergent numerical result.

r4

I I

I .. r

I.r,

Figure 1
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VII. Dynamic Relaxation Method for Steady Flow

Consider the problem of steady flow

0 ox, ax ex, o, O, V a, j Ua (71)

For convenience, assume O v -con st, , zero boundary value

and R a rectangle. In [1, 3, 5] many computational methods

are introduced but there is no proof whether solution exists

for the corresponding difference scheme or whether the solu-

tion is bounded for all h. In this paper the following scheme

is given

J(nT)+&7---,, A-9 (7.2)

Assume H is the Hilbert space formed by the net functions

that satisfy the zero boundary value condition under the inner

product

2 2

The norm is denoted by 1 obviously for arbitrary

wEH,(w,t,). is a linear functional in H. Hence there exists

F EH such that [F, ,w] - (, ,) and I(w, I)I < IiFlislwII,.

Theorem 7. In (7.2), if al-,, , and IIFIIH is uniformly

bounded for h, then for all h, there exists at least one solu-

tion of equation (7.2) uniformly bounded for h.

Proof. Multiply equation (7.2) by &ven and find the

inner product. From equation (1.4), we get

-,,,!, uw) + (w, J(, 9)) - wl1 . uv)
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*1

A
But for fixdi n and ,(,(i, )) Is also a linear functional

in H. Hence there exists 437(EH such that LA,, w1--

(4( ) . :rcfore the solution of equation (7.2) is

equivalent to the solution of the following non-linear opera-

t or equation: 
7 (4+F)VQ
'I - - (A"z + F) - Q

V(7.3)

Assume that there is a sequence ?its, 49(m -..3 When a-0,

floC_ It-." 0 Hence when n is sufficiently large, IIWO"H, Ij1P',"l

is uniformly bounded. Denote J. .,. [ -_ 4IWO W then

from equation (2.4) and lemma 2, we have

I(,7. - 9, (w, O")l + I '', (wS q0

< I VNm rl ' -  q II0llwllo

Take w -A' .-.- AO then 1 - M(11-(ml) i e.

A is a continuous operator and iA. is independent of h.

Now from Browder's fixed point theorem, we only need to prove

that the equation

q-- Z q + )- O(7.4)

is bounded for the set of all possible solutiors of [0 / ]

Multiply the 2 sides of (7.4) with ' and find the inner

product in H, we have

IqA)IlLm < A V l)l lIIJhtF Jim _ iiq- 11"l lFl J l.

Theorem 8. If 2"V(2)'"Il.u, ,,u..-a then the solution

of (7.2) is unique.

Proof. Assume v. 9 and n', are both solutions.

' + 4, T- 9 + to then

29
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Val+ J(' 9) + q0) + An. q) 0, A

Multiply the first equation with n on both sides and find its

inner product. We also notice that

therefore

< 2_2 wY I InII

Theorem 9. Assume the ith equation in (7.2) has error

i,. and the corresponding n has error 9 , then under the

same conditions as in Theorem 8, OIl, III ,[i?,fl$ + 11?.111 i

Theorem 10. Under the conditions of Theorem 8, the follow-

ing iteration process converges at least as a geometric series

where T is the relaxation factor and n the number of iteration:

A, ,+ . + r+,z", + j( ,, )) + . (7.5)

The two theorems above may be proved similar to [8].

If owl , equation (7.5) is then the N-S method in [5].

Apparantly this method of calculation and proof is more compli-

cated. In recent years, Davis, Greenspan and Hodgkings have

all tried to calculate equation (7.1) with non-steady state

method. For reference, see [1, 17, 18]. They call this the

dynamic relaxation method. But since equation (7.1) is a non-

linear problem, thus violating the simple relationship between

the steady flow iteration process and the final state of non-

steady flow as pointed out by Frankel. Therefore very few

theoretical results have been derived. This author examined

30



this problem from another angle, and first proved that general-

ized solutions exist for both equation (2.1) and (7.1) under

very weak conditions. He also proved that if the generalized

Reynold number Re' -< m i*, IL, <I then equation (7.1) 's

solution is unique, where

II~IL g~dx~dxj, +II~~ - Iai~Y~~~ xx

H* is the closure of the infinitely smooth, finite subset

functions under IIw; , and

We denote a - 2v(mo)-'(I - Re')

Theorem 11. If E is the solution of (7.1), 1() is the

solution of (2.1), both with zero boundary values, f(,)e15
, then when Re'< I

40) IIk" i, 'sIIIg()IIL

Proof: •

I 'L±. -: VN. 31
as OX ... °.. .j .. . . (7.6)V'J' I

Multiply both sides of the first equation by 242 and find its

inner product. We get

,,+ Za'flIlL, 5,2, €III. £Jt + lu 1v

+ 2

I I---I *I
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From an Inequality In § 1, Chapter 1 of Reference [9],
[]4[|. , ~ IV [I'lz < , l],, < m IIl]jII.a. , therefore

d ,. + I ' - *) I,. < o
,d, L

Since a systematic result has been established for /14C

non-steady flow in our paper, we may conclude by using

Theorem 11 as follows:

1. For any -s>0 , we may choose To - log2I0(o)I]L|
6

so that when s To , < . Further if we

assume that the approximate value v(s) of (t) is calculated

by using any one of the schemes in § 2, then we can prove

that if conditions in Theorem 1 - 6 are satisfied and P,<Mh'

then when A a'eLI'
• 4MM 1

II'(T,) - j(T.)II < e/2

so that II,(2")-lll<e , i.e. when the above process is con-

sidered as an iteration process with relaxation factor T, the

process is convergent.

2. Iterative convergence depends on many factors. If v

is too small or ]I]L, too big, the conditions of Theorem 11

will both be violated so that the total iterative procedure

may not converge. If h is too big, then no matter how big is

To (s) will not converge in i() If T is too small,

the amount of work will be increased; if T it too big, then

the conditions of Theorems 1 - 6 will be violated and the

iterative process may not converge. From the process of proof

we see that the iterative convergence is related to initial

iterative error, boundary shape, type of boundary condition as

well as to boundary value error. This agrees with the exper-

ience described by Greenspan [17], Roach [1], etc.

I



3. The amount of work may also be estimated. For example

if equation (2.7) is used in the calculation, the total number

of iterations is about

K [ fog 2 (0)l0)11 2 1.

Apparently when ,8 are large, K0 is small. When 11III,I ()IL

or M, Mi(gradient correspondong to the solution) are large,

K0 is large.

When Theorem 11 is applied to local district numerical

weather forecast, it shows that if v is fairly large and the

n ', values on the boundary are fixed, then when A-0,r- 0,

V(s)-1() and when T0  is sufficiently large, 9()

approaches E, i.e. the forecast value rapidly transits toward

equilibrium. Therefore the sponge boundary conditions in [20]

should be used. For more detailed proof and application of

some of the results in this paper, see Reference [21-24].
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Abstract

There are five important subjects in the theory of difference methods: 1. eon-
struction of scheme; 2. Stability of scheme; 3. Computation of flow without vis.,,us
term; 4. Interference of boundary conditions; 5. Solution of steady flow. A lot of
work has been done in this field"-", but no systematic theory has been developed.

In this paper, systematic results are provided with particular reference to two.
dimensional vorticity equation. Two classes of schemes are constructed based on con-
servation and transport property. A new concept concerning generalized stability and
optimization of nonlinear scheme is introduced. The index & to generalized stability
for periodic problem is estimated, which shows the relationship of stability and coni.
servation. Two-level schemes are given to decrease the Index s. The influences of
bound shape, boundary conditions and their errors are fully discussed. Finally thw
existence of the solution of steady flow is proved and a dynamic relaxation method is
proposed. Several examples are given, showing that the wethods suggested here are
useful both for numerical weather prediction, and iu the field of aerodyuunmict .nd
other subjects.
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ON THE KERNFI, FUNCTION COL,,OCATION METHOD IN STEADY SUBSONIC

FLOW FOR WING WITH CONTROL SURFACES*

Chen Jin C Song
Nanjing Aeronautic Institute

ABSTRACT

In this paper the forms of the lift distribution function

for wings with control surfaces in steady subsonic flow are anal-

yzed. Methods for treating kernel singularities of linear inte-

gral equations and singularities of the lift distribution function

are discussed and the numerical solution to the integral equation

is given. The method in this paper may be used to calculate the

lift distribution of the wing by itself or of the wing with par-

tial or full control surfaces on both the leading and trailing

edges. The' numerical values agree well with experimental data

and have the same accuracy as those given by other theories. As

compared with the vortex-lattice method, the computational storage

requirement for our method is smaller and the computational time

is less. The numerical computation may be carried on smaller com-

puters.

I. FOREWORD

At present, the numerical methods to solve the lift surface

linear integral equation are categorized into two kinds: The vor-
tex lattice method and the kernel function method. The advantage of

the vortex lattice method is that it is not necessary to assume a

priori the form of the lift distribution function, and hence, in

principle, there does not exist any difficulty to compute problems

involving partial control surfaces. However, to achieve a certain

computational accuracy, the number of vortex lattices should be

Received February 11, 1974
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large and this will certainly result in a higher order for the

linear algebraic equations of the coefficients. The advantage

of the kernel function method is that it requires very few coll-

ocation points and, therefore, the order of the equations to

solve for the undetermined coefficients is low. Its difficulty

lies in the fact that the lit distribution function with match-

ing boundary conditions and edge conditions must be chosen a

priori. Reference [3] made use of a method of approximate expan-

sion to study the pressure amplitude characteristics of the lead-

ing and trailing edges as well as the corner when the control sur-

faces oscillate harmonically and obtained the "form for the control

surface lift distribution", thus making it possible to solve the

control surface problem with the kernel function method.

There are two methods of treatment when the kernel function

method is used to solve the control surface problem. One of these

is to substitute directly into the integral equation the control

surface lift distribution as obtained by the approximate expansion

method to find the downstream velocity induced at the collocation

points on the wing (including the control surfaces). The equiva-

lent downstream velocity is then obtained by subtracting this in-

duced velocity from the actual downstream velocity at this colloca-

tion point. In this way, we may solve for the lift distribution

that satisfies this equivalent downstream velocity with-the kernel

function method, while regarding the wing with control surface as

one without. Then by super-imposing this distribution to the con-

trol surface lift distribution mentioned above, the lift distribu-

tion on a wing with harmonically oscillating control surfaces is

obtained. This kind of method is called the equivalent downstream

velocity kernel function collocation method. [
4-6]

To obtain a stable solution for the equivalent downstream velo-

city kernel function collocation method, the number of collocation

points should be somewhat large. It is also necessary to select an

expansion factor for the control surface lift distribution, but it
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Is difficult to make it satisfy the edge condition of a flat

plane while keepinf the second order derivative of the lateral

load continuous. Shortly after the completion of the work in

this paper in August of 1973, we saw that some progress had been

done along this direction in [6]. Some of the problems are solved

but the region of integration has to be subdivided into many

smaller regions during numerical integration. The technique of

using just a few collocation points and integration points as in

the control surface kernel function method cannot be used. In

this paper we use the control surface kernel function method to

determine the lif't distribution of the control surfaces. Limited

by space, only the results for the steady flow will be presented

in this paper.

II. FUNDAMENTL EQUATIONS

The fundamental equation of steady subsonic lift surface

theory is

4pU..(1

where w is the downstream distribution function over the wing;

p and U, are the incoming flow density and velocity; AP is the

lift distribution function of the wing and is a constant;

K - (_ +___( _ is the kernel function; M. is

the incoming flow Mach number, I---m..

According to Figure 1, by transforming the coordinates in

Equation (1) and making use of the conditions that AP is zero at

both tips of the wing, we obtain

Wu, i)-If - _ p(, + Ih()dk1.-l(
So J-s R (2)

where IV - 4xpU-.'W(i, j), R -+( - ) + y - . In the above, the

dimensionless coordinates are respectively
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physical plane

b<

transformation plane

Figure 1. The physical plane and transformation plane
of the wing.

The meanings of the other symbols are shown in Figure 1.

To obtain a convergent solution with suitable accuracy, to

reduce the required machine memory and to shorten the computational

time, before solving the integral Equation (2), we must first

select a suitable lift distribution function, find the best
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positions of the integration point, the downstream point and

use a stable and effective numerical integration technique.

III. SELECTION OF THE FORM OF LIFT DISTRIBUTION FUNCTION

According to linear theory, the lift distribution may be

divided into two parts: the normal part APR as produced by the

incident angle when your angle is zero and the subsidiary part

APCSR as produced by the zero angle when the incident angle is 0.

AP(Q, + - ({, ) + P , ) (3)

The function APR is required to be continuous on the wing

with an inverse square root singularity at the leading edge of

the wing, to satisfy the Kutta-Joukowski condition at the trailing

edge and to vanish at the side edges with a square root form.

Hence, the tangent direction of APR may be chosen to be the first

few terms of the accurate thin wing solution and the lateral

direction to be the elliptic distribution solution of a (long,

narrow slender body) wing [7,8].

4 4pU. s -' 'g'(3)' + '' )( - VY')  (4)

+ SAI-V"

where + - {')'" + "

- o.,U 0(,) + -. AU(N) + a.,ju(j) + ... (n - 0, 1,..., N) (5)

(N + 1) is the number of terms along the tangent direction of the
lift distribution function; U (W) is the Chebyshev polynomial of

second kind;(m = 0, 1, ... , M) is the number of terms in the later-

al direction; anm are the undetermined coefficients to be found

by satisfying the boundary conditions. It is easy to see from

Equation (4) that AP does have the proper edge properties.
R

The zero incident angle slender body lift distribution [9] of
the partial control surface (with axis of rotation along the lead-

ing edge) is
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.'o 1. - - T.7i + COPA

where Apcs is called the control surface lift distribution func-

tion. It Is proportional to the logarithmic term. APR is called

the normal lift distribution function. Similarly, the zero inci-

dent angle lift distribution function of the wing with partial

control surface consists also of two parts. The form of APR is

similar to Equation (4). APcs may be expressed according to the

form supplied by [3] in conjunction with the logarithmic term

solution of the wing type discussed above as [7]

APS(f, P SO'./1-r [96(2) + g'(2)(1 + f + --i (6a

where $

wIh r{I - fc. + (I - g,),fl( - f.),',, + E2.1'" - E.

qvcs(t- .) -t EU, -.
uI

. - - ' > (6b)

+ja--Qp( + , . ), 1 < 0
Summarizing the above discussions, the lift distribution function

of the wing with partial control surface at zero angle is

' 6(2)  (7)

+ Ls, (i)( 1 -;) +g(J.(41)(0 - )'3 + (JC+z )()(1 - l)t/ + ... I)

In Equations (6a) to (7), ICS is the number of control surfaces

that move together in the right half of

the wing; for the meaning of fc.,.1,.

and -a , see Figure 2; JC is the num-

ber of tangential terms of APs. For the

case of leading and trailing edge control

surfaces that rotate together, JC=2.

Figure 2. Diagram show- Otherwise JC=l. For the tangential terms
ing the control surfaces of APR, at least two terms should be
on the wing
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taken. It Is not difftult; to verify from Equation (6) that APCs
has the property as pointed out in [31: namely, that it Is zero

at the leadinr and trailing edges of the wing, finite at the side

edge of the control surface and continuous on the wing surface

outside the control surfaces.

IV. THE BEST POSITIONS OF DOWNSTREAM POINT AND INTEGRATION

POINT AND TECHNIQUE OF NUMERICAL INTEGRATION

It can be proved that to minimize the difference between the

approximate values of the low speed thin wing lift and the total

lift and their respective exact values, the tangential downstream

point and the lateral downstream chord should be respectively [10]

COS( ( - 2 .. (8)li- -- 21 + !I'

os- o, (r -1,2, .. , R') (9)

where I is the number of downstream points of each chord; R' is the

number of downstream chords of the right half wing. The best

ratio of R'/I may be obtained following [7] for various wing

shapes and M,.

From the functional forms as shown in Equations (4) and (7),

we can use the Gauss-Mehler quadrature with .(I- )/(1 + )

as weight to maximize the accuracy of the tangential numerical

integration of Equation (2)

t-~' (bq) la)

where J is the number of integration points of each chord. The

integration point and weighting coefficient are respectively

Cs[ .2.41  (j I32 J2J + I) (10b)1q, 2w ( -
2J + I

, 41 ] ]I I] ... . I.
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If f( ) is a polynomial with order less than (2J - 1), then Equa-

tion (10a) is the exact value.

Substituting Equation (4) (or Equation (7)) into Equaticn

(2), we may obtain the general form for the lateral integral

o )- d ii

G(y,n) is the tangential integral of Equation (2). We may assume

that it is an analytic function of n. Since it is impossible to

numerically integrate Equation (11) directly, we first expand

G(y,n) into a Taylor series and then integrate termwise to get

IQ) ~ I' [ (-j[G(y, 3,~) - GQy, y)]I(q) I,

--(1 - r')G'( ., )i r G(, )

+ - + xGQ, y) (12a)

where S is the number of integration chords of the whole wing; n-s
and Hs are respectively the integration point and weighting coeffi-

cient of the Gauss-Mehler quadrature Equation (11) with I// I- '

as weight.

H, - /S (i2b)

It will be proved below that Equation (12a) may be greatly simpli-

fied by appropriately collocating the positions of the downstream

chords and the integration chord.

Since the positions of the integration chords mentioned above

alp ...' a are the zero points of Ts(n), therefore

T,( - z-, H - ,) (3a)

The logarithmic derivative of (13a) is

,(S)ITs() CI - -3b)

If we let 2R1 + 1 = S, i.e., take Er as the zero point of T;(n)

then n and Yr become crossed. Also from Equation (.13b)

i, 42
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S0

-- "(13c)
Hence, Equation (12a) may be simolified as0,< ( - ,j,)'G(Y,, ,

SS * (13d)

We shall prove below that the square bracket portion of Equation

(13d) is equal to S. Change the variable n in Equation (13b) to

and differentiate. We then get

I - [7'(y)/T()]'.- T;'Q)/T5() (13e)

According to the property of Chebyshev polynomial,

(0 - Z')T(Z) - 7"TQ) + S'Ts(Q) - 0 (13f)

Therefore, we get from Equations (13e,f) and the fact that Y, is

the zero point of Ts(Y):

t Si (13g)

Since (1 - ,) (1 - y,) + 2y,(Z, - j,) - (y, - 1,)', therefore,

S (I-) Z 1 _ZI (13h)

gal (1, 3j, Q" gal )'" , , '

It may finally be proved from Equations (13c,g,h) that the square

bracket portion of Equation (13d) is S. Hence, the numerical inte-

gral (12a) is finally simplified [10] as

1 j') -j -- !GQ,. )J--1 - dj

S (, + zSG(y,, Z,)S$,- (Z - N,): i

If G(y,n) Is the (2S - 1) or lower order polynomial of n, then
Equation (14) is the exact value.

4I
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V. INTEGRATION OF THE INTEGRAL EQUATION AND ITS SOLUTION

1. Case of anle u ' 0 and yaw angle 6 = 0.

Substituting the lift distribution function Equation (4)

into the integration formula (2) and applying Equation (14), we

get

4pU_ - ,- ) - + ssGH( ,, ,) (15)

where

(16)

G.(r, N) - 0.(f,7J) + ~~dr16

4kQ,' 3) = I CXQ) + g1(N)(1 + f) + gj(N) (1 + + I - C17)

In Equation (16), the function being integrated has a jump discon-

tinuity at E = i along n = Y. Because of this, Equation (16) is

ewrtten as -

+ OfZ)[I +"--djl C18)

Thus, the singularity of the integrand in the first integral may

be found by using the quadrature Equation (10). Jump discontinuity

still exists in the second integrand which is difficult to inte-

grate analytically. Hence, we expand the analytic function * (C,)

into a Taylor series:

O,(b Y) - 0(' r) + (f - 0)t.a(r,Z) + (19)

while from Equation (2a) and Figure 1, it can be shown that

(-z)- th./l(q)(9 - ) + [b./+,(-- kOf)--(i + (20)
Substituting Equations (19) and (20) into Equation (18), the second

integral can then be integrated analytically. If only the first

two terms of the series are taken, then after some algebra, the

result of integration is
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G-- - .. .... i - -'I~j( - +1L~(l- + "

+ + X )")4,(i,, j, it) (21)

whore
(L,,( I g- Z, + Z )(I +X )++e( )-,l + I )+ ... (22)

2w (IIpl)"
,PAC, il ,C - sit - 1 1,' + (24)

4ia(i ,~ {~ ~ _ , 23 (1_ , - + ,J (24l)

- + I j R,

,(e I , l) - + )JJ 0 (, i, 0

+ll) 21 +,. 0 j

4(i, j , ,) - 2 +(,) 1(--,.)' + #'(j - q)'j"-[(.-i) + PU(i-0)']'} (26)

' - I U - ,,- (, - i,) + (U - 1 )f(%i -

+ ~r(~-~I 3 + Qi. - i~Q,- iy~ + 81(i, - V)2]1/Z - (5-

In .-- ,, + p'(i - OT)" + Ui - f,

In Q, - X-), + p2(5 - )]", - (M, - -) (27)

Gk,(Z, I) - li-GR(y. (28)

Substituting Equations (.21) and (28) into Equation (15), the down-

stream distribution expression for at 0 0, 6 = 0 is

1vi:. ,) -2x'0
4pUJ S(J + I) $-1 jot

s,( ,)(I - b1) + g,(U,) - j) + "'.J

+ i , - )2+,'(j,- ,=Mca , I + L -,  (29)

oUs,)(1 - I,) + P,(z)(l -q, + "I

+ ,SI,(, + ,, +)
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TI;- last tao terms In the above equation are the correction terms

that appear when the jump discontinuity in the integrand is ellm-

Iriatcd. In the above,

p(30

2. The cnse of' a = 0, 9 0.

From the simultaneous Equations (2), (7) and (14), we obtain

Iv4 i, 0 ,)__)GCkQ,' + sGC,(,)N - Z - U_3),
4 PU. S C. I) 31)

where

Gcs(t, 2) - Gcs(X, ) + Gcsxa(Q, 1) (32)

' F-- I +(33a)

GcjRj -)lijc(l) + S£Ci+J5Q)(I + 1) + *[ g] ~-I+Zld (314a)

Equation (34a) is similar to Equation C16). The result of inte-

gration is

Z 1_) + 2 , 1 - + (S) - i) + ... IGcsta(, "21 + I .

*+ &-]+ C34Ib)

Except for the jump discontinuity at n~= =i the integrand

in Equation (33a) has a logarithmic discontinuity at the leading
edge of the control surface. The method of eliminating the former
is as described in the above section. The logarithmic singularity

Is eliminated by a method similar to that used to eliminate the

Jump discontinuity. To make the correction term that changes the

integral from singular to non-singular consistent along the lateral

direction, the lateral part of the non-singular term is also cor-

rected. The final result of Equation (33a) after this treatment is
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Gc~AiQ 2 +j I~ dOO - P, + g,(N)(i -~

(LL)Ih,~cq~) R+-i ~Jj (33b)

.- (35)

4A'SOU, Z~) - +g~)--c()I±~ + g9cs(J, ) (36)

4'~~~Boc(js 
X)) - Lor.,

O Iuif, -) ~C.+ J"-E (38)

2J + I - )' 3 ,-i.
InIlQ , 2- -+]"- ELI . )(8

L.c. In) (I - c)n 11 + E E. 1  
-(39)

+ ( + 0c)n 1(1In + ( -+ El]' +E-3 -E.

+ (0 + fc.)InlfI + fc.) + Ea" - E. E

2c Cc.Y2 (40

/AC,(C., Y) - {[.( + f.Qj)In KI + *.4 + Ell"-2)

2scs~. ) [-xaC,~J~ 43
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The expression for downtream distribution of a = 0,6 4 0 is

obtained by using Equations (31), (32), (33b) and (34b):

4pU. S(2J+I) , (

I [o(3,)(I - + g,,)( I - + '

l+ +,\,

X-' 10, + 01c~(I- 4 g,+()( I + .. No 44
1 [A + JC - ) + - ,) r + 2 S ) I

X) + ( C'(')(' + . + (4

I ,pcs({,, r,) + (gj(,)( - ,) + g c+,Q)C(l -, + "'" 1 X

S ~ , I -- 2)

+ zS[V x(s 1 1,,,Z,) + ,G( ,, A ,, ,)1

The un-explained symbols in this section, with the exception

of OJ(S, ) - (IX ['(+1+(X)(+)' , are identi-

cal to those in the last section.

3. Determination of the undetermined coefficients a.,

We write Equations (29) or (44) as a matrix equation:

, - - 2v{ 0i }(45)

where (a..) and are column matrices; is the boundary

condition at the optimal downstream point (xi, yr ) , i.e., the

inclination of the object surface; [(Anm)ir] is the matrix. The

elements of the matrix may be obtained from Equations (29) or (44),

After anm are solved from Equation (45), the lift distributions

and the other aerodynamic quantities of the wing surface and the

48
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control surfaces under given conditions may then be found from

Equations (4) or (7).

VI. SAMPLE CALCULATION AND CONCLUSIONS

The above computational method has been coded into a program

for the X-2 computer. Calculation shows that the numerical re-

sults of our method agree well with experimental data with the

same accuracy as other theoretical values. Figure 3 shows one

sample calculation, which requires only two minutes of machine

time on a 709 computer.

6 -l 2
,-I-0.46 NACA RML53C23 [2 1K- 8, 1- 10

-P 3 c-0.60 O6 -15' 7 ]Jr-12. 1=3

m0.25 1  
- 3 M~tt4-0

-1.0-06 -0.2 0.2 0.6 .1.0

Figure 3. Comparison of the computed values in this
paper to the experimental data and other theoretical
values (A. - 0.6, 9 - 0.46)

Key: 1--experimental data; 2--theoretical calculation;
3--ratio of lateral to tangential dimensions;
4--trapezoidal ratio

From the limited numerical results, it has been demonstrated

that the method presented in this paper is reliable. Compared to

the vortex lattice method, our method requires only a few down-

stream points, thus greatly reducing the machine stroage require-

ment and computational time. The numerical computation may be

carried out on small computers.

J49



[I 1Ifliian, S. Q.. Vortex Lattice Method for Calculation of Quasi Steady State Loadings on
Thin Elastic Wings in Subsonic Flow, FI"A lRCort 105 (1966).

2 ] Alkano. L. lid ltIu1ddcn, W. 1'.. AZAA Journal, 7, 2 (1919)
[3 1 Lamdahl, M. ... l Journal, 6. 2 (l9ts). 315-349.

4 Ashley, II. and |iowo, W. S., Z. Fluywissenschaltcn 18, 9-10 (1970).
(5 ] Zwaall, It. J., Oil u KelnIl-Fuictiou Method fur the Culeulution of Pressure Distri1,utions on

Wings with llaamunically 0,6zflataig Control Surfaces in Subsonic Flow. NLI? TIC 70123U
(1971).

6 ] Rtowe. W. S., Winther, 13. A. and Rednxn, U. C., J. Aircraft, 11, 1 (1974), 45-54.
[ 7 ] Cunningham, A. M., Jr., J. Airrrat, 9, ii (1972), 41.3--19.

[81 Cunningham, A. M., Jr., J. Aircraft, 8 ,3(1971), 168-176.
19 ) Thoedorsen, Th., General Theory of Aerodynamic Instability and the Mechanism of Flutter.

NACA TR 496 (1931).
1101 lisa, P. T., Somo Rocent Developments in the Flutter Analyals of Low.Aspect-Ratio Wings,

National Specialistio Meeting 'roceedings, Dynamics and Aeroelasticity (1958). 7-26.
(11) Kopal, Z., Numerical Analysis. Second edition. London (1961), 382-384.

ON THE KERNEL FUNCTION COLLOCATION METHOD

IN STEADY SUBSONIC FLOW FOR WING
WITH CONTROL SURFACES

Chen Jing-song
(Nanjing Aeronautical Institute)

Abstract

In this paper, the forms of lift distribution 'function for wings with control sur-
faces in steady subsonic flow are analysed. The methods for treating the singularities
which occur in the kernel of linear integral equation and in the lift distribution
functiots tire also discussed, with the numerical solution of the integral equation given.
The method proposed may be used to calculate the lift distribution of the wing alone
and of the wing with full or partial span control surfaces on both the leading and
the trailing edge. The numerical results are in good agreement with experimental
data, and are as accurate as those obtained by other theories. As compared with the
vortex-lattice method, both the required computing time and the computer capacity
are reduced. Thus, the numerical calculations may be carried out on smaller computers.
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ON THE CAPACITY OF HOLOGRAPHIC PHASE-SHIFT I!TERFEROTETRTC

TECHNIQUE 1N THE VISUALIZATION OF LOW DENSITY FLOWS*

Li Hua yu, Xu Chao yi, Shu Jiz.u, Hu Jin min

(Institute of Mechanics, Academia Sinica)

ABSTRACT

Gas flows at high Mach numbers are usually associate with very low gas density,

especially in sitnulatin, flight conditions at high altitudes. In visualizing such flows

the question usually arises as to how the sensitivity of the optical method may be
increascd.

Paper [21 has pointed out that, if the reference beam of holography has a certain

phase-shift between the two exposures, a higher sensitivity can be achieved. Paper

(2] appends an experimental result in which the phase-shift value is n/ 2. The pre-

sent paper analyies the phase-shift interferometric technique in detail. ccordiiig

to this analysis, when the phase-shift value is ;/ 2 , a resolution limit about A/1000

can be achieved. This is 25.4 times higher than the common double-exposure holog-

raphic method in which the phase-shift value is zero. Furthermore, the present paper

points out that when the phase-shift value increases from x/2 to X, the sensitivity

also increase monotonously (for instance, when the phase-shift value is 0.89 N,a resolu-

tion limit about X./6000 can be achieved). The optimum phase-shift value is probably
near n.

This paper presents some experimental results of a low density flow. Some pro-

blems in application of this technique are discussed.

*
Received February 19, 1978
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A highly sensitive holorraphic Interferometric method deserv-

ing our attention is introduced in this paper. As pointed out in

[2], the sensitivity may be raised when there Is a nha!7e shift in

the reference beam between the two exposures in holographic inter-

ferometry. The experimental results for a phase shift of r/2 is

also reported in that paper. In this paper, we analyze in detail

the interferometric technique and point out that at a nhase shift

of 7T/2, this method may achieve a resolution of about 1/1000 wave

length, 25.4 times the sensitivity of ordinary double exposure

holographic technique (with 0 phase shift). It is also noted that

the sensitivity may be further improved for phase shift greater

than v/2 and smaller than n, the best phase shift value being in

the neighborhood of 7. We append in this paper the experimental

result for a low density flow to demonstrate the ability of this

method in visualizing low density variable flow field and discuss

some of the problems encountered in its application.

The finite fringe interferometric method used in the investi-

gation of flow fields has generally a resolution of about 1/20

wave length. In practice, there exists a great number of situa-

tions where the state of matter has a variation much less than 1/20

wave length, such as the study of supersonic air flow, all kinds

of low speed flows, small cross-section tube flow, etc. Hence the

improvement of the sensitivity of the interferometric technique

has always been an important research topic. The phase complement-

ation method of [11 is an outstanding example of works in this

area. In that paDer, a highly rensitive visualization method has

been developed by applying the principle of spatial complex filtered

wave, including the application of the phase shift technique.

In contrast to the principle of spatially filtered waves with

phase shift only in local waves, [2] introduced the technique of

phase shift for the whole wave to improve sensitivity by changing

the phase of the reference beam between the two exposures of the

hologram. It also exhibited the pictures taken with the high
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sensitivity obtained after shiftinr the phase by 7/2. [3] applied

similar principles in non-holographic situations to realize a high

sensitivity in ordinary interferometric methods by controlling the

initial phae difference between the two interfering beams to be

around 7/2.

We discussed the phase shift technique in the holographic inter-

ferometric method in an attempt to explain the physical interaction

of the phase shift method and the relationship between the phase

shift value and the sensitivity of the measurement. We also com-

pare the methods in [2,3] and note that the best possible phase

shift value is not 7/2, but is close to 7T. The experimental

results are included in the appendix with a discussion of the prob-

lems that exist in the application.

I. ANALYSIS OF THE PHASE SHIFT TECHNIQUE

1. Effect of chanping the phase of the reference beam between

the two exposures during flow field visualization on the

double exoosure hologram

Let the object wave at the first exposure be €IQC,.,) , the

reference wave be ue 'i'*'y , the object wave at the second exposure

be changed to cjIQ' V(S.y0' , the reference wave be iLm,.,)I'4, where 9

is the phase change caused by the flow field and c is the phase

shift value.

Assume that the recording medium records the intensity linear-

ly [1], then according to the general theoretical treatment, the

following conclusion may be arrived at: (1) even if the medium

should be non-linear, the following discussion will not be affected

because in the off-axis holography, the non-linear effect only pro-

duces higher order diffraction images with large diffraction angles.

It is separate spatially from the first order image that is to be

used. When the processed hologram is illuminated with reference
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R(x,y), the two objective waves emitted are respectively 09(8.0

and . c = 0 is the situation for ordinary double

exposurcs. This conclusion indicates that during the second expo-

sure, the increased phase c of the reference beam is equivalent

to: (1) the phase c subtracted from the measured objective wave

in the ordinary double exposure holographic interferometry; (2)

the uniform initial phase difference c in the whole interfering

plane of the two interfering waves in non-holographic interference.

2. Intensity distribution of low density flow interferogram

(flow field that only induces small phase changes)

The intensity distribution of two beam interferogram is

A~x.Y) - , 1 + Cosi(X. Y) - c)()
2

where 1 is the intensity at 9- 0 when c = 0, i.e., the background

intensity of the interferogram when c = 0. The words (x,y) will be

omitted in the rest of this paper.

Omitting all terms above 9)' under the condition of weak phase

changes, we get

I(X,,)--, [(, + CoC) + IFh4C - o)2 (2)

From the above equation, the distribution of I(x,y) when c-O,x/2,

is as follows:

,_eforeinO

,y)-It(I + 9) forC-/2.2 (3)

[(Xy) "for " J
4

The background intensity of the interferogram may be expressed as

10r. Y)lQ- (I + cos) (4)

This is a parameter used to discuss sensitivity and a function of c
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!(s, y)[,--O for 0 .

Besides, we define the intensity enhancement Al by the following

definition:

W - ,(,, y) - I(X , y) Sin C - Cos ) (6)S2

3. Relationship between the phase shift c and the observed

sensitivity

The flow field interferogram contrast is defined by

- an e - --- cosc
liU-0 I + cosC

This function is monotonic when c < iT. When c = i, l . But

due to the effects of scattering and diffraction, etc., there

exists randomly light so that 16-o will never be zero to produce

an absolutely dark background. This practically Mvo) . From

the contrast angle, naturally the sensitivity is higher when c = ff.

But, the intensity enhancement should also be a practical factor

to be considered because when q is very small, AI will also be

very small, making it possibly too small to be recorded. In the

following we will further investigate the relationship between

AI and c.

From Equation (6), we know that AI has a very large value

when '-tg-'(-2/) (when f is very small, this condition is equi-

valent to eftx/2 ), and a very small value when c = 0 and in the

vicinity of r. The difference may be seen from the following

equation:
for C-04

-  forC--m4 J (8)
Al -- iiq for e - /2

2
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Summarizing the above discussions, we know that if there is

no problem of recordinr AT, the best value of the phase shift is

7r. But if P Is very small, the recording of AT will be limited

by the facts as pointed out by Equation (8), then the best phase

shift practically should be determined by a compromise between the

maximum value of M and the limiting value of AT; and this may fall

between /2 and 7, depending on the actual experimental condi-

tions. With the improvement of technology, the best phase shift

value will approach 7. For example, as pointed out in [4], the

sensitivity may be improved by another 1-2 orders of magnitude if

the light intensity is received directly with photoelectric.

4. Estimation of achievable sensitivity when c = 7/2

1) Observable sensitivity: the smallest intensity variation

that can be discerned in an interferogram by directly observing it

with the human eye is called the observable sensitivity. It is

generally accepted that M = 1/100 is the limit discernible by the

human eye. From this may be obtained the smallest discernible

phase shift. From Equation (7), we know
I.. 1/ I.4 (9)

Substituting M = ±1/100 into the above, we get

31.4 31.4

6 2 b L .. 628

where q,,. is the smallest discernible phase change, ALmin is the

corresponding optical path differences, A is the wave length.

From this it can be seen that the sensitivity of the c = w/2 method

is 20 times that of ordinary double exposure method.

2) Recordable sensitivity. The smallest density variation

that can be discerned on the film when the interferogram is recorded

photographically is called the recordable sensitivity. In practice
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the sensti vity maiy be further improved I'r using high contrast

film. But the processing requirement is more demanding: The

exposure must be correct, the control

on the y value during developing must

be strict to guarantee the linearity AD

of the record and the necessary value
Aioagil

of y. Starting with the characteris-

tic curve of the recording film (Fig-

ure 1), we have . Ogu

Figure 1. Characteris-
AD - y[log(II0 + 46H).- IogHg tic curve of recording

0 *4 4r fl~ ~ H)(10) film
I I!. He

A I1.- ( 1)

where D is the film density, H is the film exposure value, H is0

the film background exposure value, y is the reverse difference

coefficient of the film after developing, AH is the exposure value

enhancement corresponding to AI, and AD is the density enhancement

corresponding to AH. In Equation (10), the condition for the

approximation is that AH/H o is very small. Solving Equations (9)-

(11) simultaneously, we get

&Dj,.,--0.43jy 4L' AD1'-, - 0.434 Y (12)

Under the condition that AD discernible= 1/100 1), and y = 4, we get

TalaIt"- 2 A Lain I .., --
41.3 41.3

1090
Thus, the sensitivity of the c = n/2 method is 26.4 times that

of the ordinary double exposure method. In this discussion, the

reason why the recordable sensitivity is higher than the observable

sensitivity is that films with high y value have been used (contrast

Equations (9) and (12)). If T<1/0.434-2.31 , then the record-

able sensitivity will be lower than the observable sensitivity.

D=log 0, O=F /F is called the optical resistivity. F is the inci-

dent light transmittance on the film when measuring D. F is the
optical transmittance through the film. AD=log(0/0o). When AD=
1/1000, 0/0=l. 023.
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V I, for ordinary films, therefore, ordinarily the recordable

sensitivity is considered to be lower.

The above method was also used in [3] to estimate the record-

able sensitivity of its optical system. According to its estimate,

the highest discernible value for its system is X/500, exactly half

of the value in our paper. The reason is that complementary double

exposure was used in the system to compensate for the original

error in the optical elements so that the background intensity

could be made uniform. Thus, because the phase shift was fixed

near r/2, AH was similar to that in our paper but H was doubled.

Hence the highest discernible value is lowered by one half. Fur-

thermore, holographic interferometric technique can maintain the

same phase shift for every point in the flow field. The method in

[3] could not achieve this due to error in the processing. There-

fore, the sensitivity at each point of the flow field is different.

The holographic method is also superior in this regard.

In theory, the sensitivity at phase shift 7/2 is lower than

that at phase shift n. But there are two advantages for phase

shift n/2: 1) AI is largest, making it easier to record; 2) AI

and q, are linearly related eo that quantitative analysis is

easier. Since its sensitivity is already high, this will improve

its practical value.

5. Estimation of the sensitivity when c approaches n

Since we have only considered the effects of the major fac-

tors in our theory, we have reached the conclusion that -o

when c = n. In reality, the closer is c to n, the greater are the

effects of those factors not included in the theory. For example,

when )W-- , infinitesimally small AI can also be recorded. Here

the exposure time should be infinitely long, but the fogginess of

the film, the stray light during reconstruction and other factors

58



will irake the recording meaningless. That is to say, if the

that needs to be recorded is very small, then the best phase shift

value must be smaller than i1 and must be a compromise between the

limiting value of AI and the largest value of M. Two examples

will be used below to estimate the recordable sensitivity.

1) The recordable sensitivity when c = 1500. By substitut-

ing y--4, AD-I/1o0 into Equations (7), (10) and (11), we get

q,,I-,o - 5036 A m0t..i 36-I
50036

The intensity enhancement is very small for such a small phase

shift. We compare them as follows:

4 ,;.4.,.Q, -7.784 X 10-' X b
2

- 6.24 10-1 X I,
2

/J..,,-.,... -- 6.254 X 101 X -11
2

2) Recordable sensitivity when c = 1600. Similarly, the

following data are obtained

6195 6195

-5.14 X 10-1 X

. 1.014 X 10-2X

2

It can, therefore, be seen that the sensitivity continues to

improve and &I to decrease when the phase shift approaches n but
when the phase shift deviates slightly from 1T, the value of AI
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will be increased greatly over its value at c 7T thus reaching

a stage where it may be usable.

II. RESULTS AND EXPERIMENTAL SET-UP

1. Experiment set-un

The following experiment was performed to investigate the

feasability of applying the phase shift interferometric technique

in the visualization of low density flow field. The object of the

experiment is a small column of freely flowing air, passing through

a tube under constant total pressure of 700 mm Hg in a container

into a cylindrical exhaust tube of diameter 1 mm and length 4 mm

and then into the atmosphere. The commonest off-axis holygraphic

optical path is used (Figure 2). The phase shift is achieved by

using a phase regulator in the path of the reference beam prior to

beam-expansion

Mi '

Figure 2. Diagram of experimental optical path.

(1) HeNe laser beam; H holographic plate; S beam divider; MM 2
total reflecting mirrors; LL 2 beam expanding lenses; L 3 parallel
focusing lens; P phase regulator; E exhaust tube

The phase regulator is a 012mm X 100mm metal cavity with

the two ends sealed by optical glass. The pressure in the cavity

is very stably controlled by a two stage pressure stabilizer.
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The various phase shift values c 0, ±7T/2, r are achieved con-

veniently by controlling the pressure value. The sign of the

phase shift is determined by filling the phase regulator with air

either during the first or the second exposure. The distortion

of the optical glasses at the two ends of the phase regulator

should be minimized in the design of the regulator. This problem

is solved in our case by controlling the length of the metal

cavity. Two factors are taken into consideration: 1) the applied

pressure should be minimized. A pressure of only 60 mm H2 0 is

required to achieve a phase shift of /2 in our regulator (at room

temperature 201C) 1); 2) the air pressure should be within the

operating range of the pressure stabilizer. Therefore, the cavity

cannot be too long. There are other schemes for the phase regulator.

For example, the piezoelectric crystal is also a possibility.

2. Experimental results

Experiment indicates that the observed sensitivity can really

be greatly improved with the phase shift technique. Limited by

circumstances, we recorded with ordinary aeronautic microfilm with

no control on the y value. The recordable sensitivity is lower

than the observable sensitivity and far lower than the standard

in the above discussion. For results, please refer to the pictures

1-6 in Plate I. Picture 1: Recorded with the ordinary double

exposure method. A very short dark flow column could be vaguely

discerned during observation. Nothing can be seen in the photo-

graphic record. Picture 2: Recorded by the finite fringe double

exposure method. The limited fringes are produced by the liquid

wedge. A disturbance with an optical path difference of about

A/10 can be seen at the exit of the flow column. The bending at

1 )The pressure required for phase shift i/2 may be calculated with

the following formula: 10. r
0"jKL T,

where K=2.94 x 10- 4 , L is the length of the cavity, T is abso-

lute temperature, Po T are the pressure and absolute tempera-
ture at STP. After sub tituting in the values, we have
Prejative= 0.0204T, dimension being mm H2 0.r i 61
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the second fringe is already very small. Pictures 3 and 4:

Recorded by the double exposure method with phase shift ±7/2.

A white (ccrresponding to a phazc shift 7/2) and a dark (corres-

ponding to a phase shift of 7/2) flow column can be individually

observed clearly within a fairly long range. The visualization

capability is much higher than that in pictures 1 and 2. Picture

5: Recorded by the double exposure method with phase shift '.

A white flow column over a dark blackground can be seen. Picture

6: The experiment was disturbed by some unusual factors, but

they accidentally make the phase shift in the flow region come

out to be ideally 7. The resulting visualization of the flow is

the best.

We also tested the operation of the phase regulator in real

time. When the pressure is increased continuously, the fringes

continue to scan with the value of position shift in agreement

with calculated value. Therefore, it has operated normally.

3. Discussion of existing problems

In practical applications, a serious impediment of our method

is the stringent requirement on the environment. The experiment in
our paper had been performed over 80 times with satisfactory results

in only a few cases. The reason is that the disturbance of the

surrounding can easily exceed n/2 (e.g., air flow, thermal dis-

turbance, small vibrations,...) so that the desired phase shift
value cannot be achieved, leading to the failure of the experi-

ment or to disturbances of various degree. If we use the single

exposure hologram as a wave memory storage and then use it for

image reconstruction with the phase shift method in a better en-

vironment may be a successful way to do this experiment. This

technique has a good prospect. Its development awaits future

practices.
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The second problem is that there still exizts .:rtain diffi-

culties in using this technique in quantitative measurement. But

If the error can be reduced, then by usinfg the liear relation-

ship between intensity and phase, the quantitative measurement

may be achieved with a micro-densitometer.

IV. CONCLUSIONS

The special feature of the method in this paper is its high

sensitivity and theoretical simplicity. Concerning the latter,

we have not seen any paper discussing it, probably because that it

is difficult to achieve in practice. Theoretically, the difficulty

to achieve constant phase shift has been eliminated with the appear-

ance of holographic photography. Hence, it can be predicted that

the high sensitivity of our method will find its use in a suitable

field.
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ANALYTICAL DESIGN ?OR INTERNAL BURNING STAR GRAINS OF' SOLID ROCKETS*

LU Chan-tang

For the design of the internal burning star grains of solid

rocket motors, in the past people usually carried out pure geo-

metric research and the corresponding trial and error method.

The formulae and computational curves in [11 are typical. They

are widely used in the engineering design and scientific educa-

tion in foreign countries. Practical experience shows that the

pure geometric formulae and curves in [1] are complex and numerous

and yet incomplete; the corresponding trial and error method not

only involves large volumes of computation, but is also uncertain,

difficult to guarantee the accuracy of various specifications and

to achieve, in particular, the optimal design standard. In this

paper, we try to use analytic design instead of trial and error.

Different from the traditional pure geo-

metric research, we organically combine

A, the various geometric parameters of the

IV - internal burning star grain, the various

characteristic parameters of solid pro-
Spellant, and the technical specifications

6./2 of the rocket motor together, establish the

set of design equations according to the

1 1.4; best principle of grain design, and then

solve the set of equations quickly by in-

corporating simple equations and curves.

Compared with [1-3], our method not only

involves less computational work and guar-

Figure 1. Diagram of antees the required technical specifica-
design unit for the
ienal urning tar tions but also yields a design thatinternal burning star

grain approaches the optimal, improves the char-

acteristics of the rocket motor, saves

Received April 25, 1978
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matortal anr.d rqulres less difficult work on the computer.

1. The ,,-e ric Ounctional relations of the internal burning

star gx'aii

As in Fifrure 1, it is not difficult to obtain the functional

relationship between the geometric parameters of the internal
burning star grain according to Piobert's combustion law as done

in []. For simplicity in the calculation, we first give below

only the function k (Figure 2) and function s0 (for the meaning of

symbols, see Figure 1) which are only related to N, the number of

points in the star and 0 /2, the initial half angle of the star

k- 21Y- + A - tP

2NI sin - 1) + ti asN C2)

2

From these, the combustion surface Abl in the first stage and the
initial port area A po may be simplified into the two equations

below:

Ab,,- L.[so + k l + 2x(y -)] (3)
A,, - sj + Pc + xIf - o.5*3 + I') (4)

where L is the grain length. For other symbols, see Figure 1.P
For value of c, see the equation below:

c - 0 - Ox + N sine - cos - - Nsin's (-tg5)
N N N 2

From analysis, we know that angle 0/2, called the dynamic

angular variable, increases monotonically in the interval 10,/2,&.,'21

with the combustion time, starting from y0o/2, the star edge Van-

ishing point. 0 w/2 Is the star half angle at the end of combustion.

0/2 is related to the time-varying y as follows;

-a ns ( " (6)2 (Y + bI)I
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By usinr the dynamic anfular variable 0/2, th nr-nd sta.e

combustion area Abli and the remaining grain arpa A r-y be

simplified into the following functional forms:
N

A&,, - Lp 2. + 2N - -- -(J j + 2,1L,(I -) (7)

A, - I(D, - I) y N + )' ( - , - n',in e -(8o)
2 2 2 2 - y N, (8)

where the remaining grain surface star half angle 0 /2 at the endw
of combustion is

sin a
2 (w + 0/1 (9)

It can be shown from mathematical analysis that AblI has a

minimum value Abmin at e-/2 and is infinite stiffness form (Figure

3 is the functional curve of its infinite stiffness form) is

- 2N + 2X0 -a) (10)
I sin (0/2)

Similarly, it may be proved that A1 has a minimum value Afmin

at -- - 1 -6 i.e.,2 2 N

A,., - 2i1 (r8-2Nna --coss -)

MV N (Cl1)

The existence of Abmin and Afmin is an important feature of

internal burning star grain.

The effective grain area A co when there is no star circular

angle, namely f1 = 0, is very important to the establishment and

solution of the design equations. The followinK_ formula gives its

value:

.. DIP-I(2 + ) -- 51k- 20Y14 2N1 In
4 sil (Oi/2) N

+N c .gA .in's _N( W + J,.(OW_ Si - s Cos (12)
2 N 2 2 2 2
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Then t13 _.fcc.tive grain artra Ac 0 l when there is star circular

angle, namely fl h 0 is

A d, - A, - 0.5(2, - k)P, (13)

The minimum radius R of the internal burning star grain

when fl = 0 gives the governing relationship between the geome-

tric parameters of the star grain. Since it is always true that

d(KJI)<0 , therefore, H is a decreasing function of the

angular coefficient c. Let R > 0, then the upper

limit CNap of C is:

e X - 2) (14)

Whenever f ,then R> 0 and Ro> 0 (when fl k 0).
0 1

2. Establishment of the set of Frain design equations

The known conditions are:

1) The required technical specifications for the motor:

The total impuse It or required range, law of propulsion Fmin -

Fmax operating time t min-t max, operating temperature T min-T maxC

and the outer diameter D of the rocket motor or its limit, etc.

2) Property of solid propellant: specific impulse Isp, com-

bustion rate y = apn, temperature coefficient a., limit of air

current sensitivity coefficient kkp, propulsion coefficient C

characteristic speed c , critical pressure Pkp' specific gravity

p, etc.

The optimal grain design principle obeyed by the set of

design equations: to be able to guarantee the relization of the

total impulse, propulsion power requirement, operating work, etc;

to be able to burn steadily and normally; to have a large effective

grain coefficient nc and a small coefficient nf, etc. The stresses
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I

under conditions permitted by the grain stress.

Thus, tho design equation that guarantees the requlrpment

total impulse of the rocket motor is

L,{.A - 0.5(2* -/)ff] - V, (17)

The design equation guaranteeing the value of the lower limit of

propulsion power is

2N si 6 i- a(18)

2

The design equation guaranteeing the initial peak pressure

limit for safe, stable combustion is

,. (2,- &)t, _
A, + 0.5(2w - k)1/ ', - (19)

By eliminating the grain length Lp and f1 and substituting

into the above Equations (1), (2), (8) and (12), the equation of

the angular coefficient e may be obtained

-!x.pD - xizp.l(D, - 1) - Nzix(W + [Marccosl 2

sin $e A I sin sa --a os -a V )

W+t ;V +, N N

si~n 7 Nsin r N- ins N
-N&AIOO ZN1 + 2*1(1 [ ) 2Nl4#Mias) (

i in - sn(_sin
2 2 J2

+ 2ldh.i.(1-p) + 2NAb.i. + A - ) 2
r(2 2 N 2

+ N22( - )j 'D - 4WI(21 + 1)sin

- 2wJr (Nx + 2w - 2N --- 2Notg -') - SJW.'- I 4wNl'ctg

3
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I
X s - - 4,rN(IV + arccos N Arcco - -

N IV +1 2 W +. IV-+

I s + --
4gV.A 4 ,.ia .& 2 2)11 .j ~

@in T.Ii-
+ 2,N1(21 + I) ( + - N A)

• t O NiI + 4ell + 
+-- 

---.
j

X --- t 2NWI' + - - --¢g tctgA • -- ".!. 2NCIY+1) (20)

(2 
(2 

N 2 22N

2
+ -x + N _+ ,,!o 

A, as - - e

( Nr2 2)os 
I± 

)+2 N 

g ins (2n

X ~~ ~ ~ ~ I 2N- t J

22

It may bsie see n ha thi eqato coan simutneul all

3. Requirement of the design equations 
and obtanng the

geometric parameter of the grain

Obviously, it is difficult to solve for e in Equation (20).

We change it into two functional curves Yl' Y2 with C as the

variable :
+ V , r ,- A -+ 

L, A)2A( 
z 

2x1) -
(21)

wh eAA,- (vfL,) (.22 )

The necessary equation 
with i as solution can 

only be solved 
when

a )0.

For each postve 
integer N, the 

angle o /2 has an upper 
limit

3 .e u tha t makes t = 0 and e uiO. nk/2 , is an increasing 
function
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of N, therefore, the angle 00/2 must be within the interval

(0, Nopp/ 2 ) and be determined according to the initial power

requirement. N and 0 /2 are called the parametric variables of

Equation (20). To obtain good overall grain property, the

values of N and 90/2 should be used (such as N-2,3,0 /2 = 100).

After N and 0 /2 are fixed, use (N, 0 /2) to search k value fromO 0

Figure 2 and then calculate the curves Yl' Y2 of c: For each E

selected, find the value of s min/1 from Figure 3 with (N, E) and

substitute into the following equation to get Lp

. . .(23)

_24- ' 24* lt 48' .

Figure 2. Diagram of functions to compute k.

From this we may obtain V c/Lp and then substitute c and N,

eo/2. k into Equation 12 to get Aco and hence A. When A ) 0, the

functions Y and Y2 corresponding to c may be obtained from Equa-

tion (21) and so and At which are obtained for Equations (2) and

(8). A series of functions Y, and of c may be obtained in this

way. The solution c solution of Equation (20) is given by the

abscissa of the point of intersection of the decreasing function
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Y and incrcasing function Y of c. The angular coefficirnt of

the grain can then be obtained; the vertical coordinate is the

Ab01 of the rrain. s n/1 is found from FIgure 3 by uzing (N,

C solution) As before, we may calculate the grain length Lp and

V/L,, ,4,.. A. 4'1.1 , etc. V c/L p is the value of Ac0 I .

AleO0.20 Cie 0.40 a A G 0.60 010 0 .10 a9 im

Figure 3. Diagram of the function sminl/1

We then calculate f and Rot from the following two equations:

(24)

When f= 0, we know from Equation (14) that whenever E<cNpp

then certainly R > 0, and when fi X 0, then if the equation has

a solution, Rol > 0. Furthermore, the smaller is 0 /2, the larger

is R.

'I

Discussions on the solution:

When we vary e and A < 0 is still true, then the equation has

no solution and we must change to larger N and smaller 00/2, We
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can also vary the known parameters such as kkp within allowed

limits (Notice: Rol increases when N is large. A1 decreases

when 0 /2 Is larre. When necessary, we may adjust values of N and

0 /2).0

By now all the geometric parameters of internal burning grain

has been found. Finally, for the law governing the variation of

the combustion surface:

0,'.y.] is the first stage of combustion, i.e., the linear

stage d '.

~ -- st

In the interval [O,fl], we have

[ - s + k1, + 2x(y - I,)]L (26)

In the interval IhYe '1, we have

A,, - (so + ty)L, (27)

[y,1, W] is the second stage of combustion, i.e., the non-linear

stage. The variation of Abl may be found readily from Equation

(7) using the dynamic angular variable e/2.

It should be pointed out, in passing, that the statement by

F. A. Williams et al in [2]: "In the second stage of combustion,

...the grain is , i.e., Ab increases linearly according

to y = rt" is not true. During the second stage AblI is non-

linear and when eo/2 < e/2 it is monotonically decreasing at first

and then monotonically increasing.
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NUMERICAL GO1-:PUTATION AND ANALYSIS 0O' THE FLOW FIELD IN A LARGE

SHOCK TUBE WITH A VARIABLE CROSS-SECTIONAL AREA*

Li Wen xuan, Wang Jiajun
(Beijing University)

Reference Ell has clarified and explained certain flow char-

acteristics of the new shock wave that exists in shock tubes with

violently varying cross-section. These characteristics are what

the approximate analysis of Chisnell, Chester, Whitman and others

cannot describe because they have restricted that -the cross-sec-

tion changes slowly and that there should not be many strong dis-

continuities. This paper has taken into consideration the state

equation of the explosive gas produced by the combustion of the

explosive in the high pressure section as well as the contact dis-

continuity between the explosive gas and air and also extended the

calculation to the whole tube (Figure 1). In order to treat many

strong discontinuities, we adopted the difference method with arti-

ficial viscosity term q. But different from [l], the Lagrangian

coordinates are used in this paper so that the conta'ct disconti-

nuities can be easily treated. Also the bead of the major shock

wave has little vibrations, occupying only 2-3 grid spacings.

I .

*an S~onP Mn.f'

Figure 1. Diagram of the shock tube
Key: 1--high pressure section; 2--film; 3--medium pressure section;
1 --4ection with variable cross-sectional area; 5--transitional
section; 6--experimental section; 7--exit section; 8--explosive gas in
high pressure section;9--gas in medium and low pressure sections
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1. Dil.IEiiSONLESS EQUATIONS AND FINITE DIFFERENCE GRID

The dlrensionless equations are

49 OR . O&41 p,. .L . e ..,,' (1

where P, p are respectively the static air pressure and the

density; d is the diameter of the thin tube; r is the Euler coor-

dinate; R is the Lagrangian coordinate; t is the time; p,p,u are

respectively the pressure, density and the velocity along the r

direction; e is the internal energy; A(r) is the tube cross-sec-

tional area. To make the quantities dimensionless, they have

been divided respectively by d, d, d//.-o,, Poo Peg-p,/p. p/,p.. d'.

The subscript 0 denotes the initial values of the various quanti-

ties. The difference equations are

041~. .1i- 
I .

" I - ~I_ ; (8)?+ ' +(5) 1

AW plat41 Rp+7 - Rj-j

€, - "+ - -- * P,, . 'j .P -'*

'4 a' I a .0,+1p,

.41)

- ( P)/1E(, )  , (B,) <o 140

where

(8q)g7 4 - - q0+1A
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c2 is a constant between 1-4. We take c2 = 2.

Treatment of the initial values ur--. +- l / +

Substituting Equation (1.1) as we get
+ O(A')

pq'----- , the accuracy of u is o(&,').

The surface separating the two gases is treated with the

method of [3]. The advantage of using the Lagrangian coordinates

in the calculation is that the surface separating the two gases

always lies at the grid point J, thus simplifying the treatment

of the surface. At this point, there is discontinuity in p,e.

Hence, we introduce 3(p -- I

where AR1 AR2 are AVjJ p1,&R, + p4 R,

respectively the step lengths on the opposite sides of the separat-

ing surface; P4, 1 are respectively the initial densities of the

explosive gas and air.

Two schemes have been used for the state equation of the

explosive gas. In the first state equation, the collisions between

hard sphere molecular model of the gas is taken into consideration.

Then we take a state equation [2] with two Wylie coefficients. We

also adopt from [4] the variable thermodynamic functions: speci-

fic heat at constant volume c.(T) , specific heat at constant

pressure CO() , speed of sound 0(mpT) , internal energy e(T),

etc., but we neglect the chemical reactions that the explosive gas

further undergoes after t > 0. The approximation formulae (T being

the temperature) for each section of the equation of state are

p - 1.108pT(l + 2.5538 X 10-'p + 0.4045 X l0"p'); ,

4.0808(T - 3.4344) + 0.1361(T - 3.4344)', 3 3.4344 e T"

(7.4089 +-4.5314(T-5.1516) + 0.0846(T-.113', 5.1.516 < T , 6.688
e(T) - 15.4399+4.219(T-6.8688) + 0.0543(T-6.8688)', 6.8688 < T e8.5860

23.8799+5.0086(T-.5860) + 0.0377(T-$.5860)1, 8.5860 < T 4 10.303
'32.9517+5.1391(T-10.303) + 0.02861(T-10.303)4, 10.303 < T
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.6822 + 0.24 56(T -. 3.4344), T 5.1516 -

4.0890 + 0.1524(T- 5.1516), 5.1516< T <6.8689 .

c,(T)= 4.3508 + 0.0980(T - 6.86S8), 6.8688 < T < 8.5860
4.5193 + 0.0681(T - 8.5860), 8.5860 < T < 10.303

4.6372 + 0.0516(T - 10.303), 10.303 < T

,'(p, T) - 1.108T I + -t- (1 - 0.2476 X 10-spJ)

X (I + 5.1077 X 10-'p+ 1.2137 X 10-pJ)

The second kind of state equation uses the perfect gas model

with equivalent constant specific heat. We take R = 3.193J/kg,

and the absolute thermodynamic index y = c/c,- 1.225 . After made
dimensionless, they become p - 1.108pT;e - 4.925T; R - 1.108.

More factors are considered in the scheme of the state equa-

tion of the first kind, but more calculations are involved; less
factors are taken into consideration for the second scheme, but

the calculations involved are simple. The results from the two
schemes are close. Especially during the later stages of the motion
the results basically overlap. In the complete computational pro-

cess, the largest difference between the results of the two schemes

only appears in the initial stage, and never exceeds 5% (Figure 4).

This result deserves attention.

When artificial viscosity is not considered, the stability for

a one-dimensional Lagrangian coordinate difference grid is inde-
pendent of the cross-sectional area A(r), and the Courant condi-
tion still holds, i.e., ra3I . But since the artificial

viscosity term is added, in actual computation, we multiply it by

the coefficient 0.6, i.e., As-minO.6A.

2. NUMERICAL RESULTS AND ANALYSIS

Figure 2 shows the distribution of the parameters when the
major shock is situated in the middle of the changing cross-section.
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Figure 2. Axial distribution of flow parameters (section
with changing cross-section)

Key:/--medium pressure section; 2--contact surface; 3--section
with changing cross-section; 4--new shock; 5--najor shock;
6--experimental section; 7--pressure; 8--velocity; 9--
density; 10--temperature4I

41im I Iium

a 7.7536 pH - 300kg/cm'

Figure 3. Axial distribution of the flow parameters
(experimental section)

Key: 1--medium pressure section; 2--section with changing cross-
sectional area; 3--new shock; 4--experimental section;
5--contact surface; 6--major shock

New shock wave appears behind the major shock. The low pressure

and low density regions form before the new shock (situated to

the left of the major shock) because of the rapid expansion of

the gas flow in the conical tube when the separating surface has

not yet entered the section with changing cross-section although

the major shock is already in the middle of that section. The flow

diagram at this time agrees with the analysis in £1].
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Key: 1--medium pressure section; 2--section with changing cross-
sectional area; 3--experimental section; 4--contact surface;
5--simplified ideal gas model; 6--variable specific heat
Virial equation model

* '4

Figure 5. Comparison of calculated peak shock pressure
with measured results

* Key: 1--experimental measured value; 2--measured value A; 3--
measured value 0; 1 --measured value 0; 5--measured value +
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Fir-ure 3 Is the situation when the major shock, new shock

and the separating surface of the Fases all are close to the

experimental section. The motion of the separating surface of the

two gases has already overtaken the new shock when t = 7.75.

From the diagram one can see that to accurately calculate

the complete flow field at the experimental position, it is necess-

ary to consider the two-gas media model in front of the changing

cross-section. This has not been discussed in [1]. In the work

of Cbisnell et aL, the new shock and the separating surface between

the two gases are ruled out. Therefore, it is also not applicalbe

for this computation.

Figure 4 are the two pressure curves calculated with the two

state equation schemes under the condition that the initial explo-
2sive gas excess pressure is 300 kg/cm 2 . The two curves basically

overlap.

Figure 5 is the comparison between the calculated result and

experiment. The calculated result of the peak shock pressure

generally differs from the experimental result within 10%.

Figure 6 is the curve of the shock tube pressure that decreases

with time. The pressure is calculated at four fixed positions

37.9, 55.0, 57.8, 62.5 when the initial explosive gas pressure is
2100 kg/cm 2 . It basically agrees (Figure 7) with the measured

pressure curve.

Conservation of total mass and total energy has been used to

test the accuracy of the calculation in the whole computational pro-

cess. When the dimensionless time t = 4.66, the corresponding

change in the total mass is 0.34xlO- 2 , and the corresponding energy
-2

change is -0.9x10 -
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Figure 7. Actually measured pressure wave form
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