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DIFFERENCE METHOD IN FLUID DYNAMICS

I. NUMERICAL SOLUTICN OF TWO-DIMENSIONAL
VORTICITY EQUATION

Guo Benyu

Shanghai University of Science and Technology

ABSTRACT

With the two-dimensional vorticity equation as an example,
this paper systematically discussed the theoretical problem of

difference equations in fluld dynamics. Many schemes are

constructed in this paper based on the conservation laws and
transport properties. Generalized stability is introduced.
The error of periodic solutions 1s rigorously estimated. The
effect of error in boundary values on the stability of compu-
tation and the boundary shape, boundary conditions and its
treatment in the initial/boundary problems are analyzed.

The computational problem of non-viscous flow and large
gradient solution 1s treated according to the conservation
laws. Lastly, the convergence of dynamic relaxation and the
existence of solutions of steady flow computational schemes
are studied. All the results in this paper are proved rigor-
ously, and the method used 1s also applicable to the general
fluid dynamic problems. Examples are used to illustrate the
applications of these results in fluld dynamic computatlons
and numerical weather forecast,
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The theoretical study of difference method basically
consists of five aspects: (1) the principles of scheme;
(2) stability of solution against perturbation on the RHS and
the initial values; (3) non-viscous flow calculation;
(4) effect of boundary shape, type of boundary condition, and
error in boundary value on the solution of initial/boundary
value problems; (5) steady flow calculation [1-5]. A large
amount of work has been done in foreign countries but there
are only a few very speclal theoretical results. Based on
the work of Ref. [6-8], we discuss in this paper all aspects
of the five problems quoted above with the two-dimensional
vorticity equation as an example, and obtaln a more systematic

result. The method 1s applicable to the general fluid dynam- :
ical problems.

I. Symbols and Lemmas

R represents an open region in (xl, x2) plane with
boundary I'. The grid step length along xJ direction is h.
The coordinates of the grid point Q are (@)= 4k(0)h, where
kJ(Q) is an integer. The coordinate of &(0) 1is
(0% ) = k(0) X 8.. R represents the set of internal grid
points with boundary Fh. FJM (or er) is the set of boundary
points that makes @-+ (or 0* ) belong to Rh. RJM (or RJm
represents the set of all internal points at distance h from
FJM (or I‘Jm). IN=Tu+Tm R,= Ry+R,.. RI=mR + R, T is the
step length along 1, * =1t «(Q, k) represents the value of the
net function w at time kt and position Q. Sometimes it is
simply denoted by «(Q), w(R) or w, w= w(k) = alk+1). w,, we,
represents the forward, backward and central difference coeffi-
cients along & . w(0) 1s the outer normal difference coeffi-
clent on g . When Q€RN , wil@¢)=w«., (0} . When Qe€R. s
w( ()= — w,(Q). represents the tangential difference coefficlent
on RI+T., ., When QeRy FTw > w(0) = w (0), - When Qe€R,.+Tla »

)
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w(Q)=—w)(0). When Q€Rw+Ty | w(Q)= — wi(Q) . When
Q € R)-w + rln Y “'l(Q) - “"I(Q)

If J2¢P! |, we shall denote by Ql the point on Ta at

distance h from Q, and also denote > [ 0)(Q) + w(0)(0))

(w'v + we) LI
“Z: s etc.

simply as

We further define

v 1 . 1 . : ]
A o= E-(vu o, + Z—(vw,,),l, A'w == 2 ay,w

Denote v = it ), is an ADE type operator, 1i.e.

H(w) = H{(w) 1s taken according to a certain order, where

Hi(w) = — %(w + VW, = %(v + vf")um,
H (w) = %(v + v w, — %- (v + vy,
H(w) = = 3 (v + v w, + 3 (£ 9"y,

H(w) = %(w + vt O, + %- v+ v"dwy,, o

We define the following internal products and norms:
(w, #) = D7 Hw(0)6(0), [l = (w, w)
R, CE .

]
IMAAT T R A AL D)

1
2 5 ’

if v®1  then simply

.
’ L3
u““lu

denote by [fell’ .

bt = 4 3, ot + Do, Dolly = 35 bu0)

=1
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Denote also

. .
Buu, v, w) = % D+ uvw, B,:(“. vow) =D Beluy v, w)
L 1] (A4}

D(w)= 3, (%w"-—vww'—gz-'-w')

Ryt 8y

T

LR T

Baws(w) = ol + 7 (o + Z) (lutds = Ol + Oelloly

2
R T

where

p.n-am—z-:——d"l'x-—m-.h"m—l"o

2

- ' : t-t ~
L k)len = GOl + 7 35 1wCls

i=0

Aw, hs hs &8s k) b l|w(°)||' +7 2 (“fl(l)n' + “f‘(l)“’ r “g(’)“}'l)
i®o

It can be proved that

Aw, w,) = (ol = vlwl?

2wy w1) = (lwl) + rllwill?
2w, wad = Nwlllh — Qo — lol?

2w A'.:f- )+ (:'w.,. V.,) + (”wlp "Ip) - 28!,-("; Wy "-) -0
(v, &%) + llwlll, ~ Bez(v, w, w,) =0

Amy A') + e A fllwalli. -~

i (v, ‘7’13 + ;‘-’ll')
- 28‘:(1” .:., w.) - °’ ‘ '
’ toa
,:"'A'“n) + (n“'mo)l "'. fuwdmo‘— ';—’ ‘z._:, (s ;‘-’,q + '7'%,)
- 288y, wy W) =0

u

(1.

(1.

(1.

(1.

(1.

(1.

(1.

1)
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2(“4) H'(W)) + le," Z (u,', ui') — AD (",') -~ 0

.t (1.8)
Lemma 1 If 9220, | then le'< H«"Hl'ilc'("%)
Lemma 2. If wle, = vl =0 s then flwol? < 4llewlillelliwlillel.,
Lemma 3. If wln=0 | then Nl < NAwl?
Lemma 4. Assume: (1) w(k), (k) is a non-negative net
function. T) 1is non-negative, 1 is sultable small,
Moy, “0of = 00D (k) = o Dp + w(kIA ) +1* [w(R)]e(k) , 1< Mok

\ . -1 .
() <05 (3) w(0) s—‘z- KT) when 1<k< H—] 5 ow(k) < o(T)+ 1 2, Ha(§); (4)
i=0

pe* i & ¢ ' phm . Mohs) , then when kr<T<T, s w(k) < pe¥erT
IT. Basic Principles of Scheme Construction

Let $rur, ) and  ¥x, 1 t. pepresent vorticity and
flow function. Then the 2 dimensional vorticity equation is

b _awor 8w _ s
- o 8‘1 axl a*‘l a’a 'Z: a ( ax,-) l“ R X lO, T]}

Vig — ¢ =1, Rx[0.7) (2.1)
Where (s, 1,,¢) 1s known, (2, 15, ¢) 15 coefficient of vis-
cosity, O9<m<v<» | We also denote
ve= inf v(0), a® = sup v(IN(O")
OQK:

»
Ocl‘«'l.

are bounded.

and assume IQ&

and lg}

The principle of scheme construction 1s to express physical
laws with suitable separation form, for example, if vef =0 ,
then we get from (2.1) the conservation laws for vorticity and

its square:
Flig.1° = n. §Cxy, x5y t)dxdx, —jL E(x,, 5, 0)dzdx;

Ce T A TRy
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’ \*(Zﬁd +*~dn)dr i=1,2

As for the difference scheme, since the step length is non-
zero, we cannot simultaneocusly simulate both conservation
laws. The El conservation law 1s simulated by the Lax scheme.

We[G-SJ simulate the E2 conservation property. Let us define

i ey w)meu Wy, Ji vy w) = vy wy,

Ji Koy w)=Cowy s Jialvy w) = (vwy s,

J:,~5U'| w) - "(Vi,“’)x,: J;.-a(”o w) = —(Vi,“‘)t, !
,:,-l(": w) = Vs, Ht) J:.d("o w) = Vg Wy }
24,12, w) = "("Wl,)a., J:,-)(_”: w) = "(PW.‘)', :
Jie, w) = (esw)e,» Jeaoy w) = (vs 0,

Jopilv, w)= % 13vy w) + —;— I, w)

3 3 )
WMoy w)= D, 18.Lv, w), Jie, W)= > Jilv, w)

(LA} 1=1
Jv, w) = -i— Ji (v, w) + ';— JiCv, w)

. 3
P, w)= D ali(, w), vy @) = D0 (v, w)

- a,B.:(a, weyy, 1) — G;Bn.‘('. wuy, 1)

T3} i}
3 : 2
J-(V) a)m- E “i.’u'i(”i w), (v, w) - § J‘i(”’ w)
where o, >0, }:_‘,‘,,_1 . It can be proved that
‘et
(s, Jll'l(vo “ )) + (V, J'r)(“: W)) - 8’,(““’" Vy l) (2. 2) : .
(e, JLv, 0)) + (o, Ju, w)) == ~Bup(uy weyy 1) — B;:(v, wuyy 1) S
' (2.3) b
If >, =~ a, 3 then :
(“) ’(" L4 )) t (', J("' “‘)) - “.Bl‘(““’)’ [ Y l) + ﬂjB‘:(UW'. “, l) ( u)
2. .
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)
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If one the the 2 following conditions are satisfied on the
boundary [,

A. The variocus quantities are periodic with periodicity L, Ra
along the direction . Rh is the rectangle [0, Li— 4;0, L,— A);

B. Rh is a limited region and the flow along Fr, 1is zero.
, then the RHS of equation (2.4) is
zero. If we now use T ? and/{n.®) to approximate & ¢ and

For example, wey = w =0

the Jacobi operator in equation (2.1), then when @@=
the conservation law

(0, I, @)) = aiBug (nprs 1,1) — @uBeg (1, s, 1)

(2.5)
is well described.
If condition A or B is satisfied on the boundary, and
al_a,_.i. , then '
(ﬂs ]'i('l' ¢)) -0 (2 .6)
The weighted average conservative scheme for computing
equation (2.1) is
Lin,¢. =9+ 0cqa - J(n + 87y, @) = Ay + ory,) — Xth—'H(y) = {,
Lz('lvP)"'A‘F"' n =1 } (2-7) /133
where ¢<g, o)< <1, 0<8D<L 0D, —L <o)< o ,
but when !, 1s calculated, we always take ©6(0)=0 _ 1p

the explanation below, we might as well assume that condition
A 1s satisfied.

1. The fuﬁction of § 1s to maintain the conservative
property. If fact, if ymfimfmle==0, a,=a , we still
have gl ~ 7hnll . Hence each step of the computation will

R




see a small increase of the virtual energy which will cause

energy explosion and computational overflow when it exceeds

some critical value through long term accumulation. But if
8=1/2 | tren mlli=o and the conservation is strict.

2. The function of 6 is to filter. It equivalently
filters the n in ny to be #*=9n=—1%95, . If the harmonic

function of the computer error (k) =4¢"  tnen
1) = (1 + 4040 25) 1)
Because —-1—<o<o , hence |#*l < I3l , so that its growth

is suppressed. Robert has used explicit filtering and ¢ = -0.0!
See [14].

3. If x%x0 , then equation (2.7) is the successive
overrelaxation scheme which 1s used to improve computational
stability. Usually the H{1) are used in turn to obtain M
and then let

1 4
;'Ezﬂl

im}
which 1s the Larkin methodtld"

4y, In (2.7) we can also use the linear combination of
fi and f, to replace fo . All the results in this paper will
also hold.

The weighted average conservatlon method may be used in
conjunction with the splitting method, namely with n¥* as the
supplement value,

". -1'+ -f-]..(q + ,]‘. ?) + ’;"‘Az.(', + y.) + %’l

v
=7 +3 ]..( + l‘P)"' A(.'f' Y+ 51
n* Ll | 7t PR (2.8)

— e e e -
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1f hs=p-=0uu-u.—-% , then from equation (2.6), lalt = |3’
Since equation (2.8) not only strictly satisfies the conser-
vation laws, but also may be computed explicitly, it 1s to
be recommended.

Another principle for scheme construction 1s the trans-

port property. Let Q be an internal net point. Form tne

triangle D, with .0, 0* @' as the vertices, Du»n with
9,0, ¢"" as vertices, and similarly for D, D, . If
P, <0, ¢, <0, | then the wind blows toward Q@ in D, . Denote

it by e&(D,, p)=1 else €D, ¢)=0 . Similarly the other €D, ¢)
may be computed. We shall construct the difference operator
F(y, @) for the following three cases:

1. &D,,¢)=39, , indicating that the wind blows uni~
directionally toward Q. For example, if j=2 | then
F(’)’ ‘P) s Fl(’h Q’) = Qe T P, .

2. There are several e(D,¢)=1 | indicating that Q
lies between several opposite currents. For example,
D, @)= 8.+ 8. , then let F(y, ¢)=rF(y, ¢)+ A~ r)Fn )

in which 0<r<l, Fi(n, @) = @0, — o7y |
3. All e&D,,p)=0 , indicating that Q is the center /134
or source of vorticity, and therefore F(3,¢)=0 . From this

may be obtained the modifled counter-wind scheme[7’22].

Li(n, ¢) = n + Orny — F(n, @) — &°(n + ory,) — Xth~'H () = 4, } (2.9)
Ll(ﬂ’ iP) - f; .

III Error Estimation in Problems with Periodic Solution and the

Generalized Stability

Let the difference scheme be  Lilg(k)] = f(k) where (k)
is the condition for solution determination. The error of j,
will induce an error, i, in 7 . Ordinarily, stability means
that there exists an absolute constant M such that Uil <MW .
However most non-linear schemes do not have such properties.

—— e - © e e e o - v - e o —— 3 e e
w._._,_.,._“_u*‘_..‘,, e — . T AR T T ] T ——

————— e
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The author[7’ 21, 22] suggested a generalized stablility,

namely that there exists positive numbers M, N and constant
¢ independent of 4A,r such that when <NA, ke < T LT,
flall < MUfi. The hivhest lower bound is called the index s of the

ettt St . «

generalized stability. Some explanations are offered below[21]:

1. For non-linear mechanical systems, generally only
{1 when il satisfies certain conditicns will there exist a
unique solution which 1is only stable against perturbations
within certain range, e.g. the 3 dimensional Navier-Stokes
Problem. But if L,0=0,s<0 , then when |fi <N
gl < Myt  and when II<N hal < MU

b

b

. Clearly the
value of s reflects exactly the properties stated above and
therefore is suitable for non-linear systems.

2. The value of s may be used semi-quantitatively to
reflect on the stability of round off errors. For example,
the accuracy of a computer word is 27'»Ls 1in equation (2.7),

h=2"" R N1 arithmetical computations are required for
each 1 value calculated. Therefore, corresponding to
W< N b=22-13- , we should have T, ANN2!-=== to guar-

antee stability. Obviously the smaller s is, the more stable
is the calculation, and the longer is the time of stability,

TO’ and the more relaxed are the requirements on the computer
word length and the step length.

3. For linear schemes, the generallzed stabllity 1s
equivalent to ordlnary stablillty but they are not equivalent
for non-linear schemes. Also if the formal approximate error
of the scheme is O(),s,>k20 | then when §€ct, 1 s, the

k th order difference coefficient of n converges and is
bounded.

10
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4y, In recent years, Weinberger et al.(seetlo'lzl)

raised the problem of the optimization of scheme and they
concentrated mostly on increasing the s«  of linear schemes.
In this author's opinion, generally a non-linear scheme has
weak discontinuities so S, is not large. Hence the main
direction of optimization 1s lowering the value of s. This
will also improve the stability. Besides when S, is smali,
we also have 1546 , therefore 1s convergent. For detaill,
see [21, 22].

We shall estimate the upper bound of s below. #&, ¢,

denote the computational error of me,fi . L, M, N, M
are positive numbers,unrelated to h, 1, a, b are suitable
positive numbers, ™, & are positive numbers yet to be deter-
mined.

m* = max {2020 + X — 1)7, (20 + 1 + 12X, + a)(1 + 20)7)

m**(4) = (80 + 4a + 4 + 48XAy, + 32Av,0 + 25Ay0){80 + 4

+ 32)v,0 + 2bdv0 — 164y, — bdy, + 16Xy, + XA |

Condition (e¢,12,x,6,8) shows that a=(-2x)2 , other-
wise 1< (80 + 4)%(16 — 16X — 320 + & — Xb— 2b0)™ . Condition
(o, 1,%,86, 6), shows that not only the condltions above hold,
but also 25>m* wheno>(1—X) 2 , and 28>m*'(#) when
e (l —X)/2 .

The error equations of scheme (2.7) are

L(d, #) = LG, $) — J(@ + 8ril, P)— J(n + 8ry, ) = 7.}

l‘(l,,qi)— L,(l',(‘l)—,’ : (3.1)

Detailed calculation of (24 + mri, L%, §)) gives from
equation (1.1) - (1.8)

BamssC) + 20 + 2 Omelal? = L 1meD.(0) = 202470, H (D)

——-th'ﬁ"z(w,. ﬂ‘)+ ZF‘(ﬂ)- Zgl(ﬂp 9’) ) (3.2)
=1

11
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where
FI_ _283:("v s ﬂl)n F)--;"er:(vD flis '}.)
F,= —20vBe3(v, 4, %), Fyo= —mt'oBa; (v, iy 1)
E, = (1 + !'-) r i e, B, +
' 0 2 4 = Viy ﬁu"" lll?. .
E, = (25} + mvd,, JCu + 8vnis ) + 1) _
E, = (27, J(i} + 67, $)), - By Qa, JGi + 82, @)
E, = mt(iiy, JCii + 8T, §)), E; = me(h, J(§ + &rili, 9))

We can decompose E,=E.+E, . For example
E, =25, J(#, <i_>)). Ey = 260(q, Gy ), Eu=2(, 100, 90D, By = 260(a, I, ))
etc. If e=a , then we get Ey=Es+ EX from equation
(2.4), etc. Here

E, = 2a,Bss (iifrs 1, 1) — 20:Ba3 (i@ 1,1)
Ef) - 28a,7 Bt (7i®1, s, D+ 266;18;2(@';07):. 1, 1)

~ 280,7 Be3 (i, $itn, 1) — 28037 Bug (s @My 1) (3.3)

. 5 = =265, I, ) o '
-, Eu - 20]33.'(&?}, ﬂ,l)- 2?)5,:(03 ?q,; l) (3 . ‘J )

It can be proved that
(el < 21811800 + 2)01Had: (3.5)
[2xeb= ¢, HC & £ lalllt 12Xean 00 + 260 D710

2 SRR (3.6)

3. “ > ‘.: I : )

|3 amenm 35 (o )] XM iTAIRY
Ist b AT ey

(3.7)

We shall first estimate the periodic problem. To
determine ® , let @(Q®) = oo, at some point Q*€ R .

Theorem 1. Let scheme (2.7) satisfy conditions (o¢,4,%,6,0)
and boundary conditions (A). Then 1. When || and

12




A2, 5,1, 0,8)  are not greater than N4® , then for all
kr ST € T(p) , we always have Ni(Blies <M. | 1f when
T, h—>0 17 = 0(p) = o(A*) then T, is arbitrary. Here,
when w>0 or o6 =a , ¢ L | If u4>0 and also
@ =aq, » then s<o0 . 2. If the conditions (¢,4,%,86,0),
are also satisfied, and o, =0, , then for all F,eTe |

the above equation holds.

Proof: Equation (3.2) holds. From periodicity,
D7) = Brg(v, §, $)=F,=0 . Multiply the second equa-
tion of equation (3.1) by ® and find the inner product,
from equation (1.5) and @(Q')"‘6
there exists a constant m related only to the diameter
R, such that

, it can be proved that

h

Il < moll@lll < 2mClial + T (3.8

From the Cauchy inequality and equation (3.8), we can get the
estimation equation

18,) + [Ej < M (a0 + 1310 + URDP + IR0F 4 <031 (3.9) /136

If s =~ , but %0 , then from the Cauchy inequality,
lemma 1 and equation (3.8), we can get as in [6]

Bl + 1B < 2 (e + ellall, + (1 + L) argale (3.10) |
4 &y

at - 1 ) :

If a,=a, , from the periodic condition (A) and equation
(3.3), (3.4) we get Ey=mEf=mE, =o; ; from lemma 1 and
equation (3.8) we also get ;

B, < ecliglll + Mdal’
(F-19 at’linll (3.12)

i
|
13 l
|




%5 it + Moo= Il Clal + U7, forve> 0
'E“.’.) $. ‘a' . .
7 1l + MmO + BRI, for v = 0 (3.13)
Similarly, we can estimate 1E,i, 1B . Substituting

equation (3.5) - (3.13) into equation (3.2), we then obtain

Bosro(R) + TmOllill + T(m0 — XM b — 12Kdvy — @M

+ liils < R(ij, 0) + 401, ol (3.14)

In this paper, let us denote

rG.g)= -1+ % +26 + Qa- sign!a. - ;] Y(MAEllE,

+ MrAllg i, + Mgt sigs w(la0° + [71)

E('-h ) =M (1 — sign v, -+ sign|a; — U:I)"ﬁ"' + Mu""("?"h
+ g Nt 1N + (hD + Mullal? + U507 + U
+ I + A3, + whlEAR,)

Let ¢ be sultably small, and multiply equation (3.14) by
T and find the sum over j=o,1,2, oo k=1 , we then get

e-1 t-1 :
kaCklies + vp, ‘2‘3, I + ¢ 3 (o 4 2m0 — 8 — J2XAw, — oM,
L ] l-. .

=1 .
= MBI T '20 (*CCads 0Dl + RCaCiD, 0]

+ 1611AC1I + (1 —O)ACO + ¥ (a +2) i,
+ 2 g conpe :

(3.15)

Let h be sufficiently small. If 0> (= X)/2 , then
take m> ¢ . Now coefficients of the 2nd and 3rd terms on
the LHS of equation (3.15) are non-negative and may be neglec-
ted. And finally we only need to invoke lemma 4 and let

C 14
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wk) = (7D 1s., (k) = |I5Ck)N,, n, = 0 . If a4 =0 and
> then take n =90 . Otherwise n, -2 . If
o<l —X)2 , then take m>m**(0) . Because tlill, < 8iy,7,)p

therefore the sum of the 2nd and 3rd terms on the LHS of

equation (3.15) 1s non-negative. The proof below is similar
to the above.

If further conditions (¢,2,%,6,0), are satisfied, then
we may take m=28>m*(p) . From condition (A) and equation
(2.5), 5:3,_.0 . After similar analysis we still get

i3
(3.14), but with M,=M,=0 . The rest of the proof may
follow theorem 2 in [6].

Note 1. 1If »w>0 , then ;g1 for the explicit
scheme. If a =g, , then in order to make the principle
part of the non-linear error i, )i ¢))=0 | and thus s ¢

In this way, as long as o, does not exceed a certain constant,

the computation will be stable. At the same time, even if

some singularities occur in gi
4

long curve, as long as we still have the formal approximate
error 170l = o(1) , the scheme still converges. If y, =0
then as long as o, =g , then for sufficiently smooth
solutions, s4,=2>sm=1 , the scheme will also converge, This
explains why stability and the 2 conservation properties

agree with one another. G, =g, is optional for both.

, etc. on the determinable

Note 2. For suitable X, | the limit on A may be
relaxed. Suitable § may eliminate non-linear error altogether
8o that the scheme may be used for the global solution calcula-
tion as well as being perfectly stable.

Note 3. If the modified counter-flow method 1is used,
1< can be proved as in [8, 22].

15
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IV. Two Step Method in the
Computation of Non-viscous flow

Two prcblems exist for non-viscous flow: 1. When

O=g=0 , even if o m=o, fi=0 , we still have lnlli=_slnll? .,
If the gradient is large, then the virtual growth of the
energy is fairly rapid and computational overflow occurs, If
an artificial viscosity term is used, the resolution in front
of the wave will be lowered. Hence it is desirable to design
a scheme that will automatlcally suppress this kind of growth.
2. In the explicit scheme of the last section, s<1 but the
true solutlon of the differential equation of non-viscous flow
usually have weak discontinuities. In general <1 . There-
fore we wish to design schemes with <0 to guarantee conver-
gence.

Method I. Let 1* be the supplementary value.

Predictor 1* =15+ 1J'(y,¢) .
Corrector q—-;—(q'i-?z')'f-%f'(u‘, ®) (4.1)

If o,=3 , this is equivalent to the Maccormack[13]

method, but when ,.’..',,'...;. s InP=xlpl—<ls*(n, @)|* . Since

equation (4.1) approximates equation (2.1), (when pmfemp )
therefore when “im‘ is increased, generally (J*(y,e)? also
increases and therefore the virtual growth of the energy is
automatlically eliminated, giving a better result.

Method II. Split according to conservative type and
non-conservative type. Equation

=+ R P 0 1_-}(1: +n‘) -l‘-.‘r{f(n‘. ?) (4.2)
It satisfles the energy relation
byl = vl = 45103y, @I

16
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Amnnat.

Computational experience shows that when J!,Ji 1s used,
the relationship between the order of J¥*,J° and the direction
of wave propagation will markedly affect the computational
accuracy. Therefore for systems with multi-directional wave
propagation, we should use the average form, e.g. with J
substituting for J+ etc.

Method III.

" =q % prJ(y, @) + T, 4 =1 + 1%, @) (4.3)
If ﬂ"%,ug=l,r-f%-ﬁrﬂ » this is Lax-Wendroff scheme[“].
[14]

If B=1,a,=1, r=0> this is Matsuno scheme

If ﬁ"l,a,.-a_,—%-,r—o , then it is conservative and gives

computational stability. Sometimes B may be taken to be
slightly larger than 1.

Theorem 2. 1If in equation (4.3), re=0,0,=am|/2,8>
(3e+1)/2,a>0,

2< (28— 30 — 1)}188(30 + 1)lgll, ]!

then when L  and a(#,},%,0,k) are not greater than N, we
have IBIPP<Me, for all ke <T<T(p)

Proof. Let the computational error on the LHS be L:L
Then we have the following error equations:

fe= I, @+ 6Y + Iy, §) + BIUM, @ + ), 9 + §)
81 )G e+ @)+ priU(n, @), @)+ T

Multiplying the above equation with 244 mrg, and calculating
the inner product, we get

17
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[
Pl (m = Drliadl! + 28010Ci, @ + @ = D0 G,

where

Gy = (25 + mrity, J(n, @) + Br7UCn, @), @) + 1)
G, = —2p7(JCy, ), )0, @ + ¢))

G, = mt(ii,, )i, @ + ¢)) a

G, = mv'(#,, JUCi, o + @)y @ + &)

G~ o7 JUG, @)y @+ ¢

We can prove

18, < MLlIa + 1317 + 1§12 + 1707
1G. < velliC, @ + @I + {-’ gl

~ - m’f 3 ‘
16 & v(3a + DII(H, @ + @I + Gt D il

1G] < erliall + 168 a~ b~ m 1 UCH, @ + @IS + Nl
1Ga < orllinll? + Mot b m Ul + il

and hence
Nl + wtm = 1 = 30 = L mi(30 + 1"l + (20— 76 —3a =1
,ot ‘
— 16880 méilglll — 3206 PamoTIDNICH, @ + @
< 32wl mera BN IICH, @ + @I + Maulllal? + 3l
+ W0+ 40P + el + ea-lallfinn)

Now let . ~ga4 2,012 be smaller than some constant, then

the coefficient of the 2nd and 3rd terms of the RHS of the

above equation are positive. Finally we use lemma 4 with
w(k) = k)

Note 1. We can combine the weighted average conservative
method with the Pycahob method, and the Kutler-Lomas-Warming

18




method as well as the method in [13].

Note 2. The method in thls section 1s also sultable for
shock wave computation. The author has applied it to calcu-
late the double shock rroblem of the Burgers equation. The
results show that the two step method can be used for many
problems where one step methods cause overflow. The calculated
result for @& =g is the best. For system with multi-
directional wave propagation, equation (4.3) is better than
(4.1). The situation described by Theorem 2 is far better than
the Lax-Wendroff scheme. For details, see [24].

Note 3. If equation (2.9) 1is used for non-viscous flow,
then when r<gNd , ,g1?

V. Effect of Boundary Value Error and /139
Boundary Shape on Stability

Assume that on f, , ®»n=g.¢ - g. 5 Trepresents the error
in g,;. For convenlence, let F .

Theorem 3. Assume in equation (2.7) of the boundary value
problem mentioned above, the conditions (e¢,%,%,6,1) are
satisfied. In addition, if &= ©, then +¢>0,¢* 1is bounded,
therefore 1. When IflY, #lzll, and e, 0,0, 841,40  not
greater than N , for all 4r< T« 7(p) , we have

R llie. < Me'Tp , where s is the same as in Theorem 1; 2.
If 8 ™= a; and the conditlons (o, 4,2,8, 1), are also satis-
fied, then when zllj, « N4 the above equation holds.

Proof. Multiply the second equation in equation (3.1) by
—=¢ and find the inner product. From equation (1.5), we
get
bout + 20 ¢ < 2mllial? + 1707
“ ' (5.1)

{ 19
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where

lel!

= direm 11

m,

Therefore the results similar to equation (3.1) - (3.13) alil

hold. 1’

It can be proved that
~Eertp e -0 T x(1+ L) sz,
2 4 ': . [

B = (1—6) 3 i — MoGh™ + he™)EE,

"
CE2 2L (D) - mE S vl e vl ed SR
M Y CI

— Maledlgall, + 8L + Ul + 119)°)

e [E v"'l‘] B N T TS Y
2 s 2 5 - ey o wg T
A é ] (]

~ MultMlizull, + 86~ IRlE, + Ual? + Ta)
 JpS (";—" ~ ¢) 0 3 vt = M) + s~ rhlRul
'} I .

(20,BagCipr, 1, DI < Mallal? + 4-020KD - -

“a;Ba“(ﬂ, e, DI < elalll, + 2 "'d. + ¢§(55”0>-'“il"1‘a
L I

Also because
Z‘“‘"‘" <;1. O R
I.: |<3 .Z‘_In g b,
Therefore

20.Bug G, 1, DI < 6 35 v + =21 oI,
d .: . 481‘,5

Yuhen =0 » an additional term M 47l AN + 1LY,

(5.2)

the RHS of equation (3.13). Similarly, equation (3.12) may

be estimated.

20
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126,BR}(#, ir, 1) < Z ¢+ ——*— (FA AT
n
)
(280, Bag(, G, DI < ev? 3 vl + Lz i
' eveh
12505 bug(a, §.0, DI <6 Z Vi + mng..ur.quu'
.
1280 Be3(it, 7y 1] < 2 # + iﬁ*’— gz, 3 vl
. ‘
2 2
bad Baglin $ D & S THTAR o e s,
"y Ve
Substituting equation (3.5) - (3.7), equation (3.9) - (3.13)
and the equations above into equation (3.2), we obtain
b ore(il) + fma"':‘t“' + 7(mf — __12111’; — AMX ~— ‘MN)“ﬁl“'
+ lall + pE)T 20 v+ (1 — Se — 6a®) 2 v
- [+
(5 +Z)+( »q') < R(1, 8+ °Ca, @0l
where
(g = Im , me —'3';'2 tms _ Se — ea*
' 4 2 2 4 ]
© = Mph~NI7I3,C1 — signley — ayl)
Let € be sufficiently small, and multiply the above equation
with 1t and also sum over ™=0,1,2, k-1 . If e>(—-20)2 |
then we t‘a-llce~ m>m* . NOW 520, g+ 2m0 ~  — 1222y, — M= MhX 20
and if 2.3, is sufficiently small, then »2(z)=0 .

ir %< (l~x); then we take m>m**(1) . Since
'%v'ﬂ:o:zv.llq.u'. |
2 : '

therefore
Al + Cpy + 2m0 - 6 — 12xly, = aM,, — MAX) g, )12
T2 PEI 3 = Ml - conn
'

21
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The rest of the proof 1s similar to that used in Theorem 1.

Note 1. The effect of boundary value error on - is
more proncunced. If &®™0  then when » <N, |ifji’ < NA>
the explicit scheme calculation is stable. If g=0
also need to have lglll,<NA*"" | Also if we take k&  as

b

the formal approximate error, then to guarantee convergence,
we only require [ili'= 0o(d*) but on the boundary, we need to
require &lit, =~ o(a¥*) . But o=« still reaches the
optimums as far as error control and the two conservation
properties are concerned. It makes s decrease by 1, and when

E= 0(Vi) , the scheme converges.
Note 2. If 4 =0 then when v E0 , the explicit
scheme computation of (2.7) still converges. If Z&xo0 , the

we require +. -0,4" to be bounded. 1In the language of numeri-
cal weather prediction, it means that there should be a smcoth-
ing process from the outside toward the inside, gradually
decreasing in strength in the neighborhood of I'i | The
calculation of Oliger and Sundstroun proved thisl15],

Note 3. By using methods similar to that in [8], it can
be proved that if g =g =1/2, »>0 ,» scheme (2-8) has the
same stabillty property as the implicit scheme (2.7), There-
fore it 1s worthy of recommendation.

Note 4. 1If we calculate by using the modified coun:er-
flow method, it may be proved similar to [8] that when
1.0 = o(4%), lIz.l11, = 04" , the calculation is stable and conver-
gent. But this condition is too restrictive. The author
proposes that in the vicinity of T+ , equation (2.9) should
be used to be in agreement with the transport properties, and
in the interior, equation (2.7) for 4 =g, should be used to
lower the s value. Shapiro and O'Brien, Williamson and

22
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Brownin~ had similar idcas.

Suitable boundary shape may lower the estimation of the
upper bound of s.

Theorem 4. If the parameters in equation (2.7) satisfy
the requirement of Theorem 3, Rh is a rectangle and there is
no error in the boundary values, then even if &=0 | when |}’
and  e(i, 1, h,0,4) do not exceed Ni* , for all kr<€T<T(),
we have (k) lles < Metp , where if e,=a then ,&05
if w>0 , then <0 , and if & =& and ¥ >0
then s —0.5

s

b

Proof. Similar to Theorem 3, but with g =0 . If
% =a, then A=(i, Ji,§))=0 , and if o % a,
then from lemma 2.3 and equation (5.1)

14] < Eqam, + 2= aitalde el
2 &¥, )

< & i, + S aNLCUaI + BRI
2 124 v

Further
o1 (i, I, NN < "-25 19,112 + 12m2e= sl Al el

When v 0 ollgllall, < Ay tllilli,, , otherwise not greater

than A Ml Al . After the estimation by using the above
method, we can finish the proof as in Theorem 3.

VI. Effect of the Type of
Boundary Conditions

Assume that on 1 , O 4= where F30 . Its

On
23
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difference approximation is

7@, 0 + £ 1000, 1) + w(e', ) = 0 (5L k). 0 € v (6.1)

For convenience, let g=mXw=0,v=cont, , and the boundary shape
be sufficiently regular.

Theorem 5. Assume that in scheme (2.7), and (6.1),
b=o0,¥>0 and conditions (0,2,0,6,0) are satisfied,
1 then when IAS and e, 11y &8, 8) not greater than !
for all kr<T<Tdp) , we have Hilklio < Metp,

b

Proof. Because
i 253:(1’, 4, ve) = 2vh 2 uv, — vh! Z HoVa
| «3 1}

lulit, < const - Clall® + sllulll)?

Therefore /142

LR < Mgl + 180, + ellalily

4 |Fol < MCellll? + g0 + ed’llalll, + 21zl
LR Mulall + 2z, + ellall, + 1200

; [F. < Mor'(llidt + Ngalll, + elldlil)

Substituting equation (3.5), (3.9) - (3.11) and the above
equations into equation (3.2), we then get

B elu) # rmBL ' + 7(mB — aM g — t™ 4 — tM Q)i
+(2-2F — Mgs ~ Mue — Mu8)lilll, — ex'llfll0. (M
+ M) < MuUl3l" + 13 + 47Clall + IR0
+ 'lial”‘. + f'"ful”n) !

The rest of the proof follows similar lines as Theorem 3.

IFor proof, see another paper of mine. From this get

128350y, 00 )1 & const « (Il + Poalt, + huelt, & ole1i0):

1
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Finally in lemma 4, let w(®) = lidlle,, M ™=2,m=0 .

Theorem 6. If in schemes (2.7), and (6.1), $>0,»>0
and conditions (¢,,0,6,0) are satisfied, then when (L¥

and P, 1,1 8, 8) not greater than N&* | for all
kr €T < T(p) we have

03¢0 e, < M o7

Proof. Since on I,

f= = 20+ 7+ F 200 = (5 = 50
therefore
Foe (-0 3D G+ 1) — Mullilh
¢

L J
L

E > bmrvh Z (h+#)N— b-’.’l"-'-"—l!(l + 8) 2 W+ 7y Mgl
‘ ] a* 8 34 .

P52 S (g g = 2R (1 6) 3D (h + A — M2l
' + 4 x? .

B> 2omh (1 = o) 3 G+ 0 = el
..

Substituting equation (3.5), (3.9) ~ (3.11) and the above
equations into equation (3.2), we get

B,s(#) 4+ smOliull' + #(mb — M, Ol + 21 — ollalll _
bvh oy 4 GuTh m a4 )
+ 52 s)‘Z:)(»)+q)+ , (c+2)§(7 fi)

4 ‘1";"—"-' (am—a—-'g-—vma—oc—les>- §(§,+ﬁ:)'

< M Al 4+ 70+ ANalCal + IR + &l + 2k

The rest of the proof is similar to that for Theorem 5.

Note 1. From Theorems 5 and 6, if & =0 then when
25
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1, o < NR the cerputation 1s stable, If AL then

we need to require Pef S NA in order to guarantee stability.
If we treat I, & as formal approximate error, then when
ML= 0Ch?), ¢, i, = 0laY) , schemes (2.7), (6.1) converge. This

can be achicved by suitably choosing T

Note 2. The following externally imposed boundary /143
conditions are often used in numerical weather forecast:

Q) =#(Q), Q€Rr:

or

(0 = 25(0) — 2(0**), Q€R}

where o**e¢R,— R} and distance h from Q. These 2 conditions

may be considered as conditions (6.1), with accuracy O (1)

and O(h) respectively. Theorem 5 cannot guarantee the conver-
gence in long term calculations. The calculation of Platzman

and Mastuno proved this. For reference, see [14].

Note 3. The method in this paper may be used to prove
the suitability of many boundary treatment methods in aero-
dynamics. For example, &= g, %ﬂ-g”g, is often given on

n

I according to the famous Thom method, 1.e. (1]

1(0") = £(Q") = —2(4( ") $( QA" + OCA)
- e -1 Q—+£
24 g.( ; )+ o(4)

This 1s equivalent to the boundary value conditions of the
first kind of n with error o) . From Theorem 3, this
method of treatment will lead to a convergent result,

Note U, We may also adopt various boundary conditions of
Y. For example, @.=g¢, with error § . Let us construct

26
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a function G, such that Gulea=8 . Also let =G, +% ,
then A e=],—aG. + 1,3 dr,=0 . Hence we can prove that there
exlsts a constant my only dependent on the diameter of

the region such that
el < Nelimg < 2mp 1GHE + 8ma 1 + 13N + 1A

By substituting this estimation equation into the earlier
theorems as el » Wwe will get the corresponding result.,

Note 5. By combining the various methods in this paper,
we can prove the convergence of the computational methods of
many practical problems, for Iinstance the example of a wind
tunnel calculation on page 140 in Reference [1]. From
symmetry, we know ¢*=§=0, on the center line T, of the
wind tunnel. On the surface TI: of the object, we know

$=0 from fixed wall boundary. £ is treated by using

Thom's condition. At T, upstream, ymu,v= o . There-
fore ¢ 1s known, and §*=c¢onst by Daugherty's method. On the
fixed wi:lls of the wind tunnel, since ¢=0 , y is known.

£ is calculated by Mueller's method. At Iy downstream,

8o O

This method of treating boundary conditions will lead to a
stable and convergent numerical result.

[ O

. Ty i
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VII. Dynamic Relaxation Method for Steady Flow /14h

Consider the problem of steady flow

of 8y _ OF Oy 8(6‘ a(ag

_— e - T —— —_—2 ) e — ) -
1 8x, 0x, Ox, Og, * O, v ax.) Ox, v ax,) h }
r ' Vig—§=1

For convenience, assume 5r= 0, v = const,

(7.1)

, zero boundary value
and R a rectangle. In [1, 3, 5] many computational methods

i 1 are introduced but there is no proof whether solution exists
: 1 for the corresponding difference scheme or whether the solu-

tion is bounded for all h. In this paper the following scheme
is given

s W, @)+ vAn=—f, Op=q (7.2)

Assume H is the Hilbert space formed by the net functions
that satisfy the zero boundary value condition under the inner
product

(w, v] = .;_ (Cwu,s v,') + (w.'. v.')l + —;~ kz. wo
(]
The norm is denoted by |.|, . Obviously for arbitrary
weéH,(w,f). 1s a linear functional in H. Hence there exists
Fe€H such that [F,w)l=(w,f) and [(w, 1) <|Fliyllwly .

- Theorem 7. In (7.2), if 4w, » and |F|, 1is uniformly :
bounded for h, then for all h, there exists at least one solu-
tion of equation (7.2) uniformly bounded for h.

. Proof. Multiply equation (7.2) by weéH and find the
inner product. From equation (1.4), we get :

g wl o+ (v, In, @) = = W)

\
|
|
! 28 i
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But for fixed n and @,(w,J(9,¢)) 15 ulso a lincar functlional
in H. ‘!ence there exists 4p€H  such that {An, w]=

(w, J(y, )). Thercfore the solution of equation (7.2) is
equivalent to the solution of the following non-linear opera-
tor equation:

’J—":':(Aq+ F)=

(7.3)

Assume that there 1is a sequence ™), Ap®wm ™ | When a—+w

) e gl —» . Hence when n is sufficiently large, In*lu, llo*lx

I = gllu—o0 y ge,
is uniformly bounded. Denote &= = [47*™ — A7, w] then
from equation (2.4) and lemma 2, we have
lat= 9| < [(g= = 5, Jw, @) + 19, I(w, ¢
— M| < Mulln™ = g lullwlls

Take we= Ay*"'= Ay , then N4y = p*)u € Mully™—=q®l, 1.e.

A 1is a continuous operator and M is independent of h.
Now from Browder's fixed point theorem, we only need to prove
that the equation

3= A(An+ F) =0 (7.4)
is bounded for the set of all possible solutiors of 4€[0,1/¥)

Multiply the 2 sides of (7.4) with ¥ and find the inner
product in H, we have

Uil < Al lull Flla < -;'; ol F llue

Theorem 8. If 24/ 2 (m)ll < v,a,=a, then the solution
of (7.2) is unique.

Proof. Assume 72, ¢ and 7, @ are both solutions.
g=gt+h¢=—¢+té then

29
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vAﬂ+J('7.‘P+‘P)+J('I-¢’)-°u op =1

Multiply the first equation with n on both sides and find 1its
inner product. We also notice that

Ilnll’l!nlll* < mtllflv, Il < logl? < lall? < millilli,

therefore

ity < 2v/2 Bl it nen? gt

TR | - oy
< 2/ Zmtlall Il Nalpls < 29/ 25~ lmat 3l /145
Theorem 9. Assume the ith equation in (7.2) has error
R and the corresponding n has error # , then under the
same conditions as in Theorem 8, lalP < Ml + 171

Theorem 10. Under the conditions of Theorem 8, the follow-
ing iteration process converges at least as a geometric seriles
where t is the relaxation factor and n the number of iteration:

”(.ﬂ) - ﬂ(') + 7 qu""'" + ](1)("""’ P(-)) -4 I‘] . (7 5)
APt e plst0) 4 4, ) } .

The two theorems above may be proved similar to [8].
If 4 =1 , equation (7.5) is then the N-S method in [5]. :
Apparantly this method of calculation and proof is more compli- f
cated. In recent years, Davis, Greenspan and Hodgkings have ;
all tried to calculate equation (7.1) with non-steady state f
method. For reference, see [1, 17, 18]. They call this the i
dynamic relaxation method. But since equation (7.1) is a non- X
linear problem, thus viclating the simple relationship between i
the steady flow iteration process and the final state of non-
steady flow as pointed out by Frankel. Therefore very few .
theoretical results have been derived. This author examined

30
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this problem from another angle, and first proved that general-
ized solutions exist for both equation (2.1) and (7.1) under
very weak conditions. He also proved that if the generallzed
Reynold number  Re® —va'm.ufwhmp<] then equation (7.1)'s
solution is unique, where

e, = {f, Wf;“f’ IIEIIL..-” [(%—) (55) }asee

L.

H* is the closure of the infilnitely smooth, finite subset
functions under "‘"q , and

ey = NI+ Dol T = |2

R 1 T o
We denote g == 2u(m@)~'(1 — Re*)

Theorem 11. If £ is the solution of (7.1), £( 1is the
solution of (2.1), both with zero boundary values, §(s) =15
§G) —¢& » then when Re* <1

101, < ~IEOIL

Proof: . : {
0t _ota(e+ i@.(L.JE)....vz;- _é FTRIA ;
8’ ’ Bx. 6:, R Or, ...6;. . 031 a‘. 0-\’: 8:.} (7 . 6 )
V'J-E M- SRR
Multiply both sides of the first equation by 2§ and find its |
inner product. We get ] |
l 2 + 2 - C ' q gl
AL+ 20, <3 B ([ 22 + )

<200t g1, vena vent . udnd
< 2m8 el

31
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From an inequality in § 1, Chapter 1 of Reference [9],
16l < 197G < TENL < mE 1L » therefore

2y

d .- o
o i, + =5 (1 — Re*} Il <0
(]

m
Since a systematlc result has been established for

non-steady flow in our paper, we may conclude by using
Theorem 11 as follows:

2 [
1. For any ¢>0 , we may choose To= -}log Zpriarm

6
so that when 2T, s Is—EiI< 7 . Further 1if we

assume that the approximate value () of §() 1s calculated
by using any one of the schemes in § 2, then we can prove
that if conditions in Theorem 1 - 6 are satisfied and e < Mb%

then when ~tTe

u, [53
A 8k
< 4MM|ﬁ

In(Te) = (TN < 8/2

so that IM(TD:75H<:e , 1.e. when the above process is con-
sidered as an iteration process with relaxation factor T, the
process 1is convergent.

2. Iterative convergence depends on many factors. If v
is too small or Il too big, the conditions of Theorem 11
will both be violated so that the total iterative procedure
may not converge. If h is too big, then no matter how big is
T, () will not converge in E(0) . If 1 is too small,
the amount of work will be increased; if t it too big, then
the conditions of Theorems 1 - 6 will be violated and the
iterative process may not converge. From the process of proof
we see that the iterative convergence 1s related to initial
iterative error, boundary shape, type of boundary condition as
well as to boundary value error. Thls agrees with the exper-
ience described by Greenspan[17], Roach[lj, ete.
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3. The amount of work may also be estimated. For example
if equution (2.7) 1is used in the calculation, the total number
of iterations 1s about

. i .
Ke= Th_' - [la, 2ll-(0)lh. "(MZ?IA) “ 2llﬁ(e0)“u

#

Apparently when ¥»®& are large, KO is small. When [fll, 1EC0)]l.,
or M, Mi(gradient correspondong to the solution) are large,

KO is large.

When Theorem 11 is applied to local district numerical

weather forecast, it shows that if v is fairly large and the

n ¥ values on the boundary are fixed, then when s—0,7r—0,
7() —~ §() and when T, 1s sufficiently large, X0

approaches £, i.e. the forecast value rapidly transits toward

equilibrium. Therefore the sponge boundary conditions in [20]

should be used. For more detaliled proof and appllcation of

some of the results in this paper, see Reference [21-24].
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Abstrncg

There are five important subjects in the theory of difference imnethods: 1. con-
struction of scheme; 2. Stability of scheme; 3. Computation of flow without viscous
term; 4. Interference of boundary conditions; §, Solution of steady flow. A lot of
work has been done in this field*~", but no systematic theory has been developuod.

In this paper, eystematic results are provided with particular reference to two-
dimensional vorticity equation. Two class2s of schemes are constructed based on con-
servation and transport property. A new concept concerning generalized stability and
optimization of nonlinear scheme is introduced. The index s to generalized stability
for periodic problem is estimated, which shows the relationship of stability and con-
servation, Two-level schemes are given to decrease the index s. The influences of
bound shape, boundary conditions and their errors are fully disenssed. Finally the
existence of the solution of ateady flow is proved and a dynamic reluxation method is
proposed. Several examples are given, showipg that the methods suggested here are
useful both for numerical weather prediction, and in the field of aerodynumics ind
other subjects. ’ : »
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ON THE KERNEIL FUNCTION COLLOCATION METHOD IN STEADY SUBSONIC
FLOW FOR WING WITH CONTROL SURFACES¥

Chen Jing Song
Nanjing Aeronautic Institute

ABSTRACT

In this paper the forms of the 1ift distribution function
for wings with control surfaces in steady subsonic flow are anal-
yzed. Methods for treating kernel singularities of linear Inte-
gral equations and singularities of the 1ift distribution function
are discussed and the numerical solution to the integral equation

is given. The method in this
1ift distribution of the wing
tial or full control surfaces
edges. The numerical values
and have the same accuracy as

paper may be used to calculate the
by itself or of the wing with par-
on both the leading and trailing

agree well with experimental data
those given by other theories. As

compared with the vortex-lattice method, the computational storage

requirement for our method is

smaller and the computational time

is less. The numerical computation may be carried on smaller com-

puters.

I. FOREWORD

At present, the numerical methods to solve the 1ift surface
linear integral equation are categorized into two kinds: The vor-
tex lattice method and the kernel function method. The advantage of
the vortex lattice method 1s that it 1s not necessary to assume a
priori the form of the 1ift distribution function, and hence, in
principle, there does not exist any difficulty to compute problems
involving partial control surfaces. However, to achieve a certailn
computational accuracy, the number of vortex lattices should be

—
Received February 11, 1974
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large and this will certalnly result in a bhigher order for the
linear algebraic equations of the coefficlents. The advantage

of the kernel function method is that it requires very few coll-
ocation points and, therefore, the order of the equations to

solve for the undetermined coefficients is low. Its difficulty
lies in the fact that the 1i7t distribution function with match-
ing boundary conditions and edge conditions must be chosen a
priori. Reference [3] made use of a method of approximate expan-
sion to study the pressure amplitude characteristics of the lead-
ing and trailing edges as well as the corner when the control sur-
faces oscillate harmonically and obtained the "form for the control
surface 1ift distribution", thus making it possible to solve the
control surface problem with the kernel function method.

There are two methods of treatment when the kernel function
method is used to solve the control surface problem. One of these
is to substitute directly into the integral equation the control
surface 1ift distribution as obtained by the approximate expansion
method to find the downstream velocity induced at the collocation
points on the wing (including the control surfaces). The equiva-
lent downstream velocity is then obtained by subtracting this in-
duced velocity from the actual downstream velocity at this colloca-
tion point. 1In this way, we may solve for the 1ift distribution
that satisfies this equivalent downstream velocity with the kernel
function method, while regarding the wing with control surface as
one without. Then by super-imposing this distribution to the con-
trol surface 1ift distribution mentioned above, the 1lift distribu-
tion on a wing with bharmonically oscillating control surfaces is
obtained. This kind of method is called the equivalent downstream
velocity kernel function collocation met:hod.H_G:|

To obtailn a stable solution for the equivalent downstream velo-
city kernel function collocation method, the number of collocation
points should be somewhat large. It 1s also necessary to select an
expansion factor for the control surface 1ift distribution, but it
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{s difficult to make 1t satisfy the edre condition of a flat ‘

plane while kecping the second order derivative of the lateral
load continuous. Chortly after the completion of the work in

this paper in August of 1973, we saw that some progress had been
done along this direction in [6]. Some of the problems are solved
but the region of integration has to be subdivided into many
smaller regions during numerical integration. The technique of
using just a few collocation points and integration points as in
the control surface kernel function method cannot be used. 1In
this paper we use the control surface kernel function method to
determine the 1if't distribution of the control surfaces. Limited

by space, only the results for the steady flow will be presented
in this paper.

II. FUNDAMENTL EQUATIONS

The fundamental equation of steady subsonic 1ift surface

theory is 1
4pUun H;.AP(E' nK(x — §, y — 7, Ma)dEdy

u'(x.Y)- (1)

where w is the downstream distribution function over the wing;
o and U_ are the incoming flow density and velocity; AP is the
1irt distribution function of the wing and is a constant;

—_l___.[1+ r—4 J is the kernel function; M_ 1s
t]
&= V= + 80y — 1)

the incoming flow Mach number, g=+1—Mi,

According to Figure 1, by transforming the coordinates in
Equation (1) and making use of the conditions that AP 1s zero at
both tips of the wing, we obtain

=L 8l arce £ &), )0z} -2 2
W, 5) Se j-l on {j’l AI’(?’ y)[l + R ]b(g)d;}z —_— (2) :
where I = 4xpUlii(, ), R =v/(G=E¥ + p'GG — 1Y, . In the above, the

dimensionless coordinates are respectively
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physical plane
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transformation plane

Y
"“llr" {, 1

i
oy -

[

Figure 1. The physical plane and transformation plane
of the wing.

The meanings of the other symbols are shown in Figure 1.

To obtain a convergent solution with suitable accuracy, to
reduce the required machine memory and to shorten the computational
time, before solving the integral Equation (2), we must first 1
select a sultable 1ift distribution function, find the best
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positions of the integration point, the downstream point and

use a stable and effective numerical integration technique.
III. SELECTION OF THE FORM OF LIFT DISTRIBUTION FUNCTION

According to linear theory, the 1ift distribution may be
divided into two parts: the normal part APR as produced by the
incident angle when your angle 1s zero and the subsidiary part

APCSR as produced by the zero angle when the incident angle is 0.

AP(g,y)=-AP~(§,y)+APcu(§,y) (3)

The function APR is required to be continuous on the wing
with an inverse square root singularity at the leading edge of
the wing, to satisfy the Kutta-Joukowski condition at the trailing
edge and to vanish at the side edges with a square root form.
Hence, the tangent direction of APR may be chosen to be the first
few terms of the accurate thin wing solution and the lateral
directlon to be the elliptic distribution solution of a (long,
narrow slender body) wing [7,8].

| T g} \/1_—_5 gy (1)
AP, 1) 5a) Sav' 1 — 7' Lgu(y) l_}_§+el(11)(l £

where () = g+ ]

) :.(y) b ﬂ-:Uo(ﬂ) + a..U.(H) + auzuz(ﬂ) + oo (n = 0,1,:--, N) (5)

(N + 1) 1s the number of terms along the tangent direction of the
1ift distribution function; Um(g) is the Chebyshev polynomial of
second kind;(m = 0, 1, ..., M) is the number of terms in the later-
al direction; a,, are the undetermined coefficients to be found
by satisfying the boundary conditions. It is easy to see from

Equation (4) that APR does have the proper edge properties.
The zero incident angle slender body 1ift distribution [9] of

the partial control surface (with axis of rotation along the lead-
ing edge) 1is
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Al’csn(g) - APcs(g) + Apa(§)

eein |12 §§c+;/l';c€“/‘ L3N ‘/: :fo'g]

where ApCS is called the control surface 1i1ft distribution func-

tion. It is proportional to the logarithmic term, ApR i1s called
the normal 1ift distribution function. Similarly, the zero inci-
dent angle 1ift distribution function of the wing with partial
control surface consists also of two parts. The form of APR is
similar to Equation (U4). APCS may be expressed according to the
form supplied by [3] in conjunction with the logarithmic term

solution of the wing type discussed above as [7]

Apcs(g, ﬂ) = 41Uz So\/l - ZI' [Eu(y) + Bn(ﬂ)(l + §) + - ]‘Pc:(§, 1)

6(q) (6a)
where
tes (1 — Efca + (1 — EDNY(1 — ELOV) + ELV — E,
ves(f, 1) = ,Z;“‘ l I(f— ) + B} —E,
E. = {p’(y - nln)(ﬂh - a)) y 2 0 (6b)
* g+ ) ), <0

Summarizing the above discussions, the 1ift distribution function
of the wing with partial control surface at zero angle is

2 \ jr————— -
APealf, 1) = %wx — 7 e+ p A+ P+ leati)
1-¢

+ lg,c(g)(r_‘_—g)m +guc+u{ )1 = Y + gucen(g)(1 — )+ e 1}

In Equations (6a) to (7), ICS is the number of control surfaces
that move together in the right half of
the wing; for the meaning of Scas Yia

and T , see Flgure 2; JC is the num-
ber of tangential terms of APcs. For the
case of leading and trailing edge control
surfaces that rotate together, JC=2.
Flgure 2. Diagram show- Otherwise JC=1. For the tangential terms

ing the control surfactes
on the wing of APR, at least two terms should be
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taken. It 1s not difficult to verify from Equation () that AP o
has the property as pointed out in [3]: namely, that 1t 1s zero
at the leadinr and trailing edges of the wing, finite at the side
edge of the control surface and continuous on the wing surface
outside the control surfaces.

IV. THE BEST POSITIONS OF DOWNSTREAM POINT AND INTEGRATION
POINT AND TECHNIQUE OF NUMERICAL INTEGRATION

It can be proved that to minimize the difference between the
approximate values of the low speed thin wing lift and the total
lift and their respective exact values, the tangential downstream
point and the lateral downstream chord should be respectively [10]

;,---cos(i-lziﬁ) (im=1,2,:2,01) (8)
e = cos (2Rr':-l) (r=1,2,.-+, R) (9)

where I is the number of downstream polints of each chord; R' is the
number of downstream chords of the right half wing. The best

ratio of R'/I may be obtained following [7] for various wing
shapes and M_.

From the functional forms as shown in Equations (¥#) and (7),
we can use the Gauss-Mebhler quadrature with V(= §)/(1 +§)

as weight to maximize the accuracy of the tangential numerical
integration of Equation (2)

1 1 - i 1

L \/l T f(g)d; ~ 'Z'H,_l(g.-). - (10a)
where J is the number of integration points of each chord. The
integration point and weighting coefficient are respectively

- — 2j =1 f e
§ cos 2_...__1_*'1:.] (l 1,2, W 1) (10b)
- 2' - '

L)1
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If f(£) 1s a polynomial with order less than (2J - 1), then Equa-
tion (10a) is the exact value.

Substituting Equation (4) (or Equation (7)) into Equaticn

(2), we may obtain the general form for the lateral integral

\ : B
K= 2T 7 6ty It
-9y PER (11)
G(y,n) is the tangential integral of Equation (2). We may assume
that it i1s an analytic function of n. Since it 1s impossible to
numerically integrate Equation (11) directly, we first expand
G(y,n) into a Taylor series and then integrate termwise to get
S (1 =g)6(y, 1) — G6(y, I
! :?.l‘ { (z_nl)'
1 — y)G'(y,
+( G (y, y)
b S/
where S is the number of integration chords of the whole wing; ng

} + »G(y, y) (12a)

and Hs are respectively the integration point and weighting coeffi-
cient of the Gauss-Mehler quadrature Equation (11) with l/v’l—-f
as weight. '

(12b)

e —-——2‘_ l - LRI )
3. COS( 28 ”) (’ l’zi is)}
H, = x/S

It will be proved below that Equation (12a) may be greatly simpli-
fied by appropriately collocating the positions of the downstream
chords and the integration chord.

Since the positions of the integration chords mentioned above

Ny> +.., Ny are the zero points of Ts(ﬂ), therefore

, .
Ts Lol A -1,
(@ =2 TG — 3 (13a)
The logarithmic derivative of (13a) is
TD/TLD = 33 n—_ﬁ— (13b)

If we let 2R' + 1 = S, 1.e., take y as the zero point of T;(Q)
then n  and y, become crossed. Also from Equation (13b)
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A (13c)
Hence, Equation (12a) mav be simplified as
gy~ -2 3¢ — ot g
- ”, N (13d)
+ 26y, g1 + 1 Z. o H’),]

We shall prove below that the square bracket portilon of Equation
(13d) is equal to S. Change the variable n in Equation (13b) to
y and differentiate. We then get

3

1 . .
§ -G-:-a’—).- . [T's(z)/Tsfz)]'.— Ts(y)/Ts(y) A (13e)
According to the property of Chebyshev polynomial,
(1= TE(y) ~ yT5() + S'Ts(y) = 0 (13F)

Therefore, we get from Equations (1l3e,f) and the fact that X; is
the zero point of T!(y):

1 s
??': (r—72>) U-—p (13g)
Since A =g =0 =)+ 2y, — 3.) — (3. — 3,), therefore,
3 1 - 3
11—y + 2y, -5 (13h)
g(z. = Z)Z':' y)’ Z.Z.:z.-y, .Z-;

It may finally be proved from Equations (13c,g,h) that the square
bracket portion of Equation (13d) is S. Hence, the numerical inte-
gral (12a) is finally simplified [10] as

l-—-y‘.
o & (1= D6, (1k)
3 7)G(y., 7.)

_? 24 (l’ — y'). + l’sa(zn 2!)

w=[ 2

Al

If G(y,n) is the (2S - 1) or lower order polynomial of n, then
Equation (14) is the exact value.
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V. INTEGRATION OF THE INTEGRAL EQUATION AND ITS SOLUTION

1. Case of angle a # O and yaw angle § = 0.

Substituting the 1lift distribution function Equation (4)
i{nto the integration formula (2) and applying Equation (14), we
get

XA RN NSl DITIS TS DRSS
Wi S gy - Tk ) (15)
where

- (16)

- , 2= £ 4

Gx(l: H) S_.d’u(g, J)[l‘i‘ R ]d?

. i —

&u(E, 1) = [an) + a(gX1 + B) + g()E(1 + &) + « -] l-:_-g 7)

In Equation (16), the function being integrated has a jump discon-
tinuity at £ = X along n = y. Because of this, Equation (16) is
rewritten as

Gy, 1) — L LeulE, ) — dx(E, )] [1 +§%—§]’d§ i
o L tp [1 +"-’—'§'-5]d§ (18)

Thus, the singularity of the integrand in the first integral may
be found by using the quadrature Equation (10). Jump discontinuity
st1ll exists in the second integrand which is difficult to inte-

grate analytically. Hence, we expand the analytic function ¢«(&,y)
into a Taylor series:

&al(E, y) = ¢ula, 9) + G — Doua(a,y) + - (19)
while from Equation (2a) and Figure 1, it can be shown that
(§— 2) = Lo/ — £) + /BT = b)) = (1 + 5y (20)
Substituting Equations (19) and (20) into Equation (18), the second
integral can then be integrated analytically. If only the first

two terms of the series are taken, then after some algebra, the
result of integration is

by

i it ————— = "

. . ————— A ———— - e e v




Gy, 1) = 2 ?‘ Le)X — E) + a()A — ED) + ++]

l i=)
[1 + 4——5] + Z drp(&ey Y I (%0, 7, 1) (21)
where
ntar = () ) + DA+ D+ 0 + D+ 001 (22)
¢ula, y) = -f,%—wmu. 2 , ' (23)
. - " 3
Il F, ¥,00) = {”u(r 1Y '))"2! T 1 l;(l = §i )/[l + —-.L]} (24)
PulE, 7, 1) = [”0(" “‘;i'lll ~a+ ;)]¢ w(F, 74 1)

x, - — VY5 — ¥ — 5 (25)
H(E, 5, 0) =2+ b—(ﬂ—)uu E + B — 1= (B2 + FG—1P 1) (26)

H(E, 5, 0) = — ‘;‘I(LS = by = Gu— 27+ G- BIG - 5

+ 4G = P17 + (5 = DI — B + PG — Y1 — FG — 1P
(G B 4 G = Y1+ G £) |
NG =5+ G = ) = G — ) | (27)

Gy, y) = l,ir_nzGu(x. y) ‘ (28)

Substituting Equations (21) and (28) into Equation (15), the down-
stream distribution expression for a # 0, 6 = 0 is
Wi, 5.) o =22 vy (=9
4pUL §Q1 + 1) 5 Q) .
Lao(g.)(1 — £ + a(g.)(1 — §D + )
- . ] p
Ji 4 5§ 4 28 (29)
[ V(E = EY + 8.~ 'h)’] U+ .Z':'
l:o<z.)(1 = &)+ aCp Xt = §) + o)
—§ [ 1)
[l S AT e e
’SUGI(‘“ Yoy 2')
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Th> last two terms In the above cquation are the correction terms
that appear when the Jjump discontinuity in the integrand is ellm-
inated. In the above,

Vals, y, 1) = 2, dua, 1) ¥n(F, 47. ) (30)
. = . )

2. The case of a = 0, 8§ # 0.

From the simultaneous Equations (2), (7) and (14), we obtain

w,u.(i-] $0d o _ & 2(1 - H:)ch({r» ZI:) + x5Gesa(yes Y')
ot sE G-y (31)

where

ch(l, i) - Gcsn(l. ﬂ) + Gcsu;(z, ﬂ) (32)

G = . o) + 61 + D + - Toeeup|t + E2E]ar (33a)

Gesm ™ j:l [élc(y) + 8(lc+|)(ﬂ)(l + f) + . "] -\f: ;i[l + z ; g]dg (3k4a)

Equation (3la) is similar to Equation (16). The result of inte-

gration 1is

. J o
Geanys 1) = 72— 37 (2e(A = §) + gucen(p)(1 = £) + ++]

2"+ll'l

) [1 + i‘—;,%‘] + 2 ;’n(‘n Pe(Eiy 7, 1) (34p)

=0
Except for the jump discontinuity at n = y, £ = X, the integrand
in Equation (33a) has a logarithmic discontinuity at the leading
edge of the control surface. The method of eliminating the former
1s as described in the above section. The logarithmic singularity
is eliminated by a method similar to that used to eliminate the
Jump discontinuity. To make the correction term that changes the

integral from singular to non-singular consistent along the lateral

direction, the lateral part of the non-singular term is also cor-

rected, The final result of Equation (33a) after this treatment is

U6

P R R R P




|-

Gy, ) = 2_, (&'v(ﬂ)(l - fl) + gl(!l)(l = {D +oeen]

'u+ -
-4¢

' :"f—ff)"'wfn 2

J + Yees(ai, y, )

Ueeils, Y _’1) - Z [‘f‘cu(&': Z)‘/’Itp(E, ¥s ’))

reg

ics

~ 22 bxcsy(Eeas Dbesnr(F, )]
an]

desolay p) = 1gly) + aCy) +2) + - locs(a, y)

¢esi(a, y) = 0pcs(s, ¥/ %

Yesal(¥, 1) = {Lo(fcu, ) — 37 + N ‘2._:, (1~ gHn

Il [Cg — ge )+ B — E.]}

$esu(F, 1) = {Li(tca, 1) — 7 + i 1 Z‘ (1 = N ~ e
*Inl[(§; — Ec.) + EL)/ —~ E, ”

Lo(fees 1) ~ U ~ £l [(1 ~ g3 + E1)9 — £,
+ U+ £l [+ o) + BV — E,| — E,

ot [0+ £ + B 4 (1 4+ £ I = £0) + B2 + (a—-£0)
E .

EiGiens 1) = oo + Q1 = ge Yl (Q1 = o, + B3 — g,
‘ =~ + &Il [ +§c_)'+£']m..3 1}
~ B = oy + B2 = [(1 4 gy + E1)"}

¢xcselfce, 1) = {lﬂ(ﬂ) +alpQ + §)+ l,.:J[l + g_g_{]}

¢xcalfce, 1) = [‘:?Wrcso({, R)L-s.

b7

‘- (l‘

-2

(33b)

(35)

(36)
(37)

(38)

(391}

(40)

(41)

(42)

(43)




The expresslon for downtream distribution of a = 0,8 # 0 is
obtained by using Equations (31), (32), (33b) and (34b):

Weo(xi, ¥, - — 27 ! 2 1 - y}
4pU. sQI+D 5 5 G - )
* {lgo(ﬂ:)(l - §,) + :|(a,)(l - f;) + e o]
1+ &,

. r:gj)m @cs(E 1) + Lesc(ygd( — §) + gucs(g ) = EN + -1}

= _.E. "’ 7
.[l+ il ]+2SZ

VGE =8y + G - W rlia (L)
A+ £\,
(120 = 80 + 80 = 5D + (=5 )

e @esCEis 1) + [gac(p )1 = £ + guernly X1 — £ + <+ 1}

5n—§ x Z‘ -
] ——— qf s iy Jry Ys +wck s 2ry l)]
[l + xl_gll‘l s sm} Zr"ﬂn)'[ GC(‘ z Z-z) (“ z H

+ 'S[WGCS(JA"Zr,Z') + q’ck(zu Yes 27)]

The un-explalned symbols in this sectlon, with the exception

-— (V2
of buls, y) -(:—Tf ' [8scCy) + ey +a)+---] , are identi-

cal to those in the last section.

3. Determination of the undetermined coefficients 9w

We write Equations (29) or (U4l4) as a matrix equation:

[(“"')"”'_"'} - {_a_z_u}

05 ws)
. 8z,
where {q,.) and {%%ﬂ} are column matrices; s is the boundary
X

condition at the optimal downstream point (51, Xr)’ i.e., the

inclination of the obJect surface; [(Anm)ir] is the matrix. The

elements of the matrix may be obtained from Equations (29) or (44),

After a  are solved from Equation (45), the 1ift distributions

and the other aerodynamic quantities of the wing surface and the
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control surfaces under given conditions may then be found from
Equations (U) or (7).

VI. SAMPLE CALCULATION AND CONCLUSIONS

The above computational method has been coded into a program
for the X-2 computer. Calculation shows that the numerical re-
sults of our method agree well with experimental data with the
same accuracy as other theoretical values. Figure 3 shows one
sample calculation, which requires only two minutes of machine
time on a 709 computer. i -

ér
o 1 2
<t *xRani aiitR
,n=0.46 NACA RMLS3C23 ¢RIR =8, (=10
L " E=0.60 05 = -15° —~[IR =12, I =13
o S ad = 415° . =AXR=12,I=3
r 7}.‘0-7’ @8 = +st
=0.251 ¥ <
1 - 3 Ritp=4.0
Ly BR=0.6
o .
-1

Figure 3. Comparison of the computed values in this

paper to the experimental data and other theoretical
values  (Ma=0.5, p=0.46)

Key: 1l--experimental data; 2--theoretical calculation;
3~-ratio of lateral to tangential dimensions;
l--trapezoidal ratio

From the limited numerical results, it bas been demonstrated
that the method presented in this paper is reliable. Compared to
the vortex lattice method, our method requires only a few down-
stream points, thus greatly reducing the machine stroage require-
ment and computational time. The numerical computation may be
carried out on small computers.
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ON THE KERNEL FUNCTION COLLOCATION METHGD
IN STEADY SUBSONIC FLOW FOR WING
WITH CONTROL SURFACES

Chen Jing-song
(Nanjing Aeronautical Institute)

Abstract

In this paper, the forms of lift distribution function for wings with control sur-
faces in steady subsonic flow are analysed. The methods for treating the singularities
which occeur in the kernel of linear integral equation and in the 1lift distribution
functions are also discussed, with the numerical solution of the integral equation given.
The method proposed may be used to calculate the lift distribution of the wing alone
and of the wing with full or partial span control surfaces on both the leading and
the trailing edge. The numerical results are in good agreement with experimental
data, and are as accurate as those obtuincd by other theories. As compared with the
vortex-luttice method, both the required computing time and the computer capacity
are reduced. Thus, the numerical calculations may be carried out on smaller computers.
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ON THE CAPACITY OF HOLOGRAPHIC PHASE-SHIFT INTERFEROMETRIC
TECHNIQUE IN THE VTISUALIZATION CF LOW DENSITY FLOWS*

L1 Hua yu, Xu Chao yi, Shu Jizu, Hu Jin min
(Institute of Mechanics, Academia Sinica)

ABSTRACT

Gas flows at high Mach numbers are usually associate with very low gas density,
especially in simulating flight conditions at high altitudes. In visualizing such flows
the question usually arises as to how the sensitivity of the optical method may be
inereased.

Paper [2] has pointed out that, if the reference beam of holography has a certain
phase-shift between the two exposures, a higher sensitivity can be achieved. Paper
(2) appends an experimental result in which the phuse-shift value is /2. The pre-
sent paper analyses the phase-shift interfcrometric technique in detail. " According
to this analysis, when the phase-shift value is x/2, a resolution limit about /1000
¢un be achieved. This is 25.4 times higher than the common double-exposure holog-
raphic method in which the phase-shift value is zero. Furthermore, the present paper
points out that when the phase-shift value increases from x/2 to x, the sensitivity
also increase monotonously (for instance, when the phase-shift value is 0.89 x,"a resolu-
tion limit about A/6000 can be achieved). The optimum phase-shift value is probably
near 7. o L o S

This paper prescnts some experimental results of a low density flow. Some pro-
blems in application of this technique are q.iscussed.

i P

¥
Received February 19, 1978
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A highly sensitive holorraphic interferometric method deserv-
ing our attention 1s Introduced in this paper. As pointed out in
[2], the sensitivity may be ralsed when there 1s a phnrce shift in
the reference beam between the two exposures in hologranhic inter-
ferometry. The experimental recsults for a phase shift of n/2 1is
also reported iIn that paper. 1In this paper, we analyze in detail
the Interferometric technique and point out that at a phase shift
of n/2, this method may achieve a resolution of about 1/1000 wave
length, 25.4 times the sensitivity of ordinary double exposure
holographic technique (with 0 phase shift). It is also noted that
the sensitivity may be further improved for phase shift greater
than n/2 and smaller than m, the best phase shift value being in
the neighborhood of n. We append 1in this paper *the experimental
result for a low density flow to demonstrate the ability of this
method in visualizing low density variable flow field and discuss
some of the problems encountered in its application.

The finite fringe interferometric method used in the investi-
gation of flow fields has generally a resolution of about 1/20
wave length. In practice, there exists a great number of situa-
tions where the state of matter has a variation much less than 1/20
wave length, such as the study of supersonic air flow, all kinds
of low speed flows, small cross-section tube flow, etc. Hence the
improvement of the sensitivity of the interferometric technique
has always been an important research topic. The phase complement-
ation method of [1] is an outstanding example of works in this
area. In that paper, a highly rensitive visualization method has
been developed by applying the principle of spatial complex filtered
wave, Including the application of the phase shift technique.

In contrast to the principle of spatlally filtered waves with
phase shift only in local waves, [2] introduced the technique of
phase shift for the whole wave to improve sensitivity by changing
the phase of the reference beam between the two exposures of the
hologram. It also exhibited the pilctures taken with the high
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sensitivity obtained after shiftings the phase by n/2. (3] applied
similar principles in non-holographic situatlons to realize a high
sensitivity in ordinary interferometric methods by controlling the
initial phase difference between the two interfering beams to be
around /2.

We discussed the phase shift technique in the holographlc inter-
ferometric method in an attempt to explain the physical interaction
of the phase shift method and the relationship between the phase
shift value and the sensitivity of the measurement. We also com-
pare the methods in [2,3] and note that the best possible phase
shift value 1s not n/2, but is close to m. The experimental
results are included in the appendix with a discussion of the prob-
lems that exist in the appllication.

I. ANALYSIS OF THE PHASE SHIFT TECHNIQUE

1. Effect of changing the phase of the reference beam between

the two exposures during flow field visualization on the

double exvosure hclogram

Let the object wave at the first exposure be oten , the
reference wave be e®er the object wave at the second exposure
be changed to ¢! esnl | the peference wave be ksartd, yhere ¢
is the phase change caused by the flow field and ¢ 1s the phase
shift value.

Assume that the recording medium records the intensity linear-
ly [1], then according to the general theoretical treatment, the
following conclusion may be arrived at: (1) even 1f the medium
should be non-linear, the following discussion will not be affected
because 1in the off-axis holography, the non-linear effect only pro-
duces higher order diffraction images with large diffraction angles.
It is separate spatially from the first order image that is to be
used. When the processed hologram is illuminated with reference
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R(x,y), the two objective waves emitted are respectively ¢!oren
and e!1otnrtetayi=dl . ¢ =0 1s the situation for ordinary double
exposurcs. This conclusion Indicates that durine the second expo-
sure, the increased phase ¢ of the reference beam 1s equivalent
to: (1) the phase ¢ subtracted from the measured objective wave
in the ordinary double exposure holographic interferometry; (2)
the uniform initial phase difference ¢ in the whole interfering

plane of the two interfering waves 1in non-holographic interference.

2. Intensity distribution of low density flow interferogram

(flow fleld that only induces small phase chanres)

The intensity distribution of two beam interferogram is
l(x.y)'=é9{l + cos|p(x.y) — ¢]}) (1)

where IO is the intensity at ®=0 when ¢ = 0, 1.e., the background
intensity of the interferogram when ¢ = 0. The words (x,y) will be
omitted in the rest of this paper.

Omitting all terms above ¢' under the condition of weak phase
changes, we get

I(x.y)—.éf[(l+cou) + tpuinc-—--%icosc] (2)

From the above equation, the distribution of I(x,y) when ¢ =0, x/2,
i1s as follows:
3
16,y = 1 (1 = ) fore =0

I(x.y)--i’(l +¢) fore==/l (3)

\

[(x,y) = —:—’q” for €re¥
The background intensity of the interferogram may be expressed as
z(x,m,..,--;:u + cone) (u)

This 1s a parameter used to discuss sensitivity and a function of ¢
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Besides, we define the intensity enhancement AI by the followiling
definition:

Al = I(x, y) — I(x, y)l,-o-_-—;'(qo li~n¢--§—cosc) (6)

3. Relationship between the phase shift ¢ and the observed

sensitivity

The flow fileld interferogram contrast is defined by
Al : q’ﬁnc—%ic:-osc
M- -

(7)

Ilgmo = 1+ cose

This function 1s monotonic when ¢ < n. When ¢ = T, pame . But
due to the effects of scattering and diffraction, etc., there
exists randomly 1light so that Iem will never be zero to produce
an absolutely dark background. Thas practically M %) . From
the contrast angle, naturally the sensitivity 1s higher when ¢ = .
But, the intensity enhancement should also be a practical factor

to be considered because when @ is very small, AI will also be
very small, making it possibly too small to be recorded. In the
following we will further investigate the relationship between

AI and c.

From Equation (6), we know that AI has a very large value
when c¢eg(~2/p) (wher ¢ 1s very small, this condition is equi-
valent to ¢~ ax/2 ), and a very small value when ¢ = 0 and in the
vicinity of n. The difference may be seen from the followlng

equation:
AI—-—-?cp’ for € =0

AI—-!-'tp’ for ¢ ==
4 (8)
Al = —;’Q’ for ¢ = x/2
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Summarizing the above discussions, we know that if there is
no problem of recordine AI, the best value of the phase shift is
m., But if @ 1s very small, the recording of AT will be limited
by the facts as pointed out by Equation (8), then the best phase
shift practicaliy should be determined by a compromise between the
maximum value of M and the limiting value of AI; and this may fall
between /2 and v, depending on the actual experimental condi-
tions. With the improvement of technology, the best phase shift
value will approach ©. For example, as pointed out in [U], the
sensitivity may be improved by another 1-2 orders of magnitude if
the light intensity is received directly with photoelectric.

4., Estimation of achievable sensitivity when ¢ = /2

1) Observable sensitivity: the smallest intensity variation
that can be discerned in an interferogram by directly observing it
with the human eye is called the observable sensitivity. It is
generally accepted that M = 1/100 1s the limit discernible by the
human eye. From thls may be obtalned the smallest discernible
phase shift. From Equation (7), we know

Ml = =@ty Mlewn=¢ (9)
Substituting M = #1/100 into the above, we get

-s -——for‘ . _.__l
Prila | =0 .Y -
. . | 814 ... I.'v " 314

nc o ap Lk
9-ln|¢--n.- ;';bfor QL!‘..IZ.'" - 6-2—3

where e¢a. 1s the smallest discernible phase change, ALmin is the
corresponding optical path differences, A 1s the wave length, :
From this it can be seen that the sensitivity of the ¢ = /2 method

1s 20 times that of ordinary double exposure method. i

2) Recordable sensitivity. The smallest density varilation
that can be discerned on the film when the interferogram is recorded
photographically is called the recordable sensitivity. In practice
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the sensitivity may be further improved t=- usling bigh contrast
film., But the processing requirement 1s more demanding: The
exposure must be correct, the control
on the y value during developing must 4
be strict tc guarantee the lincarity AD

of the record and the necessary value —/////ﬂ AlogHs
of y. Starting with the characteris-

tic curve of the recording film (Fig-

ure 1), we have WgH, logH
, Figure 1. Characteris-
AD = y[log(Hy + AH) — logHy] tic curve of recording
AH (10) film

 AH
= 04347 (1 + £H) ~ 0,434,801
Y Ha 4 H,

AH/H, = M : (11)
where D 1s the film density, H is the film exposure value, HO is
the film background exposure value, y is the reverse difference
coefficient of the fllm after developing, AH 1s the exposure value
enhancement corresponding to AI, and AD is the density enhancement
corresponding to AH. In Equation (10), the conditlon for the
approximation is that AH/Ho is very small. Solving Equations (9)-
(11) simultaneously, we get

3
D] = —0.434 -,%—. AD\:-./z. '.'~°-434 1 (12)
Under the condition that AD|; ... = 1/100 1) andy = U4, we get
-2z -t
@-I.'M 41.3 ’ AL-:I-':-O 413

GP-ul.-.n ot '}!—v AL.I-':-IJ bt _L

1090 1090 ,
Thus, the sensitivity of the ¢ = n/2 method is 26.4 times that ;

of the ordinary double exposure method., In thls discusslon, the
reason why the recordable sensitivity 1s higher than the observable
sensitivity is that films with bhigh y value have been used (contrast
Equations (9) and (12)). If v <1/0.434=231 , then the record-
able sensitivity will be lower than the observable sensitivity.

1)D-log 0, O=F /F 1s called the optical resistivity. FO is the inci-
dent light tPansmittance on the film when measuring D. F is the
optical transmittance through the film. AD—log(O/O ). When AD=
1/1000, 0/On=1.023.
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v*>1, for ordinary films, therefore, ordinarily the recordable
sensitivity 1s considered to be lower.

The above method was also used in [3)] to estimate the record-
able sensitivity of its optical system. According to its estimate,
the highest discernible value for its system is A1/500, exactly half
of the value in our paper. The reason 1s that complementary double
exposure was used in the system to compensate for the original
error in the optical elements so that the background intensity
could be made uniform. Thus, because the phase shift was fixed
near 7/2, AH was similar to that 1n our paper but Ho was doubled.
Hence the highest discernible value is lowered by one half. Fur-
thermore, holographic interferometric technique can maintain the
same phase shift for every point in the flow field. The method in
[3] could not achieve this due to error in the processing. There-
fore, the sensitivity at each point of the flow field is different.
The holographic method is also superior in this regard.

In theory, the sensitivity at phbase shift w/2 is lower than
that at phase shift w. But there are two advantages for phase
shift n/2: 1) AI is largest, making it easiler to record; 2) AT
and @ are linearly related so that quantitative analysis is
easlier. Since 1ts sensitivity 1s already bigh, this will improve
its practical value.

5. Estimation of the sensitivity when ¢ approaches n

Since we have only considered the effects of the majJor fac-
tors in our theory, we have reached the conclusion that M= co
when ¢ = n. In reality, the closer 1s ¢ to w, the greater are the
effects of those factors not included in the theory. For example,
when M=o , infinitesimally small AI can also be recorded. Here
the exposure time should be infinitely long, but the fogginess of
the film, the stray light during reconstruction and other factors
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will make the recording meaningless. That is to say, if the ¢
that needs to be recorded 1s very small, then the best phase shift
value must be smaller than n and must be a compromice between the
limiting value of AI and the largest value of M. Two examples
wlll be used below to estimate the recordable sensitivity.

1) The recordable sensitivity when ¢ = 150°. By substitut-
ing y =4, AD = 1/100 into Equations (7), (10) and (11), we get

Pais | cmirr —"-11'- AL s cmire =

5036 5036

The 1intensity enhancement 1s very small for such a small phase
shift. We compare them as follows:

AI"W»;-'-RI/”I - 7-784 X 10—’ X -i-'
A”c-m;'.-:x./:ou - 1.248 X 107 X -g’

Al | mige pumiermy = 6.254 X 107 X é'

2) Recordable sensitivity when ¢ = 160°, Similarly, the
followling data are obtained

Pnlllnlm' - s OLlaislimue = ——

2=
6195 6195
Al cmtapmrarirs = 5.14 X 107 X f!

Al jmesspminrairs = 1.014 X 107 X -;—’

Al e gosonsm = 3473 X 107* X _;_,

It can, therefore, be seen that the sensitivity continues to
improve and AI to decrease when the phase shift approaches © but
when the phase shift deviates slightly from m, the value of AI
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will be increased greatly over its value at ¢ = w, thus reaching
a stage where 1t may be usable.

II. RESULTS AND EXPERIMENTAL SET-UP

1. Experiment set-up

The following experiment was performed to investigate the
feasubillity of applying the phase shift intérferometric technique
in the visualization of low density flow field. The object of the
experiment is a small column of freely flowlng air, passing through
a tube under constant total pressure of 700 mm Hg in a contalner
into a cylindrical exbaust tube of diameter 1 mm and length 4 mm
and then into the atmosphere. The commonest off-axis holygraphic
optical path is used (Figure 2). The phase shift 1s achieved by
using a phase regulator in the path of the reference beam prior to
beam-expansion

FPigure 2. Dlagram of experlimental optlcal path.

(1) HeNe laser beam; H holographic plate; S beam divider; MM
total reflecting mirrors; LiL:, beam expanding lenses; L3 parallel
focusing lens; P phase regulator; E exhaust tube

The phase regulator is a ¢12mm X 100mm metal cavity with
the two ends sealed by optical glass. The pressure in the cavity

is very stably controlled by a two stage pressure stabilizer.

60

e e e




T

<t ———— .

The various phase shift values ¢ = 0, #n/2, m are achleved con-
veniently by controlling the pressure value. The sign of the
phase shift is determined by filling the phase regulator with air
either during the first or the second exposure. The distortion

of the optical glasses at the two ends of the pbase regulator
should be minimized in the design of the regulator. This problem
is solved in our case by controlling the length of the metal
cavity. Two factors are taken into consideration: 1) the applied
pressure should be minimized. A pressure of only 60 mm H2O is
required to achieve a phase shift of 1/2 in our regulator (at room
temperature 20°C) 1); 2) the air pressure should be within the
operating range of the pressure stabilizer. Therefore, the cavity

cannot be too long. There are other schemes for the phase regulator.

For example, the plezoelectric crystal is also a possibility.

2. Experimental results

Experiment indicates that the observed sensitivity can really
be greatly improved with the phase shift technique. Limited by
circumstances, we recorded with ordinary aeronautlic microfilm with
no control on the y value. The recordable sensitivity is lower
than the observable sensitivity and far lower than the standard
in the above discussion. For results, please refer to the pictures
1-6 in Plate I. Picture 1: Recorded with the ordinary double
exposure method. A very short dark flow column could be vaguely
discerned during observation. Nothing can be seen 1in the photo-
graphic record. Picture 2: Recorded by the finite fringe double
exposure method. The limited fringes are produced by the liquid
wedge. A disturbance with an optical path difference of about
A/10 can be seen at the exit of the flow column. The bending at

iy;I‘he pressure required for phase shift n/2 may be calculated with
the following formula: L Ao T
y L I T

where K=2.94 x 107, L is the length of the cavity, T is abso-
lute temperature, Py T are the pressure and absolute tempera-

ture at STP. After®sub®tituting in the values, we have

0.0204T, dimension being mm H_O.

prelative 2
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the second fringe 1s already very small. Plctures 3 and 4:
Recorded by the double exposure method with phase shift #1n/2,

A wbite (cerrecponding to a phase shift 7/2) and a dark (corres-
ponding to a phase shift of w/2) flow column can be individually
observed clearly within a fairly long range. The visualization
capability is much higher than that in pictures 1 and 2. Picture
5: Recorded by the double exposure method with phase shift =.

A white flow column over a dark blackground can be seen. Picture
6: The experiment was disturbed by some unusual factors, but
they accidentally make the phase shift in the flow region come
out to be 1deally m. The resulting visualization of the flow 1is
the best.

We also tested the operation of the phase regulator in real
time. When the pressure is increased continuously, the fringes
continue to scan with the value of position shift in agreement
with calculated value. Therefore, it has operated normally.

3. Discussion of existing problems

In practical applications, a serious impediment of our method
1s the stringent requirement on the environment. The experiment 1n
our paper had been performed over 80 times with satisfactory results
in only a few cases. The reason is that the disturbance of the
surrounding can easily exceed n/2 (e.g., air flow, thermal dis-
turbance, small vibrations,...) so that the desired phase shift
value cannot be achieved, leading to the failure of the experi-
ment or to disturbances of various degree. If we use the single
exposure hologram as a wave memory storage and then use it for
image reconstruction with the phase shift method in a better en-
vironment may be a successful way to do this experiment. This
technique has a good prospect. 1Its development awalts future
practices.
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The second problem 1s that there still exisis certain diffi-
culties In using this technique in quantitative measurement., But
if the error can be reduced, then by using the 1lincar relation-
ship between intensity and phase, the quantitative measurement
may be achieved wlth a micro-densitometer.

IV. CONCLUSIONS

The special feature of the method in this paper 1s 1ts high
sensitlvity and theoretical simplicity. Concerning the latter,
we have not seen any paper discussing it, probably because that it

i1s difficult to achieve in practice. Theoretically, the difficulty
to achieve constant phase shift has been eliminated with the appear-

ance of holographlc photography. Hence, it can be predicted that
the high sensitivity of our method will find its use in a sultable
field.
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ANALYTICAL DESIGN FOR INTERNAL BURNING STAR GRAINS OF SOLID ROCKETS*

LU Changtang

For the design of the internal burning star grains of solid
rocket moters, in the past people usually carried out pure geo-
metric research and the corresponding trial and error method.

The formulae and computational curves in [1] are typical. They
are widely used in the engineering design and scientific educa-
tion in foreign countries. Practical experience shows that the
pure geometric formulae and curves in [1] are complex and numerous
and yet incomplete; the corresponding trial and error method not
only involves large volumes of computation, but is also uncertain,
difficult to guarantee the accuracy of various specifications and
to achieve, in particular, the optimal design standard. 1In this
paper, we try to use analytic design instead of trial and error.
Different from the traditional pure geo-
metric research, we organically combine
the various geometric parameters of the
internal burning star grain, the various
characteristic parameters of solid pro-

pellant, and the technical specifications

of the rocket motor together, establish the
set of design equations according to the
best principle of grain design, and then

solve the set of equations quickly by in-

corporating simple equations and curves.

Compared with [1-3], our method not only
involves less computational work and guar-

Figure 1. Diagram of antees the required technical specifica-
design unit for the
internal burning star

grain approaches the optimal, improves the char-

tlons but also yields a design that

acteristics of the rocket motor, saves

'Received April 25, 1978
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materials and roquires less difficult work on the computer.

1. The corm~tric “unctional relations of the internal burnine

star grain

As in Firure 1, it is not difficult to obttain the functional
relationship between the geometric parameters of the internal
burning star grain according to Plobert's combustion law as done
in [1]. For simplicity in the calculation, we first give below
only the function k (Figure 2) and function Sy (for the meaning of
symbols, see Figure 1) which are only related to N, the number of
points in the star and 60/2, the initial half angle of the star

_-N(E2rE2_b_ . 8 (1)
& 2~(2+N -2‘ ctg ")
. =
sine
5o == 2NI -~ + 2xi(1 — 6) + &t (2)
sin-é-’

From these, the combustion surface Abl in the first stage and the
initial port area Apol may be simplified into the two equations
below:

Ay = Lpls, + kf + 2n(y — 1)) (_3)
Apy = sof + ¢ + afl — 0.5%(f + f1) (_l;)

where Lp is the grain length. For other symbols, see Figure 1,
For value of ¢, see the equation below:

c—(l—£)u+Nsinelcose’—'-—Nsin‘elcq,-g*’ (5)
N N N 2

From analysis, we know that angle 6/2, called the dynamic
angular variable, increases monotonically in the interval (u)/2, 6./2)
with the combustior time, starting from y90/2, the star edge van-
ishing point. ew/e 1s the star half angle at the end of combustion.
8/2 is related to the time-varying y as follows:

sing Tv" ‘ (6 )
G+NDN

= == arccos
2
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By usines the dynamic anrular variable 6/2, the roerend stare

combustion area Abll and the remaining prailn area Al may be
simplifiecd into the following functional forms:
) (x_ 8 I+ dney
Ay = [2n+2 (—-—-—)]--———‘— 2xlL,(1 —
- r 2 2/} cos(0/2) + 2L *) (7)

A, = xl(Dp — De + NQW + )} (%— - f - sin'%cos%‘t) — Nl'sine 7;-:055—3 (8)

where the remaining grain surface star half angle Ow/2 at the end
of combustion is

llns-:—lr
(W + N/ (9)

v arccos
2

It can be shown from mathematical analysis that A
minimum value A

b1l has a
omin 2F 8/2 and is infinite stiffness form (Figure
3 is the functional curve of its infinite stiffness form) is

k2 .
sine =
S oy — N 4 01 = (10)
1 sin (6/2) 1 —e)
Similarly, it may be proved that A, has a minimum value A. .
at —0-!--:—‘.!. i.e., W+t-l
2 2 N 1 '
Al-l. ws 2} {xeg — 2Nsing 1"0.3 ‘!'>
N N (11)

The existence of Abmin and Afmin is an important feature of

internal burning star grain.

The effective grain area Aco'when there is no star circular
angle, namely fl = 0, 1s very important to the establishment and

solution of the design equations. The following_ formula gives 1ts
value:

Aam 2D} — £IC2f + 1) ~ 057k — 2xWlo — ANl _ neX

’l‘n(eolz) N
+ Nicg —gﬁdn's;’;-—N(w + I)‘-(«ai’---;-- dn%!cos%?-) (12)
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Then the offective gralin area AcOl when there i1s star clrcular
angle, namely f, X 0 is
A = Ag— 0.52% — ki (13)

The minimum radius RO of the internal burning star grailn

when fl = 0 gives the governing relationship between the goome-

tric parameters of the star grain. Since it 1s always true that
RS 4 | therefore, R, 1is a decreasing function of the

d‘
‘ angular coefficient €. Let RO > 0, then the upper

limit CNap of € 1is:

Eny ™ LA (arcsin—-:- + QL)

» 2 (14)

Whenever e<eéx: , then RO > 0 and Ro > 0 (when fl X 0).

1

2. Establishment of the set of grain design equations

The known conditions are:

1) The required technical specifications for the motor:
The total impuse It or required range, law of propulsion Fmin'
F operating time ¢t

- - o
max min tmax min Tmax
and the outer diameter D of the rocket motor or its limit, etc.

, operating temperature T C

2) Property of solid propellant: specific impulse I com-

sp’
- limit of air

current sensitivity coefficient kkp’ propulsion coefficient CF’

bustion rate y = apn, temperature coefficient a

*
characteristic speed ¢ , critical pressure Pkp’ specific gravity
p, etc.

The optimal grain desipgn principle obeyed by the set of
design equations: to be able to guarantee the relization of the
total impulse, propulsion power requirement, operating work, etc;
to be able to burn steadily and normally; to have a large effective
grain coefficlent U and a small coefficlent Nes etec. The stresses




-

e e

o p———
o

under conditions permitted by the graln stress.

Thus, the desicn equation that guarantees the requirement
total impulse of the rocket motor 1s
L,{Ag— 0.52x — k)fi] = V, (171
The design equation guaranteeing the value of the lower limit of
propulsion power is

x
N me? + (1 —e)E | = Asmta (18)
. nn—é- N ‘LI

The design equation guaranteeing the initial peak pressure
limit for safe, stable combustion is

(5o — (3" - k)f.]L, -
Ap+05Qr— R = - (19)

By eliminating the grain length L _and fl and substituting
into the above Equations (1), (2), (8) and (12), the equation of
the angular coefficient ¢ may be obtained

x . : Isinel
T:.,D} — mxple(D, = 1) — Nuop(W + ) |arccos W T/

- X
2

-
Isine Isine ~ - x °
-— w T sin | arccos T + Nxgplisine Tv-coserv- - :.,V.z{;{l.Zwl(l —-€)

| . .
sine ins ' dns (20)
— INAMY sy — — |22 + 20— 0)| ¢ [2Midpaa
» é b
C sin 3 sin ry . . )

+ 2xl A yuia (1= ) + 2Nf Ay (-;- ¥ -;7 ~&_ 3 -g!)]

.gin =
2

2

sins —:,- - '
+ Asara | 2N + 2xI(1 — &) - {#’D} — 42124 + 1)

sin —
2

.
—2ap (N. + 2m — 2N iz" — Ny E"!) — 8lIVe — Mg-sin o2 + 4xNI g '2’

=2
d'z
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% 4 =

’ lsns leine 5 \lsins -

X sin’s = — 4xN(W + {) [arccos N_=_ dn(arccos N) N]
N W+4 2 _ wHt! Wt

sin
— 4xV, A0 | 2NI

+ 2al(l -~ C) ——ND‘} ( + -5 _ g -Q’)
l!n—e- : 3 2 2
3 ‘
8 . % 8 0,\!
+2:NIQ + ) - (2 + 2 =B G oy (— 2_5_ —ﬂ)
wNICY )(z N“ 3 8 )+ Pzt N7 7%
i (24 28y 8 +4N'l(- S QN \
rANIWe T TN T2 "2) P ZYN "2 gz)
» .
x nt N opp (-’l+ x*_ 6 _ 9—?)“}9&- sin's = + IN'(W + ) (20)
6 2 N 2 2/°%2 N
sin
2
[ 1 si e* Isins \I ey
sin —N—_‘ .( Sln N Sln __’ 8
X larccos Y 2 sin\ arccos W+[/W+f (2 - 2 ctg 2)

!
. 'ne J—
4 2NV Ak - (1 + 20 fs) 2xi(1 — &)+ 2NI N * - 0 (20)

sin —
2

It may be seen that this equation contains simultaneously all
the factors such as the required technical specifications, the
property of the propellant and genetric parameters of the inter-
nal burning grain, etec.

3. Requirement of the design equations and obtalning the
geometric parameter of the grain

Obviously, it is difficult to solve for € in Equation (20).
We change it into twg functional curves Yl, Y2 wlth € as the

variable:

. y.-;.,({-n*,-—,«,——%-), Yi=L,ly—vZa0x — D | (21)
[ 4 C .

where

A= Aa—'(V./L') (22)

The necessary equation with A as solution can only be solved when
A > 0,

For each positive integer N, the angle 90/2 has an upper limit
Ovy/2 that makes A = 0 and f,=0,6v./2 , is an increasing function
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of N, therefore, the anrle 00/2 must be within the interval

(o, eNup/z) and be determined according to the initial power
requirement. N and 00/2 are called the parametric variables of
Equation (20). To obtain good overall grain property, the

values of N and 90/2 should be used (such as N =2,3,86,/2 = 10°).
After N and 00/2 are fixed, use (N, 60/2) to search k value from
Figure 2 and then calculate the curves Yl’ Y2 of €¢: For each €
selected, find the value of smin/l from Figure 3 with (N, €) and

substitute into the following equation to get L :

p
L'- Agnln .
L . (23)
. .

£ T

o -2 e

0 22
-lf
-ICL-~
-t
. —
—a} -
-36
el
D e e T T w o

Figure 2. Dilagram of functions to compuﬁe k.

From this we may obtaln Vc/Lp and then‘substitute € and N,
00/2, k into Equation 12 to get A,  and hence A. When A > 0, the
functions Y1 and Y2 corresponding to € may be obtalned from Equa-
tion (21) and s, and A, which are obtalned for Equations (2) and
(8). A series of functions Y, and Y, of ¢ may be obtained in this
way. The solution € solution of Equation (20) 1s given by the
abscissa of the point of intersection of the decreasing function

71

—— ——



——— e

Yl and 1incrcasing function Y2 of ¢. The angular coefficient of
the grain can then be obtained; the vertical coordinate 1s the

AbOl of the grain. Smin/l is found from Figure 3 by using (N,

€solution
V/ Ly A B, Apss 5 €EC VC/Lp is the value of AcOl'

). As before, we may calculate the grain length Lp and

W e l e S

120 . ok ]

10 // /F‘L’ //V

100 / A //L;’zf,/ //
Nz

N AN e

/

¢ // =

S 020 00 04 030 060 @10 OB 050 6100

N\
%
\

Figure 3. Diagram of the function Smin/l'

We then calculate fl and Rot from the followlng two equations:

h= 2:-A'k . . (24)

R..—csc-g’[lsin(-g’-jc-s)i'lji'!:]’?fl

(25)

When fl = 0, we kndw from Equation (14) that whenever €<€Npp
then certainly Ro > 0, and when f1 X 0, then 1f the equation has
a solution, Rol > 0. Furthermore, the smaller is 60/2, the larger
is Rol'
Discussions on the solution:

When we vary € and A < 0 is still true, then the equation has
no solution and we must change to larger N and smaller 60/2. We
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can also vary the known parameters such as kkp within allowed
limits (Notice: Rol increases when N 1s large. A1 decreases

when 00/2 is larce. When necessary, we may adjust values of N and
90/2).

By now all the geometric parameters of internal burning grain
has been found. Finally, for the law governing the variation of

the combustion surface:

(0. yon) is the first stage of combustion, i.e., the linear

LIPS M P
stage 9'“,ldac%
Ypm 7 ol |

In the interval [O,flj, we have

Ay =[5+ k) + 22(y ~ ’l)]L' (26)
In the interval (fis yopls we have
l’u - (l. + k)’)l-, (27)

{yos W) 1s the second stage of combustion, 1.e., the non-linear

stage. The variation of Abll may be found readlly from Equation
(7) using the dynamic angular variable 8/2.

It should be pointed out, in passing, that the statement by
F. A. Williams et al in [2]: "In the second stage of combustion,
...the grain is s 1.e., Ab increases linearly according
to y = rt" is not true. During the second stage Abll is non-
linear and when eb/z < 8/2 it is monotonically decreasing at first
and then monotonically increasing.
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NUMERICAL COMPUTATION AND ANALYSIS OF THE FLOW FIELD IN A LARGE
SHOCK TUBE WITH A VARIABLE CROSS-SECTIONAL AREA*

L1 Wen xuan, Wang Jiajun
(Beijing University)

Reference [1] has clarified and explained certain flow char-
acteristics of the new shock wave that exists 1in shock tubes with
violently varying cross-section. These characteristics are what
the approximate analysis of Chisnell, Chester, Whitman and others
cannot describe because they have restricted that the cross-sec-
tion changes slowly and that there should not be many strong dis-
continuities. This paper has taken into conslderation the state
equation of the explosive gas produced by the combustion of the
explosive in the high pressure section as well as the contact dis-
continuity between the explosive gas and air and also extended the
calculation to the whole tube (Figure 1). In order to treat many
strong discontinuities, we adopted the difference method with arti-
ficial viscosity term q. But different from [1], the Lagrangian
coordinates are used 1n this paper so that the contact disconti-
nuities can be easily treated. Also the head of the major shock
wave has little vibrations, occupying only 2-3 grid spacings.

[ 3*&‘ 4 s&!ﬂ [A > : , .
AER SOER - /- KON - yop- -
A . - o . 1. l
4 % /: i /
J - ‘. L ee
Teaamxnn - EEAR A
000=0,040.000

9 PRBRNE ..
.l-o-’ql-}:ﬂ’l',"_ T e

Figure 1. Diagram of the shock tube
Key: 1--high pressure section; 2--film; 3--medium pressure section;
l--gection with variable cross-sectional area; 5--transitional
section; 6--experimental section; 7--exit section;8--explosive gas in
:ugh pressure section;9-~gas in medium and low pressure sections
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1. DIKEHSIONLESS EQUATIONS AND FINITE DIFFERENCE GRID

The dirensionless equations are
Ot ey O pdy, O 4 Op. "8 _'p Op

- —

Ot ' R pd " 8 . pyd, OR',éT__.-';_' O¢ (1.1)
where Dys Py are respectively the statlc air pressure and the
density; d 1s the diameter of the thin tube; r 1s the Euler coor-
dinate; R is the Lagrangian coordinate; t is the time; p,p,u are
respectively the pressure, density and the veloclty along the r
direction; e is the internal energy; A(r) is the tube cross-sec-
tional area. To make the quantities dimensionless, they have
been divided respectively by 4, d, d/\/;/_p,, Pos Pos J%. ol pos @,

The subscript 0 denotes the initial values of the various quanti-
ties. The difference equations are

at

rttt—y - u';'*{. r +A el '7“ PM}AJ

b " Rin— B ’ﬁ? s
wtt —uptt Azt (o + (2
O . 34’ Risy — Ri-4
+ it 2 Piey
,-'i lfi 1#&
— - ————-— + st
T T ( Ted Pivi e}

adl

o.:; - K‘::;’ Pu»}) -
{ Loy + m‘q)/ﬂl(au):::]’ 5 oy <ont

-0*
0, Co - (a-)"* >oH

q“.i

where
ot = ittty G =g -0y
wd _ ovd

(8g)tt = 4 o T )
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02 is a constant between 1-U, We take c2 = 2,

Ou

17 \? .
Treatment of the initial values “Y’—“7+—;-A‘(--)°+;-(—!).(é“‘) + ey

o] o8

Substituting Equation (1.1) as 2% | we get

WY - — b AV Plaj — Py + o(AaR);

2 AR,y — K- the accuracy of ,p 1is o0(an),

The surface separating the two gases 1s treated with the
method of [3]. The advantage of using the Lagrangian coordinates
in the calculation 1s that the surface separating the two gases
always lies at the grid point J, thus simplifying the treatment
of the surface. At this point, there 1s discontinuity in p,e.
Hence, we introduce Y QL) - 3(ﬁ+f—ﬁ}'—{)——;-(ﬂq—ﬂ-g)
where AR, AR, are M \OR/y 21AR, + p AR,

172
respectlively the step lengths on the opposite sides of the separat-

ing surface; pysP, are respectively the initial denslties of the
explosive gas and air.

Two schemes have been used for the state equation of the
explosive gas. In the first state equation, the collisions between
hard sphere molecular model of the gas 1is taken into consideration.
Then we take a state equation [2] with two Wylie coefficients. We
also adopt from (4] the variable thermodynamic functions: speci-
fic beat at constant volume ¢,(T) , specific heat at constant
pressure (7) , speed of sound ,(aT) , internal energy e(T),
etc., but we neglect the chemical reactions that the explosive gas
further undergoes after t > 0. The approximation formulae (T being
the temperature) for each section of the equation of state are

p= 1.108pT(l + 2.5538 X 10~% + 0.4045 X 107%"); R
4.0808(T — 3.4344) + 0.1361(T — 3.4344)%, - 334 T . "7 W0
7.4089 + 4.5314(T—5.1516) + 0.0846(T — 5.1516), 5.1516 < T < 6.8688
e(T) = {15.4399+4.8219( T —6.8688) + 0.0543(T — 6.8688)}, 6.8688 < T < 8.5860
"~ 123.8799+5.0086( T —8.5860) + 0.0377(T —8.5860)%, 8.5860 < T < 10.303
32.9517+45.1381(T~—10.303) + 0.02861(T—10.303), 10303 < 7T
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6822 + 0.2456(T — 3.4344), T <5.1516
4.0890 + 0.1524(T — 5.1516), S5.1516 <T <6.8688 . .-
€,(T)={4.3508 + 0.0980(T — 6.8688), 6.8688 < T < 8.5860
4.5193 + 0.0681(T — 8.5860), 8.5860 < T < 10.303
4.6372 + 0.0516(T — 10.303), 10303 < T
a(p, T) = 1.108T [1 + ::—(l —0.2476 X 10-’,,')]
AR

X (1 +5.1077 x 1073 + 1.2137 X 107%?)

The second kind of state equation uses the perfect gas model
with equivalent constant specific heat. We take R = 3.193J/kg,
and the absolute thermodynamic index y =¢,/¢,=1225 , After made
dimensionless, they become p=1.108pT; ¢ = 4.925T; R = 1.108,

More factors are considered in the scheme of the state equa-
tion of the first kind, but more calculations are involved; less
factors are taken into consideration for the second scheme, but
the calculations involved are simple. The results from the two
schemes are close. Especially during the later stages of the motion
the results basically overlap. In the complete computational pro-
cess, the largest difference between the results of the two schemes
only appears in the initial stage, and never exceeds 5% (Figure 4).
This result deserves attention.

When artificial viscosity is not considered, the stability for
a one~dimensional Lagrangian coordinate difference grid is inde-
pendent of the cross-sectional area A(r), and the Courant condi-
tion still holds, i.e., Ar<Ar/a{3] . But since the artificial
viscosity term 1s added, in actual computation, we multiply it by
the coefficient 0.6, 1.e., Ay w min0.64%,

2. NUMERICAL RESULTS AND ANALYSIS

Figure 2 shows the distribution of the parameters when the
major shock 1s situated in the middle of the changing cross-section.
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Figure 2. Axial distribution of flow parameters (section

with changing cross-section)

Key:/--medium pressure section; 2--contact surface; 3--section
with changing cross-section; 4--new shock; 5--maJor shock;
6--experimental section; 7--pressure; 8--velocity; 9--
density; l1l0--temperature

Yun

(o aoa g d
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smm7.7536 py = 300kg/cm’

10

0. i l
k) ) 50 60 ¢

Figure 3. Axial distribution of the flow parameters
(experimental section)

Key: 1--medium pressure section; 2--section with changing cross-
sectional area; 3--new shock; U--experimental section;
5--contact surface; 6--major shock

New shock wave appears behind the major shock. The low pressure
and low density regions form before the new shock (situated to

the left of the major shock) because'of the rapid expansion of

the gas flow in the conical tube when the separating surface has
not yet entered the section with changing cross-section although
the major shock is already in the middle of that section. The flow
dlagram at this time agrees with the analysis in [1].
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Figure 4. Computational result for the 2 gas models
(py=300kg/cm”)

Key: 1l--medium pressure section; 2--section with changing cross-
sectional area; 3--experimental section; UY--contact surface;
5--simplified ideal gas model; 6--variable specific heat
Virial equation model |
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Figure 5. Comparison of calculated peak shock pressure
with measured results

Key: 1l--experimental measured value; 2--measured value A; 3--
measured value ©; 4--measured value 0; 5--measured value +

80

D o i

cob b e Bam e




Firure 3 1is the situation when the major shock, new shock
and the separating surface of the gases all are close to the
experimental section. The motion of the separating surface of the
two gases has already overtaken the new shock when t = 7.765.

From the diagram one can see that to accurately calculate
the complete flow fileld at the experimental position, it 1is necess-
ary to consider the two-gas medla model in front of the changing
cross-section. This has not been discussed in [1]. In the work
of Chisnell et al, the new shock and the separating surface between
the two gases are ruled out. Therefore, it 1s also not applicalbe
for this computation.

Figure 4 are the two pressure curves calculated with the two
state equation schemes under the condition that the initial explo-

2

sive gas excess pressure is 300 kg/cm”. The two curves basically

overlap.

Figure 5 is the comparison between the calculated result and
experiment. The calculated result of the peak shock pressure
generally differs from the experimental result within 10%.

Figure 6 is the curve of the shock tube pressure that decreases
with time. The pressure is calculated at four fixed positions
r = 37.9, 55.0, 57.8, 62.5 when the initial explosive gas pressure is
100 kg/cmz. It basically agrees (Figure 7) with the measured
pressure curve.

Conservation of total mass and total energy has been used to
test the accuracy of the calculation in the whole computational pro-
cess. When the dimensionless time t = 4.66, the corresponding
change 1in the total mass is 0.3Hx10-2, and the corresponding energy
change is -0.9x10—2.
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