

AD A105432

DUC FILE COPY

Ŀ

OFFICE OF NAVAL RESEARCH (15 Contract/N00014-79-C-0647 174.-Technical Repert No.

OXYGEN INDUCED TRIPLET STATE TRANSITIONS OF BENZENE IN CRYOGENIC SOLUTIONS

by EE AND E.R. /BERNSTEIN

Prepared for Publication in The Journal of Chemical Physics

Department of Chemistry Colorado State University Fort Collins, Colorado 80523 Å 16 September 2081

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for Public Release, Distribution Unlimited

491. 47°

OXYGEN INDUCED TRIPLET STATE TRANSITIONS OF BENZENE IN CRYOGENIC SOLUTIONS*

J. Lee and E.R. Bernstein

Colorado State University Department of Chemistry Fort Collins, Colorado 80523

*supported in part by grants from ONR and NSF.

A new way of investigating the oxygen induced triplet state transitions of simple organic molecules is presented. The method involves dissolving the organic along with oxygen in hydrocarbon liquids such as propane, ethane, or propene. Both ${}^{3}B_{1u}^{\uparrow} + {}^{1}A_{1g}^{\uparrow}$ and ${}^{3}E_{1u}^{\uparrow} + {}^{1}A_{1g}$ transitions of $C_{6}H_{6}$ and $C_{6}D_{6}^{\downarrow}$ are studied in this work. These results indicate that both triplet states and their vibrational spacings are quite sensitive to the environment. The suggested dominant feature of the ${}^{3}B_{1u}^{\downarrow}$ state of $C_{6}H_{6}$ is v_{8} (916 cm⁻¹) of e_{2g}^{\downarrow} symmetry. Observed triplet state intensity enhancement is believed to be due to a non-statistical oxygen/benzene van der Waals complex formed in the low temperature liquid.

111

ABSTRACT

I. INTRODUCTION

The first triplet state absorption of benzene $({}^{3}B_{1u} - {}^{1}A_{1g})$ has been observed in pure crystal^{1a,b} and 0_2 perturbed systems.² The origin of the ${}^{3}B_{1u}$ state has been observed around 29,600cm⁻¹ for both environments due to the breakdown of D_{6h} selection rules. However, the dominant series observed in the ${}^{3}B_{1u}$ state absorption are superficially different in each environment and have thus been assigned differently. In the pure crystal the dominant series is the pseudo - Jahn Teller active e_{2g} mode v_8 (240cm⁻¹). In the 0_2 perturbed gas and matrix studies the dominant series has been assigned as the totally symmetric v_1 (\sim 900cm⁻¹). These apparently conflicting results and the presumed environmental sensitivity of the benzene ${}^{3}B_{1u}$ state have sparked our interest in reinvestigating such transitions in cryogenic liquids.³

The second triplet state of benzene has been identified as the orbitally degenerate ${}^{3}E_{1u}$ state and has been theoretically predicted to be located between the ${}^{3}B_{1u}$ and ${}^{1}B_{2u}$ states.⁴ Experimental observations have been made in pure and O_2 -mixed crystals; however, weak and broad features have made it impossible to analyze these data in any detail. Nonetheless, the irregular band locations of the pure and O_2 -mixed system, like those for the ${}^{3}B_{1u}$ state, make it quite clear that the Jahn Teller active ${}^{3}E_{1u}$ state is also strongly dependent on its environment. Hence, the simultaneous observation of C_6H_6 (or C_6D_6) ${}^{3}B_{1u}$ and ${}^{3}E_{1u}$ states in cryogenic liquids not only demonstrates a new reliable technique for the study of molecular triplet states but also serves as a direct comparison with other methods to elucidate environmental effects on triplet states.

In previous cryogenic liquid solution experiments³, $C_{6}H_{6}$ absorption spectra of the ${}^{1}B_{2u} + {}^{1}A_{1g}$ transition were studied in liquid N₂, CO, CF₄, CH₄, $C_{2}H_{6}$, $C_{3}H_{8}$ and NF₃. Three conclusions from these previous experiments are important for our present work. First, the appearance of a very weak origin (0,0)

-2-

transition indicates only a slight deviation from D_{6h} symmetry due to the presence of the cryogenic liquid. Second, the dominant vibronic series involve the e_{2g} modes v_6 (very intense), v_8 , v_9 , and v_7 ; as is well known, v_6 (C-C-C banding mode) effectively couples the ${}^{1}B_{2u}$ and ${}^{1}E_{1u}$ electronic states. Third, nonequilibrium solute aggregation occurs during low temperature deposition of cryogenic liquid solutions. ^{3b} Based on these three observations, one can anticipate that for low temperature deposition, the cryogenic liquid C_3H_8 may trap the $0_2/C_6H_6$ complex and that, like the ${}^{1}B_{2u}$ state, the induced ${}^{3}B_{1u}$ state absorption should possess strong vibronic origins of e_{2g} symmetry (especially v_8) with possibly a much weaker solvent or complex induced origin.

-3-

II. EXPERIMENTAL

Sample preparation and instrumental set up are described in previous reports.³ C_6H_6 (Fischer Gold label) and C_6D_6 (Merck, Sharpe and Dohme) are further purified by vacuum distillation over potassium to remove water and other oxygen containing impurities. C_3H_8 and O_2 (research purity, Matheson) are further purified by distillation through cold trapped 4A molecular sieve. The absorption cell (3.8cm pathlength) is attached to a Cryodine mechanical helium refrigerator (CT1-350). Temperature of the cell can be controlled from 12K to room temperature by a Lake Shore DTC-500SP temperature controller.

Solubility of benzene in liquid $C_{3}H_{8}$ at 87K is a critical factor in these experiments. It has previously been determined that $C_{6}H_{6}$ ($C_{6}D_{6}$) is soluble in $C_{3}H_{8}$ to about 100 ppm at 87K. At such concentrations triplet state absorptions are, of course, not observed. It is necessary to have O_{2} present in the solution to enhance the triplet state transitions through the well known charge transfer mechanism. The addition of roughly 1000 ppm O_{2} to the solution does not affect the solubility of benzene in liquid $C_{3}H_{8}$ as O_{2} is miscible with $C_{3}H_{8}$ in this concentration range.

In the C_6H_6 (C_6D_6)/ O_2/C_3H_8 experiments, gas phase C_6H_6 (C_6D_6) and O_2 are mixed in a 15ml manifold and then, together with C_3H_8 , are rapidly deposited into the precooled absorption cell at 70K. Absorption spectra are taken for clear solutions at 87K.

-4-

III. RESULTS

Figures 1 and 2 show the C_6H_6 spectra of ${}^3E_{1u} + {}^1A_{1g}$ and ${}^3B_{1u} + {}^1A_{1g}$ transitions, respectively. Figure 3 shows the spectrum of the C_6D_6 ${}^3E_{1u} + {}^1A_{1g}$ transition. The estimated ratio of C_6H_6 (C_6D_6): O_2 : C_3H_8 is 1:10:10⁴. Table I summarizes the observed frequencies. The data reported are based on many experiments whose values are averaged. For such weak features, sample to sample reproducibility and the simultaneous observation of both triplet states are important factors in the confidence level of the assignments.

In order to insure that the observed spectra are due to the 0_2 induced triplet state transitions of benzene, the following experiments have been carried out. Two component experiments, at the same concentrations as the three component experiments, show that in order to observe these tabulated features, all three components must be present. Moreover, in the 2600 Å region the (very weak broad) 0_2 Herzberg bands are observed but they do not coincide with the ${}^3E_{1u} + {}^1A_{1g}$ assigned features. In the three component system, the Herzberg bands are not observed, as the ${}^1B_{2u} + {}^1A_{1g}$ C_6H_6 transition overlaps them to some extent but also because the 0_2-0_2 pairs are probably more weakly bound than the $C_6H_6/0_2$ complex. No 0_2 related features appear in the ${}^3B_{1u} + {}^1A_{1g}$ region.

-5-

IV. DISCUSSION

Table II gives a comparison of the ${}^{3}E_{1u} + {}^{1}A_{1g}$ absorption features of $0_{2}/C_{6}H_{6}$ $(C_{6}D_{6})/C_{3}H_{8}$, the pure crystal, and other 0_{2} -perturbed systems. Variation of band positions among these three data sets may be due to a large environmental sensitivity displayed by the Jahn Teller active ${}^{1}E_{1u}$ system. The origin of the ${}^{3}E_{1u}$ state has not been positively identified, either in this or in previous work. However, since an $E_{1u} - A_{1g}$ transition is dipole allowed in D_{6h} symmetry and e_{2g} modes are Jahn Teller active in E_{1u} , one can surmise that the first feature is the origin and the second one is the first quantum of v_{6} (or possible v_{8}).

The ${}^{3}B_{1u} + {}^{1}A_{1g}$ transition of $C_{6}H_{6}$ ($C_{6}D_{6}$) has been studied in the O_{2} perturbed gas phase and matrix environments, and in the pure crystal. A
weak origin has been observed and assigned in these systems. However, the
dominant series for the O_{2} -perturbed and crystal spectra have been treated in
guite a different manner.

In the pure crystal system the intense absorption series involve the e_{2g} modes v_8 , v_6 , and v_9 with the major feature v_8 (CH stretching) assigned a frequency of 240cm⁻¹. Theoretical calculations confirm that the effective vibronic coupling between ${}^{3}B_{1u}$ and ${}^{3}E_{1u}$ is via the v_8 mode and conclude that v_8 may have its frequency depressed considerable in the presence of this strong pseudo Jahn Teller or Herzberg Teller coupling. Moreover, phosphorescence data from C_6H_6/C_6D_6 mixed crystals⁶ also indicate the dominant nature of v_8 for the ${}^{3}B_{1u}$ state intensity.

For the 0_2 -perturbed systems, on the other hand, the observed 900 cm^{-1} progression built on the origin has been previously assigned to be a v_1 (a_{1g}) series. This assignment is based solely on the idea that a 900 cm^{-1} mode is close to the ground state and ${}^{1}B_{2u}$ state value for v_1 . The presence of 0_2 has been assumed to lower the D_{6h} symmetry of C_6H_6 (C_6D_6) to probably D_{2h} , rendering the totally symmetric origin progression allowed. However, this scheme ignors two points: 1) it is unlikely that the v_8 progression, even in this lowered symmetry system, would disappear; and 2) the v_900 cm⁻¹ progression is highly irregular.²

From the above argument, it would seem that in the presence of 0_2 , the ${}^{3}B_{1u}$ state of benzene loses its D_{6h} character completely. This, however, does not appear to be the case in the cryogenic liquid 0_{γ} -perturbed systems. First, the same ${}^{1}B_{2u} + {}^{1}A_{1u}$ spectra are observed with or without even large amounts (10^3 ppm) of 0_2 in the propane. This implies that D_{6h} symmetry still holds for C_6H_6 even in the $0_2/C_6H_6$ complex. Second, neither the origin nor a $\sim 900 \text{ cm}^{-1}$ progression has been identified in the present study. This negative evidence calls into question the nature of the 900cm^{-1} series observed in the gas and matrix 0_2 -perturbed investigations. The most probable explanation for these data is that the band at (0,0) + 900 cm⁻¹ is v_8 and the irregular series built on this is 8_0^n or $8_0^1 1_0^n$ as given by the elegant crystal results. In this reinterpretation, the presence of O_2 , instead of destroying the D_{6h} nature of the ${}^{3}B_{1u}$ state, at most shifts the frequency of v_8 from 1450cm⁻¹ (${}^{1}B_{2u}$) to roughly 900cm⁻¹ in the ${}^{3}B_{1u}$ state. Moreover, a good deal of this frequency shift is probably attributable to the pseudo Jahn Teller or Herzberg Teller coupling between the ${}^{3}B_{1u}$ and ${}^{3}E_{1u}$ states induced by v_{8} . The 0_2 -perturbed data are compared to each other and the crystal data in Table III.

If the ${}^{3}B_{1u}$ crystal origin is assumed to be similar in energy to the unobserved ${}^{0}_{2}/{}^{2}_{3}H_{8}$ liquid perturbed ${}^{3}B_{1u}$ origin (gas to liquid and gas to crystal. shifts are quite similar for ${}^{6}_{6}H_{6}^{-3}$), then a value of 916cm⁻¹ for v_{8} can be obtained. The large difference between the pseudo Jahn Teller v_{8} frequency in the crystal and ${}^{0}_{2}$ -perturbed systems may be an environmental effect. The second band, located 567cm⁻¹ above the first, could be either ${}^{2}_{0}$ or ${}^{3}_{0}b_{0}^{-1}$. A concrete determination is not possible with the present data.

-/-

Perhaps the most interesting and significant aspect of the present experiments has to do with the $0_2/C_6H_6/C_3H_8$ system itself. In these dilute cryogenic solutions, $C_6H_6:0_2:C_3H_8 = 1:10:10^4$, the statistical probability for $0_2/C_6H_6$ pair formation is of the order of 10^{-7} . Such a low concentration of (statistical) pairs could not possibly be responsible for the observed absorptions. It seems certain that there must be a preferential $0_2/C_6H_6$ interaction and that this interaction results in a decidedly non-statistical $0_2/C_6H_6$ "pair" formation. These pairs or clusters may be regarded as "van der Waals" molecules or clusters. We are presently studying the properties of these interesting systems in order to elucidate cluster size (1 to 1 $0_2/C_6H_6$ or n to 1 $0_2/C_6H_6$), cluster life time, cluster photochemistry, and other cluster excited and ground states. The nature of the $0_2/C_6H_6$ potential interaction in cryogenic liquid should prove important in the understanding of the recently reported aggregation phenomena in cryogenic liquids.^{3b}

-8-

V. CONCLUSIONS

The observation of 0_2 -induced triplet transition intensity in cryogenic liquid solutions represents yet another application of such systems to the study of molecular, aggregation, and liquid state phenomena. Moreover, such mixed cryogenic liquids can provide a new data set with which to analyze the triplet states of organic molecules. In the C_6H_6 (C_6D_6)/ $0_2/C_3H_8$ system, as an example, three conclusions can be reached.

- 1. v_8 (e_{2g}) effectively couples the ${}^{3}B_{1u}$ and ${}^{3}E_{1u}$ states and appears to dominate the ${}^{3}B_{1u} + {}^{1}A_{1q}$ absorption spectrum in all environments.
- 2. v_8 in the ${}^{3}B_{1u}$ state is quite sensitive to environmental perturbations: in 0_2 -perturbed systems its value is ~ 900 cm⁻¹ but in the crystal its value is ~ 250 cm⁻¹.
- 3. C_6H_6 triplet state energies, in general, both ${}^{3}B_{1u}$ and ${}^{3}E_{1u}$, are sensitive to their surroundings probably because of the Jahn Teller and pseudo Jahn Teller nature of these states.

The overall triplet state intensity enhancement for C_6H_6 is associated with the formation of a van der Waals complex or molecular species in the cryogenic liquid.

-9-

REFERENCES

- 1. a) D.M. Burland, G. Castro, and G.W. Robinson, J. Chem. Phys. <u>52</u>, 4100 (1970).
 - b) R.M. Hochstrasser, J.E. Wessel, and A.H. Zewail, J. Chem. Phys. 55, 3596 (1971).
 - c) B. Scharf, Chem. Phys. Lett. 68, 242 (1979).
- 2. a) G.W. King and E.H. Pinnington, J. Molec. Spec. 15, 394 (1965).
 - b) S.D. Colson and E.R. Bernstein, J. Chem. Phys. 43, 2661 (1965).
 - c) A.J. Rest, K. Salisbury and J.R. Sodeau, J. Chem. Soc. Farad. Trans. 73, 1396 (1977).
- 3. a) E.R. Bernstein and J. Lee, J. Chem. Phys. 74, 3159 (1981).

b) M.W. Schauer, J. Lee and E.R. Bernstein, J. Chem. Phys., to be published.

- 4. J.W. Moskowitz and M.P. Barnett, J. Chem. Phys. <u>39</u>, 1557 (1963).
- J.H. van der Waals, A.M.D. Berghuis and M.S. de Groot, Mol. Phys. <u>13</u>, 301 (1967).
 - b) W. Siebrand and M.Z. Zgierski, J. Chem. Phys. <u>75</u>, 1230 (1981).
- E.R. Bernstein, S.D. Colson, D.S. Tinti and G.N. Robinson, J. Chem. Phys. <u>48</u>, 4632 (1968).

	IN 02/C3H8	SOLUTIONS AT 8	то от 7К.)
Molecules	C ₆ H ₆ (cm ⁻¹)		C ₆ D ₆ (cm ⁻¹)	
Transitions	Frequency	Difference	Frequency	Difference
	36968		37067	
³ E _{1u} ¹ A _{1g}		587		629
	37555		37696	
	·	1		· · · · · · · · · · · · · · · · · · ·
	(29647)*			
		916		
^β B _{1u} ← ¹ A _{1g}	30563			
		562		
	31125			

OBSERVED TRIPLET STATE TRANSITIONS OF C.H. AND C.D.

*ref. la: crystal result, see text for explanation.

TABLE I

TABL	E	I	I
------	---	---	---

COMPARISON OF ³E_{1u} ¹A_{1g} DATA FOR C₆H₆ AND C₆D₆

Systems	O_2 -Perturbed (cm ⁻¹)				Crystal ⁽²⁾ (cm ⁻¹)	
	$0_2/C H(1)$		0_2 Matrix (2)			
Molecules	Frequency	Difference	Frequency	Difference	Frequency	Difference
	36968		36560		36947	
с ₆ н ₆		587		610		549
	37555		37170		37496	
						· · · · · · · · · · · · · · · · · · ·
	37067		36784		37147	
^C 6 ^D 6		629		712		
	37696		37496			

(:) this work

(2) ref. 2b

		lu ig	00			
Pure Crystal ⁽¹⁾		02-Perturbed System				
	Frequency (cm-1)				Nou	
<pre>Frequency(cm⁻¹)</pre>	Assignments	Cryogenic Liquid ⁽²⁾	Gas Phase ⁽³⁾	Matrix ⁽⁴⁾	Assignments	
29647	(0,0)		29516	29410	(0,0)	
29886	8 ¹ ₀	30563	30500	30395	8 ¹ ₀	
		31125			83 or 8161	
30787	8619	· · · · · · · · · · · · · · · · · · ·	31300	31350	8919	
30/8/	8419		31300	31350	0010	

TABLE III COMPARISON OF ${}^{3}B_{1u} + {}^{1}A_{1g}$ DATA FOR $C_{6}H_{6}$

(1) ref. la

(2) this work

(3) ref. 2a

(4) ref. 2c

FIGURE CAPTIONS

Figure 1

 ${}^{3}E_{1u} + {}^{1}A_{1g}$ absorption of $C_{6}H_{6}$ in O_{2} and $C_{3}H_{8}$ mixed solution at 87°K (1:10:10⁴). The features at 2642Å and 2608Å are the (0,0) and the 6_{0}^{1} of the ${}^{1}B_{2u} + {}^{1}A_{1g}$ transition of $C_{6}H_{6}$.

Figure 2

 ${}^{3}B_{1u} + {}^{1}A_{1g}$ absorption of $C_{6}H_{6}$ in O_{2} and $C_{3}H_{8}$ mixed solution at 87°K (1:10:10⁴).

Figure 3

 ${}^{3}E_{1u} + {}^{1}A_{1g}$ absorption of $C_{6}D_{6}$ in O_{2} and $C_{3}H_{8}$ mixed solution at 87°K (1:10:10⁴). The feature at 2630Å is the (0,0) of the ${}^{1}B_{2u} + {}^{1}A_{1g}$ transition $C_{6}D_{6}$.

SF472-3/A1

1

472:GAN:716:ddc 78u472-608

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies		No. Copies
Office of Naval Research		U.S. Army Research Office	
Attn: Code 472		Attn: CRD-AA-IP	
800 North Quincy Street		P.O. Box 1211	
Arlington, Virginia 22217	2	Research Triangle Park, N.C. 27709	:
ONR Branch Office		Naval Ocean Systems Center	
Attn: Dr. George Sandoz		Attn: Mr. Joe McCartney	
536 S. Clark Street		San Diego, California 92152	2
Chicago, Illinois 60605	1		
		Naval Weapons Center	
ONE Area Office		Attn: Dr. A. B. Amster,	
Attn: Scientfic Dept.		Chemistry Division	
715 Broadway		China Lake, California 93555	•
New York, New York 10003	1		
		Naval Civil Engineering Laboratory	
ONR Western Regional Office		Attn: Dr. R. W. Drisko	
1030 East Green Street		Port Hueneme, California 93401	:
Pasadena, California 91106	1		
		Department of Physics & Chemistry	
ONR Eastern/Central Regional Office		Naval Postgraduate School	
Attn: Dr. L. H. Peebles		Monterey, California 93940	1
Building 114, Section D			
666 Summer Street		Dr. A. L. Slafkosky	
Eoston, Massachusetts 02210	1	Scientific Advisor	
		Commandant of the Marine Corps	
Director, Naval Research Laboratory		(Code RD-1)	
Attn: Code 6100		Washington, D.C. 20380	:
Washington, D.C. 20390	1		
U		Office of Naval Research	
The Assistant Secretary		Attn: Dr. Richard S. Miller	
of the Navy (RE&S)		800 N. Quincy Street	
Department of the Navy		Arlington, Virgínia 22217	ì
Room 45736, Pentagon			
Washington, D.C. 20350	1	Naval Ship Research and Development Center	
Commander, Naval Air Systems Command		Attm: Dr. G. Boszajian, Applied	
Attn: Code 3100 (H. Rosenwasser)		Chemistry Division	
Department of the Navy		Annapolis, Maryland 21401	
Mashington, D.C. 20360	1	. , .	
		Naval Ocean Systems Center	
Defense Technical Information Center		Attn: Dr. S. Yamamoto, Marine	
Building 5. Cameron Station		Sciences Division	
Alexandria, Virginia 22314	12	San Diego, California 91232	•
Dr. Fred Saalfeld		Mr. John Boyle	
Chemistry Division, Code 6100		Materials Branch	
Naval Research Laboratory		Naval Ship Engineering Center	
Washington, D.C. 20375	1	Philadelphia, Pennsylvania 19112	

SP482-3/A23

472:GAN:716:ddc 78u472-608

TECHNICAL REPORT DISTRIBUTION LIST, 051A

<u>No</u>. Copies

1

1

Dr. M. A. El-Sayed Department of Chemistry University of California, Los Angeles Los Angeles, California 90024 1 DE. R. Bernstein Department of Chemistry Colorado State University Fort Collins, Colorado 80521 1 Dr. C. A. Heller Naval Weapons Center Code 6059 · 1 China Lake, California 93555 Dr. J. R. MacDonald Chemistry Division Naval Research Laboratory Code 6110 Washington, D.C. 20375 1 Dr. G. B. Schuster Chemistry Department University of Illinois 1 Urbana, Illinois 61801

Dr. A. Adamson Department of Chemistry University of Southern California Los Angeles, California 90007 Dr. M. S. Wrighton

Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Dr. M. Rauhut Chemical Research Division American Cyanamid Company Bound Brook, New Jersey 08805 1. Dr. J. I. Zink Department of Chemistry University of California, Los Angeles Los Angeles, California 90024 1 Dr. D. Haarer IBM San Jose Research Center 5600 Cottle Road San Jose, California 95143 1 Dr. John Cooper Code 6130 Naval Research Laboratory 1 Washington, D.C. 20375 Dr. William M. Jackson Department of Chemistry Howard University Washington, DC 20059 1 Dr. George E. Walraffen Department of Chemistry Howard University 1 Washington, DC 20059

Dr. Rudolph J. Marcus Office of Naval Research Scientific Liaison Group American Embassy APO San Francisco 96503

Mr. James Kelley DTNSRDC Code 2803 Annapolis, Maryland 21402 1

1

đ.

No.