
AD-AI0RS 03b RO8 WEAE N EMAN INC CAMBRIDGE MA F/6 9/

iUNIX NSW FRONT END ENHANCEMENTS. VOLUME I.(U)

B _ 7UN 81 R H THOMAS, HO0 LIND, S G TONER F30bO2-8URC-0062

UNCLASSIFIED B BN4b I VOL-1 RADC-TR-81-lbA VOL-1 NL

fRADCTR-81-164, Vol I (of two)
Final Technical Report
June 1981

.. UNIX NSW FRONT END
"ENHANCEMENTS

.z =:1 Wit Beranek and Newman, Inc.

Robert H. Thomas
z Henrik 0. Lind ELECTE

Stephen G. Toner S OCT6 1981
z

A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

~ Griffiss Air Force Base, New York 13441

8110 5 04

Tbis report has been reviewed by the RADC Public Affairs Office (PA) and
is r6laa4"-w the National Technical Information Service (NTIS). At WrI.
it will be relaable to the general public, including foreign nations.

'RADCTR--164, Volume I'(of two) has been reviewed and approved
for publication.

APPROVED:

PATRICIA J. BASKINGER
.Project Engineer

JOHN J. MARCINIAK, Colonel, USAF
,"Chief, Information Sciences Division

FOR THE COMMANDER:

4OHN P. BUSS
Acting Chief, Plans Office

if your address has changed or if you wish to be removed from theRADC
usilIag list, or if the addressee is no longer 6mployed by your bnisstion,
plsase notify RADC. (ISCP) Griffiss All NY 13441. -This will assist .us Is
maintaiaig a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED
SECURITY CLASSIFICATION OF TH-IS PAGE IWhe.n DflareForrd'd

t.-BEeQ NU1~- /2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

RADC TR-8 64 oljoft)
4. TITLE (end S-,b,t)Fia

c l ep t.

7. AUTho? 4eRTRe R WIWUBRS

Robert H./Thomas 7'"F30602-80-C-0062
Henrik 0.And .-

P* *&~~kd* Ei NMND ADDRESS 10 PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Bolt Beranek and Newman, Inc. 62702F
50 Moulton St. / 558 2124 2, / /
Cambridge MA 02138 ____________

I I CONTROLLING OFFICE NAME ANO ADDRESS ~ Z

Rome Air Development Center (ISCP) -TJunYW rP981

Griffiss AFB NY 13441 212UMMr AE

14, MONITORING ACYEICY N AME AADDRESSI'. different I~oe C-Oinfr df1 Off,) IS.5 SECURITY CLASS. (-I this report)

Same)UNCLASSIFIED
ISO. DECLASSIFICATIONDOOWNGRADING

N/A SCmEDULE

16. DISTRIBUTION STATEMENT (of 151., Repo-r)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entereCd ron Block 20, it difflerent from, Report)

Same

4 IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Patricia J. Baskinger (ISCP)

19. KEY WORDS (Continue on sie. ode if necessary and idenify by block ... b6cr)

Computer Networks
Software Systems
Network Operating Systems

2V ABSTRACT (Conti--- on re0-r8. side If necessary and idenfify by block number)

The effort to develop a UNIX NSW Front End is part of the National
Software Works (NSW) program sponsored jointly by the Air Force and
AXPA. The goal of the NSW program is to develop a network operating
system (called the NSW system or NSW for short) that provides an effec-
tive environment for software production, software configuration control
and software maintenance.

DD JA 73 1473 EDITION OF I O 5I BOEEUNCLASSIFIED/'

SECURITY CLASSIFICATION OF THIS PAGE ("s~. Dae. Entorod)

C A

UNCLASSIFIED

SECURITY CLASSIFICATION OF -T ACE(WN.,, Dais Fn*ed)

Usr cesteNtoa'otae ok ytmb en fa S

UNIX NSW FRONT END ENHANCEMENTS

Robert H. Thomas

.Av4

Av*1 o
DitS4-"

TABLE OF CONTENTS

Page

1. INTRODUCTION I

2. UNIX FRONT END IMPLEMENTATION 5

2.1 Unix MSG 5
2.1.1 Direct Connections 5
2.1.2 Initial Connection Protocol (ICP) responder 6
2.1.3 Extended leader addressing 7
2.1.4 Receipt of generically addressed messages 9
2.1.5 StopMe 10
2.1.6 Improved robustness 10
2.1.7 Major code reorganization 10

2.2 Front End Software 11
2.2.1 Starting and stopping tools 11
2.2.2 Rerun tool command 12
2.2.3 Extended logout commands 13
2.2.4 Access to Unix shell 14
2.2.5 Uniform treatmebt of NSW tools, TELNET 14

connections, Unix shells
2.2.6 Improved Front End print out and status 15

query features

APPENDIX A. UNIX NSW FRONT END PROGRAM MAINTENANCE MANUAL

APPENDIX B. UNIX MSG PROGRAM MAINTENANCE MANUAL

L i

1. INTRODUCTION

This report is the final report for Rome Air Development

Center contract F30602-C-80-0062 titled "Unix NSW Front End

Enhancements".

The effort to develop a Unix NSW Front End is part of the

National Software Works (NSW) program sponsored jointly by the

Air Force and ARPA. The goal of the NSW program is to develop a

* network operating system (called the NSW system or NSW for short)

that provides an effective environment for software production,

software configuration control, and software maintenance.

Users access the National Software Works system by means of

an NSW Front End. The objective of the Unix NSW Front End

project was to develop an NSW Front End that runs on a DEC PDP-11

computer under the Unix operating system.

Work to develop a Unix NSW Front End had been begun under

another contract (F30602-78-C-0242). The purpose of this

contract was to continue the software development that was

started under the previous contract. More specifically, the

objectives of this contract were threefold:

o To enhance the capabilities of the Unix Front End
developed by BBN under contract F30602-78-C-0242. This
included completing implementation of the Front End
design as documented in RADC-TR-80-44 (also BBN Report
4242), as well as designing and implementing several new

1

Front End features.

o To install the Unix operating system and the Unix NSW
Front End on a PDP-11/45 at Warner-Robins Air Force
Base.

o To support and maintain the software that implements the
Unix NSW Front End.

Development of the Unix NSW Front End involved software

design and implementation work in thLee areas. These were:

o The Unix operating system.

A number of enhancements to Unix were necessary to
enable it to support an NSW Front End. In particular,
modifications to the terminal handler, the ARPANET
network control program (NCP), and the implementation of
the TELNET protocol were required.

At the beginning of this contract the Unix modifications
required to support the Front End were complete. These
modifications had also been integrated into the
"standard" version of Unix that is used and maintained
by BBN.

o Unix MSG.

MSG is the NSW interprocess communication mechanism. It
is used to support communication among components of the
NSW system (See BBN Report No. 4702). An implementation
of MSG was required for Unix.

At the start of this contract the Unix MSG
implementation was partially complete. Two of the three
communication modes supported by MSG, messages and
alarms, had been implemented. The third mode of
communication, direct connections, is required by the
Front End but had not been implemented.

o Unix Front End Software.

This is the software that actually implements the Front
End functions. These functions fall into two
categories: the user interface, which provides the user

2

with a convenient environment for interacting with the
NSW by means of NSW commands; and a network interface
which communicates with NSW software modules on other
hosts by means of MSG in order to carry out user
commands.

At the start of this contract an initial implementation
of the Front End software was partially complete. The
Front End implemented most of the NSW user commands not
requiring use of MSG direct connections. More
specifically, most commands except those that start and
stop tools were operational. In terms of the two
aspects of the Front End functionality (user interface
and network interface), initial implementation of the
user interface functions was nearly complete and initial
implementation of the network interface functions was
partially complete.

For this contract the following was accomplished:

o MSG direct connections were implemented for Unix MSG.
In addition, a number of other enhancements were made to
Unix MSG (See Section 2.1).

o The Front End software required to implement the Front
End design (as documented by RADC-TR-80-44) was
completed. The major accomplishment here was to
implement the software necessary to control interactive
tools. In addition, a number of other features were
added to the Front End (See Section 2.2).

o The Unix operating system was installed on a PDP-11/45
computer at Warner-Robins Air ForcE Base.

o The Unix Front End software was installed on the
Warner-Robins PDP-II/45.

o The Unix Front End software was installed on a PDP-11
computer at RADC.

o The source programs for the Unix MSG and Unix Front End
software were "delivered" to RADC as text files stored

on the RADC PDP-11 computer in the form of C language
programs.

o A user manual for the Unix NSW Front End was prepared

3

(See Volume II.)

o A program maintenance manual for the Unix NSW Front End
software was prepared (See Appendix A).

o A program maintenance manual for the Unix MSG
implementation was prepared (See Appendix B).

The rest of this report is organized as follows. Section 2

describes the improvements made to the Unix MSG implementation

and to the Unix NSW Front End software under this contract.

Volume II is the user manual for the Front End, Appendix A

is the program maintenance manual for the Front End software,

and Appendix B is the program maintenance manual for the Unix

MSG implementation.

4

2. UNIX FRONT END IMPLEMENTATION

The Unix NSW Front End is designed to run under the Unix

operating system on a DEC PDP-11/45 or PDP-1/70 connected to the

ARPANET.

As noted in Section 1, in addition to modifications to Unix,

implementation of the Front End involved software development

activity in two areas:

o Unix MSG.

Section 2.1 describes the improvements that were made to

the Unix MSG implementation under this contract.

o Front End software.

Section 2.2 describes the improvements that were made to
the Front End software under this contract.

2.1 Unix MSG

Improvements were made to the Unix implementation of MSG in

the following areas.

2.1.1 Direct Connections

The MSG OpenConn and CloseConn operations were implemented.

These enable a process to establish and break a direct, stream

oriented communication path with another process. The

implementation supports both binary and TELNET connections.

5

Direct connections are used by the Front End to provide

communication paths between its user and interactive tools.

2.1.2 Initial Connection Protocol (ICP) responder

MSG implementations on different hosts initially establish

MSG-to-MSG communication paths to support inter-host MSG

communication by means of the standard ARPANET initial connection

protocol. The ICP is an asymmetric protocol for which one party

acts as the "initiator" and the other as the "responder". When

an MSG configuration is started, no prior communication has

occurred between the MSGs on different hosts. When a process on

a host (HI) attempts to communicate with a process on another

host (H2), if no MSG-to-MSG communication path exists between Hl

and H2 the MSG on Hl initiates an ICP exchange with the MSG on H2

in order to establish the path.

At the start of this contract the Unix MSG was capable of

initiating ICP exchanges but could not respond to them. This was

adequate since in most cases the transactions involving Front End

processes are two party transactions which are initiated by the

Front End processes. In fact, all transactions the Front End was

capable of participating in when the contract started were

initiated by the Front End.

However, the tool start up transaction is a three party

6

protocol, involving processes for the Front End, a Works Manager

and a tool Foreman, and in the general case it involves three

hosts. Furthermore, the transaction calls for the Foreman

process to send a message to the Front End process to initiate

communication between the Foreman/tool and the Front End/user.

It is possible (when the Front End, Works Manager and tool are

all on different hosts) that the Front End host will not have yet

communicated with the Foreman host. In this case the Foreman

host's MSG must establish an MSG-to-MST communication path to

carry the message from the Foreman to the Front End. It does

this by initiating an ICP exchange with the Front End (Unix)

host's MSG. Thus, to properly support interactive tools the Unix

MSG must be capable of responding to ICP exchanges initiated by

remote hosts.

The Unix MSG was upgraded under this contract to include an

ICP responder.

2.1.3 Extended leader addressing

The MSG specification defines a format for a process address

which includes a 16 bit field for the host address of the

process. At the time MSG was designed all ARPANET hosts could be

addressed by only 8 bits, and so 16 bits for host addressing were

adequate for addressing processes on all ARPANET hosts. However,

since the MSG design was completed, ARPANET addresses have been

7

expanded to 24 bits (the so-called extended leader addressing

that makes it possible for the network to accommodate more that

63 IMPs), and internetwork addresses have been defined to be 32

bits (the additional 8 bits are for a network address).

For MSG the 16 bit host address field in a process address

was specified to hold the 8 bit ARPANET host address. Since the

ARPANET and most hosts support both old style (8 bit) and new

style (24 bit) addresses, this permitted MSG implementations to

communicate with one another as long as no NSW configuration

included a host that required extended leader addressing.

The Warner-Robins PDP-11 host requires extended leader

addressing. In order to permit such hosts to be part of NSW

configurations the MSG host addressing conventions had to be

redefined. The approach taken to this redefinition was to define

a mapping between (some) 32 bit internet addresses and the 16 bit

MSG host address field. (Details of and motivation for the

approach taken may be found in "MSG Host Addressing", BBN NSW

Working Note No. 31, August 28, 1980.)

The Unix MSG was modified to support this new host address

convention for MSG.

8

2.1.4 Receipt of generically addressed messages

At the start of this contract processes on Unix were able to

send generically addressed messages, but were not able to receive

them. The MSG ReceiveGeneric operation was implemented making it

possible for processes on Unix to receive generically addressed

messages. Although it is not required for any currently defined

Front End protocol scenarios, the implementation of the

ReceiveGeneric operation will be useful when (if) NSW file

movement and tool operations are developed for the Unix operating

system. In addition, it makes the Unix MSG implementation more

nearly conform to the MSG design specification.

As part of the effort to implement ReceiveGeneric the

"newproc" creation specification, the "restartproc" termination

specification, and the "initgm" and "startproc" creation

modifiers were also implemented. (A creation specification is a

declaration that specifies how processes of a particular generic

class are to be created when a generically addressed message for

the class arrives and there are no outstanding unsatisfied

ReceiveGeneric operations to match it with. A termination

specification is a declaration that specifies how a process is to

be destroyed when it executes the MSG StopMe operation. A

creation modifier is a declaration that provides additional

specification inform-Lion for process creation. See BBN Report

9

No. 4701 for more details.)

2.1.5 StopMe

The MSG StopMe operation was implemented. StopMe is

executed by a process when it has finished its task and no longer

has reason to exist. It enables MSG to deallocate the resources

dedicated to the process in an orderly fashion.

The Front End executes the StopMe operation when the user

session is terminated.

2.1.6 Improved robustness

The ability of the Unix MSG to recover from "failures" of

various types has been greatly improved. For example, the Unix

MSG is now able to continue operation when an MSG-to-MSG

communication path breaks unexpectedly. Previously when such a

failure occurred the entire MSG configuration would halt. Now

when it occurs, the Unix MSG cleans up the internal data

structures used to manage communication across the failed

communication path and continues operation, maintaining normal

communication with other hosts.

2.1.7 Major code reorganization

The Unix MSG implementation was started several years ago

under ARPA and Navy support, and was continued and upgraded under

10

the previous (F30602-78-C-0242) and present RADC contracts.

Throughout this development the code grew significantly in size

and complexity but retained its original organization. As the

implementation become more complete it became relatively stable.

Given the increasing stability of the code, we felt that the time

was right for an effort to clean up the implementation. Under

this contract we completed a major reorganization of the Unix MSG

implementation which (we feel) has greatly improved its

maintainability by making it easier to understand, change and

extend.

2.2 Front End Software

Improvements were made to the Unix Front End software in the

following areas.

2.2.1 Starting and stopping tools

The Front Endcommands for starting, stopping, and using

interactive tools were implemented. This includes the "use",

"resume", "quit terminate", and "quit abort" commands, and the

CNTL-N "return from tool to Front End" control character.

As noted previously these tool features required use of MSG

direct connections and the MSG capability to respond to ICP

exchanges.

11

2.2.2 Rerun tool command

One of the NSW reliability mechanisms provides a means for a

user to recover the results of a partially completed tool session

that has been interrupted by any of a wide range of tool host,

Front End, Works Manager host, and network communication

failures. The mechanism enables the user to instruct his Front

End to re-establish communication with the interrupted tool

session after the failed component(s) has (have) been restored.

Once communication has been established, the user may save

partially completed work represented by files that were "trapped"

in the workspace of the interrupted tool session by having the

files he wishes to retain be "delivered" into NSW file space.

This mechanism requires support from:

o The Foreman to save the workspace contents after a
failure (this requires that the Foreman maintain the
workspace in a "savable" fashion), to notify the Works
Manager that the workspace has been saved, and to
restore the workspace contents when (if) communication
with the user is re-established;

o The Works Manager to remember that the tool workspace
have been saved and to inform the user that it has been;

o The user's Front End to establish communication with a
tool Foreman that can restore the workspace.

The "rerun" command is the means by which a user can

initiate re-connection with the interrupted tool workspace. The

protocol scenario that supports "rerun" is similar to the

12

scenario for starting a tool.

The "rerun" command was implemented for the Unix Front End.

2.2.3 Extended logout commands

The NSW commands "fastlogout" and "logout move" and the

Front End "autologout" function were implemented for the Front

End.

The "fastlogout" command provides a quick way for a user to

log out of the NSW system even if the user has active tool

sessions when the command is issued. Any tool sessions that are

active when the command is issued are automatically aborted prior

to actually logging the user out.

The "logout move" command is equivalent to a "logout"

command followed by a "login" command. It provides a convenient

way for a user to change his login identity by means of a single

command.

The "autologout" function is a failure recovery function

invoked by the Front End should the user's connection to the

Front End be broken before the user has logged out. It

terminates the user's session in an orderly way by requesting

tool Foreman processes for any active tool sessions to initiate

their workspace saving procedures (see discussion above) prior to

13

logging the user out of NSW. This permits the user to "rerun"

any active tools sessions at some later time (see Section 2.2.2).

2.2.4 Access to Unix shell

The standard Unix command interpreter is called the "shell".

It provides users access to all of the standard Unix features.

A "shell" command was implemented for the Unix Front End

which permits a user to use Unix as a normal local Unix user.

The "shell" command is implemented by creating a Unix process

"inferior" to the Front End which runs the program for the Unix

shell. Once a Unix shell has been started in this fashion, a

user can treat it like an NSW interactive tool in the sense that

he can use CNTL-N and the "resume" command to switch between it

and the Front End command interpreter (see Section 2.2.5).

2.2.5 Uniform treatment of NSW tools, TELNET connections, Unix
shells

The Unix Front End provides access to three types of

interactive computing services: NSW interactive tools, native

host services on ARPANET hosts, and local Unix services. Access

to tools is established by the "use" command, to native host

services by the "telnet" command, and to Unix service,- by the

"shell" command.

Once established these services bear many similarities, and

14

we feel that they should be portrayed to users in a uniform

fashion. The Unix Front End tries to provide this uniformity in

a number of ways:

o Each service instance, regardless of its type, has an
"instance" name which the user can use to refer to the
service instance.

o The user can switch back and forth between the Front End
command interpreter and a service instance, regardless
of its type, by means fo the "resume" command and the
CNTL-N control character.

o The "terminate" command can be used to terminate a
service instance regardless of its type. For tools
"terminate" is equivalent to the "quit terminate"
command. For shells it destroys the process created to
run the shell (see Section 2.2.4), and for TELNET
connections it simply closes the connections.

2.2.6 Improved Front End print out and status query features

A significant amount of effort was spent under this contract

improving the quality of the print out produced by the Front End.

This effort included making the messages printed more

informative, better formatted, and, in many cases, more timely.

The last point (more "timely" print out) may require some

explanation. The Unix Front End is designed to be capable of

performing many operations concurrently. This was done, in part,

in recognition of the fact that many of the operations supported

by the Front End require a relatively long time to complete

(e.g., minutes to terminate a tool when there are large files to

15

deliver) and that while these long operations are being performed

users should be able to initiate other operations or interact

with services, and, in part, because the Front End inherently

involves a moderate degree of concurrency (e.g., a user can have

simultaneous active tool sessions). Because of this potential

for concurrent operation events requiring user notification or

solicitation of user response do not always occur when the user

is ready or would like to be notified or to respond. For

example, a tool start operation might complete while a user is

interacting with another tool. In situations like these, the

Front End should postpone user notification until an

"appropriate" time. Choosing an "appropriate" time for user

notification or solicitation of a user response required careful

analysis and a moderate amount of experimentation and trial and

error to get it "right".

While improving the Front End print out did not add to the

Front End capabilities in a quantitative way, we feel that it was

time well spent since, in our opinion, it resulted in a

significant qualitative improvement in the Front End by making it

substantially easier and more pleasant to use.

A CNTL-T capability was added to the Front End which

provides a means for the user to obtain a short print out of the

Front End status without interrupting any transaction processing

16

that may be in progress by the Front End. In addition, the

variants of the NSW "show" command that provide information on

the status of the Front End ("show active tools", "show active

commands", and "show status") were improved.

17

Appendix A

UNIX NSW FRONT END PROGRAMMER'S MAINTENANCE MANUAL

Henrik 0. Lind

TABLE OF WONTENTS

Page

1. GENERAL DESCRIPTION 1

1.1 Purpose of Front End Program Maintenance Manual 1
1.2 Front End Application 1
1.3 Bquipment Environment for the Front End 3
1.4 Program Environment of the Front End 3
1.5 Conventions 4

1.5.1 C Language Implementation 4
1.5.2 Machine-Dependent Code 4
1.5.3 Function Commenting Conventions 5
1.5.4 Naming Conventions 5
1.5.5 Global Data Declarations 7
1.5. 6 Declaration Files 8

1.6 Status of Implementation 8

2. SYSTEM DESCRIPTION 11

2.1 General Description 11
2.1.1 Front End Processes 11
2.1.2 Process Structure of a Front End 12

Configuration
2.1.3 Communication Between Front End Processes 13
2.1.4 General Front End Flow of Control 13

2.2 Detailed Description 21
2.2.1 Macros 22
2.2.2 Global Declaration Files 22
2.2.3 Protocol Process 23
2.2.4 Tool Process 30
2.2.5 User Process 35
2.2.6 Management of Conversational Partners 49
2.2.7 Message Handling 51
2.2.8 Data Storage Management 55
2.2.9 Logging Functions 56
2.2.10 Inter-Process Communication 57
2.2.11 Utility Routines 58
2.2.12 Front End Initialization Process 59

A-i

3.1 General Description 61
3.1.1 Input/Output 61
3.1.2 Internal Front End Data 67

3.2 Data Structures 68
3.2.1 General 68
3.2.2 Protocol Process 70
3.2.3 Tool Process 74
3.2.4 User Process 75
3.2.5 Common To All Three Processes 84

4. PROGRAM COMPILING, LOADING, AND MAINTENANCE PROC'!DIIRS 89

4.1 Support Software Requirements 89
4.2 Procedures 91

4.2.1 Creating the Protocol Process 92
4.2.2 Creating the T.! Process 93
4.2.3 Creating the User Process 93
4.2.4 Modifying Front End Library 95
4.2.5 Creating the Front End Initialization 97

Process
4.3 Debugging Facilities 97

4.3.1 Debugging Facilities Available from UTNIX 97
4.3.2 Debugging Facilities Specific to the Front 98

End
4.4 Logging Facilities 99

4.4.1 Logging Facilities Available from UNIX 100
4.4.2 Logging Facilities Specific to the Front End 100

4.5 Verification 101
4.6 Special Maintenance Programs 101

4.6.1 MAKF 101
4.6.2 MAKINDX 102
4.6.3 CKLOG 102
4.6.4 CKATT 103

4.7 Other Special Maintenance Procedures 103
4.8 Error Conditions 103
4.9 Listings 103

APPENDIX AA. HOW TO ADD A NEW COMMAND TO THE FRONT END 105

A.1 Adding a Local Command 105
A.2 Adding a Remote Command 105

A-il

LIST OF FIGURES

FIG. 1. FRONT END CONFIGURATION PROCESS STRUCTURE 13
FIG. 2. PARSE STRUCTURE NODES FOR A GENERALIZED COMMAND 76
FIG. 3. HOW USER OUTPUT IS BUFFERED IN THE USER PROCESS 79
FIG. 4. STRUCTURE OF GRAMMAR TREE FOR ALTER COMMAND 82

A-ill

EEOED1W PAGE BLAux-m40 FILMED

1. GENERAL DESCRIPTION

1.1 Purpose of Front End Program Maintenance Manual

The purpose of this Program Maintenance Manual (PMM) for the
I

UNIX implementation of the Front End (FE) is to provide

maintenance programmer personnel with sufficient information to

maintain that implementation. The reader is assumed to be

familiar with the UNIX FE User Manual [3].

1.2 Front End Application

The Front End was designed to be the user interface for the

National Software Works (NSW) system. The NSW system is an

operating system for a collection of heterogeneous computers

(called hosts) connected to a computer network. NSW itself is

implemented by a collection of modules which execute as processes

on the various host computers. The ARPA computer network

(ARPANET) supports inter-host communication for the current NSW

implementation.

The UNIX Front End supports: (1) user communication with

other NSW components by interfacing to MSG, the inter-process

communication facility for NSW; and (2) user communication with

1
UNIX is a trademark of Bell Laboratories.

A-i

Conversational Partners (NSW interactive tools, ARPANET hosts,

and UNIX subshells).

FE communication with other NSW components is accomplished

by calling MSG communication primitives to (1) send specifically

addressed messages, (2) send generically addressed messages, (3)

receive specifically addressed messages, (4) send alarms, and (5)

open and close direct connections to NSW tools. The Front End

manages the execution of NSW protocol scenarins wnicn are defined

in terms of the MSG primitives referred to above. User

communication with other NSW components occurs almost entiriy by

the means of executing NSW protocol scenarios.

FE communication with Conversational Partners occurs in a

way dependent on each kind of partner. Communication with NSW

interactive tools is accomplished by supporting direct binary

duplex ARPANET connections between the Front End and the NSW

Foreman component associated with the NSW tool. The Front End

opens and closes the connections in conjunction with NSW

tool-activation and tool-ending scenarios.

Communication with ARPANET hosts is accomplished by

supporting TELNET connections to these hosts. The Front End

manages the connections in conjunction with user-level commands

to initiate and close the connections.

Communication with UNIX subshells is accomplished by forking

a UNIX process (inferior to the FE) and communicating with it by

A-2

means of UNIX pipes. The Frrnt End manages the subshells in

conjunction with user-level commands to create and kill the

subshells.

The Front End communicates with the user by means of the

user's terminal.

* 1.3 Equipment Environment for the Front End

The UNIX implementation of the Front End requires a hardware

base capable of supporting the UNIX operating system as modified

and maintained by BBN. This hardware is a DEC PDP-11 model 45 or

higher processor (capable of supporting separate Instruction and

Data space) with at least 126KBytes of main memory and typically

20MBytes or more of secondary stcrage. In addition, a host

interface to an ARPANET IMP (Interface Message Processor) is

required.

1.4 Program Environment of the Front End

The UNIX implementation of the Front End runs under the UNIX

operating system as modified by BBN. This is a version of the

Bell Labs version 6 UNIX system and contains the following

enhancements:

ARPANET NCP and network-related system calls.
Ports
The awtenb, awtdis, await, and capac system calls.
The itime system call.

A-3

1.5 Conventions

This section documents the principal programming conventions

used in the UNIX FE implementation.

1.5.1 C Language Implementation

The UNIX FE is implemented in the C programming language,

using an enhanced form of the version 6 C compiler. See [1];

this refers to some features not supported by the compiler used.

1.5.2 Machine-Dependent Code

The UNIX FE source code is machine-dependent in sections

that require taking account of PDP-11 addressing conventions

(i.e., the low-order byte of a 16-bit word has a lower address

than the high-order byte of the word) and word length (an int on

a PDP-l1 is 16 bits long, but would be 32 bits long on a VAX, for

example; in some sections of the source code, it is assumed that

an int is 16 bits long).

The symbol LINDIAN is defined and used with compiler

control lines to enable operations that must be present because

of PDP-ll addressing conventions (e.g., swapping the bytes of

16-bit word). This is incompletely implemented.

At present there is no delineation of sections of code which

make assumptions about the word size of C variables.

A-4

1.5.3 Function Commenting Conventions

Each C function begins on the top of a page. Preceding the

function source code is a function header which contains the

following items:

Function name, with formal parameters (if any)
Explanation of parameters (if any)
A note explaining the purposes of the function
Item(s) modified by the function
What the function returns
UNIX system calls made in the function
Other C functions called

1.5.4 Naming Conventions

1.5.4.1 Naming of Variables

C variable names are formed from lower-case alphabetics,

numerics, and the underline character. All C compilers limit

variable names to a maximum length of 7 characters for global

symbols and 8 characters for local symbols. No variable names

used exceed these limits.

1.5.4.2 Naming of Defined Constants

Defined constants are formed from upper-case alphabetics,

numerics, and the underline character. The C macro preprocessor

does not reliably recognize defined constants longer than 8

characters. No defined constant exceeds this length.

If a defined constant is a flag name used in a status word

of a structure, it will be formed by the structure tag, followed

by underline and an alphanumeric string. For example, 'ASBLOCK'

A-5

is a flag in the status word of an active scenario table entry in

the Protocol Process.

1.5.4.3 Naming of Functions

C function names are formed from upper- and lower-case

alphabetics, numerics, and the underline character. Each

function name begins with an upper-case alphabetic character.

Since function names are considered to be external, they do not

exceed seven characters in length.

UNIX system calls have names formed from lower-case

alphabetics, numerics, and the underline character. Each

function header (see Section 1.5.3 above) has a category called

'System calls made:' from which it is readily apparent which UNIX

system calls are made in the function.

1.5.4.4 Naming of Textual Macros

Textual macros (functions defined using the C macro

preprocessor) have names formed from lower-case alphabetic

characters.

1.5.4.5 Naming of Structures

C structures are named according to a rigid naming scheme.

The structure tag is a two-character string, and each structure

member is formed by appending '_<string>' to the structure tag,

where '<string>' is a one- to four-character string. For

example, the structure 'as' in the Protocol Process stores active

scenario information and is defined to be:

A-6

struct as *as_pent; /* ptr to previous entry */
struct as *as nent; /* ptr to next entry */
int assid; /* scenario identifier */
int as stid; /* stream id */
struct as *asprev; /* ptr to previous scenario */
struct as *as next; /* ptr to next scenario */
int asflag; /* status flags */
int as scen; /* FE ptcl scenario number */
struct-pt *asptpt; /* ptr to current ptcl step */
struct tc *astcpt; /* ptr to current t-block */
int *asuspt; /* ptr active session entry in UP */
int asattp; /* file ptr of associated tool */
int as_pcod; /* value of uspcod for scen */
long as tmis; /* time last RcvSpec issued */

Each structure member has a commcrc. following which

describes it. In most cases but not all, if the structure points

to another structure, the <string> portion of the structure

member name is made up of the structure taj .ame of the structure

which is pointed to, followed b5 'pt; e.g.,

"struct tc *astcpt;'.

1.5.4.6 Naming of Structure Pointers

If a structure pointer is not a member of a structure, the

first two characters of the name are the structure tag of the

structure to which it points. For example, "tcptr' points to a

structure whose structure tag is 'tc'.

1.5.5 Global Data Declarations

For each FE process, there is a module exclusively devoted

to global data declarations. There is, in addition, a

corresponding .h file which is included by all modules which

reference the global data.

A-7

Some modules also have module-specific global data, which is

found on the first page of the module (following the #include

lines - see below).

1.5.6 Declaration Files

Declaration files have extension .h and a name that

indicates its domain of reference. These files are used to

define constants and structures and are included on page one of

each module using C compiler-control lines of the form:

#include "filename.h"

The Front End makes reference to structures and constants

defined outside itself; these necessitate including declaration

files for the UNIX terminal driver and User TELNET package, both

of which are employed by the Front End.

1.6 Status of Implementation

The implementation is complete. The following gives

recommended implementational improvements:

o Delineate code which depends upon PDP-11 addressing
conventions (see Section 1.5.2) by the defined constant
LINDIAN in ifdef compiler-control lines.

o The code which reads the Front End initialization file
is very slow and resource-consuming and ought to be
recoded with buffered I/O, preferably with stdio using
the Phototypesetter License (pcc) compiler. This will
also obviate the need for function PrtLong and will
simplify functions ReadWrd, SkipWrd, and SkipLin.

A-8

O Delineate code which assumes a 16-bit word size (see
Section 1.5.2).

o Modules fntool.c, mpars.c, mprt.c, mutil.c, and mwrite.c
should be libraries.

A-9

RiECEDhJO PAGE BLAWL-k -OT T1

2. SYSTEM DESCRIPTION

This chapter documents the principal program modules of the

UNIX FE implementation. It describes the structure, operation,

and composition of the Front End implementation.

2.1 General Description

2.1.1 Front End Processes

A Front end configuration on UNIX is implemented as a

collection of UNIX processes. Each configuration consists of

three processes:

1. The Protocol Process

2. The Tool Process

3. The User Process

The Protocol Process (PP) is responsible for managing the

NSW protocol scenarios by which the Front End communicates with

other NSW components. It issues MSG communication primitives to

do this; these primitives are part of UNIX MSG and are loaded

with the PP.

The Tool Process (TP) handles the Front End interface to

Conversational Partners. This includes opening and closing

ARPANET connections to NSW tools, and managing TELNET connections

and pipes to UNIX subshells. It reads from the user's terminal

and directs the data to the appropriate network connection or

A-I

UNIX pipe. Similarly, it reads data from network connections or

UNIX pipes and either displays it on the user's terminal or

buffers it until the user requests to view it.

The User Process (UP) is the controlling process of the

Front End and performs the user exec interface, which includes

command interpretation, command dispatch, and output of results.

The Front End initialization process (see Section 2.2.12

below) is present only at start-up. Its only function i :, read

a default or explicit initialization file to determine the

pathname of the UP and overlay itself with that UP using the

execl system call.

A Front End configuration can be started manually from the

UNIX shell or automatically at login to UNIX if the user's

account password file entry contains a pointer to the Front End

initialization process. Part of the PP initialization procedure

is to create a local MSG for the Front End. If the local MSG

finds no central MSG ready, it will cause one to be created.

Refer to the UNIX MSG and FE User Manuals for further details

concerning initialization.

2.1.2 Process Structure of a Front End Configuration

The process structure of a Front End configuration is shown

in Figure 1. The figure shows the associated local MSG. Note

also that user input and output is done by two processes: the

A-12

UP, when the user is issuing NSW commands; and the TP, when the

user is communicating with Conversational Partners.

2.1.3 Communication Between Front End Processes

The processes which implement a Front End configuration must

communicate with each other in order to perform their functions.

This inter-process communication is achieved through the use of

UNIX pipes.

Communication with NSW tools or TELNET server processes on

remote hosts is achieved by using the standard ARPANET

communication functions provided by the UNIX Network Control

Program (NCP).

2.1.4 General Front End Flow of Control

The three Front End processes are event-driven, using the

BBN-developed await and capac mechanism (see Section 1.4 above).

Each process waits until an event occurs, at which time the

process awakened executes one pass through its central loop in an

attempt to process the event.

The central loops of the Front End processes are given next

in a pseudo-English form:

A-13

FIG. 1. FRONT END CONFIGURATION PROCESS STRUCTURE

user input
(exec mode)

,.ser inp, 't
(tool mode)

pipes pipes

Tool Process Protocol

Process

UNIX jI'G Primitive

C:es RoutL-es

TELNET ARPANET \ N!

UNIX subshell copip duplex conI U es

V, V, ,
ARPANET NSW II

host Forema/t

Tool to Central "SO

A UNIX MSG

A-14

/* main loop of Protocol Process */

while (Front End is running)

compute time to next wakeup;

await (until event occurs or time is up);

process input from User Process;

process input from MSG;

advance all protocol scenarios where possible;

check ReceiveSpecific timeouts;

/* main loop of Tool Process */

while (Front End is running){
await (until event occurs or await times out);

if (user talking to Conversational Partner)
process input from user's terminal;

cycle thru each Conversational Partner

if (network connection) process net input;

if (shell) process pipe input;}I
process input from User Process;

A-15

/* main loop of User Process */

while (Front End is running)

await (until event occurs or await times out);

if (user not talking to Conversational Partner)
process input from user's terminal;

if (there is a PP) process input from it;

if (there is a TP) process input from it;

if (there is terminal output ready)
announce its presence to the user;}

The following paragraphs describe in general termt how the

Front End (1) handles user commands, (2) interfaces to MSG, and

(3) handles Conversational Partners.

2.1.4.1 User-Issued Commands

When the Front End is in exec mode, the Front End accepts

user input from the user's terminal and tries to parse it

according to the NSW command language. For each user token, a

node of the parse structure (PS - see Section 3.2.4.1 below) is

created. Each token is matched against the set of possibilities

defined by the current position of the parse in the grammar tree

(GT - see Section 3.2.4.5 below). Thus, a one-to-one

correspondence between PS entries and GT entries is created until

the end of a complete command is reached. From the grammar tree,

a command code is found which determines what to do to "execute"

the command.

Executing the command means either assembling a NSWTP

A-16

message to send to another NSW component or performing an action

locally in the Front End. In the case of assembling a message to

be sent to another NSW component, usually the Works Manager, the

message is assembled in the UP and sent by pipe to the PP. In

the PP, an active scenario (AS - see Section 3.2.2.1 below) entry

is created, and the message is buffered until it is ready to be

sent.

In the case of a "local" command, the UP will either perform

the requested action or send a pipe message to the TP requesting

it to take some action.

Because of the asynchronous nature of Front End operation,

the UP buffers output from user commands and notifies the user

that the command has completed. User output from NSW comes to

the UP via pipe from the PP. Thp output comes in groups of one

or more pipe messages which are buffered and managed as

successive terminal buffer header (TB - see Section 3.2.4.3

below) entries. When the final message arrives, the user is

notified that his command is complete. Viewing the command

output is performed by invoking a local command to display the

output.

2.1.4.2 MSG Interface

The Front End interface to MSG is accomplished by calling

MSG communication primitives to send and receive messages, send

alarms, and manipulate connections. All possible interactions

A-17

are categorized in terms of entries in the protocol scenario

definition table (PT - see Section 3.2.2.4 below). Executing NSW

protocol scenarios occurs by stepping through the entries in PT;

each entry typically invokes issuance of an MSG primitive. For

each protocol scenario in progress there is an active scenario

entry, and each such entry has a PT pointer associated with it.

The UNIX pipe from local MSG to process MSG, i.e., that part

ot MSG loaded with the PP, is await-enabled. The i-P thereby

knows when pipe transmissions from the local MSG arrive. If a

pipe transmission has come in, the PP issues a RequestSignal MSG

primitive to determine which pending event, if any, completed.

The Front End uses the MSG Request signal when issuing MSG

primitives which create pending events in order to permit the

susequent use of the RequestSignal primitive. If a transmission

from the local MSG does not signal the completion of a pending

event, then some background functions in process MSG are

performed. If the transmission signals the completion of a

pending event, the active scenario entry corresponding to the

pending event is identified. If the active scenario entry

corresponds to one initiated by the Front End, a test is made to

see that the received message has the expected type, transaction

id, and procedure name. If this fails, the scenario is aborted.

If tne active scenario entry does not correspond to one initiated

by the Front End, a test is made to see that the received message

validly initiates some protocol scenario known to the Front End.

A-18

If the test fails, the message is deleted and the active scenario

entry is freed; otherwise, the message is processed.

The Front End always has one, and only one, ReceiveSpecific

primitive outstanding. When a message is received, a new

ReceiveSpecific is immediately issued and then the received

message is processed. Processing a message usually means either

sending its fourth argument to the UP or using it in the PP to

build a subsequent message in the protocol scenario.

Associated with each step of a protocol scenario is a

transaction control block (TC - see Section 3.2.2.2 below). A

transaction control block, or transaction block, contains all

information needed to issue an MSG primitive; in the case of the

ReceiveSpecific primitive, the transaction block contains

information obtained by parsing the incoming message.

Transaction control blocks are stored for the life of a protocol

scenario; messages are retained only for the life of a

transaction, i.e., protocol scenario step.

2.1.4.3 Handling of Conversational Partners

Front End Conversational Partners are handled by one

process, the TP. For each Conversational Partner, there is an

entry in the active tool table (TT - see Section 3.2.5.1 below),

a file accessed by all three Front End processes. In the startup

sequence for a Conversational Partner, the following happens in

the UP: If there is no TP, the UP forks one (the TP exists only

A-19

when there is at least one Conversational Partner) and then adds

an entry to TT with data for the Conversational Partner being

started. If the Conversational Partner is an NSW tool, a NSW

tool startup (WM-RUNTOOL or WM-RERUNTOOL) protocol scenario is

initiated. Otherwise (the Conversational Partner is a TELNET

connection or UNIX subshell), an 'activate' (PACTIV) pipe

message is sent to the TP. The TELNET connection is opened, or

the UNIX subshell is created, and a positive acknowledgement is

sent to the UP. A negative acknowledgement indicates fail"A!-.

For NSW tools, tool-activation is slightlV' differ-.. Owing

to the fact that UNIX file descriptors are process-relative, it

is not possible for MSG to open the direct MSG connection to the

NSW tool and pass the file descriptor to the TP. The OpenConn

MSG primitive in the UNIX implementation has its functionality

effectively distributed between MSG and its user calling process,

in this case the Front End. When the protocol scenario comes to

the point that an OpenConn must be issued, the following sequence

occurs: the PP sends a pipe message to the UP, which is

forwarded to the TP, ordering a "dummy open" to be performed by

the NCP (the dummy open reserves a block of 8 sockets on UNIX for

subsequent actual use by connections); in the TP, a tool buffer

header entry (TI - see Section 3.2.3.1 below) is created for the

tool; if no block of 8 sockets exists or has a free socket pair,

a tool connection information block (TO - see Section 3.2.3.2

below) is created and a "dummy open" is performed; and a positive

A-20

acknowledgement is sent via pipe to the PP; at this point, the

MSG OpenConn primitive is issued; when it completes, an

activate& (PACTIV) pipe message is sent to the TP from the PP;

when the TP receives this message, it actually opens the ARPANET

connection to the NSW tool and sends a positive acknowledgement

to the PP. This positive acknowledgement, as it passes through

the UP, causes the user to be notified that his tool is ready to

use.

Ending the use of Conversational Partners is accomplished in

a manner also dependent on the kind of Conversational Partner in

question. If the Conversational Partner is an NSW tool, an

"endtool' (P_FINIS) pipe message is sent to the TP from the PP at

the end of a tool-terminate or tool-abort scenario. In the TP,

this causes the connection to be closed (if still open); a

positive acknowledgement to th pipe message indicates the end of

the protocol scenario and causes the user to be notified.

For TELNET connections and UNIX subshells, there is no

protocol scenario associated with ending use of them. The use of

them is ended by user command in exec mode or (in the case of a

TELNET connection) by the connection closing.

2.2 Detailed Description

This section describes in detail the principal program

modules and routines of the UNIX Front End implementation.

A-21

2.2.1 Macros

A number of macros are used extensively in the Front End.

They are defined in module fe.h and are included here for

reference:

/* textual macros used in the Front End */

#define and &&
#define or 1i

/* decides whether to prepend '0'
to octal number */

#define zero(x) ((x) == 0? "": "0")
#define setflag(x,y) (x =(Y))
#define clrflag(x,y) (x =& (~(y)))
#define entsize(t,n) (sizeof(t)/2)/(n)
#define freebuf(x) if ((x) != NULL) free(x)

2.2.2 Global Declaration Files

There are two global declaration files which define

constants and structures used in all or most of the Front End;

they are nsw.h and fe.h.

The module nsw.h contains defined names for NSWTP types and

arguments, NSWB8 types and values, values of NSW fault classes

and component id's, and values for the FM-BEGINTOOL entry vector

variable entvec.

The module fe.h contains definitions global over the Front

End, but not specifically related to NSW. Included are common

defined constants; names for UNIX system call parameters;

definitions related to file-manipulation, error-handling,

A-22

L i. i i ili i... . . .

event-logging, and diagnostic typeouts; Front End protocol

scenario numbers and timeouts; structure definitions for parsing

NSWTP messages and the process control block (PB - see Section

3.2.5.2 below); and definitions of macros used in the Front End

(see Section 2.2.1 above).

2.2.3 Protocol Process

This section describes the program modules which, except for

utility modules, comprise the Protocol Process.

2.2.3.1 PTCL

The module ptcl.c contains the following principal C

functions:

o main is the top-level function of the PP. It
initializes the PP, forks local MSG and contains the
main loop of the process. In the main loop (shown in
Section 2.1.4 above), it services input from all the
possible sources of input to the PP: namely, MSG and the
UP; in addition, it drives the protocol scenario engine
AdvanSc and computes the time for the next
ReceiveSpecific timeout. It is necessary to compute the
timeout since there is no corresponding MSG event which
would awaken the PP from waiting. main calls the MSG
function Seconds to ascertain the next wakeup time as
seen by MSG. The actual time to wakeup will be the
minimum of that returned by seconds and by ChRCTmo. At
the end of main, there is code to "clean up" before
terminating.

o Hup_PP intercepts the UNIX 'Hangup' signal when it is
sent to the PP. The Hangup signal is sent when the user
loses contact with his UNIX processes, e.g., when a
TELNET connection to the Front End breaks. This
function initiates the Autologout scenario and sets
appropriate state variables.

o ChRCTmo calculates the time at which the next

ReceiveSpecific primitive times out.

A-23

o RcvSpTm checks to see if any ReceiveSpecific primitives
have timed out. If any have, the corresponding protocol
scenarios are aborted, and the user is notified.

Module ptcl.h contains definitions of structures and

constants global to the PP.

2.2.3.2 PTCLV

The module ptclv.c contains the global data declarations for

the Protocol Process. Module ptclv.h contains external

references to all variables declared in ptclv.c.

2.2.3.3 PDCMB

The module pdcmb.c contains C functions AddMB and RemovMB

which, respectively, add and remove message buffer headers (MB -

see Section 3.2.2.3 below) to/from their data class (see Section

3.2.1 below).

2.2.3.4 PISSUE

The module pissue.c contains the C functions which issue MSG

primitives. IssuePr is called with a pointer to an active

scenario entry as an argument. Based on the PT pointer in the

corresponding transaction block, the appropriate issuing routine

is called: namely, IsRcvSp issues a ReceiveSpecific primitive;

IsSndSp issues a SendSpecific primitive; IsSndGn issues a

SendGeneric primitive; PrOpnCn initiates the OpenConn sequence

(described in Section 2.1.4.3 above), which includes at a later

time issuing an OpenConn; IsClsCn issues a CloseConn primitive;

and IsSndAl issues a SendAlarm primitive. These are the only MSG

primitives which create pending events that the Front End issues.
A-24

The arguments for the primitives are extracted by these

routines from the corresponding transaction block and, in some

cases, from the appropriate active tool table entry.

The function IsDRcSp issues the so-called "dummy"

ReceiveSpecific primitives, of which the Front End always has one

outstanding.

2.2.3.5 PPIPE

The module ppipe.c contains the C functions that read the

pipe from the User Process and perform actions depending on the

instruction field of the pipe message. Module UPInput performs

the read and dispatches based on the instruction field. The

following describes the principal modules which may be invoked by

the dispatch:

AHelpM user Help message answered

NHelpM user Help message aborted

IIniScM user initiates protocol scenario

ADumOpM TP acknowledges "dummy open"; issues OpenConn
primitive

NDumOpM "dummy open" failed; aborts scenario

AActivM NSW tool-activation succeeded

NActivM NSW tool-activation failed; aborts scenario

AfinisM NSW tool-ending succeeded

NFinisM NSW tool-ending failed; aborts scenario

IFastLM user issues Fastlogout

A-25

2.2.3.6 PPRIM

The module pprim.c contains C functions which are called in

response to NSWTP messages received. The functions include:

o RutlRep is called when a NSWTP Reply message for a
WM-RUNTOOL message is received. In conjunction with
FEOpnCn (see below), RutlRep initializes the active tool
table entry for the NSW tool being started. If there is
already is a TT entry having the MSG process name in the
Reply message, then an FE-OPENCONN has already been
received. The MSG process name is copied into the
actual TT entry; the contents of the temporary entry
(created by the prior FE-OPENCONN) are added to the
actual TT entry; and the temporary entry is removed
(i.e., its tool id is set to null).

o FEOpnCn is called when a FE-OPENCONN message is
received. If there already is a tool table entry having
the MSG process name found in the FE-OPENCONN messages,
the other arguments of the message are added to the TT
entry. If there is no such entry, a temporary entry is
added until such time as a tool-initiation Reply message
arrives (see under RutlRep above).

o FEToolH is called when a FE-TOOLHALTED message arrives.
Since the contents of the fourth argument of this
message must be saved and since messages are deleted
very soon after receipt, the fourth argument of the
message is copied into a temporary buffer pointed to by
the transaction block. If the message is part of a
remotely-initiated tool-termination scenario, the file
pointer of the NSW tool's TT entry is determined (the PP
deals with tools solely on the basis of their file
pointers).

o SndMsDn is called when a MSG Send primitive completes.
It is currently a no-op.

o OpnCnDn is called when a MSG OpenConn primitive
completes. It sends an 'activate' (P ACTIV) pipe
message to the TP, which instructs the TP to open the
tool's connection and make the tool available to the
user.

o ClsCnDn is called when a MSG CloseConn primitive
completes. If the protocol scenario for which the
CloseConn completed is part of a Fastlogout sequence,
the arguments returned by the preceding FE-TOOLHALTED

A-26

message are parsed, and the tool id and NSW accounting
information are appended to the Fastlogout intermediate
file, and the scenario is then flushed. [The Fastlogout
intermediate file becomes the fourth argument of the
WM-FASTLOGOUT message, once all the active NSW tools
have been aborted.] For protocol scenarios which are
not part of the Fastlogout sequence, ClsCnDn is a no-op.

o SndAlDn is called when a MSG SendAlarm primitive
completes. It is currently a no-op.

o FELNDSv is called when a FE-LND-SAVED message has been
received. If an Autologout sequence is in progress, it
is a no-op. Otherwise, it adds a TT entry to the tool
table with the information contained in the message.
Finally, it informs the UP of the new LND-saved tool.

2.2.3.7 PRECV

The module precv.c contains C functions related to

processing received NSWTP messages. They include the following:

o RcvSpDn is called when an MSG ReceiveSpecific primitive
completes. It checks the message List count and
extracts the message type, tid, and procedure name (if
there is one) from the message (using ExtrTyp, ExtrTid,
and ExtrPnm, respectively). It identifies the message
as part of an existing protocol scenario and then calls
routines to process the message.

o MatchSc attempts to match the message received with an
outstanding ReceiveSpecific primitive for an existing
protocol scenario. The match involves scanning all AS
entries and their associated PT pointer to search for
scenarios expecting messages. MatchSc performs the
conditional branch function in the PT table (described
below in Section 3.2.2.4) which is done when a message
is received. If the received message is not a part of
an existing protocol scenario, RemotSc is called.
RemotSc tries to match the received scenario with all
possible kinds of messages which validly may initiate a
protocol scenario (by calling IdentSc) and then create
an active scenario entry for the scenario. Scenarios
created in this way are called "remotely-initiated'.

o IdentSc is the function which performs the actual match
of received message information with PT information for
remotely-initiated scenarios.

A-27

- - 7=1 -r -f --

o LinkTC is called when the received message is part of an
existing protocol scenario. In this case, the
transaction block associated with the received message
is linked with the previous transaction block for the
existing scenario, and the "dummy" AS entry associated
with the outstanding ReceiveSpecific primitive is
deallocated.

o NewSc is called when the message received validly
initiates a scenario. It sends a pipe message to the UP
notifying it that a new scenario has been initiated and
directing it to possibly add corresponding table
entries.

2.2.3.8 PSCEN

The module pscen.c contains the following principal C

functions:

o CreatSc adds a new active scenario entry to the active
scenario table. If the AS entry to be added has the
same stream id as an existing scenario, the new scenario
is sequenced after the existing scenario. The function
performed by CreatSc is the most basic function in
initiating a protocol scenario.

o IniStep creates a transaction block for the step of the
protocol scenario given as its argument. Transaction
block fields are filled, including MSG signal, timeout,
and PT pointer. The data structures for the associated
message (for Send primitives) are initialized. The
block is linked to the corresponding AS entry.

o PrepMes performs functions needed to prepare NSWTP
messages to be sent. If there is no message, one is
assembled. The proper MSG process name is found and
loaded into the transaction block.

o AssemMs assembles NSWTP messages, based on the value of
the PT pointer. Most NSWTP messages directly associated
with user commands are assembled in the UP and sent by
pipe to the PP. Other messages, e.g., intermediate
messages required by intermediate steps of the protocol,
are assembled by AssemMs. It assembles the following:
WM-AUTOLOGOUT, WM-FASTLOGOUT, FM-SAVE-LND, FM-ENDTOOL,
WM-TOOLABORT, WM-TOOLHALTED, Null Reply, and Help Reply
messages.

A-28

o AdvanSc is the "engine" that drives the protocol
scenarios forward. It cycles through all AS entries
and, for each entry, performs the following: if the
scenario is a "dummy" ReceiveSpecific scenario, it is
ignored; if, there is a previous scenario linked to the
current one, it is ignored; if the PT pointer has not
been initialized for the scenario, IniStep is called; if
the PT pointer points to end of scenario (op code
PTENDSC - refer to Section 3.2.2.4 below), mark
scenario as done and go to next AS entry; if the current
protocol scenario step has completed (flag AS COMPL is
set) move to the next protocol step and go to next AS
entry; if the PT pointer points to "go to" (op code
PTGOTO see below) perform the "go to" by advancing the
scenario to the indicated location; if the current PT op
code is for a ReceiveSpecific (not a "dummy"
ReceiveSpecific, but one associated with a known
protocol scenario), ignore it; if the scenario is
temporarily halted waiting for some other Front End
activity to occur (flag AS BLOCK is set), ignore it; if
the protocol scenario step-has no associated transaction
block, call IniStep; and, finally, issue the MSG
primitive. The operation of AdvanSc may be summarized
by saying that it advances each protocol scenario
forward as far as it may go, subject to the constraints
of waiting for remote or local (FE) events to occur.

o DoGoTo executes the "go to" (PTGOTO) operation in the
PT table.

o EndSc sends an "end of scenario" (P SCDON) pipe message
to the UP. This condition indicates (1) that, as far as
the PP is concerned, the scenario is complete, and (2)
the UP should be aware of that fact.

o FlushSc deletes all table entries associated with a
scenario instance from the PP. For sequenced scenarios,
it clears the following scenario for execution.

o ParsFTH parses the fourth argument of a FE-TOOLHALTED
message and places the results into a parse result
structure. If the scenario is part of a Fastlogout
sequence, the tool id and NSW accounting information are
appended to the Fastlogout intermediate file.

o ToolSc is called when a Fastlogout or Autologout
sequence is initiated. It scans the tool table for NSW
entries and, for each tool found, initiates a tool abort
or FM-SAVE-LND scenario, respectively.

o FastLog is called when all tool abort scenarios in the

Ak29

Fastlogout sequence have completed; it initiates a
protocol scenario to handle the WM-FASTLOGOUT message.

o AutoLog is called when all FM-SAVE-LND scenarios in the
Autologout sequence have completed; it initiates a
protocol scenario to handle the WM-AUTOLOGOUT message.

2.2.3.9 PSCENTBL

The module pscentbl.c contains the protocol scenario

definition table (PT). Module pscentbl.h defines thie structure

of PT (refer to Section 3.2.2.4 below) and defines constants used

in the table.

2.2.3.10 PUTIL

The module putil.c contains utility routines for the PP.

These routines are primarily used to send pipe messages to the

UP, handle error conditions in protocol scenarios, and manipulate

MSG process names.

2.2.4 Tool Process

This section describes the program modules which, except for

utility modules, comprise the Tool Process.

* 2.2.4.1 TOOL

The module tool.c contains the following principal C

functions:

o main is the top-level function of the TP. It
initializes the TP and contains the main loop of the
process. In the main loop (shown in Section 2.1.4
above), it services input from all the possible sources
of input to the TP: namely, user's terminal (when the
user is in tool mode), the UP, and all network

A-30

connections and UNIX subshells currently open or
present. At the end of main, there is a code to "clean
up" before terminating.

o ToolInt performs the read interface to the ARPANET (NSW
tools and TELNET connections). Input from the ARPANET
is either displayed on the user's terminal (if he is in
tool mode) or is buffered in a core buffer for later
display. ToolInt takes as an argument a pointer to a
tool buffer header (TI); if the argument equals the
contents of tiuse, then the data is displayed on the
terminal - otherwise, it is buffered. ToolInt returns
its argument, or (if the connection is closed) the
pointer to the previous TI entry. Using the capac
system call, ToolInt is guaranteed to know how much
network data there is to read.

o ShelInt performs the read interface to UNIX shells
running as inferior processes to the TP. Other than the
fact that it reads from UNIX pipes, its basic operation
is the same as that of ToolInt.

o TermInt performs the read interface to the user's
terminal. When the user is in exec mode, terminal I/O
is performed by the UP. When the user transfers to tool
mode, the function of handling terminal I/O is taken
over by the TP, the read interface by function TermInt.
Characters are read from the terminal one at a time
until there are no more t'o read or until control-N
(CHGEXEC) is read; control-N causes a transfer to exec
mode. TermInt takes the characters as they are read and
directs them to the proper destination. This
destination may be either a network connection (defined
by connp) or a UNIX pipe (defined by ufd). The TP uses
three different terminal mode settings depending on the
destination of the characters; in each TI entry, there
is a pointer to a terminal modes block, and these
terminal modes are placed into effect when the user
begins to communicate with the connection or pipe in
question. For UNIX pipes, linefeed and bell are
principal break characters [as well as control-N, of
course], and the UNIX terminal driver's facilities for
line-editing are used. With the exception of linefeed
and bell, no break characters are echoed; linefeed and
bell are echoed by the TP. The default terminal mode
settings for a network connection are local echoing and
linefeed as the primary break character. Local UNIX
line-editing features are in effect. Linefeed is echoed
as CR/LF. With hosts that negotiate the TELNET Remote
Echo option, the break set becomes all Ascii characters
and local line-editing capabilities are disabled. For

A-31

all writes to the network, a linefeed is appended to
every carriage-return written.

o HupTP intercepts the UNIX 'Hangup' signal when it is
sent to the TP. The Hangup signal is sent when the user
loses contact with his UNIX processes, e.g., when a
TELNET connection to the FE breaks. This function
causes an automatic transfer to exec mode if the user
was in tool mode and sets appropriate state variables.

o UPInput reads the pipe from the User Process and
dispatches to routines to handle the message based onthe content of the message instruction field.

o ToolSig intercepts UNIX signal 17 (defined to have name
TOOLSIG); TOOLSIG is a user-defined signal and is re'
by the UP whenever the user invokes an abort operat.on.
Intercepting the signal has the effect causinq an , :or
exit from network opens which may not have completed or
timed out.

o ConnErr processes error conditions on network
connections and pipes to UNIX subshells. The connection
is closed, and an error message is sent to the UP. UNIX
subshells are killed, and an error message is sent to
the UP.

Module tool.h contains definitions of structures and

constants global to the TP.

2.2.4.2 TOOLV

The module toolv.c contains the global data declarations for

the Tool Process. Module toolv.h contains external references to

all variables declared in toolv.c.

2.2.4.3 TELNIO

The module telnio.c contains C functions required by the

User TELNET library, which manages the Front End network

connections. For each TELNET option which may be negotiated, a

test function and an action function must be provided by the user

A-32

program which makes calls on the TELNET library. The test

function determines whether the option is in effect, and the

action function turns the option on or off. For the Front End,

the only TELNET option that may be negotiated is the Remote Echo

option; the test function is TsRmEch, and the action function is

DoRmEch. These functions comprise telnio.c. Refer to Volume II

for further information about the user TELNET library.

2.2.4.4 TPIPE

The module tpipe.c contains the C functions which may be

invoked by the dispatch in UPInput in tool.c.

These are:

IActivM activate an NSW tool, connection is opened.

IShellM Fork a subshell.

IAcTelM Activate a TELNET connection; connection is
opened.

IDumOpM Perform a "dummy open".

IResumM Resume communication with a Conversational
Partner; process mode changed to tool mode.

IFinisM Terminate the use of an NSW tool; connection is
closed.

IFnTelM Terminate the use of a TELNET connection;
connection is closed.

IFClosM Force a connection to close; extraordinary
condition in effect.

2.2.4.5 TTOOL

The module ttool.c contains the following principal C
functions:

A-33

4wo

o OpnTool opens a connection to an NSW tool, based on the
arguments passed to it.

o ClrTool clears the TI and TO entries for a tool or
TELNET connection, and frees any buffers which have been
allocated for the tool or connection.

o ClsTool is called when the use of a Conversational
Partner is being ended. Depending on the kind of
conversational Partner, it will either close a network
connection or kill a UNIX subshell. Under some
circumstances a 'closed' (P CLOSE) pipe message will be
sent to the UP, and in some cases there will be a
process mode change (from tool mode to exec mode). If
there is no buffered output for the Conversational
Partner, ClrTool (see above) is called. Otherwise, the
table entries are left intact so the user may view his
buffered output [at that time, the table entries will be
removed].

o TChgET is called to effect a process mode change from

exec mode to tool mode. Among other things, the
terminal is await-disabled, and the function may,
depending on its arguments, go through a 'suspend,
sequence, send a 'suspend' (PSUSP) pipe message, or
send a 'closed' (PCLOSE) pipe message. tiuse is
cleared.

o SuspTl performs actions related to suspending the use of
a Conversational Partner. This consists of allocating a
buffer to hold buffered output for the Conversational
partner and setting related variables.

o WCloseM sends a 'closed' (PCLOSE) pipe message to the
UP.

2.2.4.6 TUTIL

The module tutil.c contains the following principal C

functions:

o IniMBLK initializes the terminal modes block for a new
TI entry; it differentiates between network connections
and subshells.

o SetTMod loads and sets the current terminal modes to be
those of the terminal modes block for the TI entry
argument.

A-34

o SndErMs sends a pipe error message to the UP and may
terminate the TP. It is a utility routine.

o MakShel initializes a UNIX subshell inferior to the TP.
It makes the pipes, forks, sets up the pipes to operate
as standard input and output for the shell, and overlays
a shell with the execl system call.

2.2.5 User Process

This section describes the program modules which, except for

utility modules, comprise the User Process.

2.2.5.1 USER

The module user.c contains the following principal C

functions:

o main is the top-level function of the UP. It
initializes the UP, forks the PP, and contains the main
loop of the process. In the main loop (shown in Section
2.1.4 above), it services input from all the possible
sources of input to the UP; namely, the user's terminal
(when the user is in exec mode), the PP, and the TP; in
addition, it outputs announcements dealing with output
ready for the user. This is done because output is, in
general, not displayed to the user but is buffered, and
the user is then notified that it is ready. To view the
output, the user requests it with a command. At the end
of main, there is a code to "clean up" before
terminating.

o U PDead is called when the UP determines that the PP has
dTed or stopped itself for some reason. Variables
related to the PP are reset, and if the TP has also died
or stopped, the 'run' flag (ST RUN in pb_stat of the
process control block) is cleared, which causes the
Front End to stop. There is currently no provision for
restarting the PP should it terminate abnormally.

o U TDead is called when the UP determines that the TP has
died or stopped itself. If the PP has also died or
stopped, the 'run' flag (STRUN) is cleared, which
causes the Front End to stop. Unlike the PP, the TP may
validly be stopped in the course of an Front End

A-35

iV

session: this occurs whenever the active Conversational
Partner count goes to zero. The TP may also die from
errors. In any case, variables related to TP are reset
and the tool table is scanned, and each TT entry is
modified so that a request to reconnect from an NSW
Foreman (the Foreman reconnect scenario - PSC FMRC) will
find all tool table entries in the proper sta-Ee. [If
the TP dies because of errors, any TELNET connections
and UNIX subshells will be permanently lost].

o UUDone is called when the Front End is being stopped.
Among other "clean up" functions, it resets the terminal
modes to those prior to entry to the Front End, removes
the active tool table, and prints a departing herald to
the user.

o PPInput reads the pipe from the Protocol Process and
dispatches to routines to handle the message based or
the content of the instruction field.

Module user.h contains definitions of structure ancd

constants global to the UP.

2.2.5.2 USERV

The module userv.c contains global data declarations for the

User Process. Module userv.h contains external references to all

variables declared in userv.c.

2.2.5.3 UCHAR

The module uchar.c implements the special-function

characters of the Front End command language and does high-level

parse functions, such as gathering a token.

CmdPars reads one character at a time from the character

buffer. It ignores null characters, implements the special

functionality for linefeed (linefeed means 'display next

completed output' if there is any), or if there is no output to

A-36

be displayed, converts linefeed to carriage-return. Other

characters are handled by dispatching to routines for each class

of character.

The C functions which handle each class of character are:

AbortCh handles control-X, the "abort" character.

RetypCh handles control-R, the "retype command"
character.

ErswdCh handles control-W, the "delete field" character.

ErschCh handles DEL, the "delete character" character.

HlprqCh handles ?, the "help request" character.

EscapCh handles ESCAPE, the "recognize and complete" or
"prompt request" character.

TcCh handles SPACE and TAB, the "terminate field"

characters.

CcCh handles CR, the !command complete" character.

McCh handle , (comma), the "begin command
modifications" character.

OtherCh handles all other characters.

2.2.5.4 UCMD

The module ucmd.c contains the following principal C

functions:

o DescCmd implements the DESCRIBE command. The DESCRIBE
command accesses the Front End text file fe-text by
means of an index file (fe-txtindex) and copies the
relevant part of the text file to the user's terminal.
The first call of DescCmd causes the index file to be
read in and stored in a buffer. All subsequent calls to
DescCmd use the in-core index to find the proper place
in the text file. The UNIX pathnames of the FE test
file and text index file are parameters in the Front End
initialization file.

A-37

o PrintUS causes the text contents of a user session table
entry (US - see Section 3.2.4.2 below) to be displayed
to the user. This requires that the associated terminal
buffer headers (TB - see Section 3.2.4.3 below) be
scanned to determine the display characteristics of the
information buffered. In particular, the contents of a
terminal buffer associated with TB entry may be the
parameters or arguments of NSWTP Null reply messages,
FE-PREDISPLAY messages, Help reply messages, or NSW
Error messages. All or part of the fourth arguments of
these NSWTP messages are transmitted by pipe from the PP
to the UP, where they are buffered, each in conjunction
with a TB entry, in their unparsed NSWTP form. This
eliminates unnecessary message parsing in both the PP
and UP.

o WrtCSstr prints to the user's terminal a character
string stored in NSWB8 form.

o CvCmdNo is a general routine that accepts a Front End
command number and returns the pointer to the associated
US entry. It implements handling of the default case,
i.e., a negative command number returns the first US
entry on the list.

o CNumCmd implements several user commands which take an
Front End command number as their argument. The
commands are the DISPLAY, DISCARD, and ABORT commands
(though ABORT is not implemented).

2.2.5.5 UDCTB

The module udc tb.c contains C functions that manage the

terminal buffer header data class (TB). The functions are AddTB,

AllocTB, and RemovTB.

2.2.5.6 UDCTQ

The module udctq.c contains the C function AddTQ, which

adds an entry to the TP message queue. The queue is filled when

a TP instance is in the process of being started; pipe message

are buffered in the queue until the TP is ready.

A-38

2.2.5.7 UDC UM

The module udcum.c contains the C functions which manage

the user message buffer (UM), an unstructured buffer which holds

user messages not related to US entries (i.e., not related to

currently active commands). AddToUM appends its argument to the

present contents of UM, and PrintUM prints the contents of UM and

empties it.

2.2.5.8 UDC US

The module udc us.c contains functions which manage the user

session table data class (US - see Section 3.2.4.2 below).

o AddUS allocates and partially fills a new US entry.

o RemovUS removes a US entry.

o StateUS is used to generate user notification messages
based upon the contents of the two status words us stat
and us umes. In some cases, such as short command
output or error output, it displays the command output
by calling PrintUS.

o ShowUS scans all US entries and prints to the user the

current state of all active commands. It implements the
SHOW ACTIVE COMMANDS command.

o DumpUS is called by ShowUS and decodes the contents of
the two US status words in a form suitable for the SHOW

ACTIVE COMMANDS command.

2.2.5.9 UHELP

The module uhelp.c deals with processing the Help reply

terminal context, which is entered to answer NSW Help calls. It

contains C functions:

o ProcHlp takes a completed Help reply supplied by the

A-39

user, assembles it into NSWTP message form, sends it to
the PP, and (if the Help message was answered out of
tool mode) returns the user to the Conversational
Partner he was talking to. The user's completed Help
reply is accessed through the parse structure (PS - see
Section 3.2.4.1 below).

o IniHelp initializes the UP to accept the user's Help
reply. It is invoked by PrintUS after printing out the
Help request message to the user. IniHelp, using table
ghelp, sets the parser to use the proper section of the
"help tree" (see Section 3.2.4.6 below) to parse the
user's Help reply. The terminal context is set to 'Help
reply' context.

2.2.5.10 UINIT

The module uinit.c contains C functions which perform

initialization functions for the UP and entire Front End. The

functions are:

o IniTMod saves the terminal modes in effect upon entering
the Front End and sets the Front End terminal modes.

o RdIniFl reads the Front End initialization file and
converts numeric strings into numbers. The entire
initialization file is read in, and UP event-logging
flags and typeout flags are set.

o RdIniLn reads in a process initialization line of the
Front end initialization file; it is called by RdIniFl.

o CreatPP creates the PP (i.e., it forks and overlays the
child with the PP). It does not block. Communication
with the PP is confirmed by WaitPP.

o WaitPP is called later in the UP initialization
procedure (after CreatPP) has been called. It waits for
the PP to set a 'name of tid file' (P TIDFL) pipe
message to the UP, which constitutes confirmation that
the PP has been initialized. Until this pipe message
arrives, WaitPP blocks. When the message arrives, a
state variable is modified and a 'name of tool table
file' (PATTFL) pipe message is sent to the PP.

o CreatTP creates the TP by forking and overlaying the
child process with the TP. It does not block.

A-40

Communication with the TP is confirmed upon receipt of
an 'init' (PINIT) message from the TP.

o InitSig initializes the interrupt handlers for the UNIX
Interrupt and Quit signals (sent by control-X and
control-T, respectively). The other Front End processes
ignore these signals.

2.2.5.11 ULKP

The module ulkp.c contains C functions which perform lookup

functions in the grammar tree when parsing user input. These

functions are:

o TLookup searches through the PY entries (parse lookup
entries) for the given GT node and tries to match the
user's token with all or part of a string in a PY entry.
If a syntactic item supports run-time recognition and
completion, a table in the py list form is created for
the item and a pointer to it is placed into the grammar
tree PY entry before it is scanned. TLookup returns a
pointer to a completion string for the item, if it is
found. This completion string is typed to the user and
is buffered if the user has requested the FE complete
his token.

o PrtLst functions in much the same way as TLookup, except
that all strings in the PY entries whose initial strings
match the user's token are typed out. This function
largely implements the "?" (Help Request) character
functionality. It supports run-time recognition and
completion, but does not return a pointer to a
completion string.

o SameStr is the basic string comparison function used in
parse table lookup. It terminates on null characters
and returns the number of matching characters as well as
a boolean which indicates whether the whole string was
matched or not.

2.2.5.12 UMESG

The module umesg.c contains the C function to "execute" the

command issued by the user, once they have been parsed. These

functions are:
A-41

o ProcCmd determines the command code for the user's
command (which is stored in the grammar tree), executes
the command directly if it is "local" (by calling
LoclCmd), or otherwise adds a US entry for the command,
sets its stream id, and then calls functions to assemble
and send the proper NSWTP message(s). Logout with the
"move' modification is implemented as a WM-LOGOUT

* message, followed by a WM-LOGIN message. Fastlogout is
implemented as a 'do Fastlogout' (P FASTL) pipe message
to the PP. All other cases are handled by MakRmMs.

o LoclCmd executes "local" commands, i.e., those directly
executable by the Front End. It returns the boolean
remot whose value indicates whether a remote action was
initiated or not. The value of remot is used when the
Front End is in deferred return mode to determine
whether control should be returned to the user or not.

2.2.5.13 UMUTIL

The module umutil.c includes the following principal C

functions dealing with assembling NSWTP messages and processing

user commands dealing with NSW tools:

o AdInLst copies and translates into NSWTP form the list
of integers in the parse structure entry pointed to by
an input argument.

o AdCSLst does the corresponding operation for character
strings (they are placed into NSWTP Character String
form).

o AdPCDPs, based on a pointer to the parse structure,
copies and translates the following five user tokens
into a Physical Copy Descriptor (PCD), followed by a
password. This is used by the NET command.

o IntrpPS was referred to under ProcCmd above. It scans
the PS table until a PS entry is found which points to
the command code in the grammar tree, which the user has
entered. If there are PS entries corresponding to
subcommands, these are scanned to verify that the
command code is correct, or to find a new command code
based on the subcommands entered

o ReruCmd assembles a WM-RERUNTOOL message and modifies
the active tool table accordingly.

A-42

o StdlnvM is a utility function to add the procedure name,
argument List count, and sessid (session id) to a
standard NSWTP type 1 message.

o RerunTl processes the RESUME command. It either causes
a switch from exec mode to tool mode and communication
with the specified Conversational Partner or, by calling
ReruCmd, causes a WM-RERUNTOOL message to be assembled.

o AbortTl process the QUIT ABORT command. It sends
TOOLSIG to the TP. If the Conversational Partner to be
aborted is an NSW tool, a tool abort scenario is
initiated; otherwise, the Conversational Partner (TELNET
connection or UNIX subshell) is terminated.

o TermTl processes the QUIT TERMINATE, TERMINATE, QUIT
SHELL, and QUIT TELNET commands. If the Conversational
Partner to be terminated is an NSW tool, a tool
terminate scenario is initiated; otherwise, the
Conversational Partner (TELNET connection or UNIX
subshell) is terminated.

2.2.5.14 UPARAM

The module uparam.c contains C functions used in parsing

parameters used in the command language.

Param accepts the parameter token and calls routines to

parse it depending on its expected type. The Front End currently

supports the following kinds of parameters: the null parameter,

integers (to 32 bite), ARPANET host name or number, NSW filespec

or filespec number, and arbitrary character strings. ParsInt

parses integers, and Parsfil parses NSW file specifiers. NSWFile

parses NSW file specifiers, which ParsFil uses to determine if a

string is a plausible NSW file specifier. NSWStr verifies that

the argument string contains only upper- or lower-case

alphabetics, numerics, the underline, or the hyphen character;

this is the character set, plus '.', to which NSW fie specifiers

are limited.
A-43

2.2.5.15 UPARS

The module upars.c, in conjunction with uchar.c, contains
the main parser functionality of the Front End. The principal C

functions are:

o ParsWrd attempts to parse the token to which the PS
pointer points. If the token is to be looked up in the
grammar tree, TLookup is called to do it; otherwise, the
token is parsed as a parameter. This routine also
verifies that the command being entered may legally be
entered at that time, e.g., LOGOUT may not be issued
unless the user is already logged in.

o AdvPars moves the GT pointer to the next GT node in t >"
grammar tree, once the current token has been par-e'd.
It also adjusts terminal modes for the nw token ., be
entered.

o PrtProm prints prompts to the user when the user
requests them or circumstances require it.

o IniPars (re-)initializes the Front End to begin a
completely new parse of user input. It is called, for
example, when the user types control-X.

o TypeBuf implements the control-R "retype command"
function. It scans the PS table and outputs all tokens
and buffered prompts to the user.

2.2.5.16 UPIPE

The module upipe.c contains the C functions which may be

invoked by the dispatch in PPInput in user.c. These are:

IHelpM handle NSW Help message.

IErDsM handle NSW Error message.

INullIM handle Null reply message.

TPdspM handle FE-PREDISPLAY message.

IScDonM protocol scenario is done.

A-44

INewScM new protocol scenario initiated remotely.

This module also reads the pipe from the Tool Process and

dispatches to routines to handle the message based on the content

of the message instruction field. There routines are:

ISuspM User has suspended use of a Conversational

Partner; control-N was typed to TP.

NAcTelM A TELNET or subshell activation failed.

ICloseM A Conversational Partner closed.

AAcTelM A TELNET or subshell activation succeeded.

AFinisM An NSW tool-ending sequence succeeded.

AFnTelM A TELNET or subshell termination succeeded.

IInitM The TP has initialized and is ready; causes
contents of TQ to be dumped to the pipe to the
TP.

NResumM A Conversational Partner cannot be resumed;
buffered output, if any, was displayed to the
user by the TP.

NActivM A NSW tool-activation failed.

AActivM A NSW tool-activation succeeded.

ANHelpM Answer Help message for current NSW tool.

IErrorM handles pipe error messages from both the PP and TP.

2.2.5.17 UPROC

The module uproc.c contains C functions which display or

create status information to or for the user. For example, the

function which processes the control-T Status Query character is

in this module.

A-45

2.2.5.18 UPUTIL

The module uputil.c contains utility routines for the Front

End parser. The principal C functions are:

o AddStr adds one or more characters to the user's
terminal buffer and may also display them on the user's
terminal.

o AddPS adds a new parse node to the PS table. If it is a
node for the first token of a subcommand, it is linked
to the first token of the previous subcommand, if there
is one, and otherwise to the PS entry for the command
verb (the very first token); see Section 3.2.4.1 for
detailed description.

o RemWord implements the control-W "remove field"
character. RemovPS is called by RemWord. It removes a
PS node from the PS table. If there are links to
command modification PS nodes, the links are broken.

o AdjTMod adjusts the FE terminal break classes, depending
on the current value of the GT pointer. The Front End
runs with two terminal break classes (in exec mode): (1)
every Ascii character is a break; (2) alphabetics,
numerics, balanced delimiters, and some others are
nonbreaks. The former set is in effect when the command
buffer is empty and after a complete command has been
accepted by the Front End (but before the final
confirming CR has been typed). The latter set is in
effect at all other times.

o MakTabl and RemTabl, respectively, create and remove
run-time parse lookup lists to support run-time
recognition and completion [for syntactic items whose
possible number of strings are small at any one time,
but which cannot be predicted in advance; e.g. the names
of Conversational Partner].

2.2.5.19 URMES

The module urmes.c contains the following C modules which

handle NSWTP messages.

o MakRmMs assembles an NSWTP message, based on its input
arguments and the contents of the PS table.

A-46

.1

o SndRmMs sends a 'initiate protocol scenario' (P INISC)
pipe message to the PP, followed by the NSWTP message.

o AbtRmMs resets the appropriate data structures and
removes the message buffer if the message is to be
aborted.

2.2.5.20 USIG

The module usig.c contains C functions which intercept UNIX

signals in the UP:

o Sig Qit intercepts the 'Quit' signal, which is sent by
typTng control-T. This function implements calling the
Status Query typeout and allows for quoting control-T.

o SigItr intercepts the 'Interrupt' signal, which is sent
by typing control-X. Invoked in deferred return mode,
this function causes all commands issued in deferred
mode to be treated as if issued in immediate return
mode; this is done by clearing USDEFER in the command's
US entry.

o Hup_UP intercepts the 'Hangup' signal when it is sent to
the UP. The Hangup signal is sent when the user loses
contact with his UNIX processes, e.g., when a TELNET
connection to the Front End breaks. If the user is
logged in, all outstanding Help calls are aborted;
otherwise, the Front End is stopped. A state variable
is also modified.

2.2.5.21 UTERM

The module uterm.c contains C functions which implement

terminal I/O in the UP. These include:

o TermInt reads from the terminal, based on the number of
characters to be read, as determined from the capac
system call. Characters are read into an intermediate
buffer.

o ChInput takes the characters from the intermediate

buffer, calls CmdPars to parse them, and if they define
a complete command, executes the command.

A-47

o TermOut performs unsolicited terminal output to the
user, i.e., command notification and user messages.
Output is performed only if the user is not typing in
data to the terminal and only if the information for a
given US entry is ready (USANNOU and USNOANN are off).

2.2.5.22 UTOOL

The module utool.c contains C functions which handle

Conversational Partners:

o TelnCmd implements the TELNET command. It adds an entry
to the US table (since the command is considered to
initiate a remote action), adds an entry to the tool
table, and sends an 'activate TELNET' (P ACTEL) pipe
message to the TP. If the TP has not yet been
initialized, the pipe message is buffered in TQ.

o QTelCmd implements the TERMINATE (et. al) command for
TELNET connections and UNIX subshells. It modifies a
state variable in the TT entry of the Conversational
Partner and sends a 'end use of conn/shell' (PFNTEL)
pipe message.

o ShowTT implements the SHOW ACTIVE TOOLS command. It
scans the tool table and prints out a listing of the
names and status of all active Conversational Partners.

o LkpTool looks up in the active tool table a
Conversational Partner specified by the user. The
Conversational Partner is guaranteed to exist, since it
was previously recognized by the parser (see RcgTool
below).

o RcgTool scans the active tool table and creates an
in-core table of the names of Conversational Partners in
a format compatible with that of the parse table lookup
routines (i.e., TLookup and PrtLst - see Section
2.2.5.11 above). This function implements run-time
recognition and completion for the names of
Conversational Partners.

o UChgTE effects a change of process mode from tool mode
to exec mode. It performs the inverse functions of
those done by UChgET and resets terminal modes.

o SlewTl invokes a change from exec mode to tool mode, for
the Conversational Partner specified by the user. The

A-48

procedure is: lookup the Conversational Partner in the
active tool table; if there is an outstanding Help call
for this Conversational Partner, go process it;
otherwise, change to tool mode and send a 'resume'
(PRESUM) pipe message to the TP.

o CntTool scans the active tool table and counts the
number of entries of the same type as that type
specified by the argument to CntTool.

2.2.5.23 UUTIL

The module uutil.c contains C functions which are utilities

used by the UP. Notably, StopTP and FEStop, respectively, stop

the TP and entire Front End.

2.2.5.24 GTREE

The module gtree.c contains the grammar tree (GT) which

defines the UNIX FE command language. Module gtree.h defines the

structure of GT (refer to Section 3.2.4.5 below) and defines

constants used in the table.

2.2.5.25 HTREE

The module htree.c contains the "help tree", which is a

table of structure GT, but which defines the acceptable Front End

user inputs when the user is answering a Help call. Module

htree.h defines names for NSW help codes.

2.2.6 Management of Conversational Partners

This section describes program modules which specifically

deal with handling Conversational Partners. All of the modules

access and/or modify the active tool table, and all but AddTT are

used by all three Front End processes.
A-49

2.2.6.1 ATT

The module att.c contains C functions which access the

active tool table, a file accessed by all three Front End

processes. These functions are:

o OpenTT opens the active tool table. All tool table
access is done in exclusive-access read-write mode.

OpenTT makes five attempts, separated by one-second
sleep calls, before giving up. If the open succeeds,
the file pointer is set to that specified by the
argument. If the argument is negative, the file pointer
is set to 2, the beginning of the first TT entry.

o ReadTT reads a tool table entry into the location
pointed by its argument. The file pointer is not
modified beforehand.

o WriteTT writes the tool table entry pointed to by its
second argument to the file position specified by the
first argument. If the tool table is not open, it is
opened first.

o CloseTT closes the active tool table.

The module att.h contains the definition of a TT entry and

defined constants used in referring to an entry. Refer to

Section 3.2.5.1 below for details.

2.2.6.2 ADTOOL

The module adtool.c contains C function AddTT, which adds an

entry to the active tool table. The entry will be added in the

first vacant position of the table, or appended to the end of the

file if no entries are vacant.

2.2.6.3 FNTOOL

The module fntool.c contains C functions that search for

A-50

particular TT entries or delete particular TT entries. Deleting

an entry consists of setting the entry's toolid field to zero.

Those C functions that search for TT entries leave the table open

on exit and return the entry found in the location pointed to by

an input argument. Those C functions that remove TT entries

close the table on exit.

The functions are:

MATTPtr find the entry at the specified file position

MToolID find the entry with the specified tool id

MToolNm find the entry with the specified tool name

MProcNm find the entry with the specified MSG process
name

RATTPtr remove the entry at the specified file position

RToolId remove the entry with the specified tool id

RToolNm remove the entry with the specified tool name

RProcNm remove the entry with the specified MSG process
name

2.2.7 Message Handling

This section describes program modules which specifically

manipulate NSWTP messages and NSWB8 elements. Except for

mwrite.c (which only the PP uses), the program modules are used

by both the PP and UP.

2.2.7.1 MPARS

The module mpars.c contains C functions that parse NSWTP

A-51

messages on an element-by-element basis. The parse results are

placed into a structure mp:

/* structure to parse incoming NSWTP messages */

struct mp{
int mpval; /* value of argument, or ptr to it */
int mp-cnt; /* size of argument, where relevant */

:}1

Below we give with each C function what they return

mp val and mp cnt. Each function returns a pointer to the slot

in the message buffer following that of the NSWB8 element just

parsed.

GetBool parses NSWB8 boolean; return boolean value in

mp val

GetIndx parses NSWB8 index; return index value in mp val

GetIntg parses NSWB8 integer; return pointer to first
byte of integer in mp val; must call CnvIntg
afterwards

GetBStr parses NSWB8 bit string; return pointer to string
in mp val, string count in mp cnt

GetCStr parses NSWB8 character string; return pointer to
string in mp val, string count in mp cnt

GetList parses NSWB8 List header; return List found in
mp val

2.2.7.2 MPRT

The module mprt.c contains C functions that print out NSWB8

elements in human-readable form and functions that manipulate

NSWTP messages.

A-52

The functions that print NSWB8 elements utilize a global

stack of size MSTKSIZ and a global stock pointer. The value of

the stackpointer (msub, an array subscript) specifies the depth

of nesting of the current List, and the value of the stack

element pointed to is the remaining List count for the current

List. The functions in question are:

TypeMes is the top-level message scanner and does some
formatting of the output. It calls the Prt...
routines.

Pop decrements the List count for each NSWB8 element
printed. When it reaches zero, it decrements the
stack pointer.

PrtBool prints a NSWB8 boolean.

PrtIndx prints a NSWB8 index.

PrtIntg prints a NSWB8 integer.

PrtBStr prints a NSWB8 b'it string.

PrtCStr prints a NSWB8 character string.

PrtList prints a NSWB8 List header. The stack pointer is
incremented, and the stack element is loaded with
the List count.

The remaining functions are:

CopyLst copies an NSWB8 List from the position of origin
argument to that of the destination argument.

SkipLst skips a NSWB8 List beginning at its argument.

2.2.7.3 MUTIL

The module mutil.c contains C functions that add NSWTP

message elements or NSWB8 elements to a target buffer.

A-53

Generally, the functions return a pointer to the location

following the section of the target buffer loaded. NSWB8

elements are assembled in byte-reversed order relative to PDP-11

addressing conventions. The functions are:

AddTid adds a transaction identifier to the message
buffer.

AddType adds a NSWTP type to the message buffer.

AddPNam adds a procedure name to the message buffer.

AdNxPar adds a NSWB8 element to the message buffer; it
calls the following functions.

PutBool adds a NSWB8 boolean.

PutIndx adds a NSWB8 index.

PutIntg adds a NSWB8 integer.

PutBStr adds a bit string.

PutCstr add a NSWB8 character string.

BegList adds a NSWB8 list header

2.2.7.4 MWRITE

The module mwrite.c contains C functions that write NSWB8

elements to an output file. These functions are used by the PP

to assemble the arguments for WM-FASTLOGOUT and WM-AUTOLOGOUT in

an intermediate file. The functions are:

WrtBool writes a NSWB8 boolean.

WrtIndx writes a NSWB8 integer.

WrtBStr writes a NSWB8 bit string.

WrtCStr writes a NSWB8 character string.

WrtList writes a NSWB8 List header.
A-54

WrtAny writes a NSWB8 element; it calls the preceding.

2.2.8 Data Storage Management

As described in Section 3.2.1, a data class is the name used

to refer to doubly-linked lists of dynamically allocatable table

entries. This section describes the program modules which manage

the Front End data classes.

In the PP and TP, the table entries are dynamically

allocated in the sense of requesting space from the UNIX memory

space allocator by making alloc system calls. In the UP, the

table entries consists of moving the entries defined at

compile-time from the free list to the end of the 'in use' list.

The state of each data class is represented by a class

header; this header is altered by the management routines to

reflect the current state of the data class.

2.2.8.1 ALLOC

The module alloc.c contains the following principal C

functions that perform data storage management in the UP:

o Initlze initializes the class header for a data class
and links together the table entries to form the free
list. The 'in use' list is empty.

o Allocat allocates an entry of the data class. It does
so by moving the entry from the free list to the end of
the 'in use' list.

o Dealloc deallocates an entry of the data class. The
entry is removed from the 'in use' list and placed at
the end of the free list.

A-55

0 NextEnt returns a pointer to the next entry of the data

class, given a pointer to the current entry. A null
argument causes it to return the pointer to first entry
in use.

o ChkEntr is called by Dealloc and NextEnt and verifies
that the argument is a valid pointer to an entry of the
data class.

2.2.8.2 ALLOCN

The module allocn.c contains C functions that perform data

storage management for the TP and PP. It uses the same function

names as those in alloc.c, but their operation is different; the

principal functions are:

o Initlze initializes the class header for a data class.
Any entries not already removed are freed (using the
UNIX free system call).

o Allocat allocates an entry for a data class. It does so
by calling the UNIX alloc system call and linking the
returned block to existing entries.

o Dealloc deallocates an entry of a data class. It does
so by using the UNIX free system call.

o NextEnt returns a pointer to the next entry of the data
class, given a pointer to the current entry, as in
alloc.c.

o ChkEntr, as in alloc.c, verifies that the current
pointer argument is a valid one.

2.2.9 Logging Functions

This section describes the program module which implements

the logging features of the Front End described below in Section

4.4.

A-56

WrtAny writes a NSWB8 element; it calls the preceding.

2.2.8 Data Storage Management

As described in Section 3.2.1, a data class is tha ea used

to refer to doubly-linked lists of dynamically allocatable table

entries. This section describes the program modules which manage

the Front End data classes.

In the PP and TP, the table entries are dynamically

allocated in the sense of requesting space from the UNIX memory

space allocator by making alloc system calls. In the UP, the

table entries consists of moving the entries defined at

compile-time from the free list to the end of the 'in use' list.

The state of each data class is represented by a class

header; this header is altered by the management routines to

reflect the current state of the data class.

2.2.8.1 ALLOC

The module alloc.c contains the following principal C

functions that perform data storage management in the UP:

o Initlze initializes the class header for a data class
and links together the table entries to form the free
list. The 'in use' list is empty.

o Allocat allocates an entry of the data class. It does
so by moving the entry from the free list to the end of
the 'in use' list.

o Dealloc deallocates an entry of the data class. The
entry is removed from the 'in use' list and placed at
the end of the free list.

A-55

o NextEnt returns a pointer to the next entry of the data
class, given a pointer to the current entry. A null
argument causes it to return the pointer to first entry
in use.

o ChkEntr is called by Dealloc and NextEnt and verifies
that the argument is a valid pointer to an entry of the
data class.

2.2.8.2 ALLOCN

The module allocn.c contains C functions that perform data

storage management for the TP and PP. It uses the same function

names as those in alloc.c, but their operation is different; the

principal functions are:

o Initlze initializes the class header for a data class.
Any entries not already removed are freed (using the
UNIX free system call).

o Allocat allocates an entry for a data class. It does so
by calling the UNIX alloc system call and linking the
returned block to existing entries.

o Dealloc deallocates an entry of a data class. It does
so by using the UNIX free system call.

o NextEnt returns a pointer to the next entry of the data
class, given a pointer to the current entry, as in
alloc.c.

o ChkEntr, as in alloc.c, verifies that the current
pointer argument is a valid one.

2.2.9 Logging Functions

This section describes the program module which implements

the logging features of the Front End described below in Section

4.4.

A-56

2.2.9.1 LOG

The module log.c contains the following principal C

functions:

o InitLog initializes a process for event-logging. The
event log file is created, and an initial record is
written out to it. The file stays open throughout the
Front End session.

o LogEvnt is called to log a Front End process event. It
writes out a record to the event log file based on the
arguments given to it. The module log.h contains the
structure of the non-Ascii part of each event log
record.

o OpnLgFl opens an error log file and sets the file
pointer to the end of the file.

o LogErr writes a line to the error log file. If LOG TTY
is set, the same line is written to the user's terminal
also.

2.2.10 Inter-Process Communication

This section describes the program modules used to implement

inter-process communication in the Front End.

2.2.10.1 IPC

The module ipc.h is a C header file in which the common

structure of all pipe message transactions (IP - see Section

3.1.1.3 below) is defined. The auxiliary message block for

'initiate scenario' (P_INISC) pipe messages is defined, and the

names for the contents of the instruction field are defined.

2.2.10.2 PIPE

The module pipe.c contains C functions which perform pipe

I/O in all three Front End processes. The functions are:
A-57

WriteIP write a pipe header (an IP block) to a pipe.

PrintTP if VRB IPC is turned on, PrintIP is called to
print out the contents of the pipe header to the
terminal; called from WriteTP and ReadIP.

Log!? If LOG IPC is turned on, log the pipe message in
the event log file; called from WriteIP and
ReadIP.

ReadIP Read a pipe header from a pipe.

2.2.11 Utility Routines

The module libfe.a is a file in UNIX library format and

contains the following C utility functions:-l

AdToBuf copies bytes from origin to destination
locations; arguments are addresses.

AToInt performs Ascii to (16-bit) integer conversion,
accepts a base argument.

Clr~yte clears bytes beginning at origin location, ending

at destination location or with null byte count.

Cnvlntg Converts NSWTP integer to UNIX long integer.

ConvLC Converts upper-case alphabetics to lower-case.

ConvUC Converts lower-case alphabetics to upper-case.

* CopyFil Copies contents of input file to output file;
neither opens nor closes either file.

CopyByt Copies bytes from origin to destination
locations; one argument is a count.

DoAlloc Attempt to allocate space; handle errors if
failed.

ErrCond Send an error message to the UP; then abort or
exit from FE, or continue.

FlushFd Read characters from a file descriptor,
especially to keep pipes clear.

TnitPB Initialize process control block.
A-58

IntrpCh Print graphic interpretation of special
characters, octal representation of other
characters.

LdVStr Create space for string; copy string into new
space; store pointer to new string.

MkErDes Assemble an NSWTP error descriptor.

MkFMEnd Make fourth argument of FM-ENDTOOL.

* MkHstNm Make a special host name string.

NToA Convert an integer to Ascii; accepts a base
argument.

ProcArg Handle process arguments at initialization.

PrtLong Print a UNIX long in octal.

RdBytes Read bytes into buffer; is uninterruptible.

2.2.12 Front End Initialization Process

The module nswfe.c is the Front End initialization process

(see Section 2.1.1 above). It reads in the pathname of the UP

from the Front End initialization file and overlays the UP by

calling execl.

A-59

MCDI" PAGE BLAhK-N2o YILMD

3. INPUT/OUTPUT DESCRIPTIONS

This chapter provides detailed information on the structure

and composition of data used by the UNIX Front End

implementation.

3.1 General Description

3.1.1 Input/Output

The Front End is a "system program" which functions more

like an operating system than like a language processor, such as

a compiler, or a scientific program, such as a statistics

package. Therefore, the Front End implementation does not deal

with input/output in the "traditional" sense of inputs and

processing it to produce a set of outputs.

However, in another sense (see "FE Flow of Control" Section

2.1.4 above), the u-ser input (UNIX Front End command language)

may be viewed as an input which produces an output (an NSWTP

message or some local action), and a received NSWTP message, or

input received from a Conversational Partner, may be viewed as an

input to produce output to the user. Refer to the UNIX Front End

User Manual For a complete description of the Front End command

language and patterns of interaction between the user and the

Front End.

The Front End accepts input at startup time from the Front

A-61

4 ,aniim~ ...

End initialization file which defines the characteristics of the

Front End configuration to be run.

The Front End text file is read to retrieve selected pieces

of text to be displayed to the user; this file is indexed by the

Front End text index file.

3.1.1.1 Front End Initialization File

The user supplies the UNIX pathname of the Front End

initialization file as an argument to the Front End

initialization process, or if not supplied, the initialization

process will use fe-init as the default file name.

For each Front End process, the initialization file contains

its UNIX pathname and values for the flags governing

event-logging and diagnostic typeout. Turning on event-logging

for a Front End process will cause an event log output file to be

generated. Turning on diagnostic typeouts for a Front End

process causes extra terminal output to be generated. In

addition, the initialization file contains the UNIX pathnames for

the Front End text file and text index file (see below). Refer

to the UNIX Front End User Manual for a detailed description of

the initialization file; see also Sections 4.3 and 4.4 below.

3.1.1.2 Front End Text File

The Front End text file is an Asci.i file containing the name

of the item to be referenced, followed by the text to be

displayed to the user when that item is referenced. Ttems to be

A-62

referenced are enclosed in double # signs, to delimit both the

items and their text. For example:

##iteml##

Here is text for iteml.
##item2##
Text for item2.

and so on.

The Front End text index file has, for each item, the

following format:

file ptr I #chars in text of item I item name I null char

2 2 N 1

It is not an Ascii file. The byte counts for each field are

shown below each field.

3.1.1.3 Inter-Process Communication

Front End processes communicate with each other over UNIX

pipes. Each message transaction consists of a pipe header, which

is always sent, plus zero or more additional transmissions

associated with the instruction field in the pipe header. The

structure of a pipe header (structure ip) is described below.

The synonyms for the arguments are the mnemonic names used in the

source code for the arguments of the pipe header.

A-63

/* inter-process communication structures */

struct ip{
int ip_inst; /* instruction field */
int ipargl; /* first argument */
int ip arg2; /* second argument */
nt iparg3; /* third argument */
int iparg4; /* fourth argument */
int ip-arg5; /* fifth argument */

.}1

/* synonyms for IPC fields */

#define ipaspt ip_argl /* ptr to AS table */
#define ipattp iparg2 /* ptr to tool table file */
#define ip_uspt ip_arg3 /* ptr to user session table */
#define ipscen ip_arg3 /* FE ptcl scenario number */
#define ipusnx ip_arg4 /* ptr to US entry for next scen */
#define ip__pcod ip_arg4 /* value of uspcod for scen */
#define ip erno iparg4 /* value of errno */
#define ip-topt iparg4 /* ptr TO entry */
#define ip-hnum iparg4 /* host number (long) */
#define ip fskt ip_arg4 /* foreign socket # (long) */
#define ip-usid iparg4 /* user id (long) */
#define ip-mlen ip_arg5 /* length of following message */
#define ip_tipt ip_arg5 /* ptr to tool buffer header */

The octal values of the instruction field are less than

0400. If a pipe message generates a positive acknowledgement

from the receiving process, an octal 0400 is OR-ed into the

instruction field of the returning message. If a pipe message

generates a negative acknowledgement from the receiving process,

an octal 01000 is OR-ed into the instruction field of the

returning message.

For the 'initiate new scenario' (PINISC) pipe message, the

pipe header is followed by an auxiliary block of the following

structure:
A-64A

/* structure for auxiliary info for P INISC messages */

struct pi{
int pisid; /* sid */
int pistid; /* stream id for command */
int piscen; /* FE ptcl scenario number */
int pi pcod; /* value of us pcod in US entry */
int pi-mlen; /* length of following message */1;

In both structures, the fields are declared as ints;

however, the fields of ip contain various kinds of pointers, as

well as ints.

3.1.1.4 Signals

The Front End uses UNIX signals for communication among the

Front End processes on an interrupt basis. The signals used by

Front End processes are:

o Hangup: caught by all three Front End processes. It
signals the start of an Autologout condition, i.e., each
process will take steps to facilitate the automatic
logout of the Front End from NSW.

o Interrupt: caught by the UP and "ent by typing the
"abort input" character control-X. The signal handler
implements the functionality of control-X. The PP and
TP ignore the interrupt signal.

o Quit: caught by the UP and sent by typing the Status
Query character control-T. The signal handler
implements the functionality of control-T. The PP and
TP ignore the Quit signal.

o INR/INS: caught by the User TELNET package in the TP.
The signal handler (invisible to the Front End) handles
the signal, which marks the arrival of an NCP
host-to-host interrupt. The PP and UP ignore the
INR/INS signal.

A-65

o LPDSIG Signal 16 (Local Process Dead): this
user-defined signal is sent by the UP to the PP and TP
to force them to terminate immediately. It is sent when
a catastrophic error in the Front End is detected. The
PP and TP die when the signal is received.

o TOOLSIG Signal 17 (Tool): this user-defined signal is
sent by the UP to the TP when the user issues a QUIT
ABORT command. It is caught by the TP and has the
effect of interrupting an open which may not have
returned.

All other UNIX signals have their usual effect.

3.1.1.5 Terminal I/O

The terminal modes and break character sets used by the UP

are defined in IniTMod in uinit.c and as 'FEBREAK'; global

variable breaks has the value 'FE BREAKS'). The terminal modes

and break character sets used by the TP are defined in IniMBlk in

tutil.c and in DoRmEch in telnio.c. The modtty system call is

used to control all FE terminal modes. Consult "modtty (II)'

in (61 for further details.

Terminal input is done by using the await and capac system

calls. The process reading from the terminal await-enables it

using the awtenb system call; this makes terminal input trigger a

wakeup on an await. This function is disabled by using awtdis

system call.

When an await wakeup occurs, the capac system call is ready

to be read from the terminal. capac always returns a count of

the first set of nonbreak characters plus the following break

character as its value. This is true even if there is more than

A-66

one break character in the 'terminal input queue. Thus, any

terminal read is guaranteed to terminate with a break character.

If the terminal input queue contains nonbreak characters but no

break characters, capac will return 0.

The MECHO modtty control order, which is executed by the C

function EchoChr, is required because the Front End operates in

deferred echo mode. Were it not present, the nonbreak characters

typed by the user could echo prematurely. The M ECHO function

tells the UNIX terminal handler to echo the next set of nonbreak

characters in the terminal input queue.

Terminal output is straightforward. If flag itrflag is

FALSE, the user has typed control-X at some point; all terminal

output until the next prompt is suppressed, and itrflag reset to

TRUE.

The transfer of control of the terminal (in process mode

changes: exec mode to tool mode, or vice versa) is accomplished

by awtdising the terminal in the process losing control of it,

and then awtenbing it in the process gaining control of it.

Associated FE process variables are also changed.

3.1.2 Internal Front End Data

To support its operation the Front End maintains two kinds

of internal data:

o Static data items are those that do not change as a

A-67

result of Front End execution after a process has been
initialized. Included are such items as PT (Section
3.2.2.4) in the PP, and the grammar tree and Help tree
(Sections 3.2.4.5 and 3.2.4.6) in the UP.

o Dynamic data items are those changed as a result of
Front End executions. Included are all data classes of
all Front End processes and all Front End state and
context variables.

3.2 Data Structures

This section describes the structures and data used in the

Front End implementation.

3.2.1 General

The term data class, or class, as used in this document and

the Front End source code means a doubly-linked list of

dynamically allocatable table entries. The forward and backward

list pointers are, respectively, constrained to be the first two

words of a table entry. The rest of the table entry may have an

arbitrary structure. By referencing the list pointers in the

first two words, the data management functions described in

Section 2.2.8 above perform their tasks.

As has been noted, the data management functions retain

status information about each class in a class header. The class

header for PP and TP data classes follows:

A-68

/* (new) class header */

struct nc
{

int *nc_beg; /* ptr to first entry */int *nc end; /* ptr to last entry */

int ncnent; /* # entries allocated */
int ncesiz; /* size of each entry (in bytes) */1;

The structure member nc esiz contains the size of each entry

in bytes and is not altered in the course of process execution.

The class header for the UP is:

/* class header */

struct ch
{

int *ch-fuse; /* first entry in use */
int *ch-luse; /* last entry in use
int *ch-ffre; /* first free entry */int *ch-lfre; /* last free entry */

int ch nfre; /* number of free entries */
int *ch limi; /* limit of entries */

The first two structure members are pointers, respectively,

to the beginning and end of the 'in use' list. The second two

members are pointers, respectively, to the beginning and end of

the free list. ch nfre is a count of the number of free entries

left out of the total number pre.-defined at compile time; the

latter number is found in nument in userv.c.

A-69

AD-AIS055 3 ROL ANEK N NEIA INC CAMBRIDGE MA F/6 9/2

UI NS FRN EN ENACMNS LMJUN A1 R H THOMAS, H 0 LIND S G TONER F30bO2-80 C 0062
UNCLASSIFIED 8BH- 4571 VOL- R MADC-R-8A 64 VOL-1 NL

3.2.2 Protocol Process

This section describes the principal data structures of the

PP.

3.2.2.1 AS - Active Scenario Table Class

For each active NSW protocol scenario, there is an

associated AS entry. It contains all information global to the

scenario. The structure of an AS entry is:

/* ACTIVE SCENARIO TABLE */

struct as
{

struct as *as_pent; /* ptr to previous entry */
struct as *as nent; /* ptr to next entry */

int as sid; /* scenario identifier */
int as-stid; /* stream id */
struct as *as_prey; /* ptr to previous scenario */
struct as *asnext; /* ptr to next scenario */
int asflag; /* flag; see definitions below */
int asscen; /* FE ptcl scenario number */
struct pt *as_ptpt; /* ptr to current ptcl step */
struct tc *as_tcpt; /* ptr to current t-block */
int *asuspt; /* ptr to active session

entry in UP */
int asattp; /* file ptr of associated tool */
int aspcod; /* value of uspcod for scen */
long astmis; /* time last RcvSpec issued */

/* flags used in asflag */

#define AS REMOT 01 /* on, if scen remotely initiated */
#define AS PERR 02 /* primitive in scenario failed */
#define AS-COMPL 04 /* on, if current step has completed */
#define AS PEND 010 /* on, if current step initiated */
#define AS-SCDON 020 /* scenario completion, waiting for

flushing */
#define ASBLOCK 040 /* temporarily suspend execution

of scenario */
#define ASFASTL 0100 /* scen is part of Fastlogout seq */
#define AS-AUTOL 0200 /* scen is part of Autologout seq */

A-70

3.2.2.2 TC - Transaction Control Block Class

For each step of a protocol scenario, there is an associated

transaction control block. The TC entry contains information

specific to the protocol step. Once created, however, a TC entry

remains in existence until the protocol scenario has terminated.

In many cases, the current TC entry must reference previous TC

entries to obtain needed information. The structure of a TC

entry, along with mnemonic names for the extra arguments is:

/* TRANSACTION BLOCKS */

struct tc
{
struct tc *tc_pent; /* ptr to previous entry */
struct tc *tc nent: /* ptr to next entry */

struct as *tc-aspt; /* ptr to corresponding AS entry */
struct pt *tcptpt; /* ptr to previous transaction block;
struct tc *tc-prev; /* ptr to previous transaction block;

if = NULL, no previous block */
struct tc *tc next; /* ptr to next transaction block;

if = NULL, no next block */
int tc evnt; /* event handle returned by MSG *1
int tc-disp; /* disposition returned by MSG */
int tc sig; /* signal used */
int tc-type /* if message, NSW type; if SendAlarm,

alarm code */
int tc id; /* if message, tid/sid of message */
int tc-timo; /* timeout, where appropriate */
struct-mb *tc mbpt; /* ptr to message buffer hdr; null

for ops involving no message */
int tc extl; /* extra arg 1 */
int tc-ext2; /* extra arg 2 */
int tc-ext3; /* extra arg 3 */
char *Ec vtbk; /* ptr to variable format and variable

size t-block extension to hold any
other information */

char tc_proc[MSGPSIZI; /* MSG process name involved */

A-71

/* synonyms for TC fields */

#define tc acod tctype /* alarm code for SendAlarm */
#define tc-fskt tc extl /* foreign socket number (long)
#define tc-hand tc-ext3 /* for SenGen, qwait; for SendSpec

and RecvSpec, special handling
code */

3.2.2.3 MB - Message Buffer Header Class

Associated with each NSWTP message, whether sent or

received, is a message buffer header. Each MB entry has the

following structure:

/* MESSAGE BUFFER HEADERS */

struct mb
{

struct mb *mb pent; /* ptr to previous entry */
struct mb *mbnent; /* ptr to next entry */
struct tc *mb tcpt; /* ptr to corresponding t-block */
int mb char; /* # chars buffered */
char *mb mbuf; /* ptr to message buffer */

3.2.2.4 PT - Protocol Scenario Definition Table

The protocol scenario definition table is a global data item

and is not a data class. Each protocol scenario is defined by a

number of protocol scenario steps, each of which is defined by:

struct pt{
int pt op; /* op code */
int pt-timo; /* timeout */
int pt_arg; /* argument */

A-72

The op code is either that of a MSG primitive or PTGOTO or

PTENDSC. If the op code is that of an MSG primitive, the

timeout argument is the timeout to be used on the primitive

invocation. For SendMessage primitives, the argument (pt arg)

indicates the kind of message to be sent. For the SendAlarm

primitive, the argument gives the alarm code.

For the ReceiveSpecific primitive, the argument is a pointer

to a block of codes defining what messages are allowed to be

received for the current step. If the received message matches

an expected message, the ReceiveSpecific protocol step returns at

an offset from itself determined by the position in the block of

codes matching that of the received message. That is, for

example, if the received message matches the second code in the

argument block pointed to by pt arg, then the ReceiveSpecific

protocol step will return two steps past the ReceiveSpecific

step. This is called 'conditional branching' and enables the

structure of PT to be fairly simple.

The PTGOTO op code means to move the PT pointer ahead or

back the number of steps given in the argument; the sign of the

argument determines the direction of motion.

The PTENDSC op code means that the scenario is done and

causes a 'scenario done' pipe message (PSCDON) to be sent to the

UP; also, ASSCDON is sent in the associated AS entry.

A-73

{{ { {{4

!T_

3.2.3 Tool Process

This section describes the principal data structures of the

TP.

3.2.3.1 TI - Tool Buffer Header Class

For each active Conversational Partner, there is a TI entry.

After a Conversational Partner has closed or been terminated, the

TI entry will remain if there is buffered output for the user;

otherwise, it will be removed. The structure of each TI entry

is:

/* TOOL BUFFER HEADERS */

struct ti
t

struct ti *ti pent: /* ptr to previous entry */
struct ti *ti--nent; /* ptr to next entry */

struct NetConn *ti conp; /* ptr to connection
control blk */

int ti uifd; /* fd to read from UNIX pipe */
int ti uofd; /* fd to write to UNIX pipe */
struct to *titopt; /* ptr to corresponding

TO entry */
int tiattp; /* file ptr to corresponding

TT entry in tool table */
int ti char; /* # chars buffered */
char *ti tbuf; /* ptr to tool buffer */
int *titmod; /* ptr to terminal modes for conn */1;

For network I/O, the connection control block pointer

returned by the UNIX User TELNET Package is used, and (ti uifd

and ti uofd are ignored. One pointer handles both directions of

data transfer.

A-74

For pipe I/O with inferior UNIX processes, ti uifd and

(ti uofd hold, respectively, the read and write pipe file

descriptors; the connection control block pointer is ignored.

3.2.3.2 TO - Tool Connection Information Class

Each TO entry corresponds to one NCP "dummy open" having

been performed and keeps track of the Conversational Partners

using the block of 8 sockets returned by the open. The structure

of each TO entry is:

/* Tool Connection Information Blocks */

struct to

struct to *to{pent; ptr to previous entry
struct to *to-nent; /* ptr to next entry */
int to-bsfd; /* base fd for block of 8 sockets */
int to-lskt; /* socket # of base socket */
struct ti *to tipt[4]; /* ptr to corresponding TI entries */1,

Refer to 'NCP(IV)' in [6] for details concerning the NCP

"dummy open."

3.2.4 User Process

This section describes the principal data structures of the

UP.

3.2.4.1 PS - Parse Structure Class

Each token partially or completed entered by the user causes

a PS entry to be allocated. If a field of the command being

A-75

entered by the user is removed, the corresponding PS entry is

also removed; PS entries are added and removed sequentially,

i.e., added and removed at the end of the PS table. In the case

of subcommands, a special linkage of PS entries is supported (see

below). The structure of each PS entry is:

/* PARSE STRUCTURE TABLE */

struct ps
{ struct ps *ps_pent; /* ptr to previous entry */

struct ps *ps_nent; /* ptr to next entry */
int ps_type; /* type of gt node */
struct gt *ps_gtpt; /* ptr to corresponding gt node */
char *psbtok; /* ptr to beginning of token */
char *ps etok; /* ptr to end of token */
int ps_val; /* "value" of parsed word */
char *ps_prev; /* ptr to associated string in gtree */
int ps_flag; /* flags (defined below) */
struct ps *ps_prev; /* ptr to prey parse node */
struct ps *ps_next; /* ptr to next parse node */
struct ps *ps amod; /* ptr to first or next <mc> node */
struct ps *pszmod; /* ptr to last or prev <mc> node */};

/* flags used in psflag */

#define PS RECOG 01 /* word has been successfully parsed */
#define PS COMPL 02 /* word ends a complete command */
#define PS CC 010 /* have command for <mc>, expecting

CR LF */
#define PS PROM 040 /* prompt has been printed */
#define PS-ABORT 0100 /* user has aborted Help */

The first PS entry of each subcommand is linked to the first

PS entry of the main command or to the first entry of the

previous subcommand. Thus, subcommands "hang" off the command

verb. For example, the PS entries for a generalized command with

subcommands would be linked as follows:

A-76

FIG. 2. PARSE STRUCTURE NODES FOR A GENERALIZED COMMAND

Cormmand Vert prey ruretpe

next

next next

Subcommand 1 prvAgmn or< Aget o

Note: pointers are labeled with appropriate structure menber names.

3.2.4.2 US - User Session Table Class

For each active command which has generated remote action,

there is a US entry. It contains all information necessary for

the Front End to process the command; each US entry has the

following structure:

A-77

/* USER SESSION TABLE */

struct us
{

struct us *us_pent; /* ptr to previous entry */
struct us *us _nent; /* ptr to next entry */

int *usaspt; /* ptr to AS entry in PP */
int us cid; /* command id */
int stid; /* stream id */
int usstat; /* command status word */
struct tb *us_tbpt; /* ptr to first TB entry for this

command */
int usscen; /* FE ptcl scenario number */
int us_pcod; /* value from grammar tree */
int us attp; /* file ptr for associated tool */
char *us cmd; /* ptr to command string */
char *us str; /* ptr to auxiliary string */
struct us *usprey; /* ptr to prey command; null if

no sequencing */
struct us *us-next; /* ptr to next command; null if

no sequencing */

/* flags used in us stat field */

#define US ANNOU 01 /* user announcements have been made */
#define US SCDON 02 /* scenario has completed */
#define US-HLSUP 04 /* Help has been supplied */
#define US-DEFER 010 /* command issued in deferred mode */
#define US-ABORT 020 /* user has aborted the command */
#define USPRALL 040 /* print notification regardless of

terminal context */
#define US REMOT 0100 /* scenario remotely-initiated */
#define US-NOANN 0200 /* inhibit user announcements */
#define US-TLHLP 0400 /* processing automatic slew from

tool mode */

/* flags used in us umes field */

#define US OURDY 01 /* non-Help output ready */
#define US HLRDY 02 /* Help output ready */
#define US-ERRDY 04 /* error output ready; display

immediately */
#define USCOMPL 010 /* command has completed */
#define USTLRDY 020 /* associated tool ready to use */
#define US TLCOW 040 /* associated tool closed, there is

output waiting */
#define US TLCLS 0100 /* associated tool closed, no output

waiting */
#define USTLNRD 0200 /* associated tool not ready to use */

A-78

The output buffered for display to the user is accessed via

us tbpt.

3.2.43 TB - Terminal Buffer Header Class

FOr each active command, one or more buffer of information

may be displayed to the user. Each buffer is associated with a

TB entry. Each TB entry points to the associated US entry and to

the next TB entry. The structure of a TB entry is:

/* TERMINAL (Output) BUFFER HEADERS */

struct tb
{

struct tb *tb pent; /* ptr to previous entry */
struct tb *tb nent; /* ptr to next entry */

struct us *tb uspt; /* ptr to corresponding US entry */
struct tb *tb next; /* ptr to next TB entry for same US

entry */
int tb char; /* # chars buffered */
char *Eb tbuf; /* ptr to buffer */
int tb inst; /* cqde for kind of info stored

-- is ipptr->ipinst */
int tb_pcod; /* value of us_pcod for this buffer */1;

It is necessary to store tb pcod in each TB entry because

this value may change over the course of executing a command

which has more than one protocol scenario associated with it.

Suppose the user issued a command which caused two

FE-PREDISPLAY messages plus a Reply to be sent by the WM. The

corresponding US and TB entries would be linked as follows:

A-79

. " I] - I| l ::-- j

US entry for uPt TB entry PE-PTEDISPLAY message #1
command (4th argument)

next

_ FTB entry FE-PREDISPLAY messa,,e

uspt TBetyt~(4th argument)

next I

qB entry i Reply message
t (4th argument)

Note: pointers are labeled with appropriate structure member names.

FIG. 3. HOW USER OUTPUT IS BUFFERED IN THE USER PROCESS

3.2.4.4 TO - Tool Process Message Queue Class

Each TO entry holds a pipe header to be transmitted to be TP

when it has been initialized. The structure of each entry is:

/* Tool Process Message Queue */

struct tq

struct tq *tq_pent; /* ptr to previous entry

struct tq *tq nent; /* ptr to next entry */
struct ip tqlpbk; /* the IPC header to be sent */

A-80

3.2.4.5 Grammar Tree

The grammar tree is a global data item and is not a data

class. Each GT node is linked to following PY or PZ entries. A

PY entry is used when the syntactic item can be recognized. A PY

entry can consist of one or more entries, each defining a valid

string in the current position of the tree. A PZ entry follows

the GT node if the syntactic item may not be recognized, i.e., it

is a parameter.

/* structure of grammar tree node */

struct gt
1

int gttype; /* flags and type of node */
char *gt_prom; /* ptr to prompt string */
char *gt_help; /* ptr to help string */
char *gtguer; /* ptr to query string */
int *gtflkp; /* ptr to first PY/PZ entry */

/* structure of parse table entry (lookup) */

struct py{
char **pylist; /* ptr to list of syntactic

items */
struct gt *py_nxgt; /* ptr to next gt node */
struct gt *py_mcgt; /* ptr to <mc> node in gt */
int py_flag; /* flags, defined below */
int py_val; /* value */

1;

A-81

i

/* structure of parse table entry (no lookup) */

struct pz{
int pz_val; /* default value of parm, or

ignored */
struct gt *pznxgt; /* next gt node */
struct gt *pzmcgt; /* ptr to <mc> node in gt */i };

/* flags used in pyflag */

#define PYUNLI 01 /* command may be used even if
user is not logged in */

#define PY ULIP 02 /* command may be used if login
is pending */

#define PY ULDI 04 /* command may be used if user
is logged in */

#define PYULOP 010 /* command may be used if logout
is pending */

#define PYUSMC 0400 /* command supports modification */

py mcgt and pz mcgt are non-NULL only if the command

supports command modification. Only the mcgt entry in the

command verb PY or PZ entry is used. If a command supports

run-time recognition and completion, the C function address for

the routine to assemble the list of syntactic items is placed

into py val. py val is also used to hold the Front End protocol

scenario number of the command being invoked, together with a

command code specifying what action the command invokes. The

flags in py flag specify so-called "user state" information,

i.e., under what conditions a command may or may not be issued.

As an example, the structure of the grammar tree for the

ALTER command is given in Figure 4.

A-82

FIG. 4. STRUCTURE OF GRAMMAR TREE FOR ALTER COMMAND

vt: gq altr Note: blocks are labeled
'tag: structure name'. py
blocks are used for parameters
which imay be recognized;

-pz blocks are used for
other parameters.

py: yqaltr "add"',,

"add" 'drop"

rt: gp_aadd gt: 2_adrr

py: ypaadd f "all" py: yp adrPo"all"
''copy" It any"
"delete" "copy"
"enter" "delete"

"enter"

vt: -,r_aadd gt: r_adrp

pz: zz-fini

(CLues: ec) j (filespec)

A-83

3.2.4.6 Help Tree

The Help tree is a global data item and is not a data class.

It has the same structure and conventions as the grammar tree

(above), but defines legal user input for the Help reply terminal

context.

3.2.4.7 UC - User Context Block

The user context block is a global block giving global user

context information. In the current version, uc ctx and uc gtrt

are not used; their function is performed by global variables

context and gtroot, respectively. The structure and associated

flags of the block are:

/* User Context block */

struct uc
int ucflag; /* flags; see below */
int uc ctx; /* user terminal context */

struct gt *uc_gtrt; /* starting GT node for parsing */
char *uctbuf; /* ptr to terminal buf for context */
char *ucnxbf; /* to location next char is to be

buffered into */

/* flags used in ucflag */

#define UCMCOK 04 /* command supports modification */
#define UCBGMOD 010 /* about to begin command mod */#define UC-QUOTE 020 /* next char is quoted *

3.2.5 Common To All Three Processes

This section describes the principal data structures common

to all three Front End processes.

A-84

3.2.5.1 TT - Active Tool Table

The active tool table is in effect a piece of shared memory

for the three Front End processes. It incorporates all

globally-required information about active Conversational

Partners. Each Front End process references and modifies TT at

points in its execution. The structures of each TT entry is:

/* structure of tool table entry */

struct tt
- {

long tt tlid; /* tool id (WM-assigned) */
int tt Ylag; /* flags - defined below */
int *tt_aspt; /* ptr to corresponding AS

entry in Protocol Process */
int *tt_tipt; /* ptr to corresponding TI entry

in User Process */
int *tt_uspt; /* ptr to corresponding US entry

in User Process */
int ttcnid; /* MSG conn id / UNIX shell pid */
int ttctyp; /* NSW connection type */
int tt lskt; /* local socket number */
long tt fnum; /* foreign socket/host number */
char tt gtnm[TNAMSIZ]; /* generic tool name */
char tt pnam[MSGPSIZ]; /* MSG process name */

/* synonyms for some TT fields */

#define tt_spid tt cnid /* UNIX shell pid */
#define tt fskt tt fnum /* foreign socket number */
#define tt-hnum tt-fnum /* foreign host number */

A-85

/* flags used in active tool table (ttflag) */

#define TT NSWT 01 /* tool is standard NSW tool */
#define TT TELN 02 /* tool is a TELNET connection */
#define TTLNDSV 04 /* set if LND has been saved */
#define TT-ABORT 010 /* tool is being aborted */
#define TT-TERM 020 /* tool is being terminated */
#define TTERROR 040 /* error has occurred */
#define TT-NRDY 0100 /* tool not ready to use */
#define TT-CLOSE 0200 /* connection has been closed */
#define TTSTART 0400 /* tool has been started/restarted */
#define TT-FINIS 01000 /* TP has received P FINIS for tool */
#define TT-HCALL 02000 /* there is an outstanding Help call

for this tool */
#define TT SHELL 04000 /* tool is a UNIX subshell */
#define TT-ALL -1 /* every possible flag */

For NSW tools, the 'generic tool name' is a tool name as

found in the user's WM node entry, e.g., 'teco-r2'; the 'tool

instance nameA consists of a FE-supplied numeric prefix, followed

by the generic tool name.

In the current version, TNAMSIZ is 20 bytes, and MSGPSIZ is

32 bytes.

3.2.5.2 PB - Process Control Block

The process control block is a global data item specifying

process status. Most of it is initialized at startup and not

altered subsequently. The s-ructure of the block is:

A-86

II

7

/* Process Control Block */

struct pb

int pb spid; /* pid of self */
int pb-fdin; /* fd of user input */
int pbfdou; /* fd of user output */
char pb mode; /* mode of process */
char pbproc; /* identify process to self */
int pbstat; /* state of process */
int pb ttfd; /* fd of tool table */
int pb erfd; /* fd of error log file */
int pb_lgfd; /* fd of event log file */1;

A-87

.. II 1' I [- I010I0I2.... . 1I lO Il ll

IRECHMMN PAaE B1.AC-ZNO! 721=

4. PROGRAM COMPILING, LOADING, AND MAINTENANCE PROCEDURES

4.1 Support Software Requirements

The source programs for the Front End are a collection of

program modules, written in the programming language C, as

implemented by the ncc compiler. This compiler is an enhanced

version of the Bell released version 6 C compiler and is less

powerful than the pcc [Phototypesetter License] compiler.

To generate a new version of the Front End, the modules must

be compiles and loaded with ncc. Shell files are provided for

this purpose, and these are listed in Section 4.2.

The modules which comprise the Front End source programs are

kept on-line in the UNIX file system. Each module is stored in a

separate UNIX file. The constituent modules are:

alloc.h defines for alloc.c
allocn.h defines for allocn.c

att.h structure and flags for TT
fe.h defines global to FE

gtree.h defines for gtree.c
htree.h defines for htree.c

ipc.h defines for inter-process communication
nsw.h global FE defines for NSW items
open.h ARPANET NCP open parameter block

pscentbl.h defines for pscentbl.c
ptcl.h defines global to PP
ptclv.h external declarations global to PP
tool.h defines global to TP

toolv.h external declarations global to TP
user.h defines global to UP

userv.h external declaration global to UP
adtobf.c function AdToBuf

A-89

adtool.c function AddTT
alloc.c manage UP data classes
allocn.c manage PP and TP data classes
atoint.c function AToInt

att.c low-level tool table handling routines
ckatt.c tool table dump program
cklog.c event log display program

clrbyt.c function ClrByte
cnvint.c function Cnvlntg
convlc.c function ConvLC
convuc.c function ConvUC
copyfl.c function CopyFil
cpbyte.c function CopyByt
dalloc.c function DoAlloc
ercond.c function ErrCond
flipby.c function FlipByt
flshfd.c function FlushFD
fntool.c look up and/or delete specified TT entries
gtree.c grammar tree
htree.c Help tree
intrch.c function InitPB
intrch.c function IntrpCh
ldvstr.c function LdVStr

log.c logging routines
makindx.c program to generate FE text index file

from FE text file
mkerds.c function MkErDes
mkfmen.c function MkFMEnd
mkhnam.c function MkHstNm
mpars.c parse NSWTP messages
mprt.c print out NSWTP messages

mutil.c load NSWTP messages
mwrite.c write NSWTP messages
nswfe.c the FE initialization process
ntoa.c function NToA
parg.c function ProcArg

pdc mb.c manage MB data class
pipe.c pipe interface

pissue.c issue MSG primitives
ppipe.c UP to PP pipe interface
pprim.c handle MSG primitives and FE-callable

procedures
precv.c handle received NSWTP messaqes

prtlng.c function PrtLong
pscen.c initiate and terminate protocol scenarios

pscentbl.c Protocol Scenario Definition Table
ptcl.c high-level PP routines

ptclv.c global PP variables
putil.c utility routines for PP
rdbyte.c function RdBytes
readwd.c function ReadWrd

A-90

skipln.c function SkipLin
skipwd.c function SkipWrd

streq.c function StrEq
telnio.c handle TELNET Remote Echo option
tool.c high-level TP routines
toolv.c global TP variables
tpipe.c UP to TP pipe interface
ttool.c open and close Conversational Partners;

change process mode
tutil.c utility routines for TP
uchar.c handle FE command language special function

characters; buffer other characters
ucmd.c execute certain local user commands

udc tb.c manage TB data class
udctq.c manage TQ data class
udc um.c manage user message buffer
udc-us.c manage US data class
uhelp.c handle Help reply mode
uinit.c UP initialization routines
ulkp.c parse lookup routines

umesg.c high-level NSWTP message handler
umutil.c message handling utilities
uparam.c parameter parse routines
upars.c high-level parse routines
upipe.c PP to UP, TP to UP pipe interface
uproc.c status utilities

uputil.c parse utilities,
urmes.c assemble NSWTP messages
user.c high-level UP routines

userv.c global UP variables
usig.c signal handlers

uterm.c handle terminal I/O
utool.c handle Conversational Partners
util.c utility routines for UP

wrtbyt.c function WrtByte

4.2 Procedures

Shell files are used to compile and load the UNIX FE. These

shell files assume that the C-language source files are in a

subdirectory named src, that the object files are to be placed in

a subdirectory named obj of the same (immediate) parent

directory, and that the executable binaries are to be placed in

the user's bin subdirectory. The files are listed below.
A-91

4.2.1 Creating the Protocol Process

To create the PP:

sh comp ptcl
sh comp ptclv
sh comp pdc -mb
sh comp pissue
sh comp ppipe
sh comp pprim
sh comp precv
sh comp pscen
sh comp pscentbl
sh comp putil
sh comp mpars
sh comp mprt
sh camp mutil
sh comp mwrite
sh comp adtool
sh comp En tool
sh comp att
sh comp alloci
sh camp log
sh comp pipe
cd ../obj
echo "[Loading PP]"
iicc -i ptcl.o\

ptclv.o\
pdc mb.o\
pissue.o\
ppipe.o\
pprim.o\
precv.o\

pscentbl .o\
putil .o\
mpars .o\
mprt.o\

mu t ii.o\
mwrite.o\
allocn .o\

log.o\
adtool .o\
fntool.o\

at t .o\
pipe .o\

/usr/nswmsg/bin/pmsg .o\
libfe.a\

/lib/libx.a

A-92

mv pt cl .. /bi n/pt cl
size .. ./bin/ptcl
cd .. /src
printf "\007"

4.2.2 Creating the Tool Process

To create the TP:

sh comnp tool
sh comp toolv
sh comp telnio
sh comp tPi Pe
sh comp ttoOl
sh comp tutul
sh comp att
sh comp log
sh comp al locri
sh comp fntool
sh comp Pi Pe
cd ..- /obj
echo "[Loading TP]
ncc - i tool

toolv.o\
t el ni 0 o \
tpipe .o\
ttool .o\
tutu .o\

ailocn .o\
att .o\
log.o\

fntool .o\
pipe .o\
libfe -a\

libtn .a\
/lib/libn -a

my tool ... /bin/tool
size ... /bin/tool
cd .. /src
printf 10\00711

4.2.3 Creating the User Process

To create the UP:

A-93

sh comp user
sh comp userv
sh comp uchar
sh comp ucrnd
sh comp udc tb
sh comp udc tq
sh comp udc urn
sh comp udc us
:3h comp uhe-fp
sh comp uinit
sh comp ulkp
sh comp urnesg
sh comp umutil
sh comp uparam
sh comp upars
sh comp upipe
sh comp uproc
sh comp uputil
sh comp urmes
oh comp usig
sh comp uterm
sh comp utool
sh comp uutil
sh comnp gtree
sh comp htree
sh comp rnpars
sh comp mprt
sh comp mutil
sh comp att
sh comp logIsh comp adtool
sh comp fntool-
sh comp alloc
sh comp pipe
cd .. /obj
echo "[Loading UP]"
ncc -i user.o\

userv .o\
uchar .o\
ucrnd o\

udc tb.o\
udc tq.o\
udc-um.o\
udc-us.o\
uhip. o\
uinit.o\
urnesg .o\

urnutil.o\
upararn.o\
upars .o\

A-94

upipe.o\
* uproc. o\

uputil .o\
urmes .o\
usig.o\

uterm .o\

utool.0\
uutil .o\

gtree .o\
htree .o\
mpars .o\
mprt.o\

mutil .o\
alloc.o\

at t~
adtool .o\
f ntool . o\

log.o\
pipe .o\

libfe.a\
/lib/libn.a

mv user ...,/bin/user
size ... /bin/user
printf "\007"

The shell file comp is listed below:

if ! -newer $1.c -than ../obj/$l.o exit
ncc -c -0 $1-c
my $1.0 ../obj
echo $1.c

4.2.4 Modifying Front End Library

To update the Front End library:

cp ../obj/libfe.a libfe.temp
sh updlib ntoa
sh updlib skipln
sh updlib repdwd
sh updlib copyfl
sh updlih skipwd
sh updlib ercond
sh updlib convlc

A-95

sh updlib convuc
sh updlib parg
sh updlib streq
sh updlib prtlng
sh updlib cnvint
sh updlib intrch
sh updlib atoint
sh updlib mkhnam
sh updlib adtobf
sh updlib flshfd
sh updlib rdbyte
sh updlib mkfmen
sh updlib mkerds
sh updlib cpbyte
sh updlib flipby
sy updlib cirbyt
sh updlib initpb
sh updlib ldvstr
sh updlib dalloc
sh updlib wrtbyt
my libfe.temp ./obj/libfe.a
echo "[libfe updated]"
printf "\007"

The shell files updlib, addlib, and rmlib are listed below:

updl ib:

if ! -newer $1.c -than ../obj/libfe.a exit
ncc -c -0 $1.c
ar u libfe.temp $1.o
rm $1.(-
echo $l.c

addlib:

ncc -c -0 $1.c
am u . ./obj/libfe.a $1.o
am t ../obj/libfe.a
rm $1.o
echo ""

echo $l.c
pmintf "\007"

rmlib:
A-96

cd ../obj
ar d libfe.a $1.o
ar t libfe.a
cd ../src

4.2.5 Creating the Front End Initialization Process

To create the initialization process (ncc version)

sh comp nswfe
cd ../obj
echo "[Loading nswfe]"
ncc nswfe.o libfe.a
mv nswfe .../bin/nswfe
cd ../src

4.3 Debugging Facilities

This section describes debugging facilities available for

debugging the Front End.

4.3.1 Debugging Facilities Available from UNIX

UNIX provides an interactive debugger called adb which

allows interactive debugging of top-level processes and of core

dumps of extinct processes. It operation is described in [6]

-under 'adb(I)'. Adb, however, cannot be used to debug

* interactively inferior processes in a process group, nor can it

be used to debug any UNIX processes executing with separate

Instruction and Data space. Since all Front End processes run in

separate Instruction and Data space, abd cannot be used

interactively to debug them.

A-97

Under certain conditions, a process may terminate abnormally

and leave a core dump of itself. Core dumps are taken when

certain UNIX signals are not caught or when the process executes

an abort system call. In all cases, the core dump is placed in a

file called core, and if more than one process so terminates at

the same time, only one core dump remains. This places a

constraint on the use of core dumps to obtain debugging

information. It is partly in view of these constraints that

FE-specific debugging facilities have been i-iippeme.ited.

4.3.2 Debugging Facilities Specific to the Front End

Debugging facilities specific to the Front End are (i) a

facility to obtain diagnostic typeouts, and (2) error logging.

4.3.2.1 Diagnostic Typeouts

In the Front End initialization file, the bit string

governing diagnostic typeouts may be used to cause several

classes of typeouts to appear on the user's terminal. These

classes and other details concerning setting up the

initialization file are described in [3].

4.3.2.2 Error Logging

It is possible to force all such error entries to appear on

the user's terminal on the user's terminal as well as being

written to the error log file by setting LOGTTY (bit 15,

numbered from right to left) in the bit string governing

event-logging in the Front End initialization file. For details

A-98

on setting this bit string in the initialization file, refer

to (3].

The Front End broadly distinguishes two kinds of errors:

(1) those generated in the UNIX operating system (e.g., I/O

errors, file reference errors, etc.), and (2) those generated in

the Front End (e.g., running out of a resource, or an internal

inconsistency). Both classes of errors are always logged in the

error log file. However, generally, if an error is not fatal, it

will not be indicated on the user's terminal, and there may or

may not be a users message. If an error is fatal, the error log

entry will also appear on the user's terminal, and the Front End

will halt.

Error log file names begin with 'PP', 'TP', or 'UP' and end

with 'err+.' If an error log file to be written into already

exists, the Front End appends new entries to it; otherwise, the

file is first created and then written into.

4.4 Logging Facilities

This section describes the logging facilities available for

the Front End. Conceptually, three kinds of logging may be

distinguished:

o Error Logging: errors detected in execution are logged;
see Section 4.3.2.2 above.

o Event Logging: certain events in the execution of the
front End are logged.

A-99

o Performance Logging: information relating to the
performance of the Front End is logged.

4.4.1 Logging Facilities Available from UNIX

C programs may be compiled with the -p option, which causes

special profiling code to be included in the object output.

Using the monitor subroutine (see 'monitor (II)' in (6]), the

running process will produce a profile output file. This file is

read by the program prof (see 'prof(I)' in [6]) to produce output

giving the number of times each function is called and the

percentage of time spent in each function; this information is

based upon a sample of the program counter each 1/60-th second.

No Front End process is normally compiled with UNIX

profiling enabled.

4.4.2 Logging Facilities Specific to the Front End

In the Front.End initializtion file, the bit string

governing event logging may be used to cause several classes of

events to be logged in an events to be logged in an event log

file. These classes and other details concerning setting up the

initialization file are described in [3].

Event log file names begin with process id, followed by

'PP', "TP, or 'UP', then followed by 'log+' (for example,

'35PPlog+'). Event log files are non-Ascii and are read by

program cklog (see Section 4.6.3 below) to write an Ascii

interpretation to the standard output.
A-100

For event logged, there are three pieces of timing

information which may be used for Front End performance analyses:

(1) the current time, as returned by the time system call, (2)

the (cumulative) number of clock ticks the process has spent in

UNIX system code, and (3) the (cumulative) number of clock ticks

the process has spent in the user ciode. The latter two values

are obtained from the times system call.

These three timing parameters, in the order given, are the

fV-s three parameters in each event log record; refer also to

Section 2.2.9.1 concerning module log.h.

4.5 Verification

At present there is no formal verification procedure for the

UNIX Front End.

4.6 Special Maintenance Programs

This section describes special maintenance programs used to

maintain the Front End.

4.6.1 MAKF

The function headers described in Section 1.5.3 above are

generated by using the shell file makf; makf uses the UNIX M6

macro processor and the file func.m6 to create a template for

each function header. makf is listed below:

A-101

echo @func,$l"<$3>":im6 func.m6>y
cat $2 y>z
my z $2
rm y

A sample invocation of makf would be:

sh makf ChkVal file.c "argl,arg2"

where ChkVal is the name of the function to be created;

file.c is the name of the file to which to append the new

function; and argl and arg2 are the formal parameters of the

function.

4.6.2 MAKINDX

Program makindx accepts as input the Front End text file and

produces as output the Front End text index file. The name of

the input file must be 'fe-text', and the name of the output file

will always be 'fe-txtindex'. The program takes no argument.

Makindx must be executed on every occasion that the Front End

text file is altered.

4.6.3 CKLOG

Program cklog reads an event log file and writes an Ascii

interpretation of it to the standard output. It requires an

event log file name as an argument. It uses the standard I/O

library stdio and is compiled with pcc.

A-102

4.6.4 CKATT

Program ckatt reads an active tool table and writes an Ascii

dump of it to the standard output. It requires a tool table file

name as its argument. It uses the standard I/O library stdio and

is compiled with pcc.

4.7 Other Special Maintenance Procedures

None.

4.8 Error Conditions

Refer to Section 4.3.2.2 above.

4.9 Listings

Listings for the Front End source programs are supplied as

an appendix to this document under separate cover.

&-103

PCWKWi PAG BLOJI-N T uLLD

APPENDIX AA

HOW TO ADD A NEW COMMAND TO THE FRONT END

A.1 Adding a Local Command

The following is a list of steps that must be done in order

to add a local command to the Front End.

o add the command code to gtree.h; LOCCMD must be on

o add the command syntax to gtree.c

o add a "caseA to LoclCmd in umesg.c of the form:

case <command-code>:
I the code to execute the command }
break;

It may be that if other modifications, e.g., pipe message

handling, are part of the new command, new pipe instructions

codes and handling routines must also be added. The preceding

list is minimal.
'I "

A.2 Adding a Remote Command

To add an Front End command that generates remote activity,

'the preceding minimal steps for adding a local command must be

followed. In addition, the following minimal steps must be done:

o If a new protocol scenario is being defined, define a
name for the new scenario in fe.h and add it to the
command code word of the command in gtree.c, and add a
new protocol scenario (including entries to pstmap and
prname) to pscentbl.c.

A-105

o In statements of the form: 'switch (asptr->asscen)' or
'switch (ipptr->ip_scen)' see if additional cases must
be added.

o Write C functions for the PP to process all messages
received as part of the new protocol scenario (if one is
defined), these functions probably called from RcvSpDn.

The preceding steps are minimal, but may, in some cases, be

.4 sufficient.

A-106

References:

[1] Ritchie, D. M., Johnson, S. C., Lesk, M. E., and Kernighan,
B. W.
The C Programming Language.
The Bell System Technical Journal 57(6, part 2) :1991-2020,

July-August, 1978.
[2] Thomas, Robert H.

UNIX NSW Front End Final Report.
Technical Report 4242, BBN, November, 1979.

[31 Lind, Henrik 0.
NSW UNIX Front End User's Manual.
Technical Report 4476, BBN, November, 1980.

[4] Toner, Stephen G.
MSG: The Interprocess Communication Facility For The

National Software Works, Program Maintenance Manual:
UNIX Implementation.

Technical Report 4579, BBN, January, 1981.

[5] Johnson, Paul R. and Toner, Stephen G.
MSG: The Interprocess Communication Facility For The

National Software Works, User Manual: UNIX
Imp lem ent ati on.

Technical Report 4580, BBN, January, 1981.

[6] Bolt Beranek and Newman, Inc.
Programmers Manual for the UNIX Operating System, Sixth

Edition
1979.
Revised by Bolt Beranek and Newman, Inc.; based on the work

of K. Thompson and D. M. Ritchie.

A-107

E"E~E PAGE BLANL-NO! 71uSD

Appendix B

UNIX MSG Maintenance Manual

MSG: THE INTERPROCESS COMMUNICATION FACILITY FOR
THE NATIONAL SOFTWARE WORKS

PROGRAM MAINTENANCE MANUAL:
UNIX IMPLEMENTATION

Stephen G. Toner

mo

MCZDIN PAGE BLAhK-hOT 7IUW

TABLE OF CONTENTS

Page

1. GENERAL DESCRIPTION 1

1.1 Purpose of MSG Program Maintenance Manpal 1
1.2 MSG Application 1
1.3 Equipment Environment for MSG 3
1.4 Program Environment for MSG 4
1.5 Conventions 4

1.5.1 C Language Implementation 4
1.5.2 Machine-Dependent Code 4
1.5.3 Component-Dependent Code 5
1.5.4 Subroutine Commenting Conventions 5
1.5.5 Global Data Declarations 5
1.5.6 Declaration Files 6
1.5.7 Internal Consistency Checks 6

1.6 Status of Implementation 6

2. SYSTEM DESCRIPTION 9

2.1 General Description 9
2.1.1 MSG Processes 9
2.1.2 Process Structure of the MSG Configuration 9
2.1.3 Communication among MSG modules 12
2.1.4 Invocation of MSG operations 13
2.1.5 General MSG Flow of Control 14

2.2 Detailed Description 18
2.2.1 Central MSG 19
2.2.2 Local MSG 23
2.2.3 MSG Primitive Routines 27
2'.2.4 Utility Routines 30

3. INPUT/OUTPUT DESCRIPTIONS 37

3.1 General Description 37
3.1.1 Input/Output 37

B-i

3.1.2 Internal MSG Data 39
3.2 Data Structures 40

3.2.1 General 40
3.2.2 Central MSG 43
3.2.3 Local MSG 49
3.2.4 MSG Primitive Routines 52

4. PROGRAM COMPILING, LOADING, AND MAINTENANCE PROCEDURES 57

4.1 Support Software Requirements 57
4.2 Procedures 59
4.3 Verification 62
4.4 Special Maintenance Programs 62
4.5 Other Special Maintenance Procedures 62
4.6 Error Conditions 62
4.7 Listings 63

B-li

LIST OF FIGURES

FIG. 1. CENTRAL MSG PROCESS STRUCTURE 9
FIG. 2. USER PROGRAM/LOCAL MSG PROCESS STRUCTURE 11
FIG. 3. MSG FLOW OF CONTROL 14
FIG. 4. MODULE DEPENDENCY DIAGRAM FOR CENTRAL MSG 19
FIG. 5. MODULE DEPENDENCY DIAGRAM FOR LOCAL MSG 23
FIG. 6. CCB STATE DIAGRAM 25
FIG. 7. A LINKED LIST 40
FIG. 8. A QUEUE 42
FIG. 9. CCB LIST 51

B-iii

WEGEDnO PAGE B(-OT FIAW

1. GENERAL DESCRIPTION

1.1 Purpose of MSG Program Maintenance Manual

The purpose of this Program Maintenance Manual (PMM) for the
1

UNIX implementation of MSG is to provide maintenance programmer
personnel with sufficient information to maintain that
implementation. The reader is assumed to be familiar with the
MSG System/Subsystem Specification and the UNIX MSG User Manual.

1.2 MSG Application

MSG was designed to be the interprocess communication
facility for the National Software Works (NSW) system. The NSW
system is an operating system for a collection of heterogeneous
computers (called hosts) connected to a computer network. NSW
itself is implemented by a collection of modules which execute as
processes on the various host computers. The ARPA computer
network (ARPANET) supports inter-host communication for the
current NSW implementation.

MSG supports the inter-host and intra-host communication
requirements of the various modules which implement the NSW
system. Because the interprocess communication requirements of
NSW are fairly general, MSG is a generally useful inter-host
interprocess communication facility which is applicable outside
of the NSW system. The remainder of this document, however,
focuses on MSG maintenance as it relates to the NSW system.

MSG supports NSW patterns of communication by providing two
different modes of process addressing:

o generic addressing;
o specific addressing;

1

UNIX is a trademark of Bell Laboratories

B-i

and three different modes of communication:

o messages;
o direct communication paths (connections);
o alarms.

Each mode of process addressing and communication is
intended to satisfy certain NSW requirements and to be used in
certain kinds of situations. However, MSG itself does not impose
any limitations on how processes use the various communication
modes. MSG does not interpret messages or alarms, nor does it
intervene in communication on direct connections. The
interpretation of messages, alarms, or direct connections is
entirely a matter for the processes using MSG to communicate.

Message exchange is provided by MSG to support the
requirements of NSW transaction protocols. It is expected to be
the most common mode of communication among NSW processes. To
send a message, a process addresses it by specifying the address
of the process to receive the message and then executes an MSG
"send" primitive which requests MSG to deliver the message. When
MSG delivers a message to a process it also delivers the name
(i.e. specific address) of the process that sent the message.

Generic addressing is used by processes which either have
not communicated before or for which the details of any past
communication is irrelevant. It is restricted to the message
mode of communication. A valid generic address specifies a
functional process class. When MSG accepts a generically
addressed message it selects as destination some process which is
not only in the generic class addressed but has also declared its
willingness to receive a generically addressed message. If there
is no such process, MSG may create one. Transactions between
previously unrelated processes are always initiated by the
transmission of a generically addressed message between some pair
of processes. A valid specific address refers to exactly one
process and this address remains valid for the life of that
process. Specific addressing may be used with all three
communication modes. Specific addressing is used between
processes which are familiar with each other. The familiarity is
generally because the processes have communicated with each other
before, either directly or through intermediary processes.

The second mode of MSG communication is direct access
communication. A pair of processes can request that MSG
establish a direct communication path between them. Direct

B-2

Communication paths are provided to support the requirements of
NSW transaction that are very long (in terms of the amount of
data exchanged and possibly the duration), such as terminal-like
communication between a Front End and tool/Foreman. (The ARPANET
realization for a direct communication path is a host/host
connection or connection pair.)

The alarm mode of communication is supported by MSG to
satisfy a communication requirement typically satisfied by
interrupts in other interprocess communication systems. Alarms
provide a means for one process to alert another process to the
occurrence of an exceptional or unusual event. Processes may
send and receive alarms much as they send and receive messages.
However, there are significant differences between alarms and
messages. The rules that govern the flow and delivery of alarms
are different from those that govern the flow and delivery of
messages. In particular, the delivery of an alarm to a process
is independent of any message flow to the process. That is, the
delivery of an alarm to a process cannot be blocked by any
messages queued for delivery to the process. Unlike a message
which can carry a substantial amount of information, the
information conveyed by an alarm is limited to a very short alarm
code. This limitation implies that the delivery of alarms can be
accomplished in a way that requires little in the way of
communication or storage resources. This makes it possible for
MSG to insure certain "priority" treatment for alarms which makes
them suitable for alerting processes to exceptional events.
While similar to traditional interrupts, alarms are different in
one important respect: the delivery of an alarm does not
necessarily imply that the process is subjected to a forced
transfer of control by MSG. For this reason, we have chosen to
use the term alarm rather than interrupt.

1.3 Equipment Environment for MSG

The UNIX implementation of MSG requires a hardware base
capable of supporting the BBN-UNIX operating system. This
hardware is a DEC PDP-11 model 45 or higher processor with at
least 128 KBytes of main memory and at least 20 MBytes secondary
disk storage. In addition, a host interface to an ARPANET IMP
(Interface Message Processor) is required.

B-3

1.4 Program Environment for MSG

The UNIX implementation of MSG runs under the BBN-UNIX
operating system. This version of the Bell Labs UNIX system
contains the following enhancements:

o ARPANET NCP and network-related system calls;
o Ports;
o the awtenb, awtdis, await and capac system calls;
o the Et-&7,: system call.

1.5 Conventions

This section documents the principal programming conventions

used in the UNIX MSG implementation.

1.5.1 C Language Implementation

UNIX MSG is implemented in the programming language C (D.M.
Ritchie, S.C. Johnson, M.E. Lesk, and B.W. Kernighan, "The C
Programming Language." Bell Systems Technical Journal, Vol. 57,
No. 6, Part 2, July-August 1978, pp 1991-2019.), and MSG
primitive calls are implemented as C language function calls.

1.5.2 Machine-Dependent Code

When it is necessary to perform an operation (e.g. swap
bytes of a word) that might not be necessary if MSG were to run
on a (16-bit) machine other than the PDP-II, the operation will
be surrounded by the compiler control lines:

#ifdef pdpll

and

#endif

B-4

L1 --

To enable this code, the identifier pdpll will be defined (with a
#define compiler-control line), and to disable it, pdpll will be
left undefined.

1.5.3 Component-Dependent Code

Certain modules contain code which is used by more than one
of the Central MSG, Local MSG and MSG Primitive routines. Often
this code is similar but not identical. When a case arises where
the code must differ between different components, the code will
be surrounded by compiler-control lines of the form

#ifdef cmsg (or lmsg or pmsg)

and

#endif

One of the identifiers cmsg, lmsg or pmsg will be defined at
compile time, using the -D flag of the C compiler (see Section
CC(I) of the UNIX Programmers Manual).

1.5.4 Subroutine Commenting Conventions

The top of each page on which a procedure is defined
contains a comment which lists the names and arguments of all
procedures defined on that page. Immediately before each
procedure declaration, there is a brief comment describing that
procedure, and the body of the procedure contains "sufficient"
comments to describe the action of the procedure.

1.5.5 Global Data Declarations

Global data for a module is defined on the second page of
the module (following the #include lines - see below). External
symbol declarations give the name of the module in which the
symbol is defined.

B-5

1.5.6 Declaration Files

MSG uses two types of declaration files: those with
extension .names and those with extension .h. The .names files
are used to define the long identifier names used in MSG down to
7 or 8 character unique names which are acceptable to the C
compiler and the loader (see Section 4.1). The .h files are used
to define structures and compile-time constants. All program
modules include those files necessary for proper compilation,
using the C compiler-control line

#include "filename"

The first page of each program module contains all the #include
lines for that module.

1.5.7 Internal Consistency Checks

MSG contains a number of internal consistency checks. One
of the subroutines ErrorHalt or ErrorCheck is used to report the
failure of a consistency check. The ErrorCheck subroutine is for
non-fatal inconsistencies; it merely logs the consistency check
failure and allows execution to continue, presumably first to
correct the inconsistency and then to resume normal execution.
The ErrorHalt subroutine is for fatal inconsistencies; it logs
the inconsistency and terminates MSG, producing a core dump of
the MSG component which ErrorHalted in the file core.

1.6 Status of Implementation

The current version of UNIX MSG provides the functions
specified in the MSG System/Subsystem Specification with the
following exceptions:

o Sequenced and stream-marked messages are not implemented
(see Sections 2.4.1 and 4.2.1.9 of the MSG
System/Subsystem Specification).

o Inter-MSG authentication is not implemented (see Section

B-6

4.2.3.4 of the MSG System/Subsystem Specification).

o The MESS-HOLD protocol is not supported (see Section
4.2.2.3.1 of the MSG System/Subsystem Specification).

o The SEND-STATUS protocol is not supported (see Section
4.2.2.3.4 of the MSG System/Subsystem Specification).

o MSG does not guarantee that one each of the primitives
listed in Section 4.2.1.8 of the System/Subsystem
Specification (under "Access to communication") may be
in each process' Pending Event set.

B

1-7

HE~aW 1O PAGE BLANKC-N~OT 7IIJg

2. SYSTEM DESCRIPTION

This section documents the principle program modules of the
UNIX MSG implementation. It describes the structure, operation
and composition of the MSG implementation.

2.1 General Description

2.1.1 MSG Processes

An MSG configuration on UNIX is implemented as a collection
of UNIX processes. There are two different types of processes
used in a configuration: Central MSG processes and Local MSG
processes. In addition, there are MSG primitive routines which
are loaded with user processes and handle communication between
the user processes and the Local MSGs.

The Central MSG is responsible for system initialization and
communication with MSG implementations on other hosts. In
addition, it handles the creation of processes to handle generic
messages for which there is no outstanding ReceiveGenericMessage
operation.

Local MSGs buffer messages being sent to and from user
processes, and communicate with other Local MSGs and the Central
MSG as necessary to support inter-process communication.

An MSG configuration can be started in a variety of ways
depending on the configuration operator's objectives (See UNIX
MSG User Manual for details). The Central MSG may be started
either manually using standard UNIX shell commands, automatically
when the first user process which uses MSG is started, or
automatically at system startup. User processes can be started
automatically by the Central MSG as part of the standard MSG
configuration initialization, or they can be started manually
from the shell.

2.1.2 Process Structure of the MSG Configuration

The Central MSG consists of several processes (See Figure
1). These processes are described below:

B-9

Listener Handier

- I

II .. c":J r : Director-'" I

FIG. 1. CENTRAL MSG PROCESS STRUCTURE

o The ICP socket listener

This process maintains the MSG contact socket. When an

MSG on a remote host contacts this socket the UNIX NCP
engages in an Initial Connection Protocol (ICP) exchange
with it to establish an MSG-to-MSG connection between
the remote MSG and the ICP listener process. After the

B-10

connection has been established, the CP listener forks
to create a Protocol process and goesback to listening
on the contact socket.

o The Port handler

This process maintains the Central MSG port. When a
Local MSG desires to send a message to a remote host,
and there is no Protocol process for that host, the
Local MSG sends the message to the Port handler, which
forks to create a Protocol process and hands the message
to it. All generically addressed messages destined for
the local host also pass through the Port handler, which
delivers them to a process which has issued a matching
ReceiveGenericMessage primitive, queues them, or creates
new processes to handle them, as appropriate.

o Protocol Processes

There may be zero, one, or more Protocol processes. The
principal responsibility of these processes is to
implement the MSG-to-MSG protocol with MSGs on remote
hosts. There is one protocol process for each
MSG-to-MSG connection which is created when the
connection is established (see above discussion of ICP
contact socket listener and port listener processes).
Each Protocol process (except for mutants - see below)
maintains a port with a well-known name (actually the
host name of the remote host to which it has a
connection). The basic action of a Protocol process is
to wait for a message on the port or its MSG-to-MSG
connection and when it receives one, to translate the
message to the proper format and pass it on to the
remote MSG or the appropriate Local MSG. Since there
may be several MSG-to-MSG connections to a single remote
MSG, and there can only be one port with a given name,
there may be Protocol processes with no port, which
handle incoming traffic only. These are called "mutant"
Protocol processes.

Programs which communicate via MSG may consist of any number
of processes, but only one of these processes may call MSG
primitives. Each process which may issue MSG primitive calls has
a child Local MSG process with which it communicates over a pair
of pipes (See Figure 2.) At any given time, zero, one or more
User Program/Local MSGs may exist on the system.

B-l1

MSG "Workin,- Directory"

I ~I

L UNIX port

Local MSG Local S

PNiXpes u'L

User program

(single process)

User program (multiple
processes) Only the process
labelled "A" may issue MSG
primitive calls.

FIG. 2. USER PROGRAM/LOCAL MSG PROCESS STRUCTURE

2.1.3 Communication among MSG modules

The processes which implement an MSG configuration must

communicate with each other in order to perform their functions.

This inter-process communication is achieved through the use of

UNIX pipes and ports.

B-12

Pipes are used between the user process and its associated
Local MSG process.

Ports are used for communication between Local MSGs and
between Local MSGs and the Central MSG. The Local MSG port names
are formed from the generic class name and instance number of the
process and are found in the MSG "working directory" as defined
in the MSG Configuration File (see Section 3.1.1). Protocol
process ports are also found in the MSG working directory, and
are formed from the name of the host with which the Protocol
process is communicating. The pathname of the Central MSG port
is also specified in the Configuration File.

Communication with MSG implementations on remote hosts is
achieved by using the standard ARPANET communication functions
provided by the UNIX Network Control Program (NCP). The
MSG-to-MSG protocol is implemented by the Protocol processes of
the Central MSG, as mentioned in Section 2.1.2

2.1.4 Invocation of MSG operations

Executing processes make requests for MSG communication
services by invoking MSG operations. These operations are
invoked by making C-language function calls (see the UNIX MSG
User Manual).

When a process calls an MSG primitive function, the
arguments of the call are checked for validity. If they are
valid, a Pending Event is created (for those operations that
create pending events), and the relevant parameters are then
passed on to the Local MSG process. After the MSG primitive
routines have completed the requested operation (e.g. for a
message sending primitive, they create a pending event and send
the message text to the Local MSG, which will attempt to send it
on to the destination process), they will return control to the
user process (unless the Unblock signal was specified, in which

case control is not returned until the operation actually
completes) along with an event handle which may be used (as an
argument to the ReqSig primitive) to determine when the operation
has completed. There is no forced transfer of control when an
MSG operation completes.

B-13

2.1.5 General MSG Flow of Control

The basic flow of control in terms of MSG modules for MSG
primitives which cause messages to be sent to another process is
(refer to Figure 3):

o Outgoing messages:

The user process calls an MSG primitive routine in
pmusr.c. pmusr calls pmlmint.c routines to send a
message over the pipe to the Local MSG. lmsgo.c reads
the message from the pipe and sends it to the Central
MSG or the destination Local MSG port. cmsgo.c reads
the port and sends the message to the remote host over
the network.

o Incoming messages:

cmsgi.c reads the message from the network connection
and writes it to the destination Local MSG's port.
lmsgi.c reads the message from the port and sends it
over the pipe to the user process, where it is read by
the routines in pmlmint.c and delivered to the user.

The following paragraphs describe in general terms how MSG
supports message, alarm, and direct connection communication
among processes.

2.1.5.1 Message Communication

When a process executes a receive operation, the MSG
Primitive Routines create a pending event (PE) for the receive
and pass the receive on to the process's Local MSG. The Local
MSG also creates a PE for the receive, then checks to see if it
has received any message that matches tne PE. Received messages
are kept on separate queues depending on addressing mode (there
is a Received Specific Messages queue and a Received Generic
Message queue). If a matching message is found, the Local MSG
sends the message to the user process, where it is read and
delivered by the Local MSG interface routines. The Local MSG
interface routines then send an acknowledgement back to the Local
MSG, which allows it to release the PE for the receive operation,
and the Message Control Block (MCB) which held the message. The
Local MSG interface routines may also send back a negative

B-14

FIG. 3. MSG FLOW OF CONTROL

B-15

acknowledgement, in which case the received message is not
released, but put back on the queue. After the Local MSG
interface routines have acknowledged receipt of the message, they
"complete" the PE and deliver the disposition value. If the
Request signal was specified, the PE is put on a completed
Pending Event queue, where it will be found by the ReqSig
primitive. If no matching received message is found by the Local
MSG, it will queue the receive Pending Event on a
ReceiveSpecificMessage or ReceiveGenericMessage queue. All PEs
and MCBs are kept in core.

When a process executes a send operation, the MSG primitive
routines create a send PE. They then send the message text on to
the Local MSG, which creates a Message Control Block (MCB) for
the message and a send PE for the event.

If the destination process is on the local host, the Local
MSG will open the destination process's receive port and write
the message into it. If the destination process is the same as
the source process, the Local MSG will not attempt to write the
message into its own port, but will handle it as if it had just
been read from the port.

When a Local MSG has received a message from another LMSG
(or itself), it sends back an acknowledgement and then checks to
see if there is a matching Receive PE. If so, the Local MSG
sends the message to the user process, which will cause the
receive to complete and the message and disposition to be
delivered. When a Local MSG receives a message acknowledgement
from another LMSG, it completes the send operation, releasing the
send PE and MCB.

If the destination process is on a remote host, the Local
MSG will write the message to the Central MSG receive port. The
Central MSG will read the message, create an MCB and a PE for it,
convert it to the proper format, and queue it to be sent to the
remote host. When the Central MSG receives an acknowledgement
for the message, it releases the PE and MCB for the send,
converts the acknowledgement to internal format and send the
acknowledgement on to the source process Local MSG.

The above discussion assumes specific addressing. Generic
addressing is rather different, in that all generic messages
destined for the local host must pass through the Central MSG
port handler process.

When a process executes a receive generic message operation,
the MSG primitive routines create a pending event and pass the

B-16

receive on to the Local MSG. The Local MSG creates a pending
event for the receive and passes it on to the Central MSG Port
handler process. The Port handler takes the message it receives
and attempts to match it to a received generic message for the
specified class. If a matching received message is found, it is
delivered to the process that executed the receive generic. If
there is no outstanding received message, it queues the receive
message on a queue of receive generic primitives for the
specified class.

When a process executes a send generic operation to a
process on the local host, the process's Local MSG sends the
message to the Central MSG Port handler process, rather than the
destination process's receive port. The Port handler attempts to
match the received message with a previously queued receive
generic. If it cannot, it may create a process to handle the
message, queue the message, or reject it, whichever is
appropriate. If a matching receive generic is found, the
received message is delivered to the process which issued the
receive generic.

When a Protocol process receives a generically addressed
message, it also sends the message to the Port handler, which
handles it in the same way as a locally generated generic
message.

2.1.5.2 Alarm Communication

When a process executes the AcceptAlarm operation, the MSG
primitive routines set a flag indicating willingness of the
process to accept alarms.

When a process executes an EnableAlarm operation, the MSG
primitive routines create an alarm receive PE. They then check
to see whether an alarm has already been received by the process.
If so, they complete the alarm receive PE by delivering the alarm
code, signalling the process and returning control to it. If no
alarm is queued, the primitive routines remember the alarm
receive PE and return control to the process.

When a process executes a SendAlarm operation the MSg
primitive routines create a send alarm pending event and send the
alarm code on to the Local MSG, which will send it on to the
destination process's Local MSG, or the Central MSG if the
destination process is on a remote host. When a Local MSG
receives an alarm from another Local MSG (or the Central MSG), it
creates a PE and passes the alarm code to the user process. The

B-17

Local MSG interface routines then check to see if the process is
accepting alarms. If it is not, the alarm is rejected. If it
is, the Local MSG interface routines check to see if there is a
matching alarm receive PE outstanding. If so, the alarm is
accepted and delivered and the alarm receive PE is completed. If
there is no matching alarm receive PE, the alarm is accepted and
the alarm code remembered.

2.1.5.3 Direct Connection Communication

When a process executes an OpenConn operation, the MSG
Primitive routines check to see if a Connection Control Block
(CCB) with the same destination process name exists. If so, an
error is returned, since the MSG primitive routines keep only
active CCBs. If no matching CCB is found, the OpenConn is passed
to the Local MSG, which creates a PE and then checks to see if a
matching CCB has been queued. If the remote target process has
already initiated the connection and the remote MSG has started
the protocol exchange necessary to open the connection, a CCB
will be found. In this case, the Local MSG "matches" the CCB
with the open PE. Next it queues a matching CONNECTION OPEN
message to be sent to the remote process, and returns the remote
socket number to the MSG primitive routines.

If there is no matching CCB for the connection, the Local
MSG creates one and links it to the open PE. Then it sends a
CONNECTIONOPEN message to the remote process.

When a CONNECTION OPEN message is received by a Local MSG,
it looks for a matching CCB. If it finds one, it completes the
open PE by sending the remote socket number to the MSG primitive
routines. If it does not find a matching CCB, it creates a new
CCB which will be matched when the user process issues a proper
OpenConn call.

2.2 Detailed Description

This section describes in detail the principal program
modules and routines of the UNIX MSG implementation.

B-18

2.2.1 Central MSG

The Central MSG consists of the following modules: cmsg.c,
cmsgi.c, cmsgo.c, clmsg.c, cmsgnt.c, hosts.c, the utility
routines util.c, lmutil.c, generic.c, incnum.c, getconfig.c and
the data abstractions llist.c, queue.c, streamio.c and string.c.
A module dependency diagram for the Central MSG is shown in
Figure 4. The principal modules of the Central MSG are described
below.

2.2.1.1 CMSG

The module cmsg.c contains the initialization and main loop
procedures for the three different kinds of Central MSG
processes.

main is run at program startup. It does all necessary
initialization of dynamic data structures, then forks. The
parent process then becomes the ICP contact socket listener by
calling the procedure HandleContact, while the child process
becomes the Port handler, calling the procedure HandlePort.

HandleContact attempts to open a duplex, general, icp server
connection (see Section NCP(IV) of the UNIX Programmer's Manual),
and if successful, forks to create a protocol process to handle
traffic to the remote host which initiated the ICP. After
creating this protocol process, the ICP listener process goes
back to listening on the contact socket. The newly created
protocol process attempts to open its receive port (which may
fail), then calls CentralMSG.

CentralMSG is the main loop of the protocol process. It
listens for messages coming in over the network, or messages
written to its port by Local MSGs (if it is not a mutant
process), and passes them on to the appropriate Local MSG or the
remote MSG, respectively, after converting them to the proper
format. Protocol processes keep an idle time clock, and if a
protocol process has not received a message from either the
remote MSG or a Local MSG in a certain amount of time (specified
in the configuration file - see UNIX MSG User Manual), it will
initiate the MSG-to-MSG CLOSE protocol with the remote MSG, and
terminate by calling the UNIX system call exit.

HandlePort is the main loop of the MSG port handler. This
process may receive two kinds of messages from Local MSGs or
other Central MSG processes:

B-19

j-etconf ig, iln n crns U

i-'iG. 4. MO)DULE DEPENDENCY DIAQR4 ?Rh CEINTiAL 11.1G

B-20

1. Messages destined for a remote host for which there is
currently no protocol process. In this case, the port
handler will fork to create a protocol process to
handle communication with the remote host. The
protocol process opens its port and attempts to
establish contact with the remote MSG, then calls
CentralMSG.

2. Generic messages destined for the local host/
ReceiveGeneric primitives issued by processes on the
local host. In this case, the port handler attempts to
match the generic message with an outstanding
ReceiveGeneric on one of the queues RcvGenrs[i], or to
match the ReceiveGeneric with a previously received
generic message which was queued on one of the
RcvdGenrs[i] queues. If a generic message is received
for which there is no outstanding ReceiveGeneric, the
port handler may (depending on the CreateSpec for the
destination process class) fork to create a process to
handle the messaqe. The new process will attempt to
execute (using the UNIX execl call) the program
specified in the j-neric names file for the destination
process class.

2.2.1.2 CMSGI

The module cmsg!.c contains routines that handle incoming
MSG-to-MSG traffic from the network. Routines in this module are
only called by Protocol processes.

The main routine in cmsgi is Hand!eAnyNetMSGMessage. It
reads the length and op code fields of an MSG-to-MSG message and
then dispatches on the op code to one of the routines MM NOOP,
MM ECHO, MM HCLOS, MM MESS, MM Repl, MM ALRM, MM PERR, MM OPEN,
MM-CLOSE, or MMREJECT. These routines read the-rest of the
message and convert it to the proper format so that it may be
sent to a Local MSG. The routines MM NOOP, MM ECHO, and MM HCLOS
do not convert the received message to Local MSG format, but act
on the message immediately, ignoring it (MMNOOP, which handles
MSG-to-MSG NOOP messages), queueing an ECHO-REPLY message to be
sent back (MMECHO, which handles ECHO messages), closing or
setting up to close the MSG-to-MSG connection (MMHCLOS, which
handles CLOSEs).

The routine ChkExNm checks the process names in the
MSG-to-MSG message for validity, and CnvExNm converts them from
MSG-to-MSG format to internal format.

B-21

2.2.1.3 CMSGO

The module cmsgo.c handles outgoing messages from the local
host to remote MSGs. It has three main routines:

o HandleLMSGTraffic reads messages from the port, and
returns the MCB for a message when it has read a
complete one.

o HandleRcvdInterMSGMessage dispatches on the op code of
the message to the appropriate routine which queues the
message for delivery to the remote host.

o TryToSendMSGToMSGMessage takes messages off the alarm
and message queues and attempts to send them to the
remote MSG. If there is no connection to the remote
MSG, or if TryToSendMSGToMSGMessage gets an error while
writing a message, it will attempt to open a new
connection to the remote host. If this attempt fails,
all outstanding queued alarms and messages will be
aborted (completed with a disposition of "Remote host
unreachable."). TryToSendMSGToMSGMessage converts the
message to MSG-to-MSG format before sending it by
calling the routine ConvertToMSGToMSGMsg.

2.2.1.4 CLMSG

The module clmsg.c contains routines which send messages
from the Central MSG to Local MSGs.

SendCLPEAborted sends a message telling the Local MSG to
abort the specified Pending Event. It is called by
TryToSendMSGToMSGMessage when it is unable to open a connection
to the remote host, and also in response to an AbortPE message
from the Local MSG (which will be sent if a PE times out or is
rescinded).

SendCLMessage opens the destination Local MSG's receive port
and writes the message (passed as an argument to SendCLMessage)
to it. If it is unable to open the receive port, it will reject
the message with a reason of "destination process unknown." It
could be unable to open the port for at least two reasons: the
remote MSG has specified an invalid process name, or the
destination process has died.

B-22

2.2.1.5 CMSGNT

The module cmsgnt.c handles initial contact with a remote
host.

The routine MakeContact attempts to open an MSG-to-MSG
connection to the specified remote host, and if successful, goes
through the SYNCH dialogue with that host by calling DoSynch.

DoSynch is called both by MakeContact, and by the ICP socket
listener when it has received an ICP from a remote host. When
called by MakeContact, it sends a SYNCH message and awaits a
reply. When called by the ICP socket listener, it waits for the
remote host to initiate the SYNCH dialogue, then sends a matching
SYNCH message in reply.

2.2.2 Local MSG

The Local MSG consists of the following modules: lmsg.c,
lmsgi.c, lmsgo.c, the utility routines lmutil.c, util.c,
incnum.c, generic.c, getconfig.c, and the data abstractions
ccb.c, queue.c, llist.c, streamio.c, and string.c A module
dependency diagram for the Local MSG is shown in Figure 5. The
principal modules of the Local MSG are described below.

2.2.2.1 LMSG

The module lmsg.c contains the initialization and main loop
procedures for the Local MSG procesp.

The program is started at the procedure main, which reads
the configuration file, starts up a Central MSG if there is not
already one running, initializes dynamic data structures and
sends the process name of this process (this is the name which
will be returned by the MSG primitive WhoAmI) to the MSG
primitive routines. It then opens its receive port and calls the
routine LocalMSG to handle pipe and port traffic.

LocalMSG awaits activity on its receive port or the pipe
from the MSG primitive routines. When activity is detected, it
calls HandleAnyMessageFromPMSG (in lmsgo) and
HandleAnyInterMSGMessage (in imsgi) to handle any message that
might have arrived. Both of these routines are called on any
pipe or port activity, so the routines must check for activity
which is of interest to them.

B-23

4 6 , , , , ,m1i '

getcon ig infcnum lso-

FIG. 5. MODULE DEPENDENCY DIAGRAM FOR LOCAL MSG

B-24

2.2.2.2 LMSGI

The module lmsgi.c contains routines that handle incoming
message traffic from the Central MSG and other Local MSGs.

The main routine in lmsgi is HandleAnyInterMSGMessage, which
reads messages from the receive port, and when it has read an
entire message, calls HandleRcvdInterMSGMessage which dispatches
on the op code to one of the routines LSpecificMessage,
L GenericMessage, L Alarm, LConnOpen, L ConnClose, L ConnReject,
L AbortPE, or CompleteThePE. These routTnes convert the received
message to the proper format and pass it on to the user process.
The L Specific message routine may queue the message rather than
sending it to the user process, if there is no outstanding
ReceiveSpecific. Also, the routines LConnOpen, L ConnClose, and
L_ConnReject maintain theCCB for the user connection, and only
send a message to the user process if a major change of state
(such as the connection becoming fully open) occurs. See Figure
6 for a state transition diagram for CCBs.

The routine SendLPMessage is used to send a message over the
pipe to the user process.

2.2.2.3 LMSGO

The module imsgo.c handles outgoing traffic from the user
process to other Local MSGs and the Central MSG. Its main
routine is HandleAnyMessageFromPMSG, which reads a message from
the pipe, then calls HandleRcvdMessageFromPMSG.

HandleRcvdMessageFromPMSG dispatches on the op code of the
received message to one of PSendSpecific, PReceiveSpecific,
P SendGeneric, P ReceiveGeneric, P SendAlarm, PMessageAccepted,

P-_MessageRejected, PAlarmAccepted, PAlarmRejected, PConnOpen,
P ConnClose, PError, PAbortPE, PAlarmAborted, or PStopMe.
These routines convert the message to the proper format, create a
pending event if necessary, and send the message on to the
destination Local MSG, or the Central MSG (in the case of
ReceiveGeneric and messages destined for remote hosts). In

addition, the connection handling routines (P ConnOpen,
PConnClose, PConnReject) maintain the CCB for the user

connection (see Figure 6), and pass information on to the user
process if the received message causes a change of state, using
the routines SocketToPMSG, SendCloseToPMSG, and SendRejToPMSG.
(These routines are found in imsgi.c).

SendLLMessage is used to send a message to another Local MSG

B-25

Receive CONN CLOSE

Receive CONN OPEC

RnC/los eConn

nne d C CReceive CONN NOPE

SR eE User does CloseConn
Receiv OPENOP

User does CloseConn Receive CONN CLOSE

FIG. 6. CCB STATE DIAGRAM

or the Central MSG. If the destination process is the same as
the sending (current) process, the message is not written to the
port (which would cause the process to hang if the message to be
sent were longer than the 1000 byte UNIX port buffer size), but
is handled as if it had just been read from the port by calling
the routine HandleRcvdlnterMSGMessage. If the destination
process is not the sending process, SendLLMessage opens the

B-26

receive port by calling OpnSnPt, and writes the message to it.

The routine OpnSnPt checks whether the destination process
is on the local host or not. If it is, and if the message is
generically addressed, it opens the Central MSG receive port and
returns the resulting file descriptor. If the message is
specifically addressed, OpnSnPt opens the receive port of the
destination Local MSG. Local MSG port names are formed from the
generic class name of the process and its instance number (which
is a word containing its UNIX process ID in the left byte and the
8 low order bits of the time when the process was started in the
right byte). The actual form of the port name is "CLASS NNNNNN",
where CLASS is the first seven characters of the generic class
name (this because UNIX filenames are limited to 14 characters in
length), and NNNNNN is the octal representation of the instance
number (without a leading zero). If the message is destined for
a remote host, OpnSnPt attempts to open that host's Protocol
process port (this port name is just the lower-case, standard
ARPANET name of the remote host). If this attempt fails, it
opens the Central MSG receive port.

If OpnSnPt is unable to open a port, it returns an error
code. Otherwise, it returns the file descriptor for the port.

2.2.3 MSG Primitive Routines

These routines are loaded with the user process, and provide
an interface between the user process and its associated Local
MSG. They handle requests from the user in the form of
C-language function calls, pipe traffic between the user process
and the Local MSG, and timing-out of pending events. The MSG
primitive routines consist of the modules inipmsg.c, pmusr.c,
pmlmint.c, ptmo.c, the utility routines util.c, incnum.c,
generic.c, getconfig.c, and the data abstractions pmpe.c, ccb.c,
queue.c, streamio.c and string.c.

2.2.3.1 INIPMSG

This module contains initialization routines for MSG. The
function InitMSG starts up a Local MSG (by calling the function
MakProc) and initializes all internal data structures. It
returns the file designator of the receive pipe from the LMSG.
This file descriptor is used by some programs (e.g. the Front
End) to determine when MSG needs to gain control without having
to relinquish control as would happen if they called ReqSig.

B-27

The MakProc routine forks to create a Local MSG process,
giving that Local MSG the Generic Class name that was specified
in the call to InitMSG.

2.2.3.2 PMUSR

This module contains the MSG primitive routines that are
callable by the user process, and routines which check the
validity of the arguments given by the user.

Those MSG primitive routines which create Pending Events
(see Section 3.2.1 of the UNIX MSG User Manual) first check their
arguments for validity, using the routines ChkTimo, CheckMessage,
CheckRetWord, CheckSpclHandling, CheckBuffer, CheckFlag, ChkSig,
CheckAndConvertSpecificName, CheckAndConvertGenericName,
CheckConnType, and ValidHost. If an illegal argument value is
found, the routines call DoPMSG (see below), and return an error
code. If no error is found, a new Pending Event is created and
placed on the timeout queue. Then a message is sent to the Local
MSG specifying the operation it is to perform. Depending on the
signal value which was specified, the routines then either wait
for the Pending Event to complete (Unblock), or call DoPMSG and
then return an event handle to the caller.

The routine DoPMSG checks to see if any PEs have completed
or timed out, and if so, delivers the disposition and does
whatever else is appropriate based on the primitive type and the
signal specified.

The AcceptAlarms primitive checks the validity of its
argument, and if it is valid, AcceptAlarms set the global
variable IsAcceptingAlarms to the value of the argument. It then
calls DoPMSG and returns.

WhoAmI simply copies the process name which was sent to it
by the Local MSG when InitMSG was called into the space specified
by the argument.

Rescind looks for a PE with the specified event handle. If
no such PE is found, an error is returned. Otherwise, it checks
to see whether it can still rescind the event, and returns an
error if not. If the event can be rescinded, Rescind sets its
disposition to the value vdispAborted, changes its signal to null
so that it will not be queued when it is signalled, and sends a
message to the Local MSG to rescind the PE. It then calls DoPMSG
and returns. The Local MSG will send back a message which
completes the PE and causes it to be released.

B-28

ReqSig first checks whether any PEs exist at all. If not,
it returns an error. Otherwise, it looks for a completed
EnableAlarm PE (there can be at most one of these). If one of
these is found, it is released and its event handle is returned.
If there is no completed EnableAlarm PE, ReqSig looks for other
completed PEs, and returns the event handle of the first one it
finds if it finds any.

If there are no completed PEs when ReqSig is called, it
creates a new pending event with a timeout period as specified in
the argument to ReqSig. It then waits for a pending event to
complete or time out. When an event completes, ReqSig checks to
see if the completed event is the new PE it created. If so, it
returns a response code indicating that no PEs completed.
Otherwise, it removes the new PE from the timeout queue and
returns the event handle of the PE that completed.

Stopo'e sends a message to the Local MSG, then waits for a
response which tells it that it may call exit.

2.2.3.3 PMLMINT

The module pmlmint.c contains routines that interface
between the user process and the Local MSG.

The routines StartMessageToLocalMSG, SendWordToLocalMSG,
SendNameToLocalMSG, SendMessageToLocalMSG, and
EndMessageToLocalMSG are called by the primitive operations in
pmusr.c, and buffer a message being sent to the Local MSG to
reduce the number of write system calls.

HandleAnyMessageFromLMSG reads a message header from the
pipe and dispatches on its op code to one of the routines
MessageRcvd, AlarmRcvd, OpenRcvd, CloseRcvd, RejectRcvd,
PECompleted, HandleLPError, AbortAlarm, or YourName. These
routines read the rest of the message, deliver any received
message, remote socket number or alarm code where appropriate,
and signal the Pending Event that has now completed (except for
Error, Abort Alarm, YourName and StopMe messages, a message from
the Local MSG always causes a PE to complete.)

A PECompleted message will be received for a SendGeneric,
SendSpecific, or SendAlarm which has been acknowledged by the
destination process. It will also be received if a pending event
is rescinded or times out, or if some error keeps an event from
completing properly (e.g. foreign host is dead, or a MESS-REJECT
is received for a message).

B-29

2.2.3.4 PTMO

The module ptmo.c contains routines for timing out of
pending events. It maintains a queue of pending events in the
order in which they are scheduled to time out.

StartToTimeoutPE adds a PE to the timeout queue, inserting
it after any other pending events which are scheduled to time out
at the same time or earlier than the new PE is scheduled to time
out.

SecondsToNextTimeout returns the number of seconds until the
next pending event on the queue is scheduled to timeout. If the
queue is empty when SecondsToNextTimeout is called, the value
vMaxTimeout is returned.

EndTimeoutOfPE removes a pending event from the timeou.
queue.

HandleAnyTimeout checks to see if any pending events have
timed out, and if so, removes them from the timeout queue and
either signals them (if no message was sent to the Local MSG when
this PE was created - only true for EnbAlrm and ReqSig type PEs),
or sends a message to the Local MSG to time out the PE. Tf the
Local MSG is able to abort the PE, it will send back a
PECompleted message with a disposition value of "timed out," and
the PE will be signalled then. ,Each time HandleAnyTimeout is
called, it will handle all PEs that timed out since it was last
called.

2.2.4 Utility Routines

2.2.4.1 UTIL

The module util.c contains utility routines used by all MSG
components. Calls are:

CharsToBeRead(FileDesc: int) returns int
Returns the number of characters which may be read from
FileDesc without blocking.

SendCapacity(FileDesc: int) returns int
Returns the number of characters which may be written to
FileDesc without blocking.

B-30

minimum(Intl: int, Int2: int) returns int
Returns the (signed) minimum of Intl and Int2.

FlushInputChars(FileDesc: int, CharCount: int)
Reads CharCount bytes from the file FileDesc and ignores
them.

oitoa(Int: int, Ascii: char *) returns int
Converts the integer Int to its unsigned octal ascii
representation (oitoa does not include a leading zero),
leaving the result in the area pointed to by Ascii. Returns
the number of characters in the result string.

ditoa(Int: int, Ascii: char *) returns int
Converts the integer Int to its signed decimal ascii
representation, leaving the result in the area pointed to by
Ascii. Returns the number of characters in the result
string.

ErrorCheck(ArgList)
The MSG ErrorCheck routine. Prints message and returns to
caller. ArgList is an argument list which is passed to
Drintf.

ErrorHalt(ArgList)
The MSG ErrorHalt routine. Prints message and aborts,
dumping core contents. ArgList is passed to printf.

MoveBytes(From: char *, To: char *, Count: int)
Moves the number of bytes specified by the Count argument
from the area pointed to by From to the area pointed to by
To. Does not check for conflicting overlap.

ClrBlk(Start: char *, Count: int)
Clears (sets to zero) Count bytes, starting at the location
Start.

ReadAll(FilDes: int, Buf: char *, NumToRead: int) returns int
Reads from FilDes into Buf until NumToRead characters are
read or EOF is encountered. Returns the number of bytes
actually read. This call is useful since the normal UNIX
read call may not actually read the number of bytes
specified. Unless an EOF is encountered, this call will not
return until it has read the specified number of bytes.

InputNum(InputBuf: buf *) returns int
Reads from the buffered-input buffer InputBuf a number
string, and converts it to an int. A number string is any

B-31

sequence of digits, ignoring leasing spaces, tabs, and
newline characters, and terminates on the first character
which is not a digit. If the first (non-blank) character is
a zero ('0' - not null), the number is assumed to be octal,
else decimal. The resulting integer is returned.

InputString(InputBuf: buf *, StringPointer: char *) returns int
Reads a string from the buffered input file InputBuf,
putting the result in StringPointer. A string is any
sequence of characters (ignoring leading spaces, tabs, and
newlines) which terminates with a string terminator
character (i.e. a character for which the IsStringTerminator
function returns true). Returns the number of characters
read.

inputNumString(InputBuf: buf *, SttingPointer; chr returns

int
Reads a number string (sequence of digits) from InputBuf
until a non-digit is read, and puts the result in
StringPointer. Returns the number of characters rad.

StringToDoubleInt(NumString: char *, NumChars: int, DoubleIntP:
long *) returns int
Converts the string specified by NumString, which is assumed
to have length NumChars, to a 32-bit integer. Used to read
contact socket numbers for hosts specified in the host
configuration file.

IsAlphaNumeric(c: char) returnsboolean
Returns true if c is an upper or lower case alphabetic
character, or a digit between 0 and 9 (inclusive). Else
returns false.

IsStringTerminator(c: char) returns boolean
Returns true if c is a "string terminator" - a space, comma,
carriage return, newline, or tab. Else returns false.

SkipToEndOfLine(InputBuf: buf *)
Reads characters from InputBuf until a newline character has
been read, or end-of-fileas been reached.

SwapByt(addr: char *) returns int
Swap bytes of a word. addr points to a word (which need not
begin on a word boundary--n memory. SwapByt returns the
word pointed to by addr, with its bytes swapped, leaving the
original word unchange-.

B-32

2.2.4.2 LMUTIL

The module lmutil.c contains utility routines which are used
by the Central and Local MSGs, but not the MSG Primitive
routines.

RdBytes(FilDes: int, Buf: char *, NumToRead: int)
Similar to ReadAll (Section 2.2.4.1), but ErrorHalts if it
is unable to read NumToRead bytes from the file FilDes.

ConvertPToLMessage(Pmsg: PLMsg *, SourceName: InternalMSGName *)
returns LLMsg *
Converts Pmsg, which is a message in PLMsg format (see
Section 3-.1.1.2) to LLMsg format, by moving the plLength
through plArg fields of Pmsg back by vInternalMSGNameSize
bytes, and copying SourceName into the resulting hole. The
IsFromPMSG flag must have been true when the MCB which holds
Pmsg was created. Returns a pointer to the (new) start
(llLength field) of the message.

ConvertLToPMessage(Lmsg: LLMsg *) returns LPMsg *
Converts the LLMsg Lmsg to LPMsg format by moving the
llLength through llArg fields up by vInternalMSGNameSize
bytes, thus overwriting the llSourceName field. A pointer
to the new start of the message (the address of the lpLength
field) is returned.

NameIsSelf(DestName: InternalMSGName *, LocalPCB: PCB *) returns
boolean
Compares the InternalMSGName specified by DestName with the
pcbProcessName component of LocalPCB and returns true if
they are equal, else false.

ValidDestName(DestName: InternalMSGName *, LocalPCB: PCB *)
returns boolean
Used by Local MSGs to check if a message has been sent to
the wrong Local MSG. Compares the generic code in the
pcbProcessName component of LocalPCB with that specified in
DestName, and checks that the process number in Destname is
either 0 (as it would be for a generically addressed
message) or the same as the process number in the
pcbProcessName of LocalPCB. If one of these tests fails,
false is returned, else true.

ValidMSGSource(MsgHeader: PortHeader *) returns boolean
Checks that the received message specified by MsgHeader came
from a valid process. Currently always returns true.

B-33

MkPtNam(WorkDir: char *, ProcName: InternalMSGName *, PortName:
char *) returns char *
Builds in the PortName argument the UNIX pathname of the
port for the process specified by the ProcName argument.
WorkDir specifies the MSG working directory and is prepended
to the rest of the port name, which consists of the first
seven characters of the generic class name of that process,
followed by an underscore (" "), followed by the octal
representation (without a leading zero) of the instance
number of the process. Returns a pointer to the result
(i.e. returns the PortName argument).

NamesMatch(Namel: InternalMSGName *, Name2: InternalMSGName *)
returns boolean
Compares the two InternalMSGNames Namel and Name2 and
returns true if they name the same process, and false
otherwise.

2.2.4.3 INCNUM

The module incnum.c contains routines for handling the
incarnation number file. The incarnation number file is a text
file containing a single line of text, which contains the decimal
ascii representation of the current incarnation number followed
by a carriage-return and line-feed. Local MSGs and the MSG
Primitive routines use the function GetIncarnationNumber
(described below) to read the incarnation number file. When it
starts up, the Central MSG calls the routine
InitIncarnationNumber, which increments the incarnation number in
the incarnation number file.

InitIncarnationNumber(IncFile: char *)
Reads the incarnation number from the file specified by
IncFile, increments the number found there and writes it
back. Saves the new incarnation number in the global
LocalHostIncarnation. ErrorHalts if it cannot open the file
specified by IncFile.

GetIncarnationNumber(IncFile: char *)
Reads the incarnation number from the file specified by
IncFile and stores it in the global LocalHostIncarnation.
ErrorHalts if it is unable to open the file specified 5y
IncFile.

B-34

2.2.4.4 GETCONFIG

The module getconfig.c contains a single entry, GetConfig,
which reads the MSG configuration file. This file contains
configuration-dependent information, such as the name of the MSG
working directory and the number of the MSG contact socket. The
format of the configuration file is described in the UNIX MSG
User Manual.

GetConfig is passed two array pointers as arguments. The
first of these contains strings which specify the keyword to
match. These strings need not be in any particular order, as the
entire array is checked for each line that is read from the file.
The second array contains pointers to areas where the rest of the
line which contains the keyword (excluding any spaces or tabs
after the colon which delimits the keyword) is to be placed.

The configuration file is expected to be found in the
directory where the MSG component was started, and is named
config.file. If no such file is found in the connected
directory, GetConfig looks for a file named config.file in the
directory /usr/nswmsg - that is, it looks for the file named
/usr/nswmsg/config.file.

GetConfig returns true (-l) if it was able to open the
configuration file, and false (0) if not. Note that a value of
true returned by GetConfg-does not necessarily mean that all (or
even any) keywords were found in the file - only that it was able
to open the file.

1

• B-35

RMCEDN P~aG BLwrloT TLUUD

3. INPUT/OUTPUT DESCRIPTIONS

This section provides detailed information on the structure
and composition of data used by the UNIX MSG implementation.

3.1 General Description

3.1.1 Input/Output

MSG is a "system program" which functions more like an
operating system than like a language processor, such as a
compiler, or a scientific program, such as a statistics package.
Therefore, the MSG implementation does not deal with input/output
in the "traditional" sense of taking a set of inputs and
processing it to produce a set of outputs.

MSG does, however, accept input from several configuration
files to control certain aspects of its operation. These files
are described below.

3.1.1.1 Configuration Files

The file config.file contains information such as the
pathname of the Central MSG executable file, the pathnames of the
Generic names and Network Configuration files, and the MSG
contact socket (see the UNIX MSG User Manual for a detailed
description of the configuration files). This file is read by
the routine GetConfig (see Section 2.2.4.4.

The Generic names file declares the process classes to be
known to MSG and details their allocation procedures. This file
is read by the routine InitGenericNames in generic.c.

The network configuration file specifies the MSG contact
sockets for the ARPANET hosts which are to be part of the
configuration. This file is read by the routines InitHosts in
hosts.c.

3.1.1.2 Inter-component messages

MSG processes communicate with each other over UNIX pipes

B-37

-4 and ports. All these messages are in a standard format,
described below:

The structure of user process-to-Local MSG messages is:

struct PLMsg

mnt plLength; /* Total length in chars *
mnt plOpCode; /* message type *
mnt plID; 1* Transaction ID of message*/
mnt plLID; /* Not used here V/
mnt plArg; /* Argument word V/
struct InternalMSGName plDestName;

/* Destination process *
int ConnType; 1* Conn type for OpenConn *

/*-Message starts here for *
/*...SendGeneric/SendSpecific *I/

long piSocket; /* Local socket # for OpenConn ~

The argument word contains the Conn ID (for
OpenConn/CloseConn), the special handling (for
SendGeneric/SendSpecific), the alarm code (for SendAlarm), or the
reason (for error messages).

LMSG-to-user process messages have the following format:

struct LPMsq

mnt lpLength; /* Total length in chars *
mnt lpOpCode; /* message type */
mnt lpID; 1* Transaction ID of messV
mnt ipLID; /* Local MSG PE ID for mess ~

/*-.acknowledge from PMSG *
mnt lpArg; 1* Argument */
struct InternalMSGName ipSourceName;

/* Source process name ~
long lpSocket; /* Remote socket # for OpenConn *

/*-..Also (int) Reject reason for *
/*...ConnReject, Close disp. for *
/*...ConnClose */
/*-.Message starts here if *
/* generic or specific mess ~

B-38

The argument word contains the Connection ID (ConnOpen/
ConnClose/ConnReject), special handling specific message), the
gwait flag (generic message), the disposition (PE completed
message), or the alarm code (alarm message).

Local MSG-to-Local MSG, Local MSG-to-Central MSG and Central
MSG-to-Local MSG messages all have the same format. These
messages are similar in format to the above messages, but they
have two process names instead of one. The format of an
LMSG-to-LMSG message is:

struct LLMsg{
int llLength;
int llOpCode;
int 1lID;
int IILID;
int llArg;
struct InternalMSGName llSourceName;
struct InternalMSGName llDestName;
int llConnType; /* Also Close reason, */

/*-reject reason, and */
/*-start of message... */

long llSocket;

The argument word may contain the same things as the LPMsg
argument word.

3.1.2 Internal MSG Data

To support its operation MSG maintains two kinds of internal
data:

o Static data.

Internal static data items are those that do not change
as a result of MSG execution after a process has been
initialized. Included are such items as the host tables
(Sections 3.2.2.1, 3.2.3.1 and 3.2.4.1), the generic
names tables (Sections 3.2.2.2, 3.2.3.2 and 3.2.4.2),
the Host Control Block for a Protocol process (Section
3.2.2.4), and the host incarnation number, which is kept

B-39

in a global symbol named LocalHostIncarnation.

0 Dynamic data.

Dynamic data includes items that change as a result of
MSG execution. These include Pending Events (Sections
3.2.2.3, 3.2.3.3 and 3.2.4.3), Message Control Blocks
(Sections 3.2.2.5 and 3.2.3.4), Connection Control
Blocks (Sections 3.2.3.5 and 3.2.4.4), network
transmission queues (the heads of these queues are
contained in the Host Control Block), generic message
queues (Section 2.2.1.1), and so forth.

3.2 Data Structures

This section describes the structures and internal data used
in the MSG implementation, and the operations on these data
items.

3.2.1 General

3.2.1.1 Linked Lists

Linked lists are implemented by the routines in llist.c.Each
list element contains a right (forward) and left (backward)
pointer. The last entry on the list has a right pointer which
points back to the first element, and the first list element's
left pointer points to the last element on the list. (See Figure
7). The structure of a list element is:

struct LE
{

struct LE *leRLink; /* Forward pointer */struct LE *leLLink; /* Backward pointer */

List operations are:

L InicLst(List: LE **)

assigns: *List

B-40

List Pointer

FIG. 7. A LINKED LIST

Makes List an empty list. An empty list is represented by a
list pointer (the List argument contains the address of the
list pointer) containing the value vNoLEntry.

AddToList(List: LE **, NewEntry: LE *)
assigns: *List
modifies: List
Adds NewEntry to the end of list List.

RmvFrmList(List: LE **, OldEntry: LE *)
requires: OldEntry on list
modifies: List
Removes OldEntry from the list List. ErrorHalts if list
pointers are inconsistent.

FrstOnList(List: LE **) returns LE *
modifies: List
Removes and returns the first entry on the list List, or the
value vNoLEntry if the list is empty.

IsOnList(List: LE **, TestLE: LE *) returns boolean
Returns true if TestLE is on List, else false. If List is
empty, returns false.

NextOnList(List: LE **, CurEntry: LE *) returns LE *
Returns (but does not remove from the list) the next entry
after CurEntry on the list List. If CurEntry is vNoLEntry,
the first e ement on the list-s returned,

B-41

3.2.1.2 Queues

Queues are implemented by the routines in queue.c. A queue
is a singly-linked list. The last entry on the list points back
to the first entry. (See Figure 8). The Queue Head pointer
points to the last element on the queue. This makes inserting at
the end of the queue easier. The structure of a queue element
is:

struct QE{
struct QE *QELink; /* Link to next in queue */1;

First Last
item on item on
riueu queue

queue Pointer

FIG. 8. A QUEUE

Queue operations are:

InitQ(QHead: QE **)
assigns: *QHead
Makes QHead an empty queue. An empty queue is represented
by a queue pointer (the QHead argument contains the address
of the queue pointer) conining the value vNoQEntry.

AddToQ(QHead: QE **, QEntry: QE *)
assigns: *QHead
modifies: QHead

B-42

--

Adds QEntry to the end of the queue pointed to by QHead.

FrstOnQueue(QHead: QE **) returns QE *
If QHead is an empty queue, returns the value vNoQEntry.
Else returns the first element on the queue pointed to by
QHead, and removes it from the queue.

RmvFrmQueue(QHead: QE **, QEntry: QE *)
assigns: *QHead
modifies: QHead
If QEntry is on the queue pointed to by QHead, it is removed
from the queue. If QEntry is not on the queue (which
includes the case where the queue is empty), the queue is
left unchanged.

3.2.2 Central MSG

3.2.2.1 Host Table

The Central MSG's host table consists of two arrays:
HostNum[], which contains the host numbers of those hosts known
to MSG, and Socket[], which contains the MSG contact socket for
the host with the same index in the HostNum array.

These arrays are initialized at startup by the routine
InitHosts(HostFile), where HostFile is a string which specifies
the name of the Network Configuration File (see Section 3.1.5 of
the UNIX MSG User Manual). InitHosts also initializes the global
variable LocalHostNumber to contain the address of the local
host. InitHosts is found in hosts.c

3.2.2.2 Generic Names Table

The generic names table consists of the following arrays:

GnCdVec[] Contains the generic code for the generic class.

GnNmVec[] Contains the generic class name corresponding to
the generic code with the same index in
GnCdVec[].

GnNmCVec[] Contains the length of the generic class name
with the same index in the GnNmVec array.

B-43

GnCrSp[1 Contains the Create-Spec (see Section 3.1.5 of

the UNIX MSG User Manual) for this generic class.

,n(CrMd[] Contains the Create-Mode (see Section 3.1.5 of
the UNIX MSG User Manual) for this generic class.

-nRnFIVec[] Contains the pathname of the file which
implements this generic class, if the
corresponding element of the GnCrSp array does
not identify this as a "RemoteProc."

GnTrmSp[] Contains the Terminate-Spec (see Section 3.1.5 of
the UNIX MSG User Manual) for this qeneric class,
unless this class is identified us a
"RemoteProc."

GnRm1ists[]] Contains the host numbers of -ne rpiote !iosts
this class is defined to run on, if zhis class
has a GnCrSp entry of "RemoteProc." (Note that
this is a two-dimensional array. The first
dimension is the index which corresponds to the
GnCdVec array, and the second index holds a list
of host numbers.)

All of these arrays use the same index for a given class, so
if, for example, GnCdVec[l] = 3, then GnNmVec[l] will contain the
string "FOREMAN".

'wo other arrays, RcvGenrs[] and RcvdGenrs[] also use the
same index, and contain, respectively, a queue of outstanding
RcvGenr primitives for the class specified by the corresponding
GnCdVec[] entry, and a queue of received generic messages for the
class (see Section 2.2.1.1). If one of these queues is
non-empty, the other must be empty.

The generic names table is initialized by the routine in
generic.c called InitGenericNames(GenFile), where GenFile is a
string containing the pathname of the Generic Name File (see
Secti3n 3.1.5 of the UNIX MSG User Manual).

he global variable NmGnNames is set to the number of
defined generic classes when InitGenericNames is called.

3.2.2.3 Pending Events

in the Central MSG, Pending Events (PEs) are used to keep

B-44

track of messages received from and being sent to remote hosts.
The structure of Central MSG Pending Events is:

struct PE

struct LE peListEntry;
/* Doubly linked list pointers */
/*-Also single linked queue pntr */

int peID; /* PE ID (offset in the in-use */
/*-PE table) */

int peSourceID; /* Source ID of message */
struct MCB *peMCB; /* Associated MCB (if any) */
char peState; /* PE state code *
char peType; /* PE Type code */

PEs are implemented in the module lmutil.c. PE operations
are:

GetNewPE(TypeCode: int, AssociatedMCB: MCB *) returns PE *

Allocates a new Pending Event from the free storage pool,
ErrorHalting if there is not enough free memory available.
Adds the new PE to the active PE list (see below), reserves
the MCB AssociatedMCB, and initializes the PE entries.
Returns a pointer to the, new PE.

ReleasePE(OldPE: PE *)
If OldPE is vNoPE, does nothing. Else removes OldPE from
the list of known PEs, releases the associated MCB entry,
and returns the storage used for the PE to the free storage
pool.

InitPEList()
Initializes the active PE list. PEs are put on this list
when created, and removed when the PE is released.

AddToPEList(NewPE: PE *)
Adds the PE NewPE to the active PE list. ErrorHalts if
there is no room on the PE list for more PEs.

RemoveFromPEList(OldPE: PE *)
Removes the PE OldPE from the active PE list.

GetOldPE(List: LE **, ID: int, argSrc: int) returns PE *

Searches the active PE list for a PE with the specified

B-45

Source ID (if argSrc is true) or PEID (if argSrc is false),
and if found removes the PE from the list List and returns a
pointer to it. If the PE is not found, MSG ErrorChecks and
returns vNoPE.

SearchForPE(List: LE **, SrcID: int) returns PE *
Searches the list List for the PE with ID SrcID, and if
found, removes it from the list and returns a pointer to it.
If the specified PE is not on the list, vNoPE is returned.

FindProcessPE(ProcessID: int) returns PE *
Searches the active PE list for a PE with a Source ID of
ProcessID and returns a pointer to it if found, else returns
vNoPE.

FindLocalPE(SourceID: int, SourceName: InternalMSNam *)

returns PE *
Searches the active PE list for a PE with a Source ID of
SourceID and whose peMCB entry has a source name of
SourceName. If found, a pointer to the PE is returned, else
vNoPE.

FindPEFromID(SourceID: int, SourceName: InternalMSGName *)

returns PE *
Internal routine which does the work for FindProcessPE and
FindLocalPE. If SourceName is zero, as it is when this
routine is called by FindProcessPE, the SourceName field of
the peMCB is not checked. Otherwise it is compared to
SourceName. As for FindProcessPE and FindLocalPE, if the PE
is found, a pointer to it is returned, else vNoPE is
returned.

3.2.2.4 Host Control Blocks

Host Control Blocks (HCBs) keep track of information about
remote hosts known to MSG. This information includes the remote
host's host number, its incarnation number, the file descriptors
for the connection (if any) to the host, and a list of PEs which
have been queued to be sent to the host. The structure of a Host
Control Block is:

B-46

struct HCB~{
long hcbHostNumber; /* Host address number */
int hcbAlias; /* 16-bit alias for this host */
int hcbState; /* HCB state */
int hcbIncarnation; /* Remote host incarnation num */
int hcbRecvFileDes; /* Receive file descriptor */
int hcbSendFileDes; /* Send file descriptor */
long hcbSocket; /* Contact Socket */
struct QE *hcbToBeSentPEQ;

/* Queue of PEs to be sent */
struct QE *hcbAlarmSendPEQ;

/* Queue of alarm PEs to send */
struct LE *hcbPendingRemotePEList;

/* List of remote PEs pending */
/*-completion. *

There is one Host Control block in each CMSG Protocol
process. This HCB is called GIHCB, and the global variable
HostCB contains a pointer to it.

In order to give priority treatment to alarms, the
hcbAlarmSendPEQ is always scanned before the hcbToBeSentPEQ when
looking for a message to send to the remote host.

There are no operations on HCBs.

3.2.2.5 Message Control Blocks

Message Control Blocks (MCBs) are used to hold the text of
MSG messages in transit. The structure of an MCB is:

B-47

struct MCB{
int mcbCharsToBeRead;

/* Number of characters yet to be */
/*-read (sent). */

int mcbToBeSent; /* Initial value of */
/*-mcbCharsToBeSent in case
/*-have to retransmit mess */

char *mcbBufPointer;
/* Buffer pointer. Points to end */
/*-of buffer when full. */

int mcbProcessID; /* Source Process ID */
int mcbUseCount; /* Use Count */
int mcbInNetFormat;

/* true => in MSG-to-MSG format */
char /*-false => in internal format. */
char *mcbExtMessage;

/* Extension message pointer */
int mcbExtMessageSize;

/* Size of extension message */
char mcbLLContents[O];

/* Start of LMSG-LMSG message */
/*-(or MSG-to-MSG message) */1;

Operations on MCBs are:

InitPendingMCBRoutines()
Initializes the Pending MCB table. This table is used to
keep track of MCBs which hold messages in the process of
being read from the port. Since a port message may come in
several pieces, and more than one process may write into a
port, it is necessary to keep track of a partially read
message from one process while handling messages from
others.

RememberPendingMCB(PndngMCB: MCB *)
Puts the MCB PndngMCB in the Pending MCB table, where it may
be found with the FindPendingMCB function. ErrorHalts if
there is no free slot in the Pending MCB table.

FindPendingMCB(Header: PortHeader *) returns MCB *
Searches the Pending MCB table for an MCB with the process
ID specified in the Header argument. If found, the MCB is
removed from the table and returned, else the value vNoMCB
is returned.

B-48

GetMCB(MessageLength: int, SourceProcessID: int, IsFromPMSG: int)
returns MCB *
Gets a new MCB (by calling GetNewMCB), and initializes the
mcbProcessID, mcbBufPointer, and mcbCharsToBeRead fields.
Also puts the MessageLength in the buffer as the first two
bytes of the message. A pointer to the new MCB is returned.

GetNewMCB(MessageLength: int) returns MCB *
Allocates space for a new MCB from the free storage pool,
ErrorHalting if there is no space available. The size of
the MCB allocated is MessageLength plus the MCB header size
(The MCB structure fiels before mcbLLContents make up the
MCB header.) Sets the mcbUseCount field of the new MCB to
1, and clears the rest of the MCB header. Returns a pointer
to the new MCB.

ReserveMCB(TheMCB: MCB *)
Increments the use count of TheMCB. Used by routines which
are passed an MCB and require later use of it, even if after
they return, the caller releases the MCB.

ReleaseMCB(OldMCB: MCB *)
Decrements OldMCB's use count, and if the resulting value is
zero, returns the storage used by OldMCB to the free storage
pool. If OldMCB is vNoMCB, no action is taken.

3.2.3 Local MSG

3.2.3.1 Host Table

The Local MSG's host table consists of the array HostNum[],
which contains the host numbers of those hosts known to MSG.

This array is initialized at startup by the routine
InitHosts(HostFile), where HostFile is a string which specifies
the pathname of the Network Configuration File (see Section 3.1.5
of the UNIX MSG User Manual). This routine is found in the
module hosts.c.

3.2.3.2 Generic Names Table

The Generic Names table in the Local MSG is identical to
that in the Central MSG as described in Section 3.2.2.2.

B-49

3.2.3.3 Pending Events

In the Local MSG, Pending Events keep track of both messages
received from other Local MSGs (or MSGs on remote hosts, via the
Central MSG), and pending MSG primitives that were issued by the
user. They are implemented in the module lmutil.c. The format
of a PE is:

struct PE{
struct LE peListEntry;

/* Doubly-linked list pointers */
/*-Also single linked queue ptr */

int peID; /* PE ID */
int peSourceID; /* Source ID of message */
struct MCB *peMCB; /* Associated MCB (if any) */
struct CCB *peCCB; /* Assoc ated CCB (if any) */
struct PCB *pePCB; ,/* Associated PCB */
char peState; f* PE state code. */
char peType; /* PE type code */

Operations are the same as for Central MSG Pending Events
(See Section 3.2.2.3).

3.2.3.4 Message Control Blocks

MCBs in the Local MSG are identical to, and have the same
operations as, MCBs in the Central MSG (described in Section
3.2.2.5), except that in the Local MSG the mcblnNetFormat,
mcbToBeSent, mcbExtMessage and mcbExtMessageSize fields are not
defined. The structure is:

struct MCB

int mcbCharsToBeRead;
char *mcbBufPointer;
int mcbProcessID;
int mcbUseCount;
char mcbLLContents[vDifSizeLL LP];

/* Start of LMSG-LMSG message */
char mcbLPContents[0];

/* Start of LMSG-PMSG message */

B-50

3.2.3.5 Connection Control Blocks

Fist Last
(CC-,, on CCB on
list list

FirstCCl , -

LastCC'-:Q,

FIG. 9. CCB LIST

Connection Control Blocks (CCBs) are used to keep track of
information necessary to maintain user direct connections. CCBs
are kept on a doubly-linked list (not the same as a standard
linked list - See Figure 9), where they may be found by the
GetOldCCB and GetSpecCCB routines. CCBs are put on this list
when created and not removed until released. CCBs are
implemented in ccb.c. The structure of a CCB is:

struct CCB
*1 {

struct CCB *ccbNextCCB; /* Next CCB in chain */
struct CCB *ccbPrevCCB; /* Previous CCB */
int ccbConnID; /* User connection ID */
int ccbConnType; /* Type/size of connection */
int ccbState; /* Current CCB state */
int ccbLocalID; /* Local ID */
int ccbRemoteID; /* Remote ID */
long ccbLSocket; /* Local socket # */
long ccbRSocket; /* Remote socket # */
struct PE *ccbOpenPE; /* PE for OpenConn */
struct PE *ccbClosePE; /* PE for CloseConn */
struct CCB *ccbSecCCB; /* Secondary CCB (if any) */
struct InternalMSGName ccbFrnProcName;

/* Remote process name */

B-51

Operations on CCBs are:

InitCCBList()
Initializes the CCB list.

GenerateNewCCB(LocalID: int, ConnID: int, DestName:
InternalMSGName *) returns CCB *
Allocates a new CCB from the free storage pool, fills in the
LocalID, ConnID, and FrnProcName fields and adds the CCB to
the CCB list. A pointer to the new CCB is returned.

GetOldCCB(ConnID: int, DestName: InternalMSGName *) returns CCB *
Searce-the CCB list for a CCB with the given ConnID and
FrnProcName. If such a CCB is found, a pointer to it is
returned. Otherwise, the value vNoCCB is returned. This
call is used when the LocalID for the connection is not
known.

GetSpecCCB(LocalID: int) returns CCB *
Searches the CCB list for a CCB with the specified Local ID.
If such a CCB is found, a pointer to it is returned.
Otherwise the value vNoCCB is returned.

ReleaseCCB(TheCCB: CCB *)
Removes TheCCB from the CCB list and releases the storage
used by it.

3.2.4 MSG Primitive Routines

3.2.4.1 Host Table

The MSG Primitive Routines' Host Table is identical to the
Local MSG's Host Table, described in Section 3.2.3.1.

3.2.4.2 Generic Names Table

The Generic Names Table for the MSG Primitive routines is
similar to that for the Central and Local MSGs (described in
Section 3.2.2.2), but here only the arrays GnNmCVec[], GnNmVec[]
cn.: GnCdVec[] are used. Primitive routines use the same generic
t t,l;-managing module (generic.c) as the Central and Local MSGs.

B-52

.. ...

3.2.4.3 Pending Events

In the MSG Primitive Routines, Pending Events (PEs) are used
to keep track of outstanding MSG primitives issued by the user.
They are implemented in the module pmpe.c. The structure of a PE
is:

struct PE

int peLink; /* Link for completed PE queue */
int peID; /* PE ident */

/*-(incarnation #,,PE index) */
int peType; /* Type code of PE */
int peState; /* State code of PE */
int peSignal; /* Signal code */
int *peDispositionAddr;

/* Address to return disposition */
int peRcvBufSize;

/* Size of return buffer */
/*-peAlarmCode overlays */

int *peSizeRcvdAddr;
/* Addr to return size of rcvd msg */
/*-peAlarmCodeAddr overlays */

char *peRcvBuffer;
/* Address of receive buffer */

int peSrcLen; /* Size of SourceName guy */
char *peSourceName;

/* Address to return source name */
int *peSpecialHandlingAddr;

/* Addr to return special handling */
int peTimeout; /* Timeout of this PE */
struct CCB *peCCB;

/* Associated CCB (if any) */
struct PE *peTimeoutQLLink;

/* Left link of timeout queue */
struct PE *peTimeoutQRLink;

/* Right link of timeout queue */1;

Operations on PEs are:

InitPEs()
Initializes the PE vector.

B-53

ReleasePE(OldPE: PE *)
Returns OldPE to the free state, where it may be reallocated
by AllocatePE(.

FindPE(ID: int) returns PE *
Looks in the PE vector for a PE with the given ID. If
found, a pointer to the PE is returned. Otherwise, vNoPE is
returned.

PendingPEsExist() returns int
If one or more pendings PEs exist, true (-1) is returned,
else false (0).

GenerateNewPE(PETypeCode: int) returns PE *
Allocates a new PE and fills in the Type field with
PETypeCode. Initializes the Signal and Disposition Address
fields to null, and returns a pointer to the new PE. If no
PE can be allocated, the value vNoPE is returned.

SignalPE(ThePE: PE *, Disposition: int)
Delivers the disposition value Disposition to the address
specified in the peDispositionAddr field of ThePE, then
depending on the signal value, either releases the PE (null
signal), adds it to the completed PE queue (request signal),
or simply returns (unblock signal).

AddPEToCompletedQueue(ThePE: PE *)
Internal routine called by SignalPE. This routine adds
ThePE to the completed PE queue, where it will be removed by
ReqSig. The completed PE queue is pointed to by the global
variable CompletedPEQueue. Queues are described in Section
3.2.1.2.

GetCompletedPE()
Called by ReqSig, this routine returns the first PE on the
completed PE queue, or vNoPF if the queue is empty.

AllocatePE() returns PE *
Allocates a free Pending Event from the PE vector, returning
a pointer to it. If there are no free PEs in the PE vector,
vNoPE is returned. This is an internal routine, called by
GenerateNewPE.

3.2.4.4 Connection Control Blocks

These keep track of information needed by the MSG primitive
routines to maintain direct connections. Only connections which

B-54

. , , I Il/i - d t . . . L _ I--, - I ll I I I

were initiated by the user process have CCBs maintained by the
MSG primitive routines. The Local MSG creates a CCB and holds
any requests to open a connection received from another process
until the user process requests that the connection be opened.
CCBs are kept on a list identical to the Local MSG's CCB list
(see Figure 9).

The structure of a CCB is:

struct CCB{
struct CCB *ccbNextCCB; /* Link to next CCB in chain */
struct CCB *ccbPrevCCB; /* Link to previous CCB */
int ccbConnID; /* User connection ID */
int ccbState; /* Connection state */
int ccbLocalID; /* My ID for connection */
long *ccbRmSockAddr; /* Where to deliver remote */

/*-socket */
struct PE *ccbPE; /* PE for open/close */
struct InternalMSGName ccbFrnProcName;

Operations on CCBs are:

InitCCBList()
Initializes the CCB list. As for the Local MSG, all CCBs
are kept on this list through their entire life.

GenerateNewCCB(ThePE: PE *, ConnID: int, DestName:
InternalMSGName *) returns CCB *
Allocates a new CCB from the free storage pool, fills in the
ConnID, PE and FrnProcName fields from the arguments, fills
in the LocalID field by incrementing the global CCBID and
using the new value, adds the CCB to the CCB list and
returns a pointer to it.

GetOldCCB(ConnID: int, DestName: InternalMSGNare *) returns CCB *
Searches the CCB list for a connection with the specified
connection ID and remote process name. If found, a pointer
to it is returned, else the value vNoCCB is returned.

ReleaseCCB(TheCCB: CCB *)
Removes TheCCB from the CCB list and returns the storage
used by it to the free storage pool.

B-55

AddtoCCBList(TheCCB: CCB *
Adds TheCCE to the end of the CCB list. This is an internal
routine, called by GenerateNewCCB.

B-56

4. PROGRAM COMPILING, LOADING, AND MAINTENANCE PROCEDURES

4.1 Support Software Requirements

The source programs for MSG are a collection of program
modules, written in the programming language C. MSG requires a
non-standard compiler due to the use of long (> 8 character)
identifier names. This compiler, called npjcc, has a special
preprocessor which handles identifiers up to 24 characters long,
but is otherwise identical to the ncc compiler. Those
identi iers which are not unique in-their first 7 characters are
defined (in the .names declaration files) to unique 7-character
names.

To generate a new version of MSG, the modules must be

compiled and loaded with npjcc. Shell files are provided for
this purpose, and these are listed in Section 4.2.

The modules which comprise the MSG source programs are kept
on-line in the UNIX file system. Each module is stored in a
separate UNIX file. The constituent modules are:

cmsg.names Name redeclarations for Central MSG modules.
lmsg.names Name redeclarations for Local MSG modules.
imutil.names Name redeclarations for lmutil.c
msg.names Name redeclarations for the data structures

defined in msg.h.
pmsg.names Name redeclaration for MSG Primitive

routines.
util.names Name redeclarations for uti]..c, llist.c and

queue.c.
ccb.h Defines structure and states of Connection

Control Blocks.
cmsg.h Defines externals used by all Central MSG

modules.
errcodes.h Defines error codes which are sent in the

"Reason" field of MSG-to-MSG messages.
generic.h Definitions for generic name routines.
hcb.h Defines the Host Control Block (HCB)

structure, and its states.
llmsg.h Defines op codes and lengths of Local

MSG-to-Local MSG messages.
lmsg.h Defines externals used by all Local MSG

modules.

B-57

lmutil.h Defines structure of (UNIX) port header.
lpmsg.h Defines op codes and lengths of Local

MSG-to-user process and user process-to-Local
MSG messages.

mcb.h Defines the Message Control Block (MCB)
structure.

mmmsg.h Defines op codes, header lengths, and
structure of MSG-to-MSG messages.

msg.h Defines full and internal MSG name
structures, UNIX signals, and other constants
used in MSG.

msgpe.h Defines Pending Event (PE) structure and
states.

msgs.h Defines structure of user process-to-Local
MSG, Local MSG-to-user process, and Local
MSG-to-Local MSG messages.

netopen.h Defines structure of open parameter block for
opening network connections.

pcb.h Defines Process Control Block (PCB)
structure.

prmcodes.h Defines (MSG) signal types, connection types,
and other special parameter codes.

retcodes.h Defines codes which are returned by an MSG
primitive call, or in the disposition field.

streamio.h Defines structure of data streams implemented
in streamio.c.

util.h Defines linked list and queue structures (LE
and QE).

clmsg.c Routines that handle the sending of messages
to Local MSGs from the Central MSG.

cmsg.c Central MSG Initialization and main loop.
cmsgi.c Central MSG routines that handle incoming

messages from the network.
cmsgnt.c Central MSG routines that open network

connections to other MSGs.
cmsgo.c Central MSG routines that handle outgoing

traffic from Local MSGs.
getconfig.c Routine to read the configuration file.
generic.c Routines to handle generic codes and names.
hosts.c Host table initialization.
incnum.c Incarnation number initialization for all MSG

components.
inipmsg.c Initialization routine for MSG Primitive

routines.
llist.c Routines that implement linked lists.
lmsg.c Local MSG initialization and main loop.
lmsgi.c Local MSG routines that handle incoming

messages from other Local MSGs.

B-58

AD-AlAS 03b BOLT BERANEK AND NEWMAN INC CAMBRIDGE MA F/A 9/2
UIX NSW FRONT END ENHANCEMENTS. VOLUMEJNA HMS N OE 0I.4 U -CAb

UNLSIIED 88N-4 71_V OL-1 RADC-TR-8A SR-TOL1 NL3*3flfllflflf

lmsgo.c Local MSG routines that handle outgoing
messages from the user process.

lmutil.c Utility routines used by Local MSG and
Central MSG, but not the MSG Primitive
routines.

pmlmint.c Routines that handle pipe I/O between the
user process and the Local MSG.

pmpe.c Implements Pending Events for MSG primitive
routines.

pmusr.c Contains the user-callable MSG primitive
functions.

ptmo.c Handles Pending Event timeouts for MSG
primitive routines.

queue.c Routines that implement queues.
streamio.c Stream I/O routines used by getconfig.
string.c String functions.
util.c Utility routines used by all MSG components.

4.2 Procedures

Shell files are used to compile and load UNIX MSG. These
shell files assume that the C-language source files are in a
subdirectory named src, and that the object files and executable
binaries are to be placed in a subdirectory of the same
(immediate) parent directory named obj. The files are listed
below:

Br59

To create pmsg.o (MSG primitive routines).

sh comp inipmsg pmsg
sh comp pmusr pmsg
sh comp pmpe pmsg
sh comup pmlmint pmsg
sh comp ptmo pmsg
sh recomp ccb pmsg
sh recomp, generic pmsg
sh recomp incnum pmsg
sh recomp hosts pmsg
sh recomp, util pmsg
sh ncomp getconfig
sh ncomp queue
sh ncomp streamio
sh ncomp string
cd ../obj
echo "In loading phase"
id -r inipmsg.o pmusr.o pmpe.o pmlmint.o ccb.o ptmo.o\

generic.o incnum.o hosts.o util.o queue.o\
getconfig.o streamio.o string.o

my a.out pmsg.o
cd ../src
To create the local MSG:

sh comp lmsg lmsg
sh comp lmsgi lmsg
sh comp lmsgo lmsg
sh recomp ccb lmsg
sh recomp imutil lmsg
sh recomp hosts lmsg
sh recomp generic lmsg
sh recomp incnum lmsg
sh recomp util lmsg
sh ncomp getconfig
sh ncomp llust
sh ncomp queue
sh ncomp streamio
sh ncomp string
cd ../obj
echo "(Loading LMSG"1
npjcc -n lmsg.o lmsgi.o lmsgo.o lmutil.o ccb.o\

hosts.o generic.o incnum.o util.o\
queue.o llist.o getconfig.o streamio.o\

cd ./r tigo-in

B,-60

To load the Central MSG:

sh comp cmsg cmsg
sh comp cmsgi cmsg
sh comp clmsg cmsg
sh-comp cmsgo cmsg
sh comp cmsgnt cmsg

*sh recomp hosts cmsg
sh recomp imutil cmsg
sh recomp util cmsg
sh recomp generic cmsg
sh recomp incnum cmsg
sh ncomp getconfig
sh ncomp llist
sh ncomp queue
sh ncomp streamic
sh ncomp string
cd ./obj
echo "[Loading CMSG]"I
npjcc -i cmsgo.o cmsgi.o clmsg.o cmsgo.o cmsgnt.o\

lmutil.o util.o llist.o queue.o hosts.o\
generic.o incnum.o getconfig.o\
streamio.o string.o -in

cd ../src
The shell files comp, recomp and ncomp are listed below:

comp:

if 1 -newer $1.c -than ../obj/$l.o exit
echo $1.c
npjcc -c -0 -D $2 $1.c
my $1.o ../obj

recomp:

if -newer $1.c -than ../obj/$l.o echo $1.c
npjcc -c -o -D $2 $1.c
my $1.o ../obj

* ncomp:

B'-61

if I -newer $1.c -than ../obj/$l.o exit
echo $1.c
ncc -c -O $1.c
mv $1.o ../obj

4.3 Verification

At present there is no formal verification procedure for
UNIX MSG. However, newly generated versions of MSG are tested
prior to release with an extended version of the Ml process (see
Appendix D of the MSG System/Subsystem Specification and the M1
user manual). Although this process does not exhaustively test
all MSG functions, it does exercise the principal MSG operations
and provides some boundary-error testing, and so represents a
reasonably effective regression test for new versions of MSG.

4.4 Special Maintenance Programs

As noted in Section 4.3, the processes Ml and M2 are used in
the verification procedure for MSG. The executable Ml and M2
files are kept on line as ml and m2, respectively, and the source
program for these processes are kept on line as ml.c and m2.c.

4.5 Other Special Maintenance Procedures

None.

4.6 Error Conditions

Refer to the MSG User Manual for the UNIX implementation.

B-62

4.7 Listings

Listings for the MSG source programs are supplied as an
appendix to this document under separate cover.

3-63

MISSION
Of

Rome Air Dev'elopment Center
"VA1 PL&fl and execaete6 eeach, devdtopme..nt, teAt and
.6eteeted arzquZ6Uion ptwg.wxn in auppouxt oj Command, Conbftot
CommniAow and lttUgence (C31) atZUZ". Tedznico2
and engineeing .6ppozu oZ-tn m/eaa oj tedhicat competence

6pwovided to ESP PAog~.am Ojjciee (P04) and otheL ESP
eteiuenta. The ptinc.ipat .technica~t a.Lon eAwa a~e
eoflK,Wton, eteWYLoIagflC*e guida4Afeand c.ontAot,- Au4-
ueiwanle o6 quanwd and o~aOwpace objectA, intettigexce data
cottec~4on and- handl.itig, in~o'wwation .6p6tem technotogy,
ionv~phJti puopaqatAQn, aotid 4at 4ciexeAu,'mic'oWe
phg6ZcA and eeetonic~ ruabitidty, mainftanabW~tg and

