
AD-A 04 874 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER --ETC F/G q/
2RECOGNIZE REGULAR LANGUAGES WITH PROGRAMMABLE RIILOING-BLOCKS.(U)

JUN 81 M J FOSTER, Hf T RUNG N00014NAS-C-0236

U C A S S I F E D C M U C S - 8 - 1 2b N L

7E* EDh hh h h
T~

v~L~ fal

Recognize Regular Languages
With Programmable Stding- Blocks

M. J. Fotorand. T. Kung

Unomefn UMeq4*
PlubwOMI , PAL 1521A, USA

DEPARTMENT

COMPUTER-SCIE NCE

Ir " "

CMU-CS-81-126

4 e cognize'5,pgularjLonguages
Wit-rProgrami'able Bui ding-Blocks,

1) M. JJFosterj.ti:H. T./Kung /
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pa. 15213, USA

June 19,1981 To1h

This paper is to appear in the proceedings of the VLSI-81 Conference, Edinburgh, August 1981.

Copyright (C) 1981 Michael J. Foster and H. T. Kung

This research was supported in part by the Office of Naval Research under Contract N00014-80-C-

0236, NR 048-659, and in part by the Defense Advanced Research Projects Agency under Contract

F33615-78-C-1551 (monitored by the Air Force Office of Scientific Research). M.J. Foster was

supported in part by a National Science Foundation Graduate Fellowship.

i67u.j ,J i,.

Abstract

This paper introduces a new programmable building-block for recognition of regular languages.

By combining three types of basic cells a circuit for recognizing any regular language can be

constructed or "programmed" automatically from the regular expression describing that language.

Recognizers built in this way are efficient pipeline circuits that have constant response time and avoid

broadcast. In addition. the paper proposes the use of a single, regular layout. called the PRA

(programmable recognizer array), that can be *personalized"I to recognize the language specified by

any regular expression. PRA's provide compact reconfigurable layouts for recognizer circuits,

requiring only O(n log n) area for regular expressions of length n.

A - -,

2

1. Introduction
Construction of future VLSI systems will rely on the use of programmable building blacks. A

building-block consists of a set of cell designs together with rules for combining the cells into larger

circuits, and for using these circuits in large systems. The PLA (programmable logic array) for

example, is a programmable building-block frequently used for implementing random logic. Because

the structure of a building-block is fixed and prespecified, layout generators, simulators and other

high-level design tools can be used effectively. Thus using building-blocks helps manage the

complexity of VLSI design. A programmable building-block can be "personalized" to realize various

functions. If building-blocks are programmable, designers can proceed to high-level designs before

all the low-level functions are specified. This often speeds up the design process and increases the

flexibility of the final system. These advantages of using programmable building-blocks have already

been demonstrated in several recent projects [4, 8]. This paper proposes a new programmable

building-block for constructing efficient circuits that recognize regular languages.

Regular languages are precisely those languages that can be recognized by finite-state machines

(see, e.g., [51). They are well suited for describing identifiers in a programming language or patterns

to be matched by a text editor, and for modeling processes associated with electronic circuits and

nervous systems. Language recognizers are often used as components in larger systems, such as

controllers and sequencers. For example, Haskin [31 has recently suggested using language

recognizers as term nathers in special-purpose database machines. We show that by combining

some basic building-blocks a recognizer circuit for a language-can be constructed automatically from

the regular expression describing that language, and a circuit so constructed can itself be a building-

block for constructing larger systems.

2. Basic Ideas
To motivate the construction of recognizer circuits using this building block we present several

examples of increasing complexity. Our first example is a linear pipeline that can recognize

concatenations. Figure 2.1 shows a pipeline that recognizes any three character pattern. Before the

computation starts, the pipeline is loaded with the pattern ABC, one pattern character at each

recognizer cell. During the computation the cells are synchronized to operate together on discrete

clock ticks, or beats. On each beat, the text to be matched moves through the pipeline from right to

left, and the results of the match move from left to right. Data in both streams are separated by one

cell to permit each character to meet every result. On each beat, every cell that is active compares its

prestored pattern character with the text character received from its right, then sends the text

character on to its left. The cell AND'S this comparison result with the result received from the left,

4- --~ - - - .----- ~---.

and sends the new result to the right. The result of comparing a text string with the pattern is

available from the pipeline on the beat after the last text character is input, thus a constant response

time is achieved. Figure 2-1 traces the action of the pipeline for several beats. Cell contents on each

beat are shown underneath the corresponding cells.

I RES (result)
CHR (text)

Text: A '8*C* .. .

1 0 - RES
Beat 1

A B 1E-CHR

B Beat 2

Beat 3
B C

Figure 2-1: Circuit Programmed for the Expression ABC

Our second example is a tree-structured pipeline that can recognize any regular expression
consisting of a union of several concatenations followed by a single concatenation. Figure 2-2 shows

a tree-structured pipeline programmed- to recognize the language generated by expression

(AB + C)DE. This is an obvious extension of the linear pipeline in Figure 2- 1: characters fan out to both

branches of the tree when they reach the " +" node, and results from the two branches go through

an OR gate at that node. Neither characters nor results are stored in the " +" node; they just pass

right through. Once again, the result of matching a text string against the pattern is available one
beat after the last text character goes into the pipe.

This pipeline scheme cannot be extended in the obvious way to expressions such as A(BC + D)E,

which contain a union preceded by a concatenation. If we try to use a pipeline like that in Figure 2-3,
where characters and results flow around both branches of the loop, it is impossible to maintain

synchronization when the branches differ in length. Instead we must add a third data stream called
the enable stream, as shown in Figure 2-4. In addition to coordinating the CHR and RES data streams,

this new stream will serve the function of the "anchor" or "A" in previous recognizers (2, 7],
permitting matching at selected positions within the text stream. On each beat the enable stream

4

0 RES (result)
D CHR (text)

411

Figure 2-2: Circuit Programmed for the Expression (AB + C)DE

moves from right to left, and is fed into the result stream at the end of each branch. As in the other two

streams, data in the enable stream are separated by one cell.

Figure 2-3: Obvious (Wrong) Extension of Tree for A(BC. + D)E

A correct pipeline for the expression A(BC + D)E is shown in Figure 2-4, together with a record of

the contents of each cell for several consecutive beats. The l's in boxes track a successful match

through the pipeline from cell A to cell E. Notice that the text characters are sent through the "+"

node to the A node, as well as to the c and o nodes. Thus on each beat, the same text character is in

all three of those nodes, and on the next beat it is in the B node. The result from the A character cell

fans out (through the "+" node) to the enable stream of both the Bc and o branches of the tree. The

match results from the A cell thus reach the result stream input to both the a and D cells in synchrony

with the character string.

,

-V ----- ~ - -.-- ---- -JA

B C

RES (result)
CHR (text)

A E - ENB (enable)

Text:A -B.C.E.

I-I 0 0 - RES
A A A 4-CHR

0 1 "ENB(=1)

0 0

A B Beat 2

0 0 0
B B B Beat 3

B C Beat 4

1 0 0

C C C Beat 5
01

0 M Result = 1
C E Beat 6

0 0

Figure 2-4: Correct Extension of Tree for A(BC + D)E

As is shown in the next section, similar tree-structured recognizers can be built for any regular

expression. Notice that, unlike the recognizers of Floyd and UlIman [1] and Mukhopadhyay [7], our

circuits achieve a constant response time, and do not require broadcast of the text characters. Our

recognizers are thus well suited to VLSI implementation, in which broadcast is slow, but local

communication is fast.

-F n - _I I

IN n

6

3. Recognizers for Arbitrary Regular Expressions
How can we construct a recognizer for an arbitrary regular expression? In this section we describe

three types of basic cells and give a procedure for hooking them up to form any recognizer.

Three kinds of cells are used in constructing recognizers: comparators for single characters, and

combinational cells corresponding to the union (" + ") and Kleene closure (") operators. Each of

the basic cells of a recognizer has one or more data paths passing through it, with three data streams

on each data path. The CHR and ENB streams, which flow from right to left, carry the text characters

and enable bits. The RES stream, which flows from left to right, carries the result bit. We can hook

these cells together to form recognizers by connecting the data path at the right side of one cell to a

data path at the left side of another cell.

The character comparator is shown in Figure 3-1, together with a symbol used in designing large

recognizers. This cell is similar to the character comparator described by Foster and Kung [2]. On

each beat, the cell performs these steps:

1. Compare the text character with the stored pattern character x in the PAT register, AND

that result with the RES register, and pass the one bit result to the right.

2. Pass the CHR and ENB registers leftward and receive new contents from the right.

3. Receive new contents for the RES register from the left.

The cells for the +" and "," operators contain only combinational logic, and are shown in Figures 3-

2 and 3-3.

A -< ENB

Figure 3-1: Character Comparator Cell

To construct recognizers for arbitrary regular expressions, these cells are combined into larger

circuits. We use a new technique for combining the cells in which a context-free grammar describes

/A
I1 a- ,- *- -

7

RES

CHR

ENB

RES RES

ENB ---- < ENB

RES >

CHR

ENB

Figu re 3-2: "+" Operator Cell

RES >

CHR
ENB<

RES RES

CHR <CHR

ENB <ENB

Figure 3-3: "." Operator Cell

both the structure and function of the final circuit. Terminal symbols in the grammar correspond.to

basic cells, and semantic actions attached to the productions of the grammar tell how to hook them

together.

To construct a recognizer for a regular expression, we parse the expression using the grammar:

R::= PIRP
P:: = <letter> I (R) I(R+R)

Each symbol of this grammar represents a kind of circuit. The <letters> represent the character

comparator cells, for example, and the non-terminal symbol R represents a recognizer for a regular

expression. Each production has an associated. semantic rule that tells how to connect the circuits

on the right side of the production to form the circuit on the left side. Every time a production is used

in parsing the regular expression, its semantic rule is used to add to the circuit.

..... . //

8

This syntax-directed construction technique eases verification of functional correctness, and other

properties of the resulting circuits. Proof of a single theorem for each production in the grammar will

verify the correctness of any recognizer. We attach to each symbol in the grammar a predicate

describing its circuit. For each production in the grammar, we then prove that if circuits satisfying the

predicates on its right hand side are connected according to its semantic rule, then the resulting

circuit satisfies the predicate on the left hand side. This verification technique promotes confidence

that large recognizers will work as expected.

4. PRA: Programmable Recognizer Array
The pipeline circuits constructed above form ternary trees, so each of them can be laid out in an

area efficient manner [1, 61. This section describes an alternative to the approach of individually

laying out the tree corresponding to each recognizer circuit. We propose the use of a single,

compact layout, called the PRA (programmable recognizer array), that can be personalized to

recognize the language specified by any regular expression. Our methods are similar to those of

Leiserson [6].

For a recognizer of size n, we lay out n basic cells on the bottom line of the array, and provide

O(log n) channels in the top portion of the array for data paths parallel to the line, as shown in Figure

4-1(a). To configure the layout for a particular tree, we route the edges of the tree through the

channels. Ternary trees have a constant separator theorem, so that by removing a single edge of the

tree we can split it into two subtrees of roughly equal size. We-split the line of cells into two lines, one

for each of the subtrees, and use one channel to route the data path corresponding to the removed

edge between the two subtrees. We then apply the same procedure recursively to lay out the

subtrees on their lines of cells. Figures 4-1 (b) and (c) show the same PRA "programmed" for two

different regular expressions.

A PRA of dimensions n by O(log n) can be programmed to recognize the language generated by any

regular expression of length n. For the same problem a PLA implementation, a-; proposed by Floyd

and UlIman [1], would require n by n area in the worst case. For recognizing languages described by

large regular expressions, a number of small PRA'S can be combined using the syntactic method

described earlier.

/III

-T

9

(a)

(b)

(c)

Figure 4- 1: (a) PRA before "personalization"

(b) PRA for UVW ° + (Y + Z)
(c) PRA for B (C + D) EF

5. Conclusions
This paper introduces a new programmable building-block for recognition of regular languages.

The building-block can be formed (or "programmed") for any regular expression using a syntax-

directed construction method, which also allows easy and mechanical verification of circuit

properties. Recognizers built using these building-blocks are efficient pipeline circuits that have

constant response time and avoid broadcast. In addition, PRA's provide compact reconfigurable

layouts, requiring only O(n log n) area for regular expressions of length n. Programmable recognizers

should be included as one of the building-blocks in the I.C. designer's toolbox.

-- /
4/

10

References

[1] Floyd, R.W. and Ullman, J.D.
The Compilation of Regular Expressions into Integrated Circuits.
In Proceedings of 21st Annual Symposium on Foundations of Computer Science. IEEE

Computer Society, oct, 1980.

[2] Foster, M. J. and Kung, H.T.
The Design of Special-Purpose VLSI Chips.
Computer Magazine 13(1):26-40, January, 1980.
A preliminary version of the paper, entitled "Design of Special-Purpose VLSI Chips: Example

and Opinions", appears in Proceedings of the 7th International Symposium on Computer
Architecture, pp. 300-307, La Baule, France, May 1980.

[3] Haskin, R. L.
Hardware for Searching Very Large Text Databases.
PhD thesis, University of Illinois at Urbana-Champaign, 1980.

[4] Holloway, J., G. L. Steele, G. J. Sussman and A. Bell.
The SCHEME-79 chip.
Technical Report Al Memo No. 559, EE&CS Integrated Circuit Memo No. 80-6, Massachusetts

Institute of Technology Artificial Intelligence Laboratory, January, 1980.

[5] Hopcroft, J, E. and UlIman, J. D.
Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Co., 1979.

[6] Leiserson, C.E.
Area-Efficient VLSI Computation.
PhD thesis, Carnegie-Mellon University, 1981.

[7] Mukhopadhyay, A.
Hardware Algorithms for Nonnumeric Computation.
IEEE Transactions on Computers C-28(6):384.394, June, 1979.

[8] Stritter, S. and Tredennick, N.
Microprogrammed Implementation of a Single Chip Microprocessor.
In Proceedings of the IEEE Eleventh Annual Microprogramming Worishop. IEEE, November,

1978.

-- .-

REPORT DOCUmENTATION PAGE

4 TITL (andS~bti~*) S.TYPE OF Rrpon- 6 PERIOLO rCE7.[R

RECOGNIZE REGULAR LANGUAGES WITH PRGRAM4ABLE IInterim
BU ILDING,-BLOCKS {PAOu~3C4 EPR

7. A'JRa FOSTER & 1!.T. KUNG { CZ 014AZ O-CA, 23 *

Carne ic-: 1c'_ nixcrsit': AREA 6 *:... LN,

Comput.'r Science TwnarLment.

II.~~ ,Z CA. Z..,& E A' : ES 12. REPORT ZA
7
- E

June 19, 1981

___ 13. NU*IER OF PA,L-S

____ ___ ____ ___ ____ ___ ____ ___ ____ _ 1

145 A c_.L _ I.A M 6 .. i3 dil~lerofl lco~fl C-io lUing 01.lIC) S. Sii ;jTY C-. I o ~ r~,

UNCLASSIFIED

150. DECL A55 ''CA7 04ZO

SCHLCU L E

16- jSTRI~uT CS 57A TE MEN7. 1 thi eM .Ae vf,

17. DIST RrUUIZ 4 S7 A7E.LN o :e .I c~ encered In Blick 20. /1 eillersref Io, Rfeporr)

IS. SUApprovedR for public release; distribution unlimited

IS. KEY *DRZ S (Conmn* n.VgS *U I 0r..ary -d ascrwily by block niflt.?)

20. ABST RAC T (Cont,,n. o . .~..... *d. $1 stn..,y of Id-fly by block .- 60,)

DD r4" 1473 r-;,T,O OF NOV 65 IS OBSOLETENISSFII

S~N 012014 ~~oI ICURITY tLASSIFICATION OF T.IS PAGL fdhon *14 Ienfored)

FIIE

DI

