
AD-A04 445 OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC -ETC F/G 0/ "DESIGN AND ANALYSIS OF A MULTI-BACKEND DATABASE SYSTEM FOR 7PEPF--ETC(l,)
AUG 81 M J MENON N00014 75-C-0N73

UNCLASSIFIED OSU CISRC-TR- -8 NL

mhhhhmommhhhhl
""IIIII".II.I

TECHNICAL REPORT SERIES

LEVEL

0~m goo
go:~ : 0

0 0 i

81 8 6 2
THEOHOoTEUNIERST 2COL4MBUSOHIO-

(OSU-CTSRC-TR-81-8) '

DESIGN AND ANALYSIS OF A MULTI-BACKENDI

DATABASE SYSTEM FOR PERFORMANCE IMPROVFMENT,

FUNCTIONALITY EXPANSION AND CAPACITY GROWTH

(PART II)

by

David K. Hsiao
and

M. Jaishankar Menon " IC

^ELECTE j

Work performed under

Contract N00014-75-C-0573

Office of Naval Research

Computer and Information Science Research Center

The Ohio State University

Columbus, OH 43210

August 1981

J SECURITY CLASSIFICATION OF THIS PAGE (Ithen D.te EnIsred)

REPORT DOCU/,MENTATION PAGE ___R___PFTINC.

. POR NUM R ... 2. GOVT ACCESSION NO. 3. RECIPILNT'S CATALO)G NUML P.

(IS;-CSR-R81-8 ~_____________
4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Design and Analysis of A Multi-Backend Database 9/Technical X'epcWt,
System for Performance Improvement, Functional-
ity Expansion and Capacity Growth""Part Iy 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBERs)

David K.JHsiao / NOO14-75-C-0573

M M. Jaishankar/Menon

9. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PRO.,ECT, "ASK
AREA & WORK UNIT NUMERS

Office of Naval Research
Information Systems Program 4115A!

I Arlington, Virginia 22217

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

13. NUMBER OF PAGES

109
14. MONITORING AGENCY NAME & ADDRESS(II different Irom Controlling Office) IS. SECURITY CLASS. (at this report)

Ia. DECLASSIFICATION'DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATLMENT (of this Report) ---

Scientific Officer DDC New York Area - -.
ONR BRO ONR 437 . -

ACO ONR, Boston .tI~ .U

NRL 2627 ONR; Chicago

ONR 1021P ONR, Pasadena

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, it different troop Report)

I8. SUPPLEMENTARY NOTESI

IS. KEY WORDS (Continue on reverse ide It neceesery and Identify by block number)

Access Control Mechanisms, Statistical Access Control, Value-Dependent Access

Control, Concurrency Control Mechanisms, Monolithic Consistency of a Partitioned

Database, Permutable Requests, Compatible Requests, Incompletely-Specified
Transactions, Simulation Models, A Measure of Performance, Performance Under

Vaious Conditions
20. A TRACT (Continue on reverse aide If necessary end identity by block number)

-This is Part II of the design and analysis of a multiple back-end database
management system, known as MDBS. This part consists of the remaining of four

chapters of the design and analysis details. The first four chapters were issued

a month ago as Part I. For an abstract of the entire work, the reader is to refer

to the abstract of Part I.

An implementation team is pursuing the instrumentation of MDBS as designed
and analyzed in Parts I and II. It is hoped that studies and testings of the ex-

perimental MDBS may be used to verify of our analytic and simulation findings on

DD ' JA 73 1473 EDITION OF I NOV 65 IS OBSOLETE

./ ' / SECURITY CLASSIFICATION OF THIS PAGE (II en Vle Fri,,reJd,

ECURITY CLASSIFICATIOPI OF THIS PA 1,'h17en Det F~tcred)

the MDBS design and performance.

C I

;-.KII

I

11

I
I

]
I

1'

SECURITY CLASSIFICATION OF THIS PAOE(II
'

hf Data nfeted) 1

I

TABLE OF CONTENTS

Page

PREFACE

5. THE PROCESS OF REQUEST EXECUTION WITH ACCESS CONTROLi. .

A. The Authorization Stepi... .
B. Three Types of Access Control - by Granules,

by Statistics and by Values 2
C. A New Mode of Operation - Precision Control

by Multiple Back-ends 2

5.1 Access Control as Exercised by the Database
Creator 3

5.2 Determination and Organization of the Exact
Access Control from the Database-Creator-
Specified Information 7

5.2.1 Controlling Access to Authorized
Clusters 9

5.2.2 Organizing and Storing Cluster Control
Tables 9

5.3 Request Execution With Fine Granularity
of Access Control 14

5.3.1 Executing Insert Requests 15
5.3.2 Executing Non-Insert Requests 15

A. A Case of Compromised Access Control
Due to Alternative Operation 16

B. Two More Cases of Compromised Access
Control Due to Alternative Operation 17

5.3.3 The 'Conservative' and Precision Access
Control Mechanism 21

5.3.4 An Example of the Process of Request
Execution With Access Control 22

5.4 New Capabilities of the Access Control
Mechanism 23

5.4.1 Statistical Access Control 23

A. An Example of Compromised Statistical
Access Control Due to Users' Own
Aggregate Operations 26

B. An Expanded Procedure for Effective
Statistical Access Control 26

5.4.2 Value-Dependent Access Control 27

5.5 Access Control for Transactions of Multiple

Requests 29

5.5.1 Stand-Alone Execution of Transactions 29
5.5.2 Attached Execution of Transactions 29
5.5.3 The Choice of Transaction Execution

for Access Control 31

!P

TABLE OF CONTENTS continued
Page

5.6 The Management of Access Control Information 32

5.6.1 Denying a User From Any Access to the Database . . 32
5.6.2 Adding a New User of the Database 32

5.6.3 Changing the User's Access Operations Only 34

5.6.4 Changing the User's Permitted Data Grandules 34

A. Defining New Granules With New Descriptors . . 37

B. Creating Larger Granules By Deleting

Descriptors 37

C. Creating Larger Granules by Coalescing

Descriptors 37

D. Defining New Granules By Splitting
Descriptors 38

6. CONCURRENCY CONTROL FOR MULTIPLE BACK-ENDS AND

CONSISTENCY OF PARTITIONED DATABASES 39

6.1 Is There a Necessity for Concurrency Control? 39

A. The Throughput Issue 40
B. The Response-Time Issue 40
C. The Multiple Disk Drive Issue 40

6.2 What are the Necessary and Sufficient Conditions

for a Consistent Partitioned Database Utilizing
Multiple Back-ends? 41

6.3 Monolithic Consistency and Non-Permutable Requests 43

6.4 Notations and Terminology 44
6.5 Request Permutabilities 45
6.6 Request Compatibilities 47
6.7 Cluster-Based Permutabilities and Compatibilities 48

6.7.1 Determining the Set of Future Clusters

for An Update Request 50

A. Determining the Future Cluster of a Record
to be Updated Without Having Seen the
Record 51

B. Determining All the Future Clusters in
Order to Lock Them Up For Record Updates 52

C. Determining Incompatible and Non-Permutable

Requests 53

6.7.2 A Case of 'Over-Determination' 53

6.8 The Cluster-Based Concurrency Control Algorithm 54

6.8.1 Incompatible and Non-permutable Locks 55
6.8.2 The Execution Sequence of a Secure Transaction 55
6.8.3 The Concurrency Control Mechanism 57

6.9 An Examination of the Concurrency Control Mechanism 60

6.9.1 New Solutions for Centralized-Database

Concurrency Control 60

6.9.2 New Solutions for Partitioned-Datebase

Concurrency Control 62

I
TABLE OF CONTENTS continuedI Page

A. Rich Semantics in DML and New Concept
of Permutability 63

B. Better Throughput and Lower Control
Message Traffic 65

C. No Back-end Limitation Problem 65
D. A Question of Overhead Incurred During

Concurrency Control 66

E. Free From Starvation Errors 66

E.1 Transaction Execution by the

MDBS Solution 67
E.2 Transaction Execution by the

Starvation Solution 67

6.10 The Execution of Incompletely-Specified
Transactions 68

6.10.1 Problems With Backing Up Transactions 69
6.10.2 The No-Back-Up Solution 70
6.10.3 A Solution with Backing Up 70

7. DESIGN AND PERFORMANCE ANALYSIS 73

7.1 A Simulation Model of MDBS 74

7.1.1 Sequence of Events for a Retrieve
Request 74

A. The Parsing Phase 74
B. The Descriptor Search Phase 75
C. The Address Generation Phase

Including Access Control 75
D. The Secondary Memory Retrieval Phase 76
E. The Response Phase 76

7.1.2 Sequence of Events for a Delete Request 76

A. The Tag-for-Deletion Phase 76
B. The Acknowledgement Phase 76

7.1.3 Sequence of Events for an Update Request 77

A. The Record Modification and Cluster
Calculation Phase 77

B. The Acknowledgement Phase 77

7.1.4 The Sequence of Events for an Insert
Request 77

A. The Parsing Phase 77
B. The Descriptor Search and Initial

Address Generation Phases 77
C. The Back-end Selection Phase 78

D. The Record Insertion Phase 78
E. The Acknowledgement Phase 79

I
!_

I

TABLE OF CONTENTS continued

Page

7.2 Simulation Environments and A Measure of Performance 79

7.2.1 Retrieve-Intensive vs. Update-Intensive 79

7.2.2 Cluster Size vs. Request Size 79
7.2.3 Hardware Configurations and Requirements 80
7.2.4 A Measure of Anticipated Performance

vs. Ideal Performance 80

7.3 MDBS Performance Under Various Conditions 81

7.3.1 Intensive Retrieval Involving Large Clusters 81

7.3.2 Intensive Retrieval Involving Small Clusters 81

7.3.3 Intensive Update Involving Large Clusters 84

7.3.4 Intensive Update Involving Small Clusters 84

7.3.5 Effects of Broadcasting on Performance 87

7.3.6 Three Observations of Strong Design and
Performance Factors - High-Volume
Processing, Intensive Update and Inexpensive

Broadcast Bus 89

7.4 A More Refined Simulation of MDBS 89

8. DESIGN GOALS AND ACHIEVEMENTS - A SUMMARY AND REVIEW 92

REFERENCES 98

APPENDIX G: DETERMINING CLUSTERS CORRESPONDING TO AN
ARBITRARY QUERY 104

APPENDIX H: A DESCRIPTION OF THE SIMULATION MODEL 105

A DESCRIPTION OF PROCESSES 106

A. The Back-end Process 106
B. The Disk Drive Process 107

C. The Controller Process 107
D. The Broadcast Bus Process.. 108

E. The VAX Unibus Process 108

APPENDIX I: INPUT PARAMETERS OF THE SIMULATION MODEL 109

A. Parameters Related to Requests 109
B. Parameters Related to the Disk Drives 109

C. Parameters Related to the Databases 109

D. Parameters Related to the System 109

I
I LIST OF FIGURES

Page

Figure 33 - A Sample Database for Illustrating

Field-Level Access Control 6

Figure 34 - The Augmented Descriptor-to-Descriptor-Id
Table (DDIT) for the Sample Database of

Figure 33 8

I Figure 35 - The Cluster Definition Table (CDT) 10

Figure 36 - The Augmented Cluster Definition Table for User 2 11

Figure 37 - The Augmented CDT for the Sample Database of

Figure 3313

Figure 38 - The Descriptor and Corresponding Sets of
Field-Level Access Controls Formed for the

Database of Figure 3330

Figure 39 - The Augmented DDIT of Figure 33 Before and After
the Addition of User 3 to the System 33

Figure 40 - The Augmented DDIT After Changing The Set of
Field-Level Access Controls for User 2 on

Descriptor Dl35

Figure 41 - The New Separate Cluster Definition Table (SCDT)
for User 236

Figure 42 - The Lock Table56

I Figure 43 - Three Algorithms for Cluster Queue Management 59

Figure 44 - The MDBS Response Times In a Retrieve-Intensive

Environment with Large Amount of Data Involved 82

Figure 45 - The MDBS Response Times in a Retrieve-Intensive

Environment with Small Amount of Data Involvement 83

Figure 46 - The MDBS Response Times in an Update-Intensive

Environment Involving Large Clusters 85

Figure 47 - Intensive Update Involving Small Clusters 86

Figure 48 - The Response Times of MDBS Effected by the

Broadcast Bus Speeds 88

Figure 49 - The Response Times of MDBS Under a Refined

Policy Simulation90

!

PREFACE

This work was supported by Contract N00014-75-C-0573 from the

Office of Naval Research to Dr. David K. Hsiao, Professor of Computer

and Information Science, and conducted at the Laboratory for Database

Systems Research of the Ohio State University. The Laboratory for

Database Systems Research of the Ohio State University is funded by

the Digital Equipment Corporation (DEC), Office of Naval Research (ONR)

and the Ohio State University (OSU) and consists of the staff, graduate

students, undergraduate students and faculty for conducting research in

database systems. The research contract was administered and monitored

by the Ohio State University Research Foundation. This report is issued

by the Computer and Information Science Research Center (CISRC).

- I I-I I

I-1

I 5. THE PROCESS OF REQUEST EXECUTION WITH ACCESS CONTROL

From the previous chapter, we learn that directory management in MDBS

consists of three major phases. In the first phase, MDBS determines the

exact clusters which will satisfy the user request. In the second phase, MDBS

Iaccesses security information about the user to select for the user the au-

thorized clusters among the clusters which have been determined in the first

phase. In the third phase, MDBS determines the secondary memory addresses of

the authorized clusters selected in the second phase. The first and third

phases of directory management, known as, respectively, the descriptor search

and address generation phases, have been described in detail in Chapter 4.

In this chapter, we describe the second phase of directory management. The

processing performed by MDBS during the second phase of directory management

will be referred to as the access control phase of directory management.I
A. The Authorization Step

In describing the descriptor search and address generation phases of

directory management, we note that the database creator may specify a number

of descriptors at the database-creation time. These descr±ptors were used by

MDBS to form the clusters of the database. (See Chapter 3 for the definition

and use of descriptors.) Similarly, for access control, the database crPotor

Imay also specify additional information along with each descriptor at the data

base-creation time. The process of request execution with acce:ss control begins

Ilong before the request is issued by the user to MDBS. There is the initial

step of authorization by the database creator. The authorization step re-

quires the database creator to specify, for each potential user of the data-

base, the specific data and intended operations which are authorized for the

user. It is therefore possible that two users of the same database may be

authorized by the database creator with different data and operations of the

database. The role of MDBS is to receive, maintain and enforce the authori-

zations. All the information that may be specified by a database creator at the

database-creation time is explained in Section 5.1. How the information speci-

fied by the database creator is used by MDBS to determine the clusters which

are authorized for a given user among all the clusters requested by the user

is described in Section 5.2. Only after such determination is completed can

a request from a user be carried through in MDBS.U
I

-2-

B. Three Types of Access Control - by Granules, by Statistics and by Values

Upon receiving a user request, MDBS begins the process of request exe-

cution with access control. In controlling access to the database, MDBS

provides an access control mechanism with considerable capabilities. First,

it protects clusters. In other words, only authorized clusters will be per-

mitted for the user. Further, only authorized operations are performed on

the clusters so authorized. Second, it protects attribute values in the re-

cords of a cluster. Thus, access control is now brought from the cluster and

record level to the field (i.e., attribute-value pair) level. This provides

a finer granularity of security. Third, it protects the statistics of the

database by controlling the execution of requests which utilize the aggregate

functions such as average, maximum, minimum and others. Thus, statistical

security becomes an integral part of the access control mechanism. Finally,

it protects data on the basis of the relationship of the attribute value of

the data and the user of the data. For example, a user may be given access

to the records of those and only those employees who are managed by the user.

Obviously, this user is a manager. Note that such access control cannot be

achieved by protecting the values of some attributes in the records using the

fine granularity of security discussed earlier. This is because if we were

to give all employees who are managers an access to those records, then we

would make the records available to other managers. What is really needed is

for this and only this manager to access records of his or her employees. In

other words, the access control is dependent upon specific attribute values.

The access control mechanism of MDBS provides value-dependent security. In

Section 5.4, we will describe two extensions to the basic access control mech-

anism for statistical security and value-dependent security. In Section 5.5,

* we describe the process of execution of transactions (consisting of multiple

requests) with access control. Finally, in Section 5.6, we consider how a

database creator may modify the authorization that was specified at the data-

base-creation time.

C. A New Mode of Operation - Precision Control by Multiple Back-ends

From our subsequent discussion of the access control mechanism of MDBS,

we will note the following two characteristics. First, the access control

mechanism operates in a distributed fashion across multiple back-ends rather

than in the controller. This serves to alleviate the controller limitation

-3-

problem. Second, we will note that, in MDBS, all access control checks are

made prior to the retrieval of records from the secondary store. Consequently,

access imprecision due to redundant record retrieval never occurs. Thus, the

need to discard retrieved records due to security violations does not arise,

since only authorized records are retrieved from the secondary memory. Let us

assume, for example, that a user wishes to retrieve 21 records but that 5 of

these 21 records are not authorized for the user. Then, a conventional access

control mechanism will first retrieve the 21 records. It will examine these

21 records to eliminate the 5 unauthorized ones before providing the user with

the 16 authorized ones. However, in MDBS, the new access control mechanism

will ensure that only the 16 authorized records will be retrieved from the se-

condary memory. Consequently, the access precision, defined as the ratio of

the number of authorized records vs. the number of retrieved records, is always

absolute, i.e., equal to 1, for MDBS.

5.1 Access Control as Exercised by the Database Creator

In this section, we will describe the kinds of access control information

which may be specified by the database creator at the database-creation time.

We will also describe how the information is stored in MDBS. In order to con-

trol access, a database creator needs to specify who can perform what opera-
tions on which data in his or her database. What we, as system designers, would

like to do is to provide the database creator with an effective, yet efficient,

way to convey these three pieces of information to MDBS. It is straightforward

for a database creator to specify two of the three pieces of information, i.e.,

to identify the users who are allowed to access the database and to specify

for these users the kinds of accesses allowed (or disallowed) to the database.

For specifying 'who', the database creator utilizes the user id provided by

the MDBS. For specifying 'what', the database creator selects the intended

access operations from the set of MDBS operations such as retrieve, insert and

j so on. The third piece of information, to specify 'which' portions of the data-

base is to be authorized for the users may be more involved. Let us describe

the method used in our system for specifying portions of the database to be

controlled for access.

We begin by arguing that a cluster is an ideal unit for access control.

In Chapter 4, we showed that a cluster is the basic unit of access in MDBS. This

is because the clusters are formed in such a way that whenever a user requests

!_ _-

-4

some records of a cluster, there is a high likelihood that all the records in

the cluster are needed together. Since all the records in a cluster are

likely being accessed together, it makes sense to accord the same control to

all the records belonging to the cluster. Hence, we decide that a cluster

should be a unit of access control in MDBS.

However, a database creator is unaware of the formation of clusters by

MDBS. The database creator is only aware of the descriptors which in turn

induce the clusters. Therefore, the database creator is provided with addi-

tional means to specify access control information with respect to these

descriptors. Since these descriptors are used to form the clusters, the ac-

cess control information specified by the database creator with respect to

the descriptors may be transformed by MDBS into access control information

about the clusters of the database. Thus, we now have a method for controlling

access to clusters. If a cluster consists of a single record, then MDBS may

control access at the level of individual records. If a cluster consists of

many records, then MDBS may control access to record aggregates. Finally,

MDBS may control certain attribute values of the records in a cluster. It

will be seen that our access control mechanism is capable of three levels of

control. In the following paragraphs, we will describe the means with which

the database creator may specify various levels of access control.

First of all, a creator of a database must decide the users who will be

allowed to access the database, i.e., the users who are allowed to issue re-

quests (from either a terminal or an application program) to the database

using the data manipulation language (DML) provided in Chapter 3. Note that

the database creator is also one of the users of the database. After deciding

the number of users, p, allowed to access the database, the database creator

will inform MDBS of this number. MDBS will then assign p user ids for these

p users. The database creator will reserve one of these ids for his or her

own use and pass on the remaining ids to the other (p-l) users of the data-

base. A user trying to use MDBS from a terminal must first identify the user by

supplying the assigned id. Similarly, a user submitting a program to be execu-

ted in MDBS must include the user id as a part of the program. In this way, any

request received by MDBS, either from a user at a terminal or as a part of a

user program, is associated with the user. We shall refer to this id as the J
user id of the request.

Having received the Id of the p users of the database, the database creator j

-5-

now specifies a number of descriptors as described in Section 4.1.1. Tn ad-

dition, the creator specifies, together with each descriptor, p sets of field-

level access controls, one for each user of the database. A field-level access

control is either null or 'all' or a p;.-. of the form

([attribute combination], disallowed access operation).

An attribute combination is one or more attributes of the database. A dis-

allowed access operation is one of the set (No-Retrieve, No-Delete,

No-Insert, No-Update}. In the sequel, we shall often refer to the atrribute

combination part of a field-level access control and to the disallowed access

(operation) part of a field-level access control. Whenever the disallowed

access part of a field-level access control is No-Delete or No-Insert, the

attribute combination part is left unspecified. This is because we always

insert and delete entire records in MDBS. An example of a descriptor and a

set of field-level access controls for a user is as follows:

(0< Salary< 100) (([Job],No-Update), ([Name,SalaryjNo-Retrieve))

The meaning of this example is as follows. The user is not permitted to up-

date the job information from salary records whose salaries are ranged exclu-

sively between zero and 100. Nor is the user permitted to retrieve the name
and salary information from the same salary records. More formally, MDBS pre-

vents the user from any update of the value of the Job attribute in those re-

cords whose keywords (i.e., Salary attribute and Salary value pairs) are de-

rivable from the descriptor (0< Salary< 100). Similarly, MDBS prevents the

user to read values of the Name and Salary attributes from records whose key-

words are derivable from the descriptor (0< Salary< 100). We also stated that

a field-level access control could be either null or all which indicates, res-

pectively, that either no access or all accesses are disallowed. This com-

pletes our description of the kinds of information that must be specified by

the database creator at the database-creation time.

By way of an example, let us illustrate the kinds of information specified

by a database creator. Consider the database of employee records shown in

Figure 33 and let us assume that only two users, identified as user I and user

2, are allowed to access this database. We assume that user 1 is the database

creator and that user 2 is the only other user allowed to access the database.

After having received the user ids (i.e., user 1 and user 2) from MDBS,

the database-creator specifies a number of descriptors. Furthermore, correspond-

{ !

-6-

One database with six records and four attributes per record

R: (<Employee,1>, <Department,l>, <Salary,lOOO>, <Manager,l>)

R2: (<Employee, 2>, <Department ,l>, <Salary,8000>, <Manager,l>)

R 3: (<Employee,3>, <Department,2>, <Salary,15000>, <Manager,3>)

R4: (<Employee,4>, <Deoartment,2>, <Salary,2000>, <Manager,3>)

R 5 (<Employee,5>, <Department,3>, <Salary,7000>, <Manager,5>)

R 6 (<Employee,6>, <Department,3>, <Salary,l6000>, <Manager,5>)

Figure 33. A Sample Database for Illustrating
Field-Level Access Control

S I -

I ing to each descriptor, the database creator specifies two sets of field-

level access controls for the two users of the database, respectively. This

information spectfied by the database creator is stored in an augmented

descriptor-to-descriptor-ld table (DDIT). (See a description of DDIT in

I Section 4.1.1.) The augmented DDIT consists of p additional columns, where

p is the number of users anticipated to access the database. Thus, each entry

of DDIT now consists of (p+2) fields. The first field contains a descriptor

id and the second field contains a descriptor. The third field contains the

set of field-level access controls for the first user corresponding to the

descriptor that is in the second field. Similarly, the (p +2)-th field con-

tains the set of field-level access controls for the p-th user corresponding

to the same descriptor. An augmented DDIT for the sample database of Figure 33

is shown in Figure 34. We see that four descriptors (identified as Dl, D2, D3

and D4) have been specified for the database. We also see that two sets of

field-level access controls have been specified for each of these descriptors.

In this figure, the set consisting of only the null fleld-level access control

is denoted by '-' which indicates that no access is disallowed. It is there-

*fore clear that user 1, the database creator, is not disallowed any access.

That is, he is allowed to access any portion of the database. User 2, on the

other hand, may access the database only in a controlled manner. In referring

to Figure 34 again, for example, he is not allowed to learn the names of the

managers from records in Department 3.- This is controlled by the descriptor

D4. The set of field-level access controls for user 2 corresponding to des-

criptor D2 is shown to be 'All' in Figure 34. This is used to indicate that

jall accesses are disallowed for user 2 to salary records whose salaries are
greater than 10,000.

We have now completely described the kinds of information specified by a

database creator, and we have also indicated how this database-creator-speci-

fied information is stored in an augmented DDIT.

5.2 Determination and Organization of the Exact Access Control from the
Database-Creator-Specified Information

Once the descriptors and corresponding sets of field-level access con-

trols have been specified and stored, the clusters of the database may be

formed by using the algorithm for cluster formation described in Section 4.1.1.

The clusters formed for the sample database of Figure 33 are reflected in theI
I

Set of Field-Level Set of Field-Level
Access Controls Access Controls

Descriptor id Descriptor For User 1 For User 2

Dl 1000 Salary -5 10000)- ([Employee,Salary] ,No-Retrieve)

D2 (10000< Salary< ')All

D3 (1: Department: 2) -([Manager] ,No-llpdate),
([Employee,Salary] ,No-Retrieve)

D4 (Department= 3) -([Manager],No-Retrieve)

-indicates that no access is disallowed

'All' indicates that all accesses are disallowed

I Figure 34. The Augmented Descriptor-to-Descriptor-Id Table (DDIT)
for the Sample Database of Figure 33

-9-

cluster definition table (CDT) as depicted in Figure 35.

5.2.1 Controlling Access to Authorized Clusters

In order to control access, we also need, corresponding to each cluster,

p sets of field-level access controls, one for each user of the database.

The set of field-level access controls for a user corresponding to a cluster

indicates the disallowed accesses for the user to that cluster. We now des-

cribe how the set of field-level access controls for a user corresponding to

a cluster is determined.

Let us assume that we wish to find the set of field-level access controls

for user 2 on cluster 2. We first learn, from Figure 35, that cluster 2 is

defined by the descriptors Dl and D4. Then, the set of field-level access

controls for user 2 on cluster 2 is obtained as the union of the sets of

field-level access controls for user 2 corresponding to descriptors Dl and

D4. The set of field-level access controls for user 2 on descriptors Dl and

D4 are obtained from the augmented DDIT (see Figure 34). Thus, their union

can be taken to determine the set of field-level access controls for user 2

on cluster 2. In general, the set of field-level access controls for user x

on cluster y is obtained as the union of the sets of field-level access con-

trols for user x corresponding to each of the defining descriptors of cluster

y. By repeating the above procedure for every cluster in the database and

every user authorized for the database, the sets of field-level access con-

trols for each user over every cluster may be determined.

5.2.2 Organizing and Storing uster Control Tables

Having determined the/st of field-level access controls for each user

*over every cluster, we are -now concerned with methods for organizing and

storing the access cont.ol information. There are two possible techniques for/

organizing and storin'the access control information. The first technique

utilizes a separat cluster definition table for each user of the database.

The table for a us/er will only contain the access control information of

those clusters/to which the user is allowed some access. This table con-
tains one mo'e column than the CDT described in Chapter 4. This additional

column coqains the set of field-level access controls for this user corre-

sponding to the various clusters. For the examples developed in Figures 34

and 35, the augmented CDT for user 2 is shown in Figure 36. Note that there

-10 -

Records in the Cluster Defined

Cluster id Set of Descriptors by the Descriptor Set

I {Dl,D3} RI,R2,R4

2 {D1,D4} R5

3 fD2,D3} R3

4 {D2,D4} R6

Figure 35. The Cluster Definition Table (CDT)

Records in the
Set of Cluster Defined by Set of Field-Level

Cluster id Descriptors the Descriptor Set Access Controls

1 {DlD31 R1,R2,R4 (([Manager],No-Update),
([Employee,Salary] ,No-Retrieve))

2 {Dl,D4} R5 (([Manager],No-Retrieve),
([Employee,Salary] ,No-Retrieve))

I

I

Siuet 36o heAgme Cluster Definito Tabl-evUer

ClseId Dsrpos teDsrpo e cesCnrl

- 12 -

are only two clusters in the augmented CDT for user 2, even though there are

four clusters in the database. To summarize, such a technique reqii res MDBS

to maintain one CDT for the entire database and an augmented CDT for each

user.

A second tecnhique for organizing and storing the set of field-level

access controls for each user over every cluster is to collect all the access

control information for all the users in one centralized cluster definition

table. In this case, the sets of field-level access controls over every clus-

ter is stored in MDBS by augmenting the CDT with p columns, one for each user

of the database. In our example, the CDT of Figure 35 is augmented by two

columns as shown in Figure 37. This centralized CDT will then be used by MDBS

during request execution.

Either technique may be used in MDBS for organizing or storing the set

of field-level access controls for each user over every cluster. The first

technique will generally be superior in terms of the speed of request execution.

This is because the number of clusters in the augmented CDT for a user will

generally be less than the number of clusters in the centralized CDT for all

the users. Consequently, the first technique entails a search through a smaller

table. This is what contributes to the speed superiority of the first technique.

The first technique is also superior in terms of ease of maintenance. For

instance, if one of the users of the database is removed from the system, we

may simply delete the corresponding augmented CDT. In the second technique,

we need to remove all the field-level access controls corresponding to that

iser from the centralized CDT. Irrespective to the physical implementation of

the centralized CDT, the removal of all the field-level access controls corre-

sponding to a user from the centralized CDT can be no simpler than the deletion

of a table. Thus, we conclude that the first technique should be chosen in

MDBS for organizing and storing the sets of field-level access controls for

each user over every cluster. That is, physically, a separate augmented CDT

is maintained for each user of the database, in addition to the one CDT for the

entire database which is also maintained by MDBS. Logically, however, we may

still assume that the sets of field-level access controls for each user over I
every cluster are consolidated and maintained as a single centralized CDT.

Such an assumption simplifies some of the ensuing discussion. I

In the next section, we will describe the process of request execution with

access control which makes use of the augmented or centralized CDT formed at j
the database-creation time.

I

-13 -

Set of
Records in the Field-Level

Set of Cluster Defined by Access Controls Set of Field-Level

Cluster id Descriptors the Descriptor Set For User 1 Access Controls for User 2

1 fDl,D3} RI,R2,R4 - (([Manager],No-Update),
([Employee,Salary],No-Retrieve))

2 {DI,D4} R5 (([Manager],No-Retrieve),

([Employee,Salary],No-Retrieve))

3 fD2,D3} R3 All

4 {D2,D4} R6 All

'-' indicates that no access is disallowed

'All' indicates that all accesses are disallowed

I
I
I

Figure 37. The Augmented CDT for the Sample
Database of Figure 33

I

-14 -

5.3 Request Execution With Fine Granularity of Access Control

Up to this point, all the events we have described take place, at the

database-creation time long before any request is being executed. Let us

now describe the process of request execution with access control for in-

sert and non-insert requests in MDBS. We recall again (see Chapter 4) that

the process of request execution consists of the three phases of directory

management followed by actual processing of records retrieved from the se-

condary memory. Let us refer to the last stage of request execution in MDBS,

i.e., the one follows the three phases of directory management, as record

processing. In Section 4.2.1, we referred to the first and third phases

of directory management as the descriptor search phase and the address gener-

ation phase, respectively. We also referred to the processing performed

during the descriptor search phase as descriptor processing and the proces-

sing performed during the address generation phase as address generation.

In summary, the process of request execution in MBS without access control

consists of descriptor processing, address generation and record processing.

When access control is required, the process of request execution has added

complexity. It still consists of descriptor processing and record proces-

sing as described in Section 4.3. However, the address generation phase is

expanded.

In Chapter 4, we stated that address generation is executed at each back-

end and consists of two steps. In the first step, the corresponding descrip-

tors produced by the descriptor processing are used in order to find the cor-

responding cluster (for an insert request) or the corresponding set of clus-

ters (for a non-insert request). We also stated that in the second step the

secondary memory addresses of the corresponding cluster or corresponding set

of clusters are generated. When access control is enforced, address genera-

tion is again executed at each back-end, but it consists of one additional

step. Let us discuss this step with other steps together. In the first step,

the corresponding descriptors produced by the descriptor processing are used

in order to find the corresponding cluster or set of clusters. This step has

not been changed. In the second step, the authorized clusters are selected

on the basis of the information provided in the augmented CDT. This is the

new step. Finally, in the third step, the secondary memory addresses of the

corresponding authorized cluster or corresponding set of authorized clusters

are generated. In this final step, the amount of processing may be reduced

-15-

because the number of authorized clusters is usually smaller than the number

of relevant clusters. However, the processing logic does not change. To

summarize our discussion, the process of request execution with access con-

trol is different from the process of request execution without access coi-

trol because the former consists of one additional step during address gener-

ation. We now elaborate the processing performed in this additional step of

address generation as follows.

5.3.1 Executing Insert Requests

In the case of an insert request, MDBS performs descriptor processing

and the first step of address generation in order to determine the cluster

k and the back-end b into which the record in the request is to be inserted.

(See again Section 4.3.4.) After such determination, the controller sends

the record to back-end b for insertion. The second (i.e., new) step of ad-

dress generation is now activated. The back-end b will search its augmented

CDT in order to determine if the user that issued the insert request is auth-

orized with such an insert to cluster k. This is accomplished by looking up

the entry in the row for cluster k and in the column for the user id of the

user that issued the insert request. If this entry contains a field-level

access control with an unspecified attribute combination part and with 'No-

I Insert' in the disallowed access part, the request is rejected. Otherwise,

the insert request is permitted. Consequently, the back-end proceeds with

the next step of address generation and final step of record processing (both

of which have been described in Section 4.3.).

5.3.2 Executing Non-Insert Requests

Non-insert requests consist of retrieve, delete and update. Before we

describe the process of request execution for these requests, we will discuss

some implications of their execution in the context of access control.

We recall that the database creator specifies descriptors and several sets

of corresponding field-level access controls. These field-level access con-

trols indicate the disallowed access operations. Thus, for instance, the data-

base creator may specify the following descriptor and corresponding set of

field-level access controls for user 1.

(0< Salary- .100) ([Salary],No-Retrieve)

U
I

16 -

This indicates that user 1 is not permitted to retrieve the salary field

from records containing keywords derived from the descriptor (0< Salary- 100).

However, the database creator has not indicated whtther user I is allowed to

update, delete and insert such records. Therefore, the MDBS access control

mechanism must make a choice in this case for each of the three unspecified

access operations - update, delete and insert. A naive access control mech-

anism may permit user 1 to update, delete or insert records containing key-

words derived from the descriptor (0< Salary 100), since such operations

have not been specifically disallowed in the field-level access controls by

the database creator. However, such naive access control would permit user I

to compromise the access control of the database. We illustrate the problem of

compromised access control with the following example.

A. A Case of Compromised Access Control Due to Alternative Operation

Let us consider a salary database in which a typical and single-attribute-

valued record Rl is

RI: (<Salary,50>).

Let the database creator specify the following descriptor and corresponding

field-level access control for user 1.

(0< Salary- 100) ([Salary],No-Retrieve)

Let cluster 1 consist of all the records whose keywords are derived from the

descriptor (0< Salary-- 100). Then, it follows that the set of field-level

access controls for user I corresponding to cluster I is

([Salary],No-Retrieve)

That is, user 1 is not permitted to retrieve the salary field from records

belonging to cluster 1. However, there is no indication as to whether user 1

is permitted to update or delete (or insert) the (a) salary field from (to)

records belonging to cluster 1. Let us assume that a naive access control

mechanism permits user 1 to update the salary field of records belonging

to cluster 1. For instance, the following update request by user 1 is al-

lowed to take place.

UPDATE (Salary = 50) <Salary = Salary +0>

If the salary database does not contain a record for an employee earning 50,

the mechanism will return a negative acknowledgement to the user. On the other

-17-

hand, if the database does contain a record for an employee earning 50, the

mechanism will return a positive acknowledgement to the user. Thus, user 1

can easily make the inference whether there is an employee record in the data-

base with earning being 50. In other words, user 1 may infer at the informa-

f tion which he would have obtained if he had issued the retrieve request

RETRIEVE (Salary - 50) (Salary)

Since user 1 is not allowed to issue the above retrieve request as dictated

by the field-level access controls specified by the database creator, the user

obtains the salary information of the employee by way of an update request.

Any access control mechanism which allows information to be revealed to a user

by way of one type of requests while the same information is expressly pro-

hibited from being revealed to the user under the other types of requests is said

to suffer from the problem of compromised access control as characterized in

the above case study. Obviously, the MDBS access control mechanism must not

have the problem of compromised access control.

In the example, the problem of compromised access control arises because

user I is allowed to update the value of an attribute from records in a spe-

cific cluster, even though he is not allowed to retrieve the value of this

attribute from records in the cluster. Clearly, the problem may be overcome

by a more sophisticated access control mechanism which ensures the following

rule. Whenever a user is not allowed to retrieve the value of an attribute

from records in a cluster, the user must also not be allowed to update the

value of that attribute from records in the cluster. We term such a rule, the

rule of access control implication. We therefore say that the No-Update dis-
allowed access operation is implied by the No-Retrieve disallowed access oper-

ation. Graphically, we denote the implication as follows.

No-Retrieve No-Update

For each user, the MDBS access control mechanism will enforce not only the set

of field-level access controls over every cluster induced by the database

creator's specification, but also all the other disallowed access operations

implied by disallowed access operations in the field-level access controls.

B. Two More Cases of Compromised Access Control Due to Alternative Operation
In addition to the case of compromised retrieval due to update, there

are other implications. Disallowed update operations may be compromised by

upae1y cmrmsdb

-18 -

delete operations, since No-Delete is implied by No-update. The converse

is also true. Consider, once again, the salary database of the previous

example. Let us assume that the database creator specifies the following

descriptor and corresponding field-level access control for user 1.

(0< Salary : 100) ([Salary],No-Update)

Furthermore, let cluster 1 consist of all the records whose keywords are

derived from the descriptor (0< Salary< 100). Then, it follows that the set

of field-level access control for user 1 corresponding to cluster I is

([Salary],No-Update).

That is, user 1 is not allowed to update the salary field of the records be-

longing to cluster 1. However, there is no indication of whether user 1 is

allowed to retrieve the salary field from records belonging to cluster 1.

Nor is there any indication of whether user 1 is allowed to insert new salary

into or delete old salary from such records. To illustrate how a naive access

mechanism may compromise the database by allowing user 1 to insert and delete

records of cluster 1, we propose the following scenerio.

Knowing that update operation is denied from the user, user 1 tries the

following requests in sequence.

DELETE (Salary = 50)

INSERT (<Salary,52>)

Thus, user 1 is able to achieve the effect of updating the salary by 2. The

access control is compromised because the user is disallowed to update any

salary of records in cluster 1, and yet the user is able to achieve the effect

of update by means of delete and insert operations. Clearly, the problem of

compromised access control in the example may be overcome by either disallowing

the insert operation or the delete operation on records in cluster 1. In gen-

eral, a sophisticated access control mechanism should recognize the following

implications

No-Update - No-Delete,

No-Update - No-Insert A
Conversely, we learn that if a user is not allowed to delete records from

a cluster, the user must not be allowed to update attribute values

of records in the cluster. That is, the implication

No-Delete No-Update

-19 -

holds. To illustrate the necessity in upholding the Implication, we present

the following counterexample. Assume that the f'1(!-1evc1 access control

corresponding to cluster 1 for user 1 is

([],No-Delete),

where the '[]' indicates that the attribute combination part is unspecified.

Since the update opeartion on records in cluster 1 has not been specifically

disallowed in the field-level access control, a naive access control mechanism

may allow user 1 to update all the fields of records in cluster 1. Thus,

user 1 may achieve the effect of deleting a record by updating the value of

every field in the record to null. Hence, the problem of compromised access

control exists.

We conclude that in order to overcome the problem of compromized access

control, a sophisticated access control mechamism must enforce the following

four implications:

(1) No-Retrieve - No-Update

(2) No-Retrieve - No-Delete

(3) No-Update - No-Delete

(4) No-Delete - No-Update

Now, we are ready to describe the process of request execution with access

control for non-insert requests. We have already described, in Section 4.1.3,

how descriptor processing and the first step of address generation are used to

determine the set of clusters corresponding to the query in the user request.

Now, we need to do the following for each cluster k In this set in order to

exercise access control. By looking up an entry in the augmented CDT corre-

sponding to the row for cluster k and the column for the user id of the user

that issued the non-insert request, each back-end will make the following

checks.

If the request is a delete request, each back-end will check to see if

the entry of the augmented CDT contains a field-level access control with any

attribute combination part and with 'No-Delete', 'No-Retrieve' or 'No-Update'

in the disallowed access part. By checking for 'No-Retrieve' in the disal-

lowed access part, the implication

No-Retrieve - No-Delete

is being upheld.

I
r

- 20 -

Similarly, by checking for 'No-Update' in the disallowed access part, the

implication

No-Update -* No-Delete

is being upheld. Since both the implications related to the delete request

are thus upheld by each back-end, the problem of compromised access control

does not occur in MDBS during the execution of the delete request.

If the request is an update request, each back-end will check to see if

the entry of the augmented CDT contains a field-level access control with the

attribute being modified as one of the attributes in the attribute combination

part and the disallowed access part as 'No-Update' or 'No-Retrieve'. For

instance, if the attribute being modified is salary, it will check to see if

the entry contains a field-level access control of the form

([Salary....],No-Update) or ([Salary],No-Retrieve),

where the attribute combination part may have other attributes besides salary.

By checking for 'No-Retrieve' in the disallowed access part, the implication

No-Retrieve - No-Update

is being upheld. Each back-end will also check to see if the entry contains

a field-level access with an unspecified attribute combination part and with

'No-Delete' in the disallowed access part. This allows the back-end to up-

hold the implication

No-Delete - No-Update

Since both the Implications related to the update request are thus upheld by

each back-end, the problem of compromised access control cannot occur in MDBS

during the execution of the update request.

If the request is a retrieve request, each back-end will check to see if

the entry of the augmented CDT contains a field-level access with the attri-

bute combination part containing one or more attributes from the target-list

(of the retrieve request) and the disallowed access part being 'No-Retrieve'.

For example, consider the retrieve request

RETRIEVE (File- EMPLOYEE) (Name,Salary).

In this case, each back-end will check to see if the entry contains a field-

level access control of the form

([Name....],No-Retrieve) or ([Salary....],No-Retrieve).

-21 -

Here, we have only described the processing of retrieve requests which do

not contain aggregate operators in their target-lists. The processing of

requests with aggregate operators is described later in Section 5.4.

If the check is positive in any of the cases mentioned above, the back-

ends delete cluster k from the set of corresponding clusters. In other words,

cluster k is a cluster relevant to the user request; nevertheless, It Is

not authorized for the user. The above procedure is repeated for every clus-

ter in the set of corresponding clusters. The remaining set of clusters is

referred to as the permitted or authorized set of clusters for the non-insert

request. Once the set of permitted clusters for a non-insert request have

been determined, the back-ends proceed with the third step of address genera-

tion and with record processing as described in Section 4.3.

5.3.3 The 'Conservative' and Precision Access Control Mechanism

First, we would like to point out that the MDBS access control mechanism

may be 'conservative' in that it may reject a user request by 'overly' pro-

tecting the requested data. For instance, consider the following retrieve

request issued by user 1.

RETRIEVE (Dept = TOY) (Salary)

For simplicity, assume that all the relevant records of the toy department

belong to cluster 1 and that the set of field-level access control for user 1

corresponding to cluster I has been determined as

([Name,Salary],No-Retrieve).

In this case, Salary is the only attribute in the target-list of the retrieve

request. Also, Salary is one of the attributes in the attribute combination

part of the field-level access control for user 1 corresponding to cluster 1.

Thus, according to the algorithm presented in the previous section, the access

to the salary field is denied to user 1 and the request is rejected. However,

it might be the intention of the database creator that user 1 is only to be dis-

allowed from reading the name and salary fields jointly from records in cluster 1

Iin order to prevent the user from learning individual employee salaries. That

is, the database creator might intend to allow user 1 to access either the name

I or salary fields singly but not jointly from records in cluster 1, since sepa-

rate lists of names and salaries might not correlate the individual employee

salaries. In view of this example, MDBS access control mechanism might be con-

I

- 22 -

sidered to be conservative in not allowing user 1 to access the salaries from

such records.

However, there is a very good reason for the conservatism of the MDBS

access control mechanism. Consider that, in the above example, user I were

allowed to read the name and salary fields individually from records in

cluster 1. Then, user I may issue the following two requests one after the

other.

RETRIEVE (Dept= TOY A SS#= 50) (Name), and

RETRIEVE (Dept = TOY A SS# = 50) (Salary),

As a result, the user may obtain the name and salary of the employee in the

toy department where social security number is 50. But this may be precisely

the information that the database creator may intend to disallow user 1 from

obtaining. In other words, if the MDBS access control mechanism is not 'conser-

vative', it is possible for users to compromise the access control of the data-

base. It is to overcome the problem of compromised access control that MDBS

has a 'conservative' access control mechanism.

Second, we note that MDBS access control mechanism may eliminate one or

more clusters from consideration in the second step of address generation.

Since a cluster is stored in one or more tracks, the elimination of a cluster

from consideration will result in savings in terms of reduced number of ac-

cesses to the secondary store.

We also note that in MDBS all access control checks are made prior to the

retrieval of records from the secondary store. Consequently, access impre-

cision due to redundant record retrieval never occurs. Thus, the need to dis-

card retrieved records due to access control violations does not arise since

they are retrieved from the secondary memory only after they are cleared for

access.

5.3.4 An Example of the Process of Request Execution With Access Control

Tn order to illustrate the entire process of request execution with ac-

cess control, we consider the database of Figure 33 and the corresponding aug-

mented CDT of Figure 37. Let us assume that the user identified as user 2

issues the request

RETRIEVE (Salary < 10000) (Manager).

This request requires the retrieval of the names of managers of all those em-

-23-

ployees who earn less than $10,000. After descriptor processing and the

first step of address generation, MDBS determines that the corresponding set

of clusters for the query (Salary < 10000) is the set consisting of cluster I

and cluster 2. In the second step of address generation, the access control

takes place. In this step, the permitted set of clusters must be determined.

The two clusters in the set of corresponding clusters are checked, in turn.

Cluster 1 is checked for authorization by looking up the entry corresponding

to cluster I and user 2 in Figure 37. There is the following entry

(([Manager],No-Update), ([Employee,Salary], No-Retrieve))

which is checked to see if it contains a field-level access control of the

form ([Manager, ...], No-Retrieve). Since no such field-level access control

is present in the entry for cluster 1, cluster 1 is a permitted cluster.

Next, cluster 2 is checked for authorization by looking up the entry corre-

sponding to cluster 2 and user 2. There is the following entry

(([Manager],No-Retrieve), ([Employee,Salary], No-Retrieve)).

which is checked to see if it contains a field-level access control of the form

([Manager, ...],No-Retrieve). Since such a field-level access is indeed pre-

sent in the entry for cluster 2, cluster 2 is not a permitted cluster. Thus,

cluster 1 is the only permitted cluster. Then, the third step of address

generation and record processing are performed for the retrieve request. Look-

ing at Figure 36 again, we see that records Rl, R2 and R4 are retrieved, since

these are the only records in cluster 1. Finally, the value of the Manager

attribute is retrieved from these records and presented to user 2. This com-

pletes the processing of the retrieve request for user 2.

5.4 New Capabilities of the Access Control Mechanism

In this section, we describe two extensions to the basic access control

mechanism. These optional extensions are discussed in turn.

5.4.1 Statistical Access Control

It may be necessary to disallow a user from obtaining an aggregate value

of some attribute over a number of records. Aggregate attribute values are

resulted from the use of aggregate functions such as average, summation, maxi-

mum and minimum. Our access control mechanism may be extended to provide such

a capability as described below.

_ _ __ _ _ _ _

- 24 -

We recall that a field-level access control is a pair of the form

(attribute combination, disallowed access operation), where an attribute

combination is a set of attributes. We now extend our definition of attri-

bute combination to be a set of elements. Each element is either an attri-

bute, e.g., Salary or an aggregate operator to be performed on an attribute,

e.g., AVG(Salary). An aggregate operator is one of AVG, SUM, COUNT, MAX, MIN.

An example of an attribute combination with two elements is

[Department, AVG(Salary)].

Let us now demonstrate how attribute combinations with aggregate opera-

tors may be used to control access over requests for aggregate values. Con-

sider, for example, an employee database in which the database creator wishes

to disallow user I from obtaining the average salary of all those employees

who are working in the toy department. However, the database creator allows

the same user to obtain the average salary of all those employees who are

working in the sales department. Finally, the database creator disallows

user 1 from obtaining the individual salaries of employees in either of these I
two departments. Then, the database creator may specify the following two des-

criptors and corresponding sets of field-level access controls. I
(Department = TOY) ([AVG(Salary),Salary],No-Retrieve)

(Department= SALES) ([Salary],No-Retrieve) j
For simplicity, let cluster 1 be defined by the single descriptor

(Department = TOY).

Also, let cluster 2 be defined by the single descriptor I

(Department = SALES).

Then, it is easily determined that the set of field-level access controls for I

user 1 corresponding to cluster 1 is

([AVG(Salary),Salary],No-Retrieve). I
Similarly, the set of field-level access controls for user 1 corresponding to

cluster 2 is determined as j
([Salary],No-Retrieve). I

Now, assuime that user I issues the request

RETRIEVE (Department = TOY) (AVG(Salary)).

-25-

MDBS will first perform descriptor processing and the first step of address

generation to determine that the only cluster corresponding to the query in

the user request is cluster 1. Since the set of field-level access controls

for user I corresponding to cluster 1 disallows access to the salary average,

the request from user 1 is rejected. On the other hand, assume that user 1

issues the request

RETRIEVE (Department = SALES) (AVG(Salary)).

In this case, MDBS will first perform descriptor processing and the first

step of address generation to determine that the only cluster corresponding

to the query in the user request is cluster 2. Since the set of field-level

access control for user 1 corresponding to cluster 2 does not disallow access

to the salary average, the request is not rejected. MDBS will determine the

secondary memory addkesses of the records in cluster and retrieve these re-

cords. It will then extract the values of the salary attribute from such re-

cords , compute the average and output a single value for the average salary.

This average salary will then be returned to user 1.

Now, consider that user 1 issues the request

RETRIEVE (Department= TOY) V (Department = SALES) (AVG(Salary)).

In this case, MDBS will perform descriptor processing and the first step of

address generation to determine that the set of clusters corresponding to the

query in the request is the set consisting of clusters 1 and 2. In the se-

cond step of address generation, MDBS will determine the set of permitted clus-

ters. Since the set of field-level access controls for user 1 corresponding

to cluster I does not allow access to the salary average, cluster 2 is the only

permitted cluster. Now, MDBS may take one of two possible courses of action.

One possibility is to access the records in cluster 2, extract the values of

the salary attribute from such records, compute a salary average and return

jthis average salary to the user. However, the average salary returned to user 1

is restricted to the employees in the sales department. What the user had re-

jquested was the average salary of all employees in both the sales and toy de-

partments. Therefore, MDBS must also return a message to user 1 indicating

that the value returned is only an authorized one. The second possible course

of action is simply to reject the request, since the requested average touches

upon unauthorized data. Either course of action may be chosen for our imple-

mentation.

- 26 -

A. An Example of Compromised Statistical Access Control Due to
Users' Own Aggregate Operations

Consider a salary database and let the database creator specify the

following descriptor and corresponding set of field-level access control for

user 1.

(0< Salary i00) ([AVG(Salary)],No-Retrieve)

That is, the database creator specifies that user 1 is not allowed to access

the salary average of all records containing keywords derived from the descrip-

tor

(0< Salary : 100).

Let us assume that cluster 1 is defined by this same descriptor. Then, it is

easy to see that the set of field-level access control for user 1 correspond-

ing to cluster 1 is

([AVG(Salary)],No-Retrieve).

That is, user 1 is not allowed to access the salary average of the records in

cluster 1. Nowever, there is no indication of whether the user is allowed to

access the individual salary field of such records. Consider a naive access

control mechanism which allows user 1 to access the salary field from records

in cluster 1. Now, user I may access the salary field from each and every

record in cluster 1. Then, the user may compute the average of all these re-

trieved salaries (either manually or by running a statistical program). In

this way, user 1 may obtain the average salary of all records in cluster 1,

thus compromising the access control of the database. Therefore, a sophisti-

cated access control mechanism will not permit user 1 to access the salary

field from records in cluster 1.

In order to ensure that the statistical security of the database is not

compromised, MDBS access control mechanism incorporates the following addi-

tional procedure in the process of request execution with access control for

retrieve requests. I

B. An Expanded Procedure for Effective Statistical Access Control

We recall that the attribute combination part of a field-level access J
control and the target-list of a retrieve request are both lists of elements

I
-!

-27-

where each element is either an attribute or an aggregate operator to he

performed on an attribute. Whenever an element in an attribute combination

part of a field-level access control is an aggregate operator on an attri-

bute, the attribute is also added to the attribute combination part of the

field-level access control. Thus, for example, the field-level access con-

trol

([AVG(Salary),Dept],No-Retrieve),

becomes in effect

([AVC(Salary),Salary,Dept],No-Retrieve).

Every field-level access control in the relevant entry of the augmented CDT

is expanded in this way. Now, each back-end will check to see if the entry

of the augmented CDT contains a field-level access control with the attri-

bute combination part containing one or more elements from the target-list

of the retrieve request. If the check is positive, each back-end will delete

cluster k from the set of corresponding clusters. The above procedure is re-

peated for every cluster in the set of corresponding clusters. Thus, we form

the set of permitted clusters for the retrieve request. Then, each back-end

may proceed with the final step of address generation and with record pro-

cessing as described in Section 4.3.

5.4.2 Value-Dependent Access Control

In this section, we will describe how MDBS may control access to data on

the basis of the relationship of the attribute value of the data and the user

of the data. In this case, the access control is dependent on the values of a

specific attribute. Thus, we refer to it as value-dependent access control.

Furthermore, we shall refer to the specific attribute whose values are used

to enforce access control as the relationship attribute. Let us illustrate

the value-dependent access control with an example.

Consider that the database creator wishes to give a user access to the

records of those and only those employees who are managed by the user. In

this case, the relationship attribute is Manager. With respect to the sample

database of Figure 33, employee 1 may only access the first two records, em-

ployee 3 may only access the next two records, and employee 5 may only access

the last two records.

In this case, value-dependent access control is implemented in MDBS as

follows. As before, the database creator specifies a number of descriptors

- 28 -

and corresponding sets of field-level access controls at the database-creation

time. In addition, the database creator specifies a relationship attribute

and a set of field-level access controls corresponding to that attribute.

'Phis single relationship attribute and single set of field-level access con-

trols must be converted by the system into a number of descriptors and cor-

responding sets of field-level access controls. For simplicity, we will select

from the descriptors specified by the database creator at the database-creation

time the only relationship attribute and the corresponding set of field-level

access controls for consideration. In our example, we want to disallow a user

all accesses to records of employees whom the user does not manage. That is, the

only relationship attribute is Manager and the set of field-level access con-

trols is the one which disallows all accesses. In the sequel, we shall desig-

nate this set of field-level access controls with 'All'.

MDBS must convert the relationship attribute and set of field-level access

controls to a number of descriptors and u sets of field-level access controls

for each descriptor, where p is the number of potential users of the database.

Once this conversion is achieved, the algorithm described in Section 5.2 may

be used to form the augmented cluster definition table. Then, this table may

be used as before during request execution with access control. In the next

paragraph, we explain how the relationship attribute and set of field-level

access controLs are converted to a number of descriptors and p sets of field-

level access controls.

The conversion is illustrated with the use of the sample database of

Figure 33. We assume that each employee in the database of Figure 33 is per-

mitted to access the database and that these six employees are the only users

of the database. Thus, p is set to six. The conversion algorithm is as fol-

lows. First, we extract all possible values of the relationship attribute

from the records of the database and place it in a set V. In our example,

we will extract all possible values of the Manager attribute from the records

of Figure 33 and form the set V as {1,3,5). For each value v in the set V,

we will form a descriptor of the form

(relationship attribute= v)

In our example, we will form the three descriptors (Manager= 1), (Manager= 3)

and (Manager= 5). Corresponding to each descriptor so formed, we need to

form p sets of field-level access controls. In our example, corresponding to

each of the three descriptors, we need to form six sets of field-level access

-29-

controls. The set of field-level access controls corresponding, to user i for

a descriptor of the form (relationship atrribute= v) is set to 'All' (the

database creator specified set of field-level access control) if i is not

equal to v. Otherwise, it is set to null to indicate that no access is

disallowed. The descriptors and corresponding sets of field-level access

controls formed for our example are shown in Figure 38. This completes our

description of the algorithm for converting from the database-creator-speci-

fied relationship attribute and corresponding set of field-level access con-

trols to a number of descriptors and p sets of field-level access controls,

where p is the number of potential users of the database.

Once the descriptors and corresponding sets of field-level access con-

trols are obtained, the algorithm described in Section 5.2 may be used to

create the augmented cluster definition table and the algorithm of Section 5.3

is used to enforce access control during request execution.

5.5 Access Control for Transactions of Multiple Requests

Up to this point, we have described the process of request execution with

access control for individual requests. However, as described in Chapter 3,

we also allow for transactions of multiple requests to be carried out in MDBS.

In this section, we consider the process of transaction execution with access

control. Two techniques are considered for executing transactions consisting of

of multiple requests. The first technique, called the stand-alone execution

is known for its simplicity. The second technique, called attached exe-

cution is more complex. Nevertheless, it is more effective and efficient in

j controlling access of transactions to the database.

5.5.1 Stand-Alone Execution of Transactions

Each request in a transaction is executed in the manner described in

Section 5.3. Thus, no special attentioo is paid to the fact that these re-

quests are actually parts of a transaction.

j 5.5.2 Attached Execution of Transactions

Each request in a transaction is executed till the point where the set

of authorized clusters for the request are determined. That is, descriptor

processing and the first two steps of address generation are performed on

each request in the transaction. Now, each request in the transaction may be

I

- 30 -

Set of Set of Set of Set of Set of Set of
Field-Level Field-Level Field-Level Field-Level Field-Level Field-Level
Access Access Access Access Access Access
Controls Controls Controls Controls Controls Controls

Descriptor for User 1 For User 2 For User 3 For User 4 For User 5 For User 6

(Manager=l) - All All All All All

(Manager=3) All All - All All All

(Manager=5) All All All All - All

'All' indicates that all accesses are disallowed

'-' indicates that no access is disallowed

Figure 38. The Descriptor and Corresponding Sets
of Field-Level Access Controls Formed
for the Database of Figure 33

* - 31-

attached with the authorized set of clusters for that request. We shall refer

to an attached request as a secure request because access control processing

has been completed for this request. By forming a secure request from every

request in a transaction, we may form a secure transaction from the original

transaction. The secure transaction formed from the transaction is referred

to as the secure version of the transaction. Note that each request in a

secure transaction has only been partially but not completely executed. AfterIa secure transaction has been formed, each request in the secure transaction

may then be executed to its completion by executing the taird step of address

generation followed by record processing.

J.5.3 The Choice of Transaction Execution for Access Control

There are two reasons that we prefer to select the attached execution

technique for controlling access of transactions to the database. In order to

explain the first reason, we define the permitted set of clusters for a trans-

action as the union of the authorized set of clusters for each request in

the transaction. In Chapter 6, we will see that, to enforce concurrency

control, a transaction must lock its set of permitted clusters before any

access to the secondary memory may be made on behalf of the transaction.

Therefore, it is necessary to preprocess transactions to determine their sets

of permitted clusters. This is precisely what we do in the attached execu-

tion technique described above. On the other hand, in the stand-alone exe-

cution technique, a transaction may be partially executed even before its set

of permitted clusters is entirely determined. If we were to employ the stand-

alone execution technique, then no lock for concurrency control could be placed

on the permitted set of clusters for a transaction since such a set is not

known before hand.

IThe second reason for preferring the attached execution technique has to

do with the fact that transactions in MDBS are meant to be executed repeatedly.

If this technique is employed, we need to enforce access control for the re-

quests in a transaction only the first time the transaction is executed. After

I this first execution of a transaction, a secure version of it may be preserved

for use during subsequent executions of this transaction. On the other hand,

If the stand-alone execution technique is employed, It Is necessary to enforce

access conirol each time a transaction is executed, since a secure version of

the transaction Is not available.

Tt ;hould be emphasizednevertheless, that in the attached execution

U

- 32 -

technique the preserved secure version of a transaction may be used in sub-

sequent executions of that transaction only as long as the database creator

has not made any changes to the access control information about the database.

If the database creator does make modifications to the access control informa-

tion, the preserved secure versions of transactions are no longer valid and

must be recalculated.

5.6 The Management of Access Control Information

From time to time, a database creator may change the access control in-

formation for his or her database. We shall consider the various ways in

which a database creator may change the access control information and the

various actions to be taken by MDBS in response to these changes. Here, we

find it necessary to talk at the implementation level rather than at the logi-

cal level of the access control information. Accordingly, we keep in mind

that in addition to the augmented descriptor-to-descriptor-id table (DDIT),

there is the augmented CDT which is physically implemented as one cluster

definition table (CDT) and separate cluster definition tables (SCDTs), one

for each user of the database. Let us now proceed to discuss the various

changes that a database creator may wish to make to the access control infor-

mation.

5.6.1 Denying a User From Any Access to the Database

Consider that the database creator wishes to disallow one of the users

from accessing the database. In that case, each back-end will simply delete

the SCDT for that user. Thus, the actions taken by MDBS in response to this

change made by the database creator are simple.

5.6.2 Adding a New User of the Database

Let us consider that the database creator wishes to add a new user to

the system. In this case, he must first acquire a new user id from MDBS which

the database creator will pass on to the new user. Next, the database creator

needs to specify one set of field-level access controls for each descriptor

in the database. These sets of field-level access controls are stored as a

new column of the augmented DDIT. Pictorially, the augmented DDTT of Figure 34,

before and after the addition of a new user (i.e., user 3) is shown in Figure 39.

In the figure, F31, F32, F33 and F34 are the sets of field-level access controls

I - 33-

1

I _Original from Figure 33

i Set of Field-Level Set of Field-Level~Descriptor
Id Descriptor Access Controls Access Controls

For User 1 For User 2

Dl (1000 < Salary < 10000) F F21

D4 (Department = 3) F14 F24

New Augmented DDIT Due to Changes of Above

Descritor' Set of Field-Levelet of Field-Level Set of Field-Level
Descriptor Access Controls Access Controls Access Controls

Id For User 1 For User 2 For User 3

I)l (1000 f Salary _ 10000) FII F21 F31

D4 (Department= 3) F1 4 F24 F34

I F Set of Field-level Access Controls for User i Corresponding
to Descriptor j

I
I
I
I

Figure 39. The Augmented DDIT of Figure 33 Before and After

i the Addition of User 3 to the System

I

- 34 -

specified for the new user. After a new column has been added to the augmented

DDIT, each back-end must next form an SCDT for the new user. This requires the

back-end to determine the sets of field-level access controls for user 3 on

every cluster. The algorithm described in Section 5.2 is used to do this.

Once the SCDT for user 3 is created, all requests issued by user 3 may be exe-

cuted in the manner described in Section 5.3.

5.6.3 Changing the User's Access Operations Only

The database creator may wish to change the corresponding set of field-

level access controls for a user on a descriptor. Then, MDBS performs the

following operations. First, it makes tne appropriate changes to the aug-

mented DDIT. For instance, let us assume that we wish to change the set of

field-level access controls for user 2 on descriptor Dl from ([Employee,

Salary],No-Retrieve) as shown in Figure 34 to ([Employee],No-Retrieve). The j
augmented DDIT of Fig. 34, after appropriate changes have been made to it, is

now shown in Figure 40. After appropriate changes have been made to the aug-

mented DDIT, each back-end will then modify the SCDT of the user whose set of

field-level access controls was changed by the database creator. In general, !
the new sets of field-level access controls for the user correspond only to

some of the clusters. Thus, only the access control information of these

clusters needs to be modified in the user's SCDT. Specifically, in our ex-

ample, the sets of field-level access controls, for user 2 corresponding to

all those clusters whose definitions contain Dl, need only to be modified. I

This is done by recalculating the sets of field-level access controls for these

clusters using the algorithm of Section 5.2. The original SCDT, before modi-

fication, for user 2 is tlhi one shown in Figure 36. The modified SCDT for user

2 is shown in Figure 41. Once the SCDT for user 2 is modified, all requests I
issued by user 2 may be executed in the manner described in Section 5.3.

5.6.4 Changing the User's Permitted Data Grandules

There are four other changes which a database creator may wish to make.

A database creator may wisf. to add a new descriptor, delete an existing des-

criptor, coalesce two existing descriptors into a single descriptor, or split

up an existing descriptor into two descriptors. Since descriptors are used to

define clusters, changes in descriptors will cause changes in cluster defini-

tions and in the sets of field-level access controls corresponding to clusters.

1 - 35-

I

Set of Field-level Set of Field-level
Descriptor Id Descriptor Access Controls Access Controls

For User 1 For User 2

D1 (1000 - Salary i10000) - ([Employee],No-Retrieve)

D2 (10000< Salary< -) - All

D3 (1 l Department 2) - (([Manager],No-Retrieve),
([Employee,Salary],
No-Retrieve))

D4 (Department= 3) - ([Manager],No-Retrieve)

'-' indicates that no access is disallowed

'All' indicates that all accesses are disallowed

I

I

I

I
Figure 40. The Augmented DDIT After Changing The Set

of Field-Level Access Controls for User 2
on Descriptor Dl

I4

- 36 -

(See Figure 36 for the original SCDT for User 2)

Records in
the Cluster

Set of Defined by the
Cluster id Descriptors Descriptor Set Set of Field-level Access Controls

1 {Dl,D3} R1,R2,R4 (([Manager],No-Update),([Employee],No-Retrieve))

2 {Dl,D4} R5 (([Manager],No-Retrieve),([Employee],No-Retrieve)) f

i

I

I
I

I
Figure 41. The New Separate Cluster Definition

Table (SCDT) for User 2 1

I - 37 -

Thus, it will be necessary to delete the existing SCDTs and to create new

SCDTs. Thus, each of these changes on the part of the database creator wtll

require some work on the part of MDBS.

A. Defining New Granules With New Descriptors

Consider, first, the addition of a new descriptor. In this case, the

database creator also needs to specify p sets of field-level access controls,

one set for each user allowed to access the database. Now, a row for this new

descriptor may be added to the augmented DDIT. Then, the algorithm presented

in Section 5.2 is used to determine the sets of field-level access controls

for every user on every cluster. In this way, several new SCDTs are created

at each back-end, one for every user allowed to access the database. This com-

pletes the actions to be taken by MDBS in response to the addition of a new

descriptor by the database creator.

B. Creating Larger Granules By Deleting Descriptors

Let us consider what happens when one of the existing descriptors is de-

leted from MDBS. First, the row corresponding to this descriptor will be de-

leted from the augmented DDIT, Then, the algorithm presented in Section 5.2

is used to determine the sets of field-level access controls for every user on

every cluster. Thus, several new SCDTs are created at each back-end to replace

the deleted SCDTs. Thus, the actions to be taken by MDBS in this case are very

similar to the actions taken by MDBS when a new descriptor is added.

C. Creating Larger Granules by Coalescing Descriptors

Let us consider that the database creator wishes to coalesce two descrip-

tors into a single descriptor. For instance, he may wish to coalesce the des-

criptor (0< Salary- 100) and the descriptor (101< Salary< 200) into the single

descriptor (0< Salary< 200). In this case, the database creator also needs to

I specify p sets of field-level access controls for the new single descriptor,

one set for each user allowed to access the database. MDBS responds by first
appropriately modifying the augmented DDIT. This modification consists of the

removal of the rows corresponding to the two descriptors being coalesced and

Sthe addition of a row for the new single descriptor. Then, the algorithm of

Section 5.2 may be used by each back-end to create the new SCDTs of the data-

I base to replace the deleted ones.

I

- 38 -

D. Defining New Granules By Splitting Descriptors

The final case we consider is when a descriptor needs
to be split up into

two descriptors. Consider that the database creator wishes to split descrip-

tor D into descriptors Dl and D2. This may be considered as the deletion of

descriptor D followed by the addition of descriptors Dl and D2.
Since the

actions to be performed by MDBS during descriptor addition
and descriptor de-

letion have already been specified, the actions to be performed
by MDBS during

descriptor splitting is also specified.

- - - -

-39-

6. CONCURRENCY CONTROL FOR MULTIPLE BACK-ENDS
AND CONSISTENCY OF PARTITIONED DATABASES

In this chapter, we will first raise the issue whether MDBS indeed needs

any Corm of concurrency control. Once we are convinced that we need sonic,

form of concurrency control, we will then examine the various existing con-

currency control mechanisms in terms of MDBS requirements. In the examin-

ation, we discover that a new requirement for consistency, known as monoli-

thic consistency, will have to be met. We will therefore strive for a simple

concurrency control mechanism for upholding the monolithic consistency in

MDBS. This chapter will mostly be devoted to the design and illustration

of the MDBS concurrency control mechanism.

6.1 Is there a Necessity for Concurrency Control?

In a multiple back-end database system, there is no need for concurrency

control as long as each back-end is neither executing multiple requests in a

concurrent fashion nor executing requests from multiple users.in an inter-

leaved fashion. Let us elaborate this observation with the following dis-

cussion. We recall that a transaction consists of multiple requests. Let

transaction tl consist of requests rl and r2, and let transaction t2 consist

of requests r3 and r4. If a back-end executes r3, after rl has been com-

pletely executed, then we say that the back-end is executing requests (i.e.,

transactions) from multiple users in an interleaved manner. We note that in

j this case there is no concurrent execution of requests. A back-end is said

to be executing two requests in a concurrent manner if both requests have

been partially executed by the back-end, but neither request has been com-

pletely executed. Is it necessary for a back-end to be executing requests in

a concurrent and in an interleaved fashion?

The argument against interleaved execution of requests from multiple

users and against concurrent execution of multiple requests for the same or

different user is that it obviates the need for having a concurrency control

mechanism at each back-end, thereby making the software at each back-end sim-

pler. The designer of the distributed database system, known as the Stone-

braker's Machine [Ston78], supports the argument with additional points. It

is felt that the back-ends should not support concurrent request execution,

because concurrent request execution would not be beneficial to the system

performance when only one disk drive is attached to a back-end. In [Ston78],

!l

-40-

it was also argued that concurrent request execution will prove advantageous

only if multiple disk drives are connected to each back-end.

in view of the above cases of points, we argue strongly that MDBS should

support concurrent and interleaved execution of user requests and therefore

concurrency control for the following reasons.

A. The Throughput Issue

The disadvantage of not allowing for concurrent request execution is that

the throughput of MDBS will be poorer. This is because database requests in

MDBS are mostly I/O-bound. Thus, a back-end will be mostly waiting for the disk

to access and retrieve data. The use of clusters and placement strategy in

our system ensures us that only a small amount of processing will be needed

after the data is retrieved. Thus, the idle time is likely to be high in a

back-end unless the back-end utilizes the time for the execution of concur-

rent requests.

B. The Response-Time Issue

We also believe that interleaved execution of user requests should also

be supported at the back-ends of MDBS. The reasons for supporting inter-

leaved execution of user requests is that, otherwise, the response time to a

user's request will be high.

C. The Multiple Disk Drive Issue

There are two good reasons for attaching multiple disk drives to a mini-

computer back-end. First, minicomputers are powerful enough to handle multi-

ple disk drives. For example, a PDP-11/44 is designed to operate with up to

64 disk drives. If a back-end were to be attached to only a single disk j
drive, it would appear to be functioning like a disk controller. In fact,

even a conventional disk controller is capable of managing multiple disk

drives. Thus, we would be making poor use of the processing power of a mini-

computer if we were to attach only a single disk drive to it. The second

reason for having more than one disk drive at each back-end is that we are I
trying to support very large databases. We cannot support very large data-

bases by attaching only one disk drive to a back-end. J
From the above arguments, we conclude that MDBS should support both con-

current and interleaved execution of user requests. We therefore endeavor to j

I

-41-

to devise a concurrency control mechanism for such support.

6.2 What are the Necessary and Sufficient Conditions for a Consistent
Partitioned Database Utilizing Multiple Back-ends?

Concurrency control mechanisms are developed for the purpose of uphold-

ing the consistency of the database. For example, in centralized databases,

concurrent control mechanisms must ensure inter- and intra-consistencies of

data [Hsia8l]. In distributed databases, on the other hand, concurrency

control mechanisms must ensure, in addition to inter- and intra-consistencies,

mutual consistency [Thom79]. We first argue that mutual consistency of multi-

ple copies ot the same data is not necessary for a partitioned database such

as ours. We note that only the augmented descriptor-to-descriptor-id-table

(DDIT) is duplicated in MDBS. In other words, the same augmented DDIT is

stored at each back-end of MDBS, where as the augmented cluster definition ta-

bles (CDTs) and the database are not duplicated at the back-ends. Only the dis-

tinct augmented CDT and different clusters of the database are stored at in-

dividual back-ends. Furthermore, update requests issued by a user will never

cause any modiflcption of the augmented DDIT. The remaining data which may

be modified bv the update requests are stored as a partitioned database and

requires no copy of the same data. We also argue with the following counter-

example that inter-consistency of data is not sufficient for a partitioned

database. Thus, the necessary and sufficient conditions for a consistent data-

base in a multiple back-end system will not be found in the conventional solu-

tions to centralized and distributed database systems. We must identify the

new consistency problem for partitioned database systems.

Let us show, by means of examples, the exact nature of the problem in the

context of MDBS. Consider that the following two updates are issued to MDBS.

UPDATE (File = EMPLOYEE) <Salary = Salary +2>

UPDATE (File = EMPLOYEE) <Salary = Salary * 2>

The first request increments the salaries of all employees by two dol-

lars. The second request doubles the salaries of all employees. Clearly, if

we allow a back-end to concurrently execute these two requests, inconsistent

results may arise. Thus, some employees will have their salaries doubled;

others will have their salaries incremented by two dollars; others may have

their salaries changed from an original value, say x, tu (2x+2); and still

others may have their salaries changed from an iniLial value x to a final

__ _ _ ___I

-42 -

value 2(x+ 2). These inconsistencies go by various names such as the problem

of lost updates and the non-reproducibility of reads [Card77]. Two rvqiesti,

such as those above, whose simultaneous (or concurrent) execution c;'n lead to

inconsistencies are termed incompatible requests. More formally, we say that

two requests rl and r2 are compatible if their simultaneous execution glvs

the same result as would be obtained if their execution sequence is rl followed

by r2 or r2 followed by rl. In order to ensure that such inconsistencies do

not occur, a concurrency control mechanism must ensure that two incompatible

requests are executed one after the other. A mechanism which ensures serial

execution of incompatible requests is said to maintain inter-consistency

[Hsia8l].

It is clear that if each back-end is to execute requests, one after the

other, instead of concurrently, no inconsistency can result. When we gener-

alize from single requests to transactions of multiple requests, then it is

clear that if each back-end is to execute transactions one after the other and

also execute all the requests within a transaction one after the other, no

Inconsistency can result. Since any concurrency control mechanism for a cen-

tralized database system ensures inter-consistency, one possible approach

would be to have a centralized concurrency control mechanism in the controller

of MDBS. The controller would have a scheduler that would choose the next

request for execution. This request would then be broadcasted to all the back-

ends for execution. We discard this approach from consideration because it

aggravates the controller limitation problem which was singled out in Chapter 2

for the multiple back-end systems.

Another alternative would be to incorporate a centralized concurrency con-

trol mechanism at each back-end. Such an approach alleviates the controller

limitation problem. However, we are questioning whether this approach is suf-

ficient for a partitioned database with multiple back-ends such as MDBS.

Let us recall that in MDBS, a request is broadcasted to all the back-ends.

Also, let us recall that MDBS executes requests in an MIMD fashion. That is,

a request is not executed at exactly the same instant in all the back-ends.

Rather, the request is being executed asynchronously in the different back-

ends. With these observations, let us consider the following two requests that

are being broadcasted by MDBS to each back-end. i
Ul: UPDATE (File = EMPLOYEE) <Salary = Salary +2>

U2: UPDATE (File = EMPLOYEE) A (Dept = 6) <Salary = Salary *2>

-43 -

IWe also consider for our example that an update UO has been broadcasted by

MDBS to the back-ends prior to either U or U2. Let UO be

UO: UPDATE (File= EMPLOYEE) A (Dept= 7) <Salary = Salary+2>

We see that UO and U1 are incompatible because they may simultaneously try to

update the records belonging to department 7. However, updates UO and U2 are

compatible, since they update different sets of records. Now, let there be

two back-ends in MIDBS. When updates U1 and U2 are received at back-end 1,

let us assume that UO has not been completed at that back-end. Hence, back-end I

cannot execute U, since UO and U1 are incompatible. However, it may start

executing U2, since UO and U2 are compatible. Back-end 1 may execute U1 at

some later time, after UO and U2 have been completed. Hence, the order of

execution of updates Ul and U2 at back-end 1 is U2 followed by U. On the

other hand, let us assume that UO has completed at back-end 2 when U1 and U2

are received. This is possible because UO is not executed at exactly the

same time instant in both the back-ends. Furthermore, UO may incur less pro-

cessing at back-end 2 due to fewer employee records stored at the back-end.

Thus, back-end 2 may execute U1. It will then execute U2 at some later time.

Thus, the order of execution of updates at back-end 2 is U1 followed by U2.

In spite of the fact that inter-consistency is maintained at each back-end,

the result at back-end 1 is computed in terms of ((value*2)+ 2) and the re-

sult at back-end 2 is computed in terms of ((value+2) *2). These results are

likely to be different. Consequently, the state of the MDBS database is incon-

sistent.

From this illustration, it is obvious that the guarantee of inter-con-

sistency at each back-end is not sufficient to guarantee the consistency of a

partitioned database utilizing multiple back-ends.

6.3 Monolithic Consistency and Non-Permutable Requests

From the previous example, we make three more observations. We first ob-

serve that the inconsistent state of the MDBS database would not occur if the

* entire database were stored at a single back-end and the requests issued to

MDBS were executed by the single back-end in some serial order. We also ob-

serve that the inconsistency occurred because the two back-ends executed two
requests in different orders and because different execution orders for these

two requests lead to different results at these back-ends. Thus, the incon-

sistency may be avoided by the following techniques. Whenever two requests

- 44 -

rl, r2 are such that the result of executing rl followed by r2 is dlffcrcnt

from the result of executing r2 followed by rl, we term them non-permutable

requests and ensure that these two requests are executed in tle same order at

all back-ends. Thus, to maintain database consistency for multiple back-ends,

we say that we must maintain the same execution order among all non-permutable

requests at all back-ends. Finally, we observe that inter-consistency must

also be maintained at all back-ends. Otherwise, a back-end will try to simul-

taneously execute incompatible requests and this leads to problems of lost up-

dates, etc. [Card77].

In summary, we need to preserve partitioned database consistency for multi-

ple back-end systems such as MDBS. This is termed monolithic consistency. In

order to preserve monolithic consistency, we need to maintain an execution order

among non-permutable requests and to preserve inter-consistency at all back-

ends. To maintain an order among non-permutable requests, we need to identify

pairs of requests that are non-permutable. To preserve inter-consistency, we

need to identify pairs of requests that are incompatible. The identification

of request pairs that are non-permutable and incompatible constitutes our major

contributions in the following sections. First, however, let us develop some

notations and terminology.

6.4 Notations and Terminology

In order to simplify the ensuing discussion, we use the following nota-

tion. Insert requests are of the form

INSERT R

where R is some record to be inserted. Delete requests are of the form

DELETE Q

where Q is the query used to select the records to be deleted. Retrieve re- j
quests are of the form

RETRIEVE Q <A> j
where Q is the query used to select the records to be retrieved and <A> is

the target-list of attributes whose attribute values will be fetched from the

records retrieved. The By-Clause and the WITH-Clause are removed from the re-

presentation of the retrieve request because their presence is immaterial to

this discussion on concurrency control. Update requests are one of the three

forms

UPDATE Q A,l

-45-

UPDATE Q A,2

UPDATE Q A,3

l,-date request represents an update with a type-O

n,! orrn represents an update with a type-I modifier and

-r. .entL- an update with a type-IT modifier. We recall, from

'd: ..date request with a modifier of type-III or IV is actu-

,H". a a retrieve request followed by an update request with

,- , *t .. e-'. Hence, we do not need to consider update requests with

t..'pL-IIT or IV. In the three forms of the update request shown

i; tWe query used to select the records to be updated and A is the

attribute being modified. If we do not wish to distinguish between the three

forms of the update, we will write

UPDATE Q A

We will say that two queries Ql and 02 are disjoint if the records which

satisfy Q1 and the records which satisfy Q2 do not have a record in common.

For example, (Salary > 50) and (Salary< 50) are disjoint. If two queries are

not disjoint, they are said to overlap. We will also say that attribute A

(being modified) belongs to query Q, if A is also one of the attributes in the

predicates of Q. Finally, we say that attribute A belongs to target-list <Y>

if A is also one of the attributes in <Y>.

6.5 Request Permutabilities

Using the notation and terminology of the previous section, we will now

present pairs of requests which are (or could be) permutable. As we recall, a

pair of requests rl, r2 is (could be) non-permutable if the result of executing

rl followed by r2 is (could be) different fron the result of executing r2 fol-

lowed by rl. We present, below, ten pairs of such requests. Of these, pairs

(4), (7) and (10) represent pairs of requests that could be non-permutable and

jthe remaining ones are pairs of requests that are non-permutable.

(1) INSERT R

() RETRIEVE Q <A>, where R satisfies 0.

An example of the pair is

INSERT (<Salary,1000>, <Dept=TOY>)

RETRIEVE (Salary>lO0) <Dept>

!

-46 -

(2) DELETE Ql

RETRIEVE Q2 <A>, where QI and Q2 overlap.

An example of the pair is

DELETE (Salary>50)

RETRIEVE (Salary>25) <Dept-

(3) UPDATE Ql A

RETRIEVE Q2 <A>, where Qi and Q2 overlap and A belongs to <A> but

not to Q2.

For example,

UPDATE (Salary>50) <Rank=25>

RETRIEVE (Salary>50) <Rank>

(4) UPDATE Q1 A

RETRIEVE Q2 <Al>, where A belongs to Q2.

For example,

UPDATE (SALARY>25) <Salary=Salary-2>

RETRIEVE (Salary<25) <Rank>

(5) INSERT R

DELETE Q, where R satisfies Q.

For example,

INSERT (<Salary,lO00>, <Dept,TOY>)

DELETE (Salary>50)

(6) INSERT R

UPDATE Q A, where R satisfies Q.

For example,

INSERT (<SALARY,1000>, <Dept,TOY>)

UPDATE (Salary>50) <Dept=SALES>

(7) UPDATE Q1 A

DELETE Q2 , where A belongs to Q2 .

For example,

UPDATE (Salary>25) <Salary=Salary-2>

DELETE (Salary<25)

(8) UPDATE Ql A,2

UPDATE Q2 A,2, where Q1 and Q2 overlap and the type-I modifier of

one update consists of an addition or subtraction and

the type-I modifier of the other update consists of some

multiplication or division.

-47-

For example,

UPDATE (Salary>25) <Rank-Rank+ 1>

UPDATE (Salary>50) <Rank-Rank *2>

(9) UPDATE Qi A,l

jUPDATE Q2 A,2, where 01 and Q2 overlap, and modifiers are of types

0 and I, respectively.

For example,

UPDATE (Salary>25) <Rank=25>

UPDATE (Salary>50) <Rank=Rank +1 >

(10) UPDATE Qi A

UPDATE Q2 A,2, where A belongs to Q2.

For example,

UPDATE (Salary>50) <Salary=Salary+ 25>

UPDATE (Salary>75) <Rank=Rank+ 1>

Note that there are two pairs of non-permutable requests in which one

request is an update and the other request is a retrieve. These are the pairs

(3) and (4). In pair (3), the retrieve request will retrieve the same set of

records whether it is executed before or after the update. However, if it is

executed after the update, the modifications made by the update will be visible

in the retrieved records and these modifications will not be there if the re-

trieve request is executed before the update. In pair (4), the retrieve request

will actually retrieve a different set of records if it is executed before the

update than it will if it is executed after the update.

As we have said before, our concurrency control algorithm must maintain an

ordering among all non-permutable requests. However, a little thought shows us

that this does not apply to all cases. For example, record insertion takes

place only at a single back-end. An ordering needs to be maintained only among

non-permutable requests which are executed at all back-ends. Thus, an ordering

needs to be maintained only among all non-permutable requests which are not in-

serts. To put it another way, our concurrency control algorithm will not need

* to check for pairs (1), (5) and (6) of non-permutable requests.

Next, let us consider the pairs of incompatible requests.

6.6 Request Compatibilities

To repeat, two requests rl and r2 are compatible if their simultaneous

execution gives the same result as would be obtained if we execute in the se-

I
"A~~ * -

-48 -

quence rl followed by r2 or in the sequence r2 followed by rl. Cloarlv, for

two requests to be compatible, they must also be permutable. Iloweve,. two

requests may be incompatible without being nonpermutable. For instance,

UPDATE (Salary>50) <Salary=Salary +2>

UPDATE (Salary>50) <Salary=Salary +2>

are incompatible but permutable. The two requests are incompatible because

their simulatenous execution can lead to the problem of lost updates. However,

the requests are permutable because the result of executing these updates in

any order is the same.

For MDBS, it may be easily verified that the pairs (1) through (7) of

non-permutable requests are also pairs of incompatible requests. Furthermore,

the three pairs of requests, (8) to (10), are also incompatible. They are re-

peated here with new examples.

(8) UPDATE Q1 A

UPDATE Q2 B, where Q1 and Q2 overlap.

For example,

UPDATE (Salary>25) <Rank=Rank+ 1>

UPDATE (Salary>50) <Rank=Rank+ 1>

(9) UPDATE QI A

UPDATE Q2 B, where A belongs to Q2

For example,

UPDATE (Salary>25) <Rank=Rank+ 1>

UPDATE (Rank=20) <Department=17>

(10) UPDATE Q1 A

DELETE Q2 , where Ql and Q2 overlap.

For example,

UPDATE (Salary>25) <Rank=Rank+ 1>

DELETE (Salary>50)

6.7 Cluster-Based Permutabilities and Compatibilities

In the previous sections, we described how to identify pairs of non-per-

mutable and incompatible requests. Such identification requires, among other

things, a procedure for testing if two queries overlap. Such a procedure can

be quite complex. Hence, the procedures for identifying pairs of non-permutable

and incompatible requests may be quite complex. In this section, we shall use

-49-

the notion of clusters to simplify the procedures for identifying non-permutable

and incompatible requests.

We recall, from Chapter 5, that each request in a transaction is first

attached with an authorized cluster (for an insert request) or with a set of

authorized clusters (for a non-insert request). In the ensuing discussion, we

will represent the attached requests as follows. An attached insert request

is represented by

INSERT P

where P is the authorized cluster for the request. An attached retrieve request

is represented by

RETRIEVE <P>

where <P> is the set of authorized clusters for the retrieve request. Similarly,

an attached delete request is represented by

DELETE <P>

In the case of an update request, we term the set of future clusters as the set

of all those clusters into which records may be placed after the update in ac-

cordance with the request. Then, an update request is represented by

UPDATE <P>

where <P> is the set of clusters formed as the union of the set of authorized

clusters and the set of future clusters for the update request.

Now, pair (1) of non-permutable requests of Section 6.5 becomes

(a) INSERT P

RETRIEVE <X>, where P belongs to <X>.

Pair (2) of the non-permutable requests of Section 6.5 becomes

(b) DELETE <X>

RETRIEVE <Y>, where <X> and <Y> have non-null intersection.

j Pairs (3) and (4) of the non-permutable requests of Section 6.5 becomes

(c) UPDATE <X>

RETRIEVE <Y>, where <X> and <Y> have non-null intersection.

Pair (5) of the non-permutable requests of Section 6.5 becomes

I

- 50 -

(d) INSERT P

RETRIEVE <X>, where P belongs to <X>.

Pair (6) of the non-permutable requests of Section 6.5 becomes

(e) INSERT P

UPDATE <X>, where P belongs to <X>.

Pair (7) of the non-permutable requests of Section 6.5 becomes

(f) UPDATE <X>

DELETE <Y>, where <X> and <Y> have non-null intersection.

Finally, pairs (8), (9) and (10) of the non-permutable requests of Section 6.5

become

(g) UPDATE <X>

UPDATE <Y>, where <X> and <Y> have non-null intersection.

Next, let us consider the ten pairs of incompatible requests of Section 6.6.

The first seven pairs of Section 6.6 are identical to those of Section 6.5 and

are therefore translated into (a) through (f) as above. Pairs (8) and (9) of

Section 6.6 become pair (g) above. Finally, pair (10) of Section 6.6 becomes

pair (f) above.

Thus, we now have a simpler decision procedure for identifying pairs of

incompatible and non-permutable requests. This procedure requires us to first

determine for a request the authorized cluster (for an insert request) or the

set of authorized clusters (for delete and retrieve requests) or the sets of

authorized and future clusters (for an update request). The algorithm for de-

termining the authorized cluster (for an insert request) or the authorized set

of clusters for(delete, retrieve and update requests) has been described in

Chapter 5. We shall now describe the algorithm for determining the set of fu-

ture clusters for an update request of the form

UPDATE Q A

This algorithm will utilize the set of authorized clusters already calculated.

6.7.1 Determining the Set of Future Clusters for An Update Request

Consider a record in one of the authorized clusters. We are trying to de-

termine the cluster to which the record will belong after being updated by the

request, given that we know the cluster to which that record belongs before the

m- 51 -

update. In other words, we know the set of descriptors which defines the

(authorized) cluster of a record before it is updated and we also know the

update request in consideration. From these two pieces of information, we

are trying to determine the set of descriptors which will define the (future)

cluster of the record after the record is updated.

A. Determining the Future Cluster of a Record to be Updated Without
Having Seen the Record

First, we note that updates in MDBS modify only a single attribute-value.

Second, we recall that the cluster to which a record belongs is defined by the

set of descriptors from which every directory keyword (attribute-value) in the

record is derivable. From the above observations, we conclude that the set of

descriptors which defines the cluster of a record before it is updated and the

set of descriptors which will define the cluster of the record after it is up-

dated can differ in at most one descriptor. This is the descriptor from which

the keyword in the record containing the attribute being modified is derivable.

Therefore, we may do the following to determine the set of descriptors which

will define the (future) cluster to which the updated record will belong with-

out first examining the record. The motivation in pursuing the determination

of the future cluster for a record (prior to the examination of the record) is

to lock up this future cluster for subsequent retrieval and update of the re-

cord.

Consider the set of descriptors which defines the cluster to which the

record belongs before update. Delete, from this set of descriptors, the des-

criptor from which the keyword containing the attribute being modified is de-

rivable. In this case, the keyword is of course a directory keyword. (See

Section 4.1.1.) If the attribute being modified is not contained in any di-

rectory keyword, then there is no descriptor to be deleted. In either case,

we must add a new descriptor to the set. This new descriptor is the one from

which the keyword containing the attribute being modified will be derivable.

If the modifier in the update request is of type-O, this new descriptor to be

fadded may be easily determined, since the new value to be taken by the attri-
bute being modified is specified in the modifier of the update request itself.

However, if the modifier in the update request is not of type-O, the new value

to be taken by the attribute being modified cannot be determined by examining

the update request itself. Therefore, we cannot add the new descriptor to the

set of descriptors. In this case, we only have a partial set of descriptors

!

- 52 -

which may define several clusters each of which could potentially be used to

contain the newly updated record. We will determine every such potential

(future) cluster by searching the augmented CDT for clusters whose descriptor

sets properly contain the partial set of descriptors at hand.

B. Determining All the Future Clusters in Order to Lock Them

Up For Record Updates

Since there are many records to be updated and these records are in those

authorized clusters already determined, we will consider the other records to be

updated with the above procedure. In other words, by repeating the above proce-

dure for records in all the authorized clusters, we may determine the set of poten-

tial future clusters. For every cluster k in the set of potential future clusters

so determined, MDBS accesses the entry in the augmented cluster definition ta-

ble (CDT) corresponding to the row for cluster k and the column for the user id

of the user that issued the update request. If this entry contains a field-

level access control (see Chapter 5) with an unspecified attribute combination

part and with 'No-Insert' in the disallowed access part, MDBS will remove clus-

ter k from the set. The above procedure is repeated for every cluster in the

set. The remaining set of clusters is the set of future clusters.

More formally, let the update be of the form

UPDATE Q A,

be issued by user U. If A, the attribute being modified, is not a directory at-

tribute, the set of future clusters is identical to the set of authorized clus-

ters. Otherwise, the set of future clusters {F} will have to be derived from

the set of authorized clusters {P}. Let the members of {P} be Pl, P2,...,Pk

and let their corresponding descriptor sets be Dl, D2,...,Dk.

If the modifier in the update request is of type-O, extract the constant

V specified in the modifier, form the attribute-value pair <A,V> and locate

the descriptor D corresponding to <A,V> from the augmented DDIT. For each des-

criptor with A as its attribute, replace that descriptor in Di with D. If Di

does not contain a descriptor with A as its attribute, add the descriptor set

DDi for Di. Now, use the descriptor set DDi to search the augmented cluster

definition table (CDT) for clusters whose definitions include DDi. Place all

such clusters into the set of future clusters {F}. For each cluster k in {F},

access the entry in the augmented CDT corresponding to cluster k and user U.

If the entry contains a field-level access control with an unspecified attri-

bute combination part and with 'No-Insert' in the disallowed access part, re-

move cluster k from fF1. By repeating the above procedure for every Di, the

set of future clusters fF) is completely determined.

Now let us describe how {F} may be determined when the modifier in the up-

date request is of type-I or type-Il. We do the following for each descriptor

set Di, i from 1 to k. If Di contains a descriptor with A as its attribute, re-

move that descriptor from the descriptor set Di. If Di does not contain a des-

criptor with A as its attribute, then do nothing to Di. In either case, form

the descriptor set DDi from Di. Now, use the descriptor set DDi to search the

augmented CDT for clusters whose definitions include DDi. Place all such clus-

ters into the set of future clusters (F). For each cluster k in fFl, access the

entry in the augmented CDT corresponding to cluster k and user U. If the entry

contains a field-level access control with an unspecified attribute combination

part and with 'No-Insert' in the disallowed access part, remove cluster k from

{F}. By repeating the above procedure for every Di, the set of future clusters

{F) is completely determined.

Finally, if the update request has a modifier of type-Ill or type-IV, it

is executed as a retrieved request followed by an update request with a modi-

fier of type-O.

C. Determining Incompatible and Non-Permutable Requests

Once we have determined the sets of authorized and future clusters, the

pairs (a) to (g) of incompatible and non-permutable requests may be easily de-

termined.

6.7.2 A Case of 'Over-Determination'

The above simple procedure for identifying pairs of incompatible and non-

permutable reauests has been achieved at a price. This is because our proce-

dure may sometimes identify a pair of requests as non-permutable (incompatible)

even if it is actually permutable (compatible). This is because our procedure

for determining the set of future clusters actually produces every potential

cluster to which a record may belong after update. However, in reality the up-

dated records can not belong to every potential cluster so determined but to a

single cluster. In a pair of requests - see (g) - the possibility of having

non-null intersection with a larger number of potential clusters is higher than

I
I

II

- 54 -

with a single cluster. Consequently, the pair may be considered non-permutable

(incompatible) due to some non-null intersection over potential clusters of the

paired requests. However, if the non-null intersection does not contain the

single cluster to which the record eventually belongs, then the pair is neither

non-permutable nor incompatible. Our price is therefore in over-classification

of the requests. We believe, nevertheless, that this price is worth paying be-

cause of the resulting simplification in the procedure for identifying pairs of

incompatible and non-permutable requests.

6.8 The Cluster-Based Concurrency Control Algorithm

In the previous section, we described the procedures for identifying pairs

of Incompatible and non-permutable requests. In this section, we will describe

the entire concurrency control algorithm which uses these procedures.

As described in Chapter 5, all the requests in a transaction are partially

executed until the set of authorized clusters for each request in the transaction

has been determined. In the case of update requests, they are partially execu-

ted until the set of authorized clusters and the set of future clusters haVe both

been determined. Each request in a transaction may then be attached with its

authorized cluster, the set of authorized clusters or the set of authorized and

future clusters. For simplicity, we will refer to these cluster(s) that attached

to a request as the cluster(s) needed by the request. As described in Chapter 5,

these attached requests are used to form a secure transaction. In the sequel,

we refer to the union of all the clusters needed by the attached requests of a

secure transaction as the clusters needed by a secure transaction. Further, we

refer to a secure transaction as a transaction and to an attached request as a

request.

We will see that a transaction will need to lock various clusters during

the course of its execution in one of four modes and in one of two categories.

The four modes in which a transaction may lock a cluster are retrieve, delete,

insert and update. The two categories in which a transaction may lock a clus-

-55-

ter are the to-be-used category and the being-used category. When a transaction

wishes to lock a cluster, it must specify both the mode and the category in

which it wishes to lock the cluster.

6.8.1 Incompatible and Non-permutable Locks

Consider a request rl in transaction tl and a request r2 in transaction

t2. Let c be one of the clusters needed by rl and also one of the clusters

needed by r2. Then, both tl and t2 will need to request locks on cluster c.

The lock requested by transaction tl on cluster c is said to be incompatible

(non-permutable) with the lock requested by transaction t2 on the same cluster,

if request rl of tl and request r2 of t2 form a pair of incompatible (non-permu-

table) requests. By considering the pairs of incompatible (non-permutable) re-

quests of Section 6.7, we may easily derive the pairs of incompatible (non-permu-

table) locks shown in Figure 42. For instance, Figure 42 shows that in any ca-

tegory a lock on cluster i in the delete mode is incompatible and permutable

with a lock on cluster i in the insert mode for all i. Now, our concurrency

control algorithm, instead of using the pairs of requests of Section 6.7, may

use the lock table of Figure 42 to determine incompatible (non-permutable) locks

and hence, incompatible (non-permutable) requests. From Figure 42, we see that

only the modes of two locks (and not their categories) are used in deciding if

they are incompatible and non-permutable. Hence, in the sequel, we can also talk

of incompatible and non-permutable lock modes. We are now ready to describe the

execution sequence of a transaction.

6.8.2 The Execution Sequence of a Secure Transaction

The execution sequence of a transaction begins when the transaction locks

all the clusters needed by the transaction in the to-be-used category. The mode

in which a cluster is locked depends on the type of request to be executed on

that cluster. Thus, if cluster i is needed by a retrieve (delete, insert or

i update) request, it will be locked in retrieve (delete, insert or update) mode.

If a cluster i is needed by more than one request in the transaction, it may be

locked in more than one mode. The locking of clusters by a transaction is per-

formed independent of whether or not other transactions have locked the same

[clusters in any mode or category.

Now, execution of the requests of the transaction begins. Before a retrieve

(delete, insert or update) request in a transaction may be executed, the clusters

I

- 56-

Delete Insert Update Retrieve
Lock Lock Lock Lock

Delete
Lock C,P I,P I,N I,N

Insert
Lock TP CP I,P I,P

Update
I,N I,P I,N I,NLock

Retrieve 'T N
L o c k I , NI PI ,C P

I: Incompatible

C: Compatible
N: Non-permutable
P: Permutable

Figure 42. The Lock Table

-57

needed by the request must be locked in retrieve (delete, insert or tiidate)

mode and in the being-used category. Since the clusters have been looked in

some mode in the to-be-used category, the appropriate locks must be convertud

from the to-be-used category to being-used category. A lock on cluster i m.e%

be converted only if no other incompatible lock is held on cluster i by another

transaction in the being-used category and no other non-permutable lock is held

on cluster i by an earlier transaction in any category. An earlier transaction

is one which has arrived earlier than the arrival of the present transaction at

the back-end. The first check ensures inter-consistency and the second check

ensures an ordering among non-permutable requests. Together, the two checks

ensure monolithic consistency. After the appropriate locks have been converted,

the request may be executed. Then, the locks needed by the request are released.

The above procedure is repeated for every request in the transaction until all

the requests in the transaction are executed.

6.8.3 The Concurrency Control Mechanism

In the actual implementation, each back-end will maintain one queue for

each cluster stored at that back-end. Each element in a cluster queue (say,

for cluster k) will contain three pieces of information. First, it will con-

tain a transaction number. Second, it contains the mode in which the transaction

is holding (or wishes to hold) a lock on cluster k. Third, it contains the ca-

tegory in which the transaction is holding (or wishes to hold) a lock on clus-

ter k.

These cluster queues will be consulted by MDBS whenever locks are requested

by transactions. For instance, when a transaction locks all clusters in the to-

be-used category, MDBS will create an element for each cluster needed by it and

the above elements will be placed in the appropriate cluster queues. Similarly,

whenever a lock conversion is requested by a transaction, MDBS consults these

cluster queues. Thus, when transaction i requests the conversion of a lock on

cluster k, the system will search the queue for cluster k. If an element for a

transaction holding an incompatible lock in the being-used catego-y is found,

the conversion cannot be granted. Likewise, if an element for an earlier

transaction holding a non-permutable lock in any category is found, the

conversion cannot be granted. Whether the conversion is granted or not, the

category of the queue element for the transaction is changed from to-be-used

to being-used. However, if the conversion is not granted, the transaction is

I

deactivated. That is, its execution is suspended. The deactivated transaction

will later be reactivated when the transaction holding the incompatible or non-

permutable lock releases that lock. A reactivated transaction will continue

execution from the point where it was suspended.

'rhe cluster queues are also consulted whenever a transaction releases a

lock on a cluster. In this case, the appropriate element will be removed from

the queue for that cluster. Furthermore, the system will search the queue for

that cluster to determine if any of the locks requested by other transactions

may now be granted. If so, the transactions whose locks may now be granted are

activated.

Three algorithms are presented here. The first algorithm is executed when

a transaction is first received at a back-end and requests to lock all clusters

needed by the transaction in the to-be-used category. The second algorithm is

executed whenever a transaction wants to convert a lock requPst from the to-be-

used category to the being-used category. The third and final alcorithm is

executed whenever a transaction releases all the locks nL'eded r)v one of the re-

quests in the transaction. We use the following notation to simplify the state-

ment of the algorithms.

Q(i) The queue of transactions (more precisely, transaction
numbers of the transactions) on cluster i.

O(ij) The j-th element in Q(i).
MODE(i,k) The mode in which the k-th element in 0(i) is holding

a lock.
CAT(i,j) The category of the lock specified in element Q(i,j).
TRAN(i,j) The transaction number in Q(i,j).

Let COM(A,B) imply that lock modes A and B are compatible and let PER(A,B) imply

that the lock modes are permutable. Similarly, let NOTCOM(A,B) imply that lock

modes A and B are incompatible and let NOTPFR(A,B) imply that lock modes A and

B are non-permutable. The j-th -1 men, is removed from Q(i) by "Remove Q(i,j)"

and placed as the last element of the queue hy "Into 0(i)". We now present

these three algorithms, known as Algorithm Initialize, Algorithm Lock-Convert

and Algorithm Lock-Release in Figure 4;.

In the above discussion, we assume that a separate queue would be maintained

for each cluster stored at a back-end. An alternative would be to consolidate

all these queues into a single queue at each hack-end. An element in such a con-

solidated queue represents a lock that a transaction holds (or wishes to hold)

and must ccntain four pieces of information. The four pieces of information

-59 -

ALGORITHM INITIALIZE
/* Executed when a transaction is first received at a back-end*/
/* C(i) denotes the set of clusters needed for request i in transaction T,*/

T = Transaction Number
Num Number of Requests in Transaction.
Create a queue element QE with CAT= 'to be used' and TRAN = T.
For i=l step 1 until NUM do

begin
Calculate the set C(i)
Let M=mode in which the clusters in C(i) are locked
Augment QE with MODE = M.
For each element j in C(i) Insert QE into Q(j)

end
END ALGORITHM INITIALIZE

ALGORITHM LOCK CONVERT
/* Executed when a transaction T wants to convert locks for request R in

mode M from 'to be used' to 'being-used'*/
Calculate the set C(R) /* The set of clusters needed by R*/
For each element j of C(R)

begin

let T be Q(J,k)
for i=l to k-i step I

begin

If NOTCOM(MODE(J,i),M) and CAT(j,i)= 'being-ised' then
deactivate T

If NOTPER(MODE(J,i),M) and CAT(j,i)= 'to-be-used' then
deactivate T

end
CAT(J,k) = 'being-used'

end
END LOCK CONVERT

ALGORITHM LOCK RELEASE
/* Executed when a transaction T wants to release locks for request R in

mode M*/
Let C(R) be the set of clusters needed by R.
For each element j of C(R)

begin
let there be k elements in Q(j)

MODE=MODE (J, I)
CHECK=TRUE
For i=i to k while CHECK

I begin
If COM(MODE(j,I),MODE) then

begin
activate TRAN(J,l)
remove Q(j,l)

end
end else CHECK=FALSE

end
end

END LOCK RELEASE

Figure 43. Three Algorithms for Cluster Queue ManagementI

- 60 -

needed in a consolidated queue element are the transaction number of the trans-

action holding (or wishing to hold) the lock, the cluster number on which the.

transaction holds (or wishes to hold) tie lock, and the mode and category of

the lock. The advantage of such a scheme over the previous scheme where several

queues were maintained is that, now, each back-end needs to maintain only a -in-

gle queue. The disadvantage of such a scheme over the previous one is that in

order to look for Incompatible and non-permutable locks, every element in this

consolidated queue must be searched. Compare this to the previous scheme wheru

only the queue of elements for a specific cluster has to be searched. The dis-

advantage arises because the number of elements in the queue for a specific

cluster is likely to be much less than the number of elements in the consoli-

dated queue. However, the consolidated queue scheme may be preferable when the

number of transactions expected in MDBS at any instant of time is not very large.

In this case, the consolidated queue is not expected to be large and we would i

prefer to maintain a single consolidated queue rather than several cluster queues

most of which will probably be empty.

The three algorithms presented in this section, together with the execution

procedure presented in the previous section constitute the logic of the MDBS

concurrency control mechanism which is distributed among the back-ends. The

queues and the lock tables are the data structures of the mechanism.

6.9 An Examination of the Concurrency Control Mechanism

The MDBS concurrency control mechanism is applicable to both partitioned and

centralized databases. It also differs from other concurrency control mechanismi

,n the way that locks are utilized. The MDBS mechanism algorithm uses four lock j
modes rather than the traditional two lock modes. By separating insert and de-

lete locks from update locks, the MDBS concurrency control mechanism is able to j
support a greater degree of concurrency than would otherwise be possible.

6.9.1 New Solutions for Centralized-Database Concurrency Control

At a theoretical level, one of the contributions of this work has been in

the identification of permutable and compatible rcquests, where the requests

are issued in a high-level, query-based language. The authors of [Card77] also

identify permutable and compatible requests, but they do so for a language

which is not query-based. On the other hand, the authors of [Eswa76] do con-

sider a query-based language. However, they only identify compatible requests

I and they do not identify permutable requests for their query-based language.

Furthermore, they do not differentiate insert and delete requests from update

requests.

At a practical level, a method for enforcing locking when a query-based

language is employed has been presented. The scheme is simpler than predicate

locking [Eswa76] and is based on cluster locking. 'No factors have contributed to

the simplicity of our locking procedure over the procedure suggested in [Eswa76].

First, in [Eswa76] a query which requires locking must be checked against all

existing queries. This can be time-consuming. On the other hand, MDBS mechan-

ism does not require checking against all the outstanding queries. This is

because a query is converted into a corresponding set of clusters and checking

of the locks on these clusters is then performed. Secondly, the procedure in

[Eswa76] for checking if two queries conflict requires converting the queries

to disjunctive normal form. The time for such conversion can be exponential

for some types of queries [Sava76]. In MDBS, the procedure for converting

queries into a corresponding set of clusters however does not require conversion

of the queries into disjunctive normal form. The procedure for determining the

set of corresponding clusters of a query which is not in disjunctive normal form

is presented in Appendix G. It is clear from this procedure that the query does

not need to be converted into disjunctive normal form. Therefore, the procedure

is not exponential in the size of the query and, in fact, is linear in the size

of the query. For these two reasons, we believe that the MDBS concurrency con-

trol mechanism is superior to that of [Eswa76].

We note also that our concurrency control algorithm is deadlock-free. This

f is because a transaction can never obtain a lock unless it is confirmed that all

earlier transactions will never need that lock or will need it only in a permut-

able mode. Hence, a transaction can only be blocked by earlier transactions and

can never be blocked by subsequent transactions, thus avoiding deadlock. This

is unlike the method of [Eswa76] or that of [Gard77], both of which may lead to

deadlocks.

As a result, one of the disadvantages of the solutions of [Eswa76] over

ours is that their solutions do not adequately cover the issue of starvation.

That is, since transactions have to be backed-up and restarted in the event of

deadlock, there must be enough evidence (say, a formal proof) to show that they

will eventually complete. Such evidence is not provided in [Eswa76] or [Gard77].

Our system cannot suffer from starvation, since it is deadlock-free and does not

I

- 62 -

require transaction restart.

If all the requests in transactions of MDBS are retrieve requests, the

transactions will run without interfering with each other. Similarly, if all

the requests in transactions are inserts, or all the requests in transactions

are deletes, the transactions will run without interfering with each other.

In this respect, our concurrency control mechanism is better than all others

which do not make this distinction between inserts, deletes and updates.

Finally, unlike the method presented in [Eswa76], the mechanism presented

here does not follow the two-phase protocol [Eswa76]. A two-phase protocol is

one in which a transaction must not acquire new locks after it has given up any

lock. That is, it must acquire all the locks it needs in the beginning and

then release these locks one by one, or it must acquire the locks one by one

as it needs them and then release them altogether in the end. A mechanism

which uses the two-phase protocol will achieve a lower degree of concurrency

than a mechanism such as ours where the locks are acquired and released as

needed and where the protocol is not two-phase.

6.9.2 New Solutions for Partitioned-Database Concurrency Control

As far as we are aware, there are only two other published solutions to

the problems of concurrency control for partitioned databases. These are the

solutions of [Dewi8O] and that of System D which is also reported in [Dewi8O].

Before we can compare our solution to these two solutions, we need to

develop some terminology. In these two solutions, each transaction has its

own private buffer in which it does updates. The updates made by a transaction

t cannot be seen by other transactions until t writes the contents of its pri-

vate buffer onto the secondary memory. At this time, t is said to commit and

its updates are said to become visible. Furthermore, it will be seen that

these two solutions require transactions to read, update and write entities,

where the entities are attribute-values. The reading, updating and writing of

entities are referred to as actions of a transaction. A transaction tl is

said to come before a transaction t2 in the serialization order if

(a) tl reads an entity which t2 writes later, or

(b) tl writes an entity which t2 reads later, or

(c) tl writes an entity which t2 writes later.

It is clear from the definition that the fact that tl comes before t2 does not

necessarily imply that t2 comes before tl. Finally, a conflict is said to

I - 6

occur between t3 and t4 if t3 comes before t4 and t4 comes before t3.

Let us briefly try to describe the solutions of [Dewi80] and System D.

IThese solutions do not employ locking for concurrency control. They wait

until a transaction is ready to commit. When a transaction is ready to com-

j mit, the system will try to detect any conflicts. If no conflicts are de-

tected, the transaction is allowed to commit. Otherwise, a number of alter-

I native actions may have to be taken by the system. Three alternative actions

are proposed in [Dewi80]. The first leads to the so-called starvation solu-

tion, the second leads to the non-starvation solution and the third leads to

the restrictions-list solution. The starvation solution may cause transactions

to wait perpetually as pointed out in [Dewi8O]. Furthermore, we will show,

by means of an example, that the starvation solution is erroneous in that it

may result in an inconsistent database state. The non-starvation solution,

on the other hand, causes transactions to be backed-up unnecessarily. There-

fore, the restrictions-list solution of [Dewi80] is the best of the three so-

lutions. Briefly, the restrictions-list solution is as follows. When a trans-

action commits, a list of prohibited actions will be immediately formed and

associated with all other active transactions in the system. These prohibited

actions, which are actions that will cause a conflict, are stored in a re-

strictions list, one list per active transaction. When a transaction tries to

perform an action in its restrictions list, the transaction is backed-up and

restarted. This completes our explanation of the restriction-list solution of

I[Dewi8O]. The solution of System D may be considered as a distributed version

of the restrictions-list solution of [Dewi80]. Having briefly explained these

Jtwo solutions, we are now ready to compare the MDBS solution with these two
solutions.

A. Rich Semantics in DML and New Concept of Permutability

i The first weakness of these two solutions is that they use a simple data

manipulation language which allows only for reading and writing entities. MDBS

on the other hand, employs a query-based data manipulation language (DML).

I Secondly, these systems make no effort to identify permutable requests. Because

of these two weaknesses, these two systems will cause transactions to be backed-

up unnecessarily. Consider the following scenario. Let there be two trans-

actions tl and t2. tl increments the value of x by 2 and the value of y by 3.

U t2 increments the value of x by 3. That is, tl consists of the following

I

- 64 -

tl: read x
x= x+ 2
write x
read y
y- y + 3
write v
commit

Also, t2 consists of

t2: read x
x= x+ 3
write x
commit

Furthermore, let us assume that the actions of tl and t2 are interspersed

in the following manner.

tl: read x
t2: read y
tl: x = x + 2

tl: write x
tl: read y
tl: y = y + 3
tl: write y
tl: commit
t2: read x
t2: x = x+ 3
t2: write x
t2: commit

Both the restrictions-list and System D solutions would cause t2 to be

backed-up after tl commits. That is, the actions after the action, tl: commit,

shown above will not be allowed by these two solutions. This is because there

is a conflict between tl and t2. Let us elaborate on the conflict. In the

serialization, L2 comes before tl. This is due to the fact that t2 has read

entity y before the update of y by tl became visible. However, tl also comes

before t2, when t2 tries to read x after tl has written x. Hence, there is

indeed the conflict. Consequently, t2 will be backed up.

With our understanding of the concept of permutability among requests,

we observe that since tl was reading x only to update it and since the two up-

dates on x are permutable, there is no need to back-up t2. This is because

the result of the execution sequence shown above is exactly the same as the

result that would have been produced if t2 came before tl in the serialization.

The unnecessary back-up is caused because the two proposed solutions of [Dewi8O]

and System D do not differentiate between reading an entity for the purpose of

transmitting the value to the user and reading an entity for the purpose of up-

I -65-

I dating its value. This is due to a lack of semantics in the data manipulation

language of System D. Besides the lack of semantlc difference between these

I two kinds of reads, there is also the lack of any concept ot permutable updates.

For these two reasons, the proposed solutions of [Dewi80] and System D [DewiSOl

I failed to allow a perfectly 'legal' execution sequence to proceed.

B. Better Throughput and Lower Control Message Traffic

MDBS concurrency control mechanism allows transactions to commit at dif-

ferent times in different back-ends. Consequently, at a given instant, a

transaction may have committed at one back-end and not committed at another

back-end. This may happen if many more records have to be accessed at one

back-end than at another one in order to satisfy the requests in the transaction.

We believe that this leads to increased concurrency and therefore better through-

put because each back-end is executing transactions at its own pace and does not

have to wait for other back-ends to complete the execution of these transactions.

j In other words, the execution mode is truly MIMD. On the other hand, solutions

such as those of [Dewi8O] and System D, which require all back-ends to commit a

transaction simultaneously are essentially SIMD.

To commit a transaction simultaneously, both the solution of [Dewi8O] and

that of System D require all the back-ends to exchange control messages. For

example, in the case of [Dewi80], a special computer designated as the con-

currency control computer will wait for n commit messages from the n back-ends

I before committing a transaction. Similarly, in the case of System D, each back-

end must wait to receive (n-l) commit messages from the other (n-l) back-ends

I before committing a transaction. Control messages are also needed to broadcast

the restrictions list to all the back-ends.

The MDBS solution, on the other band, exchanges no messages among the back-

ends for concurrency control. This is because neither are the transactions

required to commit simultaneously nor is the restrictions lfst employed

Hence, this solution serves to alleviate the control message traffic problem

typified among the multiple back-end systems.

C. No Back-end Limitation Problem

I Another problem with the solution of [DewiBO] but not with the solution

of System D is that its concurrency control mechanism is implemented in a

I single dedicated back-end. This can lead to an unreliable system, should the

!

- 66 -

back-end fail for whatever cause. It also violates our principle of distri-

buting all the work among all the back-ends without specializing any back-end.

The MDBS concurrency control mechanism does not have the back-end limitation

problem.

D. A Question of Overhead Incurred During Concurrency Control

It is claimed in [Dewi80] that the aforementioned two solutions incur less

overhead than locking-based solutions. However, this may be debatable. First

of all, for each transaction, these solutions need to keep track of which

entities have been read and written by what transactions. Is this any simpler

than locking the entities that have been read and written by the transactions?

Furthermore, these two solutions require the maintenance of restricitons lists

which incur an overhead that cannot be found in MDBS.

E. Free From Starvation Errors

We now show that the starvation solution of [Dewi8O] can lead to an in-

consistent database. For instance, consider two transactions t5 and t6 issued

to an employee database as follows.

tS: read x
y = 10
write y

x = x + 2
write x

commit

t6: read y
y - y + 2

write y

read x
x = x * 3
write x

That is, transaction t5 increments the value of x by 2 and changes the value

of y to 10. Similarly, transaction t6 increments the value of y by 2 and multi-

plies the value of x by 3. The corresponding transactions T5 and T6 in MDBS

might be

T5: BOT

UPDATE (File=EMPLOYEE) <y = 10>

UPDATE (File=EPLOYEEI <x = x+ 2 >

EOT

T6: BOT

UPDATE (File=EMPLOYEE) <y= y+ 2>
UPDATE (File=EMPLOYEE) <x- x *3>
EOT

I b7--

I Before these two transactions are received the initial values of x and y

in the database are assumed to be 5 and 6, respectively. Then, after the exe-

I cution of these two transactions the final values of x and y will he 21 and 12,

respectively, if t5 (T5) is executed before t6 (T6). Similarly, the final values

of x and y will be 17 and 10, respectively, if t6 (T6) is executed before t5

(T5). Either of these two sets of final values for x and y leaves the database

in a consistent state. Any other set of values for x and y leaves the database

in an inconsistent state.

E.1 Transaction Execution by the MDBS Solution

Consider how these two transactions are executed in MDBS. Let us consider,Ifor simplicity, that T5 was received before T6. Then, it is easy to see from

the description of the MDBS concurrency control mechanism in Section 6.8 that

MDBS will execute these two transactions in either one of the following sequences.

Sequence one

T5: UPDATE (Flle=EMPLOYEE) <y= 10>
T5: UPDATE (File=EMPLOYEE) <x = x+ 2>
T6: UPDATE (File=EMPLOYEE) <y= y+ 2>
T6: UPDATE (File-EMPLOYEE) <x = x *3>

Sequence two
T5: UPDATE (File=EMPLOYEE) <y= 10>
T6: UPDATE (File=EMPLOYEE) <y= y+ 2>
T5: UPDATE (File-EMPLOYEE) <x= x+ 2>
T6: UPDATE (File=EMPLOYEE) <x = x *3>

and will not permit any other execution sequence. Both the permitted execution

sequences above leave the final value of x as 21 and the final value of y as 12.

ITherefore, the final state of the database is consistent irrespective of which

execution seuqence is followed in MDBS.

E.2 Transaction Execution by the Starvation Solution

Now, let us consider how the transactions t5 and t6 are executed if the

starvation solution of [Dewi8O] is used for concurrency control. In that solu-

tion, the following execution sequence

I t5: read x
t6: read y

t5: y= 10

t5: write y
t5: x - x + 2
t6: write x

t5: commit

- 63 -

t6: y = y + 2
t6: write y
t6: read x
t6: x - x + 3
t6: write x
t6: commit

will be permitted except for the fact that t5 will not be allowed to commit

until t6 commits. This is because t6 comes before t5 in the serialization

order, since it reads an entity y which t5 will write later. After both t6

and t5 commit, the final values of x and y are 7 and 10, respectively. For

the database to be consistent, the final values of x and y must be either 21

and 12 or 17 and 10. Hence, the database is in an inconsistent state. We

conclude, therefore, that the starvation solution of [Dewi8O] can lead to an

inconsistent database.

6.10 The Execution of Incompletely-Specified Transactions

In this section, we will consider how the MDBS concurrency control mech-

anism may be extended to execute incompletely specified transactions. That is,

we wish to execute a transaction even before all the requests in the trans-

action have been provided by the user. For instance, a transaction may consist

of three requests. The user has specified only one request of the transaction.

We want MDBS to start executing the one request without waiting for the user to

provide the remaining two requests. First, we will show why our basic mechanism

is not able to execute incompletely-specified transactions. Then, we will pre-

sent two possible extensions to the basic concurrency control mechanism for

executing incompletely-specified transactions.

Let transaction tl begfn with the following request

RETRIEVE (File=EMPLOYEE) (Salary)

Also let transaction t2 begin with the following request

UPDATE (File=EMPLOYEE) <Salary=Salary + 2>

Furthermore, let tl be received before t2. Since tl is received before t2, the

retrieve request of tl may be executed at each back-end. Now, the back-ends

must decide whether or not to execute the update request of t2. The problem

with executing the update request of t2 is as follows. After executing the

update request of t2, MDBS may receive the second request of tl. For instance,

it may be the following

UPDATE (File-EMPLOYEE) <Salary-Salary + 2>

-69

This update request of tl Is non-permutable with the update request of t2.

The basic concurrency control algorithm of MDBS requires us to ensure that

whenever two non-permutable requests are received, the request of the earlier

transaction is executed first and the request of the later transaction is exe-

cuted next. By this principle, the update of tl should have been executed

before the update of t2 is executed because tl is the earlier transaction.

However, the update of t2 by now has already been executed, whereas the execu-

tion of the update of tl has not yet begun. Therefore, we need to back-up trans-

action t2. Backing-up a transaction requires the transaction to give up all

its locks and to start its execution all over again.

6.10.1 Problems With Backing Up Transactions

Consider the following record in our discussion

(<Employee,JAI>, <Salary,5000>).

Two transactions, t3 and t4, increment the salary of employee JAI by 100. Con-

sider that t3 first increments the salary to 5100 and t4 increments the salary

then to 5200. Assume, also that both t3 and t4 consist of other requests and

that a back-up of t3 is required, after t3 and t4 both update the salary attri-

bute of the record and before either t3 or t4 completes its transaction. In

order to back-up t3, we need to undo all the changes made by t3, thereby re-

storing the database to the state prior to the execution of t3. In particular,

we need to restore the value of the salary attribute of the record to its ori-

ginal 5000. As a result, however, the update of the other transaction, i.e.,

t4, is lost. Hence, t4 must also be backed up so that its update may be exe-

cuted again. In other words, backing up of one transaction may cause another

transaction to be backed up. In general, backing up of one transaction may

cause several other transactions to be backed up. Hence, such back-ups are

costly and time-consuming.

Our second motivation against transaction back-up can be illustrated with

the following scenario. Let there be two back-ends in MDBS. Let us assume
that the concurrency control at back-end 1 causes a transaction to back-up.

The backed-up transaction at back-end 1 will give up its locks and start exe-

cution again from the beginning at a later time. Meanwhile, however, the same

transaction is able to run to its completion at back-end 2 without any back-up.

This may lead to two different (execution) sequences of the transactions re-

quests at the two back-ends, thus causing a loss of monolithic consistency.

I

- 70 -

Thus, to he able to execute incompletely-specified transactions in MDBS, two

alternatives are available to us. In one solution, we ensure that no backing

up oL transactions is required. In the second solution, we ensure that, even

if backing-up is required, the two problems characterized above are eliminated.

We will consider these two solutions in turn.

6.10.2 The No-Back-Up Solution

Before we may propose such a no-back-up solution, we repeat the cause for

backing up transactions as illustrated in the previous example. Tbere, a

transaction has to be backed up because the transaction contains a request

being executed which is non-permutable with a request in an earlier trans-

action. The occurrence of this situation is due to the fact that the

earlier transaction is not completely specified and the non-permutable up-

date of the earlier transaction is only received after the later trans-

action has begun the execution of its update request. The solution now be-

comes obvious. Before we begin to execute an incompletely specified-trans-

action, we must ensure that all earlier transactions are completely specified.

Thus, if we allow for incompletely-specified transactions in MDBS, we will

execute an incompletely-specified transaction only if all earlier transactions

are completely specified. This is our first solution to the problem of hand-

ling incompletely-specified transactions.

6.10.3 A Solution with Backing Up

The second solution for executing incompletely-specified transactions is

as follows. We begin to execute incompletely-specified transactions even when

all earlier transactions are not completely specified. This, as we know may

lead to transaction back-up. There are LWO problems caused by transaction back-

up. First, when one transaction is backed up, other transactions may also need

to be backed up. This happens for the following reason. Consider that the

transaction tl updates a record R1 in cluster 1. After the update, tl releases

the lock on cluster 1. This lock is subsequently acquired by the transaction
t2 which also updates RI in cluster 1. Later on, tl needs to be backed up and

the new values of the attributes in R1 have to be restored to their original

values prior to that update by tl. This causes the update of t2 to be lost.

Hence, t2 also needs to be backed up. In other words, backing up of tl causes

1 -71-

I backing up of t2. This happens only because tl has released the lock on cluster

I before tl completes its transaction. This lock released by tl is subsequontl\

acquired by t2. The problem would not aris,, if tl holds on to all Its Locks

until the end of transaction. In the terminology of concurrency control, the

transactions must follow the two-phase locking protocol. 'lhis takes care of the

first problem associated with transaction back-up.

The second problem has to do with the fact that a transaction may be backed

up at one back-end and not at another. Hence, the transactions are executed in

different orders in the different back-ends and this leads to a loss of monoli-

thic consistency. One approach is to ensure that if a transaction is backed

up at one back-end, it is also backed up at all back-ends. This may be achieved

by exchanging control messages among the various back-ends. However, we wish to

alleviate the control message traffic problem in MDBS and, hence, we reject this

approach. The other approach is to ensure that even if a transaction has to be

backed up at one back-end, the transaction retains the same position in the order

of execution at all the back-ends. This may be achieved by ensuring that all

transactions follow the two-phase protocol and hold all their locks until the

very end of execution of the transaction. Then, if they have to be backed up

in the middle of execution, they still have all their locks and, hence, they

will maintain their position in the order of execution.

To summarize, both problems related to transaction back-up may be overcome

by ensuring that all transactions follow the two-phase protocol and hold all

their locks until the very end of execution of the transaction. The process

of transaction execution in MDBS when incompletely-specified transactions are

I allowed and when the solution with backing up procedure is adopted is as follows.

At the beginning, a transaction will lock all the clusters it needs (this

set of clusters is only incompletely specified at this time) in the to-be-used

category and the appropriate mode (see Section 6.8.2). Now, the transaction

will have its requests executed one by one. Before a request in a trans-

action may be executed, the appropriate locks have to be converted from the to-

be-used to the being-used category. The process of lock conversion has already

been explained before. After the appropriate locks have been converted, the re-

quest may then be executed. However, after the execution of the request, the locks

used by the request are not released. They will not be considered for release

until the transaction becomes completely specified and all requests in the trans-

j action are executed. Even then, the locks are not released until all earlier trans-

tInsp. !-

72 -

actions have been completely specified and executed and have released all their

locks. Only then, does this transaction release all its locks.

We now explain what happens when a new request of an incompletely-s-pecified

transaction is received. The request is executed until the set of clusters

needed by the request is determined. This set is used to update the set of

clusters needed by the transaction. If the new request is non-permutable with

a previously executed request from a later transaction, the later transaction

has to be backed up and re-executed. The back-up is achieved by resetting the

values of attributes in records updated by the transaction to their original

values.

This completes our description of the second solution for executing in-

completely-specified transactions in MDBS. We wish to emphasize that, in the

above solution, the need for transaction back-up is detected the moment a non-

permutable request from an earlier transaction is received. This is in con-

trast to the solutions of [Dewi8O] and System D where the need for transaction

back-up is not detected until the very end of a transaction. Together with

the one in the previous section, we have suggested two solutions for MDBS to

execute incompletely-specified transactions. Either solution may be employed

in MDBS.

1 -73

I 7. DESICN AND PERFORMANCE ANALYSIS

In Chapter 1, we stated that we would propose the design of a multiple

back-end system in which the ideal goal of its response time being proportional

inversely to the multiplicity of its back-ends may be achieved. Tn the pre-

I ceding five chapters, we revealed the design of such a system, known as MDBS.

We now determine how well the ideal goal has been achieved by the MDBS design.

There are two approaches to the determination of the MDBS design in meet-

ing the ideal goal. One may use analytic models based on the queueing theory

to analyze the flow of information in MDBS and to measure the designed features

of MDBS. One may also use simulation techniques to analyze and measure the

behavior of MDBS.

We follow the analytic approach in Chapter 4 for selecting an appropriate

strategy for directory management and request execution. As a result of the

analytic modelling used in Chapter 4, we conclude that the ideal goal has been

achieved and may even been surpassed by the MDBS design. However, a number of

shortcomings of that analytic study is cited here. First, only retrieve re-

quests were modelled and insert, delete and update requests were not modelled

g in that study. Second, the analytic model used is a closed queueing network

model in which the total number of requests in the system is fixed. The model-

ling of MDBS as a closed system is valid as long as all the users of PDBS

are issuing requests from the terminals. However, to take care of users who may

submit requests as background transactions, we would also like to model MDBS

I as an open system in which the total number of requests in the system is not

fixed but is dependent on the arrival rate of requests and the speed of MDBS

in processing these requests. This is not done in the analytic study of Chapter

4. The Third shortcoming of the analytic study is that many of the finer design

details of MDBS can not be modelled. For instance, the concept of clusters and

the placement strategy employed in MDBS are not modelled in the analytic study

of MDBS in Chapter 4. Finally, the volume of the MDBS design and the limitation

of the queueing theory render the use of either the closed or the open queueing

network model impossible for getting meaningful theoretical results on the finer

i-.ign and performance details of MDBS. Thus, we decided to employ simulation

.,,:niques in order to overcome the shortcomings of the analytic study of Chap-

I4

..rvanization of the rest of this chapter is as follows. Tn Section 7.1,

g i imulation model of MDBS. In Section 7.2, we present a measure oF

I

* -...- * ,.- -. -

-74 -

performance and the parameters of our simulation model. In Section 7.3, we re-

present our results and interpretation regarding the design and performance of MMSS.

7.1 A Simulation Model of MDBS

As we know, MDFRS consists of a controller attached to a number of back-

ends via a time-shared bus to which we refer as the broadcast bus (see Figure

7 again). In our simulation model, we assume that the controller is a VAX-11

computer and that the back-ends are PDP-11/44 minicomputers. Furthermore, the

disk drives in our simulation model are assumed to have the characteristics of

the RMO2 disk drive. This characterization is realistic since the proposed

MDBS is being implemented on a VAX-11 controller and PDP-11/44 back-ends with

RM02 disk drives. Thus, our simulation study can be used to predict the de-

sign and performance of the system being implemented. Conversely, the result

of our simulation study of MDBS design and performance can be verified by the

actual performance of the implemented systems.

Our model simulates the sequence of events that takes place between the

time that a user request enters MDBS and the time that the response data for

the request is sent to the user. This sequence of events varies depending

upon the type of the request. We describe, below, the sequence of events cor-

responding to each of the four request types in MDBS.

7.1.1 Sequence of Events for a Retrieve Request

The processing of the retrieval request takes place in several distinct

phases as described below.

A. The Parsing Phase

When a request is scheduled for execution, the VAX-11 controller first

parses the request and then broadcasts the request as a message to all the

back-ends. The message goes to all the back-ends first via the VAX Unibus and

then via the broadcast bus (i.e., DEC's PCL). It is assumed that both the VAX

Unibus and DEC's PCL are reliable and guarantee the delivery of all messages

in the same order that they are presented to them. In our model, we simulate

first-in-first-out (fifo) queues at the VAX Unibus and at the broadcast bus.

The time taken to transmit a message over the VAX Unibus or the DEC's PCL de-

pends upon the size of the message.

1 -75-

I
B. The Descriptor Search Phase

Eventually, the broadcasted retrieve request is placed in a fifo queue

at each of the back-ends. Each back-end processes its queue sequentially. On

encountering this request in its queue, a back-end will perform descriptor

processing for the request. That is, if in the request there are x predicates

in the query and in MDBS there are n back-ends, each back-end will process x/n

f of the predicates and determine the corresponding descriptors of the predicates.

In determining the corresponding descriptors, a back-end may need to access the

secondary memory because the augmented descriptor-to-descriptor-id-table (DDIT)

which maintains the descriptors may be in the secondary memory. In that case,

an I/0 request is generated bv the back-end and placed in the queue associated

with the disk drive which contains the augmented DDIT. Thus, in addition to

a fifo queue for user requests, the back-end has a number of i/o queies.

Each disk drive has an i/o queue of access operations which have been

issued by the back-end to which the disk drive is attached. The disk drives

I are assumed to use a first-come-first-served (fcfs) strategy in processing

access operations in their queues. When a seek to a disk track is completed

by a disk drive, the disk drive must wait until the unibus of the PDP-11/44

back-end to which it is attached becomes free before it may transmit the se-

lected track to the back-end.

Eventually, the back-end will complete descriptor processing on the request.

gIt will then broadcast the corresponding set of descriptors so determined to

all the back-ends via the broadcast bus. For a request of n predicates, a

back-end must complete the processing of its x/n predicates and receive the

Icorresponding set of descriptors for the remaining (n-l)x/n predicates from the
other (n-l) back-ends before the back-end is allowed to do any further processing

on that request. However, in the meantime the back-end may process other re-

quests in its fifo queue.

C. The Address Generation Phase Including Access Control

Consider that a back-end has finished the descriptor processing phase for

a request and that it has received the remaining (n-I) corresponding sets of

descriptors for this request from the other (n-i) back-ends. The back-end may

then proceed to do address generation for that request by accessing and pro-

cessing its augmented cluster definition table (CDT). At the end of this phase3 of processing, the addresses (of the records) of the authorized clusters for the

I

- 76 -

user request are determined by the back-end. Originally, these addresses were

generated for each cluster at the database-creation time in accordance with

the track-splitting-with-random-placement strategy for placing the records of

the cluster in the secondary storage.

D. The Secondary Memory Retrieval Phase

Finally, the back-ends access the tracks containing the records of the

authorized set of clusters. Thus, the back-ends will generate a set of i/o

operations, one for each track to be accessed, and place these i/o operations

in the queues of the appropriate drives. As it receives tracks of records from

the drives, the back-end processes these tracks by selecting those records which

satisfy the user's query. Thus, the processing of tracks of records at the

back-ends proceeds in parallel with the accessing of other tracks by the disk

drives.

F. The Response Phase

Values of intended attributes are extracted from the selected records and

sent over the broadcast bus and via the VAX-11 Unibus to the VAX-Il controller.

When the entire response to the request has been received from all the back-

ends, the controller outputs the response set to the user.

7.1.2 Sequence of Events for a Delete Request

The first four phases of a delete sequence are exactly the same as the

ones of a retrieve sequence. However, the following phases are different.

A. The Tag-for-Deletion Phase

The selected records are marked with deletion tags. The marked records

are then written back to the secondary store. In order for a back-end to write

records with deletion tags onto the secondary store, the back-end must generate

some i/o operations and place them in the fcfs queues of appropriate disk drives.

B. The Acknowledgement Phase

After the records have been properly written on to the secondary store, a

message is sent to the controller via the broadcast bus and the VAX-lI Unibus,

indicating the successful completion of the delete request. When such acknow-

ledgement has been received from all the back-ends, the controller outputs a

I -77-

positive acknowledgement to the user.

7.1.3 Sequence of Events for an Update Request

As we recall, an update request in MDBS is associated with a modifier

of type-C, type-I, type-I[, type-IT or type-IV. An update request with a

modifier of type-ITT or type-IV is processed as a retrieve request followed

by an update request of type-C. Thus, we simulate only update requests with

I modifiers of types-C, type-I and type-IT.

The first four phases of an update sequence are exactly the same as the

ones of a retrieve sequence. However, the remaining two phases are different.

A. The Record Modification and Cluster Calculation Phase

Each back-end must update the selected records by employing the modifier

in the update request and calculate a new cluster number for each updated re-

cord. In order to keep the simulation of updates simple, we assumed that up-

dated records do not change clusters. Rather, they continue to belong to the

same cluster(s) and are inserted back into the same track(s) from which they

are retrieved. Then, the updated records are written back to the secondary

Imemory.

I B. The Acknowledge Phase

After the update is successfully completed, the back-end sends a message

I to the controller via the broadcast bus and the VAX-11 Unibus, indicating com-

pletlon of the update request. When such messages have been received from all

S I the back-ends, the controller outputs a positive acknowledgement to the user.

7.1.4 The Sequence of Events for an Insert Request

I As for the other three request types, the execution of an insert request

also proceeds in several distinct phases.

A. The Parsing Phase

When an insert request is scheduled for execution, the VAX-11 controller

will parse the request and then broadcast it to all the back-ends via the

VAX Unibus and the broadcast bus.

B. The Descriptor Search and Initial Address Generation Phases

IThe request is now placed in the fifo queues of the n back-ends. When a

-78 -

back-end encounters this request in its queue, the back-end will find the cor-

responding descriptors for x/n of the total of x keywords present In the record

for insertion. In order to find the corresponding descriptors, a back-end has

to search the augmented DDIT. If the necessary descriptors are in the secondary

memory, an i/o operation is generated by the back-end and placed in the fcfs

queue associated with the disk drive which contains the descriptors in question.

After a back-end finds the corresponding descriptors for x/n of the direc-

tory keywords, the back-end will then broadcast its corresponding descriptors

to all the other back-ends via the broadcast bus. Each back-end must complete !
the processing of the x/n directory keywords and receive the corresponding

descriptors for the remaining (n-l)x/n directory keywords from the other (n-l) j
back-ends. Only then, can the back-end do further processing on the insert

request. However, the back-end may process other requests in its queue while

it is waiting for the corresponding descriptors to be broadcasted from the other

back-ends.

After completing the descriptor processing on the insert request and re-

ceiving the (n-l) messages fromthe other back-ends, the back-end proceeds to

the first step of address generation. In this step, it searches the augmented

CDT to determine the cluster number of the record for insertion. Then, in the

second step of address generation, it checks to see if the user that issued the

insert request is allowed to make the insertion into the cluster determined in

the first step of address generation. If not, the execution of the request

terminates at this point. Otherwise, the back-end sends the cluster number to

the controller via the broadcast bus and the VAX-lI Unibus. I
C. The Back-end Selection Phase

The controller waits for messages from all the n back-ends. Then, it con-

suits the cluster-id-to-next-back-end-table (CINBT) for selecting a next back-

end for the record insertion. The controller will then send a message to this i
back-end via the VAX-i Unibus and the broadcast bus. The message is placed in

the fifo queue at the selected back-end.

D. The Record Insertion Phase

On encountering the insertion message in its queue, the back-end proceeds
with the final step of address generation. It will first search the augmented

CDT to determine the track into which the record is to be inserted and then

1 -79 -

U generate an i/o operation to the disk drive containing the selected track.

After the back-end receives a positive message from the disk drive, the

back-end in turn sends a message to the controller via the broadcast bus and

the VAX-li Unibus.I
F. The Acknowledgement Phase

Upon receiving a positive message from a single back-end, the controller

acknowledges to the user that the record is successfully inserted.

7.2 Simulation Environments and A Measure of Performance

The simulation model described in the last section is programmed using

Simula on a DEC System 20. Because the model is highly parameterized, the

number of distinct cases that can be formulated is extremely large. The com-

binatorics inherent to such modelling makes any exhaustive simulation infeasi-

ble. Fortunately, a great deal can be learned by simulating an appropriately

Ichosen subset of all the possible cases involved. See appendices H and I.

7.2.1 Retrieve-Intensive vs. Update-Intensive

Let the environment of MDBS in a particular application be defined by the

percentages of the four request types that will be encountered in that appli-

catioi. Then, a retrieve-intensive environment is one in which a large per-

centage of requests received by MDBS are retrieve requests and in which very

few delete, update and insert requests are received. Similarly, an update-

intensive environment is one in which a large percentage of requests received

by MDBS are update, delete and insert requests, and in which the percentage

of retrieve requests encountered is low. Any environment may be accommodated

by our simulation model. However, we choose to model two specific environ-

ments - a retrieve-intensive one in which 100% of the requests are retrieves

and an update-intensive one in which there will be 25% of each of the four re-

quest types. Thus, we are modelling the two ends of the spectrum of possibili-

ties for the environment of MDBS.

7.2.2 Cluster Size vs. Request Size

In our study, we assumed that a total of 10,000 clusters exist in the data-

base and that these clusters are placed using the track-splitting-with-random-

I placement strategy described in Chapter 2. The average number of tracks in a

I

- 80 -

cluster is chosen from the set (2,10}. In the case of update, delete and re-

trieve requests, we also need to choose the number of clusters that will be up-

dated, deleted or retrieved by a request. We run tests for small-sized re-

quests in which the number of clusters to be processed (i.e., to be updated,

deleted or retrieved) varies between 1 and 20, and for large-sized requests

in which the number of clusters to be processed varies between 20 and 40. The

number of predicates in a query is chosen to be uniformly distributed in the

range from 1 to 5.

7.2.3 Hardware Configurations and Requirements

The broadcast bus, i.e., DEC's PCL, is chosen to have a transmission

speed of 1 uibytes/ sec and the VAX Unibus is chosen to have a transmission

speed of 2 mbytes/ sec. It is assumed that both the controller and the back-

ends must execute about 8,000 instructions, taking 8 msecs, in order to gener-

ate messages for broadcast. Furthermore, we assume that each message has to

be augmented with 50 bytes of header information. In other words, the minimum

possible size of a message in MDBS is 50 bytes. Finally, the number of back-

ends is chosen from the set {3,6,9}.

7.2.4 A Measure of Anticipated Performance vs. Ideal Performance

In order to be able to present our results more effectively, we define a

performance measure, called the percentage ideal goal. We take the response

time of MDBS with three back-ends as our reference point. We then define the

percentage ideal goal of MDBS utilizing n back-ends as the following ratio:

3 x (response time of MDBS with 3 back-ends) x 100
n x (response time of MDBS -ith n back-ends)

With the above definition, we learn that, the percentage ideal goal of MDBS

utilizing six back-ends will be 100, only if the response time of MDBS with

six back-ends is exactly one half of the response time of MDBS with three back-

ends. Similarly, when the number of back-ends is nine, the percentage ideal

goal of M)BS will be 100, only if the response time of MDBS with nine back-ends

is exactly one third of the response time of MDBS with three back-ends. Thus,

the percentage ideal goal of MDBS is a measure of how close MDBS is to achieveing

its ideal performance goal.

7.3 MDBS Performances Under Various Conditions

On the basis of the measure, environments and parameters, we conduct

the simulation ol MDRS. In this section, we tabulate the simulation results

and discuss these tables. In the discussion, we try to interpret the findings

and relate the findings to the design details of the MDBS.

7.3.1 Intensive Retrieval Involving Large Clusters

From Figure 44, we see that the performance of MDBS is better than anti-

cipated when the average number of tracks per cluster is chosen to be ten.

In fact, the percentage ideal goal reaches as high as 140 for large-sized re-

quests when the number of back-ends is nine and the interarrival time of re-

quests is 3.5 sec. The reason for the percentage ideal goal being greater than

100 has been explained in Chapter 4 and has to do with the utilization of the

disk system. We recall, when the number of back-ends in MDBS is doubled, the

number of tracks to be accessed by each back-end is halved due to our data

placement strategy. Furthermore, the time to access a track is less when more

back-ends are used. Both these factors contribute to a response-time improve-

ment which is better than 'ideal'.

7.3.2 Intensive Retrieval Involving Small Clusters

From Figure 45, we learn that the percentage ideal goal can be as low as

61.5 when the average number of tracks per cluster is two and the requests are

of small-sized. Th3 percentage ideal goal remains low, even the requests are

of large-sized. In other words, the performance of MDBS deviates furthest from

the Ideal goal when the average number of tracks per cluster and the average

number of clusters to be retrieved by a request are both very small. The in-

terpretation is as follows. Our design has strived to alleviate the controller

limitation problem and the control message traffic problem. However, neither

of these two problems could be entirely eliminated in our design. Thus, a con-

stant amount oL time, independent of the number of back-ends, is spent by the

controller to parse user requests, to broadcast user requests to all back-endsand to output results to the user. Similarly, the back-ends need to exchange

messages in order to synchronize descriptor processing on a request. The ef-

ects of these tasks on the response time of a request (and, therefore, on the

achievement of the ideal goal) will be negligible when the number of tracks to

be retrieved from the secondary memory is large. This is because when a large

I

-82 -

Average Number of Tracks per Cluster is 10.
Retrieve-intensive environment when all requests are retrieval requests.

Small-sized Requests (involving 1 to 20 clusters)

of back- 3,6,,
ends 3 6 9

Inter- Response % Ideal Response % Ideal Response % Ideal
arrival time Goal time Goal time Goal
time in sec (sec) (sec) (sec)

1.5 2.06 100 .84 122.6 .583 117.78

2 1.06 100 .786 105.6 .567 97.6

Large-sized Requests (involving 20 to 40 clusters)

of back- 6d end s 3..

Inter Response % Ideal Response % Ideal Response % Ideal
arrival time Goal time Goal time Goal
time in sec (sec) (sec) (sec)

3.5 4.53 100 1.66 136.44 1.1 140.3

5 3.16 100 1.51 104.64 1.05 100.3

Figure 44. The MDBS Response Times In a
Retrieve Intensive Environment
with Large Amount of Data Involved

I
The average number of tracks per cluster is 2
Retrieve-intensive environment where all requests are the retrieval requests.

I

I Small-sized Requests (involving 1 to 20 clusters)
f back-369

ends 3 6 __
Inter- Response % Ideal Response % Ideal Response % Idealarrival time Goal time Goal time Goal
time in sec. in sec in sec in sec

1.5 .571 100 .364 78.4 .304 62.6

2 .55 100 .359 76.6 .298 61.5

I

Large-sized Requests (involving 20 to 40 clusters)

k-of back-
ends 3 6 9

Inter- Response % Ideal Response % Ideal Response Z Ideal
arrival time Goal time Goal time Coal
time in sec in sec In sec in sec

1.5 1.04 100 .586 88.7 .458 75.7

2 .957 100 .567 84.4 .445 70

I

I Figure 45. The MOBS Response Times in a
Retrieve-Intensive EnvironmentI with Small Amount of Data Involvement

I

- 84 -

fraction of the response time will be spent in accessing the secondary memory,

the effects of these tasks on the overall response time is relatively low. On

the other hand, if the number of tracks to be accessed is very small, then the

overall response time to a request is also very small. In this case, the ef-

fect, of these tasks on the response time, will result in relatively heavy

impact. This is why the performance of MDBS deviates furthest from the ideal

goal when the average number cf tracks in a cluster and the average number of

clusters to be retrieved for a request are both very low.

7.3.3 Intensive Update Involving Large Clusters

The results tabulated in Figure 46 for an update-intensive environment

are similar to those of Figure 44. Thus, when the average number of tracks

per cluster is ten, the percentage ideal goal can reach as high as 190. This

happens for large-sized requests when the number of back-ends is nine and the

inter-arrival time of requests is 3.5 sec.

in comparing this figure (i.e., Fig. 46) with Figure 44, we note that the

highest percentages achieved are 190 and 140, respectively. One may wonder

why would the update-intensive requests achieve higher percentage (i.e., 190)

than the retrieve-intensive requests under the same condition, since updates

tend to tax the system performance more pronouncedly than retrieves do. It

turns out that these two percentages are not directly related to each other.

What they have indicated is that with more back-ends the slow update (with a

response time of over six seconds) in a 3-back-ends setting may be speeded up

more dramatically where as the fast retrieval (with a response time under five

seconds) in a 3-back-end setting may be speeded up not as dramatically as the

updates. By the time MDBS is a system of 9 back-ends, the response times of

updates and retrievals are both close to one second as depicted in Figures 46

and 44, respectively.

7.3.4 Intensive Update Involving Small Clusters

For small values of the average number of tracks in a cluster and the

average number of clusters to be accessed in a update request, the percentage

ideal goal can get as low as 60. Comparing corresponding entries in Figures 45

and 47, we see that the performance of MDBS is closer to ideal in the update-

intensive environment than in the retrieve-intensive environment.

The reason for this is as follows. Update and delete requests take longer

l -85-

The Average number of tracks per cluster is 10.
The Update-intensive environment consists of 25% Inserts, 25% Deletes,

25% Updates, 25% Retrieves.

I
oSmall-sized Requests (I to 20 clusters)I # of back-

ends 3 6 9

Inter- Response % Ideal Response % Ideal Response % Ideal
arrival time Goal time Goal time Goal
time in sec in sec in sec in sec

1.5 3.1 100 1.03 150.4 .702 147

2 2.24 100 .946 118.4 .667 112

oLarge-Sized Requests (20 to 40 clusters)
It of back- . ..

ends 3 6 9
Inter- Response % Ideal Response % Ideal Response % Idealarrival time Goal time Goal time Goaltime in sec in sec in sec in sec

3.5 6.73 100 2.24 150.29 1.18 190

5 5.67 100 2.08 136.3 1.18 160.17

I
I

I

I Figure 46. The MDBS Response Times in an
Update-Intensive Environment
Involving Large Clusters

1

Il ll

-8b -

The average number of tracks per cluster is 2.
The update-intensive environment where there are 25% insert, 25% delete,

25% update and 25% retrieve requests.

Small-sized Requests (1 to 20 clusters)

t of back-end 6 9
ends

Inter,- Response % Ideal Response % Ideal Response 7 Ideal
arrival time Goal time Goal time Goal
time in sec in sec in sec in sec

1.5 .604 100 .398 76 .335 60

.581 100 .391 74.3 .329 59

Large-sized Requests (20 to 40 clusters)

of back-
ends 3 6 9

Inter- Response % Ideal Response % Ideal Response % Ideal
arrival time Goal time Goal time Goa.
time in sec in sec in sec in sec

1.5 1530 100 .759 100.7 .565 90.2

2 1.260 100 .702 89.7 526 80

Figure 47. Intensive Update Involving Small Clusters

r AD-Al~04 445
OHIO STATE

UNIV COLUMBUS COMPUTER
AND INFORMATION

SC--ETC /0/

A.... STTDESIGN AND. ANALYSIS OF A MULTI-MACKEND DATABASE SYSTEM FOR PERF--EC '

~ A UGII AL.1A M .1 MENON N00014-7S C-05,73.iCASIIEDUIEEE!

87-

to execute than retrieve requests because, besides requiring the retrieval of

data from the secondary memory, the former requires the insertion of tracks

containing the updated and deleted records in to the secondary memory. As a

result, the average response time of MDBS in an update-intensive environment

is greater than in a retrieve-intensive environment. Hence, the overall re-

sponse time in an update-intensive environment will be less affected by the

time for the fixed 'overhead' tasks such as request parsing and acknowledgement

than the overall response time in a retrievel-intensive environment.

7.3.5 Effects of Broadcasting on Performance

It is easy to see that for a given request, the amount of data which is

sent to the controller from the back-ends and which is output by the control-

ler to the user is a constant, independent of the number of back-ends. As a

result, the time taken to transmit this data over the broadcast bus is a part

of the overall response time of MDBS which cannot be decreased by increasing

the number of back-ends. Thus, a slow broadcast bus may cause the performance

of MDBS to deviate away from the ideal goal. In this section, we propose to

investigate the effects of broadcast bus speed on the performance of MDBS.

In previous sections, we presented results on the MDBS response time with

the assumption that the broadcast bus could transmit at a rate of 1 mbytes/sec.

We now present two more sets of results, one for the case when the broadcast

bus can transmit at 0.5 mbytes/sec and the other for the case when the broad-

cast bus can transmit at 2 mbytes/sec. Since the deviation of MDBS performance

away from ideal is greatest for small number of tracks per cluster and small-

sized requests, we present results only for this case. Furthermore, since the

effects of a slow bus will be felt the most in a retrieve-intensive environ-

ment where large amounts of data have to be returned over the broadcast bus,

we will only simulate such an environment. The results are tabulated in

Figure 48.

The results indicate that as long as the broadcast bus can transmit at a

speed greater than 0.5 mbytes/sec, the overall response time of MDBS is un-

affected. Note that these results should be read in conjunction with the re-

sults in Figure 45 for the case where the broadcast bus can transit at a speed

of 1 mbyte/sec. We conclude that the speed 3f the broadcast bus is not likely

to affect the performance of KDBS in its achievement of the ideal goal, since

buses with speeds of greater than 0.5 mbytes/sec are commercially available.

-88 -

The average number of tracks per cluster is 2.
The environment is Retrieve-intensive with small-sized requests

(1 to 20 clusters)

Bus speed = 0.5 Mbytes/sec

#of back- 3 6 9
ends 3 6 9

Inter- Response Y Ideal Response % Ideal Response % Ideal
arrival time Goal time Goal time Goal
time in sec in sec in sec in sec

1.5 .571 100 .364 78.4 .304 62.6

2 .55 100 .359 76.6 .298 61.5

Bus speed = 2 Mbytes/sec

of back-
ends 3_6 9

Inter- Response % Ideal Response % Ideal Response % Ideal
arrival time Goal time Goal time Goal
time In sec in sec in sec in sec

1.5 .571 100 .364 78.4 .304 62.6

2 .55 100 .359 76.6 .298 61.5

Figure 48. The Response Times of MDBS Effected
by the Broadcast Bus Speeds

m|1

-89-

An example of one such bus is the PCL-11 bus [Uhri79] provided by Digital

Equipment Corporation.

7.3.6 Three Observations of Strong Design and Performance Factors -

JHigh-Volume Processing, Intensive Update and Inexpensive Broadcast Bu;

Let us summarize our results up to this point. MDBS will achieve and sur-

pass its ideal goal as long as the requests issued to it are such that large

amounts of data have to be read and manipulated in order to process them. This

is precisely the kind of environment for which MDBS has been designed. On the

other hand, the ideal goal of MDBS may be reached by only 60% if requests are

such that only very small amounts of data have to be read and manipulated in

order to process them.

Secondly, our results have shown us that MDBS will achieve its ideal goal

more closely in an update-intensive environment than in a retrieve-intensive

environment because of the additional accesses to the secondary memory needed

in the former case.

Finally, our results have shown us that the speed of the broadcast bus is

not a bottleneck to its ideal performance. As long as the speed of this bus is

greater than 0.5 mbytes/sec, the performance of MDBS is unaffected by the speed

of the broadcast bus.

7.4 A More Refined Simulation of MDBS

In the simulation experiments of the previous section, we had assumed that

the controller broadcasts a request to all the n back-ends in MDBS. Actually,

the controller will need to broadcast a request to only x back-ends, where x is

the number of predicates in a retrieve, delete or update request or the number

of keywords in an insert request, if x is less than n. By use of such a policy,

the synchronization overhead in MDBS is reduced. Thus, during the descriptor

processing phase, each back-end will need to wait for results from only (x-l)

rather than (n-l) other back-ends. Furthermore, such a policy will result in

fewer message exchanges and lesser traffic on the broadcast bus. This refine-

ment is now incorporated into the simulation model of MDBS.

The response times of MDBS under the refined policy are tabulated in Figure

49. The corresponding results for MDBS without the refined policy are the ones

in Figure 45. We only simulate MDBS with the refined policy when the

average number of tracks per cluster is small, i.e., two. This is because the

I

- 90 -

The average number of tracks per cluster is 2
The environment is Retrieve-intensive

Small-sized Requests (1 to 20 clusters)

of back-
ends 6 9

Inter Response % Ideal Response % Ideal Response % Ideal
arrival time Goal time Goal time Goal
time in sec in sec in sec in sec

1.5 .521 100 .286 91.08 .193 90.0

2 .507 100 .283 89.5 .196 86.05 1

I

Large-sized Requests (20 to 40 clusters)

of back-
ends 3 6 9

Inter Response % Ideal Response % Ideal Response % Ideal j
arrival time Goal time Coal time Goal
time in sec in sec in sec in sec

1.5 .104 100 .466 111.58 .304 114.03

2 .915 100 .454 100.77 .306 99.67

-I

Figure 49. The Response Times of MDBS Under
a Refined Policy Simulation

-91-

Iperformance of MDBS is ideal or better when the average number of tracks per
cluster is ten even with no use of the refined policy. Thus, we are only in-

terested in seeing if the refined policy can improve the performance of MDBS

in the region where it is operating below ideal. Comparing corresponding en-

tries in Figures 45 and 49, it is clear that MDBS response times under the

refined policy are lower than those without such a policy. However, more im-

SI portantly, the MDBS performance is now much closer to ideal. Thus, in the

worst case, the percentage ideal goal of MDBS is 86 as opposed to 60 where the

* refined policy is not employed. We do not believe that MDBS performance can

be any closer to ideal because the controller limitation problem and the con-

g trol message traffic problem can never be completely eliminated.

I

I

I
jI

'I

I
I
I
I

-92--

8. DESIGN GOALS AND ACHIEOEMENTS - A SUMMARY AND REVIEW

it is generally know/ that the use of a single general-purpose digital

computer with dedicated oftware for database management as a back-end to off-

load the mainframe host computer from database management tasks yields no ap-

preciable gains in performance. Furthermore, to replace the back-end computer

hardware and software with more powerful hardware and newly designed software

may be costly and disruptive. Such an upgrade would require major efforts since

these single back-end database management systems are not designed for hardware

extension and software enhancement.

In this dissertation, we first make the claim that for the management of

very large databases, the use of multiple minicomputers in a parallel fashion

may be feasible and desirable. By feasible we mean that it is possible to con-

figure a number of back-end minicomputers each of which is driven by identical

database management software and controlled by a controller (minicomputer) for

concurrent operations on the database spread over the disk storage local to the

back-end minicomputers. This approach to large databases may be desirable be-

cause only off-the-shelf equipment of the same kind is utilized to achieve high

performance without requiring specially-built hardware and because identical

database management software may be replicated on the back-ends. This approach

makes the capacity growth and performance improvement easy because duplicate

hardware can be added and used with replicable software.

We then present in this dissertation a new approach to the solution of

database management problems involving database growth and performance improve-

ment. The approach utilizes a multiplicity of conventional minicomputers, a

novel hardware configuration and an innovative software design. This extensible

system, called MDBS, is designed to achieve the ideal goal of having the re-

sponse time of MDBS to be proportional inversely to the multiplicity of back-

ends.

In presenting our approach, our initial effort is to identify the problems

and bottlenecks involved in designing such an ideal system. These problems are

identified by surveying and examining existing software-oriented multiple back-

end systems. In order to overcome the problems identified and in order to de-

velop an ideal system, we set nine design goals for MDBS.

First, we resolve to eliminate the channel limitation problem. That is,

we do not wish the throughput of MDBS to be limited by the transfer rate of

data from the secondary store via i/o channels. Second, we resolve to alle-

I

--93-

viate the controller limitation problem by executing all the database manage-

ment functions in a parallel fashion in the back-ends rather than at the con-

troller. For our third design goal, we decide that all back-ends must execute

identical software. As a result, capacity growth and performance improvement

with the use of additional back-ends and replicable software becomes a straight-

forward task. Fourth, we resolve to minimize communications among the back-ends

and between the back-ends and the controller. Without excessive communications,

the performance of MDBS will not taper off after the first few additional back-

ends. Fifth, we decide not to use any special-purpose hardware in MDBS. This

makes the addition of duplicate hardware for capacity growth and performance

improvement easy. It also makes the replication of software on additional hard-

ware easy. Sixth, we decide that each back-end should support concurrent re-

quest execution for better resource utilization and system response time.

For our seventh goal, we resolve that more than one disk drive would be attached

to each back-end. As a result, very large databases of the magnitude of, say,

1010 bytes may now be supprted in MDBS. Eighth, we decide to design MDBS in

such a way that all back-ends would participate equally in the execution of a

request. This is essential for achieving an ideal system in which the response

time is proportional inversely to the number of back-ends. Finally, for our

ninth goal, we resolve to find a canonical data model into which prevailing data

models such as the relational, network and hierarchical models can be translated

in a straightforward manner.

We begin our design of MDBS by specifying that it would consist of a con-

troller and several back-ends. Each back-end is attached with several disk

drives which store the database. As a result of attaching several disk drives

to each back-end, we are able to achieve our seventh goal. Furthermore, we are

also able to overcome the channel limitation problem and, hence, to achieve our

first goal. Thus, the throughput of MDBS is no longer limited by the transfer

rate of data from the secondary storage via 1/0 channels. By using off-the-shelf

I equipment for the controller, the back-ends and the disk drives, we are able to

achieve our fifth goal of not utilizing any special-purpose hardware in MDBS.

Thus, we achieve three of our nine design goals.

We reach the second goal, that none of the major database management tasks

is performed in the controller and all such tasks are accomplished in a parallel

fashion by the back-ends, by the careful design of algorithms for request exe-

gcution. Before it may access the database for the purpose of carrying out a

• m ii I • '4

- 94 -

request. MDBS must first access auxilliary information about the database.

That is, MDBS must perform directory management for the request. A number of

alternative strategies for directory management are proposed and evaluated by

using a closed queueing network model. The new strategy chosen for directory

management minimizes the overall response time of MDBS and requires minimal

work to be performed at the controller of MDBS. Next, during the execution

of a request, MDBS enforces access control. That is, MDBS performs access-

control-related directory management. The proposed scheme for controlling ac-

cess is also performed at the back-ends and is not done in the controller. In

order to improve the response time of a request even further, it is necessary

to have a mechanism which allows for concurrent execution of multiple requests.

Such a mechanism is referred to as a concurrency control mechanism. The newly

proposed concurrency control mechanism for MDBS also executes in the back-ends

and not at the controller. As a result, every phase of request execution is

performed in the back-ends and requires minimal work at the controller. Thus,

we manage to alleviate the controller limitation problem and achieve our se-

cond goal in MDBS.

Every one of the algorithms mentioned above for directory management, for

access control and for concurrency control in the course of request execution

requires that identical software be executed in the back-ends. As a result,

we achieve the third goal of MDBS to have replicable software in the back-ends

to facilitate capacity growth and performance improvement with additional back-

ends.

Our fourth goal is to minimize communications among the back-ends and be-

tween the back-ends and the controller. This is achieved by a number of dif-

ferent techniques. First, the controller and the back-ends are connected by

means of a broadcast bus. As a result, the controller will need to use only

a single message rather than n different messages in order to send a request

to all the n back-ends. Simulation experiments show that the reduced message

traffic caused by use of the broadcast capability can lead to improvements in

the response time by a factor of as much as five. Communications traffic is also

reduced by ensuring that the concurrency control mechanism in MDBS requires no

exchange of messages among the back-ends, unlike all other concurrency control

mechanisms for multiple back-ends. Finally, the communications traffic is re-

duced by the use of a data placement strategy which ensures that each back-end

is to access the same amount of data as any other back-end in order to respond t

-95-

I
to a request. Thus, a back-end does not need to communicate with other back-

ends or with Ute controller in order to retrieve data from the database. These

techniques allow us to achieve the fourth goal of alleviating the control mc'-

sage traffic problem in MD3S.

Our sixth goal is to ensure that each back-end in MDBS supports concurrent

request execution for the better resource utilization and system response time.

We first argue that such concurrent request execution is beneficial for MDBS.

Next, we determine the necessary and sufficient conditions for a consistent

MDBS database that utilizes multiple back-ends. As a result, we develop the

very important notion of monolithic consistency. A new algorithm for ensuring

monolithic consistency is then described. Our algorithm is unique in a number

of ways. First, it advocates the use of four lock modes, instead of the tra-

ditional two lock modes. By separating the insert and delete locks from the

update locks, we achieve a greater degree of concurrency. Another contribu-

tion is the identification of permutable and compatible requests for a high-

level query language such as MDBS'DML. At a practical level, a method for en-

forcing locking is proposed when a predicate-based query language is utilized.

Unlike [Eswa76] which uses predicate locking, our scheme uses cluster locking

and is simpler. Unlike [Jord8l], our scheme allows predicate-based updates. Un-

like both [Eswa76] and [Jord8l], our scheme is deadlock-free. Hence, it cannot

suffer from the so-called starvation problem where transactions are rolled back

infinitely and are not guaranteed to complete. Thus we have achieved the sixth

goal of MDBS.

Our eighth goal is to ensure that each back-end participates equally in

the execution of a request. This is achieved by partitioning the database into

equivalence classes which are termed clusters. Every record in the database

belongs to one and only one cluster. In order to form clusters, the database-

creator specifies descriptors. By proper use of descriptors, the clusters are

I formed in such a way that if a user needs to access a record belonging to a

cluster, the user is most likely to have the need to access all the other re-

cords belonging to that cluster. Thus, clusters serve as the basic units of

access in MDBS. In other words, every user request requires the retrieval of

one or more clusters. By storing the clusters in such a way that each cluster

is evenly distributed among the back-ends, we may ensure that every user re-

quest will require the retrieval of the same amount of data from all the back-

ends. Thus, the record clustering and cluster placement algorithms ensure that

I

96 -

each back-end does an equal share of data retrieval for a request. The direc-

tory management, access control and concurrency control algorithms are also

designed so that each back-end performs an equal share of the work. Thus, we

have achieved our eighth goal in MDBS.

Finally, for our ninth goal, we resolve to find a canonical data model

into which prevailing data models such as the relational, network and hierar-

chical data models can be translated in a straightforward manner. In our quest

for a canonical data model, we evaluated a number of data models on the basis

of three criteria - the translation criterion, the partition criterion and the

language criterion. We were able to show that the attribute-based model was

the only one that satisfied all three criteria. Accordingly, w choose to Im-

plement the attribute-based model directly, and the other data models by trans-

lation, in MDBS. We also present a simple data manipulation language DML based

on this data model. Thus, we have achieved our ninth and final goal for MDBS.

In this way, every one of the nine design goals set for MDBS is achieved.

We believe that the resulting architecture comes close to achieving the ideal

goal of having the response time be proportional inversely to the number of

back-ends. In order to test our conjecture, a complete simulation model of

MDBS is designed on a DEC System 20 using Simula. Several simulation experi-

ments are run on this model.

The results of the simulation experiments prove to be very satisfactory.

It is seen that the MDBS response time is ideal or better under typically ex-

pected conditions when the number of tracks to be accessed and processed in

order to satisfy a user request is large. The reason for the MDBS response

time being better than ideal in some cases is closely related to the utilization

of the disks which store the database. When the number of back-ends in MDBS

is increased, not only is the number of tracks to be accessed at each back-end

decreased, so is the time to access each track. This explains the reason for

the better-than-expected decrease in the response time.

The results of the simulation experiments also show that the MDBS response

time is not ideal when the number of tracks to be accessed and processed is

small. However, the deviation from the ideal response time is very slight and

is never more than 20%. The reason for the less-than-ideal performance is due

to the controller limitation problem and the problem of control message traffic

which cannot be entirely eliminated but can only be alleviated. More specifi-

cally, there are four tasks which are to be executed in MDBS where the execution

-97-

I
time of these tasks is independent of the number of back-ends in MDBS.

First, there is the parsing task performed in the controller. That is,

the controller has to spend a certain amount of time performing the parsing

of a user request and this time is independent of the number of back-ends in

MDBS. Second, there is the broadcasting task which is also performed by the

controller and requires an amount of time independent of the number of back-

ends in MDBS. For this task, the controller broadcasts a request to all the

back-ends. Third, there is the outputting task. That is, the controller has

to spend a certain amount of time, once again independent of the number of

back-ends, in outputting the results of a request to the user that issued the

request. The final task is the address generation task which is performed at

each back-end. Under ideal conditions, a back-end must perform no address gen-

eration if none of the clusters to be retrieved is stored at that back-end.

This is not achieved in our system. Thus, even when a back-end does not con-

tain any of the required clusters, the back-end must still do address genera-

tion in order to discover that it does not contain any of the required clus-

ters for a request. However, the execution of this task is carefully designed

so that each back-end performs less work when the number of back-ends is in-

creased.

Our simulation indicates that due to the fixed overhead of these four

tasks the ideal goal set for MDBS is not being achieved when the number of

tracks to be accessed and processed is very small. Nevertheless, we do not

believe that the latter three tasks may be performed in any different way to

improve the performance of MDBS. In other words, the latter three tasks are

inherent to multiple back-end systems and are not a defect of MDBS. However,

the performance of the first task may be improved, if we can come up with a

parallel algorithm for parsing a user request. However, unless the user re-

quest is complex, the need for a parallel parsing algorithm for performing en-

hancement will be unnecessary. On the other hand, for requests involving large

amounts of data, the fixed overhead incurred from the aforementioned tasks be-

comes negligible.

In conclusion, we believe that this dissertation has met its objectives

in the design and analysis of a multiple back-end database management system

for capacity growth, performance improvement and functionality enhancement.

I

II

- 95 -

R BFFRENCES

[Adabyy] ADABAS Reference Manual, Software AC, Reston, Virginia.

[Astr75] Astrahan, M.M., and Chamberlin, D.D., "Implementation of a Structured

English Query Language," CACM, Vol. 18, No. 10, October 1975,
pT. 580-587

[Astr76] Astrahan, M.M., et. al., "System R: Relational Approach to Database
Management," ACM Transactions on Database Systems, Vol. 1, No. 3,

September 1976, pp. 189-222.

[Auer80] Auer, H., "RDBM - A Relational Data Base Machine," Technical Report

No. 8005, University of Braunschweig, June 1980.

[Babb79] Babb, E., "Implementing a Relational Database by Means of Specialized

Hardware," ACM Transactions on Database Systems, Vol. 4, No. 1,
March 1979, pp. 1-29.

[Bane77] Banerjee, J., Hsiao, D.K. and Kerr, D.S., "DBC Software Requirements
for Supporting Network Databases," Technical Report, OSU-CTSRC-TR-77-4,

The Ohio State University, Columbus, Ohio, June 1977.

[Bane78] Banerjee, J. and Hslao, D. K., "Concepts ana Capabilities of a Databa'e

Computer," ACM Transactions on Database Systems, Vol. 3, No. 4,
December 1978, pp. 347-384. Also available in Baum, R.I., 1liao, D.K.
and Kannan, K., "The Architecture of a Database Computer --- Part I:

Concepts and Capabilities," Technical Report OSU-CISRC-TR-76-1, The

Ohio State University, Columbus, Ohio, September 1976.

[Bane79] Banerjee, J., Hsiao, D.K. and Kannan, K., "DBC - A Database Computer
for Very Large Databases," IEEE Transactions on Computers, Vol. C-28,
No. 6, June 1979, pp. 414-429.

[Bane8O] Banerjee, J., Hsiao, D.K. and Ng, F., "Database Transformation, Query
Translation and Performance Analysis of a Database Computer in
Supporting Hierarchical Database Management," IEEE Transactions on
Software Engineering, March 1980: Also available in Hsiao, D.K.,

Kerr, D.S. and Ng, F.K., "DBC Software Requirements for Supporting
Hierarchical Databases," Technical Report OSU-CISRC-TR-77-1, The Ohio

State University, Columbus, Ohio, April 1977.

[Bard8l] Bard, Y., "A Model of Shared DASD and Multipathing," CACM, Vol. 23,

No. 10, October 1980, pp. 564-572.

[Baye76] Bayer, R., and Metzger, J.K., "On the Encipherment of Search Trees
and Random Access Files," ACM Transactions on Database Systems, Vol. 1,
No. 1, March 1976, pp. 37-52.

[Baye8O] Bayer, R., et. al.,"Parallelism and Recovery in Database Systems,"

ACM Transactions on Database Systems, Vol. 5, No. 2, June 1980.

[Bent75] Bentley, J.L., "Multidimensional Binary Search Trees Used for Asso-

ciative Searching," CACM, September 1975, Vol. 18, No. 9, pp. 509-517.

[Bora80] Boral, H., et. al,,"Parallel Algorithms for the Execution of Relational

Database Operations," Computer Sciences Technical Report No. 402,
University of Wisconsin-Madison, October 1980.

[Bora81] Boral, H. and DeWitt, D.J., "Processor Allocation Strategies for Multi-

processor Database Machines," ACM Transactions on Dntabase Systems,

Vol. 6, No. 2, June 1981, pp. 227-265.
-t

-- .-- -

i --q99

I [Cana74] Canaday, R.H., et al, "A Back-End Computer for Data Base Management,"
CACM, Vol. 17, No. 10, October 1974, op. 575-582.

[Card75] Cardenas, A.F., "Analysis and Performance of Inverted Data Base
Structures," CACM, Vol. 18, No. 5, May 1975,
pp. 253-263.

[Cham74] Chamberlin, D.D. and Boyce, R.F., "A Duadlock-Free Scheme for ReSOUrce
Locking in a Database Environment," IFIP, August 1974, pp. 340-343.

[Cham75] Chamberlin, D.D., Gray, J.J. and Traiger, I.L., "Views, Authorization
and Locking in a Relational Data Base System," Proceedings of the
National Computer Conference, 1975, pp. 425-430.

[Chan8Oaj Chang, J.M. and Fu, K.S., "A Dynamic Clustering Technique for Physical

Database Design," Proceedings of the ACM SIGMOD Conference on
Management of Data, Santa Monica, California, May 14-16, 1980.

[Chan80b] Chang, C.C., Lee, R.C.T. and Du, H.C., "Some Properties of Cartesian
Product Files," Proceedings of the ACM SIGMOD Conference on Management
of Data, Santa Monica, California, May 14-16, 1980.

[Chu 78] Chu, W.W., Lee, D. and Iffla, B., "A Distributed Processing System

for Naval Data Communication Networks," AFIPS Conference Proceedings,
Vol. 47, 1978, pp. 783-793.

I [Chu 80] Chu, W.W., et. al.,"Task Allocation in Distributed Data Processing,"
Comyuter Magazine, Vol. 13, No. 11, November 1980, pp. 57-69.

[Come79] Comer, D., "The Ubiquitous B-Tree," ACM Computing Surveys, Vol. 11,
No. 2, June 1979.

[Cope73] Copeland, C.P., Lipovski, G.J. and Su, S.Y.W., "The Architecture
of CASSM: A Cellular System for Non-Numeric Processing," Proceedings
of the First Annual Symposium on Computer Architecture, December 1973,
pp. 121-128.

[Cosm75] Cosmetalos, C.P., "Approximate Explicit Formula for the Average
Queueing Time in the Processes M/D/r and D/M/r," Information, Vol. 11,
October 1975.

[Datayy] Data Management System (DMS 1100), Amercian National Standard COBOL.
Data Manipulation Language, Programmer Reference UP-7908, Sperry
Univac Computer Systems, St. Paul, Minn.

[Date75] Date, C.J., "An Introduction to Data Base Systems," Addison-Wesley,

Reading, Mass., 1975.

[Denn78] Denning, P.J. and Buzen, J.P., "The Operational Analysis of Queueing
Network Models," Computing Surveys, Vol. 10, No. 3, September 1978,
pp. 225-261.

[Dewi78] DeWitt, D.J., "DIRECT - A Multiprocessor Organization for Supporting
Relational Data Base Management Systems," Proceedings of the Fifth

Annual Symposium on Computer Architecture, 1978.

[Dewi8O] DeWitt, D.J. and Wilkinson, K.K., "Database Concurrency Control in
Local Broadcast Networks," Computer Sciences Technical Report 396,
University of Wisconsin-Madison, August 1980.

[Down77] Downs, D. and Popek, G.J., "A Kernel Design for a Secure Data Base
Management System," Proceedings of the Conference on Very Large
Databases, Tokyo, Japan, October 6-8, 1977, pp. 507-514.

-100- I

[Epst78] Epstein, R., Stonebraker, M. and Wong, E., "Distributed Query Pro- I
cessing in a Relational Data Base System," Memorandum No. UCB/ERL
M78/18, Electronics Research Laboratory, University of California,
Berkeley, April 1978.

[Epst80] Epstein, R. and Hawthorn, P., "Design Decisions for the Intelligent
Database Machine," Proceedings of the National Computer Conference,
AFIPS, Vol. 49, 1980, pp. 237-241.

[Eswa76] Eswaran, K.P., et.al.,"The Notions of Consistency and Predicate Locks
in a Database System," CACM, Vol. 19, No. 11, November 1976, pp. 624-
633. I

[Fern75] Fernandez, E.B.,et. a]., "An Authorization Model for a Shared Data
Base," Proceedings of the ACM-SIGMOD Conference on Management of Data,
San Jose, California, pp. 23-31, May 1975.

[Fran74] Franklin, M.A. and Sen, A., "An Analytic Response Time Model for Single
and Dual-Density Disk Systems," IEEE Transactions on Computers, j
Vol. C-23, No. 12, December 1974.

[Fran77] Franta, W.R., "The Process View of Simulation," Computer Science
Library, North Holland, 1977.

[Gard77] Cardarin, G. and Lebeux, P., "Scheduling Algorithms for Avoiding
Inconsistency in Large Databases," Third International Conference on
VLDB, Japan, October, 1977.

[Good80] Goodman, J.R. and Despain, A.M., "A Study of the Interconnection of
Multiple Processors in a Data Base Environment," International
Conference on Parallel Processing, 1980, pp. 269-278.

[Gotl73] Goelieb, C.C. and Macewen, G.H., "Performance of Movable-Head Disk
Storage Devices," JACM, Vol. 20, No. 4, October 1973, pp. 604-623. I

[Gray78] Gray, J., "Notes on Data Base Operating Systems," Operating Systems,
Lecture Notes in Computer Science, Vol. 60, Springer-Verlag, 1978.

[Grif76] Criffiths, P.P. and Wade, B.W., "An Authorization Mechanism for a I
Relational Database System," ACM Transactions on Database Systems,
Vol. 1, No. 3, September 1976, pp. 242-255.

[Hawt79] Hawthorn, P. and Stonebraker, M., "Performance Analysis of a Relational I
Database Management System," Proceedings of the ACM SIGMOD Conference
on Management of Data, Boston, May 30- June 1, 1979.

[Hawt80] Hawthorn, P. and DeWitt, D.J., "Performance Analysis of Alternative I
Database Machine Architectures," Computer Sciences Technical Report
No. 383, University of Wisconsin-Madison, March 1980.

[Hawt8l] Hawthorn, P., "The Effect of Target Applications on the Design of
Database Machines," Proceedings of the ACM SIGMOD Conference on
Mangement of Data, April 29- May 1, 1981, pp. 188-197, Ann Arbor,
Michigan.

(Hsia70] Hsiao, D.K. and Harary, F.A., "A Formal System for Information Retrieval
from Files," CACH, Vol. 13, No. 2, February 1970,

pp. 67-73.

[Hsia79a] Hsiao, D.K., Kerr, D.S. and Madnick, S.E., "Computer Security, Problems
and Solutions", Academic Press, 1979. 1

I

S- 101 -

I [Hsia79b] Hsiao, D.K., Kerr, D.S. and Nee, C.J., "Database Access Control in
the Presence of Context Dependent Protection Requirements," IEEE
Transactions on Software Engineering, Vol. SE-5, No. 4, July 1979.

[Hsia8O] Hsiao, D.K., "Design Issues of High-Level Language Database Computers,"
Proceedings of the International Workshop on High-Level Language
Computer Architecture, May 26-28, 1980, pp. 92-98, Fort Lauderdale.

[Hsia8l] Hsiao, D.K. and Ozsu, T.M., "A Survey of Concurrency Control Mechanisms-
for Centralized and Distributed Databases," Technical Report, OSU-CISRC-

I TR-81-1, The Ohio State University, Columbus, Ohio, February 1981.

[Idmsyy] IDMS, Concepts and Facilities, Cullinane Corporation, Wellesley, Mass.

[Tenn77] Jenny, C.J., "Process Partitioning in Distributed Systems," Digest

of Papers NTC 1977, 1977.

[Jord8l] Jordan, J.J., Banerjee, J. and Batman, R., "Precision Locks," Proceedings
of the ACM SIGMOD Conference on Management of Data, April 29-May 1,
1981, pp. 143-147.

[Kann77a] Kannan, K., "The Design and Performance of a Database Computer," Ph.D.IDissertation, Ohio State University, 1977.
[Kann77b] Kannan, K., Hsiao, D.K. and Kerr, D.S., "A Microprogrammed Keyword

Transformation Unit for a Database Computer," Proceedings of the Tenth
Annual Workshop on Microprogramming, October 1977, Niagara Falls,
New York, pp. 71-79.

[Kann78] Kannan, K., "The Design of a Mass Memory for a Database Computer,"
*Proceedings of the Fifth Annual Symposium on Computer Architecture,

April 1978, Palo Alto, California, pp. 44-50.

[Katz80] Katz, R.H., "Database Design and Translation for Multiple Data Models,"
Ph.D. Dissertation, University of California, Berkeley, 1980.

[Klei75] Kleinrock, L., "Queueing Systems," Vol. I and 1I, John Wiley, 1975.

[Knut75] Knuth, D., "The Art of Computer Programming," Vol. III, Addison-Wesley,
Reading, Mass., 1975, pp. 475-476.

[Litw78] Litwin, W., "Virtual Hashing: A Dynamically Changing Hashing," Fourth
International Conference on VLDB, Berlin, September 1978.

[Liu 75] Liu, M.T. and Reames, C.C., "A Loop Network for the Simultaneous
Transmission of Variable Length Messages," Proceedings of the Second
Annual Conference on Computer Architecture, January 1975, pp. 7-12.

[Lowe76] Lowenthal, E.I., "The Backend Computer, Part I and Part II," Auerbach
(Data Management) Series, 24-01-04 and 24-01-05, 1976.

[Mary76] Maryanski, F.J., Fisher, P.S. and Wallentine, V.E., "A User-Transparent
Mechanism for the Distribution of a CODASYL Data Base Management System.
Technical Report, TR CS 76-22, Kansas State University, December 1976.

[Mary77I Maryanski, F.J., "Performance of Multi-processor Backend Database
Systems," Conference on Information Sciences and Systems, August 1977,
pp. 437-441.

[Mary8O] Maryanski, F.J., "Backend Database Systems," Computing Surveys, Vol. 12,

No. 1, March 1980, pp. 3-25.

I
!----

-102 -

[Metc76] Metcalfe, R.M. and Boggs, D.R., "Ethernet: Distributed Packet
Switching for Local Computer Networks," CACM, Vol. 19, pp. 395-404,
July 1976.

[McCa751 McCauley, E.J., "A Model for Data Secure Systems," Ph.D. Dissertation,
Ohio State University, Columbus, Ohio, 1975.

[Meno8O] Menon, M.J. and Hsiao, D.K., "The Impact of Auxilliary Information
and Update Operations on Database Computer Architecture," International
Congress on Applied Systems Research and Cybernetics, December 12-16,
1980.

[Miss8O] Missikoff, M. and Terranova, M., "An Overview of the Project DBMAC
for a Relational Database Machine," Unpublished technical report,
IASI-CNR, personal communication.

[MohaSl] Mohan, C., Fussell, D. and Silberschatz, A., "Concurrency, Compati-
bility, and Commutativity in non-two-phase Locking Protocols,"
Unpublished, Department of Computer Sciences, University of Texas,
Austin.

[Reis79] Reiser, M., "Mean Value Analysis of Queueing Networks, A New Look
at an Old Problem," Performance of Computer Systems, North-Holland,
1979.

[Rive76] Rivest, R.L., "Partial-Match Retrieval Algorithms," SIAM Journal of
Computing, Vol. 5, No. 1, March 1976, pp. 19-50.

[Rood79] Roode, J.D., "Multiclass Operational Analysis of Queueing Networks,"
Performance of Computer Systems, North-Holland, 1979.

[Rose77a] Rosenthal, R.S., "An Evaluation of Data Base Management Machines," Annual
Computer Related Information System Symoosium, U.S. Air Force Academy, 1977.

[Rose77b] Rosenthal, R.S., "The Data Management Machine, a Classification,"
Workshop on Computer Architecture for Non-Numeric Processing, May 1977,
pp. 35-39.

[Roth74] Rothnie, J.R. and Lozano, T., "Attribute Based File Organization in
a Paged Memory Environment," CACM, Vol. 17, No. 2, February 1974,
pp. 63-69.

[Roth80] Rothnie, J.R., et al, "Introduction to a System for Distributed Databases
(SDD-l)," ACM Transactions on Database Systems, Vol. 5, No. 1, March
1980, pp. 1-17.

[Saat6l] Saaty, L., "Elements of Queueing Theory with Applications," McGraw-Hill,
New York, 1961.

[Sama8O] Samari, N.K. and Schneider, M.G., "A Queueing Theory Based Analytical
Model of a Distributed Computer Network," IEEE Transactions on Computers,
Vol. C-29, No. 11, Nov. 1980.

[Sava76] Savage, J.E., "The Complexity of Computing," John Wiley, New York,
1976.

[Schn73] Schneiderman, B., "Optimum Database Reorganization Points," CACM,
Vol. 16, No. 6, June 1973, pp. 362-365.

[Schu79] Schuster, S.A., Nguyen, H.G., Ozkarahan, E.A. and Smith, K.C.,
"RAP.2 - An Associative Processor for Databases and its Applications,"
IEEE Transactions on Computers, Vol. C-28, No. 6, June 1979, pp. 446-458.

.r.

-103-

l ISong8O] Song, S.W., "A Highly Concurrent Tree Machine for Database Applica-
tion," International Conference on Parallel Processing, 1980, pp. 259-
268.

(Stea76] Stearns, R.E., Lewis, P.M. IT and Rosenkrantz, D.J., "Concurrency

Control for Database Systems," Proceedings 17th IEEE Symposium on
Foundations of Computer Science, October 1976, pp..19-32.

[Ston74] Stonebraker, M.R. and Wong, E., "Access Control in a Relational Data
Base Management System by Query Modification," Proceedings of ACM

l Annual Conference, San Diego, California, November 1974, pp. 180-187.

[Ston76a] Stonebraker, M. and Neuhold, E., "A Distributed Data Base Version of

INGRES," Proceedings of the Second Berkeley Workshop on DistributedJ Data Bases and Computer Networks, Berkeley, California, May 1976.

[Ston76b] Stonebraker, M. and Rubinstein, P., "The INGRES Protection System,"

ACM Annual Conference, 1976, pp. 80-84

[Ston78] Stonebraker, M., "A Distributed Data Base Machine," Memorandum

No. UCB/ERL M78/23, Electronics Research Laboratory, University of
California, Berkeley, May 1978.

[Ston79] Stonebraker, M., "Muffin: A Distributed Data Base Machine," First
International Conference on Distributed Computing Systems, 1979,

pp. 459-469.

(Tane8l] Tanenbaum, A.S., "Computer Networks," Prentice-Hall Inc., 1981.

[Systyyj SYSTEM 2000 Reference Manual, MRI Systems Corporation, Austin, Texas.

I [Thom79] Thomas, R.H., "A Majority Consensus Approach to Concurrency Control
for Multiple Copy Databases," ACM Transactions on Database Systems,
Vol. 4, No. 2, June 1979.

[Totayy] TOTAL Reference Manual, Cincom Systems Corporation, Cincinnati, Ohio.

[Wah 801 Wah, B.W. and Yao, B.S., "DIALOG - A Distributed Processor Organization

for Database Machine," Proceedings of the National Computer Conference,

1980, pp. 243-253.

[Wong7l] Wong, E. and Chiang, T.C., "Canonical Structure in Attribute Based
File Organization," CACM, Vol. 14, No. 9, September 1971, pp. 593-597.

I
I
I
I
I

-104-

APPENI)IX G: DETERMINTNG CLUSTERS CORRESP0NDNG TO AN ARBITRARY QUERY

In this appendix, we will describe the algorithm for determining the set

of clusters corresponding to an arbitrary query. This algorithm employs the

other algorithm described in Chapter 4 for determining the set of clusters

corresponding to a query in disjunctive normal form. For simplicity, we will

refer to the algorithm for determining the set of clusters corresponding to

an arbitrary query as Algorithm Query. Similarly, we will refer to the algo-

rithm for determining the set of clusters corresponding to a query in dis-

junctive normal form as Algorithm Disjunct. Algorithm Query takes an arbitrary

query and generates the corresponding set of clusters for the query as output.

Algorithm Disjunct takes a query in disjunctive normal form as input and gener-

ates the corresponding set of clusters for the query as output. Thus, both al-

gorithms will have two arguments. The first argument is the input query. The

second argument is the output set of clusters.

Algorithm Query
/*Q is the input query*/

/*D is the set of clusters output for Q*/
Read next character X from Q;

Q'=unread portion of Q;

If X= '(' then

begin
Call Query (Q',Dl);
Read next character of Q;

end

else

Read the next predicate P of Q;
Call Disjunct(P,Dl);

end

again:
Read next character X from Q;
Q'= remaining portion of Q until first unread 'v' or 'A';
If X= 'V' then

begin
Call Ouery(Q',D2);

D=Dl U D2.
end

else if X = 'A' then

begin
Call Query(Q',D2);
D-DI n D2;

end
else stop;

Go to again;

End Ouery

-105 -

APPENDIX H: A DESCRIPTION OF THE SIMULATION MODEL

l Our simulation model of MDBS follows the so-called scenario approach
[Fran77] to simulation. Thus, MDBS is simulated as a number of scenarios or

Locesses. Consider an MDBS system with n back-ends and m disk drives. Then,
MDBS is simulated by (n+m+3) processes. These are the processes for the n
back-ends, the m disk drives, the controller, the broadcast bus and the VAX

Unibus. Each process in the simulation model is associated with a queue. The
queue associated with a back-end is referred to as a back-end queue; the queue
associated with a disk drive is referred to as a disk drive queue; the queue

associated with the controller is referred to as the controller queue; the
queue associated with the broadcast bus is referred to as the broadcast bus
queue and the queue associated with the VAX Unibus is referred to as the VAX

Unibus queue.

Each of the above queues consists of zero or more elements. An element
in one of these queues may be of one of several types. For instance, the con-

troller queue contains three types of elements. First, some elements are re-
quests which have to be parsed, processed, and so on. In the simulation model,
these elements are termed of type 1. Second, in the controller queue some ele-
ments are responses received from the back-ends. In our model, these elements
are of type 6. Finally, the queue contains type-4 elements. These are mes-
sages sent from the back-ends to the controller to indicate the cluster number

I of a record for insertion.

A back-end queue contains three types of elements. First, it contains

requests on which directory processing has to be performed by the back-end.
These are type-2 elements. After a back-end performs directory processing on
a request, it broadcasts the corresponding descriptors to all the remaining back-
ends. Thus, it contains descriptors which have been broadcasted from other back-
ends after directory processing. The corresponding descriptors are stored as

type-5 elements in the back-end queues. Third, a back-end queue will contain
elements of type 3 which are messages broacasted by the controller after con-
sultation of the cluster-id-to-next-back-end-table (CINBT) for an insert re-

quest.

A disk drive queue consists only of a single type of element. These ele-

ments are I/O requests generated by the back-end to which the disk drive is
attached.

The broadcast bus queue consists of elements of five types. First, it con-
sists of requests which are initially broadcasted from the controller to the

back-ends via the broadcast bus. These are elements of type 2. Second, it con-
tains type-3 elements consisting of the messages from the controller to the back-
ends after consultation of the CTNBT for an insert request. Third, it contains
type-5 elements made of the corresponding descriptors for a request which are

broadcasted from a back-end to all other (n-l) back-ends. Fourth, it contains
type-6 elements, i.e., the responses sent from the back-ends to the controller.

* Finally, it contains type-4 elements consisting of the messages from the back-
ends to the controller indicating the cluster for insertion.

The VAX Unibus queue contains elements of six different types. It contains

i elements of types 2, 3, 4 and 6 as described above for the broadcast bus queue.
In addition, it consists of type-i elements made of requests initially submitted
to MDBS. It also consists of type-7 elements, i.e., the outputs of MDBS.I

I
-- I----- S !.

- 106 -

A DESCRIPTION OF PROCESSES

We are now ready to describe the (n+m+3) processes which cumulatively

characterize the simulation model of MDBS. Since the n processes which model
the n different back-ends are identical, and since the m processes which model
the m different disk drives are identical, we only need to describe five pro-
cesses. These five processes will be described below. These processes will
utilize the various queues described in the previous section.

Basically, the following is done in each process. The next element from

the queue associated with the process is examined. The kind of service to be
performed on that element will depend on the type of the element. Having

determined the type of the element, the appropriate service is performed for

that element by advancing the simulation clock for the time needed to perform
(i.e., delaying for time to perform, in simulation terminology) that service.
The service may also include placing the element in another queue. After per-

forming the appropriate service, the element is removed from this queue and
the next element in this queue is examined. The above procedure is repeated
until the simulation termination criterion is met. In our model, the termi-
nation criterion is met when the simulation clock has advanced to a very large
value. This completes the basic description of each process. What varies from

process to process is the kind of service which needs to be performed on the
elements in the appropriate queues associated with these processes. Let us now

describe the kinds of services which need to be performed for each of the pro-

cesses, in turn.

A. The Back-end Process

Step 1: Pick the next element from the back-end queue. If the queue is empty,
then go to step 11.

Step 2: Examine the type of the element. if element is of type 2, then go to
step 3 and perform directory processing. If element is of type 5,
then go to step 4 and accept corresponding descriptors. If element
is of type 3, then go to step 10 and perform record insertion.

Step 3: Delay for time to perform descriptor processing. Change the type of
the element to 5 and insert it into the broadcast bus queue. Go to
step 1.

Step 4: Accept corresponding descriptors. Check if the corresponding descrip-
tors for this request have been received from all the other (n-l) back-
ends. If the request is an insert request, then delay for time to
perform the first step of address generation. Generate an element of
type 4 to represent a message from the back-end to the controller which
indicates the cluster number of a record for insertion and go to step

1. If the request is a non-insert request, then delay for time to
perform the three steps of address generation. Access the tracks con-
taining the records of the permitted set of clusters by placing the
i/o requests into disk drive queues. Wait until a back-end indicates

that a track of records has been accessed and placed in the main me-
mory of the back-end. Then, process each such accessed record as in
steps 5 through 9.

Step 5: Check each accessed record against the user query. Delay for time to

check a record against a single predicate multiplied by the number of
predicates in the user query.

Step 6: If the request is a retrieve request, then go to step 7. If the re-

quest is an update request, go to Step 8. If the request is a delete

request, go to step 9.

K'

-107-

Step 7: If the record satisfies the user query, place it In a main memory
buffer for output to the controller. Go to step 5 if there are more
records to be retrieved. Else, return the records in the bufter to
the controller and go to step 1.

Step 8: If the record satisfies the user query, update the record and place
it in a main memory buffer for writing back to a disk drive. If the
main memory buffer is full, initiate an i/o request to write the con-
tents of the buffer to the secondary store. Go to step 5 if there are
more records to be updated. Else, send an update-completion message
to the controller and go to step 1.

Step 9: If the record satisfies the user query, mark the record with deletion
tag and place it in a main memory buffer for writing back to a disk
drive. If the main memory buffer is full, initiate an i/o request
to write the contents of the buffer to the secondary store. Co to
step 5 if there are more records to be deleted. Else, send a delete-
completion message to the controller and go to step 1.

Step 10: Delay for the time to perform the second and third steps of address
generation. Then, generate an i/o request to the disk drive selected
for inserting the record. On receipt of message from disk drive in-
dicating successful completion of insertion, send an insert-completion

message to the controller and go to step 1.
Step 11: Wait for next element to arrive to the back-end queue. When element

arrives, go to step 1.

B. The Disk Drive Process

Step 1: Pick the next element from the controller queue. If queue is empty,
go to step 5.

Step 2: Examine the track number and cylinder number to which the head must
be moved to complete the i/o request represented by the element. De-
lay for time to move the head to the appropriate track.

Step 3: Wait until back-end unibus becomes free.

Step 4: Delay for track-rotation time. Go to step 1.
Step 5: Wait for next element to arrive to the disk drive queue. When element

arrives, go to step 1.

C. The Controller Process

Step 1: Pick the next element from the controller queue. If queue is empty,
go to step 6.

Step 2: Examine the type of the element. If the element is of type 1, then go
to step 3. If the element is of type 4, then go to step 4. If the
element is of type 6, then go to step 5.

Step 3: Delay for time to parse the request and to broadcast it to all the
back-ends. Place a type-2 element in the VAX Unibus queue for eventual
transmission to the n back-ends. Go to step 1.

Step 4: Check if (n-l) such elements have already been processed. If not, then
go to step 1. Else, delay for time to search CINBT. Generate a type-3
element to represent a message to be sent to the back-end chosen for
record insertion. Place this element in the VAX Unibus queue. Go to
step 1.

Step 5: Check if (n-l) such elements have already been received. If not, then
go to step 1. Else, generate a type-7 element to represent the re-
sponse to be returned to the user and place it in the VAX Unibus queue.

Go to step 1.

- 108 -

Step 6: Wait for next element to arrive to the controller queue. When it
arrives, go to step 1.

D. The Broadcast Bus Process

Step 1: Pick the next element from the broadcast bus queue. If queue Is
empty, go to step 7.

Step 2: If the type of the element is 4 or 6, go to step 3. If the type of
the element is 5, go to step 4. If the type of the element is 3, go
to step 5. Else, go to step 6.

Step 3: Place the element in the VAX Unibus queue. Delay for bus transmission
time. Go to step 1.

Step 4: Generate (n-l) elements of type 5 to be stored in the queues of the
(n-l) back-ends other than the one which placed the element in the
broadcast bus queue. Delay for bus transmission time. Go to step 1.

Step 5: Place the element in the queue associated with the back-end chosen for
insertion. Delay for bus transmission time. Go to step 1.

Step 6: Generate n elements of type 2 for the queues of all the n back-ends.
Delay for bus transmission time. Go to step 1.

Step 7: Wait for the next element to arrive to the broadcast bus queue. When
it arrives, go to step 1.

E. The VAX Unibus Process

Step 1: Pick the next element from the VAX Unibus queue. If queue is empty,
go to step 6.

Step 2: If the type of the element is 4, 6 or 1, then go to step 3. If the
type of the element is 7, then go to step 4. Else, go to step 5.

Step 3: Delay for VAX Unibus transmission time. Place the element into the
controller queue. Go to step 1.

Step 4: Delay for VAX Unibus transmission time. Go to step 1.
Step 5: Delay for VAX Unibus transmission time. Place the element into the

broadcast bus queue. Go to step 1.
Step 6: Wait for next element to arrive to the VAX Unibus queue. When it

arrives, go to step 1.

I - 109 -

APPENDIX I: INPUT PARAMETERS OF THE SIMULATION MODEL

The following are the input parameters of the simulation model used in
Chapter 7. Each of these parameters has to be specified for every simulation
run.

I A. Parameters Related to Requests

Percentage of retrieve requests
Percentage of update requests
Percentage of delete requests
Percentage of insert requests

Interarrival time of requests
Number of predicates in the query of a request
Number of clusters to be processed for a request

B. Parameters Related to the Disk Drives

Seek time
Rotation time

jNumber of disk drives per back-end
Number of cylinders per disk drive
Number of tracks per cylinder
Number of bytes per track

C. Parameters Related to the Databases

Number of clusters
Average cluster size

D. Parameters Related to the System

Number of back-ends
Broadcast bus speed
VAX Unibus speed
Time to send a message
Time to parse a request

i Time to check if a record satisfies a predicate

IL

II
Ii

I

DAT

DI

