
II

0 ELE CTED
Journal of Sound and Vibration (1981) 770). 11-1SEP

\ SEP 2 1 91tt
AD A04 390 H
AN APPROXIMATE FORMULA FOR THE FUNDA ENTAL
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A semi-empirical method involving asymptotic expansions is used to obtain an approxi-
mate formula for the fundamental frequency of a uniform rotating beam clamped off the
axis of rotation. Results from the formula are shown to be of the order of 0.1% different
from the exact results for a wide range of rotor speeds and hub radii up to the order of blade
length. Thus, the designer is provided with a rapid, very accurate estimate of the frequency,
without having to interpolate results from a chart or run a digital computer program.

1. INTRODUCTION

The problem of approximating the fundamental frequency of a uniform rotating beam has
application in the design of helicopter rotor blades, wind turbine blades, and flexible
satellite booms. Althopgh the Ritz method [I] can yield quite accurate estimates of the
fundamental frequend5y' ith a moderate number of terms, it is sometimes desirable to
have a fairly accurate formula that can be evaluated by using a pocket calculator rather
than having to interpolate from charts or run a digital computer program. Such an
expression is not trivial to come by, however, since the exact solution to the problem exists
only as an infinite series (2]. Uniform approximations based on a small parameter, such as
17 = El/m122L4, are accurate only when the parameter is quite small and are thus not
general enough for practical use [3]. A useful approach appears to be a semi-empirical
method referred to as a "composite" expansion, as developed by Peters [4] for rotating
beams clamped at the axis of rotation. In Peters' work (4] the expansion was accurate for
all values of il, but did not include variation in'lff-clamping a = R/L with R being the hub
radius. It is the purpose of this paper to extend the results of reference [4] for the
fundamental bending frequency to include variation in the off-clamping parameter.

To proceed with this expansion, one first notes that the ordinary differential equation for
the mode shape of a rotating beam when the stiffness parameter 77 vanishes corresponds
physically to that of a rotating string with its root offset from the axis of rotation. An

l approximate composite expansion solution for the fundamental frequency of the rotating
string can then be used to extend the composite expansion of reference [4] to include the

-L effect of off-clamping.

2. STATEMENT OF THE PROBLEM

J The differential equation for free vibrations in bending of a uniform rotating beam in a
• plane at angle 0 with the rotation axis (sQligure 1) is

iiu"' -[/(1 -X 2 )u7''-a[(I -X)u']'- A.U =0, (1)
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Figure 1. Schematic of rotating beam clamped off the axis of rotation.

where

17=EI/mf2L4, a=R/L, u=/fiL, x=1/L, O x 1,

"'A = Wo2/f 2+ sin2 6 0=0 out-of-plane bending(0= = r/2 in-plane bending .(2

The differential equation is an eigenvalue problem in A for which approximations are
sought as 7t and a are varied. The boundary conditions for a cantilevered root end are

u(O) =0, u'(O) = 0, u"(1) = 0, u"(1) = 0. (3)

One can expand the quantities u and I in power series of the small quantity 17t /2 as in
reference [4] so that u=u0 +ut7 1/2 + . and =/.o+Mt'O /2 + ... The equation
corresponding to the zeroth power of qO is

loUo + {[a (1 -)+(12 )u}=0 (4)

For a = 0 it was shown in reference [4] that only the displacement boundary condition
affects j to order T1. Thus,

uO) = O. (5)

It is assumed that equation (5) holds for the case when a * 0 as well. Equation (4)
represents the differential equation for a rotating string with the root-end offset parameter
a. It is necessary to obtain a general approximation for tto (i.e., a small t7 approximation for
,g) from this equation which will serve as one ingredient in the process of approximating A
for equation (1). Note that an approximation for I with n7 small and large compared to
unity with a = 0 has already been obtained in reference [4]. Here the case for large 17 and
a 0 0 will be examined in a later section.

The exact solution of equation (4) can be expressed in terms of hypergeometric
functions. A result more useful for present purposes can be obtained, however, by looking
at limiting behavior for small and large a, respectively. To this end, it is convenient to
rewrite equation (4) temporarily with A = go and v = u0 :

Av+{[a(1-x)+ (l-x 2 )]v'}'=O, v(0)=O. (6)
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3. ROTATING STRING WITH SMALL OFFSET

For small a the variables A and v can be expanded in powers of a, A Ao+Aia +" • •
and v = vo + vIa + • • •, which yields the following equations that correspond to powers of
a from equation (6):

a: A00 + I[N1 -x2 )] ' = 0, (7a)

a;: A0v + [(1 -x 2)vfl'= -A v0-[(1 -x)v]. (7b)

From reference [4] the solution is, for vo(O) = 0, the odd Legendre polynomials. For the
first mode (n = 1)

Vo=P 2.._(x)=x, Ao=n(2n-1)=1. (8)
"1 To obtain A1, it is observed that vo must be orthogonal to the right-hand side of equation

(7b). Thus,

J {Ajv 0 +[(1 -x)v'}vodx =0, (9)

or

A,=j ( 0-x~v/ dx/vOdx = . (10)

Since an estimate of the fundamental frequency is all that is of interest here, one can take

A=1+ a (l)

as an indication of the behavior of A for equation (6) with a small. It should be noted that
the linear term A I = 2 does not agree with A = 6/7r obtained in reference [3]. The reasons
for this disagreement are not known; however, results from an exact numerical calculation
(see below) seem to indicate that AI = 3 is correct.

4. ROTATING STRING WITH LARGE OFFSET
The solution of equation (6) for large a is similarly obtained with the definition A/a = V

and r = 1/a so that equation (6) becomes

vV +{[(1 - x) + (e/2)(1 -x 2 )]v'' = 0, (12)

and one assumes

/=vO+ E', V=Vo+rVI, vo(0) = v,(0) =0. (13)

The equations for zeroth and first powers of P are

F ) vollv.+[(0 -x)v,')]' = 0, (14a)

IF :(V VI + [(1 - , PL ]' = - VLV0- ![(o -X 2)L'o]'. (14b)

The solution for v,, involves a zeroth order Bessel function

= 1=Jf[2v = xW -1)"v"(l-x)"
, , (n )2 (15)

The boundary condition vo(0) = 0 yields

v,= 1445796491. (16)
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To avoid secular terms, vo must be orthogonal to the right-hand side of equation (14b) so
that

V= (i-X 2)V' 2 dx/j v0 dx = 1.038163742. (17)

Thus for large a

A =av = a(vo+ vIe) = avo+ v, (18)

with vo and v, given in equations (16) and (17), respectively. It is interesting, upon
comparison of equations (11) and (18), to note that the behavior for large and small a is
quite similar. Therefore, a simple exponential patching to produce an accurate approxi-

mation of A for all a will now be constructed.

5. COMPOSITE EXPANSION FOR THE FUNDAMENTAL FREQUENCY

OF A ROTATING STRING

If it is assumed that the behavior of A for all a can be expressed in the form

A = avo+ v, +e-'(a +ba), (19)

then, for small a,

A =avo+v+(1-a + ")(a +ba). (20)

t . For small a, A = Ao+ Aa so that

a =Ao-v 1 , bAI-vo-vi +Ao. (21)

Thus, for small 71, the smallest eigenvalue of equation (4) is approximately

go=vo+ V + g(a), (22)

where

g(a)= e-[Ao - v, + (Ao+ AI - vo- v)a], (23)

TABLE I

j. o versus a

tgo,
expansion from 1A ,
equation (22) exact

0 1 1
1 2.47582 2.46802
2 3.92893 3.91965
3 5.37605 5.36815
4 6.82183 6.81551
5 8.26743 8.26232
6 9.71309 9.70883
7 11.1588 11.1552
8 12.6046 12.6014
9 14.0503 14.0475

10 15.4961 15,4935
11 16.9419 16-9396
12 18'3877 i8.3855
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and the various constants are defined above. The exact value of the frequency parameter
for the first mode is easily obtained (for the purpose of comparison) by the method of
reference [5] in which v is expanded in a simple power series or equivalently, a series of all
Legendre polynomials. The exact values, to six places, are obtained with only a few terms
in the series (ten terms are used to report the results here). It is evident from Table I that
the simple expansion, equation (22), yields results that are quite accurate (within 0.3% for
all a). Thus, equation (22) is suitable for extending the expansion for the fundamental
frequency in reference [4], which applies only to rotating beams clamped at the axis of
rotation (a = 0), to the more general case involving off-clamping (a 0).

6. EXTENSION OF PETERS' FORMULA

In reference (4], Peters obtained a formula for ; when a = 0 that was approximately
valid for all 77. In this section a generalization is obtained that is approximately valid for all

77 and a.
For small 77 the formula will have the form

/ -/= O(a) +/(a)7', (24)

where the expression for g.o(a) is given by equation (22). Results in reference [4] for a = 0
and in reference [6] for a = 0(7' /2) both suggest A (a) = 3/N2. One can therefore assume
that for all a

S= v0a + vj +g(a) + (3/2)71 2 . (25)

The ultimate justification for such an assumption is that it works, although it is definitely a
possible source of error for large a and small 711 2.

Before proceeding further one must obtain a large 77 approximation for M. For large 17
and a = 0(1), let e = 1/7 and y = ,/7. Thus, equation (1) becomes

u"- (e/2)[(1 -x 2)u']'- ae[(1 - x)u']'- yu = 0. (26)

For u = uo+ule + and y= yo+yle + one obtains
0Cus" -YoUO = 0, (27a)

:Uul y =-[12(1-x')u'0]'+Ct[(1-x)uo] +1 VUo. (27b)

The boundary conditions in equation (3) yield the first mode shape for u:

uo = cosh f3ix -cos #Ix - f, (sinh ,6x -sin flix),

yo =/3, 64 = 1.875104069, = 07340955138. (28)

To suppress secular terms, uo must be orthogonal to the right-hand side of equation (27b)
which yields

2 Vi l j(l-x 2 )u, 2 dx +a (0- x)l,2 dx}/jU dx= A+Ba, (29)

where

A=1.193336374 and B=1.570878190. (30)

The integrals in equation (29) are calculated as outlined in the appendix of reference [7].
Therefore, for large 17,

A = B147+A+Ba. (31)



16 D. H. HODGES

Although a = 0(1) was assumed, it is observed from reference [6] that when the frequency
parameter vanishes for large 1 and a (negative), 17 is linear with a. Hence, equation (31)
may be approximately valid for large 27 regardless of the magnitude of a. One can now
assume a composite expansion for all 1 similar to that in reference [4] of the form

= = + oa + r +g(a) + (3/2/27r) 7 tan' lr(a + ba)/(3/27 /2)]. (32)

For small 171/2, equation (32) reduces to

IA = 'oa+v, + g(a)+(3//2)2l12+0(77), (33)

which agrees with equation (25). For large 17, equation (32) becomes

t ,647 + 0a + v +g(a)+ a + ba + 0(1/77), (34)

so that, from equation (31)

A+Ba= 0 a+u1 +g(a)+a+ba, (35)

4or

a =A-P,-g(a), b=B-o. (36)

The final composite expansion is then

A = 17 + Poa + P + g(a)+ (3v /1rr) 7r1/2 tan-{Tr/(3,12711/2E)[A - v, -g(a) + (B - vo)a]},

(37)
or

I =3:+[voa + +(3,/2/ ir)f2 tan' {7rf?/(3V2)[A - v, - g(a) + (B - vo) ]},

(38)

with

P = 12.36236337, v-= 1.445796491, v1 = 1.038163742,

g(a) = e-N[Ao- P, + (Ao - P, + AI - ,,))],

A(= 1, A, = 3/2, A = 1.193336374, B =1.570878190,

y= IA/27= (mL/E)(o2+12 sin 2 t), f2 = 1-1/2 =  1Ff (39)

TABLE 2

Frequency versus angular speed for a = 0

1I/2 Y12

i2 equation (38) exact from [1, 2]

0 3.51602 3"51602
1 3.68163 3.68165
2 4.13710 4'13732
3 4.79644 4"79728
4 5.58316 5"58500
5 644650 6"44954
6 7.35614 7"36037
7 8.29440 8.29964
8 9"25085 9-25684
9 10'2192 10-2257

10 11-1956 11-2023
11 12-1775 12.1843
12 13-1634 13-1702
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The exact solution of equation (1) has been calculated in reference [2] by using the
method of Frobenius. It is far more convenient for present purposes, however, to obtain
the exact solution from the analysis of reference [11 with enough terms in the analysis to
ensure convergence. Note that in the finite element analysis of reference [11 the element
displacement is expanded in a simple power series which is, of course, equivalent to a series
of Legendre polynomials. Convergence to the exact solution will only rapidly occur if,
when N + 1 terms are taken, all terms of degree N or less are included. This explains the
relatively slow convergence in reference [8] where only odd Legendre polynomials were
taken. In reference [1], only a few terms are required to obtain the exact solution to six
places for the first mode with one element. The exact solution for the dimensionless
frequency parameter y is given in Tables 2-5 for dimensionless rotor speed values
1) = 0, 1, . 12 and dimensionless off-clamping parameter values a = 0, 0.1, 1, and 10.

Results from equation (38) are presented in the tables for comparison with the exact

TABLE 3
Frequency versus angular speed for a = 0 1

I, ,

1 equation (38) exact from [ 1]

0 3.51602 3,51602 . ...
1 3.70288 3.70290 Accestion yor
2 4.21208 4.21225 NTS 3
3 4"94054 4"94115 t. .."-
4 5.80129 5.80256 I
5 6.73944 6.74142 U::'i'rn.
6 7.72347 7.72603 Jun, U
7 8.73548 8.73839
8 9"76513 9.76815
9 10"8063 10.8092

10 !1"8552 11.8578 DIatribut.!
11 12.9094 12.9116 A
12 13.9675 13.9692 Ava1't "

)Dirt . , . _

TABLE 4

Frequency versus angular speed for a I'
I,,m

,yl 2 .yl=2.

fl equation (38) exact from [ 1, 2]

0 3.51602 3.51602
1 3.88874 3.88882
2 4.83279 4.83369
3 6.07891 6.08175
4 7.46955 7.47505
5 8.93210 8.94036
6 10.4331 10.4439

7 11.9563 11.9691
8 13-4931 13.5074
9 15.0388 15.0541

10 16-5905 16.6064
11 18.1464 18.1625
12 19.7055 19.7215
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TABLE 5

Frequency versus angular speed for a = 10

2 
I'

i2 equation (38) exact from [ 1

0 3.51602 351602
1 538018 540186
2 8.79660 888430
3 125274 12-6722
4 163558 165410
5 202260 204393
6 241177 243514
7 280220 282709
8 319342 321948
9 358518 361215

10 397731 400503
11 436971 439804
12 476232 479116 #,

solution. The correlation is excellent for a = 0, 01 and 1, the maximum error being of the
order of 01%. For a = 10 the correlation is not as good; the errors reach 11%. Note,
however, that the error decreases as f2 becomes large or tends toward zero. Evidently the
formula is limited to a = 0(1) as assumed in the large 1r expansion, but gives a reasonably
good estimate even for a = 10. For helicopter and wind turbine blades, a is of the order of
0. 1; for gas turbine blades and satellite booms, a may be 1 or larger.

It is evident that equation (38) provides an accurate and rapid estimate of the frequency
of a rotating cantilever without the need for either digital computer programs or inter-
polation of charts. It would be desirable to include tip mass and taper parameters in the
development, but the feasibility of such an extension remains to be seen. The work could
be extended to higher modes, but only if one were willing to work through a great deal of
algebra.
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