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A semi-empirical method involving asymptotic expansions is used to obtain an approxi-
mate formula for the fundamental frequency of a uniform rotating beam clamped off the
axis of rotation. Results from the formula are shown to be of the order of 0-1% different
from the exact results for a wide range of rotor speeds and hub radii up to the order of blade
length. Thus, the designer is provided with a rapid, very accurate estimate of the frequency,
without having to interpolate results from a chart or run a digital computer program.

1. INTRODUCTION

The problem of approximating the fundamental frequency of a uniform rotating beam has
application in the design of helicopter rotor blades, wind turbine blades, and flexible
satellite booms. Althoygh the Ritz method {1] can yield quite accurate estimates of the
fundamental frequenfﬁwith a moderate number of terms, it is sometimes desirable to
have a fairly accurate formula that can be evaluated by using a pocket calculator rather
than having to interpolate from charts or run a digital computer program. Such an
expression is not trivial to come by, however, since the exact solution to the problem exists
only as an mﬁmte series [2]. Uniform approximations based on a small parameter, such as
n = EI/m*L*, are accurate only when fhe parameter is quite small and are thus not
general enough for practical use [3]. A useful approach appears to be a semi-empirical
method referred to as a “‘composite’ expansion, as developed by Peters [4] for rotating
beams clamped at the axis of rotation. In Peters’ work (4] the expansion was accurate for
all values of 7, but did not include variation in®ff-clamping @ = R/L with R being the hub
radius. It is the purpose of this paper to extend the results of reference [4] for the
fundamental bending frequency to include variation in the off-clamping parameter.

To proceed with this expansion, one first notes that the ordinary differential equation for
the mode shape of a rotating beam when the stiffness parameter n vanishes corresponds
physically to that of a rotating string with its root offset from the axis of rotation. An

- approximate composite expansion solution for the fundamental frequency of the rotating
N string can then be used to extend the composite expansion of reference [4] to include the
C ;', effect of off-clamping.
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2. STATEMENT OF THE PROBLEM

The differential equation for free vibrations in bending of a uniform rotating beam in a
plane at angle 8 with the rotation axis (sﬁlgure 1} is

u” =30 ~xw'T-al[(1-x)u'Y - pu =0, (1)
11 . ‘
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Figure 1. Schematic of rotating beam clamped off the axis of rotation.

where
n=ElfmQ°L*, a«=R/L, uwu=a/lL, x=%L, 0<x=<l,

i = w?/ 2P+ sin? 6{ 6=0  out-of-plane bending} 2)

6 = /2 in-plane bending

The differential equation is an eigenvalue problem in u for which approximations are
sought as n and « are varied. The boundary conditions for a cantilevered root end are

u(®)=0, u'(0)=0, u"(1)=0, u"(1)=0. (3)

One can expand the quantities u and u in power series of the small quantity n'/? as in

reference [4] so that u=uo+un'>+ -+ and p =po+puin"’?+ -+, The equation
corresponding to the zeroth power of 7 is

poto+{la(1—x)+ 31— xH)Jup) =0. (4)

For a =0 it was shown in reference [4] that only the displacement boundary condition
affects i to order 5. Thus,

uy(0)=0. ()

It is assumed that equation (5) holds for the case when a #0 as well. Equation (4)
represents the differential equation for a rotating string with the root-end offset parameter
a. Itis necessary to obtain a general approximation for u, (i.e., a small n approximation for
p) from this equation which will serve as one ingredient in the process of approximating u
for equation (1). Note that an approximation for x4 with n small and large compared to
unity with a = 0 has already been obtained in reference [4]. Here the case for large n and
a # 0 will be examined in a later section.

The exact solution of equation (4) can be expressed in terms of hypergeometric
functions. A result more useful for present purposes can be obtained, however, by looking
at limiting behavior for small and large a, respectively. To this end, it is convenient to
rewrite equation (4) temporarily with A = u and v = u:

Av+{{a(l-x)+31-xHW'V=0, v(@)=0. (6)
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3. ROTATING STRING WITH SMALL OFFSET

For small a the variables A and v can be expanded in powers of a, A =Ag+Aja+- - -
and v = v+ v1a + - - -, which yields the following equations that correspond to powers of
a from equation (6):

a: Agbo+ 5[(1 —XZ)L‘(Ir]' =0, (7a)
a't Aoy +3[(1=x)i T = A we—[(1-x)vs]T. (7b)

From reference [4] the solution is, for vo(0) = 0, the odd Legendre polynomials. For the
first mode (n =1)

vo=P2.1(x) =1, Ao=n(2n-1)=1. 8)
To obtain A, it is observed that v, must be orthogonal to the right-hand side of equation
(7b). Thus,

1

J' A0o+[(1 = x)obT}ve dx =0, 9)
0

or

1 1
A1=J‘ (1-x)v8 dx/J- vadx =3. (10)

0 0
Since an estimate of the fundamental frequency is all that is of interest here, one can take
A=1+3a (an

as an indication of the behavior of A for equation (6) with a small. It should be noted that
the linear term A; = 3 does not agree with A, = 6/ obtained in reference [3]. The reasons
for this disagreement are not known; however, results from an exact numerical calculation
(see below) seem to indicate that A, =2 is correct.

4. ROTATING STRING WITH LARGE OFFSET

The solution of equation (6) for large « is similarly obtained with the definition A/a = »
and ¢ = 1/a so that equation (6) becomes

vo +{{[(1 -x)+ (/21— x*)e'Y =0, (12)
and one assumes
v=vo+ew, v=uvgt+ €U, vo(0) = 01(0)=0. (13)
The equations for zeroth and first powers of ¢ are
" vpve+[(1=x)vp] =0, (14a)
elivor +{01 = i) = —vee— U - x)ea]. (14b)

The solution for v, involves a zeroth order Bessel function

T (=1)'va(1-x)"
L‘n=J()[2‘/Vn(1—'X I= Z)—“_(Vn—o'?'_x'_ (15)
n=( .

The boundary condition va(Q) = 0 yields
vo=1-445796491. (16)
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To avoid secular terms, v, must be orthogonal to the right-hand side of equation (14b) so
that
1 1
u,=%j (l—xz)v{)zdx/J v dx = 1:038163742. (17)
0 0

Thus for large «
A=av=alvog+vie)=ave+r,, (18)

with vy and », given in equations (16) and (17), respectively. It is interesting, upon
comparison of equations (11) and (18), to note that the behavior for large and small a is
quite similar. Therefore, a simple exponential patching to produce an accurate approxi-
mation of A for all @ will now be constructed.

5. COMPOSITE EXPANSION FOR THE FUNDAMENTAL FREQUENCY
OF A ROTATING STRING

If it is assumed that the behavior of A for all @ can be expressed in the form
A=avo+vi+e “(a+ba), (19)
then, for small a,
A=avg+tvi+(1—a+ - Ya+ba). (20)
For small a, A = Ao+ Aa so that
a=2>Ag—vi, b=A;~vp—vi+Aq. (21)

Thus, for small n, the smallest eigenvalue of equation (4) is approximately

Mo =avy+ vy +gla), (22)
where
gla)=e "[Ap—vy+ Ao+ A1 ~vo~vi)a], (23)
TaABLE 1
o versus a
Mo,
expansion from Ho,
a equation (22) exact
0 1 1
1 2-47582 2-46802
2 3.92893 391965
3 5:37605 5-36815
4 6-82183 6:81551
5 8:26743 8:26232
6 9-71309 9-70883
7 11-1588 11-1552
8 12-6046 12:6014
9 14:0503 14:0475
10 15-4961 15-4935
11 169419 16-9396
12 18-:3877 18-3855
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and the various constants are defined above. The exact value of the frequency parameter
for the first mode is easily obtained (for the purpose of comparison) by the method of
reference [5] in which v is expanded in a simple power series or equivalently, a series of all
Legendre polynomials. The exact values, to six places, are obtained with only a few terms
in the series (ten terms are used to report the results here). It is evident from Table 1 that
the simple expansion, equation (22), yields results that are quite accurate (within 0-3% for
all a). Thus, equation (22) is suitable for extending the expansion for the fundamental
frequency in reference (4], which applies onfy to rotating beams cfamped at the axis of
rotation (a = 0), to the more general case invoiving off-clamping («a # 0).

6. EXTENSION OF PETERS' FORMULA

In reference (4], Peters obtained a formula for u when a = 0 that was approximately
valid for all . In this section a generalization is obtained that is approximately valid for all
7 and a.

For small 5 the formula will have the form

#=M()(a)+#l(a)771/2, (24)

where the expression for uo(a) is given by equation (22). Results in reference [4]fora =0
and in reference [6] for & = O(n'/?) both suggest u11(a) = 3/v2. One can therefore assume
that for all a

w=voa+v,+gla)+(3/V2)n'"?, (25)

The ultimate justification for such an assumption is that it works, although it is definitely a
possible source of error for large a and small n'/%,

Before proceeding further one must obtain a large n approximation for u. For large n
and @ = O(1), let ¢ = 1/n and y = u/7n. Thus, equation (1) becomes

u" —(e/2)[(1—xu'l —ae[(1—x)u'? —yu = 0. (26)
Foru=up+wue+ ---and y = yp+y,£ + - - - one obtains
e ul! —youg=0, (27a)
el ul —your =01 —xHudY +al(1—x)ud I + yiuo. (27b)
The boundary conditions in equation (3) yield the first mode shape for u:
uo = cosh Bix —cos B1x — & (sinh B,x —sin 8,x),
yo=B1,  B1=1-875104069, £ =0-7340955138. (28)

To suppress secular terms, u, must b<e orthogonal to the right-hand side of equation (27b)
which yields

1 1 1
y,—-—{%J. (l—xz)ufpzdx+aj (1 —x)u{,zdx}/J ul dx = A+ Ba, 29)
0 0 (]

where
A=1-193336374 and B =1-570878190. 30

The integrals in equation (29) are calculated as outlined in the appendix of reference [7].
Therefore, for large n,

u=8in+A+Ba. (31)
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Although a = O(1) was assumed, it is observed from reference [6] that when the frequency
parameter vanishes for large n and « (negative), n is linear with a. Hence, equation (31)
may be approximately valid for large n regardiess of the magnitude of a. One can now
assume a composite expansion for all n similar to that in reference (4] of the form

p=Bin+voa +vi+gla)+(3V2/m)n' tan " [m(a +ba)/(3V21'D)].  (32)

For small n'/2, equation (32) reduces to

= voa + v +gla)+(3/V2)n'* + On), (33)
which agrees with equation (25). For large 7, equation (32) becomes
u=Bin+va+vi+gla)+a+ba+0(1/n), (34)
so that, from equation (31)
A+ Ba =vya +v+gla)+a+ba, (35)
or
a=A-v;~-gla), b=B -y (36)

The final composite expansion is then
= Bin +voa + v +gla)+(3V2/m)n'* tan {7/ (3V20" ) A — v, — gla) + (B~ vo)al},

(37
or
y =B +[voa + 1 +g(a)}2*+(3V2/m) tan ™ {72/ (3V2)[A = v, ~ gla) + (B - vo)a ]},
(38)
with
BY=12:36236337,  vo=1445796491, »,=1-038163742,
gla)=e "[Ao— i+ (Ao~v1+ A1 —vo)al,
Ao=1, A,;=3/2, A=1-193336374, B =1-570878190,
y=u/n=(mL*/El)\w?+Q%sin’0), (=1"2=0VmL*/EL (39)

TABLE 2
Frequency versus angular speed for a =0

1/2 172

Y
i equation (38) exact from [1, 2]
0 3-51602 3-51602
1 3-68163 3-68165
2 4-13710 413732
3 4-79644 4-79728
4 5-58316 5-58500
S 6-44650 6-44954
6 7-35614 7-36037
7 8:29440 8:29964
8 9-25085 9-25684
9 10-2192 10-2257
10 11-1956 112023
11 12-1775 12:1843
12 13-1634 13:1702
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The exact solution of equation (1) has been calculated in reference {2] by using the
method of Frobenius. It is far more convenient for present purposes, however, to obtain
the exact solution from the analysis of reference [1] with enough terms in the analysis to
ensure convergence. Note that in the finite element analysis of reference [1] the element
displacement is expanded in a simple power series which is, of course, equivalent to a series
of Legendre polynomials. Convergence to the exact solution will only rapidly occur if,
when N + 1 terms are taken, all terms of degree N or less are included. This explains the
relatively slow convergence in reference [8] where only odd Legendre polynomials were
taken. In reference [1], only a few terms are required to obtain the exact solution to six
places for the first mode with one element. The exact solution for the dimensioniess
frequency parameter v'/? is given in Tables 2-5 for dimensionless rotor speed values
2=0,1,...,12 and dimensionless off-clamping parameter values « =0, 0-1, 1, and 10.

Resulits from equation (38) are presented in the tables for comparison with the exact

TABLE 3
Frequency versus angular speed for a =0-1

12 12

‘y * ‘y *
I} equation (38) exact from [1]
0 3-51602 3-51602 S )
1 3-70288 3.70290 | Accession Ta
3 4-94054 4-94115 1 o7 TS
4 5-80129 5-80256 | DiT T°R
5 673944 6-74142 | Unenmaon oy
6 7:72347 7-72603 | Justdfictio-
7 8:73548 8:73839 N
8 9-76513 9-76815
9 10-8063 10-8092 , Yo -
10 11-8552 11-8578 ‘Diﬁtr‘ibut u/
1 12:9094 120116 | 4o 00
12 13-9675 13-.9692 | Availari.ico
TABLE 4 J[
Frequency versus angular speed for a = :Iﬂ f”
. v
N equation (38) exact from[l 2]
0 3-51602 3.51602
i 3-88874 3.88882
2 4-83279 4:-83369
3 6:07891 6-08175
4 7-46955 7-47505
5 8:93210 8:94036
6 10:4331 10-4439
7 119563 11-9691
8 13:4931 13.5074
9 15-0388 15-0541
10 165905 16-6064
11 18-1464 18:1625
12 19-7055 19.7215
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TaBLE 5 =
Frequency versus angular speed for a = 10

1/2 12

Y

N equation (38) exact from [1]
4] 3-51602 3-51602

1 5-38018 5-40186

2 8:79660 8-88430

3 12:5274 12-6722

4 16-3558 16-5410

5 202260 20-4393

6 24-1177 24-3514

7 28:0220 28-2709

8 319342 32-1948

9 35-8518 36-1215
10 39.7731 40-0503
11 436971 43-9804
12 47-6232 479116 o

solution. The correlation is excellent for & =0, 0-1 and 1, the maximum error being of the
order of 0:1%. For a =10 the correlation is not as good; the errors reach 1-1%. Note,
however, that the error decreases as (2 becomes large or tends toward zero. Evidently the
formula is limited to @ = O(1) as assumed in the large n expansion, but gives a reasonably
good estimate even for a = 10. For helicopter and wind turbine blades, « is of the order of
0-1; for gas turbine blades and satellite booms, a may be 1 or larger.

It is evident that equation (38) provides an accurate and rapid estimate of the frequency
of a rotating cantilever without the need for either digital computer programs or inter-
polation of charts. It would be desirable to include tip mass and taper parameters in the
development, but the feasibility of such an extension remains to be seen. The work could
be extended to higher modes, but only if one were willing to work through a great deal of
algebra.
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