AD=A104 379 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION. A==ETC F/6 9/2
DISTRIBUTED AND DECENTRALIZED CONTROL IN FULLY DISTRIBUTED PROC==ETC(U}
JUN 81 P H ENSLOWs» T & SAPONAS F30602-78~C=0120

UNCLASSIFIED GIT-ICS=-81/02 RADC-TR-81-127

r

(T T
e
I
I
EEEEEE.
1 I
I
I
I
I
BN
I
I
EEEE .

] RADC-TR-81-127
Final Technical Report
E Q) Junelosl
e
™ |
A
{ O
|~ |
; <X DISTRIBUTED AND DECENTRALIZED
S CONTROL IN FULLY DISTRIBUTED
- PROCESSING SYSTEMS
: Georgia Institute of Technology T '
Philip H. énslw), Jr.) E
Timothy G. Saponas ;

Project Bugineer

JOEN J. MARCINIAK, Col, USAF
Chief, Information Sciences Division

JORN P. HUSS

Acting Chief, Plans Office

e |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dll.‘Enlured)

READ INSTRUCTIONS

) / REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
(B REPOEW-M} 2. GOVY ACCESSION NO.[3. RECIPIENT'S CATALOG NUMBER
k ' | Rapcdirr-81-127 - v N-A4/70%327
L " T4 TITLE (and Subtitie) " |'s. TYPE OF REPORT & PERIOD COVERED
] - ;
| DISTRIBUTED AND DECENTRALIZED CONTROL IN - ll"énjin'f;;hniggls“epg;t '
; ! — ep b
; FULLY DISTRIBUTED PROCESSING SYSTEMS | JS FerromminG oVG. REPORT NuMBER
/| GIT-1CS-81/02 —
7. AUTHOR(s) AN . CONTRACT OR GRANT NUMBER(s)
] Philip H./Enslow, Jr. v
' Timothy G./Saponas . F30602-78-C-0120
9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. 7222'1‘5‘405;#«535?‘3'.42?5553' TASK
Georgia Institute of Technology 310116 ., , ;
School of Information and Computer Science,/ . 0 ’
.] R24401P1
Atlanta GA 30332
1. CONTROLLING OFFICE NAME AND ADDRESS . 12, REPO{!Y DATE
Rome Air Development Center (ISCP) | June 1981
Griffiss AFB NY 13441 '1’-15“"““ OF PAGES
14 MONITORING AGENCY NAME & ADDRESS(If diffarent from Controlling Oflice) 18 SECURITY CLASS fof this report;
Same R UNCLASSIFIED
’ [T5a. DECL ASSIFICATION DOWNGRADGING .
SCHEDULE
N/A ‘
16, DISTRIBUTION STATEMENT (of this Report))
. Approved for public release; distribution unlimited.
{
17 DISTRIBUTION STATEMENT (of the abatract entered in Block 20, i different from Report)
Same
18 SUPPLEMENTARY NOTES ,4,,&.«,)
RADC Project Engineer: Thomas F. Lawrence (ISCP) AD-Ro%6 653
(4
|9Co;§lEtvrw°QfDS (Continue on reverse aide if necessary and identily by block num!ﬁé)twork Operating System
Decentralized Control
. Distributed Processing
‘5 . Fully Distributed Processing Systems
. Network
N 20 ABSTRACT (Continue on reverse side If necesaary and identify by block number)
» 4? Parallel processing has been a popular approach to improving system
i 8 performance through several generations of computer systems design.
;! Although it is not usually characterized as a ®parallel? processing
l g system, a distributed processing system has the inherent capability for .
o highly parallel operation. In order to capitalize on the potential per- }
¢ : | formance improvements achievable by a distributed system, major parallel :
Bow control problems must be solved. Central to the issue of parallel.

DD , 5%, 1473 eoiTion of 1 NOV 65 15 oBsOLETE UNCLASSIFIED

i‘q SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) \ -
-\

. .
o / J y 7

1l
]
i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

control is the design and implementation of distributed and decentral-
ized control. The study of distributed and decentralized control was
initiated with a survey of applicable control models. The results of
this survey are presented along with an extensive discussion of the
control problems applicable to distributed systems --- specifically
"fully? distributed systems. ¢

{

Sphdrae

UNCLASSIFIED

}
l. 1 SECURITY CLASSIFICATION OF Yu'® PAGE/When Date Entered)
kR

DY s
- ~ PR

LN

Page 1ii

PREFACE
Comments from fhe Principal Inveatigator

Although this is the final report on only one of the approximately 30 research
projects currently being performed in the Georgia Tech research program on
Fully Distributed Processing Systems, it serves a much broader function than
just reporting on the work done in this single project. Since this is the
first major technical report published under the program, it has been neces-
sary to document here much of the background applying to the program in
general. Specifically, this report presents an extensive discuasion of the
general philosophies of fully distributed control and fa'ly distributed
processing as well as the notation that has been developed to describe the

control actions supporting such processing activities.

T‘Arcess'ion Tap
)

e —

I e ~

LN

v oape

IABLE OF CONTENTS

Section 1- BACKGROUND..Q‘.O...l-.Q...O‘QQ.'.......l..C...‘.I'....I.l'....'.l"1

«1 GOALS OF COMPUTER SYSTEM DEVELOPMENT..ccccoceesocrsccssnccosssconcasscasl
.2 APPROACHES TO IMPROVING SYSTEM PERFORMANCE...ceccececassccocssscscacsecssl
.3 PARALLEL PROCESSING SYSTEMS..ececovesecescacccossasssasosssssassnesosossl
o1 System COUPLiNg. .veeesoceencactnnscossoscsnscscrsascosssnnsssoossssesseosoll
.1 Tightly-Coupled Computer SYStemS.....eccosecesseasccasscssscscsscccsch

.2 Loosely-Coupled SyStemS...ecceeseseccoscesccsacsossossascssoccscansesd

.2 COmMpUter NeLWOrKS..ceceeeeessoscsacessosesscssnsscosnscnnssosenssssosoal
.3 Distributed SyStemS..eeeesveececscesstossassssesovossoscascscscnccansosonsl

Section 2. INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS.....cceveeee.9

.1 MOTIVATION OF THE FDPS CONCEPTeececcescocvscsvsnsvssssssssscsscccsovsncesld
+2 THE DEFINITION OF AN FDPS.ecectcaccconosscvssenvsascscocncnasnsasscsccsssell
.1 Discussion of the Definitional Criteri@..ccscevvrecesccscscscacsscccsastl
.1 Multiple Resources and Their UtilizatioN...ceceececccecsorsesceeassall

.2 Component Interconnection and Communication..{.....................12

3 UNity Of CONtrol.eeieececesccosocsesssascseososnassencccncsnsscncscnnns i

.4 Transparency of System Control..c.ceecccsceccssessscsssasscsscssscsssll

.5 Cooperative AUtONOMY..oeeseetessscesosanssosarsesonsccancsancscsssssans i3

.2 Effects on System OrganizatioN..eececcecscsersssnsesoscccsesscccsosesll
.3 IMPLICATIONS OF THE FDPS DEFINITION ON CONTROL....veevsvesonsasccscossslb
.1 General Nature of FDPS Executive CORtrol.e.cececssscevscosssoosssossslb
.2 Why Not Centralized Control?...ececeeseseassscscssssosssssasssosassasell
.3 Distributed vs. Decentralized....eeeceesescseocccssosossassannssassenssll
.4 AN FDPS APPLICATION -—- DATA FLOW PROCESSING...ccecoosccsessanscesnsassl8
.5 PROJECT SCOPE AND ORGANIZATION OF THIS REPORT.cevceccccsscccssaseseceesl
.1 Discussion oOf FDPS MOdelS:eectesssoscessassccosanscsssassossssosnsanssaslld
.2 Issues in Decentralized Control...ececeescesescccasocccscsassssccsssssll
+3 Work ReQUESES.c.e cetiecossooresnesasaossassacsossassaccasscnsssosseesl
.4 Characteristics of a Decentralized Control Model...seecsseevesoconces20
«5 Control Model FunctionNS..vceseceveseoseavecscasscasoscascssassacnsssossnsll
.6 Example Control MOAelS..eeeeeeessceccscarsssososssssssssnassasssssossessl
.7 Control Model Evaluation...cceeeceaccecsaccescccncncssssssscssassccsssell

Section 3. FDPS SYSTEM MODELS......'........I.......'.'...“....'...........21

«1 INTRODUCTION. . uceveeoovevrnossocsesocnsnssscasnssscssssosasssssassrssacnsell
.1 Why a New Model and New Terminology?.cceecssercecscccscscsoserescsceeell
.2 Approaches to Modelling.ceceeeeessencocccsocssosnscscssssoccansnssscnsell

.1 Scenario or Flow Chart MOdelS..cccescecessnccccsoscvecssesccssconsceesll
2 Structure ModelS..ceveciersssovrecrosososrsssssassonnssssscssnssnacesell
.3 Interaction ModelS..seecseaceecrsassosscoanscnsssscsssssscscsasnecnsesall
.4 Performance and Mathematical ModelS....cceercscscsccnscssasscsnneseld
.5 Summary of Model TYpPeS.cecresscsccsscscesessccssnsosccsssssssssssscnsssld

«2 OTHER MODELS..euctioecsasonnessscsessosscssasscsscssssassssassssssssnsseceld
.1 The ISO Reference Model fOr OSI...ececsscsssesssesvesnsscccassosnsenesld
.2 Protocol HierarchieS...vevereeessessascesccccssacscssasssedsssssnssseell

o3 THE FDPS MODELS .. eeecsnsoeosasassssscasscsscsoonsssssssasesasscsssacenseelb
.1 The FDPS Logical MOd€l.ceveeecaoscesscascancsscosscascoscosorsossonsealbd

B 155 e

Page vi

«2 An FDPS Physical Model..ceeeeceersencscasnosscssveccscsssscassncsssoocscsell
«3 The FDPS Interaction Model...eceeenverecsacscoanocccscevsconcsccoscneell

Section 4. ISSUES IN DISTRIBUTED CONTROL.cecceeeccscncocscrconsarsssnssnsesss33

el DYNAMICS . cvevvotenecvascososesaosnonscnsssnsascsacsoassscsscsvasscssssscssssselld
+«1 Workload Presented to the SysStemM.ccecacecscscscavocesssscsscsscscancsessd’
.2 Availability of ReSOUrCeS.ccececerscencssacssosesrscarscscsacscsasscscsssnse’l
+3 Individual Work RequestS..ceececcesercasscessssvssssssccssssvensocsese 3l
e INFORMATTION. . .tuveeenseanvncsasasesceasnstsosscsassssnsacssoassccsssncacessdl
«3 DESIGN PRINCIPLES .. vereeenessecocasosscsosstssccnsonsscsccssscsossssasnassses 3D
.1 System Information.scscceececssceseastcacscanscscscosssssossassssnsnsass3d
.2 Resource Control...ceeeeeecseeescascasesccssssscassossscsosssssanssacascib

Section 5. CHARACTERIZATION OF FDPS WORK REQUESTS..c...vccvvvocescsocssanecsseld]

«1 THE WORK REQUEST . civevceceeasoacscosvossossnsssossssesscssvssossasanansoncnss 3l
.2 IMPACT OF THE WCRK REQUEST ON THE CONTROL:.ocececcocanessccnncssoannenassl
.1 Visibility of References to RE€SOUIrCeS..ccveesceccscsoccsascsonscassaeil
.2 The Number of Concurrent ProCeSSeS...ceeccsccsccessccscascsssssanseassldB
.3 The Presence of Interprocess CommunicatioN..ceeeecesecossacascecseessi8
.4 The Nature of Process Connectivityeceeeessseececcscssoccscsacscssracsid
.5 The Presence of Command FileS.iuiieeeerceecaceavssnssccavassscscsssesnenesid
.3 A CLASSIFICATION OF WORK REQUESTS..eeeecsnsaascacossasansnsnas sesesscseal0

Section 6. CHARACTERISTICS OF FDPS CONTROL MODELS..:eevecescecncocccoscncacsll

. .1 APPROACHES TO IMPLEMENTING FDPS EXECUTIVE CONTROL...ceoeceanecnccocccsecaltl
: .2 INFORMATION REQUIREMENTS..ceesestvessssaccsvsesssannassossscssssoscssensesll

.1 Information Requirements for Work RequestS..ccecescsascsacscaccssseasli2

.2 Information Requirements for System ResouUrCeS...ciececssccsssscsasssalil
' .3 BASIC OPERATIONS OF FDPS CONTROL..ucevcsvanassncnsoncsessosncsscanssssaly
.1 Information Gatheringe.ceeerseesceesecseansessasscsncscassosnsascsesscsscnsadl
.2 Work Distribution and Resource AllocatiON.scscvececcscacsvascecacaanasdl
.3 Information Recording...cevecesceecsacasessocacccescossseassssassssssdb
LU Task EXECULION. ceveeecoensansnansoss sssccscsnnsascscacssnnsassaansasedh
.5 Fault RECOVEIrY.eieeseesssrosassososcscasccsssssnsassssosesssnsassscavnassesdl

q Section 7. VARIATIONS IN FDPS CONTROL MODELS.ccc¢ccveescscsccccosossscescesed9

.1 TASK GRAPH CONSTRUCTION. ..o eueeeeeencnscecsoosssasassssesssssansssanesssdd
. .2 RESOURCE AVAILABILITY INFORMATION. ..cceonceovcooncsoasaccascnnseansansasbl
L5 . +3 ALLOCATING RESOURCES. . ¢eeeeesesevenserocosssosasssnncssosssssassssensssb
T .4 PROCESS INITIATION. . svuceeeocencosonsassassssssnssssnsascsssssesasnssssb3
e .5 PROCESS MONITORING . . e e veeeeacocessecsasaacosacssasassssecasssncessaeessbl
o .6 PROCESS TERMINATION. .eueceeocccosacnccenosssocasssessaasscsassossanassabS
'8 T EXAMPLES . e e ecesoseasoccssssoaseasssasessssssasassesasnsasscssssannsebS

sention 8. MODELS OF CONTROL.l..l..'..-..'.'...l'...I............I....-Ol.'l79

. cem

01 ARAMIS#.ono-o.-a.a-o-onc.n-o-o'oo...coaccooo-chvocootuooooonncl‘oolo-o79
. M 01 AI‘ChiteCtur‘e...........-o.---.-.c-.....a..oao.....-.-.....-...o-.o..."g
k .2 work Requests......-.-...--o.........-...----.....-....--.-........-.79
, .3 The Contl‘ol MOdel.........‘.-.-..........-.-....-...o.o'o----......o."g
!

" ou Conclusion..................-............-.-...-..-.-.-.....-........81

52 MEDUSA-oc.-cnunnc-co--o'-ooDntocl.a..oco-Anooocooot..oo.o.ooo.c-..o.u..81

Page vii

¢1 ArChiteCtUr@iiee.eeiceccensoveanessnscassscssnsacenecssnssnasancscsosdl i
¢2 WOPrK REQUESES..evvsecesscceesossocsscocsossssssosascssssssatsccsssesed3
03 The Contml ModeIOOCQ'D.l..l..'OI..I‘..C'....'.l'..'..‘.l.l....'0.0'.83
<4 CoNnClUSION.ciuessesescsescnonsosacecanccsessasscssssasscsssasversarasesl
l3 CNET‘.....C'QIQ.0!0.....Ol.l.....................I.O...O..."..C.."..'8”
o1 APchitecture...-..........................-..............o-..........8”
02 work Requests.l....l"'"C.OO....II.........Q.I.....l.'l..'000.....0.8“
-3 The Control Model.........--.-.-..o.........-............--......-...au
.u Conclusion.................-.-............-.............--...........86 .
.4 THE XFDPS SERIES OF MODELS..:.ececenececceaccasascssoascsasssansacsssssBb J
.1 Architecture......................................-.............-....87
02 work Requests.......l..‘..l.!....I'I....I‘.'.'.....'l..C....l.l'l....87
03 xFDPS.1.C.......I'l.l'O.llQ...I...........'l....l"..l.........ll'...s?
.1 Task Set Manager..ccceeessscescscsssosscssoscssossscssosscssecsssscseI0

«2 File System Manager...ccecccececorsessssccssasccsnssssacssassccsssceed0

«3 Processor Utilization Manager...cececccesvceccsssceosesssanscscssssd2

4 Process Manager..cuseccecerososrsesessssssssssasasssssecssnssccsesesdl

5 CONClUSIONeceeeceessssssascaccsssscscosonsssssscscssssasrsccnsccscecesdI

.u xFDPstzc..QC...'Q..'Q..Q‘I.I.Q..-‘..'O‘..0.'...!l.l.l......'..l....'.g3

05 XFDPS.3---..--..-.--..-oc.--.-...-.---.o--.o....o-‘.---..-.....c‘-..-93 ‘

Section 90 THE EVALUATION OF THE MODELSQ.|.....l.I‘l.'I.ll..'...'..."..o-..g?

01 EvALUATION PLAN..-.-.coo-.oolo.vo.‘.v-c---ocOcnooooooloo.oo'oon..oa'.lcg”
02 EVALUATION CRITERIA.OUQ‘nl--0.-o-cctcacovouoll.l-ol-ocll.oanoac...n.otcg.’

B g

ReferenceS-o..ococ'l.-q-on.-...oo..‘...c000000oo.'.t.-.coo.o.oo.coc.o.o-0.00099

' 2 L . — e e e e e ——— - -
N o o s e .) 3 T !z:r T VIR TR T
s .. 3 Lo N N

£

. ~"i.“ .

Page wviii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

es o» o

-t 2O OO EWN —
e oo

N wd O se oo
e oo oo

14
15:
16
17:
18:
16:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:

33:
34:

LIST OF EIGUBES

Axes of Distribution...cieesccescesscesoessnesssccescsssccecececeld
Protocols and INnterface8...ccseoecsccssscensosscscsescsconcssseeel3
The ARPANET Protocol LayerS...sccceceosccccssssscsrsscscsssccacesslll
The ISO Reference Model fOr OSI..eececcescsccessssccsvsscccsnscseall
A 'Complete! Protocol HierarChy..eeeveescecccaccccessocoscoanseossld
Logical Model of an FDPS....ceeceosescocncsscocsssasossssssssssses30
Physical Model of FNPS Controleceecececcccsnscscccccscasassosnsscsas3]
Classifications of Computer Network ProtoColS....cccccececccccsese32
Classification of Work RequestS..ccececcccvccocrcsoverarsseonnsacssl
Work Request SyntaXee.cccececersesnceossassssssssscsccscccnscnasellld
Example of a Work RequesSt....cceeeeeeeccesccccccccscccoccerencosolili
Node COntrol BloCK..eeecessscccscescssccscccssccsssncsssasscsccncedd
Node Interconnection MatriX...eeeeeveeessccscoscsscesscscssscnsssib
Example of a Task Graph Using LinKS.e..cecesesccsccccesocsassonesel?
Example of a Node Interconnection MatriX....ceeceeescccccaascaasoli8
Work Request Processing (Detailed StepS).e.eecececcssccecsssacass’l
Information Gathering (Resources Required).......ceeeesacsccsseee5?
Information Gathering (Resources Available)...cicececscconsecseess53
Resource Allocation and Work DistributioN.eeeceececccescscscosasssesdll
Work AsSsignment..cccecesccascasacseasoscasscssscsscscassssascssnseadd

EXQMPle leoeeesvessaosenorsassessesassssssossoconccsossossnosssnsssneb?
EXAMDPle 2.vacceveosssssancossscssssascsosscscssosasscsssscassvasecansb?
EXamMDPle 3.eccsesscccsassoscctosscssesasssscossascsssscsccssascesasaebB
EXample H.ceeeeseccevsoonsccctanssoooevsvesesasssncscscccncssossesed8
EXAMDPle Sucecevoconsnssosscscsacsccaorosccarssoscsnssssasnssssceesedd
EXample Gueeceescecasceiossccsconcnscenssasossosssscsasascscsccesell
EXamMPle Tuoeveovesacaconscoscsscssasescannsacsocoasasssccsacacacnell
EXample B.ciaceverscaccoscocarscsesvnsosnsossoseasssasssscscnsseaseosvonald
EXamPle 9.ceceeeesecasocccocasesosesonssassesassssssnsasssscsasscelld
EXample 10ccececccsscscenccscssosssssssscsscacassnsascsscossassssanald
EXample 11..ceecesconscceconcsssconssnccnsosscanssssesssssacsacasld
Basic Steps in Work Request Processing...ccceceecececesccvsscconell
An Example of Work Request Processing....ccscesesecscsscscssccsasT8
The XFDPS.1 Control Model..cvsecesssssccsscsssacsscessasasccscssseB9

PR

N andE TS

* g TR M

---"-<
3 T

Py

- i

Table
Table
Table

Table
Table
Table
Table
Table
Table

CE-TOUV & WwWn —

s e v oa o

Page 1ix

LIST OF IABLES

'Benefits' Provided by Distributed Processing Systems.....cocoetee..2
Variations in Control ModelS...cceceesesccecvsososovcascsscnsssasessdl
The Decentralized Control Model of the ARAMIS Distributed

COMPULEr SYSTLEM..seerevecoreasassossoranscsssarssnscssssansscsesedd
The Medusa CONErol MOAel..ecsecerosaccasassascsassosercnssnsanrsesssB
The CNET CoNtrol MOAEl...ceeeosesesocsesanvossssesssanssnsascnsoasssdd
The XFDP8.1 CONtrol MOA€l..eessereseocesessonsonsasssscssassscnsossedB
The XFDPS.2 Control MOdel..eveeescecasosccoascsaasesssssnasnsassassedl
The XFDPS.3 Control Model..veecciscesssessssssssescasssvsasaosseosensID
Possible Evaluation Criteria for Distributed Control Models........98

e ey R R L P
- e pp—— R

e i L4, i "y 2
,)) . . LA L
- 4 b o . . - E

Loy e

Section 1 BACKGROUND Page 1

SECTION 1

BACKGROUND

1.1 GOALS OF COMPUTER SYSTEM DEVELCPMENT

Although the state of the art in digital computers has certainly been
advancing faster than any other technological area in history, it is somewhat
remarkable that the goals motivating most computer system development projects
have remained basically unchanged since the earliest days. Perhaps the most
important of these long sought-after improvements are the following:

1. Increased system productivity
- Greater capacity
- Shorter response time
- Increased throughput
2. Improved reliability and availability
3. Ease of system expansion and enhancement
i, Graceful growth and degradation
5. Improved ability to share system resources

The "final or ultimate values" for these various goals cannot be expressed in
absolute numbers, so it is not surprising that they continue to apply even
though phenomenal advances have been made in many of them such as speed,
capacity, and reliability. What is perhaps more noteworthy and important to
the discussion being presented here is how little progress has been made in

areas such as easy modular growth, availability, adaptability, etc.

It seems that each new major systems concept or development (e.g., mul-
tiprogramming, multiprocessing, networking, etc.) has been presented as "the
answer" to achieving all of the goals listed above plus many others.
"Distributed processing®™ is no exception to this rule. In fact, many salesmen
have dusted off their o9old lists of benefits and are marketing foday's
distributed systems as the means to achieve all of them. Table 1 lists some
of the benefits currently being claimed for distributed processing systems in
current sales 1literature. Although some forms of distributed processing
appear to offer great promise as a poasible means to make significant advances
in many of the areas listed, the state-of-the-art, particularly in system

control software, is far from being able to deliver even a significant propor-

tion of these benefits today.

Page 2 BACKGROUND Section 1

Table 1., "Benefits" Provided by Distributed Processing Systems

A Representative List Assembled from Claims Made in
Actual Sales Literature

High Availability and Reliability
Reduced Network Costs

High System Performance

Fast Response Time

High Throughput

Graceful Degradation, Fail-soft

Ease of Modular and Incremental Growth
Configuration Fle;ibility

Automatic Load and Resource Sharing
Easily Adaptable to Changes in Workload
Incremental Replacement and/or Upgrade

Easy Expansion in Capacity and/or Function

Good Response to Temporary Overloads

!.'.-l'--.--.-.--'l.-'—-'-.!l'-'-Illll--"-'-"'-'-'-ﬂ-L — o

Section 1 BACKGROUND Page 3

1.2 APPROACHES IO IMPROVING SYSTEM PERFORMANCE

Efforts to improve the performance of digital computer systems can
address or be focused on a number of major levels or design issues within the
overall computer structure. These levels are:

1. Materials - the basic materials used in the construction of
operating devices such as transistors, integrated circuits, or
other switching devices.

2. Devices - operating devices such as transistors, integrated
circuits, junctions, etec.

3. Switching circuits - design of circuits that provide fast and
reliable logic operations.

4, Register~transfer - assemblies such as registers, buses, shift
registers, adders, etc.

5. System architecture - algorithms for executing the basic func-
tions such as arithmetic and 1logic operations, interrupt
mechanisms, control of processor and memory states, etc.

6. System organization - the interconnection of major functional
units such as control, memory, I/0, arithmetic/logic units,
etc., and the rules governing the flow of data and control
signals between these units. This level also considers the
implementation of multiple, parallel paths for simultaneous
operations and transfers.

T. Network organization - the number, characteristies, and
topology of the interconnection of "complete" systems and the
rules governing the control and utilization of the resources
those systems provide.

8. System software - control and support software for the effec-
tive management and utilization of the hardware capabilities
provided.

From the very beginning of the computer era there has been activity at all of
C‘ these levels and such work continues today. (To place it into proper perspec-
tive, it should be noted that the research work carried on under this project

is focused primarily at the three highest levels, system organization, network

k . organization, and system software, with some work at level 5, system architec-
?’
v ture.)

. 1.3 PABALLEL PROCESSING SYSTEMS

An important theme of computer system development work at levels 58,

B e d T -,
¥

ngsystem architecture," "system organization," "network organization," and
"system software," has been parallel processing. Parallel processing has been
implemented utilizing approaches focused primarily on the system hardware or

x

the software as well as integrated systems design.

- — >

5 e

g T

-
“i
L ¢
i \
s

m

LR
s .

Page 4 BACKGROUND Section 1

Since the early days of computing, a direction of research that has
offered high promise and attracted much attention is "parallel computing.”
Work in this area dates from the late 1950's which saw the development of the
PILOT system [Lein58] at the National Bureau of Standards. The PILOT system
consisted of M"three independently operating,/computers that could work in
cooperation."[Ensl74) (From the information ava&lable, it appears that PILOT
would be classified as a "loosely=-coupled sy@tem" today.) It is interesting
to note that the evolution of parallel "hardfrare" systems iead primarily to
the development of tightlv-coupled systems such as the Burroughs B-825 and
B~5000, the earliest examples of the classical multiprocessor. Other develop-
ment paths saw the introduction of specialized hardware systems such as
SOLOMON and the ILLIAC IV, examples of other forms of tightly-coupled proces-

sSors.

1.3.1 System Coupling

System coupling refers to the means by which two or more computer
systems exchange information. It refers to both the physical transfer of such
data as well as the manner in which the recipient of the data responds to its
contents. These two aspects of system interconnection are called "physical
coupling® and ™logical coupling," and they are present in all multiple com-
ponent systems whether the components of interest are complete computers or

some smaller assembly.

The terms, "tight®™ and "lcose" have been utilized to describe the mode
of operation of each type of coupling. (Some authors have utilized a third
category "medium coupling" and related it to a range of data transfer speeds;
however, history has clearly shown that basing any characterizations of
digital computers on speed, size, or even cost is an incorrect approach.) The
interconnection and interaction of two computer systems can then be described
by specifying the nature of its physical coupling and the nature of its
logical coupling. It is important to point out that all four combinations of
these characteristics are possible and that they all have been observed in

implemented systems.

1.3.1.1 Iightly~-Coupled Computer Systems
During the 1960's and 1970's, activities in the development of parallel

computing, specifically multiple computer systems, were focused primarily on

the development of tightly-coupled systems. These tightly-coupled systems

e o e

Section 1 BACKGROUND Page 5

took the form of classical multiprocessors (i.e., shared main memory) as well
as specialized computation systems such as vector and array processors, This
tight physical coupling resulted in a sharing of the directly executable
address space common to both processors. There was no means by which the
recipient of the data or information being transferred could refuse to
physically accept it --- it was already there in his address space.

These early systems also usually implemented tight logical coupling. In
this form of system interaction, the recipient of a message is required to
perform whatever service is specified therein. With tight 1logical coupling,
there is no independence of decision allowed regarding the performance of the
service or activity "requested."™ The relationship between the sender and

recipient is basically that of master-slave.

Although the concept of tightly-coupled multiprocessor systems appears
to be a viable approach for achieving almost unlimited improvements in per-
formance (i.e., increases in system throughput) with the addition of more
processors, such has not been the results obtained with implemented systems.
It is the very nature of tight-coupling that results in limitations on the
improvements achievable. Some of the ways that these limitations have
manifested themselves are listed below.

1. The direct sharing of resources (memory and input/output
primarily) often results in access conflicts and delays in
obtaining use of the shared resource.

2. User programming languages that support the effective utiliza-
tion of tightly-coupled systems have not been adequately
developed. The programmer must still be directly involved in
job and task partitioning and the assignment of resources.

3. The development of "optimal" schedules for the utilization of
the processors is very difficult except in trivial or static
situations. Also, the inability to maintain perfect synch-
ronization between all processors often invalidates an
"optimal™ schedule soon after it has been prepared.

Y, Ary inefficiencies present in the operating system appear to be
greatly exaggerated in a tightly-coupled system.

There was also significant activity during these earlier periods in the
development of multiple computer systems characterized as "attached support
processors (ASP)."™ These systems were physically loosely-coupled; but,

logically, they were tightly-coupled. The earliest examples of this type of

system organization were the use of attached processors dedicated to

Page 6 BACKGROUND Section 1

input/output operations in large-scale batch processing systems. In the lat-
ter part of the 1970's, specialized vector and array processors as well as
other special-purpose units such as fast Fourier transform units were being
connected to general computational systems and utilized as attached support
processors. In any event, the specialized nature of the services provided by
the attached processor excludes them from consideration as possible approaches
to providing general~purpose computational support such as that available from

tightly-coupled general-purpose processors functioning as multiprocessors.

Tightly-coupled systems certainly do have a role to play in the total
spectrum of computer systems organization; however, their limitations should
certainly be considered. It was the recognition of these limitations and the
small amount of progress made in overcoming them despite the expenditure of
very large research efforts that contributed to the decision to focus our

current research program on loosely-coupled systems.

1.3.1.2 Loogelvy-Coupled Systems

Loosely-coupled systems are multiple computer systems in which the
individual processors both communicate physically and interact logically with
one another at the M"input/output 1level," There 1is no direct sharing of
primary memory, although, there may be sharing of an on-line storage device
such as a disk in the interconnecting input/output communication path. The
important characteristic of this type of system organization and operation is
that all data transfer operations between the two component systems are per-
formed as input/output operations. The unit of data transferred is whatever
is permissible on the particular input/output path being utilized; and, in
order to complete a transfer, the active cooperation of hoth processors is
required (i.e., one might execute a READ operation in order to accommodate or
accept another's WRITE).

Probably the most important characteristic of loose logical coupling is
that one processor does not have the capability or authority to "force"
another processor to do something. One processor can "“deliver"™ data to
another; however, even if that data is a request (or a "demand"™) for a service
to be performed, the receiving processor, theoretically, has the full and
autonomous rights to refuse to execute that request. The reaction of proces-

sors to such requests for service is established by the operating system rules

of the receiving processor, not by the transmitter. This allows the recipient

Section 1 BACKGROUND Page 7

of a request to take into consideration "local™ conditions in making the
decision as to what actions to take. It 1s important to note that it is pos-
sible for a system to be physically loosely-coupled but logically tightly-
coupled due to the rules embodied in the component operating systems, e.g., a
permanent master/slave relationship is defined. The other reverse condition,

tight physical and loose logical coupling, is also possible.

1.3.2 Computer Networks

A computer network can be characterized as a physically loosely-coupled,
multiple-computer system in which the interconnection paths have been extended
by the inclusion of data communications links, Fundamentally there are no
differences between the basic characteristics of computer network systems and
other loosely-coupled systems other than the data transfer rates normally
provided, The transfer of data between two nodes in the network still
requires the active cooperation of both parties involved, but there is no
inherently required cooperation between the operation of the processors other

than that which they wish to provide.

1.3.3 Ristributed Systems

Although there is a large amount of confusion, and often controversy,
over exactly what is a "distributed system," it is generally accepted that a
distributed system is a multiple computer network designed with some ynity of
purpose in mind. The processors, databases, terminals, operating systems, and
other hardware and software componernis included in the system have been inter-
connected for the accomplishment of an identifiable, common goal. That goal
may be the supplying of general-purpose computing support, a collection of
integrated applications such as corporate management, or embedded computer

support such as a real-time process control systen.

This research program is concerned with a very specific subclass of all
of the systems currently being designated "distributed." The environment of
interest here has been given the title "Fully Distributed Processing System"
or FDPS. Section 2 discusses the general characteristics of FDPS's,

s o

4
L]
b

3

Section 2 INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS Page 9

SECTION 2

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS

2.1 MOTIVATION QF THE FDPS CONCEPT

A large number of claims have been made as to the benefits that will be
achieved with distributed processing systems. As pointed out above, this list
is very similar to the lists of "benefits to be achieved" with several earlier
computer technologies. However, each of those earlier solutions failed to
deliver its promises for various reasons. It was an examination of the "weak-
nesses" in the earlier concepts and the development of a set of principles to
overcome these obstacles that led to the concept of "Fully Distributed Proces-

sing Systems"™ or as it is commonly referred to "FDPS."

The principle of parallel (i.e., simultaneous and/or concurrent) opera-
tion of a multiplicity of resources continues to be perhaps the most important
goal. The unique feature of FDPS's is the means or environment in which this
is attempted. A distributed system should exhibit a continual increase in
performance as additional processing components are added. The users should
observe shorter response times as well as an increase in total system through-
put. In addition, the utilization of system resources should be higher as a
result of the system's ability to perform automatic load balancing servicing a
large quantity and variety of user work requests. A distributed system should
also permit the sharing of data between cooperating users and the making
available of specialized resources found only on certain processors. In
general, a distributed system should provide more facilities and a wider
variety of services than those that can be offered by any system composed of a
single processor [Hopp79]). Another important and highly desirable feature of
such a system is extensibility. Extensibility might be realized in several
different ways. The system might support modular and incremental growth
permitting flexibility in its configuration, or it might support expansion in
capacity, adding new functions, or both. Finally, it might provide for
incremental replacement and/or upgrading of system components, either hardware
or software. The executive control of the system i3 obviously the key to

attaining these goals, and it is in the area of executive control that some of

the most significant deficiencies of earlier systems have been found.

r—-——-————————-————-—-——————-—m —

Page 10 INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS Section 2

The major weaknesses in the executive control of earlier forms of paral-
lel systems appear to result from an excessive degree of centralization of
control functions reflected in centralized decision making or centralized
maintenance of system status information or both of these. The net effect of
these aspects of control was to produce a rather tightly-coupled environment
in which resources often were 1idle waiting for work assignments and the
failure of one major component often resulted in catastrophic and total system
failure. The solution to this problem is to force a condition of very loose
coupling on both the logical/control decision making process as well as the
physical linkages of components. This property of "universal"™ loose coupling
results in an environment in which the various components are required ¢o

operate in an autonomous manner.

If a single design principle must be identified as the most important or
central theme of FDPS design, it is component autonomy or "cooperative
autonomy" as described below. All of the other features of the definition of
Fully Distributed Processing Systems given below have resulted from determin-
ing what is required to support and utilize the autonomous operation of the

very loosely-coupled physical and logical resources.

2.2 IHE DEFINITION OF AN FDPS

Fully Distributed Processing Systems (FDPS) were first defined by Enslow
in 1976 [Ensl78] although the designation "fully" was not added until 1978
when it became necessary to clearly distinguish this class of distributed
processing from the many others being presented. An FDPS is distinguished by

the following characteristics:

1. Multiplicity of resources: an FDPS is composed of a mul-
tiplicity of general-purpose resources (e.g., hardware and

software processors that can be freely assigned on a short-term
basis to various system tasks as required; shared data bases,
etc.).

2. Component Jinterconnection: the active components in the FDPS

are physically interconnected by a communications network(s)
that utilizes two-party, cooperative protocols to control the
physical transfer of data (i.e., loose physical coupling).

3. UOnity of control: the executive control of an FDPS must define
and support a unified set of policies (i.e., rules) governing
the operation and utilization or control of all physical and
logical resources.

- I

Section 2 INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS Page 11

4, System trapsparency: users must be able to request services by

generic names not being aware of their physical location or
even the fact that there may be multiple copies of the resour-
ces present. (System transparency is designed to aid rather
than inhibit and, therefore, can be overridden. A user who is
concerned about the performance of a particular application can
provide system specific information in order to aid in the
formulation of management control decisions.)

5. Component autopomy: both the logical and physical components
of an FDPS should interact in a manner described as
"cooperative autonomy"™ [Clar80, Ensl78). This means that the
components operate in an autonomous fashion requiring coopera-
tion among processes for the exchange of information as well as
: for the provision of services. In a cooperatively autonomous
’ control environment, the components are afforded the ability to
refuse requests for service, whether they be execution of a
process or the use of a file. This could result in anarchy
except for the fact that all components adhere to a common set
of system utilization and management policies expressed by the
philosophy of the executive control.

2.2.1 Discussion of the Definitiopnal Criteria
In order for a system to qualify as being fully distributed it must pos-

sess all five of the criteria presented in this definition.

2.2.1.1 Multiple Resources and Their Utilization
{ The requirement for resource multiplicity concerns the assignable
resources that a system provides. Therefore, the type of resources requiring
; replication depends on the purpose of a system. For example, a distributed
system designed to perform real-time computing for air traffic control]
requires a multiplicity of special-purpose air traffic control processors and
display terminals. It 1is not required that replicated resources be exactiy

homogenous, however, they must be capable of providing the same services.

In addition to this multiplicity, it is also reyuired that the system
resources be dynamically reconfigurable to respond to a component failure(s).

This reconfiguration must occur within a "short"™ period of time so as to

AP RIS BT 4o B e i <
cochithidh it i, i

. maintain the functional capabilities of the overall system without affecting
f_, the operation of components not directly involved. Under normal operation the
; ', system must be able to dynamically assign its tasks to components distributed
;.‘ throughout the system. 4
g* The extent to which resources are replicated can vary from those systems
E where none are replicated (pot a fully distributed system) to systems where 7]

all assignable resources are replicated. In addition, the number of copies of

-l

R A

4

R AR ey~ araagt S

- Page 12 INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS Section 2

a particular resource can vary depending on the system and type of resource.
In general, the greater the degree of replication, particularly of resources

in high demand, the greater the potential for attaining benefits such as
increased performance (response time and throughput), availability,

reliability, and flexibility [Ensl78].

2.2.1.2 Component Interconnection and Ccmmunication

The extent of physical distribution of resources in distributed systems
can vary from the length of connection between components on a single
integrated chip to the distance between two computers connected through an
international network. In addition, interconnection organizations can vary
from a cirgle bus to a complex mesh network, Since a component in a
distributed system communicates with other components through its own logical
process, all physical and lcgical resources can be thought of as processes,
and interactions between resources can be referred to as interprocess com-

munication [Davi7G]. For example, an application program interacting with

processors and data files is accomplished through communication between

logical processes.

Both the physical and logical coupling of the system components are
characterized as "extremely 1loose.” "Gated" or "master-slave" control of
' physical transfer is not allowed. Communication, i.e., the physical trunsfer
of messages, is accomplished by the active cooperation of both the sender and
addressees. The primary requirement of the intercommunication subsystem is
that it support a two-party cooperative protocol. This is essential to enable

< the system's resources to exist in cooperative autonomy at the physical level.

The advantages of using a message-based (loosely-coupled) communication

system with a two=-party cooperative protocol include reliability,

Yeh appeyt o v
. & e LT

availability, and extensibility. The disadvantage is the additional overhead
. of message processing incurred to support this method of communication. There
fi« are a variety of interconnection organizations and communication techniques
2, that can be used to support a message-based system with a two-party
;‘: cooperative protocol.
Y 2.2.1.3 Unity of Control
: In a fully distributed data processing system, individual processors
: will each have their own 1local operating systems, which may or may not be
:!: unique, that control local resources. As a result, control is distributed

Section 2 INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS Page 13

throughout the system to components that operate autonomoualy of one another.
However, to gain the benefits of distributed processing it 1is required that
the autonomous components of the system cooperate with each other to achieve
the overall objectives of the system. To insure this, the concept of a high-
level creraiin, system was created to integrate and unify, at least concep-

tualiy, tue decentralized control of the system.

A high~level operating system is essential to successfully implementing
a distributed processing system. This operating system is not a centralized
block of code with strong hierarchical control over the system, but rather it
is a well-defined set of policies governing the integrated operation of the
system as a whole. To insure reliable and flexible operation of the system,
these policies should be implemented with minimal binding to any of the
system’s écmponents [Ensl78].

t

Wiat poolcles e<re required and how they should be implemented depends
greztly on the system. For example, if it is a general-purpose system sup=~
porting interactive users, then a command interpreter and a user control
language will be required to make the system's components compatible and

transparent to the user,

2.2.1.4 Transparency of System Control
The high-level operating system also provides the user with his inter-
face to the distributed system. As a result, the user is accessing the system

as a whele rather than just a host computer in the network.

In order to increase the effectiveness of the distributed system, the
actual system is made transparent, and the user is presented with a virtual
machine and & simplified command language to access it. The user uses this
language to request services by name and does not have to specify the specific
server to be used. Clearly, the same request might be assigned a different
server depending on the state of the total system when the request is made.
However, to make the system truly effective for all users, knowledgeable
individuals must be able to interact with the system more intimately, request-
ing specific servers or daveloping service routines to increase the efficiency

or effectiveneas of the system [Ensl78].

2.2.1.5 Cooperative Autonomy

Cooperative autonomy has already been described at the physical inter-

connection level, It is also required that all resources be autonomous at the

Page 14 INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS Section 2

logical control level, That is, a resource must have full control of itself
in determining which requests it will service and what future operations it
will perform. However, a resource must also cooperate with other resources by
operating according to the policies of the high-level operating system.
Cooperative autonomy 1is an essential prerequisite for systems to have fault
tolerance and high degrees of extensibility [Ensl178]}. It is perhaps the most
important as well as the most distinguishing characteristic of a fully

distributed processing system.,

2.2.2 Effects on System Organization
Although the detailed design of the hardware and software required to

implement an FDPS is still in progress, it has been possible for some time to
identify certain characteristics that these components must have. One area in
which certain criteria already appear reasonably well defined is the nature of
the organization of the following system components:

- Hardware
- System control software
- Data bases

It should be noted that a number of definitions and descriptions of
distributed systems in general are based on the principle that one or more of
these components is physicallv distributed. (Some such discussions add to
this 1list a fourth component --- "processing or function;" however, consider=-
ing the distribution of processing independent from the distribution hardware
is quite improper. Why distribute the hardware if it will not have some func~
tion to perform; similarly, how can the processing be distributed without a
corresponding distribution of the hardware? That would be processing on a

truly "virtual machine.")

An important characteristic of an FDPS is that, in order to meet the
definitional criteria given above while also attempting to provide as many as
possible of the benefits listed in Table 1, all of the three components listed
above must be physically distributed and the degree of distribution gust in
each case gxceed a reasonably well-defined threshold. A diagram illustrating
this requirement is shown in Figure 1. The various organizations of each com-
ponent identified and positioned along each axis is not meant to be an
exhaustive 1ist. These points are listed to better identify the relative
location of the three thresholds defining the volume of space occupied by
FDPS's. (It might also be noted that it seems quite proper to characterize

Section 2 INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS Page 15

any system that is not in the "origin cube" as being "distributed" to some

degree.)

ALLOWABLE
AEGION FOR FULLY

DISYRIBUTED DATA
PROCESSING SYSTEMS

el S L
=
// /\
el 7 RN \ \
MULTIPLE \\\\

COMPUTERS
|

] PARTITIONED DATA BASE

MULTIPLE WO MASTER FILE OR DIRECTORY

[R
ocessons PARTITIONED DATA BASE
CENTRAL MATER DIRECTORY

PARTITIONED DAT.c BASE.

-
HARUWARE OISTHIBUTION amm——e i

| seranare
| seECiauzeD CENTRAL MASTER ZOPY
| FuUNCTioNAL COMPLETE
UNITS REPLICATION
P T T T T T 1T 1/ M e e e e e~ -, &
i ¥ muLTieLe DISTRIBUTED FILES &S
s EXECUTION UNITS SINGLE CENTRAL DIRECTORY / 5‘&‘
3 SINGLE COPY '/ S
2 PRIMARY STORAGE o &
g S
& SINGLE CPU SINGLE COPY N
SECONDARY STORAGE &

[} 5 s |
% H z o gg -] H ‘5’
H 3 a] (R = =
a 2 2y = - v« . g
, - T < a, iz < - 4
1) o i g2 | ; Yuw Rt
t g g 3F £55 333 £¥ 33
E is £5 #°2z | 308 ¥8 s2
ENCLUDED o o= o= e o —
CONTRACL DISTRISUTION & DECENTRALIZATION el
! OIMENSIONS CHARACTERIZING DISTRIBUTION
{ -
s
.
s
t
»
.

Figure 1. Axes of Distribution

RO e
. -

Page 16 INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS Section 2

2.3 IMPLICATIONS OF THE FDPS DEFINITION ON CONTROL
2.3.1 General Nature of FDPS Executive Control

Several of the characteristics of an FDPS are found tc directly impact
the design and implementation of the executive control for such a system.
These include system transparency to the user, extremely loose physical and
logical coupling, and cooperative autonomy as the basic mode of component
interaction. System transparency means that the FDPS appears to a user as a
large uniprocessor which has available a variety of services. It must be pos-
sible for the user to obtain these services by naming them without specifying
any information concerning the details of their physical location, The result
{5 tha%t systex control is left with the task of 1locating all appropriate
instances (copies) of a particular resource and choosing the instance to be

utilized.

"Cocperative autonomy" is another characteristic of an FDPS heavily
impacting its executive control. The "lower-level™ control functions of both
the lcgical and physical resource components of an FDPS are designed to
operate in a "cooperatively autonomous™ fashion. Thus, an executive control
must be designed such that any resource is able to refuse a request even
though it may have physically accepted the message containing that request.
Degeneration into total anarchy is prevented by the establishment of a common
set of criteria to be followed by all resources in determining whether a
request is accepted and serviced as originally presented, accepted only after

bidding/negotiation, or rejected.

Another important FDPS characteristic that definitly affects the design
of its executive control is the extremely loose coupling of both physical and
logical resources. The components of an FDPS are connected by communication
paths of relatively low bandwidth. The direct sharing of primary memory
between processors is not acceptable. Even though the logical coupling could
still be loose with this physical interconnection mechanism, the presence of a
single critical hardware element, the shared memory would create fault-
tolerance limitations. All communication takes place over "standard"
input/output paths. The actual data rates that can be supported are primarily
a function of the distance between processors and the design of their
input/output paths. In any event, the transfer rates possible will probably

be much less than memory transfer rates. This implies that the sharing of

~ e

" A

Section 2 INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS Page 17

information among components on different processors is greatly curtailed, and
system control is forced to work with information that is usually out-of-date

and, as a result, inaccurate.

The control of an FDPS requires the action and cooperation of components
at all layers of the system. This means that there are elements of FDPS
control present in the lowest levels of the hardware as well as software com-
ponents. This paper is primarily interested in the software components of the

FDPS control which are typically referred to as "the executive control."

The executive control is responsible for managing the physical and
logical resources of a systen. It accepts user requests and obtains and
schedules the resources necessary to satisfy a user's needs. As mentioned
earlier, these tasks are accomplished so as to unify the distributed com-
ponents of the system into a whole and provide system transparency to the

user.

2.3.2 Why Not Centpralized Control?

Why then is a centralized method of control not appropriaté? In systems
utilizing a centralized executive control, all of the control processes share
a single coherent and deterministic view of the entire system state. An FDPS,
though, contains only loosely-coupled components, and the communication among
these components is restricted and subject to variable time delays. This
means that one cannot guarantee that all processes will have the same view of
the system state [Jens78]. 1In faet, it is an important characteristic of an

FDPS that they will not have a consistent view.

A centralized executive control weakens the fault-tolerance of the
overall system due to the existence of a single critical element, the
executive control itself. This obstacle, though, is not insurmountable for
strategies do exist for providing fault-tolerance in centralized applications.
Garcia-Molina [Garc79], for example, has described a scheme for providing
fault-tolerance in a distributed data base management system with a
centralized control. Approaches of this type typically assume that failures
are extremely rare events and that the system can tolerate the dedication of a
relatively long interval of time to reconfiguration. These restrictions are
usually unacceptable in an FDPS environment where it is important to provide

fault-tolerance with a minimum of disruption to the services being supported.

3

'

v

- r——

—— g

)
y

Page 18 INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS Section 2

Also, the extremely important issue of overall system performance must
be considered. A distributed processing system is expected to utilize a large
quantity and a wide variety of resources. If a completely centralized
executive control is implemented, there is a high probability that a
bottleneck will be created in the node executing the control functions. A
distributed and decentralized approach to control attempts to remove this bot-
tleneck by dispersing the control decisions among multiple components on

different nodes.

2.3.3 DRistributed vs. Decentralized

This paper advocates utilizing an approach for the control of an FDPS
that is both distributed and decentralized. There 1is a clear distinction
between the terms "distributed" and "decentralized" as they are used in the
context of this project. "Distributed control" is characterized by having its
executing components physicallv located on different nodes. This means there
are pultiple Jloci of control activity. In "decentralized control," on the
other hand, control decisions are made independently by separate components at

different locations. In other words, there are pultiple loci of control
deaision making. Thus, distributed and decentralized control has active com-

ponents located on different nodes and those components are capable of making

independent control decisions.

2.4 AN FDPS APPLICATION --= DATA FLOW PROCESSING

The operating characteristics specified for an FDPS appear to be
especially suited to applications composed of cooperating processes that may
be executed simultaneously. One class of such applications have been referred
to as data flow networks [Denn78, Nels78]. They utilize the.independence of
the processors combined with the implicit potential for parallel operation of
data flow networks to improve performance. In addition to potentially improve
ing performance, the data flow approach often provides a more natural method
for expressing a solution to a particular problem. Other systems, including
ADAPT [Peeb80], Medusa [Oust80], and TRIX [Ward80], have been designed to ser-
vice similar types of applications. An application of this type can be
expressed either as a command level program [Akin78) or a program in a high
level language [Feld79, MaccB0]. The execution of individual processes may
result from the invocation of files containing either executable code or con-
mands. In such a system, calls to other processes (executable files or com-

'r"* e e e e e S

i wins g ""!'v‘
“

Section 2 INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS Page 19

mand files) can originate from any process, and the nesting of such calls is

unlimited.

2.5 PROJECT SCOPE AND ORGANIZAIION OF IHIS REPORT

Following these two sections of introductory comments, this report
discusses the results of an initial study of distributed and decentralized
control including, where appropriate, material concerning the results of other
projects 1in the Georgia Tech Research Program on Fully Distributed Processing
Systems (FDPS). This initial study of FDPS control has been focused primarily
on the qualitative aspects of various forms and implementations of control.
The project description is as follows:

"Define and refine existing models of distributed and decentralized

control and develop new models as appropriate to provide a
capability of fault tolerance, automatic reconfiguration, and
dynamic control.™

It is important to note that very few "existing models of distributed
control™ have been identified and those that have been located are so incom-
pletely defined that this project has proceeded primarily by defining can-
didate models while attempting to develop a suitable taxonomy of other pos~
sible models. Since this projeect was undertaken fully cognizant that a
quantitative study of the models would follow immediately, it is felt that the
development of such a taxonomy will help to insure that no significant

variations are overlooked.

2.5.1 Discussion of FDPS Models
Along with the development of the various models for distributed and %
¢ decentralized control, the FDPS team is also developing total system modeils.
These system models provide an essential part of the description of the total
environment within which the executive control must operate. Although it is

clear at this time that these system models are still evolving, descriptions

‘?; of their present versions are presented in Section 3.
- 2.5.2 Lasues in Decentralized Control
i_H Although most readers probably have some understanding of the functions
14 of tne executive control in a centralized system, the overall effects of the 1
{'i distributed environment and the set of totally new requirements placed on a
} > decentralized executive control are perhaps not so obvious. The purpose of
L) Section 4 is to discuss the effects of the operating environment and to
; 1
|

Page 20 INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS Section 2

explicitly identify as many as possible of the new control requirements and

limitations as well as variations from centralized control models.

2.5.3 York Requests

There 1is a strong relationship between the forms of work requests that
the distributed system is expected to process and the capabilities required in
the control model. Section 5 focuses on the variations possible in the work
requests leaving the discussion of the resulting effects on the operation of

the executive control until Section 7.

2.5.4 Characteristics of a Decentralized Control Model

Section 6 of this report presents and discusses those attributes that
distinguish yarious models in the present catalog of decentralized controli
nolel2, (Note that this is not presented as a complete "taxonomy.") The
attributes are characterized in terms of the information that needs to be
maintiin»d and the decisions that must be made by an executive control. Also
discussed 1in this section are some of the operational aspects of the models

identified thus far.

2.5.5 Contrel Model Functions

It is during a detailed discussion of the functions performed by an
executive control that many of the aspects of decentralized control are best
highlighted. In Section 7T discussion of the individual operations are
presented and then representative examples of functions such as task graph
building are discussed. (A task graph is used to maintain information about
the proccsses being utilized to satisfy a work request. See Paragraph 7.1 for
a more complete definition of task graphs.) Experience has shown that many
individuals do not fully grasp the significance of distributed and
decentralized control until they study examples such as those presented in

Section 7.

2.5.6 Example Control Models

A few specific control models that have been developed thus far are
presented in Section 8. These 1include control models advanced by other

research teams as well as several developed in the FDPS research program.

2.5.7 Control Model Evaluation

Immediately following this survey of control models the various models

will be evaluated. Section 9 presents a preliminary discussion of some of the

evaluation criteria to be applied.

e

gy

——
v

. eme e

Section 3 FDPS SYSTEM MODELS Page 21

SECTION 3

FDPS SYSTEM MODELS

3.1 INTRODUCTION

Models \serve extremely important, if not essential, roles in the
development of complex systems. This is especially true for systems in which
the effects of complexity are further complicated by inconsistencies,
ambiguities, and incompleteness in the use of the terms that are employed to
describe the structure as well as the operation of the systems involved and
the components thereof. Suitable models are valuable, if not essential, tools
to support and clarify sucb discussions. When examining or using any model,
it 1is equally importan!{ to recognize that it may have been prepared or
developed for a specific purpose (e.g., logical or physical description,
simulator design, implementation guide, etc.) and may not be totally suitable
for other uses.

3.1.1 Why a "New" Model and "New" Ierminology?

Since tne concepts c¢f "full distribution" were first conceived over four
years ago, members of the FDPS project have been plagued by severe problems in
explaining the significance of various aspects of the definition of an FDPS.
Most of these problems have been caused by the difficulties in clearly com-
municating the extremely important differences between "fully" distributed
systems and those that are merely "distributed." These problems in understan-
ding appear often to result from the "listener" incorrectly equating certain
aspects of FDPS operation with those of a similarly appearing distributed
system. Such misunderstandings are not totally unreasonable, for some of the
most significant differences are quite subtle. One highly desirable effect
anticipated from "new" system models and "new" terminology is to prevent, or
at least make less likely, these undesirable associations with existing system

concepts.

3.1.2 Approaches to Modelling

There are a number of approaches that may be followed in the developnent

of a system model. The selection of the approach to be taken is based on the

intended use of the model and the nature of the system being modelled.

ROV

RIEY 22
] - P

Page 22 FDPS SYSTEM MODELS Section 3

3.1.2.1 Scenario or Flow Chart Models

Certainly one of the most commonly encountered models is the simple flow
chart. A flow chart depicts the thread or threads of processing that the
system will perform in response to a given set of inputs. A flow chart is
probably the best method to illustrate or model the sequence of processing

activities involved in a transaction processing or similar type system.

3.1.2.2 Structure Models

Logical and physical structure models are focused more on the organiza-
tion and modularization of the processing software and hardware than on the
actual processing those modules perform. Perhaps the most important use of
structure models is in the partitioning of functionality and code for

implementation.

3.1.2.3 Interaction Models

Interaction models which focus on the relationships between software and
nardware processing entities are becoming quite popular in the area of com-
puter networks; however, they are certainly not 1limited to Jjust those
applications. The basic principle employed in the development of these models
is layering with interactions between pairs of peer 1layers and sets of
adjacent layers being specified. The operation and functionality provided by

each layer is defined in terms of its protocols and interfaces.

The rules and procedures defining the interactions between peer layers
are known as "protocols," whﬁreas "interfaces®™ define the boundaries and
procedures for interaction between adjacent 1layers. (See Figure 2) (This
usage of the term "interface™ 13 consistent with its definition as the boun-
dary between dissimilar entities.) To complete the system description at this
level of abstraction, the interfaces are defined in terms of the services

provided by a lower layer and the services provided to a higher layer.

It should be noted that in the area of computer networking, the combina-
tion of a complete set of protocols and a complete set of interfaces is

referred to as a "network architecture.”

Preparing a layered model with defined interfaces and protocols is no
guarantee that a "clean" layering structure will result. A classic example of
this is the ARPANET layers of protocol shown in Figure 3. Although they all
make use of the Host-to-IMP protocol, there are many instances in ARPANET in

which layers are bypassed completely.

.

FDPS SYSTEM MODELS Page 23

Section 3

Protocols

!
'

!'vl.r.
- w MR NRE PR -
Ly
4 1 8
T.
n
8
] ol
('™ . -
£, §
[[
] : -
5 }
H i
S SO !
]]] !
: ! i] J | i }
v v \'4 v v /\k - l((lllll\
j o
-
= t = «~N -— o *
£ = £ t £ o |7
o ¢« o .] e o o Q [] Q [
by £ > o > o :
[] o o] o L] [
-2 E) -3 | [| | '
o e .
-1] i
lllllllllllllll — e W e ——— —————— — [,
A A A A A)
P | b 3 |
! i i 8 _
]] ! o
= 1.. x o~ - [h
B = -} R ay [4 ©
A > Q
] [“] O
[] u] [»
: :] i 4
v v v v \%4 (-9
L]
- 3V}
= ' x o~ - b4 ﬁw
S = 13 S S w -
o * o o @ e o o [} o i
21 % 5 |5 & .
| W.]] - .
SIS DU U DU S SR S F. {
; o
*
h
*
bl - (w oo \ o B - ~ 'S ad
e~ — ® ——— - -~

Page 24 FDPS SYSTEM MODELS Section 3
| ! !
| | i
! ' | ! |
! ! Remote ! !
! ! Job ! H
! ! Entry | '
g ! d !
H ! ! }
| File ! ! !
! Transfer |] H
! Protocol | Telnet ! !
i ! (FTP)]]]
!] | | !
' | | Initial ! i
: | | Connection | |
‘ ! ! ! Protocol | H
! | ! (ICP) | !
! |]] |
! | |
] Host-to-Host !] :
! ! |
! , |
4 ! Host-to-IMP (Interface Message Proceasor) H
! | H

Figure 3. The ARPANET Protocol Layers

REIEY T

[.
L4

k)
bR
*

1

Section 3 FDPS SYSTEM MODELS Pge 8

3.1.2.4 Performance and Mathematical Models ‘
Obviously, the objective or purpose of this class of models is to

provide tools to examine, and usually quantify, the performance of a system.

3.1.2.5 Summary of Model Types

The various types of models discussed above do not represent different
ways to accomplish the same fask. Although there is some common information
found 1in or derivable from two or more of the various type of models, each is
actually focused on quite different aspects of the system description.

- Physical structure model: Depicts the manner in which the various

hardware and software components are partitioned and packaged.

- Logical structure model: Focuses on the functionality provided by
the hardware and software components and how they may be logically
organized into modules.

- Scenario or flow chart model: Depicts the gsequence of processing
actions taken on the data.

- Interaction model: Focuses on the jnteractions between processing
entities --- services provided to or received from adjacent layer
entities and the protocols governing the communication and
negotiations that can occur between corresponding peer layers.

- Analytic model: Focuses on the performance of complete systems or
Sybsystems. Often the external performance characteristics of the
system being modelled are available.

- Simulation model: Depicts a system or subsystem by modelling as
cloge as possible the operations that it performs. Provides more

internal detail than an analytic model.

3.2 QIHER MODELS

Although the work on FDPS models has certainly been strongly influenced
by the numerous existing "models"™ of multiprocessors, multiple computer
systems, and computer networks, there has been very little influence from
other "distributed system" models since few of these have been developed to
the point that they can be closely analyzed. One model that has had a great
deal of influence on the development of the FDPS models, at ieast in guiding
the manner in which those models are presented, is the "Reference Model. for
Open System Interconnection" developed by Sub-Committee 16 of the Inter-

national Standards Organization Technical Committee 97.

3.2.1 Ibe IS0 Reference Model for QOS5I

The IS0 Reference Model, a layered-interaction model, is being prepared

by Sub-Committee 16 to establish a framework for the development of standard

— oy IRt S b o i e i ATt ol
. . Clpay s s
i § - . L 3 e, o ST W R -

CA

23
£
S
*
K
S
.

r"‘—"—m—'——-——m

Page 26 FDPS SYSTEM MODELS Section 3

protocols and interfaces as appropriate for the interconnection of
neterogeneous nodes in an "open" computer network and the intercommunication

between the processes in these nodes. (This model is almost totally focused

on the IFC process, i.e., interprocess communication.) The ISO model is a

7-layer structure as shown in Figure 4.

Although the ISO Reference model has been influential in providing ideas
] and concepts applicable to a layered model of an FDPS, there are two major
factors limiting its dirsct applicability:

1. The ISO model is almost totally concerned with communication
between the nodes of a network. Some references are made to
higher level protocols in the applications layer, but these are
not a part of the ISO model.

2. Although it is not explicitly stated, there appears to be a
general assumption in the ISO model of a degree of coupling
that is tighter than that anticipated for an FDPS. (This com=-
ment also applies to nearly all of the current network
architectures --- even those that include application layer
protocols.)

3.2.2 Protocol Hierarchies
As stated above, the ISO Reference Model addresses only a subset of the

protocols and interfaces that will be found in a complete distributed system.

A more complete picture is shown in Figure 5.

3.3 IHE FDPS MODELS

3.3.1 Ihe FDPS Logical Model
The current version of the FDPS logical model is organized into five

layers above the "physical interconnection" layer. (Figure 6) The important
(or significant characteristics of this logical model are:

1. It is also a rudimentary layered-interaction model; however, to
- be useful, the interaction model must eventually delineate more

‘£~ layers.

'j . 2. The operating system has been divided into two parts based on a
- division of functionality and responsibilities:

‘ a. The Local Operating System (LOS) is responsible

' §8 for the detailed control and management of the
. users and resources at a single node.

, Y b. The Network Operating System (NOS) is

{ ¥ responsible for interactions between this node

and all others.

“Ae,

by 4

Section 3 FDPS SYSTEM MODELS Page 27

3. The correlation of FDPS layers and ISO layers is the following:

EDPS Layers IS0 Lavers
Users and Resources
Local Operating System Application

Network Operating System

Message Handler Presentation
Session

Transport

Message Transporter Network
Data Link

Physical
3.3.2 An EDPS Rhysical Model
One of the possible physical models for an FDPS operating system is
shown in Figure 7. This is a good example of how logical models and physical
models may differ in their modularization. 1In Figure 7, the division between
the LOS and NOS layers of the logical model runs horizontal through the
MANAGERS in the physical model.

3.3.3 Ihe EDPS Interaction Model
All of the individual layers of the FDPS interaction model have not yet

been identified; however, a more detailed list of the protocols that may be
loosely related to Figure 5 is given in Figure 8. This list of protocols is
especially significant to the FDPS research project since it identifies those

specific areas in which work must be done,

Page 28 FDPS SYSTEM MODELS Section 3

! |
Application |{eeema Application Protocols----->} Application
{]
]]
!]

Presentation |<{---~Presentation Protocols----->| Presentation
]

- — - a—

Session {{~=-Session Control Protocols—--> Session
|
!
Transport {<--Transport Control Protocols-~>| Transport
4 f
hv l
‘ |
Network {--=Network Control Protocols--=>| Network

]
{me=e===Data Link Protocols-—---=>| Data Link
. 1

!
{~e=w——-Physical Protocol—=—-w--=>| Physical

Data Link

Physical

—— e e v e e Aman e -

Interconnection Media

-

————— - man V- —— —— v S i S e feen S ek S —— ——

. M e e Gt —an My i - - . A T e e em S St = e mam e Eew
e i o 4 e S e bt

Figure 4, The ISO Reference Model for O0SI

Y b
- - .

PYs

vy
>
Py ———————

Section 3

->

FDPS SYSTEM MODELS
NOS System Calls by the LOS
! b o !
! Resources | | ! | Resources |
! & Users o ! | & Users !
d I o i<
! b Resource o !
! Local o Sharing H Local |
| Operating | |<emwe= and -—==>! | Operating |
| Systenm o Host~to-Host ! | System i
! I Protocols [}
! [[|
! Network I ! | Network |
| Operating | | ! | Operating |
i System o | 1 System !
| 1| - !
! U Communication M H
| Presentation | |<{eceeew- Protocols =--~~>! | Presentation |
! | S !
| A L H
! Session Frod | || Session |
! I b H
! ! | |{e== - Transport -=>{ | | !
!} Transport | | | Protocols ! | | Transport |
! Pl | !
! P P !
! Network Vb | 1 | Network !
' i1 i !
| | ! |
| Data Link ! ! Data Link |
] }] |
| | | !
! Physical | ! Physical |
! | !]
! !
] Interconnection Media :
!
Communications
i< Sub-net >
Protocols

Figure 5. A "Complete™ Protocol Hierarchy

Page 29

N

YR

E
i
i
3
)
A

Page 30 FDPS SYSTEM MODELS

\ USERS AND RESOURCES

\ LOCAL OPERATING SYSTEM /

\ NETWORK OPERATING SYSTEM /

\ MESSAGE HANDLER /
N _/
\ /

\ MESSAGE TRANSPORTER /

PHYSICAL
INTERCONNECTION

STTTTr
S N

/ MESSAGE TRANSPORTER \

/. \
/ \
/ MESSAGE HANDLER \

/ NETWORK OPERATING SYSTEM \

/ LOCAL OPERATING SYSTEM

/ USERS AND RESOURCES

Figure 6. A Logical Model of an FDPS

Section 3

Section 3 FDPS SYSTEM MODELS Page 31

!]
#88 NODE m #&# | Users |
I (m) H
| H
|
]] ! ! P !
| Data | ! ' | comanp | | H
| Bases | ! Processes | | INTERPRETER | | Resources |
I (m) | ! (m) P (m) b (m) d
1] ! bt | i
_ ! ! !
H H ! i !
| DATA | | ' 1 | | :
! BASE ! | PROCESS ! ! PROCESS | ! RESOQURCE 4~
{ MANAGER | | CONTROLLER | | MANAGER | | MANAGER |
i (m) P (m) ! i (m) H ! (m) '
| P | | ' | !
| H ! !
] !
! MESSAGE HANDLER & TRANSPORTER !
,) d
—l | ! H .
| } ! | !
! DATA -} |] | .] ! !
| BASE % | PROCESS | | PROCESS | | RESOURCE |
| MANAGER | | CONTROLLER | ! MANAGER ! | MANAGER !
| (m) [(n) ! g (n) ! | (n) !
! I !] !] ! ,
! | | !
!] | P I H !
| pata | ! | ' comMaND | | ! i
4 | Bases | { Processes | | INTERPRETER | | Resources | i
| (n) | | (n) H (n) I (n)] .
) | J o [| ~
|
) . { '
3 888 NODE n %% | Users |
. I (n) |}
. | |
¥,
2% Figure 7, Physical Model of FDPS Control
U

- Page 32 FDPS SYSTEM MODELS Section 3

Computer Network Protocols
[}

Resource
Communications Sharing
Protocols Protocols#s

]

]

}=(Processing -(Data Base Control)
Communication) |-File naming
|-Message Formatting |-File access
}=Addressing |-File transfer

l-Update concurrency

1
]
]
!
!
|
-(Message Handling) ! control
|-Destination |
! resolution |=(Access)
|=Connection | l=Virtual terminal
! establishment ! |-Access control
|-Message transfer | [=User interface
H | ~Human
. -(End-to-end) ! |=Internal
‘ {-Presentation® |
|=(Work Request Processing)

|=~Resource management
-(Transport Subsystem) | |-Identification of

l=Transport#® | resource requirements
|-Network control# |-Resource location
l=Data link® |=Resource selection

{-Resource deallocation

|
!
|
|-Physical® | |-Resource allecation
|
}-Task management

!
!
!
H
]
|
]
|
i
|
!
|
]
! }-Session®
}
|
!
!
!
!
!
|=(Communications Subnet)
1
|
]
!
!
|

4 l-Network control |-Execution control
{ |-Routing |=-Synchronization
} }-Broadcast |-Failure recovery
}=Data 1link
|-Physical

Clagsifications (layers) defined by the ISO and CCITT
Network Architecture Models

#% A preliminary list for FDPS's

Figure 8. Classifications of Computer Network Protocols

i
. Section U ISSUES IN DISTRIBUTED CONTROL Page 33 ,
SECTION &4 5
‘ ISSUES IN DISTRIBUTED CONTROL
H

Before examining specific aspects of executive control in an FDPS, a
look at some of the various issues of distributed control is appropriate.
There are three primary issues that require examination: 1) the effect of the
dynamies of FDPS operation on an executive control, 2) the nature of the
information an executive control must maintain, and 3) the principles to be

utilized in the design of an executive control.
4.1 DINAMICS o
Dynamics 1is an inherent characteristic of the operation of an FDPS. ‘
Dynamics are found in the work load presented to the system, the availability
of resources, and the individual work requests submitted. The dynamic nature

of each of these provides the FDPS executive control with many unique

problems.

4.1.1 Morkload Presented to the System
[In an FDPS, work reque;ts can be generated either by users or active i 5
processes and can originate at any node. Such work requests potentially can 7
require the wuse of resources on any processor. Thus, the collection of
executive control procedures must be able to respond to requests arriving at a
variety of locations from a variety of sources. Each request may require

system resources located on one or more nodes, not necessarily including the

 bonade Al ¢ 1 h -

originating node, One of the goals of an FDPS executive control is to respond
4 to these requests in a manner such that the load on the entire system is

balanced.

_ 4.1.2 Availability of Resources
; . Another dynamic aspect of the FDPS environment concerns the availability
T of resources within the system. As mentioned above, a request for a service
to be provided by a system resource may originate at any location in the

& system. In addition, there may be multiple copies of a resource or possibly

l g nmultiple resources that provide the same functionality (e.g., there may be
!‘i functionally equivalent FORTRAN compilers available on several different
f nodes). Since resources are not immune to failures, the possibility of losing
L} existing resources or gaining both new and old resources exists. Ther«fore,
}“' an FDPS executive control must be able to manage system resources in a dynamic $

ERRPY e
- 4 o .

Page 3k ISSUES IN DISTRIBUTED CONTROL Section U

environment in which the availability of a resource is unpiredictable.

4.1.3 Individual Work Requests

Finally, the dynamic nature of the individual work requests must be
considered. As mentioned above, these work requests define, either directly
or indirectly, a set of cooperating processes which are to be invoked. An
indirect definition of the work to be done occurs when the work request is
itself the name of a command file or contains the name of a command file in
addition to names of executable files or directly executable statements. A
command file contains a collection of work requests formulated in command
language statements (see Figure 10 for a description of the syntax for a
suitable command language) that are interpreted and executed when the command
file is invoked. The concept of a command file is similar to that of a

procedure file which is available on several current systems.

Management of the processes for a work request thus includes the pos-
sibility that one or more of the processes are command files requiring command
interpretation. The presence of command files will also result in the
inclusion of additional information in the task graph or possibly additional
task graphs. (See paragraph 7.5 for a discuscion of the impact of command

files on the task graph.)

An important objective of work request management is to control the set
of processes and do s0 in such a manner that the inherent parallelism present
in the operations to be performed is exploited to the maximum. In addition,

situations in which one or more of the processes fail must also be handled.

4.2 INFORMATION

All types of executive control systems require information in order to
function and perform their mission. The characteristics of the information
available to the executive control is one aspect of fully distributed systems
that result in the somewhat unique control problems that follow:

1. Because of the nature of the interconnection links and the
delays inherent in any communication process, system informa-

tion on hand is glwavs out of date.

2. Because of the autonomous nature of operation of all com-
ponents, each processor can make "its own decision™ as how to
reply to an inquiry; therefore, there is always the possaibility
that information received is incomplete aAnd/or inaggurate.

3. Because of .the inherent time delays experienced in exchanging

- Section 4 ISSUES IN DISTRIBUTED CONTROL Page 3¢

information among processes on different nodes, some informa-
tion held by two processes may gonflict during a particular
time interval.

4.3 DESIGN PRINCIPLES

Designing the system control functions required for the extremely

loosely-coupled environment of an FDPS and implementing those functions to
operate in that environment will certainly require the application of some new
design principles in addition to those commonly utilized in operating systems
for centralized systems. These design principles must address at least the
two distinguishing characteristics of FDPS's:

- System information available, and
- Nature of resource control

4.3.1 System Information

The various functions of an FDPS executive control must be designed

recognizing that system information is:

"Expensive™ to obtain
Never fully up-to-date
Usually incomplete
Often inaccurate

-
LI I |

'

All of these characteristics of system information result from the fact
that the components providing the information are interconnected by relatively

narrow bandwidth communication paths (see paragraph 2.3.1) and that those com-

ponents are operating somewhat autonomously with the possibility that their
state may change immediately after a status report has been tansmitted.

(Further, it is important to note that the mere existence (or disappearance) of

a resource is not of interest to a specific component of the FDPS executive

‘\.; control until that component needs that information.

{ -

' The design principles applying to system information that have been

. identified thus far include the following:

'{:, 1. Ecopnomvy of <communication: ask for only the information

' required.

i ; 2. Resiliency: be prepared to recover and continue in the absence

' of replies.

Y 3. Flexibility: Vbe prepared to recover and continue if the
information provided proves to be 1inaccurate when it is
utilized.

Y 2
» - P

Page 36 ISSUES IN DISTRIBUTED CONTROL Section 4

4.3.2 Resource Control

Since all of the resources are operating under local control under the
policies of cooperative autonomy, all requests for service, or the utilization
of any resource such as a file, must be effected through negotiations that
culminate in positive acknowledgements by the server. In all instances, the

control function requesting a service or a resource must be prepared for

refusal.

S e W e

Section 5 CHARACTERIZATION OF FDPS WORK REQUESTS Page 37

SECTION 5

CHARACTERIZATION OF FDPS WORK REQUESTS

5.1 IHE WORK REQUEST

One of the goals of an FDPS is the ability to provide a hospitable
environment for solving problems that allows the user to utilize the natural
distribution of data to obtain a solution which may take the form of an
algorithm consisting of concurrent processes. The expression of the solution
is in terms of a work request that describes a series of cooperating proces-
ses, the connectivity of these processes (how the processes communicate), and
the data files wutilized by these processes. This description involves only
logical entities and does not contain any node specific information. A
description of one command language capable of expressing requests for work in

this fashion can be found in [Akin78] {sec Figure 10).

5.2 IMPACT OF IHE WORK REQUEST ON THE CONTROL

The nature of allowable work requests (pnot just the syntax but what can
actually be accomplished via the work request) determines to a large extent
the functionality of an executive control. Therefore, it is important to
examine the characteristics of work requests and further to see how variations
in these characteristics impact the strategies utilized by an FDPS executive

control.

Five basic characteristics of work requests have been identified:

1. the external visibility of references to resources required by
the task,

2. t-e presence of any interprocess communication (IPC)
specifications,

3. the number of concurrent processes,
4. the nature of the connectivity of proceases, and
5. the presence of command files.
5.2.1 Yisibility of References to Resources

References to the resources required to satisfy a work requect may
either be visible prior to the execution of a process associated with the work
request or embedded in such a manner that some part of the work request must

be executed to reveal the reference to a particular resource., A resource is

made "visible" either by the explicit statement of the reference in the work

came e -

r /N

Page 38 CHARACTERIZATION OF FDPS WORK REQUESTS Section 5 1

request or through a declaration associated with one of the resources
referenced in the work request. An example of the latter means of visibility
is a file system in which external references made from a particular file are
identified and stored in the "header” portion of the file. 1In this case, the

identity of a reference can be obtained by simply accessing the header.

The greatest impact of the visibility characteristic of resource
requirements occurs in the construction of task graphs and the distribution of
work. The time at which resource requirements are detected and resolved
determines when and how parts of the task graph can be constructed.
Similarly, some work cannot be distributed until certain details are resolved.
For example, consider a case where resource references cannot be resolved
until execution time. Assume there exists two processes X and Y where process
X has a hidden reference to process Y. An executive control cannot consider Y
in the work distribution decision that is made in order to begin execution of
X. The significance of this is that certain work distribution decisions may
not be "globally optimal™ because total information was not available at the

time the decision was made.

(5.2.2 The Number of Concurrent Processes

A work request can either specify the need to execute only a single
process or the execution of multiple processes which may possibly be executed
concurrently. Obviously with multiple processes, more resource availability
information must be maintained; and there is a corresponding increase in the
data to the work distribution and work allocation phases of control. In
addition, the complexity of the work distribution decision algorithm increases
(with more resources needing to be allocated and multiple processes needing

scheduling. The complexity of controlling the execution of the work request
is also increased with the presence of multiple processes since the control i

must monitor multiple processes for each work request.

P o e
R PR

5.2.3 Ihe Presence of Interprocess Communication
The problems described in the previous paragraph are amplified by the

., o

presence of communication connections between processes. When interprocess
communication is described in a work request, the work distribution decision

e e vy

must consider the requirement for communication links. In addition, a com-

Y promise must be made in order to satisfy the conflicting goals of maximizing

the inherent parallelism of the processes of the work request and minimizing

—— g~

T et

Section 5 CHARACTERIZATION OF FDPS WORK REQUESTS Page 39

the cost of communication among these processes. The control activity
required during execution is also impacted by the presence of interprocess
communication. It must provide the means for passing messages, buffering mes-
sages, and providing synchronization to insure that a reader does not under-

flow and a writer does not overflow the message buffers. %

5.2.4 The Nature of Process Connectivity

There are a variety of techniques available for expressing interprocess
communication including pipes (see [Rite78)) and ports (see [Balz71, HaveT78,
Suns77, Zuck771). There are a number of approaches to realizing these
different forms of interprocess communication, The main impact on an
executive control, though, is in those components controlling process

execution.

5.2.5 Ihe Presence of Command Files
A command file is composed of work requests. Execution of a work
request that references a command file results in a new issue dealing with the
construction of task graphs. This issue is concerned with whether a new task
{ graph should be constructed to describe the new work request or should these
| new processes be included in the old task graph. The differences between
these two approaches becomes important during work distribution. It is

assumed that the work distribution decision will be made only with the

information available in the task graph. Thus, with the first approach, only
those tasks in the new work request are considered while the second approach

provides the ability to take into consideration the assignment of tasks from

PR

(previous work requests.

5.3 A CLASSIFICATION OF WORK REQUESTS

k.: This examination of the characteristics of FDPS work requests has lead
;; to the identification of five basic attributes which have significant impact
b on an executive control. In Figure 9, all possible types of work requests are
; % enumerated resulting in 32 different forms of work requests. It should be

. noted, though, that 16 of these (those with an asterisk beside the task num-

ber) contain conflicting characteristics and thus are impossible.

o -

A — g
3
£ X

- R g

)
L
-l 2T

T S e

[Ts)
[~}
[}

i

o
Q
[}

/5]

CHARACTERIZATION OF FDPS WORK REQUESTS

page 40

-— e e e mm S

] muo
[V] 0 =

MPdTN

uo —— -

PRl R

enhom
s O & M
o
/]
[] OO
-~ % O0O®
a9 %
S 20
lOSqP\w
mce
[

G

[QL] = (o]

03 [

59889

O & O

NPONNZEZW

Q N O (5]

[] [~ >

(=]

e]
(=]
=

(&)
[
"q
2
T
e 3
[-] el
mmd
g2
[¥
s &
[
]
© []
| 5 4
340
O
N < 0
@ =
" -3

T T

No.

——in S e - e Gvee e e Than A G S Meen FEEs Sees e e PG D Geen ERen G e e SPar S Gear e feae G e Same

e S mm— —s Geme T T G En e e G SR Geae SOlr Shar GeR Shen EEEr s e e PN e PTG e SR G VSl e S e S

A e e mam S SR AP Geen am Gt G Gy S S M e e - A Siae S Gme A Sty S b e Cmen G g f——

— — . G S e S e S G G W T e A N Ehdn Feam e S G e SR M SR Gtdae S e et Shan S e S

5 ¢ 4 L R Rl > >4 PG M4 bS ¢ ¢ M

- G S - S —— - — . Gm—w e mm fmet Smms Shes G SA e feen e Gnen Eeer WG Gman e e Gmve e G S S S—— W

LR R R R N > d¢ DS DG B P D

— e - o S e e e - Gmar Srur fmmm e RS Sh4e Seen Emam T e G e G e s S mmem e Enen e e

54 >4 b D 5 X B X bl DS D 4 D e ¢ X

bl B4 DS DL DG B DG D DG D DE P DE g D4

—— - ——m— an Smh G- mm e SRR M Gme St S P Wew Ehem S Grie S e e M G S Gmes E—en Sy ShE e t—

b DG DC D4 D DY DX D DG D D X D DS S I

L A L J
NN NOYE-DNO —N
NANNNANNNNOOMN

Classification of Work Requests

Figure 9.

PR, 4 = ~

o . 7
o el . SN S ARSI

Section 6 CHARACTERISTICS OF FDPS CONTROL MODELS Page 41

SECTION 6

CHARACTERISTICS OF FDPS CONTROL MODELS

6.1 APPROACHES TO IMPLEMENTING FDPS EXECUTIVE CONTROL

There are two basically different approaches available for implementing
an operating system for a distributed processing system, the base-level
approach and the meta~system approach [Thom78)]. The base-level approach does
not utilize any existing software and, therefore, reguires the development of
all new software, This includes software for all local control functions such
as memory management and process management. In contrast, the meta-system
approach utilizes the "existing" operating systems (called 1local operating
systems (LOS)) from each of the nodes of the system. Each LOS is "interfaced"
to the distributed system by a network operating system (NOS) which is
designed to provide high level services available on a system-wide basis. The
meta~-system approach is usually preferred due to the availability of existing
software to accomplish local management functions, thus, reducing develcpment

costs [Thom78]).

Figure 6 depicts a logical model applicable to an FDPS executive control
utilizing either approach. The LOS handles the low-level (processor-specific)
operations required to directly interface with users and resources. In the
meta~-system approach, the LOS represents primarily the opergting systems
presently available for nodes configured in stand-alone environments. The LOS
resulting from a base-level approach has similar functionality; however, it
represents a new design, and certain features may be modified in order to
allow the NOS to provide certain functions normally proviced by the LOS. Any
"network" operations are performed by the NOS. System unification is realized
through the interaction of NOS components, possibly residing on different
processors, acting in cooperation with appropriate LOS components. Communica-
tion among the components is provided by the message handler which wutilizes

the message transport services.

6.2 INFORMATION REQUIREMENIS

Two types of information are required by an executive control, informa-
tion concerning the structure of the set of tasks required to satisfy the work

request and information about system resources. This data is maintained in a

variety of data structures by a number of different components.

— ’ o h N

- Page 42 CHARACTERISTICS OF FDPS CONTROL MODELS Section 6

6.2.1 Information Requirements for Work Requests

Each work request identifies a set of cooperating tasks, nodes in a

logical network that cooperate in execution to satisfy a request and the con- .
nectivity of those nodes. Figure 10 illustrates the notation used in this
project to express work requests. An example of a work request using this
notation is presented in Figure 11. Work requests as linear textual forms can
be easily accepted and manipulated by the computer system; however, task
graphs, which are an internal control structure used to describe work |
requests, must be represented in a manner such that the linkage information is
readily available. ’ This can take the form of the explicit linking of node

control blocks (Figure 12) or an interconnection matrix (Figure 13).

Information concerning a particular task, i.e., 1logical node, is

- maintained 1in a node control block (Figure 12), Associated with each logical
node is an execution file, a series of input files, and a series of output

files, The node control block contains information on each of these entities

that includes the name of the resource, the locations of possible candidates

that might provide} the desired resource, and the location of the candidate

(resource chosen to be utilized in the satisfaction of the work request. In
addition to this information, the node control block maintains a description

' \ of all interprocess communication (fPC) in which the node is a party. This
. consists of a list of input ports and output ports. (Interprocess communica-
tion is a term describing the exchange of messages between cooperating proces-

ses of a work request.) Typically, a message is "sent™ when it is written to

the output port of a process. The message is then available for consumption

(by any process possessing an input port that is connected to the previously

mentioned output port. The message is actually consumed or accepted when the

process owning the connected input port executes a READ on that port.

A global view of interprocess communication 1is provided by the node

" pa T" ~‘.’_~‘ N

interconnection matrix (Figure 13). This structure indicates the presence or

absence of an IPC link between an output port of one node and an input port of

-

another node., Thus, links are assumed to carry data in only a single direc-

e -

tion.

>, ———
alamitetn adeddie ot

An example of a task graph resulting from the work request in Figure 11
utilizing the direct linking of node control blocks is presented in Figure 14,]

)
F" Figure 15 illustrates the utilization of an interconnection matrix.
!

- s

!
i - !

. Section 6 CHARACTERISTICS OF FDPS CONTROL MODELS

<work request> ::= [<logical net> { ; <logical net> }]

<logical net> ::= <logical node> { <node separator>
{ <node separator> } <logical node> }

<node separator> ::= , | <pipe connection>

<pipe connection> ::= [<port>] '|' [<logical node number>]
[.<port>]

<port> ::= <integer>
{logical node number> ::= <integer> | $ | <label>

{logical node> ::= [:<label>] [<simple node> |
<compound node>] |
(<simple node> | <compound node>)

<simple node> ::= { <i/0 redirector> } <command name>
{ <i/0 redirector> | <argument> }

<compound node> ::= { <i/0 redirector> } '{' <logical net>
‘ { <net separator> <logical net> } '}
{ <i/0 redirecotr> }

<i/0 redirector> ::= <file name)> *'>' [<port>] |
[<port>] '>' <file name> |
[<port>] '*>>' <file name> |

1> [<portd]

<{net separator> ::z ;
. <command name> ::= <file name>
; : <label> ::=z <identifier>
' Figure 10. Work Request Syntax
2, (Taken from [AKIN78])

Page 43

PP T TR

St AL e

Page U4 CHARACTERISTICS OF FDPS CONTROL MODELS Section 6

Work Request:

pgnl | pg~” 1la 21b :a pgm3 | pgm¥ lc.? :b pgmS | pgmé }.2 :c pgm7
(0) (1) (2) (3) (%) (5) (6) (7 (8) (9)

(0) Output port 1 of pgml is connected to input port 1 of pgm2.

(1) Ouptut port 1 of pgm2 is connected to input port 1 of the
logical node labeled "a,™ pgm3.

(2) Output port 2 of pgm2 is connected to input port 1 of the
logical node labeled "b," pgm5.

(3) Label for the logical node containing pgm3 as its execution
module,

(4) Output port 1 of pgm3 is connected to input port 1 of pgmi.

(5) Output port 1 of pgmld is connected to input port 1 of the
logical node labeled "c," pgmT7.

(6) Latel for the logical node containing pgm5 as its execution
module,

(7) Output port 1 of pgm5 is connected to input port 1 of pgmb.

(8) Output port 1 of pgmbé is connected to input port 2 of pgm7.

(9) Label for the logical node containing pgm7 as its execution
module,

Data Flow Graph of the Work Request:

pgm1
:]
!
v
pgm2
I
N B
1]
[} 1]
¢ = :
' v
. pg!nB pgm5
]
R 1)
{- | !
N v v
s pgm‘l pegmé
]
! 1
. b !
! i
’ H
» vv
: pem?

'
-
y

Figure 11. Example of a Work Request

Section 6 CHARACTERISTICS OF FDPS CONTROL MODELS Page 45

EXECUTION FILE

Name:
Locations of candidates available:
Location of candidate chosen:

Loy

INPUT FILE 1

cdhaat

Name:
Locations of candidates available:
Location of candidate chosen:

INPUT FILE i

Name:
Locations of candidates available:
Location of candidate chosen:

OUTPUT FILE 1

Name:
Locations of candidates available:
Location of candidate chosen:

OUTPUT FILE j

Name:
Locations of candidates available:
Location of candidate chosen:

~av.

IPC

Input Ports:
Output Ports:

P —- foou
-l ‘

e e o —— —— — — — — ——— ——— n > SmGe Grmr e ean Ams E ar S e e T - e S G- SR S an e SRe S Ve Tham e T WAR e Man e ETAD TRl e en S e e e e

-

Figure 12. Node Control Block

X,

e b ;'.‘. ol
P

—r — -

%

Page U6

Mo =2mn

CHARACTERISTICS OF FDPS CONTROL MODELS
RECETIVER
N, cese N, Node
R1 voe Rm R1 cos Rp Port
ARERRERRERRERSRRRNANRNESANNRRRRNRNRES
L T] S T
s“ & loeoe | * . !oool #
£« . .|| =
.. . 'y . . »
N .o . L S * . *
1 .. . # . . ™
* s . s
LA H LA Y
S, & .. e L S .
. .| e
AESRSEEERNARSSRGNARNARNENARARRANNRN
» s
» .
. . . ®
. » . .
. . . »
» s
» ™
RGNS RNERANERESSRAANERNRRENRRNNNE
LA I LA N
s, & l...1 ¢ LA DR S
1 I .| | e
| R » N . .
N L] . L] ' os e ' L] '
n . » . » » . »
» . . .
LA I8 LA I
S, ® ... ® AN IO B
k o ! T s |
RSN RINENEARENNNESRRERANNRRARERE
Node Port

Figure 13.

Node Interconnection Matrix

4

Section 6

ey

Section 6 CHARACTERISTICS OF FDPS CONTROL MODELS Page 47

Name: pgmi
Candidates:

Chosen Candidate:
Output Port 1: —ecace-

: T
—— . —————— -

Candidates:

Chosen Candidate:
Input Port 1: | {mem
Output Port 1: ececec|=—-
Output Port 2: Joe |

!
Name: pgm2]
!
i

Name: pgnm3
Candidates:

|
| Name: pgm5
!
Chosen Candidate: {
]
!
1
]

Candidates:

Chosen Candidate:
Input Port 1: e
Output Port 1: =e—eeej-e=

— . s e - e —

~————————

<-.

Input Port 1:
Output Port 1: ——e=-

— —— vt G- — —
— —— s - —— ——

Name: pgmi
Candidates:
Chosen Candidate:
Input Port 1:
Output Port 1:

Name: pgmé
Candidates:
Chosen Candidate:
Input Port 1: | e
Output Port 1: e—ec—eaiew-

——— et e e e }
e o —

A
!

—— e —— - ——— —
— —— - — —

— ——— - ——— -

Name: pgm7
Candidates:
Chosen Candidate:
Input Port 1:
Input Port 2:

SR

— — . —— ——

A A

)
—— m—— . —— ——

— - - - ——

Figure 14, Example of a Task Graph Using Links within the
- Node Control Blocks

(Based on the Work Request Shown in Figure 11)

- Page 48 CHARACTERISTICS OF FDPS CONTROL MODELS Section 6

i RECEIVER

3 2 3 4 5 6 T Node
1 1 1 1 1 1 2 Port

FRSRRESEASRAEFARARANBARERAREN

* & & = & & ! &

1 1 #18 * * & & | @

s & ®& &« = =& 1 =

& 2 ® s 3 b |]
1 # #9% 3 =& & ! a
2 L I N . . ! &
@ & & & # # !]
2 & # & #1918 @ !]
S # * & & & @ ! »
E FRABRNRNNRESDINSIRNENNRBRINRS
i N &8 & 8 =& & @ ! s
D 3 1 ® * * 1 @ » * ! 4
E a8 = 8 & = @ | &
R SERERARESANFNNERANARRANERARES
s & % & & & !]
Y 1 & @ I I A R »
s & & 3 3 » ! #
ASSARRRENREASRNRNSRNNRRBRNNY
& = 3 & ® @8 ! .
5 1 & & & 8 w918 ! .
. & & a = = ! s
! SSENSRNEERINRENERNENRNRRRRREN
a8 ®& & @ = @] .
6 1 & 8 s 8 & @ 11 8
] a & » 8 & @ |]
e ‘ SRESRRERRNNEEERNEERGENANERNS
L
&
o Node Port
y?' Figure 15. Example of a Node Interconnection Matrix

4 (Based on Work Request Shown in Figure 11)

r"74444444444444444444444f444444::“"""-llllll"l"'.."l.lllIllIllIII!luIllll-uI-.-g..-g........-.....__...'|

Y A

Section 6 CHARACTERISTICS OF FDPS CONTROL MODELS Page 49

6.2.2 Information Requirements for System Resources

Regardless of how the executive control is realized (i.e., how the com-
ponents of the executive control are distributed and how the control decisions
are decentralized), information concerning all system resources (processors,
communication lines, files, and peripheral devices) must be maintained. This
informaticn includes at a minimum an indication of the availability of resour-
ces {(available, reserved, or assigned). Preemptable resources (e.g., proces-
sors and communication lines) capable of accommodating more than one user at a
time may also have associated with them utilization information designed to

guide an executive control in its effort to perform load balancing.

As discussed below, there are a number of techniques that may be

enployed to gather and/or maintain the system resource information.

6.3 BASIC OPERATIONS OF FDPS CONTROL

The primary task of an executive control is to process work requests
that can best be described as logical networks. A node of a logical network
specifies an execution file that may either contain object code or commands
{work requests), input files, and output files. These files may reside on one
or more physical nodes of the system and there may be multiple copies of the
same file azvailable. Thus, to process a work request, an FDPS executive
control must perform three basic operations: 1) gather information, 2)
distribute the work and allocate resources, and 3) initiate and monitor task
execution. These operations need not be executed in a purely serial fashion
but may take a more complex form with executive control operations executed

simultaneously or concurrently with task execution as the need arises.

Examination of the basic operations in further detail (Figure 16)
reveals some of the variations possible in the handling of work requests. Two
steps exist in information gathering --~ 1) collecting information about task
requirements for the work request and 2) identifying the resources available
for satisfying the request requirements., Information gathering is followed by
the task of distributing the work and allocating resources. If this operation
is not successful, three alternatives are available. First, more information
on resource availability can be gathered in an attempt to formulate a new work
distribution. There may have been a change in the status of some resources

since the original request for availability information. Second, more

information can be gathered as above, but this time the requester will

f-"""""""""""'ll-'lllllIIIlllIlllllll:lIlllllIIllllllllIlllllllllllllllllilllll!

- Page 50 CHARACTERISTICS OF FDPS CONTROL MODELS Section 6

WORK REQUEST
!

1
>
| |
! 4
! ' |
! | Gather Information |
H | (Task Requirements) |
! | !
! }
H >I<
I | 1 4
I J |
Vo H ! |
. ! Gather Information ! !
i 1 | (Resource Availability) | |
I ' ! ! YES
I } !
P \ | —
HE ' ! | |
i | (A) | Distribute Work | (B) | Bid to a | NO Report
{ I £ Sy and |ewee=>| Higher |===D>FAILURE
! | Allocate Resources | | Level? | to User
] i ' ' R |
' ! .
1 ! Notes:
! 1(C)
H] A: The proposed allocation
! \ J is not accepted by the
| (D) ! | resources.
|{ecweecewes| Execute Task |
¢ | | B: No solution with
} resources available at
‘ | (E) "this" price level.
- !
- \ A C: Allocation accepted by L
{ . ' | resources. '
M ! Cleanup |
P] | D: Appearance of a new
P | task or request for
| & ; additional resources.
¥ COMPLETED WORK REQUEST E: Normal or abnormal :
F termination. ;
v Figure 16. Work Request Processing (Detailed Steps))

———— - -
a7
1”4:‘

i

Section 6 CHARACTERISTICS OF FDPS CONTROL MODELS Page 51

indicate a willingness to "pay more" for the resources. This is referred to
as bidding to a higher level. Finally, the user can simply be informed that

it is impossible to satisfy his work request.

6.3.1 Information Gathering

Upon receiving a work request, the first task of the control is to
discover what resources are needed to satisfy the work request (Figure 17) and
which resources are available to fill these needs (Figure 18). Each work
request includes a description of a series of tasks and the connectivity of
those tasks, Associated with each task is a series of files. One is
distinguished as the execution file and the rest are input/output files. The
executive control must first determine which files are needed. It then must
examine each of the execution files to determine the nature of its contents
(executable code or commands). Each task will need a processor resource(s),
and those tasks containing command files will also require a command

interpreter.

An FDPS executive control must also determine which of the system
resources are available. For nonpreemptable resources, the status of a
resource can be either "available,™ "reserved," or "assigned." A reservation
indicates that a resource may be used in the future and that it should not be
given to another user. Typically, there is a time-out associated with a
reservation that results in the automatic release of the reservation if an
assignment is not made within a specified time interval. The idea here is to
free resources that otherwise would have been left wunavailable by a lost
process. The process may be lost because it failed, its processor failed, or
the communication link to the node housing the particular resource may have
failed. An assignment, on the other hand, indicates that a resource is
dedicated to a user until the user explicitly releases that assignment.
Preemptable resources may be accessed by more than one concurrent user and
thus can be treated in a different manner. For these resources, the status
may be indicated by more continuous values (e.g., the utilization of the

resource) rather than the discrete values described above.

6.3.2 Hork Distribution and Reagurce Allocation

The FDPS executive control must determine the work distribution and the
allocation of system resources (Figure 19 & 20). This process involves choos-

ing from the available resources those that are to be utilized. This decision

U AR AEARL s M o

KA i 8w BN

Page 52 CHARACTERISTICS OF FDPS CONTROL MODELS Section 6

SUBMISSION OF
WORK REQUEST
]

Y

Examine Work Request and Begin
Construction of Task Graph

(At this point the task graph
describes the "visible™ nodes and
their logical relationships

as expressed in the work request)

—— i —m. e m—— E—— ——— ——— —
—— e - — —— — — —

v

) !
! When is the Work Request Expanded? |
[]
t

Piecemeal | Completely Before
| Execution Begins

}
i<
\J

| |
| Locate Each Visible Resource |
!)
|
A J

'

]

!

'

|

;

!

!

i

|

! | !
| | Update the Task Graph |
! !
|

!

|

!

|

|

!

|
|
\ 4
| |
] Were Additional Resource |
| Requirements Discovered? |
} !
!
: {rewmeenneee=| NO YES
. Y
To

Information Gathering
(Resources Available)

st Gpan n S —— - aa . - o Tma -y Wt S —— — ——— -

———

Figure 17. Information Gathering (Resources Required)

e
. ?' '.! - -y . .
L el ST i

Section 6 CHARACTERISTICS OF FDPS CONTROL MODELS Page 53
® From
Information Gathering
(Resources Required)
cesscesssacsscsscsenas | From
. All Information . |{===ee--Resource Allocation
. Available On cecccscessscss | and Work Distribution
. Resources Required . Y

. Has Been Obtained . |
cesecssssscccnsssssssses | Additional Information
| on Resources Available

| Required?
!
| YES NO |

| Y

Resource Availability
Information Requested

Resource Information
Already on Hand?

1A B YES | NO |

\J |/ ! {
i . ! | !
| All Available | | Resources | | H '
] Resources Vo Requested i | How Was Resource | i
i Automatically | | Automatically | | Info. Obtained? | '
! Reserved !} 1 Reserved N ! i
i . i ' ' i H !
YYES NOY Y NO YES Y i g ! | '
1 2 1 2 R N H
. ! ! | ' !
(' | ! ! H
' | | | H
\/ A 4 \/ A j i
' P b I b
| During | | Periodic | | All Nodes | | All Nodes | |
| Previous | | Queries | | Broadcast | | Broadcast | |
! Info.]) by ! 1 Complete/ ! 1 Resource | !
{ Gathering| | RESOURCE | | Total Status | | Availability | |
| Session | | MANAGERS | | Info. i Info. I
' I | P I
¢ ' ic D! IE Fl |F E! !
Y \j Y | \j \i | \j
3 2 2 2 2 2 2 2

LEGEND AND NOTES

Resources Reserved During Information Gathering

No Resources Reserved

Some Resources May Be Reserved

General, for all resources

To meet specific task/job requirements

Replies cover information on resources available only
Replies cover information on the total status
Broadcast only significant changes

Periodic broadcasts at regular intervals d {

i ek a1 MGG T s £

TTHOUOWPEWND =

ee o4 oe s on oo

Figure 18. Information Gathering (Resources Available)

Page 54 . CHARACTERISTICS OF FDPS CONTROL MODELS Section 6

From Information Gathering
(Resources Available)
]
]

\

Run Preliminary
Resource Check

-— —— ————

! YES NO |
] ! ‘
\ ! :
' | YES P ! ;
! Preliminary Check | or ? | | Make Preliminary |
| Res,Avail > Res.Reqd |~~=e=w——==>] Resource Allocation |
! ! Vo {
Definitely} H | NO 1ES |
NO ! [{mmmea | |
{ A \ 4
: “ o ! ! !
| No Solution | Run The) } Resources |
|{=mecccrmvea-=]| Distribution/ |] tobe |
] ! Allocation | ! Reserved |
e \ § ! Algorithm | | > |
{ ! I | | Resources |
! "Bidding" | | | ! Required |
{ to a | | Success H A | }
| Higher | |} } NO | YES |
!} Level | | [COM——— !
! ! } ! N
{NO \ i ! \ A
| YES| \J |] !
\§ ! To | ! Transmit }
Report | Work] | Reservation |
¢ FAILURE | Assignment ! | Requests/ |
to User !] | Confirmation/ |
:] P Release !
b ‘ { ! } : | j
’ !] :‘
{- ! | Y ;
i ! {YES| } !
a ! Il Resource | ‘
‘ L { | Reservations |)
3, To } | Update ! NO|! Accepted |
A Info.{~=%e-| Resource Info. |{meececacwwa] !
f : Gathering |]
¢ (Resources
\ Available)
5& {
;:i Figure 19. Resource Allocation and Work Distribution
i A
’b“.‘
i
| | e 3

- . 8 N - S b . e A it o —
v Cead & Ty . R Lo > v Mt e sttt ool ‘o *—g;_‘f;—pr--

i

Section 6 CHARACTERISTICS OF FDPS CONTROL MODELS Page 55
From
Work
Distribution
1
]
}
]
]
\ J
| !] ! | 1
| Transmit] NO | Release | YES | Transmit]
} Work |{w=w] Resources |=w-->| Work !
} Assignments | ! Not ! | Assignments |
! |] Required | |]
} |] 1
! |
H H
! |
\ J \ J
! ! | i
! Work | { Work |
| Accepted | | Accepted |
| | :
. | ! { i
t | NO | YES YES | NO |
d !] 1
! A\ J | |
. [! | !
| | Release | { i
I | Resources | > !
!} | Not Used |] !
b } } }
l \ i !]
EXECUTE |
¢ l TASK :
A J !
| {]

: { Note | To)
o | Fadlure | > Information L
{- { Of This | Gathering q
1. | Solution | {Resources i

{ Available)

Figure 20. Work Assignment

rl.-.--'l-.--.ll".F"-""----l'-lllllll--"-'--'--'---"-'-!-if" -

Page 56 CHARACTERISTICS OF FDPS CONTROL MODELS Section 6

is designed to achieve several goals such as load balancing, maximum through-
put, and minimum response time. It can be viewed as an optimization problem

similar in many respects to that discussed by Morgan [Morg7T7].

Once an allocation has been determined, the chosen resources are
allocated and the processes comprising the task set are scheduled and
initiated. If a process cannot be immediately scheduled, it may be queued and
scheduled at a later time. When it is scheduled, a process control block and

any other execution-time data structures must be created.

6.3.3 Information Recording

Information is recorded as a result of management actions as well as
providing & means to maintain a historical record or audit trail of systenm
activity. The information recording resulting from management actions
maintains the cystem state and provides information for decision making. The
historica® Information is useful in monitoring system security. It provides a
means tc exwmine past activity on a system in order to determine if a breach
of secmity occurred or how a particular problem or breach of security may

have occurred.

Management information is maintained in various structures, including
the task graph. The task graph is used to maintain information about the
structure of an individual work request, and, thus, its contents change as
progress on the work request proceeds. A task graph is created when a work
request is first discovered, and information is then constahtly entered into
the =otructure as work progresses through information gathering to work
distribution and resource allocation and on to task execution. The task graph

remains active until completion of the work request.

Much of the information contained in the task graph is applicable to
historical records.. 1In fact, the task graph can be used to house historical
information as it is gathered during work request processing. Upon completion
of the work request, the historical information is extractgd and entered into
the permanent historical file. Alternatively, the historical file can be

created directly skipping the intermediate task graph structure.

6.3.4 Task Execution

Finally, an executive control must monitor the execution of active

processes. This includes providing interprocess communication, handling

requests from active processes, and supervising process termination. The

- Section 6 CHARACTERISTICS OF FDPS CONTROL MODELS Page 57

activities associated with interprocess communication include establishing]
communication paths, buffering messages, and synchronizing communicating
processes. The latter activity is necessary to protect the system from
processes that flood the system with messages before another process has time
to absordb the messages. Active processes may also make requests to the
executive control. These may take the form of additional work requests or
requests for additional resources. Work requests may originate from either

command files or files containing executable code.

An executive control must also detect the termination of processes,
This includes both normal and abnormal termination. After detecting process
termination, it must inform processes needing this information that termina-
tion has occurred, open files must be closed, and other loose ends must be
cleaned up. Finally, when the last process of a work request has terminated,

it must inform the originator of the request of the completion of the request.

6.3.5 Fault Recovery

If portions (tasks) of the work request are being performed on different
processors, there 1is inherently a certain degree of fault recovery possible.
The problem is in exploiting that capability. The ability to utilize "good"
work remaining after the failure of one or more of the processors executing a
- work request depends on the recovery agent having knowledge of the location of

that work and the ability of the recovery agent to reestablish the appropriate
linkages to the new locations for the portions of the work that were being

executed on the failed processor(s).

A BRIy e
-~ .« oL

i
. Da eweman AR TR M R e - - . .- C e e v 1

r ' - _f_________::".llll-l'.llllI!lllll--.-..........--_-__-_-_.-_-..---.‘

Section 7 VARIATIONS IN FDPS CONTROL MODELS Page 59

SECTION 7

VARIATIONS IN FDPS CONTROL MODELS

There is an extremely large number of features by which variations in
f distributed control models can be characterized. Of these, only a few basic
{ attributes appear to deserve attention. These include the nature of how and

when a task graph is constructed, the maintenance of resource availability

information, the allocation of resources, process initiation, and process
monitoring. 1In this section, these issues are examined; but again, since the
number of variations possible in each issue are rather large, only those
choices considered significant are discussed. Table 2 contains a sumnmary of
the problems that have been identified and possible solutions (significant and

reasonable solutions) to these problems.

T.1 IASK GRAPH CONSTRUCTION

The task graph is a data structure used to maintain information about
the applicable task set. The nodes of a task graph represent the tasks of the
task set, and the arcs represent the connectivity or flow of information
between tasks. There are basically four issues in task graph construction:
1) who builds a task graph, 2) what is the basic structure of a task graph, 3)
where are the copies of a task graph stored, and 4) when is a task graph
built.

The identity of the component or components constructing the task graph
is an issue that presents three basic choices. First, a central node can be
responsible for the construction of task graphs for all work requests.
Another choice utilizes the control component on the node receiving the work

request to construct the task graph. Finally, the job of building the task

graph can be distributed among several components. In particular, the nodes
involved 1in executing individual tasks of the work request can be responsible

for constructing those parts of the task graph that they are processing.

The general nature of the task graph itself provides two alternatives
for the design of an executive control. What is of concern here is not the
content of a task graph but rather its basic structure. One alternative is to
maintain a task graph in a single structure regardless of how execution is

distributed. The other choice is to maintain the task graph as a collection

of subgraphs with each subgraph representing a part of the work request. For

Page 60

o
.

VARIATIONS IN FDPS CONTROL MODELS Section 7

Table 2. Variations in Control Models

IASK GRAPH COUNIRUCTION:

Who builds the task graph?
1. A centrsl node specializing in task graph dbuilding.
2. The node intially receiving and amalyzing the work request.
3. All nodes involved in executing the work request.

What is the nature of the taak graph?
1. A siagle complete structure,
2. Multiple structures each consisting of & subgraph.
3. Multiple structurea sach consisting of a subgraph with one copy
of the complete task graph.

Where is the task graph stored?
1. A ceriral node.
2. The node intially receiving and analyzing the work request.
3. A noce ceterminec to be in an optime! location.
4. All nodes involved in executing the work request.

Wnen 1s the task graph built?
1. Completely prior to execution.
2. Plecemeal during execution.

RESQURCE AVAILABILIYY INFORMATION:

who saintains this information?
1. A single central node.
2. Each node maintains information about its own resources,
3. All nodes maintain commor inforsation.
L, A designated node for each type of resource.

Where i3 the information maintained?
1. At a central node.
2. Separate pileces of information concerning a particular resource
type may be kept on differeant nodes.
3. In multiple redundant copies.
%, Information concerning a particular resource type (s kept on a
specially designated node.

ALLOCATION QF RESQURCES:

How is concurrency controi provided?
1. None s provided.
2. Reserva'ions are used prior to s work distribution decision and
then al.ocated by a lock.
3. Allocated by s lock after the work distribution decision.
A. Resources are locked before the work distridution dec:ision is made.

PRQCESS JRITIAXION:

How i3 responsibility distriduted?
1. A central component retsins all reaponsidility.
2. A single component 1a in charge of a aingle work request.
3. There is a bierarchy of responsibility.
4. Reaponsibility 13 distriduted among specialist components.

How is refusal of a request to execute a process dy a node handled?
1. After repeated attempts, the request 1s abandoned.
2. ter repeated attempts, a new vork distridution is obtained,

RRQCESS MOMITORING:
What type of interprocess communication is provided?
t. Synchronized communication.
2. Unaynchronised communication,
How are task graphs resulting from agditional work requests handled?

1. The new tesk graph is msde part of the 0ld one.
2. The nev task graph is kept separate.

ERQCEAS IEEMIRATION:

Options selected here are determined by those selected for
PROCESS INITIATION.

R

A,..A-...: - -

e ket

E P L ST .

. -

-l

Section 7 VARIATIONS IN FDPS CONTROL MODELS Page 61

example, a subgraph can represent that portion of the work request that is to

be executed on the particular node at which that subgraph is stored.

Another issue of task graph construction concerns where the various
copies of the task graph are stored. If the control maintains a task graph as
a unified structure representing the complete set of tasks for a work request,
this structure may either be stored on a single node, or redundant copies can
be stored on multiple nodes. The single node can either be a central node
that 1is wused to store all task graphs, the node at which the original work
request arrived (the source node), or a node chosen for its ability to provide
this work request with optimal service., If the task graph is divided into

several subgraphs, these can be maintained on multiple nodes,

Finally, there 1is the issue concerning the timing of task graph
construction in the sequence of steps that define work request processing.
Two choices are available: 1) the task graph can be constructed completely,
at least to the maximum extent possible, before execution is begun, or 2) the

task graph can be constructed incrementally as execution progresses.

7.2 RESOURCE AVAILABILITY INFORMATION

Another possible source of‘ variability for control models is the
maintenance of resource availability informatior. What is of importance here
is "Who maintains this information" and "Where is this information
maintained." A particular model need not uniformly apply the same technique
for maintaining resource availability information to all resources., Rather,

the technique best suited to a particular resource class may be utilized.

The responsibility for maintaining resource availability information can
be delegated in a variety of ways. The centralized approach involves assign-
ing a single component this responsibility. In this situation, requests and
releases for resources flow through the specialized component which maintains

the complete resource availability information in one location.

A variation of this technique maintains complete copies of the resource
availability information at several locations [Caba79a,b]. Components at each
of these locations are responsible for updating their copy of the resource
availability information in order to keep it consistent with the other copies.

This requires a protocol to insure that consistency is maintainea. For exam-

ple, two components should not release a file for writing to different users

R)

!"---.-.----F---'F---ll-"-'.ll-l--'-.""-'--"-"-'--ﬂ"'-¢47 t

Page 62 VARIATIONS IN FDPS CONTROL MODELS Section 7

at the same time. To provide this control, messages containing updates for
the information tables must be exchanged among the components. 1In addition, a
strategy for synchronizing the release of resources is required. An example
ol such a strategy is found in [Caba79a,b] where a baton is passed around the

network. The holder of the baton is permitted to release resources.

Another approach exhibiting more decentralization requires dividing the
collection of resources into subsets or classes and assigning separate com-
ponents to each subset. Each component is responsible for maintaining
resource availability information on a particular subset. In this case,
requests for resources can only be serviced by the control component
responsible for that resource. Resources may be named in a manner such that
the desired manager is readily identifiable. Alternatively, a search may be
required in order to locate the appropriate manager. This search may involve
passing the request from component to component until one is found that is

capable of performing the desired operation.

Preemptable resources which can be shared by multiple concurrent users
(e.g., processors and communication lines) do not necessarily require the
maintenance of precise availability information. For these resources, it is
reasonable to maintain only approximéte availability information because such
resources are rarely exhausted. The primary concern in this instance is
degradec performance. Therefore, a good estimate of resource utilization is

needed.

7.3 ALLOCATING RESOURCES

One of the major problems experienced in the allocation of resources is
concurrency control. In a hospitable environment, it is possible to ignore
concurrency control. The users are given the responsibility of insuring that
access to a shared resource sueh‘as a file is handled in a consistent manner.
In other environments, for example that presented by an FDPS, this is an
important issue. In an FDPS, the problem is even more difficult than in a

centralized system due to the loose coupling inherent in the system.

There are basically two approaches to solving the problem of concurrent
requests for shared resources. The first utilizes the concept of a reser-

vation, Prior to the allocation of resources (possibly when resource

availability information is acquired), a resource may be reserved. The reser-

§E s e =

Section 7 VARIATIONS IN FDPS CONTROL MODELS Page 63

vation is effective for only a limited period (a period long enough to make a
work distribution decision and allocate the resources determined by the

decision) and prevents other users from acquiring the resource. The other

P L ol

solution to this problem is to make the work distribution decision without the
aid of reservations. If resources cannot be allocated, the executive control

will either wait until they can be allocated or attempt a new work

distribution.

7.4 PROCESS INITIATION

Several issues arise concerning process initiation. Chief among these
is the distribution of responsibility. There are a large number of
organizations possible, but only a few are reasonable. The Dbasic
organizations utilize either a single manager, a hierarchy of managers, or a
collection of autonomous managers. Two approaches result from the single
manager concept. In the first organization, a central component is in charge
of all work requests and the processes resulting from these work requests.
All decisions concerning the fate of processes and work requests are made by
this component. A variation on this organization assigns responsibility at

(the level of work requests. In other words, separate components are assigned
to each work request. Each component makes all decisions concerning the fate

of a particular work request and its processes.

Management can also be organized in a hierarchical manner. There are a
variety of ways hierarchical management can be realized, but we will
concentrate on only two, the two-level hierarchy and the n-level hierarchy.
The two-level hierarchy has at the top level a component that is responsible

for an entire work request. At the lower level are a series of components

each responsible for an individual task of the work request. The lower level
components take direction from the high level component and provide results to

this component. The n-level hierarchy utilizes in its top and bottom levels

g

the components described for the two-level hierarchy. The middle levels are
occupied by components that are each responsible for a subgraph of the entire

task graph. Therefore, a middle component takes direction from and reports to A j

i a higher 1level component which is in charge of a part of the task graph that .
' 4 includes the subgraph for which the middle component is responsible. The mid- i
s

R - dle component also directs 1lower level components each of which are %

{ responsible for a particular task.

s X

vt

‘
'

Page 64 VARIATIONS IN FDPS CONTRCL MODELS Section 7

Another organizational approach wutilizes a series of autonomous
management components. Each component is in charge of some subset of the
tasks of a work request. Cooperation of the components is required in order

to realize the orderly completion of a work request.

Regardless of the organization, at some point, a request for the assump-
tion of responsibility by a component will be made. Such a request may be
reasonably denied for two reasons: 1) the component does not possess enough
resources to satisfy the request (e.g., there may not be enough space to place
a new process on an input queue), or 2) the component may not be functioning.
The question that arises concerns how this denial is handled. One solution is
to keep trying the request either until it is accepted or until a certain num-
ber of attempts have failed. In this case if the request is never accepted,
the work request is abandoned, and the wuser is notified of the failure.
Instead of abandoning the work request, it is possible that a new work
distribution decision can be formulated utilizing the additional knowledge

concerning the failure of a certain component to accept a previous request.

7.5 PROCESS MONITORING

The task of monitoring process execution presents the FDPS executive
control with two major problems, providing interprocess communication and
responding to additional work requests and requests for additional resources.
With regard to the problem of interprocess communication, there is some ques-
tion as to the nature of the communication primitives an FDPS executive
control should provide. This question arises due to the variety of communica-
tion techniques being offered by current 1languages. There are two basic
approaches found in current languages, synchronized communication and unsynch-
ronized communication (buffered messages). Synchronized communication
requires that the execution of both the sender and the receiver be interrupted
until a message has been successfully transferred. Examples of languages
utilizing this form of communication are Hoare's Communicating Sequential
Processes [Hoar78) and Brinch Hansen's Distributed Processes [Brin78]. 1In
contrast, buffered messages allow the asynchronous operation of both senders
and receivers. Examples of languages using this form of communication are
PLITS [Feld79] and STARMOD [Cook80].

The executive control 1is required to provide communication primitives

that are suitable to one of the communication techniques discussed above. If

Seorvion 7 VARIATIONS IN FDPS CONTROL MODELS Page 65

the basic communication system utilizes synchronized communication, both tech-
niques can be easily handled. The problem with this approach is that there is
extra overhead incurred when providing the message buffering technique. On
the other hand if the basic communication system utilizes unsynchronized com-
aun.cation, there will be great difficulty in realizing a synchronized form of

cemrmunication.

The task of monitoring processes also involves responding to requests
generated by the executing tasks. These may be either requests for additional
resources {(e.g., an additional file) or new work requests. If the request is
a work request, there is a question as to how a new set of tasks is to be
associated with the existing set of tasks. The new set could either be
included in the existing task graph, or a new task graph could be constructed
for these new tasks. The former technique allows the component making the
work distribution decision for the new work request to consider the utiliza-
tion of other resources by the control. The latter technique does not allow

sucn a situation to occur.,

7.6 PROCESS TERMINATION

When a process terminates there is always some cleanup work that must be
accomplished (e.g., closing files, returning memory space, and deleting
records concerning that process from the executive control's work space). In
addition, depending on the reason for termination (normal or abnormal), other
control components may need to be informed of the termination. In the case of
a failure, the task graph will contain the information needed to perform
cleanup operations (e.g., the identities of the processes needing information
concerning the failure). Both the nature of the cleanup and the identity of
the control components that must be informed of the termination are determined

from the design decisions resulting from the issues discussed in Section 7.5.

7.7 EXAMPLES

To gain a better appreciation of some of the basic issues of control in
an FDPS, it is useful to examine several examples of work request processing
on an FDPS. 1In each example, emphasis is placed on the operations involved in
the construction of task graphs. The work distribution decision that is

utilized is a simple one that assigns the execution of processes to the same

nodes that house the files containing their code. The concern of the first

oy g

.r.,a~’,'. Pl

P

LI

Page 66 VARIATIONS IN FDPS CONTROL MODELS Section 7

eight examples is the impact of variations in work requests on task graph
construction. In these examples, the various parts of the overall task graph
cdescribing the complete work request are stored on the nodes utilized by each
part. The last three examples, though, examine three different techniques for
storing the task graphs. In the examples (Figures 21 to 31) the following

symbols are utilized:

] visible external reference(s)

{} embedded external reference(s)

(n)A responsibility for A delegated from node n
A(n) responsibility for A delegated to node n
a-->b IPC from process a to process b

A,B,... uppercase letters indicate command files
a,b,... lowercase letters indicate executable files
U, V,W,X,¥,2 indicate data files

The first example (Figure 21) consists of a simple request in which all
external references made are visible and all files required are present on the
node where the original request arrived (referred to as the source node).
Since the references are visible, the entire task graph can be completed in
one step. The second example (Figure 22) is similar to the first except that
there are more references that are chained. Again, since all references are
visible, the entire task graph can be completed in one step. This work
request can be processed in an alternate manner as shown by the third example
(Figure 23) where references are located and linked in a piecemeal fashion. .
Finally, example 4 (Figure 24) adds a slight variation by introducing an
explicit interprocess communication (IPC) definition. In this case, the task

graph can still be constructed in one step because all references are visible.

The next series of examples consider the impact of locating resources on
nodes other than the source node. In example 5 (Figure 25), all the
referenced resources reside on a single node other than the source node with
the exception of one resource that has redundant copies on two different
nodes. Since the resources are not on the source node, negotiation is
required to transfer responsibility for a piece of the task graph. In
addition, since there is a resource with two redundant copies, a decision as
to which to utilize must be made and a negotiation must occur to transfer
responsibility. Example 6 (Figure 26) is similar to example 5 and

demonstrates the impact of IPC across nodes.

The effect of embedded references is demonstrated in examples 7 and 8.

In example 7 (Figure 27), all resources turn out to reside on the source node,

r—

VARIATIONS IN FDPS CONTROL MOLELS Page 67

Section 7

1
i

Task Graph Maintained '

At This Node

/N
x

Task Graph Maintained
At This Node
s

STRP O

Request = RON »

4t Tdis Node

Task Graph Maintaiped

At Thia Node

Task Graph Maintained

Local Resources
Node 2

Node 1
(Source of reguest)

Local Resources
y

alz,y])
X

-
[3
4
g
] o~
-*
[L]
-~ w
m =
=]

3
o n
* ®
o 3
5 ¢
o - K
[
o ”
L3 “0
— L 3 = v
2% 4
83 | 3
LA
LR ~

Task Graph Maintainec *
At This Node

‘
i
'
i
]
i
'
i
'
'
'
'
'
'
'
'
'
'
I}
H
'
i
'
\

i
'
!
'
i
'
|

Task Graph Maintained
At This Node

'
i
]
4
'
|
¥
i
'
‘
¢
‘
]
H
]
i
)
'
'
'

I3
+
1
1
|
|
|
i
;

At This Node

{ Task Graph Maiatained

'
'
i
H
'
1
1
'
'
i
'
i
'
'
‘
'
'
i
¢
'
'
¢
'

Task Graph Maintained
At This Node

Local Resources

Local Resources

Local Resources

Node 4

MBode 3

]
i
‘
B
'
'
'
'
'
.
1
'
1l
i
'
'
'
i
'
'
.
v

Node 4

Node 3

All visidble references (iz this oase all resources

required) have been located and 1inked.

Comments:

A simsple request with all external references

viaible.

Comments:

Figure 21. Example 1

STEP 1

STEP ©

ksquest = MON A

'
’

'
:

o s e

{ Task Graph Maintained
At This Node

¢
\
!
|
!
!
i
|
!
i

hd
H
i,
#
n \d/
g - - »
¥} ~
ﬂT. 0 -— N
Qe
-
F-]
]
-
"o ® &8 08 &0 e
b4
H
3.
53
h'
hﬂ
&2
n.l
£ -
z
k3
3
[

At

Task Graph Maintained
This Node

'
v
'
'
'
'
‘
'
'
'
'
'
'
'
'
'
‘
'
'
i
'
d
¢
'
1
H
'
'

Local Resources

|
!
!
|

o [x])
x Yy s

Local Resources

2 [o,0]
d {y,5]

Node 2

Node 1

i
i
|

-
4
o
3
[]
[3
-
~
m
=]
L]
-
o~
O Mn
Lo
N‘l
-
[4
-
~
-
o
o
=l

Wode 2

Node 1
(Source of request)

;A fe,d)
i d (5]

z
e
2
mm
mu
3
[
z |3
H Se
i |53
s | 23
3 zé
[9 0“
i3
™
> 9 ®0 0 s OBSOON

Task Oraph Malntained
At This Node

Task Graph Maintained
At Thias Node

Node &

Local Resources

Node 3
Sats case, completely) before Sny exeoution is begun.

Figure 22. Example 2

The task greph is expanded as mgpod as possidle (in

Comments:

e files.

Bode &

ioa of two

Node 3

apesifies the &

A sisple request iavolving & commasd file thet

Comments:

L -7

Page 68 VARIATIONS IN FDPS CONTROL MODELS Section 7 i

Request = FUN A STEP 1 STEP 2

Task Graph Maintained Task Greph Maintalined Task Graph Maintained Task Graph Maintained

H At This Node At Thia Node At This Node At This Node

H A A !
! / 7\

: [[]

. I [N

! x Ty =z

Local Resources Local Resources
4 [e,0) 2 [x1}

q (3,8 x5y s

Local Resources Local Resources
Y WD e (x)

tod {y.zl Ty =z

|
!
|
|
t
] t
!
|

Node 1 Node 2
(Source of request)

Node Node 2
(Source of request)

Task Graph Maintained
At This Node

Teak Graph Maintained
At This Node

. Task Gra;h Maintained
' At This Node

Task Graph Maintained
At This Node

. : Local Fescurces Local Resources Local Resources Local Resources

Moce 3 Node & Noge 3 Node &

Comments:
All external references have been jocated and linked.

Cotrerte:
External references are not located and linked
until tiey are required during execution.

Figure 23. Example 3

" Reques: = NUN & STEP O STEP 1

. Task Graph Maintained
B At This Node

Task Graph Maintainec !
At This Node

Task Graph Maintained
At This Node

Task Graph Maintained
At This Node

A
|

B
TAAY
o—>d
T 7\
Ty s

)
'
'
f
l
!

o a——

PrrT

L[]
L[]
L[]
L]
L]
»
.
L
»
.
[]
L]
L
H Local Resources Local Resources . Local Resources Local Resources
I AB) clx] xyz2 . AlB] ¢lx) xy:
i B lo—>d] 4 ly,2) . B [o—>d] ¢ [y,2]
! .
t Node 1 Node 2 . Node 1 Node 2
{Source of request} . (Source of request)
[]
N . L4 ‘
. ! [! . ! [!
! Tas¥ Graph Maintaiped ! | Task Graph Maintained ! . | Task Graph Maintained ! ! Task Graph Maintained !
. ! At This Fode ! : At This Node | . | At This Node [At This Node ! *
¢ | i 1 . ! t 1 H
{ - ! P { . ! Il ! !
2 ! [! . ! T !
’: ! ! ! ! . H | 1 H
. | o | . | [' .
> | H [! . ! [. F
X t H § | L }] | H
; | ! |] | b !
P : [H L { Vo !
N ! Local Resources lI II Looal Resources ; 3 | Local Resources [Looal Resources !
! * \ T !
¢ o i || | L4 | [H 3
! ! (. ! ¢ 1 rod ! .
3 » Node 3 Node A . Rode 3 Node &
. .
R Commenta: . Comments: 1
! 4 somewbat more csmplex request; ° 411 exterssl referenses are loonted and linked, :
», 1) All extersal references ¥isidle. ® and INC 13 estadlished, -4
A 2) Chaig of refervasss are pressst, . }
b 3) Contaiss sa emplieit IFC deftinitie-. L
!’!‘ Figure 24, Example 4
“I
>

3

ERRey-Y

Section 7 VARIATIONS IN FDPS CONTROL MODELS Page 69 $
- .
. Request = RON A STEP 1 e STRP 2
[
. N } 4 | P H
' Task Graph Maintained | | Task Graph Naiptained ! L4 | Task Graph Maintained ! | Task Graph Maintained |
; At This Node [At This Wode | . | At This Node v At This Mode H
! . | | 4 | [|
. AL?) L 1 hd ! A27)] (1A i
! ; | ! . | o {
: H H 1 d | I H
! H H | . { [i
! . | . | o !
; ! ! | N | [i
. ' H] L] | i i
R -=! { ' i ! HE .
Lotal “escurces H H Local Rescurces { hd H Looal Resources H H Local Rescurces H
. i) a(v] x ¥y | * { oL oAl x oy !
! P b (x,y) i . | 11 »d(=x,y] !
N | . H L '
Node 1 Node 2 . Node 1 Node 2
(Source of request) b (Source of request)
.
L]
: i ! ! . | | 1 !
! Tasx Graph Maintained | \ Task Graph Maintained | . i Task Graph Maintaiped ! ! Task Graph Maintairec
: At This Node HE At This Node 1 * i At Thia Node v At This Node !
') 1 | . i H | !
:) H ! . H (174 HE H
! Voo { . i o ;
; H H | b ! [!
! ' H ! . H | ! ;
' i | H e ! | 1)
! ! { . H H i :
H H | . i 1 ! !
o i e ! P :
. Local Resources H H Local Resources | 4 : Looal Resources | . Local Resources '
Y)] ' H ! . I ab) ! | H
. ! ! | . ! HE |
1 | H ' e } { i !
Noce 3 Node 4 b4 Node 3 Rode 4
.
Comzerts: o Comments:
A simple request with all tbe files referenced . File A 15 looated on nodes 2 and 3 and the
residing on a single but pon-local node with an . responsibility for A is tentatively delegsted to
additionsl ocopy of one file on another node, e node 2.
At this point, tbe location of A is mot imown. L4
L[]
L]
[T1T] q
; L[]
{ .
STEP 3 . STEP &
L
;i . H ' i . | [H
! Task Graph Maintained @ ! Task Graph Maintatined ! . | Task Graph Maintained ! ! Task Graph Maintained |
, : At This Node H H At This Node | L4 H At This Node ! H At Thia Node .
: . { ° | | | H
H A(2) HE (14 H . H A(2) P (1A !
! ! ! | ¢ ! | i H
! H H ‘ . ! HE b !
H o { . { [/N H
. : ! ! ! . ' vl z ¥y H
H ' ' ! hd } HE !
! I ! . | 1ot : !
: ' !) . 1 | i 3
Local Resources H H Local Resources { * | Local Resources { | Local Resources B !
H Pt ale) x oy ! . | 1 alpl =y : 3
q : 11 b=y ! ¢ I [N ¢ 1%)] : 2
H . { L B ['
Node 3 Node 2 L4 Node 1 Wode 2
. (Source of request) L (Source of request)
P L[]
° k
s : b 1 o | o ! 3
| Tasx Graph Maintained ! | Task Graph Maintaioed | . | YTaak Graph Maintained | | Task Graph Maintained ! k
: . H At This Node ! I At This Node { . ! At This Node] ! At Tnias Node |
! [| hd | I !
. : [J . ! [
e ! I { hd : [; :
» ! [| b | [N H K
.. : It 1 . 1 bt ' k
. H [| * 1 [!
i '_. ! o | hd I [
L . ! Vool | b | [H
. t [H 4 | [-
L ! Locsl Resources | | Loosl Rescurces | 3 | Looal Resources | | Llooal Resources |
i toale) 1o] . | A P i
. ! [| 4 | [|
N [I ! e 1 [1
. Node 3 Node & . Node 3 Sode &
L]
. Coments: b Comments :
3 Responsidility for 4 is secepted dy mode 2. b4 All extersal referesces have dest located and 1inked.
3
e Figure 25. Example §

r—-—'-----'''—-——--'---——--_-—-—-—-—---—-——----—---—----—._———..1

Page 70 VARIATIONS IN FDPS CONTROL MODELS Section T
-
. .
Request = NUN A STEP 1 L4 sTEP 2
.
! [{ I | [!
. Task Gragh Maintained ! | Task Graph Maintained |) { Task Grapb Meintaiped | | Task Oraph Masintained !
! At This Node [At Tnia Node } : | At This Node [At This Node |
! H !)]] !
A . { . { A [o(1)e=>(17)0 |
AN HE | L4 | 7N [! :
o==>d{?) ! | . | o==>d(21) [t I
: ! . ! . { ! [! H
x I 1 . | z t 1 i
po ! ¢ 1 1ot ' i
: H | { L4 ! ! H : i
: o !] i | !]
: Local Resources | ! Local Resources | . [Local Resources to Local Resources H i
! A [o=>d] x T 4 ly,s) | . ! Afo=>) 3 P dly,x) : !
toe] I 2 | . oo (x) [A H :
' o | . | [: !
Node 1 Node 2 . Node 1 Node 2 E
(Source of request) . (Source of request) i
.
.
! . | . { [!
} Task Graph Maintained | ! Task Graph Maintained | . | Task Graph Maintained ! | Task Graph Maintained ;|
' At This Node HE At This Node | N H At This Node . At This Node !
. h H *
: v | . , o ’
! . ! . | [! {
! .) . 1 ['
. . ! . ' [|
! ! HE ! . ! o !
K ! ' ! . H i | '
. H H ! . H H { B
N N H) . H H H .
Loca. Resources H ! Local Resources] M H Local Resources { ' Local Resources ‘
. ; . H . ! tod !
: Do : . i Lo !
. | : ! . H H H H
Noue 3 Node ¥ L Bode 3 Hode A
L]
Conzerts: . Comments:
A more complex reguest: b File d is looated on node 2 and reaponsidility
1) Contains an explicit reference to IPC. . for d is tentatively delegated to that node.
2) Resource files loocated on different nodes. .
Pirst layer is built, .
L
L]
(‘ tsesse * .
.<
STEP 3 . STEP &
L]
j I i . | vl |
! Tasx Gragh Maintalined ! ! Task Graph Maintained | L ! Task Graph Maintasned | ! Task Graph Maintained !
' At This Node v At This Node ,I . ' At This Node : i At This Node ;
: HE . !
' A Vo e(1)=>(1)d ' . | A to o(1)~=>(1)d !
. VAN Vo ! L | /N | I /7 \ i
| o—>d(2) . I . | o=ed(2) [7y = !
' ! HE | L ! | [)
! x HE | . ! z | H
! to | . ! P |
! Vo |]] 1 |
: I ! . | ot !
! Local Resources H H Local Resocurces | . ! Looal Resources | \ Looal Resources H
¢ Poafemsal x 1 i ety i e i afe—el xo 1 | alyal |
toe [x) 1 1y s 1 L] I o (x) ! ¥y s H
H ! | t L 1 { !
R Node 1 Node 2 4 Node 1 Kote 2
. (Source of request)] (Souroce of requs. i
.
. e .
! ! tod ! . { 1 ! !
k . . Task Graph Maintained | ! Task Graph Maintaiped | . { Task Graph Maintained ! | Task Graph Maintained |
o ! At This Node [At This Node } . 1 At This Node { : At This Node l!
2 H [] L] |
. : I I . | [|
- ! [l 4 | [| b
: [i . | | !
: [| L4 | | B]
L M : [i b | | I ! X
P ‘ ot | e ! [] !
! [! e | [] .
L. | Vo ! . | [| 3
! h Local Resources : } Loosl Rescuroes |l : ll Loocal Resocurces : : Looal Resources : ¥
* . |]
) ' b ! . ! [t 1
., 1 [1 . 1 [N !
A Node 3 Bode & L] Hode 3 Node A
v]
3 Commants: . Commeats:
b Mopousidility for ¢ 55 acsepted 07 mede 2. L4 The graph delow ¢ 15 somploted.
? A Figure 26. Example 6
]
y i
ve ?
L3 !

' - - - o ——— = g ——————— - S— W’“

Page T1

VARIATIONS IN FDPS CONTROL MODELS

STEP O

Request = ROW A

Section 7

Task Graph Maintained
At Th's Node .

- — 0

At This Node

Task Graph Maintaioed

B e

At This Node

Task Greph Halbotained

At This Node

Task Graph Maintained

Node 2

biz,y}

Local Resources
Node 1
{Source of request)

(1))

Task Graph Maintainec
At This Node

¥
|

v
\
] '
V \
1] 1
L '
1 Il
'
o
])
5 '
‘ '
| '
'
[
1
i {
v)
) i
t '
H '
']

At This Kode

Local Resocurces
Node 2

bix,y)
Node 1
{Source of request)

Local Resources
H

A[b)
z

| Task Graph Maintained

!

!
|
!
i
|
|
1

Task Graph Maintained
At This Node

]
‘
' '
v '
H)
' '
+ ¢
¢ $
' '
‘ '
H ‘
' '
i 1
' 1
']
| |
]
! t
' 1
l H
fl '
' H
' '

+
'

Task Graph Naintained
At This Node

m - m
s B3
g
= 3
e §
——— %
. g
g b
3 s 3.
SR
§ muw
ié
e 8

°
- 14
h-3
H m
.
o
5 .
: |- 3
3 L “
7 B B
3 3
s »
b
-
»
————— -
[
m
-
: -
g H
3 a
o g}
S P
= 3 o8
- = ..ﬂ'.l
g i858
] 2 o
=} mlf
i<t
Q
PSR 3

YY)

STEP 3

Task Graph Maintained
At This Node

\

/

At This Node
A
1
b
x

STEP 2

Task Graph Maintained

o
2
q
Me
g
i=
o
v
S8
m‘
-
1
i
-
b=l
2
L
L]
m.
2
a=
53 <o
3 ~
[L}
£
-
x
3
L]

Local Resources
Node 2

Kl

Local Resources
Node 1
(Source of request)

Al®v] bix,y)
x 7

Task Graph Maintsined
At This Node

At This Node

|
1
|
t

Rode 2

wocal Resources
Node 1
(Source of request)

Alb) oix,y)
x 7y

Task Graph Maintained

At Tals Node

Task Graph Maintained

At This Node

Task Graph Maintained

]
i
‘
'
'
'
’

'
1
!
'
!
!
1
'
!
!
}
|
!
!
1
{

i it
i P
il
G
i1
L
g | 4
s B :Wmu
H iy
- mmum

Node ¥
to
sask

Local Resources
Node
sane

.

Figure 27. Example 7

Page 72 VARIATIONS IN FDPS CONTROL MODELS Section 7

Multiple steps, though, are required to construct the task graph because not
all of the resources are visible and thus cannot be identified until after
execution has progressed to the point where the reference is encountered.
Example 8 (Figure 28) is slightly more complex with resources spread over mul-
tiple nodes. Again multiple steps are required since parts of the task graph
cannot be constructed until their references are observed. In addition since

resources are distributed on different nodes, negotiation must occur.

The last three examples demonstrate three different techniques for stor-
ing task graphs. In each example, the same work request is utilized. This
request has all visible references to resources distributed over multiple
nodes. In the first eight examples and example 9 (Figure 29), the parts of
the overall task graph are stored on the nodes executing their processes. In
addition, each subgraph contains a small portion of information linking it to
the rest of the overall task graph. Example 10 (Figure 30) maintains these
subgraphs and in addition retains a complete task graph at the source node.
Finally, example 11 (Figure 31) maintains complete task graphs at all nodes
where processing occurs. The motivation for the last two techniques in which
a large amount of redundant information is maintained is to enhance the

ability to recover from failures.

Now that we have taken a look at the construction of task graphs in a
broad sense, let us examine the details of the task of processing a work
request. This is illustrated in two figures. Figure 32 outlines the basic
steps involved in work request processing. Finally, Figure 33 depicts the

steps involved in processing a specific work request. In this case, the work

request is the same as that from example 6 (c.f., Figure 26).

Section 7 VARIATIONS IN FDPS CONTROL MODELS Page 73
- Hequest = UON A STEP 1 STEP 2

; Task Graph Maintained ‘: Task GCraph Maintained ; Task Grepb Maintatined Task Graph Maintained ‘

E At This Node : At This Node ; At This Node At This Node ,

: N ! ! s :

/ ! § /7 \ '

f b ! b o(?) !

7\ I 7\ !

x y l: x 4 B

Loca. Resources Local Resources Local Resources Local Resourceas

Alclfel bia,y) | olv,v] Alv}{e} dlx,y] olv,w}
oy ! v v x ¥y v v

Nede Node 2 Node 1 Node 2
iSource uf reguest) {Source of request)

’

: Task Graph Maintained
H At Tris Node

Task Graph Maintained
At This Node

Task Graph Maintained

Task Graph Maintainecd !
At This Node .

At This Node

Local Resources
o [v,w]

Local Resources
c [v,w)

Local Resources Local Resources

Node 3 Node & Node 3 Hode 4
Comments:
After sxecution has begun, tbe reference to
c 1» encountered.

Commente:
This request has embedded references, refersnces
to aistributed resources, and a reference to s
resource that is available at two locatioms.
First the visible portiop of the task graph
i3 expanded.

R EEEEEE R R TR AN S A I I N NN I BN R BRI I N S I N RO A N N N)

sese L4 (1] 2800809 14

E STEP 3 STEP &

Task Graph Maintained Task Graph Haintained Task Graph Maintained Task Graph Maintained |

it This Node At This Node At This Node At This Node i

+ v

. Iy (1?)e 4 (1)e j
/ \ / A\ 7\ H

b e(2,37) b e(2) v v !

/7 \ :

z y .

Local Resources
Alplie) ®lx,y]

! Xy
Node 1 Node 2
{Source of request)

Local Resources
Aldl(e} blx,y]
x Yy

Local Resource:
o{v,v]
vy v

Locsl Rescurces
olv,w)
v w

.
|
'
i 7\
|
'
)
i

"
-

Node 1 Node 2
(Source of requeat)

Task Graph Maintainec ‘
At This Nole

Task Graph Maintained
At This Node

Task Craph Maintained
At This Node

Task Graph Maintained
At This Node

(17)e

Y N
-

g

'R ;

) 8 |

) Local Resources Local Resources Local Resources Local Resources |

; . a [v,v] o [v,v] {

| .

L 3N .

'a Node 3 Sode 8 Node 3 Nods &

B Comments: Comments:

It 1s deterained that ¢ exists sm two modea,

Reapoanibility for ¢ is delegated to node 2,
and the task greph is eompleted.

Figure 28, Example 8

9 ° 000090t OO0 S SO AST S S S S D eSS PP eSS e " eSS S a

4

g
w2

Page T4 VARIATIONS IN FDPS CONTROL MODELS Section 7
- .
Request = RUN A STEP 0 L STEP 1
L]
: H ! ! . § ! ! '
' Task Graph Muintained | ! Task Greph Maintained | L { Task Graph Maintained | { Task Graph Maintained |
* At This Node ! ' At This Node H b | At Tois Node [At This Node H
' ! H o i ! H '
! ! H e ! A ! H [§k31] H
‘ ' i L4 i ! i | i
' ' H . | »(21) ! H t
j ! { . | H ! H
H ! | . | ! i H
. : ! * H 1 | :
; : { . ‘ ! H H
! ! H b | ! H H
Local Pesourcea ; ! Local Resources | . ! Local Resources H H Local Resources :
A Ib] 1 b leyx) ! . oA d) It b [e,x) !
: ' H . t ! ! H
! ‘ b H *] { H H
Node 1 Node 2 L] Node 1 Node 2
{Source of request) . {Source of request)
.
1]
) H H ' L t H ! H
' Tasx Graph Maintainec ! ! Task Graph Maintained | . | Task Graph Maintained ! | Task Graph Maintained !
At Tras Node ! H At This Node ! L | At This Node H | At This Node H
H . { . H H H H
! H : . i ! 1 .
: ! | L] H ' H :
: H L4 | 1 H :
! ! 4 H H H H
. i 1 b { } | :
. : ! .) H ! .
! ' | . | H ' !
: ! . | H t
Lccal Resources H ' Local Resources ! b ' Local Resources | | Local Resources
. e ly! A H . | e[yl t 1 ox
y | ! H . Iy ! i .
: . H L i H | H
Noce 1 Node & L4 Node 3 Node &
L]
Cemmerts: L] Comments:
Tris request has all visible raferences, but . File b is loocated om node 2 and a tentative
the refcrences are distributed on all nodes. bd delegation of responsidility is made to node 2.
.
L]
G008 08800C0CAEONEERSRROS (12
.
~ . .
{ STEP 2 . STEP 3
L[]
. H H . | | i i
. Task Crorh Mairtained | ! Task Graph Maintained ! . | Task Grapb Maintained ! | Task Graph Maintained :
! At Tras Noce : ! At This Node H . f At This Wode ! i At This Node H
‘ ' ' ! . | | H
' ' A : ! (1)d) . I [} ! ' (1)> H
' ! H . 7\ H b ' I ! H /N H
5(2) . ! o(37) x(¥7?) { e H b(2) ! | o(3) x(s) :
! ! | . | { I !
' : ! N . ! t ! !
. : ! H . { i H !
. H H ! b ! | [H
! ' lemmeamrmmmeeammananeen. ! . { ! { H
Loca. Resources H ' Local Reacurces H 4 H Looal Resources i H Local Resources \
[) C b v (e,x) ! * I A (b) ! | bfo,x) H
: t l . | ! i H
(: (. {) ! 1o]
Node * Node 2 e Node 1t Node 2
(Source of request) L] (Source of request)
L[]
b .
H | H 1 e | ! [} |
! Task Graph Maintained | | Task Graph Maintained | . | Task Grapb Magintained ! | Task Graph Maintained .
. ' At This Node \ ' At This Node ! L4 | At This Node 1 'l At This Node ; k
< ! [| . { t -’
B : (20 b (212 I . | (®)e I (2)x !
.o : H H | ° | | [i
e ! ! 1 { L] y | | |
: ! ! ! | e | [!
4 ' H 1 . | ! | !
) : H ! ! b | | | |
; . | | | b ! [N |
Rl t HE H L4 { Vot H
. : Local Resources I R Local Resources | * 1 Local Resources | 1 Local Resocurces !
> Coe ly) I ! e | e f{yl] I = |
oy | | 4 Iy [|
. [| i 1 [!
‘ 3 Node 3 Node A L] Node 3 Node &
v L[]
3 o» Comments: . Comments:
' Respoasibility for b 1s seeepted by ande 2. L4 Bodes 3 and & sceept respeastibility fer ¢ amd x]
are losated and reapsasidility ia . reapectively and the graph 1is campleted. H
ted to the nedes as indissted, U N

Figure 29. Exampla 9

Plles ¢ and z
1 tentatively delega!
"y
A

Section 7 VARIATIONS IN FDPS CONTROL MODELS Page 75
Requeat = RUN A STEP 1 . STRP 2
.
-
. H . | . | [I H
i Task Graph Maintained ! ! Task Graph Maintained | 4 { Task Graph Maintained ! ! Task Graph Maintaipec '
! At This Node Vo At This Node ! . ! At This Rode [At This Node :
H H H | . i [!
. A o [k 31 I . | [} o (1) !
! H H | | . ! I | l / N\ :
H b(2?) H ' H . i b(2) HE o(37) x(4?) .
: o ! . i L '
' H ' ! . H [|
H HE H 4 ! | H H
H | 1 H . | H H !
! HE H b ! HE .
Local Resources H H Local Resources ! b H Local Reacurces | ' Locai Resources .
i alv) ! 1 b lo,x)] . i ab) 11 b {e,x] :
: !) ! 4 { H ! :
' . I . { N |
Node 1 Node 2 . Node t Node 2
(Source of request) & {Source of requeat)
.
3
H ! ! H .] H ' :
. Task Graph Maintained | ! Task Graph Maintained ! . | Task Graph Maintained . { Task Graph Maintainec
' At This Node HE At This Node H 4 H At This Node HE At This Node H
H | } ! 4 ! HE ;
' H) H o ! (2?7)¢ Voo (27)x |
H H H H . H { ! H
! ' ! | . |) | :
i ' ! ! . : } i H
! H } ' . ! H :
. i | 1 . i i !
: B ‘ : . ' H !
! H H e H Vo
H Local Resources H H Local Resources H . H Local Resources ! H Local Resources H
e ly) H ox H L e ly) ! 'ox :
LY H : : . vy H '
: ! | H . | P !
. Node 3 Node 4 L Node 3 Node 4
L]
Commerts: . Comments:
In this example a gomplete oopy of the task graph . Responaibility for b is sccepted by node 2. 1
13 to be maintained at the node receiving the request. . Files o and x are located and responsibility is
File b is located on node 2 and a tentative L4 tentatively delegated to the nodes as indicated.
delegation of responaibility is made to node 2. ¢
L]
L]
esdabBeRe (1]] e . L] []
L]
L]
M STEP 3 . STEP 4
¢ .
! ! | : . | P i
. Tasx Graph Maintained | { Task Graph Maintsined | e i Task Grapp Maintained ; i Task Graph Maintained |
At This Node ' H At This Node ! s H At This Node | H At This Node H
i ! ' . H i | !
A H H (1)v H . ! [} H ! (1) !
! o 7\ ! . H | v / A\ !
0(2) N e(3) x(&) ! . ! b(2) . e(3) x(¥) :
/A H H H ¢ ! / N\ H | :
ef3) x{4) ! H ! . | e(3) x(%) 1 i ;
! { ! . ! i ! i i
: H) . ' ¥(3) | ! H
------------ : | | . H !) .
.o a. Resources ! H Local Resources ! b ! Local Resources { ' Local Resources i
T | 1 b le,x) ! L4 {4 (v) | b [e,x) i
oo H e |) ! H
I, | — H s ! ['
[4 Node >de 2 . Node 1 Node 2
- ’ rejuest’ s (Source of request) \
® !
O L[]
: 1 | . ! | ! !
N « ' Ma.""alned : Teak Oraph Maintained ! * | Task Graph Maintained ! | Task Graph Matntained ! 1
. e : At Tbhis Node | * ! At This Node [At This Node '
. f | . | | ! 1
! (2)x | * | (2)e [(2)x H
’ | . I | [!
! . ! y | !)
| o | | | !
H e | [:
| e ! | | } »
] 4 | [! '
—————— 1 . | { { : :
. Lessl Bessuroes ! . } Local Resourcea [Looal Resources 1 N
[! ¢ 1 o lyl} [: :
1 . Iy [!
. ! . | (B t .
Sede 3 L] Node 3 Node & A
. .
L4 Comments: i
—— wEgEISLLItS for « and 3 . The rest of the task graph is completed. 3§ 1
Y. s eeln upeesd 15 WO enpy of L 3
- apres woe . g
Figure 30. Example 10

J‘

Page 76
Reguest = RUN A STEP 1
‘ { {
| Task Graph Maintained ! | Task Grepb Maistained
! At Thas Node ! H At This Node
N . [}
. ' !
J A . (1)
H H : ' |
: b(27) . (17
. \ '
H ! !
H Local Resources H H Local Resources
tA[b) vl b {e,x)
, . '
: Lo
Node 1 Node 2

(Source of request)

Tasxk Graph Maintained
At This Node

Task Graph Maintajned
At This Node

A1) a(Y)

Local Resources Local Resources

ioelyl x
L 4

Noce 3 Node &
Comrerts:

In this example, s gomDiate copy of the taak graph

is to be maintained at ayery pode involved.
File b is located on node 2 and a tentative
delegation of responsibility is made to node 2.

VARIATIONS IN FDPS CONTROL MODELS

B 9 8T S ETANE LTSNS TN LGS 2SO A SRR S OPED eSS N O

Tesk Greph Maintained Tesk Graph Maintained

At This Node At This Node
4 A1)
) t
b(2) (1)d
/

\
0{37) x(42)

Local Resources
b [e,x)

Local Resources
8 [b)

Node 1! Node 2
(Source of request)

Teask Graph Maintained Task Graph Mairtained

At This Node At This Node
A1) A1)
! [
»(2) b(2)
/ \
(2%)e (27)x

Local Resources Loca) Resources
e [y)

y

Node 3 Node 4

Comments:
Sode 2 sccepts responsibility for b. PFiles ¢
and x are looated and reaponsidility is
tentatively delegated as shown,

Section 7

STEF 2

Task Graph Maintained ! Task Graph Maintained

At Tris Node o At This Node

! A . H A(Y)
H H ! : !
! b(2) ' (v
H /N i ' 7\
! c(3) =x(a} HE o(3) x(¥)
; P
H Local Resources ! H Local Resources
Y W) | b [e,1}

Node 1 Node 2

(Source of request)

Task Graph Maintained
At This Node

Tesk Graph Maiotained
At This Node

’(1) A1)
|

»(2) b(2)
/\ 7\

(2)o x(8) o{3) (2)x

Local Resources Looal Resources

o (y)]
y
Node 3 Sode A
Comments:
Sodes 3 and § socept respousidility for o and x
reapectively.

0 0 0 08 08 00 0L TGOS POERTECAGO N OEe OO RESS SSESRBEEESE

STEP 2

Task Graph Maintained

! | |
H : |
H At This Node h ! At This Node
! A ! ! A1)
H {) H !
| b(2) o (1%
H / N\ |) /' \
| o(3) =x(&) | 1 e(3) x(W)
' | ! H 1
! ¥(3) rod ¥(3)
| ' |
' Local Resources) | Local Resources
I oAb I b b [e,x)
| H {
! to
Node 1 Node 2

.
(Source of request)

Task Graph Maintained Task Graph Maintained

| | !
| ! t
i At Thie Node { H At Thias Node
I ! |
1 A1) | I A1)
! | ! 1 !
{ (2) i { b(2)
! 7\ | I 7\
‘l (2)&; 2(%) b o(3) (2)x
! | |

: ’ 1 : ¥(3)
t Loocal Reaocurces i \ Looal Resources o
I o ly) [|
Iy ! !
l tol

Node 3 Node ¥
Comments:

The rest of the taak greph is esmpleted.

Figure 31. Example 11

Task Graph Maintained '

i

Section 7 VARIATIONS IN FDPS CONTKROL MODELS Page T7
-
Baalc Tims Seansnce
{
J = LocR) NOdE wmemmseen)|{oeswaee Distant Nodes >!
~Daers & . LOS . MOS . Mag. NOS . LOS . Users & .
«Resources. «Resources.
« { User gecerates.
. | & Work Request,
o ! >l
. . | Work Request processed by LOS Command. .
. « | Ioterpreter and passed to NOS . -
Y . P >
k . . . | NOS initiates information gatheriag .
. . « | &) Obtain foforwation on . .
. Pirst, obeck . | resources required {(oover all .
. looal resouroes ! viasidble podes of task graph) .
. o 1 Cm—]
‘ . | ¢]
. | . . @
. | > . ®
. o e——>]
. . « | then, oheck exteroally as reguired. —
. . e Ner——3] 4
. . . ® . > . . o
. . . ® . . | 31 o
. . ¥0S waiting for . . | e 3 | |
. . responses fros B . .] .
. . . distant podes . - | € e | o
. . . ¢ . .] . o
. . . * o] B . o
. . o N Cr——] . . .
. . | "1
. . | b) Odbtatn information op . distant
. . . resources available . Bodes
. involved
. Cbeok local apd| distant nodes aimultaneously.. .
. o K mm—] o . . .1
PO L 2 | . ® o |em—>] . . o |l
. . 20S watting . . |o———> . .
o . . |eme—ees)>! for replies . . . o> | o
{ . o |om——) . . B . | o
. . R0S vaiting . . o | Com—| o
. . for replies , . | | | .
. . . ® o | Commae] . . . Y
. . P ¢ . . . o —
. . . | Determine work distribdution . .
. B . . | and allocation. . B .
. . | B
. . Make work! assignmenta. . . o— :
. B e e e d B . . .4 |
o | C——] . @ | . . o
.| . ROS wvaiting . . lom———>! . o
e l————=>! tor replies . . o mm———> o |
. o famm———d . . . | |
. . 80S waiting . . | € | o
. . for replies . . ((—mrm | . .
. . . ® o [Cmm—] . . Selected
(. . R P . . esstant
. . . : All assigmments acoepted . lodc‘-
. . Initiate! execution
. o | G | e > | o . . o
[o | G | . o o | —>] . . BSelected
i . - . ® . . o> . distant
Co e lC—===>| 3OS awaits . . ¢ |meme——e>]| nodes
¢ e |Came—me=d| termimation o
e - © Ke——=>! of all . . LOS moattorslCe——>| . |
‘. . « ' tasks . . 1008l | Commmmd! o |
T.. o fe——] . ® B . SXOONL 108 | (> | o1 '
; . o f——>t .. . R i
j»> . . . | . . o | C——] o ;
. . . @ . . IR B o i
; N . N . ® L | . . . '
2 . . . ‘(————l v
- - - —
N . Signel wser that| this
L - . Vork Bequest | has
! . . boen eompleted| B
3 . o G | «
t PSR D
) Soor Lo nn
A - . . .
¥
»
K}
4 Figure 32. Basic Steps in Work Request Procesasing

Page 78 VARIATIONS IN FDPS CONTROL MODELS Section 7

Allsasies Sess Az Kmaals & (Zimics 26)
t Locel Bode 21¢ bDistant Bedes ———->{ {Comnmmes LOOAL B0 cmrmmmm) [Covmme PLOLANL H0608 roaeee) |
.Onera & . LOS . 20S . Mag. BOS . LOS , Users & . «Voera & . LOS . BOS . Msg., BOS ., LOS . Users s .
.Reaources. Besourees. «Resources. +Besources.
cestesssesresessecccasresasvanss cessne ves L R
. — — . . . (esatiswed fres ¢isgres oo the left) . .
. Afom-x). 1 . Initial, . | o aly,s) o
. el3) e [Ce—10082 1088 Of e}, ¥ .-
A ! . fle resources . s . . . » | Eatabliad IPC frem o to ¢ and . .
. - . . « | Trassmit delegation request . —
. B . . . « | for tamk ¢ to mode 2 , . . 4
. "HOW A° o >l !
[User gemerates® o fm— | . . ol
| a Work Bequest ® . - |—> o
j—————>| LOS Comman¢ Interpreter BOS mamits . o Bode 2 J e—3 | .l
. | procssses the Bequest » soseptance of . « dacides to . d o !
e > ¢elegation . . a000Pt ¢, |G| . !
. . | HOS snslyses the - .0 . . . 1 . Bode 2
. +« | Work Request . . . - . . - o [Covmem—e! . !
o le—t ¢ (€==|Builds lJocel . o1
. |Search for 4 . - . - 1< | . | task greph . .l
(e | loOBMLlY + |Bode 2 sceepts . . o
4 o | Solegstion . | o(¥)=m>{1}d . . !
f———>a £ . - « | for task ¢ . « N, . !
| locally o1 . o (1) &(1) -
o et|
. . | Start to build] . « |Searon for y 4 8 -
. « | task graph « | Update « | looally . P
. . o « | sask greph . jmm—m—0D! . o
. .) - ot A . . o mm—>i]
. o /1N o1 /IN . . . - Iy .l
. o 1eln-dam) «] o=2(2) . ¥4z found . s ot
o 1€ o1 . « loaally [Commmem] o 1
« |Sesred for o 4 &z . . K& . .
[Co—m=! looally P B ot . o
e | . . . - Eueeuts o | Enoewte ¢ . [Update leea) . ot
j———>lc found « . o Cm— feean)| . | task grapd . |
. . i locally [ot | . o |am> . . ol
. . lae3] L1] . . . o 1 a(1)=>(1)e . . 1
. o Opdate | « N . .
. « 1 task greph : . . . ol .Y 8. .
. o o | . . ol
) . PO Y « | Rooeute ¢ . ot
{ . ol I [t d B . ol M. .l
. . o | e=dd(?) . . . N . o 3] . . o l——t ot
. . -1 | o lme—2] ., - e ot
. . . 0 x() o Jwe=d| . . | .|
. . .l o < . [d] . fres . l——] . ol
. . . | Seared for . . . — [s 1 | et d o fem—3] o\
. . « | 4 extersall . . «4 . I . o |——3] . < o1
‘ . . v lo——>] . . . o b e | B . o Jedl . . 1 o1
. . F e | o Jome—3 . . "ae ., . . o |e——) . ot
» |3earch for x . . | . . Distant . {mrne) [Task © . . o fm—>] .t
| e | 100R11Y . . [em——>) Bedes . o Jo—3 . . . o 1 .
cox it . . . o |e—>] S N . omplots | mamme—>| . . | . 1
. | 2|z found . . . ISR I PO . . ® o le—3t . | |
. . | losally . . o |Covman| O . . ® . o jw—>! . | ot
. o Am—>i . . (e} L sl . . ® . . . ad] .
. . o | @ found 1t . . o . 0 ammits . . . o o
. . « 1 o scde! 2 (e8¢ possibly othere) P . empleties of ¢ . . o | o1
. . o ——] . . I . . * . . o A€o | o
. . ol . . . - ov— . . . o [rr—] . . !
. . » | Bem “Werk Distribution . . . - «® Task @ (Gl . . o
. « | smd YTesk sllesstice ot [. . . !
q . . o« | (In this ease, Gecision 30 o | complone . . . o 1
. . | made not %@ move say files) . . . o JComm—t -
. . .:luoz-xuuihrunc . . . G- | BhgRR) wmr
.
' . . | Seasrd testative ¢elagaties . . -
. . ; 19 tesk prepd . . .
) . . [. - . .
. . « b ZIN
. .l e=da(2n)
" PN |
L . .=
? . .]
3 .
. (eaptizmed on the diagren ca e right) N
s
.
]
l : Figure 33. An Example of Work Request Procesaing :
P |
; g
~ i

F]

el
Y

!]
i R T B S E————— ',

ppye il

- e

——— g g~

Section 8 MODELS OF CONTROL Page 79

SECTION 8

MODELS OF CONTROL

In this section, we demonstrate how both existing and proposed models of
control fit into the classification scheme described in Section 7., With the
exception of the first model, these controls are designed to service work
requests that specify multiple concurrent communicating processes. The first

model considers work requests that involve only a single process.

8.1 ARAMIS

A decentralized operating system model for the ARAMIS Distributed Conm-
puter System is described in [CabaT9a,b]. A brief outline of how this model

fits into the classification scheme of Section 7 is provided by Table 3.

8.1.1 Architecture

The ARAMIS Distributed Computer System consists of two types of
machines, hosts and managers. Users are connected to hosts which in turn are
connected to managers. The managers are connected to each other in a virtual
ring. Execution of work requests is provided by the hosts while control

decisions are made by the managers.

8.1.2 Work Requests

This system is designed to handle a work request that is less
sophisticated than those handled by the other systms described in this sec-
tion. The work request must specify only a single process or task and the

list of resources (sharable and nonsharable) required by that task.

8.1.3 Ihe Control Model

Control of the system is accomplished through the managers. Each
manager maintains a data structure called the resource state table (RST) which
contains state information for every resource available on the system. To
insure that these redundant copies remain consistent, two vectors are
utilized. The control vector (CV) cycles around the virtual ring. Only the
manager possessing the CV is permitted to allocate and deallocate resources.
Upon completing this work, a manager can pass the CV along. In addition,
modifications made to the RST (information describing the allocation and deal-

location of files) are passed along to the other managers on the virtual ring

in the form of an update vector (UPV).

: 4V

Page 80 MODELS OF CONTROL . Section §

Table 3. The Decentralized Control Model of the ARAMIS
Distributed Computer System

IASK GRAPH CONSTRUCTION:

Who builds the task graph?
A manager on each node builds the task graph for the work requests

arriving at that node.

What is the nature of the task graph?
A single structure.

Where is the task graph stored?
On the node initially receiving and analyzing the work request

and the node where execution of the task occurs.

When is the task graph built?
Completely prior to execution.

RESQURCE AVAILARILITY INFORMATION:

Who maintains this information?
All nodes maintain common information.

Where is the information maintained?
In multiple redundant copies.

ALLOCATION OF RESOURCES:

How is concurrency control provided?
Resources are locked before the work distribution decision is made.

PROCESS INITIATION:
How is responsibility distributed?
Each node has a manager. The node initially receiving and analyzing

the work request retains enough information to restart the task if
the execution node dies.

How is refusal of a request to execute a process by a

node handled?
This possibility is not discussed.

PROCESS MONITORING :

What type of interprocess communication is provided?
IPC is not supported.

How are task graphs resulting from additional work requests handled?
Additional requests cannot occur.

ankitieny

S et e g,

A AREIEY b
L.

4+ e g e b
. ..

Section 8 MODELS OF CONTROL Page 81

When a work request arrives at a host, it is passed along to the local manager
to which the host is connected. This manager is in charge of resource alloca-
tion and task routing. It first identifies the resources that are needed and
allocates sharable resources., After the CV has arrived and various algorithms
insuring mutual exclusion and the prevention of deadlocks have been executed,
the nonsharable resources are allocated. Next the optimal site for execution
of the task is determined taking into account the burden various choices place
on the communication system. Finally, the information concerning the alloca-
tion of resources is transmitted in the form of a UPV, and the information

describing the task routing is sent to the hosts needing the information.

8.1.4 Conclusion

This model represents a simplified approach to the control problem. All
nodes are provided with a complete global view of the system via their copy of
the RST. Modifications to the state are carefully controlled by permitting
only one manager at a time to change this information. The capability to per-
form modifications on the RST is passed around the virtual ring in the form of
the CV.

8.2 MEDUSA

Medusa [Oust80a,b] is a distributed operating system for the Carnegie-
Mellon Cm®* multimicroprocessor. This system differs from an FDPS in that it
allows multiple nodes to share primary memory. Table 4 describes how this

control model fits into the classification scheme of Section 7.

8.2.1 Architecture

Cm* consists of a number of relatively independent processors or com-
puter modules (Cm) and a number of communication controllers (Kmap). The Cm's
are arranged in clusters with a Kmap presiding over each cluster. A switch,
Slocal, connects a Cm with the interprocessor communication structure. Each
Slocal contains tables that allow it to decide on each memory reference
whether to access local memory or pass the reference along to the Kmap to
locate the desired information in either the local cluster or a distant
cluster, Thus, any processor can access the memory of any other processor.

It must be kept in mind, though, that a substantial time delay results from

accessing the memory of distant processors.

Page 82 MODELS OF CONTROL Section 8

Table 4, The Medusa Control Model

IASK GRAPH CONSTRUCTION:

Who builds the task graph?
The node containing an activation of the task force manager.

What is the nature of the task graph?
Multiple structures (the task force control block is stored in the
SDL and the activity control block is stored in the PDLs).]

Where is the task graph stored?
Multiple nodes.

When is the task graph built?

Completely prior to execution. %
RESOURCE AVAILABILITY INFORMATION:
Who maintains this information? L

A number of utilities each realized as a task force.

¢ Where is the information maintained?
In a shared data structure.

’ ALLOCATION OF RESOURCES:

How is concurrency control provided?
By means of locks.

¢ PROCESS INITIATION:

How is responsibility distributed?
The task force manager keeps overall control, but other special
managers are available to provide specific services.

. How is refusal of a request to execute a préaiss by a node handled?
T This is not discussed in the literature.

-8 PROCESS MONITORING:

! What type of interprocess communication is provided?
: Unsynchronized communication.

How are task graphs resulting from additional work requests handled?
It is not clear if additional work can be requested.

———
2

.1

|

Section 8 MODELS OF CONTROL Page 83

8.2.2 Mork Requests

Work requests are used to describe task forces. A task force consists
of a number of relatively independent communicating processes capable of
concurrent execution that are working toward the solution of some task.
Interprocess communication is accomplished via pipes which differ slightly
from those found in UNIX [Rite78]. There are two unique features found in
these pipes: 1) they insure that only whole messages are read, and 2) they

identify the sender of the message to the receiver,

In addition to processes and pipes, a task force contains a shared
descriptor list (SDL) and a number of private descriptor lists (PDL). These
structures contain descriptors which are basically capabilities for certain
system objects. There is only one SDL per task force. This provides access
to objects that are shared amo&é all processes of a task force. For each
process, there is a PDL which provides access to private objects. Thus, the
significant feature of the task force concept is the capability to directly
share objects by means of the SDL.

8.2.3 Ihe Control Model
The distributed control is composed of a series of five utilities each
of which is implemented as a task force. The five utilities are as follows:

1. Memory Manager: allocates primary memory and aids the Kmap in
descriptor list manipulation.

2. File System: acts as a controller for all 1/0 devices of the
system and implements a hierarchical file system.

3. Task Force Manager: creates, schedules, and deletes task for-
ces and the processes that comprise task forces.

4. Exception Reporter: communicates information about unusual
occurrences to those processes that need to know this

information.
5. Debugger/. : holds symbol table and performance
measuremen information for all utilities and provides

facilities for on-line debugging of the system and gathering of
performance data.
Communication between user processes and utilities is accomplished by
means of pipes. There is one pipe for each utility. Access to these pipes is
provided by the utility descriptor list (UDL) which is present on all nodes.

A process utilizes this structure to locate the proper pipe into which a mes-

sage for a particular utility is to be placed.

wirat

ot Page 84 MODELS OF CONTROL Section 8
8.2.4 Copclusion

Medusa introduces two features that are pertinent to this discussion.

L These are the concept of a task force and the concept of sharing primary

memory. A task force provides concurrent communicating processes to solve a

common task. In addition to communicating by means of messages, processes are
permitted to share data. The idea of shared memory is also seen in the hard-

ware by the ability to directly reference memory on distant processors.

8.3 CNET

CNET ([Smit79, Smit80] is a distributed problem solver consisting of a
collection of loosely coupled knowledge sources located on a number of
distinct processors. Table 5 depicts how this model fits into the classifica~
tion scheme of Section 7.
8.3.1 Architecture

The system 1is intended for use on a network of loosely coupled asynch-

ronous processors. Communication between nodes is realized through broadcast

messages.

8.3.2 Mork Requests
Applications for CNET can potentially take the form of cooperating

' processes. An individual work request specifies the work that must be accom-

plished. Depending upon decisions of the control, a task may be divided into

subtasks, and the subtasks may be further divided.

8.3.3 IThe Control Model

(CNET utilizes a hierarchical form of control for each task. At the top
level 1is the manager for the task that is described in the original work

request. This manager attempts to find a suitable contractor to execute the

task. This is accomplished by means of a negotiation that begins with a mes-

sage from the manager. This message can take the form of a general broadcast, ;
{

a limited broadcast, or a point-to~point announcement. The contents of the

message include an eligibjlity specification (a list of criteria required of a
node to execute the task), a task abstraction (a brief description of the

task), a bid specification (describes the expected form of a bid from a pos-

sible contractor), and an expiration time (describes the time period that the

announcement is valid). A general broadcast is utilized when the manager has
the nodes capable of executing the task. A limited

concerning

no knowledge

e

' -
—

LY wrpe o Ves e e
T -
-

Section 8 MODELS OF CONTROL Page 85

Table 5. The CNET Control Model

IASK GRAPH CONSTRUCTION:

Who builds the task graph?
Multiple nodes.

What is the nature of the task graph?
Multiple structures each consisting of a subgraph.

Where is the task graph stored?
Multiple nodes.

When is the task graph built?
Piecemeal.

RESOQURCE AVAILABILITY INFORMATION:

Who maintains this information?
Each node maintains information about its own resources.

Where is the information maintained?

Separate pieces of information concerning a particular resource type
may be kept on different nodes.

ALLOCATION OF RESOURCES:

How is concurrency control provided?
Resources are locked before the work distribution decision is made,

PROCESS INITIATION:

How is responsibility distributed?
There is a hierarchy of responsibility.

How is refusal of a request to execute a process by a node handled?
Once a contract is made it is binding.

PROCESS MONITORING :

What type of interprocess communication is provided?
Not specified.

How are task graphs resulting from additional work requests handled?
The new task graph is kept separate.

fr e = e s e ———

RO

- pPage 86 MODELS OF CONTROL Section 8

broadcast can be utilized when the manager knows a specific group of nodes is
capable of executing the task. Finally, a point-to-point announcement is made
when the manager knows about the availability of a single suitable node. This
knowledge is obtained from idle nodes that broadcast messages indicating their

availability.

The manager sends these messages and waits for the arrival of bids from
possible contractors. When the bids arrive, they are examined in order to
determine a choice for the task assignment. All bids are binding so the
manager can make a choice with confidence that a chosen node will accept the
task. Once a node 1is chosen, the contract is awarded and the chosen node
becomes known as a contractor. The contractor may further divide the task and
utilize other contractors for the various pieces. Thus, a node can act both

as a manager and a contractor.

A contractor provides the manager with reports that contain information

concerning partial execution (interim report) or completion (final report). A

report contains a result description that specifies execution results. A

v manager has complete authority over a contractor and thus may terminate
contracts at any time with a termination message. This terminates execution

of a contract and all outstanding subcontracts.

8.3.4 Coneclusion
CNET wutilizes a hierarchical control scheme with a manager supervising
the work of possibly multiple contractors working to solve a given task. A
manager locates contractors by broadcasting an announcement for bids. It then
¢ waits for the bids from the contractors to arrive. After this negotiation
phase, a bid is accepted, a contract is awarded, and execution of the task is

begun. The manager can terminate execution of a task at any time and is the

i‘_ recipient of interim and final reports from the contractors.

, 8.4 THE XFDPS SERIES OF MODELS

| i In Section 7, a list of design alternatives for an FDPS executive
f : control is presented (See Table 2). The rest of this section is devoted to
Ry the presentation of a series of control models designed by this research team
C e by choosing among these alternatives., Each of :the models is referred to as

XFDPS.i where i is an identifying numeral. It is neither possible nor prac-~
tical to present all possible models for an FDPS executive control.

AN . e

Section 8 MODELS OF CONTROL Page 87

Therefore, only a few models are investigated. The models were chosen by
selecting a collection of design alternatives which were both logical and

provided significant distinction among the various models.

The models are described in such a manner as to give the reader a feel-
ing for the overall control strategy. A more complete comparison of the
models can be obtained through tables 6 through 8 which contain a 1list of

design alternatives for each model.

8.4.1 Architecture

An FDPS is composed of a wmultiplicity of independent processors
physically connected by a network providing communication by means of a two-
party protocol. There is no sharing of primary memory, and, thus, the proces-
sors are considered to be 1loosely coupled. The processors operate in an
autonomous but cooperative manner. Therefore, it is the responsibility of the

control to insure that there is a unification of operation in the system.

8.4.2 York Requests
Work requests describe concurrent communicating processes ana are
assumed to provide the functionality available with the command language

described in Figure 10.

8.4.3 XFDPS.1
The XFDPS.1 model [Sapo80] (see Table 6 for a characterization of this
model and Figure 34 for a view of the model's components) is a distributed and
decentralized control model that is designed to shield the user from the
system. In other words, it provides the system transparency that is fun-
damental to the FDPS definition. It is designed to encapsulate each proces-
] sor's local operating system as advocated by Kimbleton [Kimb76]. This is the
meta-system approach to implementing distributed operating systems discussed
above and has been practiced in several systems including ADAPT [Peeb80]. The

XFDPS.1 model is composed of a set of cooperating processes called managers

f?_; and 1is similar in this respect to Medusa [Oust80] and ADAPT [Peeb80). Each

i manager is designed to control a subset of the system's resources {(logical and

i physical).

{, Each manager requires reliable message communication with the other

t i managers in order to perform its responsibilities, The XFDPS.1 model does not
t assume the presence of any particular interconnection of processors or for

that matter any particular technique of message communication. This means i

{ "
c‘ \
t

1 _.‘ j

;: f) . e e AR R el R IS w0 al

! 4 ‘

. — e
':.l’ A

.- - - 1
— —~] R 3 D

Page 88 MODELS OF CONTROL Section 8

Table 6. The XFDPS.1 Control Model

IASK GRAPH CONSTRUCTION:

Who builds the task graph?
The source node.

What s the nature of the task graph?
Multiple structures each consisting of a subgraph with one copy of

the complete task graph.

Where is the task graph stored?
Multiple nodes.

When is the task graph built?
Completely prior to execution.

-t e —— e

RESOURCE AVAILABILITY INFORMATION:

Who maintains this information?
Each node maintains information about its own resources.

; Where is the information maintained?
\ At the node which contains the resource.

ALLOCATION OF RESQURCES:

How is concurrency control provided?
Reservations are used prior to a work distribution decision and then

allocated by a lock.

v PROCESS INITIATION:
How is responsibility distributed?
There is a hierarchy of responsibility.
‘f How 1s refusal of a request to execute a process by a node handled?
o After repeated attempts, the request is abandoned.
3, PROCESS MONITORING:
s What type of interprocess communication is provided?
Unsyqshronized communication.
: ’ How are task graphs resulting from additional work requests handled?
3 The new task graph is kept separate.

v ‘-‘-'Jr.:

&
¢

D=-A10% 379

UNCLASSIFIED

GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION. A=~ETC F/6 972

DISTRIBUTED AND DECENTRALIIED CONTROL IN FULLY DISTRIBUTED PROC=-ETC(U)
UN 81 P H ENSLOW, T 6 SAPO F30602-76-C-0120
RADC=TR=-81=-127

Ji
GIT-1C5=81/02

Page 89

MODELS OF CONTROL

Section 8

MANAGER

PROCESSOR 1
MORITOR

UTILIZATION

— G G E— — e e —— —

====>| PROCESSOR J

MORITOR

| UTILIZATION

MANAGER

PROCESSOR 1

PROCESSING

— G — a—

e |

— — — — — — ——

PROCESSOR k

PROCESSING
MANAGER

S v T e Gpan Gmer P e M e e A G S P e S T S e T a Gt B Ghen e fmen e SR Ghe G TG hen e Sy S Ehep G e S — -

— e e s Wt S W Sar . A S S e S Gmen S e e S me A b M fee e Eee e A TPt G SPAS Gteh an fee e Gher Then ek S e e e

L.t o~ e g - -~

) ‘ilmh.e.ﬁ o §-

The XFDPS.1 Control Model

Figure 34,

Page 90 MODELS OF CONTROL Section 8

that the model is applicable to systems that are interconnected in a variety
of ways including loops, stars, regular networks, irregular networks, or fully
interconnected networks [Ande75] and utilizing various message communication
techniques including the ISO model [Bach78, Desj78] and Ethernet [Mete76].

The XFDPS.1 model 1is composed of several types of processes called
managers which are responsible for various aspects of the control problem,
These managers include the Task Set Manager, the File System Manager, the

Processor Utilization Manager, and the Process Manager.

8.4.3.1 Task Set Manager
The Task Set Manager is responsible for handling work requests arriving
from eitner wusers or active processes. A Task Set Manager is assigned to
every work request. It must first identify the tasks comprising the Task Set
which are needed to satisfy the work request and then communicate with the
File System Manager to obtain information concerning the availability of
files, The Processor Utilization Manager is also consulted in order to
determine the relative utilization of the processors. Using the information
{ acquired in this manner, a work allocation decision is made that results in
the assignment of tasks to processors. This decision involves an optimization
problem similar in many respects to that discussed by Morgan [Morg77].

The second phase of the Task Set Manager's responsibility concerns

carrying out the decision arrived at in the first phase. This again involves
communication with the File System Manager to allocate needed files and to
deallocate these files when they are no longer needed. In addition, com- :

q munication is required with the Process Manager which activates the processes

and observes when these processes have terminated. The last act of the Task 4

. Set Manager is to inform the original requester as to the completion status of
_s . the request. In doing so it will either indicate that it was successful in
b completing the request or provide a description concerning why the request

could not be completed.

8.4.3.2 File System Manager

The File System Manager is responsible for maintaining the file system
for the entire FDPS. Instances of the File System Manager are found on all
processors. Management of the file system is achieved through communication

among these instances of the File System Manager.

Section 8 MODELS OF CONTROL Page 91

The implication of this design is that several requests to the file
system can be acted upon simultaneously provided these requests arrive at
different processors. These requests may either elicit availability informa-
tion or ask that the file status information be updated (i.e., making a reser-
vation, placing a lock, or releasing a lock on a file). This simultaneity 1is
in marked contrast to the resource allocation found in the ARAMIS Distributed
Computer System [Caba79a,b] in which all nodes possess a Resource State Table
containing the state of all resources in the system. This system only permits

resource allocation by at most one node at any one time.

In the XFDPS.1 model, the file system is divided into several disjoint
sets. The design of the control does not restrict how this division is
realized. For example, these sets can be defined by processor boundaries.
For each set, there is a separate manager called a File Set Manager. In order
to perform its management duties, the File System Manager must communicate

with each File Set Manager.

The File System Manager handles three types of requests, all originating
from the Task Set Manager. The first type of request is for availability
information concerning a collection of files. The File System Manager con-
verts this request into a series of requests concerning individual files and
presents these requests to the File Set Managers. The File System Manager
waits for responses from all File Set Managers before returning its response.
A File Set Manager will return an indication of the file's availability. If a
file is available, the File Set Manager will reserve the file for the Task Set
from which the request originated. This reservation remains effective for a
limited period of time, and it is the responsibility of the Task Set Manager

to confirm the reservation before its effectiveness has expired.

The second request that can be made to the File System Manager concerns
the allocation of a series of files. Again this request is converted into a

number of requests concerning the reservations of individual files and is sent

to specific File Set Managers which in turn perform the necessary 1locking of

the files.

Finally, the File System Manager can receive requests for the dealloca-
tion of files. These requests are handled in a manner similar to allocation

requests and result in the release of locks or reservations on specific files.

AN AN

" - J''''"''''''’''''''""'-""-lllllllﬂl'li''llllllIlIIIIllIllnq!lll'l-.-.-..-.....'....-."‘

- Page 92 MODELS OF CONTROL Section 8

8.4.3.3 Processor Utilization Manmager

Another type of process found in the control is the Process Utilization
Manager. Instances of this manager are replicated on all processors, The
main function of the Process Utilization Manager is the maintenance of a data
base of processor utilization information for the processors comprising the
FDPS. The information in this data base is not intended to be complete and
accurate but rather is designed to provide the work assignment algorithm in
the Task Manager with an estimate of the utilization of the processors in the

system.

The Processor Utilization Manager obtains the information needed to

update its data base from periodic messages directed to it from Processor

Utilization Monitors located on each processor. These processes monitor the

: utilization of the processor in which they are located and issue periodic mes-
sages reporting their findings. If a Processor Utilization Manager does not

receive a report from a Processor Utilization Monitor within a certain period

of time, a message from the Manager is sent to the Monitor asking for an

immediate response concerning the processor's state. If a response to this

f request is not received within a certain time period, it is assumed the
processor is lost, and the Processor Utilization Manager updates its data base

, to reflect this, This will prevent the Task Set Manager from attempting to

assign processes to a processor that has apparently been lost.

8.4.3.4 Process Manager
The 1last process type found in the control is the Process Manager. A

Process Manager is activated for each Task Set Manager. This process accepts

requests from the Task Set Manager for the activation of processes for the
Task Set. The Process Manager identifies which processors are to receive
processes. It then issues requests to Processing Managers on each processor,
Each Processing Manager 1s responsible for controlling the processes assigned

to its processor.

In addition to assigning processes and waiting for the notification of
their termination, the Process Manager is responsible for providing

interprocess communication between executing processes. In this model,

interprocess communication is provided by means of ports [Balz71, HaveT8,

Suns77, Zuck77]. A port provides a common location where communicating

processes can either send or fetch messages without knowing about the other's

- - T/

Section 8 MODELS OF CONTROL Page 93

e gy Sy Bl

location, Buffer space is also required in order to allow the communicating
processes to operate as independently as possible. This type of interprocess
communication is similar to the stream communication utilized in TRIX
[Ward80]. The Process Manager must therefore decide where a buffer for the
port resides and then provide the necessary linkages within the communicating

processes in order for them to address the port.

8.4.3.5 Conclusion

The fundamental philosophy of the XFDPS.1 model is that the control over
logical and physical resources must be distributed among various processes or
managers. The reason for taking this approach is to provide better utiliza-
tion of system resources by making use of the inherent parallelism found in

distributed processing systems.

8.4.4 XFDPS.2
- XFDPS.2 1is a variation of model XFDPS.1. The main difference between 1

the two models exists in the technique used to construct the task graph. A
complete outline of the characteristics of XFDPS.2 is found in Table 7.

The construction of task graphs in XFDPS.2 is performed by multiple
nodes resulting in a task graph.that consists of multiple structures each of
which is a subgraph of the complete task graph. The overall strategy works as

follows. After a work request arrives at a particular node, work on construc-

] ting a task graph is begun. When a node is chosen to perform part of a task
graph, responsibility for that portion of the task graph is given to a control
component on that node. This component will maintain that portion of the task
graph and in so doing may also choose other nodes to perform part of the work

that the subgraph represents. E

Thus, there are two main differences between XFDPS.2 and XFDPS.1: 1)
the task graph is not maintained in one location but rather on multiple nodes,

and 2) this construction is performed in a piecemeal fashion in XFDPS.2. This
means that the components of XFDPS.2 possess greater independence than those
. of XFDPS.1.

8.4.5 XFDRS.3
XFDPS.3 (see Table 8) 41s a variation on the XFDPS.2 model, I. this

* By

a2

cew g

v case, the difference exists in the maintenance of resource availability

-

. information. In both XFDPS.1 and XFDPS.2, each physical node maintains
: information about its own resources. XFDPS.3, though, utilizes the approach
i;
oA
173

—
[

o ’ '-'”"'--'-'."'-""""""'llll!!!!---l-l-lnnnill'l

Page 94 MODELS OF CONTROL Section 8

Table 7. The XFDPS.2 Control Model

JASK GRAPH CONSTRUCTION:

Who builds the task graph?
Multiple nodes.

What is the nature of the task graph?
Multiple structures each consisting of a subgraph.

Where is the task graph stored?
Multiple nodes.

When is the task graph built?
Piecemeal.

RESOURCE AVAILABILITY INFORMATION:

Who maintains this information?
Each node maintains information about its own resources.

Where is the information maintained?
Separate pieces of information concerning a particular resource type
may be kept on differentt nodes.

ALLOCATION OF RESOURCES:

How is concurrency control provided?
Reservations are used prior to a work distribution decision and then

allocated by a lock.

PROCESS INITIATION:

How is responsibility distributed?
There is a hierarchy of responsibility.

How is refusal of a request to execute a process by a node handled?
After repeated attempts, the request is abandoned.

PROCESS MONITORING :

What type of interprocess communication is provided?
Unsynchronized communication.

How are task graphs resulting from additional work requests handled?
The new task graph is kept separate.

Section 8 MODELS OF CONTHRUL Page 95

Table 8. The XFDPS.3 Control Model I

IASK GRAPH CONSTRUCTION:

Who builds the task graph?
Multiple nodes.

What is the nature of the task graph?
Multiple structures each consisting of a subgraph.

Where is the task graph stored?
Multiple nodes.

When is the task graph built?
Piecemeal.

RESQURCE AVAILABILITY INFORMATION:

Who maintains this information?
Components for each type of resource.

Where is the information maintained? A
Information concerning a particular resource type is kept on a -
single node.)

1

ALLOCATION OF RESQURCES:

How is concurrency control provided?
Reservations are used prior to a work distribution decision and then
allocated by a lock.

PROCESS INITIATION:

How is responsibility distributed?
There is a hierarchy of responsibility.

How is refusal of a request to execute a process by a node handled?
After repeated attempts, the request is abandoned.

RROCESS MONITORING :

What type of interprocess communication is provided?
Unsynchronized communication.

How are task graphs resulting from additional work requests handled?
The new task graph is kept separate.

Page 96 MODELS OF CONTROL Section 8

taken in Medusa which assigns a control component to each type of resource and
maintains information concerning a particular type of resource in a single

location.

Thus, when resource availability information 1s required, a resource
needs allocation, or a resource needs deallocation, it is only necessary to
determine the type of the resource in order to determine the proper control
component to perform the desired operation. This is in contrast to XFDPS.1

and XFDPS.2 both of which require a search for the correct component.

. g

1C g

3
:

o
&

Cemmm e sma e e - - ey e e —

Section 9 THE EVALUATION OF THE MODELS Page 97

SECTION 9

THE EVALUATION OF THE MODELS

9.1 EVALUATION PLAN

As stated earlier in this report, it was planned from the initiation of
this survey of control models that it would be followed immediately by an 4
evaluation study of the various models identified or developed. It was also
anticipated that this evaluation would cover both the quantitative and *

qualitative aspects of the various models,
To support the quantitative evaluation of the various forms of system

control, a distributed control model simulator is being developed. 1

9.2 EVALUATION CRITERIA 1

A number of evaluation criteria have already been identified. The

tentative list is summarized in Table 9.

L3N

e A',;

d

T R <

@ . P

AV sigp

 rarm—— ———— e R

-

e
il 22
P
s

P O e et d i o m—t ———

Ao & TR A B

— — R —
. Page 98 THE EVALUATION OF THE MODELS Section 9
Table 9. Possible Evaluation Criteria for
Distributed Control Models
RESQURCE
Memory Space Utilization
By the Control Algorithm
Complexity
Redundancy
By the Control Information
Time
Local Processing Time
Communications Delays
Delays in Work Initiation
Communication
Complexity
Quantity
RERFORMANCE
' Throughput
(Response Time
Bottlenecks
, SYSTEM FLEXIBILITY
Reconfiguration Potential
Modularity
Logical Complexity
Maintainability
Problem Partitioning and Algorithm Design
FAULT-TOLERANCE
q Detection
. Recovery
- Extent to Which Processed Work Can Be Recovered
{- PROTECTION
N Privacy
Y Security
.
N
;g
‘2
.
Y
) 3
I
;A
¥

P Ly

Y

a3

, ow

e« o

References Page 99

Akin78

AndeT75

Bach78

BalzT71

Brin78

Caba79a

CabaT9b

Clar80

Cook80

Davi79

Denn78

"Desj78

Ensl74

Ensl78

Farbd73

REFERENCES

Akin, T. Allen, Flinn, Perry B., Forsyth, Daniel H., "A Prototype
for an Advanced Command Language," Proceedings of the 16th Annual
Southeastern Regional ACM Conference (April, 1978): 96-102.

Anderson, George A., and Jensen, E. Douglas., "Computer Interconnec-

tion Structures: Taxonomy, Characteristics, and Examples," Computing
Surveys 4 (December, 1975): 197~213.

Bachman, Charles, and Canepa, Mike, "The Session Control Layer of an
Open System Interconnection," COMPCON Fall 78 (September, 1978):
150-156.

Balzer, R. M., "PORTS - A Method for Dynamic Interprogram Communica-

tion and Job Control,"™ AFIPS Conference Proceedings 38 (1971 Spring
Joint Computer Conference): U485-u489.

Brinch Hansen, Per, "Distributed Processes: A Concurrent Programming
Concept, ™ Communications of the ACM 21 (November, 1978): 934-941.

Cabanel, J. P., Marouane, M. N., Besbes, R., Sazbon, R. D., and
Diarra, A. K., "A Decentralized 0S Model for ARAMIS Distributed Com-

puter System," Proceedings of the First International Conference on
Distributed Computing Systems (October, 1979): 529-535.

Cabanel, J. P., Sazbon, R. D., Diarra, A. K., Marouane, M. N,, and
Besbes, R., "A Decentralized Control Method in a Distributed

System," Proceedings of the First JInternational Conference on
Distridbuted Computing Svstems (October, 1979): 651-659.

Clark, David D., and Svobodova, Liba, "Design of Distributed Systems
Supporting Local Autonomy," COMPCON Spring 80 (February, 1980): 438~
444,

Cook, Robert P., "The STARMOD Distributed Programming System,”
COMPCON Fall 80 (September, 1980): 729-735.

bavies, D, W., Barber, D. L. A., Price, W. L., and Solomonides, C.

M., Computer Networks and JIheir ZProtocols, John Wiley and Sons,
1979.

Denning, Peter J., "Operating Systems Principles for Data Flow
Networks," Computer (July, 1978): 86-96.

desJardins, Richard, and White, George, "ANSI Reference Model for
Distributed Systems,™ COMPCON Fall 78 (September, 1978): 14l4-149,

Enslow, Philip H., Jr. (ed.), Multiorocessors and Parallel
Processing, New York: John Wiley and Sons, 19Tk.

Enslow, Philip H., Jr., "What is a 'Distributed' Data Processing
System?" Computer (January, 1978): 13-21.

Farber, D. J., Feldman, J., Heinrich, F. R., Hopwood, M. D., Larson,
K. C., Loomis, D. C., and Rowe, L. A., "The Distributed Computing
System, " COMPCON Spring 73 (February, 1973): 31-34.

T P

A i RPN P

g8 Page 100 References

Feld79 Feldman, J. A., "High Level Programming for Distributed Computing,"”
Compunications of the ACM 22 (June, 1979): 353-368.

GareT9 Garcia-Molina, H., "Performance Comparison of Update Algorithms for
Distributed Databases, Crash Recovery in the Centralized Locking
Algorithm," Progress Report No. 7, Stanford University, 1979.

HaveT8 Haverty, J. F., and Rettberg, R. D., "Inter-process Communications
for a Server in UNIX,"™ COMPCON Fall 78 (September, 1978): 312-315.

Hoar78 Hoare, C. A. R., "Communicating Sequential Processes,”
Communications of the ACM 21 (August, 1978): 666-677.

HoppT9 Hopper, K., Kugler, H. J., and Unger, C., "Abstract Machines Model~
ling Network Control Systems," Qperating Systems Review 13 (January, ;
1979): 10-24,

Jens78 Jensen, E. Douglas., "The Honeywell Experimental Distributed Proces-

sor - An Overview," Computer (January, 1978): 28-38.

Kimb76 Kimbleton, Stephen R., and Mandell, Richard L., "A Perspective on

Network Operating Systems," AFIPS Conference Proceedines 45 (1976
National Computer Conference): 551-559.

Leins8 Leiner, A, L., and Weinberger, A., "PILOT, the NBS Multicomputer
System," [Proceedings of the Eastern Joint Computer Conference
(1958): 71-T75.

Macc80 Maccabe, Aurthur B., and Leblanc, Richard J., "A Language Model for
o Fully Distributed Systems,"™ COMPCON Fall 80 (September, 1980): 723-
f 728.

Metc76 Metcalfe, R. M., and Boggs, D. R., "Ethernet - Distributed Packet

Switching for Local Computer Networks," Communications of the ACM 19
(July, 1976): 395-~404.

Morg77 Morgan, Howard L., and Levin, K, Dan, "Optimal Program and Data
Locations in Computer Networks," Communications of the ACM 20 (May,
1977): 315-322.

Nels78 Nelson, David L., and Gordon, Robert L., "Computer Cells -~ A Network

¢ Architecture for Data Flow Computing,™ COMPCON Fall I8 (September,
- 1978): 296-301.

Oust80 Qusterhout, John K., "Partitioning and Cooperation in a Distributed
Multiprocessor Operating System: Medusa," Ph.D. Thesis, Carnegie-
Mellon University, April, 1980.

Oust80 Qusterhout, John K., Scelza, Donald A., and Sindhu, Pradeep S.,
"Medusa: An Experiment in Distributed Operating System Structure,"

Communications of the ACM 23 (February, 1980): 92-105.

: Peeb80 Peebles, Richard, and Dopirak, Thomas, "ADAPT: A Guest System,"
‘ COMPCON Spring 80 (February, 1980): 445-454,

Rite78 Ritchie, D. M., and Thompson, K., "The UNIX Time-Sharing System,"
Ihe Bell Svstem Technical Journal 57 (July-August, 1978): 1905-1929.

References Page 101

Sapo80 Saponas, Timothy G., and Crews, Phillip L., ™A Model for
Decentralized Control in a Fully Distributed Processing System,"
COMPCON Fall 80 (September, 1980): 307-312.

Smit79 Smith, Reid G., "The Contract Net Protocol: High-Level Communication
and Control in a Distributed Problem Sclver," Proceedings of the lst

International Conference on Distributed Computing (October, 1979):
185~192,

Smit80 Smith, Reid G., "The Contract Net Protocol: High-Level Communication !
and Control in a Distributed Problem Solver,” IEEE Iransactions on
Computers C-29 (December, 1980): 1104-1113,

Suns?77 Sunshine, Carl, "Interprocess Communication Extensions for the UNIX
Operating System: I. Design Considerations,"” Rand Techrnical Report
R-2064/1-AF, June 1977.

Thom78 Thomas, Robert H., Schantz, Richard E., and Forsdick, Harry C.,
"Network Operating Systems," Bolt Beranek and Newman Report No. 3796
(March, 1978).

Ward80 Ward, Stephen A., "TRIX: A Network-Oriented Operating System,"
COMPCON Spring 80 (February, 1980): 344-349.

Zuck?7 Zucker, Steven, "Interprocess Communication Extensionsz for the UNIX
Operating System: II. Implementation," Rand Technical Report
R-2064/2-AF, June, 1977.

' MISSION
Rome Air Development Center

RADC plans and executes 'Luewu:.h de.vdopment, wt and
selected acquisition programs in support of Command, Coowwtg
Communications and Intelligence (C31) activities. Tecknical &
and engineering suppont within areas of technical competeice
48 provided to ESD Program Offices (PO3) and other ESD ..
. elements. The principal technical mission aréasé are -
comiunications, electromagnetic gulidance and control,
velflance 04 ground and aenospace objects, wte&!mm tm
collection and handling, information Aysizm technology,
Lonospheric propagation, solid state sciences, mwwmu
physics and electnonic ammuxy mnmmmw:y and
compatibility.

»
'aJh\a—J-vnsw o ‘

