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1 INTRODUCTION AND SUMMARY

1.1 COST ESTIMATING AND SOFT™ARE COST MODELS

Cost estimating is an integral part of the Air Force major weapon
system acauisition process [1] [2] [3]. The Air Force manages the weapon
system life cycle by continually balancing performance, cost, and risk for
the system and its components. Throughout the weapon system Tife cycle it
is necessary to estimate the cost of part or all of the system over a part
or all of its development and operational life,

Computers are an increasingly important part of Air Force weapon
systems in terms of both function and cost [4] [5]. Until recently, most
of the cost analysis and planning related to computer subsvstems was directed
to the harcware. However, increased capabilities and reductions in the cost
of hardware have had the effect of increasing the amount of software needed
for each system and its cost relative to the cost of the hardware. It is now
often necessary to budget large portions of the system life cycle cost to the
development and maintenance of these software components [6] [7] [8].
Therefore, more attention is being given to the methods used for making
estimates of the resources to be invested in the software subsystems.

A software cost model is a systematic procedure that relates cost
to certain variables or cost factors. A number of such models are available
to cost analysts. The Air Force has commissioned this study to examine someé
of these models to learn the extent to which they satisfy Air Force needs and
te learn how the quality of software estimating can be improved.

1.2 THE AIR FORCE PERSPECTIVE AND SOFTWARE COST MODEL RELIABILITY

There are cost estimating situations in which the Air Force must
consider the effect on software cost of who builds it or how it is built.
Therefore, it is useful to divide cost factors into those that describe the
product under development and those that describe the manner in which it is
built. Cost factors other than those that describe the product are affected

1-1




by the selection of a development organization or the development process.
These non-product cost factors are difficult to identify and measure. In the
case of hardware porducts they include such things as experience, tools, and
facilities. Given the proper adaptation of definitions, the same terms are
appiicable to software development. In either case, these environmental
factors may appear explicitly in cost estimating procedures or, more often,
they may influence the applicability of a given model to a given development
environment in some unknown way. A major consideration in evaluating models
for Air Force use is measuring the ability of the model to define the environ-
mental parameters. This is because the Air Force must always make its
estimates at arms length. It must know how the cost of software is influenced

oy how it is developed and who develops it.

It may be helpful to compare methods for estimating software cost
with those used for estimating computer hardware cost. Computer hardware
‘cost estimating is more advanced than software cost estimating. This is
because there has been a recognized need for it for a longer time and
because cost estimating techniques that were developed for other electronic
components were adaptable to computers. Hardware possesses readily -
identifiable measures of size and performance that nave been correlated with
cost [9] [10]. Given a hardware product with specified physical and
functional characteristics, methods exist [11] [12] [13] [14] for considering
the effects on cost of non-product factors such as state of the art advance,
experience, learning and manufacturing techniques. Therefore, it is possibie

to make early cost estimates using average industry performance {or some
desired increase over the existing average); and then, in later phases of
the 1ife cycle, it is possible to evaluate proposals and give proper credit
for new approaches and to identify high risk or infeasible concepts.

Although software costs are also affected by non-product factors
{157 [16] [17], there are no reliable procedures for quantitatively
describing their effects on cost. The most common existing procedure
for accounting for differences in development methods or organizational
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; experience is to base model estimates on historical experience similar

to the proposed development environment. However, there is very little
objective basis for distinguishing among projects to determine whether
they‘are truly applicable to the proposed environment. This capability is
aessential if the Air Force is to properly evaluate software development
and maintenance proposals from diiierent organizations.

There are several reasons why software cost estimates are not as
reliable as those for hardware [18] [19]:

e Software development engineering is a relatively new discipline.

e Software design and development methods have been affected by
the explosive development of computer hardware which has changed
the cost incentives relating software and hardware.

e Software has only recently become a major cost item in the weapon
system life cycle.

e The relationships betweem cost and generally accepted cost factors
are not established.

e Reliable historical data on software costs are almost nonexistant.

None of these deterrents to reliable software cost estimates represents
an insurmountable barrier. One purpose of this project is to evaluate a
number of existing cost estimating techniques or models to learn how to
overcome past probiems.

1.3 OVERVIEW OF THE SOFTWARE MODEL EVALUATION

The evaluation design stems from the belief that any evaluation
of the merits of different approaches to a given objective (i.e., obtaining
good cost estimates) should be based on the comparison of the approaches
with some standard. To permit the evaluation to be only a comparison
of how the several existing software models are alike and different is
an abdication of the evaluator's prerogative to impose the standard of
measurement. To look at all existing models, make a list of their
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characteristics and then show how each compares with all the others,

makes the assumption that the Air Force needs are represented in the study
population. It implies that there are no requirements other than those
that prompted the designs of the test subjects. Furthermore, it fails

to consider whether the existing models have satisfied even their creators

objectives.

A detailed statement of Air Force estimating needs (Section 2.1),
establishes objective standards for cost models that avoids features or
qualities of existing models that may be expensive or difficult to achieve,
and which are not needed. It is then relatively easy to compare model
characteristics and evaluation objectives. Since the evaluation is based
on satisfaction of needs, this approach provides a ready basis for
establishing priorities for possible research programs. '

Past comparative studies of software cost models [20] [21] [22]
[23] [24] [25] [26] [27], have provided descriptions of model features and
discussed different methods for making estimates. Several studies [28]
[29] [30] have been published describing estimating experience with the PRICE S
model. Bdut there has been no comprehensive analysis of predictions
relative to needs nor a comparative analysis of estimating performance
using data from different environmenfs. This evaluation compares
estimating performance using three different development data sets.
This is an important part of the evaluation design because several
reports indicate that environment is a significant factor affecting model
estimating accuracy [31] [32] [33]. The use of three data sets is ‘
intended to help identify model features that are sensitive to environ-
mental change. Controlling these factors should help uncover other
determinants of accuracy.

[f the objective of the accuracy evaluation was to determine which

of the nine models is the most accurate estimator on a éiven data set, it
would only be necessary to execute the models using the same data and
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tabulate the difference between the predicted and measured values of the
test variable. Such an evaluation, however, would not tell the Air Force
whether the measured accuracy would be obtained for all estimating
situations or guide future model development by indicating model attributes
that contribute to higher estimating accuracy.

The evaluation of model accuracy should address the following

considerations:

o The effect of the software development environment on model
performance.

e Attiributes of the environment that are associated with the best
and worst performance of a model. That is, factors that indicate
when it is best to use a given model and when it should not be used.

e The effect on the accuracy measurement of incomplete input sets
among the test data.

& The characterization of model structures in a way that will help
to identify correlations between structural attributes and
estimating performance.

1.4 SUMMARY OF THE REPORT

The material in this report is presented in much the same sequence
that the evaluation project was completed. The models to be evaluated
were selected and analyzed, the evaluation criteria including Air Force
cost estimating needs and accuracy were established, data sets were
identified and qualified, and finally the evaluation protocol was executed
and the results analyzed. Specifically, the pertinent sections of the
report are:

Descriptions of the Evaluated Models
Definition of the Evaluation Procedure

The Establishment of the Evaluation Criteria
Execution of the Evaluation Procedure
Analysis of the Results of the Evaluation
Recommendations for Future Model Development

~N Oy Y WM
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Section 2 presents the general selection criteria used for the
models and includes a one-page summary of each model. The models are
described according to the three structural types developed in Section 4.2,
their method of making their initial and subsequent estimates, and their

outputs.

Section 3 2xplains the evaluation criteria established for Air Force
cost estimating needs and the measurement of predictionaccuracy. The
cost estimating information needs are established by the Major Weapon
System Acquisition Process (Section 3.1). Consistent with this process
is the Air Force Software Life Cycle and a comprehensive Work Breakdown
Structure (Appendix B). The Ueapon System Acquisition Process gives rise
to five cost estimating situations that should be supported by cost
models. The Software Life Cycle defines the set of activities and events
that describe the boundaries of the cost estimates. The Work Breakdown
. Structure establishes the elements of the product within the 1ife cycle
phases that must be identifiable by separate cost values. The evaluation
of the extent to which existing models satisfy the five estimating situa-
tions is made by comparing the model outputs with the requirements in
terms of scope and detail.

Estimating accuracy may be measured using different variables.
Section 3.2 discusses several alternative methods and explains why the
Average Relative Root Mean Scuare Error was selected.

A large part of the effort spent on the project was devoted to
obtaining accurate descriptions of model inputs and outputs (Section 3.1).
Most published model descriptions are vague in their definitions of their
variables. It is difficult to know exactly which cost elements are
included in the model estimates. One common problem was the variations
in the use of the most frequently used input: size of code. Many
different definitions were encountered.

1-6




Section 4.2 describes the three categories used to designate the
model structures:

e Regression
® Heuristic
¢ Phenomenological

Section 4.3 describes the three organizations that contributed data
to the evaluation and some of the processes used to obtain and qualify it.

The nine test models are associated with such a large number of
different input and output variables that none of the data sets was rich
enough to provide measured values of each. Section 4.4 describes how the
missing data items were handled.

The results of the evaluation are presented in Section 5. Section 5.1
describes how well the models satisfy the cost information needs establiished
by the five cost estiigating situations, the Software Life Cvcle definitions
and the Work Breakdowf\syructure. ‘Section 5.2 contains the results of the
accuracy measurements. Estimating performance is related to model and

environmental characteristics.

The evaluation ihdicates that the performance of the models tested
is very sensitive to the development environment. Within an environment
characterized by similar projects, personnel experience and management
techniques, the most accurate models achieved an average estimating error
of about 25 percent on the basis of the root mean square error. However,
a model that exhibits such performance on one data set may demonstrate an
average error approaching 100 percent on another. Even within a single
environment one of the best performing models has an error range of + 50
percent. These error measurements were made after the models were calitrated
on the test data sets. Therefore, the accuracy is greater than would re
expected when estimating a new project.
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] These results indicate that in virtually all estimating situations
there are factors that are not properly accountec for by the mocels tested.
These factors are affected by changes occurring between environments and

within an environment.

The results of the evaluation are summarized as follows:

A comparison of the outputs of the models under investigation with
the Air Force estimating needs indicates that:
e The supporting materials for most of the models do not clearly
state the elements included in their estimates and are not precise
about their definitions. '

e The existing models are better able to satisfy information needs
early in the acquisition life cycle.

e None of the models included in this study fully satisfy the Air
Force need for information eitnher with regard to scope or detai..

e The models tend to be phase oriented and do not properly describe
activities that cross phase boundaries. This precludes obtaining
data compatible with both management planning (phase related) and
product cost (WBS).

e Although most of the models use the summation of program or module
sizes to make their cost estimate, only one model stucied provides
for keeping track of the cost on a compcnent basis and accounts
for the cost of system integration. None of the models provide
for al) four levels of system definition called for in the Work
Breakdown Structure (Ref. Appendix B).

Based on the relative root mean square error measure of performance:

e Recalibration* is the primary factor contributing to the
differences in estimating performance among the models tested.

e The contribution of model structure* to estimating accuracy is
not significant when the models have been calibrated to the
development environment*.

—
Definitions of these terms are given in Section 1.5.
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e The development environment significantly affects the relative
performance of the models tested.

e The effect of davelopment environment on estimating performance
precludes the possibility of obtaining generally applicable
measures of model performance without applying additional controls.

® Models that do not use size as an input may perform as well as
those that do.

e The average RMS Error for all tested models is unacceptably large
for Air Force estimating purposes.

e The best performance obtained by any group of the models tested is

not adequate for Air Force needs.

Caution must be exercised to avoid extending the interpretation of
the results of the accuracy measurements beyond the constraints of this
study. Section 6 discusses five considerations affecting the reliability
of the measurements. H

Section 6.1 explains how the development environment affects
estimating performance and the rankings of the models.

Section 6.2 considers the effects on the accuracy measurement of
errors in the estimated input values.

Section 6.3 describes the methods used to calibrate the models on
the historical data sets and the implication for the evaluation.

Section 6.4 explains the use by some models of parameters and L
variables that can never be measured.

The recommendations for future model development are divided into

two parts. Section 7.1 describes needs for new experiments identified during
this project. Section 7.2 makes recommendations for better data definition i

and collection.




1.5 SOME DEFINITIONS

The discussions in this document include several terms that have
specific meanings within the context of the evaluation. They are defined
here to clarify the presentation of the results.

Model Structure. A cost estimating model is considered to be the specific

representation of the model structure and its associated parameters that

is to be executed in a given cost estimating situation. A model structure
includes imputs, a calculation process and outputs. It is the formal
representation of how the outputs are related to the cost driving variables
or inputs. In addition to the inputs, which represent the attributes of a
specific project or development effort, there are parameters of constants

that complete the quantification of the model. The parameters may be obtained
empirically from representative past projects or they may be subjective.

They determine and represent the universe of environments for which the model
is appiicable. In some cases, different parameters are given for different
estimating situations (e.g. Doty); in others, the models are presented with-
out restrictions on the applicability of the parameters. Two models (PRICE S
and SLIM) identify the parameters and provide means for estimating them for
any environment,

Throughout this report the term "model" refers to the combination
of the "model structure" and values of the parameters. The "model structure"
is the representation of the estimating hypothesis. Our ultimate objective
is to relate the attributes of the model structure to accuracy.

Calibration. The process by which values of model parameters are obtained
for a given cost estimating situation is called "calibration". The calib-
ration of a model structure may be performed using formal curve fitting
methods on a representative historical data set, by using an execution

mode of the model, or by selecting values from experience. An important
consideration in this evaluation was the proper selection of representative
data and methods for calibrating the model structures.

e mm blA ot



Environment. This is a general term used to describe the source of
influencing forces that are external to the product being developed. As
was mentioned before, it is conceptually helpful when analyzing model
] structures to divide the cost-driving factors into two groups: factors
that describe the product and are therefore unchanged by how or where
the development is completed; and factors that affect the resources needed
to develop the product but are independent of its characteristics. The
first group are usually referred to as input variables and the second
group constitutes the environmental parameters. Examples of environmental
factors are: type of development organization, type of contract, method
of project organization, development methods, supportiﬁg software,
facilities, and description and availability of computer hardware.




2 MODEL DESCRIPTIONS
Software cost estimating models were selected for evaluation for
one or more of the following reasons:
o Possessing a unique structure
Representing a common type of structure
A representative choice of input variables
A unique choice of input variables

Widespread use

e Otherwise interesting to the Air Force.
The following models were evaluated:

¢ Aerospace Corporation

Tecolote Research Corporation

e Boeing Computer Services

¢ DoD Micro Estimating Procedura
e Doty Associates, Inc,

o Farr and Zaoorski

e PRICE S

e SLIM

)

.

Wolverton

Detailed descriptions of “he models including their inputs and
outputs are presented in Appendix A. The following are one-page summaries
of the models (Table ]) =hat describe the characteristics upen which inferences
concerning the contribution of model structure to performance are based.
These attributes include:
o Model type

e Estimating Procedure
- Level of initial estimate
- Method of making initia) estimate
- Method of making subsequent estimates
e Characterization of productivity
Qutputs




AE ROSPACE CORPORATION

STRUCTURE

Type.

First estimate.
Subsequent estimates.

Development effort is ¢
an estimating equation

Regression

Development effort.
Single parameter

No further breakdown of effort.

alculated given the number of instructions using
of the form:

MM = aIb
where MM = Manmonths of development effort
1 = Number of instructions
a,b = Constants
QUTPUTS
Effort.
Scope. Assumed to be Analysis through System Test.
Detail. System or CPCI level.
Table 1 Sumrary of Model Characteristics




BOEING COMPUTER SERVICES

STRUCTURE
Type. Heuristic

First estimate. Development effort.
Multi-parameter

Subsequent estimates. Allocations using fixed ratios followed by phase-
© related adjustments.

The system is divided intc five types of software and the number of delivered
instructions is estimated for each component. The system development effort
is obtained by multiplying the productivity rate in manmonths per instruction
for each type of software and adding the values for the components. The
development effort is divided into six 1ife cycle phases using fixed ratios.
The phase estimates are adjusted for certain development and software charac-
teristics and recombined to form a revised total development effort.

QUTPUTS
Effort.
Scope. Analysis through System Test

Detail. System level

Table 1 :Cont) Summary of Model Characteristics ]
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00D MICRO PROCEDURE

STRUCTURE

Type.

First estimate.

Subsequent estimates.

Heuristic

Portion of development effort (Direct
development effort)
Multi-parameter

_Fixed ratios

Net development effort is calculated using an estimating equation
that includes software function and complexity variables along with

experience measures.

A constant factor is used to estimate gross development effort
which then divided into phases using ratios.

QUTPUTS

Effort.

Scope. Analysis through Installation

Detail. System level

Table 1 ‘Coat) Summary of Model Characteristics

2-4




DOTY

STRUCTURE
Type. Regression

First estimate. Development effort.
Multi-parameter

Effort is related to size and type of code by estimating equations.
For small systems the effects of 14 environmental parameters are
included using a product function.

QUTPUTS
Effort.

Scope. Detailed Design through Coding and Checkout
Detail. Total effort for a CPCI

Sevelopment time.

Table 1 (Cont) Su .nary of Model Characteristics




FARR AND_ZAGORSKI

STRUCTURE
Type. Regression

First estimate. Development effort.
Multi-parameter

Subsequent estimates. No further breakdown of effort

Effort is related to 5 predictor variables by an estimating equation.

QUTPUTS
Effort.
Scope. Detailed design through coding and checkout

Detail. Total effort for a CPCI

Table 1 'Cont) Summary of Model Characteristics




PRICE S

STRUCTURE
Type. Heuristic

First estimate. Portion of development cost (design cost)
Multi-parameter

Subsequent estimates. . Functional relationships

Cost is related to predictor variables by Tables and equations that
are either subjective or empirically derived.

Cost and effort are related by cost per unit time values that are
constant for a given phase.
QUTPUTS
Cost.™*
Scope. Detailed Design through Installation
Detail. Three phases, Design Implementation Test and
Installation. For each phase by activities
system analysis, programming, documentation,
management, quality assurance. Model options
include independent V&V, system integration.
Time.

Computer units.

* Alternative outputs are manhours or manmonths.

Table 1 .Cont) Summary of Model Characteristics




TECOLOTE

STRUCTURE
Type. Regression

First estimate. Development effort.
Single parameter

Subsequent estimates. . No further breakdown of effort.

Development effort is calculated using a cost estimating equation with
number of instructions as the independent variable.

OUTPUTS
Effort.
Scope. Requirements through Operational Demonstration

Detail. System or CPCI level.

Table 1 (Cont) Summary of Model Characteristics
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SLI

e

STRUCTURE

Type. Phenomenological

First estimate. Development cost.
Multi-parameter, (linear programming)

Subsequent estimates. Allocations using fixed ratios
Effort is related to predictor values using the “software equation."

This along with constraints on time, effort and cost define a range
of acceptable solutions (if any).

Cost and effort are related by a constant value of cost per unit.

QUTPUTS
Effort.

Scope. Detailed design through installation for the
primary output. Additional outputs include
analysis effort.

Detail. System level

Time.
CPU Time.
Documentation.

Table 1 (Cont) Summary of Model Characteristics
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WOLVERTON

STRUCTURE

Type.

First estimate.

Subsequent estimates.

Heuristic

Development cost.
Multi-parameter

Allocation using fixed ratios

Cost is related to routine size and category by a constant cost per
instruction for each category of software.

QUTPUTS
Cost.
Scope. Analysis through Operational Demonstration
Detail. Seven phases, each with up to 25 activities an

Computer cost.

eighth phase, Operations and Maintenance has
allocations among the 25 activities, but there
is no guidance for allocating the eighth phase
from the total.

Tavble 1 {Cont) Summary of Model Characteristics




3 EVALUATION CRITERIA

The Air Force needs reliable procedures for estimating software
costs to support its activities as the manager of weapon system development.
It is necessary when examining methods for making cost estimates to be
mindful of the Air Force's perspective as the system development manager.
The Air Force does not develop system components itself. When estimating
the cost of developing and operating a new system, it must at first consider
industry-wide capabilities as represented by experience with similar weapon
systems. This represéntation of development performance is adequate for '
conceptual studies, but it is not valid for evaluating proposals for specific
subsystems to be built by specific organizations. For exampie, a single
organization may obtain good results using a given method of cost estimating;
but it must be recognized that many variables such as experience, support

facilities, and management techniques are relatively fixed in that organization.

Their influence on any estimates made by that organization are minimal.
However, if the method were adopted by the Air Force and applied to many
organizations such as might occur in a major weapon system development, the
results may not be satisfactory at all. The model evaluation was designed
to look at software cost estimating %rom the Air Force's point of view.

The choice of evaluation criteria was affected by the following
considerations:

e A number of different software cost estimating modeis already exist.

® Proponents of the models offer testimonials based on their
particular experience and estimating needs.

® There is no model or approach that is not without both supporters
and critics.

o Much of the existing literature claims there is no reliable method
of making software cost estimates.

Given the conflicting evidence it seemed reasonble to conduct an
evaluation of representative cost models to address the following:

3-1




e The needs of the Air Force for software cost estimates.

o The extent to which existing software cost models satisfy
those needs.

e The characteristics of existing model structures that make
them good or bad performers for Air Force purposes.

e Methods for improving the quality of future Air Force
software cost estimates.

The evaluation was divided into two parts:

e The satisfaction of Air Force needs for software cost estimates
in terms of specific items of information.

o The realization of estimates with accuracy acceptable for
making decisions concerning selections of alternative design
concepts, allocation of resources, and managing the software
Tife cycle.

This section of the report describes how criteria were defined that
establish the Air Force needs for cost model performance in terms of items
of information and accuracy.

The first subsection describes the Major Weapons System Acquisition
Process, the Software Life Cycle and the Work Breakdown Structure. It then
shows how these lead to five cost estimating situations which are described
in terms of scope of the 1ife cycle addressed, level of detail in the
estimates and the desired estimating accuracy.

The second subsection establishes the criteria for measuring
estimating accuracy; and the final subsection discusses some evaluation
criteria that were considered but not included.

3.1 INFORMATION NEEDS
The Air Force identifies two types of computer system development.
One is the creation of computer systems that are end products. That is,
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they perform a separate function. These are for the most part management
information systems. The other type of computer system is an integral
part of a larger system. It is characterized by stringent and complex
interfaces with its environment. These are usually called, "embedded
svstems."

For the purpose of this evaluation, the needs for software cost
information will be established by the process governing the development
of embedded software. However, this should not 1imit the applicability
of the results. For one thing, most of the models are used for both
types of development; and, for another, the software portion of the develop-
ment cycle is nearly the same for both types of systems. The embedded
system development must be governed in addition to its own reguirements
by the needs of the weapon system.

The representation of both the software Tife cycle and its controiling
envirgnment, the weapon system life cycle, allows us to specify the needs for
software cost estimates considering the points of view of the weapon system
and the software components. The weapon system manager must know how the
needs of the software components wiil affect the cost, schedule and risk
of the weapon system. He must also know how the performance of the weapon
system in terms of functions, speed, reliability, etc. are affected by the
software system cost, schedule, and risk. When the software resources have
been allocated, the software subsystem manager must assess his cost, schedule,
and risk in terms of lower level design choices. He as well as the weapon
system manager must make preliminary cost-performance trade-offs, prepare
statements of work, evaluate proposals, and monitor contracts.

The following sections describe the evolution of the weapon system
definition as it occurs during the Major Weapon System Acquisition Process.
The aspects of the weapon system that establish the software requirements
are highlighted. The software 1ife cycle is presented along with the
definition of the characteristics that contribute to the estimation of its
cost, schedule, and risk.
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The Acquisition Life Cycle for Major Defense Systems is the formal
decision process regulating the acquisition of electronic systems that
include software. Electronic Systems are one of seven types of system
identified in MIL-STD-881A, Work Breakdown Structures for Defense Material
Items [34]. The acquisition of computers and software that are embedded in
a weapon or command and control system are normally governed by the Air
Force 800 series of regulations.

AFR 800-2 defines the Acquisition Life Cycle for Major Defense
Systems as normally comprising five sequential phases (Figure 1):

Conceptual
Validation
Full-Scale Development
Production
Deployment

Review by the Defense Systems Acquisition Review Council (DSARC)
normally follows each of the first three phases and Secretary of Defense
approval is required to proceed from one phase to another. There is some
flexibility in the composition of the phases. In general the process is
designed to insure:

Continuing operational need
Adequate system performance
Acceptable cost

Favorable cost effectiveness relative to other alternatives

. A Decision Coordinating Paper (DCP) is prepared to support each
DSARC review.

The procedure used as the basis for the definition of need is taken
from [34] which is based mainly on interpretations of:
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AFSCP 800-3

AFR 800-14, Vol. II
AFR 800-2

DoDI 5000.2

Summary of the Development Phases.

Conceptual Phase.

1. Explore, formulate, and evaluate possible system requirements.
2. If necessary, devise an optimum, affordable, and cost effective
preferred approach to the system's development, production,

and deployment.

Considerable preliminary design and analysis of software may be necessary
to support these objectives. Oemonstration, prototype and simulation
software may be required. Conceptual Phase design and analysis should be
limited to whatever is necessary to establish technical feasibility and
credible estimates of costs and development times. Design and analysis
should be most detailed where technical risk is greatest.

The Conceptual Phase has no prescribed time 1imit. Before DSARC
review of the draft DCP begins, the program can be terminated with the
approval of the highest command level which authorized it. Once DSARC
review begins, the fonceptual Phase will normally end with the Secretary
of Defense's Program Decision to proceed into the Validation Phase (with
or without specific redirection), or to end the program.

Validation Phase.

1. Assess the preferred design approach selected during the
Conceptual Phase by comparing it with the Initial System
Specification.

2. Rectify any difficiencies or develop a new approach if necessary.

3. If and when a sound system design approach is achieved, provide
sound technical, contractual, economic, and organizational bases
for the Full-Scale Development.
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Most Validation Phase work is tb demonstrate the feasibility
of doubtful components and subsystems and interface definitions, and to
improve estimates of performance cost and schedule. All can be
considered risk-reduction measures.

The Validation Phase may also include contracted design competitions.
The Validation Phase is intended to reduce risk significantly and
to allow negotiation of clear contracts for the subsequent acquisition
phases. The development of unambiguous specifications and testable require-

ments is most important.

Full-Scale Development.

1. A working prototype of the system {or the system if there are
no replicas).

2. Test results proving that this prototype can meet its functional
and performance requirements.

3. A Cadre trained in the system's operation and maintenance.

4. The documentation needed to begin the system's Production
Phase (if any) or otherwise needed for its Deployment Phase.

For the system's software the Full-Scale Development Phase fs
intended to yield the initial operational versions of the computer programs,
not prototypes.

Tne system's operational software (i.e. the executives and applica-
tions programs necessary to meet the system's operational requirements),
olus the support software necessary to build and maintain the operational
software and to support the Design, Test, and Evaluation and Initial
Gperational Test and Evaluation functions must normally be completed
during Full-Scale Development,
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If proprietary software is to be incorporated into the system, the
Government must decide whether the price represents an advantage
over contracted development.

Production Phase.

Activities are limited to maintenance and modification of existing

software. They may also include site-specific testing and installation.

Software has a life cycle of its own (Figure 2) that exists in
concert with the weapon system life cycle. Software requirements for

embedded subsystems are established primarily by the needs of the Weapon
System.

Table 2 [34] describes the activities and products comprising the
Software Life Cycle.

The functions assigned to the software comprise, along with the
definition of the computer elements, the basis for estimating the time,
effort, and other resources required to create the software and test it.

If the investment needed to provide the prescribed software functions are not
acceptable, then a redefinition of the allocation of functions among

hardware and software may be necessary. If this doesn't resolve the
conflict, it may be necessary to revise the requirements.

This iteration between software requirements and feasibility is
continuous throughout the development phases. Problems thought solvable
during the Concept Phase may later prove not to be. Sometimes the software
definition and design process must go on for some time before negative
re- are obtained.

development of systems that contain software is an iterative
proce the steps of the software 1ife cycle are an integral part of
the system life cycle. Figure 3 [35] describes the combined system-software
Tife cycles.
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TABLE 2 SOFTWARE LIFE CYCLE ACTIVITIES AND PRODUCTS

ANALYSIS PHASE

Activity
A. Devise & analyze alternatives A.1l.
for the system, Segment (if 2.

any), or any Software Subsystem
directly containing the Computer
Program.

B. Allocate requirements to B.1.

the Computer Program: 1i.e.,
Functions. 2.
Performance (e.g., response
times). 3.

Interface (with others).
Design Constraints (e.g.,
prescribed algorithms, core
& processing time budgets).

Product(s)

Tradeoff study reports
Initial or Authenticated
System Specification &
Segment Specification
(if any).

Authenticated Development
Specification for each CPCI.
Possible higher-level speci-
fication, and ICD, changes.
Parts of draft Product Speci-
fications containing design
approaches for each CPCI.

Testing.
C. Conduct PDR(s) for the C. PDR minutes and action item
Computer Program's CPCI(s). responses.
DESIGN PHASE
Activity Product(s)
A.1. Definealgorithms not pre- A.1. Functional flowcharts.

viously prescribed. 2.
2. Design data storage structures. 3.
3. Define Computer Program logic. 4.

B. Allocate Computer Program B.
requirements internally
(e.g., to CPCs)

C. Test Planning. C.1.

D. COR(s) for the Computer D.
Program's CPCI(s).

Detailed flowcharts.

Data Format descriptions.
Description of algorithms
not previously prescribed.

Preliminary Product Specifi-
cations, including the above.

System, Segment (if any)
and CPCI Test Plans.
Preliminary CPCI Test Procedures.

CDR minutes & action item responses.




TABLE 2 (Cont) SOFTWARE LIFE CYCLE ACTIVITIES AND PRODUCTS

CODING AND CHECKOUT PHASE

Activity
A. Coding.

8. Limited checkout of compiler

or assembly units.

C. Corresponding logic & data

structure revisions.

TEST AMD INTEGRATION PHASE

Activity
A. Test Planning.

B. . Module tests.

C. CPCI tests (PQT & FQT).

D. Software Subsystem integration.

INSTALLATION PHASE

Activity

A.1. DT&E of any Segments.
2. System-level DT&E.

B. Site Adaptation (if any).

c. [OT&E

Product(s)

A-B. Code.

C.  Altered Product Specifications,
including compiler/assembly
listings.

Product{s)

A.1. Final CPC] Test Procedures.
2. Segment (if any) and system-
level Test Procedures.

B-D.1. Test Reports.

2. Computer Program coding
changes.

3. Modified Product
Specifications.

4. Possible high-level specifi-
cation, and ICD, changes.

Productgs}

A.1. Segment (if any) Test Reports.
2. System-level DT&E Test Reports.
3. Computer Program coding

changes.
4. Modified Product Specificaitons.
5. Possible higher-level specifi-
cation, and ICD changes.

B.1. Possible site-specific coding
changes. If so:

Version Description Documents &
Test Reports.

w N
.« .

C. [OT&E Test Reports.
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; TABLE 2 (Conc) SOFTWARE LIFE CYCLE ACTIVITIES AND PRODUCTS

OPERATION AND SUPPORT PHASE

Activity Product(s)
A. FOT&E A. Analogs of Test and Integration

Phase products.

B. Construction, installation, & 8. Related documentation.
checkout of software mainten-
ance & training facilities.

C. Software maintenance & C.
modification.

New software Versions
Version Description
Documents.

Possible specificaiton
changes.

New or revised Test Plans
and Test Procedures.
Additional tests.
Additional Test Reports.

e NS, -3 w n —

Abbreviations

CDR Critical Design Review

CPC Computer Program Component

CPCI  Computer Program Configuration Stem

DT&E  Development Test and Evaluation

FOT&E Follow-On Operational Test and Evaluation
FQT Formal Qualification Test

ICD Interface Control Drawing

[IOT& Initial Operational Test and Evaluation
PDR Preliminary Design Review

PQT Preliminary Qualification Test

Source: [34]




Software cost models must contribute to a rapid determination of
economic feasibility of the software components. Ideally a model will
help integrate time, effort and risk in order to establish feasibility.
It will do this using information describing the system attributes.

In the following discussion, the weapon system acquisition cycle
is used to define the cost estimating needs and the software life cycle
is used to describe the elements of software system cost.

Table 3 [34] details the weapon system and related software subsystem
activities comprising tne acquisition life cycle.

Analysis of Table 3 -ndicates a continuous transition in the
needs for estimates over the development cycle. OQuring the early phases
the need is for high level or aggregated estimates of development time
and cost for any number of alternative design concepts. As the system
design matures, its elements become defined at lower levels and each has
a greater number of attributes. The in&ividua? element has a more limited ro’e
in the system, but it is described in greater detail and it must function ir
concert with many other elements. Initially, we might speak of the
navigation subsystem and its functions. Later, we would describe the
alignment element with its functions, speed, accuracy and interfaces with
the accelerometers, gyros, etc. Therefore, inherent with the process
of increased system definition is the need to describe levels of inter-
gration and interface in addition to component attributes.

The need for software cost and resource estimating during the
development life cycle proceeds from the rapid calculation of gross
estimates for several concepts to rather detailed estimates devoted to
a single design. Ideally the estimating methods needed to support this
process would be functionally oriented in the early phases.and evolve to
variables describing design characteristics in the end phases.
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The need for precision goes through a similar evolution. During

the early phases it is only necessary to determiné if a concept is totally
out of reach in terms of cost or development time. Subsequently it is
necessary to weigh the cost and risk of one design concept relative to
another. The final estimates involve the commitment of funds and
personnel and demand the greatest possible precision.

i it

Table 3 has been used to prepare descriptions of five cost
estimating situations that represent the different kinds of estimates
described above. These descriptions (Table 4) which include the scope
and detail of the estimates and their accuracy are the basis for evaluating
how well each model satisfies the needs for cost information during the

weapon system life cycle.

Having described the general need for cost information in terms
of life cycle scope and detail, it is possible to extend the criteria in
Table 4 to include the Work Breakdown Structure (Appendix B). This
extension provides a means of precisely describing all the software estima-
ting needs. Each major element of the WBS (Level 1) is divided into
appropriate measures of the software product (Level 2). The relationship
between the two levels is shown in Table 5. '

Appendix B describes three WBS levels. Table 3 indicates that
program management needs extended to the third level. However, none of
the models evaluated provide cost estimates in such detail. Carrying
this detail in the evaluation process is a needless complication consider-
ing that none of the models can provide the information. Therefore, the
third level of the WBS is considered to be a description of the data that

" should be included in the higher, Tevel estimates. The first two levels
will be the only ones considered in the remainder of the report.

Figure 4 depicts the software cost elements in graphical form. The
coPumns represent the Software Life Cycle phases and the rows represent

3-17




TABLE 4 FIVE COST ESTIMATING SITUATIONS

Conceptual Phase, Cost Feasibility

NEED

In support of the analysis of perceived deficiencies in existing
systems, estimate software component costs and development times
for defined alternatives.

SCOPE
Total 1ife cycle cost, Conceptual through 0&S.

LEVEL QOF DETAIL
Weapon System - Total cost of all software components.

INPUTS
System performance and functions.

LEVEL OF PRECISION

+ 30%

EXAVPLE
The software-related costs for a new interceptor aircraft.




TABLE 4 .Cont) FIVE COST ESTIMATING SITUATIONS

Conceptual Phase, Preliminary System Design Studies
NEED

Support the evaluation of functional allocations for system
components by estimating software development time and cost.
SCOPE

Cost of defining, designing, producing and owning major
software components.

LEVEL OF DETAIL
System functional components.

INPUTS
System segment performance, preliminary performance allocations,
preliminary size and system interfacg descriptions.

LEVEL OF PRECISION
+ 25%

EXAMPLE
Compare the software development time and cost for a four
function versus a five function navigation system.

3-19
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TABLE 4 (Cont) FIVE COST ESTIMATING SITUATIONS

Conceptual Phase, Preliminary Contract Cost and Schedule Estimates
NEED

This need is repeated as necessary to support the

evaluations of alternatives leading to DCP I. The level of detail
remains fairly constant although some analyses may require
defining critical components to more detail than the others.

The only thing really changing is the confidence in the results.
System components are defined by function and performance.

SCOPE
validation through 0&S.

LEVEL OF DETAIL
First level WBS for each software component

INPUTS
Software functions, performance, interfaces, inputs, outputs.

LEVEL OF PRECISION
+ 20%

EXAMPLE
Estimate the development time and cost for a real time display
system to be let out for bids.




TABLE 4 Cont) FIVE COST ESTIMATING SITUATIONS

4., Validation Phase, Support ¢f validation Phase Contracting
NEED
Allocate funds; support RFP preparations and assist in software
related proposal evaluations for Validation Phase contracts.

SCOPE
Software system design through 04&S.

LEVEL OF DETAIL
Software WBS level 2, system segment.

INPUTS
CPCI characteristics and performance.

LEVEL OF PRECISION
+ 15%

EXAMPLE
Estimated cost including facilities, training, etc for the
H weapon delivery software for a fighter-bomber.




TABLE 4 ‘Conc} FIVE COST ESTIMATING SITUATIONS

5. Full Scale Development, Evaulate Progress
NEED .
Monitor the progress of software system components during
development.

SCOPE
CPCI design through 04&S

LEVEL OF DETAIL
Software WBS level 3, CPCl and CPCR.

INPUTS

—————

f CPCI and program functions and performance.

LEVEL OF PRECISION
+10%

EXAMPLE
Prepare management decision boundaries for cost and schedule
for a software development project under contract.




TABLE 5

DECOMPOSITION OF SYSTEM ELEMENTS BY MAJOR WORK
BREAKDOUMN STRUCTURE DEFINITIONS

LEVEL 1 !
DEFINIT ION X1 ox X %
CODING X
gDATA CONVERSION X ;
INFORMAL TEST & INTEGRATION L, X %
| FORMAL TEST AND INTEGRATION | X | X | X
INSTALLAT ION X |
DEVELOPMENT FACILITIES K1 x|

TRAINING X X
MANAGEMENT x b ox | «x




LIFE CYCLE PHASE

N COR&SG TEST AND
ANALYSIS DESIGN CHECKOUT INTESRATION

—

]

#BS ELEMENT

JEFINITION | SysTem * a
[ SEGMENT: 4
Lceerd |

CODING l Clpcépkc* iﬁ B B H H

OATA CONVERSION D D U D [] U U D D

INFORMAL TEST AND INTEGRATION I B B BHE
[cPRe

FORMAL TEST AND INTEGRATION [ SYSTEM M
| SEGMENT
1 cecr

INSTALLATION SYSTEM D D D D D

DEVELOPMENT FACILITIES [ SYSTEM
SEGMENT
TRAINING [ SYSTEM |
CPCl

MANAGEMENT | SYSTEM

SEGMENT
] o

A BASELINE ESTABLISHED
* Definjtions of these terms are given in Section 3.1,

Figure 4 The Definition of the System Elements and
Their Relationship tc the Software Life
Cycle and WBS

A‘. P
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the elements of the Work Breakdown Structure (WBS). The WBS elements are
identified according to the physical decomposition of the software system.

The software system is composed of the following elements:

o System A body of software that performs an identified function
in the weapon system. It is complete and distinguish-
able from other bodies of software.

e Segment A major subsystem or component of a system usually
identified with a specific function.

e Computer Program Contract Item (CPCI) A body of software
identified for acquisition by separate contract. In
large systems it is usually part of a Segment. In
smaller systems a CPCI may be eqguivalent to a Segment
or even a System.

¢ Computer Program Reporting Component (CPRC) In large systems this
represents a body of software defined for purposes of
configuration control and program management.

Figure 4 indicates that the system cost elements may cross life
cycle phase boundaries. It is important to depict this relationship because
many cost models do not make clear distinctions between the WBS elements
and phase costs.

Figure 4 represents a detailed template for depicting the estimating
needs represented by the five cost estimating situations in Table 4. If
the cost estimating situation calls for a system level estimate that includes
the entire life cycle, the ideal cost model would be shaded at the system
level for the entire row. WBS elements stated at the lower levels such as
Coding and Data Conversion would be cross-hatched to indicate that tney are
included in the estimates at the system level of aggregation.

In Section 5, Results, Figure 4 is used to describe each model'.
outputs. In that section a summary is presented that indicates how we!l!
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the model satisfies the needs assuciated with the five cost estimating
situations.

3.2 ACCURACY

Total effort was selected as the performance measure for evaluating
model prediction accuracy. The selection was made because of it is relative-
ly easy to justify and interpret. It was also done to fix attention to the
single model output that everyone should agree is the most important indi-
cator of model prediction accuracy.

It is possible to envision several alternatives fer specifying the
accuracy of a model estimate. For example, we might use estimated values
of the costs of the life cycle phases to construct a weigi*ea estimating func-
tion. The function values obtained from the outputs of the models for a
given project would be compared with the value obtained from actual measure-
ments to produce error measures. The weights in such an approach might
also be obtained from the test data sets. Error functions could also be
constructed from the different types of output information such as effort,
computer time and facilities.

Total effort was chosen rather than cost because most of the
models being evaluated calculate effort and because the available
historical data are in terms of effort. However, the use of effort is
desirable also because it avoids the need for adjusting estimates for
variations in the value of the monetary unit and the problem of measuring
overhead and indirect costs. These items vary significantly from one
organization to another. ‘

Unfortunately, it is not possible to specify a uniform basis for
the total effort measurement. As can be seen in the Results section, the
different models do not include the same scope of life cycle activities
in their estimates. Therefore, the measurement of prediction accuracy had
to be applied to the primary span of the model prediction. In most cases
this means the prediction that is constructed using the primary elements
of the model structure. Some models use these primary eétimates to
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compute other phases from fixed ratios. We believe that the performance
of the model structure is better represented by the initial estimate in

such cases. Having selected the basis for measuring model estimating
performance, it remains to define the way to use the measurement to obtain
comparisons among the models.

Mean Proportional Error. The ratio of actual to estimated project

size describes the error as it reiates to the estimate. It is
directly transformable into the percentage error of the estimate
itself. Being a proportion it allows larger errors in larger
projects, but this is acceptable because we tend to think in terms
of percent error rather than absolute difference. A 10 manmonth
error in a 1000 manmonth project is not as important as the same
error in a 6 manmonth project. The disadvantage of the MPE as it
is formulated is that it becomes compressed by estimates that

are large compared with the actual value. This makes the standard
deviation small when taken over a given data set. To reverse the
numerataor and denominator results in a similar weighting when
comparing samples containing large projects with samples made up
of small ones.

Average Error. The average difference between the estimated and
actual effort taken over a data set presents a measure of accuracy
that is not weighed by either the size of the estimate or of the
actual measure. This avoids the problem associated with the mean
aroportional error, and dividing the average error by the mean
project stze in the test sample provides scaling for the measure.

Root Mean Square Error. A characteristic of some software cost
models is their tendency to ‘produce estimates that are very
different from the actual experience under certain conditions.
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3 It was decided to select an error measurement scheme that
penalizes such extreme behavior. The root sum square error
measure provides such a penalty and therefore it was selected
as the method for making comparisons among the models. The RSS
error is divided by the average project size in the sample set
for scaling. The measure is defined to be:

1 N 2 1/2
[Wz; (ACT; - EST,) ]
RMSE _ 1=1
- N
ACT 1
N Z ACT,
i=]
Where:
ACTi = The measured sjze of the ith
project in the sample set,.
ESTi = The estimated size of the ith
project.
N = The number of projects in the
sample.

3.3 OTHER EVALUATION CRITERIA

In addition to the information provided and the prediction accuracy
of software cost estimating models, there are a number of model attributas
that would influence the decision to select one model structure over the
others. These would include:

Data needed to execute the model.
Effort needed to execute the model.
Time required to obtain estimates.

Total cost of estimates.

3-28




Infor ation is presented that would allow anyone to make inferences
regarding a model's ranking regarding such criteria. However, no attempt
was made to compare the models according to them for the following reasons:

& The criteria are difficult to measure. Any weighting of the
attributes to obtain a composite score would be arbitrary.

® Any deficiencies would be model specific and the evaluation
is concerned with the performance of model structures.

& A model that provides the information needed and does it
accurately would be preferred no matter how badly it scored
on the other measures.

The findings in this report should indicate how well one model
structure performs in the test environmnents compared with the others

evaluated. If two models satisfy the primary criteria equally well, it ,
is a simple matter to observe the other attributes that may be important ‘
. to an individual organization such as ease of execution, data, cost, etc.

These considerations would have different importance to using organizations,
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4 EVALUATION PROCEDURE

The following steps were executed in performing the evaluation of
the cost estimating models:

1. Select models for inclusion in the evaluation.

2. Obtain model descriptive materials.

Analyze definitions of model input and output variables.
Prepare model descriptions.

Classify models by type.

Prepare list of input and output variables.

~ ()] (3] = (9]
. . . . .

Compare model outputs with established evaluation criteria
for needed information.

8. Construct test data sets.
9. Analyze definitions of items in test data sets.
10. Establish means for estimating missing input data items.
11. Prepare input data.
12. Execute models.
13. Calculate comparative estimating accuracy according to
established accuracy evaluation criteria. i

Several steps presented problems or require some explanation:

0 Definitions of model and data set variables.
) Model types.
0 Test data sets.
° Missing input data items.
a0 CEFINITIONS OF MODEL AND DATA SET VARIABLES. .r

A problem that continues to limit the development of accurate
software cost models is the lack of good quality data with which to test
theories describing the relationships between cost and predictor varia- A’

bles. An important aspect of data quality is the enunciation ana consis-




tent application of definitions of the variables describing the software,
its development environment, and its performance. A substantial amount
of effort was spent during the evaluation of the models to minimize the
adverse effects arising from discrepancies in data definitions. The
following paragraphs will examine in detail two important model variables:
software size and development effort.

Size Definitions. Eight of the nine models included in this evaluation

use size as an input, yet problems occur when trying to determine precisely
what a value of the size attribute represents. Often researchers either
through oversight, lack of precise data or ignorance of the problem fail

to specify the size measure completely. For example, number of source
statements and number of object instrdyctions are two of the terms that

are frequently presented to software developers in questionnaires without
further qualification. As a result it is possible to obtain historical
data that are internally inconsistent by 100 percent because of the vague
definitions. Obviously if a model is being used for predictions ana the
inputs are off by such an amount the estimates will be similarly affected.
It is likely that in many cases neither the person suppiying the nistorical
data nor the cost analyst realize there are differences in interpretation
of the data.

Consider the deliberation of a programmer who is being asked the size of
one of his programs by questionnaire. The question is: "Number of

Source Statements." [f the programs are written say in FORTRAN, the
compiler will normally give a count of the number of lines in the program
which in most cases will be equal to the number of statements. Most
FORTRAN compilers 1imit one statement per line. If the statement is
spread over several lines for clarity, the compiler still counts it as

one line. For the most part the FORTRAN programmer has a ready source for

his response to the question.
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At the other end of the scale 1§ the programmer writing in a
freely structured language such as COBOL. His response is considerably
more difficult. Such language structures use punctuation to delimit
statements and therefore a line of code may have several statements or a
statement may stretch over several lines. Since COBOL compilers do not
usually indicate the number of statements in a program, but only the
number of lines, the programmer has no easy source for the requested
information.

The conscientious programmer may make this problem known to the
cost analyst who may or may not be in a position to address it. More
often the programmer will assume the question calls for lines of code or
he may make some arbitrary judgement about the relationship between
statements and lines. In either case there is considerable opportunity
for error in the capture of the most commonly used predictor of program
development cost.

There are other p?ob]ems in interpreting the term "source code
stateserts" as the descriptor of program size.

Most higher order languages permit the inclusion of comment
statements throughout the source code. These statements usually describe
what the program is doing at various points. Some programmers write
many comments. Large programs exist in which there are twice as many
comment lines as code lines. Other programmers do not write any comment
iines. Even within a single group a large variation exists among
programmers. A programmer who normally comments a program extensively
may do so very sparingly if he is being pressed to compiete the program
on a tight schedule.
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Some cost models treat comments the same as lines of code;
others specifically exclude them. If asked to measure his program without
comments, the programmer can only estimate. If he has the time and inclin-
ation, he may sample parts of his program to get proportions of comment
iines to code lines; or he may guess. Either way, additional error is
introduced into the measure.

Data specification statements are eliminated from size estimates
for some models. As in the case of the comment lines, the proportion
of specification statements may vary substantially from program to pro-
gram. There is no ready way to count the number of specification state-
ments in FORTRAN. By comparison, COBOL groups these together for easy
access.

Compilers usually make it easy to share source code among programs.
Often code is stored in libraries and automatically called in by the
compiler at the time of complilation. Some compilers count the copied
1ines in addition to the rest of the program lines; other compilers
count only the lines calling the 1ibrary code; and still other compilers
count both sets thereby producing two line counts. Unless the cost
analyst has specified how copied code is to be counted, the responses
among different programmers will not be consistent.

The number of object instructions associated with a program
written in a higher order language has at least as many possible inter-
pretations as the number of source statements.

When a program is written in a higher order language, the code
produced by the compiler and executive support programs is of little




concern to the programmer unless the code is constrained by size or
speed limitations. But even if the programmer is faced with these
problems, normal practice is to work with the higher order language to
satisfy the constraints. The tendency to work with the higher order
language and the decreasing involvement of programmers with machine level
operations mean that the information describing the attributes of the
program in its executable form is not generated during compilation and
1ink editing or, if it is, it is ignored or even not understood.

Given the inclination toward higher level language use, even
if the definition of object program size were very precise, there are
many programmers who would not know how to respond to it properly.
Furthermore, these programmers are not very likely to be frank about
tneir ignorance.

Probably the more common situation, however is that the defini-
tion of the number of object instructions is not precise. There are
several ways that misinterpretations’can occur.

Programs written in a higher order language (or in assembly
language for that matter) go through a two-step process before they can
be executed by the computer. The first step is under the control of the
higher order language processor and it produces machine level code that 1
needs other code before it can be executed. This code is sometimes referred |
to as a relocatable module. The relocatabie module is processed by a link
editor routine that produces an executable program. The executable program
inciudes all the routines needed in addition to the relocatable module and it |

nas an integrated addressing scheme. The executable module is the program that
~as needed to solve a given problem. But it can easily be several times

"ne size of the sum of the relocatable modules that were actually

written. Much of the executable code is taken from the executive library

ind performs standard mathematical functions or drives the computer

>ystem peripheral equipment. Furthermore, some computers copy the basic
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library routines many times and insert them in the code; others share the
common code among the modules without duplicating it. Therefore, the
same definition of program size can elicit very different responses for

a program written to the same specifications because of the way the
computer executive software operates or the way the programmer directed
the link editing process.

The computer memory occupied by the executable program contains
not only the instructions but also areas reserved for program constants,
data, and temporary input-output data storage. These areas in total
indicate the amount of memory required to execute the programs. The
available memory may be a constraint or otherwise specified by the user.
Sometimes the size of the executable module in words of memory is wicd
synonymously with number of instructions. These two measures may f¢
substantially different.

The data storage area size may be very small comparec w’'th the
memory area containing the executable.instructions or it may be many
times as large. Therefore, if the number of instructions is taken to be
the words of memory occupied by the data and instructions, a large error
may result.

Most computers do not 1nc6rporate instructions that are sl zhe
same size. The number of words of memory required to contain a single
instruction may range from one to several. Some estimate of the average
words of storage per instruction must be made. This average will depend
on the distribution of the different length instructions in a program
and would vary with different types of programs. A program that nas a
large percentage of input-output would have a longer average instruction
‘than one in which logic and mathematical computations predominate.

In order to avoid introducing error into the program size
definition it is necessary to know the following information:
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] Higher Order Language

Whether the measure is statements or lines of code
Whether comments are to be included

How code copied from another source is to be counted
How data specification statements are to be treated
(] Machine Level Language

- How to count instructions

- Whether data areas are to be included

- Whether relocatable or executable code measures
are wanted

- How to describe the library or copied modules.

Some of the models give very explicit instructions on how to
describe the code size measure. When such information is provided,
we can describe the size input with confidence. Other models are vague
about the definitions and we have had to make some assumptions about
what measure is appropriate.

The purpose of this discussion has been to point out the errors
that may be associated with the use of the size measurement in software
cost estimating. We have been mindful of the points presented above
both in collecting and interpreting the data used to evaluate the modeis
for this study and in preparing inputs for the different models. We
have read model descriptive materials and when possible we have contacted
the authors when necessary to clarify definitions. When it was necessary
to make assumptions about either the data or the inputs, we have des-
cribed them. We have also prepared estimates of the errors asscciatea

with possible interpretations of size measures. Table 6 summarizes
the size definitions found to be used by the models in this evaluation.




TABLE 6

SIZE DEFINITIONS
USED IN THE DIFFERENT MODELS

FARR & ZAGORSKI

AEROSPACE
BOEING
DOD MICRO
DOTY
PRICE S

HIGHER ORDER LANGUAGE'!)

MACHINE LEVEL LANGUAGE
WRITTEN u (4)

NRITTEN( )

2

[}
——
F
g
—
w
—
o
e

S
EXECUTABLE

DATA DEFINITION

CCMMENTS

ADAPTED U L 5(6)

EXECUTABLE
DATA DEFINITION
COMMENTS

COPIED OR TRANSFERRED INTACT U
EXECUTABLE
DATA DEFINITION
COMMENTS

(3)

EXECUTABLE W I 1
DATA DEFINITION
COMMENTS

ADAPTED U ,
EXECUTABLE w1 1)
DATA DEFINITION
COMMENTS

COPIED GR TRANSFERRED INTACT U [
EXECUTABLE
DATA DEFINITION
COMMENTS

Described as Lines (L), Statements (S), Unspecified (U)

May be further specified as Delivered or Not Delivered

Described as Number of Instructions (I) or Number of Words of Storage (W

Unspecified (U)

Delivered Code Only

Judgement necessary for consistent results

Secondary input may be used to caiculate primary input.
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Development Effort Definitions. Many of the differences between the stated
needs for estimating costs and the outputs of models are semantic. Models
are directly or indirectly formed from experience and what is being pre-
dicted depends on what has been observed. Past data is seldom the product
of uniform consistent definitions or is it even composed of the same
elements. Furthermore, there is no common set of definitions that are
accepted by all cost analysts. When we ask different cost accountants

what is included in a data set under program design cost, we will get

different answers. Even if the answers are in the same terms there is
no guarantee they are consistently interpreted by its originators.

Our best approach is to consider the costs on a relatively high
level of definition (total costs as opposed to subtotals). Then our main
concern is scope. This we will address as carefully as possible. Al]
this is said not to be negative, but to present an accurate picture of
the conditions under which all cost estimating is done. We as an industry
have established a certain value on historical cost data and this produces
results of a certain quality. As Tong as the results obtained with this
data are satisfactory, there is no reason to invest resources into making
it better. We can tell if the presentation of the data is consistent
with the Air Force life cycle definitions and the prescribed Work Break-
down Structure (WBS), but when totals are given we cannot always know if
the elements specified are actually included in the mode] estimates.

Jifferent elements that comprise development time:

1. Actual at-the-desk design, coding and testing hours.
The physical direct effort required to produce the code.

2. The time charged to the project but including 1lost time
or inefficiency (breaks, small routine administrative
chores, etc.) '

3. The time not usually charged to the project, but part of
every job. It is understood that in order to realize the




direct effort described in 1., it is necessary to overstaff
so that when these additional hours are lost, the proper
net will result. This last category includes: sick leave,
vacation, training, other scheduled lost time.

Depending on the method used by an organization to identify how personnel
time is accounted for, different portions of items 2 and 3 will be
associated with a given project.

For example, consider how two government organizations, one
from the Air Force, the other from the Army account for non-project time.

AIR FORCE
Hours per Month
Military Civilian

Holidays 6.0 6.0
Leave 6.9 14.8
Medical 3.9 6.8
Education and Training 3.8 1.4
Social Actions,

Organization Duties, etc. 9.4 1.0

"30.0  30.0
ARMY
Non-Project Training ~N
Vacations
Excused Time
Holidays
Military Leave > 44 Hours per Month
Sickness
Non-Project Meetings
Special Assignments
4

Assignments to Other Projects
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There are some measurements that are not possible to interpret
with confidence even after careful analysis of the sources and contacts
with the model developers. Questions would have to be asked of each
respondent or originator of an item of data. We can only 1ist the
possible errors and speculate about what implications the probability
of their existence has for the interpretation of the results.

4.2 MODEL TYPES

Qur objective is to obtain insights into the relationships between
types of models and their prediction qualities. Therefore, it is desirable
to establish some method of characterizing the models that describes their
approach to making estimates.

‘e have selected a scheme that classifies model structures into
three types:

¢ Regression
e Heuristic
& Phenomenological

The following discussion explains why these classifications were
seiected and how they are related to the development of more accurate
models.

Classification of the models by type is equivalent to forming a
hypothesis about the structural characteristics that affect accuracy.
Selecting only a few types limits the consideration to the major struc-
tural attributes. This is more likely to provide statistically meaning-
ful results.

At the detailed level, each model is unique. It makes its esti—mates
using different parameters and procedures. If it is better or wore  than
another model, we don't know to which of the differences between the ~uce’s




to attribute the performance. On the other hand, if we hypothesize that

the models fall into certain catagories and if the categorizations are re-
lated at least intuitively to accuracy, then the measures of prediction
performnace can be associated with the selected attributes and model develop-
ment can be directed toward structures with the desirable attributes. The
orocess decreases the number of model characteristics that are considered

to contribute to estimating performance. If the results indicate no rela-
tionship between the categories and prediction accuracy, then the hypotheses
can be restated and the analysis repeated.

Top down and bottom up are not sufficient to describe models. For
example, SLIM estimates the development cost (which is not the same
development cost estimated by the Boeing, Doty, or DoD Micro models) for
the entire system then extends the scope of the estimate to include the
Requirements and Specifications phases. The Oesign and Coding, Integra-
tion and Testing, and Installation phases are fixed portions of the
Development Phase. Therefore SLIM at least in one of its operating modes,
is a top level estimate constructed from individual subsystem
size estimates. That initial estimate, however, includes only a part
of the life cycle effort. The model derives higher and Tower level
phase elements from the core estimate.

The Dod Micro Procedure describes the system at the function level
and assembles the weighted components into a net development effort for
the entire system. The net development is extended to include indirect
effort and to create a total system development estimate. This is then
decomposed into phases at the system level.

These two examples illustrate the problem of trying to fit models
to the simple descriptors “top-down” and "bottom-up." It is m2cessary to
indicate what the top and bottom refer to. When is a system described at
the 1op? How does the scope of the 1ife cycle included in the estimate
compare with the level of detail in the system description?




We have tried to develop a method of describing system structures
that considers these guestions. By following a line of reasoning that
utilizes a two-dimensional description of software life cycle effort it
is possible to address the 1ife cycle scope and system level of detail
independently. This is an important distinction that has not been
explicitly addressed by most model developers (Wolverton and PRICE S are
two exceptions). Proceeding in this manner it is possible not only to
describe models more accurately, but it provides an insight into the way
the different models proceed from inputs to outputs that is the basis for
categorizing the structures. Hopefully the way models proceed: the method
of making the initial estimate, the method for extending or detailing the
scope and the way of developing detail can be associated with prediction
nverformance.

As a first attempt, the categorizations are very broad. They
concentrate on the method of making the initial estimate. They also
indicate the general method of making the subsequent estimates. If we look
at the nine models included in this study, we can see three distinct ways
of making estimates. These are described in the following paragraphs.

The Regression Type of Model Structure. One class of model structures
reflects a design based on the selection of the 1ife cycle element of
interest (e.g. life cycle effort, development effort, or coding effort)

and a hypothesized relationship between the element and a number of selected
inputs. The parameters of the hypothesized relationship are obtained by
regression and the model becomes a single cost estimating relationship which
is treated as valid for whatever population is believed by the creator and
the user to be represented by the data used to calculate the parameters.

Tne data may be stratified in some way thereby producing a set of estima-
ting equations with each member of the set applicable for the estimating
situation described by the stratification parameter.




We have termed models structures this type "Regression Models"
and they include the Aerospace, Doty, Farr and Zagorski, and Telecote
models. The scopes and levels of these models differ, but they share
the attribute of a single estimating relationship derived by linear
or log-linear regression using various inputs. This is believed to
represent a recognizable approach to model construction and it is an
objective of this evaluation to learn if the approach produces more
accurate estimates than the others.

The Heuristic Structure. Looking again at the moaels under investigation

we can identify another approach to making estimates.

If we examine the Boeing model, for example, we see that the
system is divided into groups of code that are characterized by type.
Each type has an associated productivity. These values have been obtained
from historical data by visual curve fitting, regression or by subjective
assignment. The application of judgemént both in the creation of tne
procedure and in the establishment of parameters is typical of this class
of model structures. A system level estimate is calculated by summing
the effort for the different code groups. The system level estimate
includes the entire development cycle. This is divided into phases using
fixed ratios. Again, the ratios may be obtained by objective or subjective
means. The phases are adjusted to account for development or system-
related factors that are believed to be phase dependent. The adjusted
phase values are added together to produce an adjusted development effort.

PRICE S, calculates the cost of the Engineering Design life
cycie element from values of system size, rasource, ana compiexity.
Adjustments are made to tnis value -to account for development time,
technology, and other factors. The adjusted value is used to calculate
the other elements of the system development cost by means of a
cascading technique. The final time distribution of system cost is
subjected to further adjustments to obtain a predetermined time phasing
of the development cost.




The Boeing and PRICE S models along with the DoD Micro Procedure
--...and the Wolverton model have been termed “heuristic." The dominant
cha;SEEers%icﬁgf the Heuristic models is their freedom from any single
mathematical formulailion. This distinguishes them from the cost
estimating relationship that‘is the hallmark of the Regression type of
structure. Heuristic models usually conibire a number of different estima-
ting techniques. The calculation of the estimate usually flows through

a series of estimates and adjustments. The selection of the individual
steps, the cost elements treated in the steps and the method of determining
the adjustment parameters differ significantly among the models. However,
as an approach to making software cost estimates it is describable and
distinguishable from the Regression approach. Measuring the differences

in estimating accuracy between the two methods would give considerable
guidance for Tuture model! development.

The Heuristic model structure combines observation and interpretation
with supposition. It is the formal representation of the subjective pro-
cess of applying experience. Relationships among variables are stated
without justification (e.g. cost per pound decreases with increasing size,
development effort is related to number of file formats, the number of
instructions per month depends on the type of code, etc.). Then subjective,
semi~empirical, or empirical adjustments are made to the base estimate. In
some of the models included in this evaluation this process is extremely
complicated.

The advantage of the Heuristic structure is that it does not have
to wait for the establishment of formal relationships descriv’ag how the
cost-driving variables are related. The process of model development
proceeds intuitively. As situations are encountered where the model fails
to perform acceptably, an adjustment or addition is made and the prccess
continues. Over a period of time a given model can hecome very effec. .o
in a stable predicting environment., [t becomes the repository for tr.
collected experience and insights of the model designers and users.
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The Phenomenological Model. One model in the evaluation group, SLIM

is unique in that it incorporates a concept that is explainable in terms
of a basic phenomenon that is not limited to the mechanics of software
development. The relationship can be derived in terms of the rate of
solving problems.

SLIM uses the Rayleigh-iNorden function [36] [37] [38] to describe
thne time distribution of effort during the software life cycle. It has
been shown [36] that this function represents the time distribution
of effort required to solve a given number of problems under the assumption
of a constant learning rate. The ability to describe observed processes in
terms of elementary phenomena is characteristic of the more mature sciences.
It allows complex relationships to pe explained by interactions among
elementary functions. These functions are verifiable by con-
trolled experiments.

Although it may be argued that SLIM incorporates too many empirical
adjustments to be a purely phenomenological model, it nevertheless is the
only model to use an observed basic relationship to make estimates.

The difference between a Phenomenological model and a model based
cn one or more hypothesized relationships which could be used in either a
Regression of Heuristic structure depends on the source of the hypotheses.
[f the hypotheses are motivated by tendencies observed among the variables
describing software and its development resources, and if the hypotheses
are describable only within the context in which they are used, then the
resulting model structure is not phenomenological. The phenomenological
model must incorporate ideas or processes that can be observed and
measured independently of the software development process. The justifica-
tion can be derived after it was observed in a scftware context and a model
may pecome phenomenological after it was previously classified otherwise

if the qualifying condition is satisfied.
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Given the present situation, where no generally accepted statement
exists of the elements of the software development process, the true
phenomenological model is mostly an ideal. But the search for basic

understanding and description must be made if we are to obtain real
improvements in.prediction quality. After a while a heuristic model may
collapse of its own weight as it tries to adapt to each new experience.
The phenomenological model ultimately promises the simplicity of represen-
tation that characterizes scientific laws.

The development of phenomenological models requires the explanation
of basic processes. Some of these processes are being investigated.
Halstead [39], for example, has explored the relationships between algorithms
and the effort needed to code them. Other researchers have identified
phenomena related to the development of systems such as the law of
increasing entropy [40], life cycle phas% interrelationships [41], ripple
effect [42], and others. These elements will undoubtedly contribute to the
establishment of new models based on elementary phenomena.

Describing the Estimating Process. The definition of the model type

classifications is intended to establish general approaches to estimating
that are associated with greater or less prediction accuracy. Within each
general type of structure it is necessary to describe more detailed aspects
of the estimating process.

The estimating procedure is described according to the cost element
that is estimated first and the method used to make it and then the method
used to obtain subsequent estimates.

The cost element used for the initial estimate has an important
bearing on the level of aggregation that is associated with the greatest
accuracy. There may be certain combinations of the level of the first
estimate and different methods for making it that have implications for
accuracy. ,’




Having identified the best way to obtain the initial estimate, it
should be useful to investigate how subsequent estimates are either
expanded in scope to obtain a synthesis of the entire life cycle or
decomposed to allocate portions of it.

The classifications used for describing the estimating procedure
are as follows:

Level of Initial Estimate

System Total Development
System Analysis

System Design

System Coding

System Test

CPCI Jotal Development
CPCI Analysis

CPCI Design

CPCI Coding

CPCI Test

Method of Making Initial Estimate

Single Parameter
Multi Parameter

Method of Making Subsequent Estimates

Cost Estimating Relationship
Ratios
No Further Decomposition

4.3 TEST DATA SETS

The characteristics of each test data set are de .. :b¢ 1 Appendix
D, Data Preparation. This section describes the environments from whicn
the data were obtained and tells how they were obtained.

The data used to evaluate model estimating performance was
compiled from three sources:




U.S. Air Force Data Systems Design Center (USAF/DSOC)
) Goddard Spaceflight Center, Software Engineering
Laboratory (GSFC/SEL)
) The system development center of a large corporation

The data sets from the first and third sources were obtained
by GRC from the developing organizations using questionnaires and
other devices that will be cescribed later. The second data set was
given to us by Prof. V. R Basili of the Computer Science Department,
University of Maryland. The University operates the Software Engineer-
ing Laboratory under a grant from the National Aeronautics and Space
Administration {NASA).

Air Force Data Systems Design Center. The DSDC develops large, standard
'data systems for Air Force use world-wide. These are data management
systems such as payrocll, logistics, and personnel applications. The
programs are written in COBOL and are developed and maintained at a
single site. Under two separate Air Force contracts, (Electronic Systems
Division, 1975 [43] and Sacremento Air Logistics Center, 1978 [44]) GRC
collected data describing data system development hours, system
characteristics and personnel data. From these data 17 projects were
selected for use in this evaluation.

Data describing the hours charged by individuals to each
project were obtained from the PARMIS history files. PARMIS was a
project status reporting system used at the Design Center during the
years 1971 through 1978. Hours were reported by project staff members
on a weekly basis. The hours were identified according to project and
activity.

GRC wrote a computer program that tabulates the hours for each
system according to a standard set of 1ife cycle phases and activities. ;




A questionnaire was given to project leaders who provided
information describing the systems and the experience of the personnel.

The characteristics of the programs were obtained from two
different sources. The command-level systems, which are implemented on
Honeywell H-6000 computers, were processed by a program called the
Program Profile System (PPS), which was developed at the Design Center.
The PPS analyzes the source code and tabulates the number of lines,
statements, record descriptions, etc. The base-level systems, which
are implemented on Burroughs B-3500 equipment were described in the
materials prepared by the Air Force as part of the request for proposals
t0 replace the base-level systems.

Using these sources and with considerable help from the
personnel at the Design Center, a rather complete and reliable set of
data have been compiled describing the systems.

Goddard Spaceflight Center, Software Engineering Laboratory. The SEL is
responsible for maintaining a high quality data base describing the

software development experience at the Goddard Spaceflight Center. A
full-time staff collects and analyzes data describing the system
attributes, development methodologies, and resource expenditures. The
software operates on large ground-based computers in support of
satellite operations. The primary language is FORTRAN and much of the
code operates under a time constraint.

The data used for the evaluation of estimating accuracy represent
seven systems. Two of the systems are partitioned into ten subsystems.

commercial Data. GRC has an arrangement with a large corporation where-
by the two companies exchange information describing software develop-
ment experience. The data used in this study was provided by the
company's central system development facility. The applications are
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data management systems written in COBOL and two data base management
languages. The facility utilizes modern programming practices and
provides the programmers with online programming and debugging capability.

Data describing eleven systems were tabulated from company
records onto a modified version of the questionnaire used to capture
the Air Force Data System Design Center data.

4.4 MISSING DATA

The models selected for evaluation represent a range of different
estimating methods. They were constructed in many environments and as a
result they include as a group many different input and output variables.
[t was demonstrated in the Tast section how two of the most common mode
variables, size and effort, can be represented by over a dozen different
definitions. Add to these differences, the number of types of variables
that may be used in model construction and it is easy to see how the
requirements for test data variables becomes very large. The nine models
in the test group require more than thirty variables to define their inputs
and outputs, and that does not include the minor variations that exist
among the variables.

It was not possible to obtain test data that includes all the
model variables and their variations. The compatibility between data
availability and that needed to execute and compare model outputs is
represented in Figure 5.

The Roman numerals identify the inputs and outputs contained in
a given data set. A data set may contain some of the inputs for each of
the models (Greek letters) and some of the outputs, but all the models
could not be executed and compareé using the same data.

Our approach was to execute each model according to the outputs
it provides and the inputs needed to make them. If a model is designed
to predict design, code, and test effort, then the test data were adjusted
to describe these portions of the 1ife cycle.
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Missing inputs were obtained using estimating relationships con-
structed from the other inputs. For example, if a model called for a
number of object instructions and a given data set :ontained only lines
of source code, a relationship was developed from other available data

that could be used to predict number of object instructions from Tines
of source code.

Whenever it was necessary to estimate missing input data, both
the expected value and its variance were estimated. The variance is used
to indicate the effect of the uncertainty in the estimate in the evalua-
tion of prediction accuracy.

The input data for each of the models are presented in Appendix D»

Data Preparation. The effect of missing data on the evaluation are
discussed in Section 6.0, Analysis of Results.
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5 RESULTS

The cost model evaluation criteria (Section 3) were designed
to consider two aspects of the state of the art in software cost model
construction:

o The satisfaction of US Air Force needs for software
cost information (Section 3.1); and

® The satisfaction of US Air Force needs for cost estimating
accuracy (Section 3.2).

The objective of the evaluation of the first aspect is to measure
how well existing models satisfy Air Force information needs with regard
to software cost items and their levels of detail.

The evaluation of the second aspect, accuracy, relates estimating
accuracy to model structures. The objective is to identify ways of making
estimates that can be demonstrated to produce greater accuracy. The
objective does not include a ranking of the existing cost models or any
general statements of their individual estimating accuracies. The results
will be used to design a research program for improving the accuracy of
software cost models.

A comparison of the outputs of the models under investigation with
the Air Force estimating needs indicates the following:

e The supporting materials for most of the models do not clearly
state the elements included in their estimates and are not
precise about their definitions.

8 The exisiing models are better able to satisfy information

needs early in the acquisition life cycle.

o None of the models included in this study fully satisfy the
Air Force need for information either with regard to scope or
detail,




e The models tend to be phase oriented and do not properly describe
activities that cross phase boundaries. This precludes obtaining
data compatible with both management planning (phase related) and
product cost (WBS).

e Although most of the models use the summation of program or
module sizes to make their cost estimates, only one model studied
provides for keeping track of the cost on a component basis and
accounts for the cost of system integration. None of the models
provide for all four levels of system definition called for in
the Work Breakdown Structure (Ref. Appendix B).

Based on the relative root mean square error measure of performance:

¢ Recalibration* ic the primary fzcior contributing to
differences in estimating pertormance among the models tested.

o The contribution of model structure* to estimating accuracy is
not significant when the models have been calibrated to the
development environment*.

o The development environment significantly affects the relative
performances of the models tested.

e The effect of development environment on estimating performance
precludes the possibility of obtaining generally applicable

measures of model performance without applying additional controls.

® Models that do not use size as an input may perform as well as

those that do.
¢ The average RMS Error for all tested models is unacceptably

large for Air Force estimating purposes.

o The use of models that are not calibrated to a given development
environment can lead to very large estimating errors.

o The best performance obtained by any qroup of the models tested
is not adequate for Air Forca neads.

The detailed presentation of the results of the evaluation of the

software models is in two parts. The first part compa.-es the outputs or

* Definitions of these terms are given in Section 1.5
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estimates produced by the models with the needs associated with the major

weapon system development process. The second part shows the prediction
accuracy of the different models.

5.1  COMPLIANCE WITH AIR FORCE COST INFORMATION NEEDS

The description of each of the models was studied to learn exactly
what the outputs represent. The Air Force estimating needs (Figure 4)
require information that includes certain cost components (adm{nistrative
expenses, non-delivered software expenses, overhead, holidays, etc.)
presented at specific levels of the Work Breakdown Structure (Appendix B.

Table 5).

The following paragraphs describe the outputs of the models in
terms of the needed information. In many cases it was not possible to
determine whether the information being sought is included in the model
est'nates. Model descriptions are-often vague about the details of the
outputs. Sometimes it was necessary to acquire a detailed knowledge of
the original data used to construct the model in order to identify the
elements. It is likely that precise answers to some of the questions of
definition are unknown to anyone save the individuals who originally
recorded the data. In many cases, data were not recorded consistently.

Qur attempts to obtain precise definitions of model estimates and
to identify the included cost elements indicates that:

¢ The supporting materials for most of the models do not clearly
state the elements included in their estimates and are not
precise about their definitions.

Qur approach was to read the model descriptions, check the
assertions with the original data source when possible, ask questions
of the model creators when they were available and finally to draw or
our own experience. Hopefully, the results are valid descripticns o
the model outputs.
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Notice that the figures (Figures 6 through 14) differentiate between
output items that are expiicitiy presented {shaded segments) and those
that are included as parts of other values (cross-hatched segments). The
numbers in parentheses indicate how some of the items are grouped for
presentation by the model. A model that completely satisfied all Air Force
cost information needs would have all the segments shaded.

nerospace Corporation (Figure 6). The presentation is typical of the

regression models. System level estimates of cost or effort are obtainec
ov fitting linear or log-iinear functions to historical data. The elements
believed to be represented in the total are indicated by the cross-hatching.
However, since the historical data often comes from several sources, the
components are often not the same. Data quality is usually a probiem so
little confidence can be given 2 any description of the elements included.

The figures show only those data items explicitly mentioned in the
model descriptions. Therefore, 1tems such as data conversion and instalia-
tion may actually be included in the Aerospace Model estimates depending
on the data collection and tabulation practices governing tne historical
data from which the model is derived. The model does not provide any
breakdown of the system level estimate.

3oeing Computer Services (Figure 7). This model divides the system ievel

estimate into life cycle phases. The process is similar

to that used in a formal manner by PRICE S and informally or subiectively
by the Wolverton model. [n all three models the effort distributed

among the phases is not in fixed proportions. In the case of the Boeing
model adjustment factors reflecting environmental characteristics are phase-
dependent. Therefore, the recombination of the phases makes a total that
is different from the original life cycle estimate. PRICE S allows
weitnting factors to be applied to the distribution among phases and
Wolverton aliows the estimates to be changed to accomodate staffing and
scnedule constraints. All the other modetls that decompose the total effor:
into phases do so with fixed ratios.
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Notice that while the Boeing model includes the coding effort, only
the portion that occurs during the Coding and Checkout Phase would be
specifically identified. Any coding done during the Test and Integration
Phase would be represented as Test and Integration effort. A similar
misrepresentation occurs for design that is done after the end of the Design
Phase. This problem exists in all the models. The proper identification

of the elements in the work breakdown structure according to their proper
occurrence in the life cycle will not be possible until considerably more effcrt
is applied to the proper identification and tabulation of data describing

the software development process.

DoD Hicro Estimating Procedure (Figure 8). A system level estimate is
obtained by a weighted count of program functions. The estimate is
allocated to the life cycle phases using a fixed distribution. Training,
management and other indirect activities are included as a multiplier of
the direct effort.

Doty Associates; and Farr and Zagorski (Figures 9 and 10). These two
models were derived from the same data definitions. The data used in the
Farr and Zagorski model was a subset of that used in the Doty model. The
estimates are made at the program level. The included activities begin
with the detailed program designed and extend to release of the programs to
integration and system testing. The Doty model includes an estimate or

development time.

PRICE S (Figure 11). By properly choosing weighting factors for Fhe three
life cycle phases and five activities presented by this model, it is
possible to obtain many elements of the desired cost information. PRICE - #
is unique among the models evaluated in that it allows subsystem level defi-
nitions to be explicitly presente& for all of its life cycle and acti. ty

elements. Adjustments to account for the additional effort needed to
integrate the subsystem into the system may be specified by the user.




Jo0 MICRO-PROCEDURE

LIFE CYClLz PHASE

ZODING | T=ST AND |
ND - NS} CsE
CHECKOUTJINTE"M 1CN l

SHHHAEEE

coomme (V) Ve 77777 B BBB

ANALYSIS JESIGN

W8S _SLEMENT

JEFINITION

RES 1
aata converszon () e 000000000

INFORMAL TEST AND INTEGRATION () E"%;;;? B B BBB
ZPRC f

{ o -
FORMAL TEST AND INTEGRATIONZ) [T orstew | 1]
[ SEGMENT !
[ cPce

-xsacearion (2! s (1 000G O

SEVELCPMENT FACILITIES [SvsTem . D ‘
{sEsmenT oy

RAINING 2 BB 2 7 [0

L i Ud

vanagexgn (3) Wz@@{’//{u{/////////ZZJ/V A
SEGM

[ eI . J

3 BASELINE ESTABLISHED
r ] Explicitly presented oy the model.

‘/,’/E/% Included, but presented as part of a higher level.

(1) Combined into Programming
‘2) Compined into Testing
{3 Included in all elements

Figure 8 Comparison Between Estimating Requirements and Model
Qutputs - DoD Micro-Procedure

5-8




D0TY ASSOCIATES

LIFE CYCLE PHASE

:O%EG TEST AND
CHECKQUT [INTEGRATION

ANALYSIS JESIEN

1ms 082 }

W8S _SLEMENT

wvan (1) '
JEFINITION [ svsTEM a ]
T SCGHENT . 4 g @ @ @ D
= t’ L

zootwg (1) e /{ B HBB

{ CPRC

DATA CONVERSION D U U U U D UU D

INFORMAL TEST AND 1nTEGRATION(!) D
ZPRC | N ]
FORMAL TEST ANO INTESRATION [ SYSTM I D B
1 SESMENT | H b
;U

E BEI
INSTALLATION SYSTEM D D D D D

SEVELOPMENT FACILITIES [SYsTEn q D 7
LsesHent | L L b

TRAINING | SYSTEM
| cees

AANAGEMENT r SYSTEM
| SEGMENT

1 [

P SIS

4 SASELINE £STABLISHED

Explicitly presented by the model.

% Included, but presented as part of a higher level.

(1) Combined into Jevelopment :¢fort.

Figure 9 Comparison Between Estimating Requirements and Model
Outputs - Doty Associates

5-9

- - - —— - - Teeos s . T . e N L N e, o - e g At




FARR & ZAGORSKI

LIFE CYCLE PMASE

CODING | vzsT AN i
NALYSI 16 AND  loSoaahzen. [INS] 28 I
ANALYSIS JESIGY | AN ¢ [INTESRATION L |
4BS ZLEVENT
sernvrrien SYSTEM 5 @ g @
—cE Em(/m B EHD
CPRC

DATA CONVERSION D U UD D D UB D

TNFORMAL TEST AND nTEGRATIGN'!) H
CPRC ! (1!
1 ot

FCRMAL TEST AND INTEGRATION ! SYSTEM R {
[N SEGMENT

L cocs

INSTALLATION SYSTEM D D D D D

SEVELOPMENT FACILITIES [57svem 0 |
|_seGuenT L] |

TRAINING [svsiem I
locacs | D

MANAGEMEST | SYSTEM |

[ SZaMENT 1

ES ]

3 BASELINE ESTABLISHED
; l gxplicitly presented by the mocel.

% Included, dut presented as part of a nigner level.

(1} Combined into Jevelopment &ffors.

Figure 10 Comparison Between Estimating Requirements and Model 4
Qutputs - Farr & Zagorski ‘




PRICE S

LIFT CYCLE PHASE

C30ING | vzsT AND - i
ANALY SIGH AND qTeAna INS} 0%

485 _SLEMENT

JEFINITION __ssven ISR g0 d
TN 4 OO0 d4
Coeid 00 0
coorng (V) Leeer | :
[_CoRe A

JATA CONVERSION D D UD D U DD D

INFORMAL TEST a0 taTesRartont!) 7, ,
[2me

romvaL TeST ano ategaaTion 0 [ 1 L. ] sveron 000
[ SESUENT B

:CPEL. -

INSTALLATION SYSTIM D D D D D

JEVELSPMENT FACILITIZS [SYsTEM . B
Lseaent__| B

TRAINING [SvsTen 04
I o
MANAGEMENT [sysTen I [ | |
| SEGMENT
B ) 1

3 BASELINE ESTABLISHED
S gxplicitly presented by the model.

% {ncluded, but presented as part of a nigher Tevel. !

(1) Combined into Programming

Figure 11 Comparison Between Estimating Requirements and Model
OQutputs - PRICE S

5-11

5 sioekt,




The estimating 1ife cycle begins with the detailed system design;
that is, the definition of the allocated system functions. The phases
overlap in time. The schedule is given.

SLIM (Figure 12). SLIM produces a primary estimate of the development !

cost at the system level. It provides an optional “"front-end" estimate
that includes the Analysis and Design phases. The QOperations and Support

cost can be obtained from another option. Additional options provide
gstimates for computer hours and documentation. The 1ife cycle components
are described as overlapping and fixed in relative size. Milestone events
describe the beginnings and ends of the phases.

Tecolote Research (Figure 13). A single system level estimate is produced

by the model. No allocation of effort among the phases is given.

Wolverton (Figure 14). A very detailed matrix allocates the system

development cost into seven phases each composed of up to 25 activities.
Tnerefore, a complete description of phases and activities is obtained at
the system level.

Model Compliance with Cost Estimating Situations. In Section 2, the

Air Force need for software 1ife cycle cost data was described in terms

of five cost estimating situations. The imprecise nature of the data
requirements and the dissimilarities in the outputs of the models preclude
the creation of a checklist of defined data items. Therefore, the compari-
son of the model outputs with the needs must be partly subjective.

The comparison of model outputs with estimating needs is made in
two dimensions: scope and detail. The scope of the estimating needs
describes the cost elements associated with the 1ife cycle phases. Tne
scope of a model's outputs may be limited, for example, to the Coding and
Checkout and Test and Integration Phases. The output detail describes the ]
extent to which cost elements in each phase represent the system its componen:; %
and 1ts associated elements such as Facilities and Training.

5-12




SLIM

LIFE CVOLE PHASE
CODING © -gsT aNp | ’3)

AND uommneran NS 08S
CHECKOUT IIATr.uRA. TON I ,

ANALYSIS SESIGH

485 _ELEMENT

serrartion(l) i SrsTeM | &
E SEOMENT 4 :
|
canrne(2) Vi, /A
CODING B 7

CATA CONVERSION D D U G D U U D D

INFORMAL TEST AND INTEGRATION (@) SERERRL
TPRC ml ED

-~

zorMaL TEST anp InTEsRaTIon(2) | — P p P M
| segent | L

| spcs Uuudu

insTaLLatzon(2) sern QO 00

SEVELCPMENT FACILITIES MSvsTen il q B E E
Lseaent | L U L |

-
TRAINING { SYSTEM | ;q
L

[y

[ <es

VANAGEMENT r SYSTEM
| SEGMENT
[ I

o BASCLINE ZSTABLISHED
[:] Explicitly presented oy the model. !

] lIncluded, but presented as part of a nigner level.

) (1) Analysis is “easibflity Study; system level aesign is Furczional Jesign;
detailed design is incluaed in Cevelcoment Z*fort.

(2} Included in Cevelopment £ffort.
{3) A maintenance cost and effort can oe obtained from “he . <e lscle ootion,

Figure 12 Comparison Between Estimatin
Qutputs - SLIM

g Requiremints and Modei




AD=AL104 226 GENERAL RESEARCH CORP HUNTSVILLE AL F/6 9/2
AN EVALUATION OF SOFTWARE COST ESTIMATING MODELS.(U)
JUN 81 R THIBODEAY F30602-79-Cm0244
UNCLASSIFIED 1 RADC-TR-81-144 NL




TECOLOTE

LIFE CYCLT PMASE
COING | -zsT N i

AND o ]ms‘ 08E
CHECKOUT XNTEJRA“ON‘ 'L

ANALYSIS SESIGH

—

4BS TLEMENT

serrurrion (1) SYSTEN a
SEGMENT . 4
gret

contxg (1) Ut 77777 A El B B B
{ CPRC A

JATA CONVERSION . gogogaganag
INFORMAL TEST AND ;NTZGRATION (1) L/ A B B HBB

CPRC

FORMAL TEST AND ITEsRaTIOn () [T SYSTEM ﬂ i
T SEGHENT U H

| soC:

INSTALLATION SYSTEM D D D D D

JEVELOPMENT FACILITIES [TT75m ‘:} , BEREE
Lseament 1 [ 0 H

O —
0

TRAINING IEEE i
| cpet H
MANAGEMENT | 31STIM
{ SEGMENT

3 BASELINE ISTABLISHED

Explicitly presented ay the model.

%, Included, byt presented as part of a nigner level.

{1) Incluaed in Development Cost

Figure 13 Comparison Between Estimating Requirements and Model
Outputs - Tecolote

S ot e




WOLVERTON

LIFE CYCLE PHASE

<0DING | TEST AND
. $16) AND . -emy |INS|  O&E
ANALYSIS QESIGN CHECXOUT INTEGRATION

#48S ELEMENT

DEFINITION i__svsrzw-Tsm Wg @ @ q .
—= O afsflslm
vEz7Z72 0 A B

JATA CONVERSION gaaogoaoo
INFORMAL TEST AND INTEGRATION el A B B BBB

CPRC

SEGMENT 1
et

INSTALLATICN SYSTEM D D D U G

GEVELIPMENT FACILITIES [ S7sTeM
Lsesent |

FORMAL TEST AND INTEGRATION

TRAINING [Tvseen |
[ ceel Hl
MANAGEMENT TTSvstew | S T
| SEGHENT
==

4 BASELINE ESTABLISHED

Explicitly presented by the model’.

/////A Included, but presented as part of a higher level.

Figure 14 Comparison Between Estimating Requirements and
HHodel Jutputs - Wolverton

5-15




Table 7 ‘s a summary comparison of the model outputs with the needs
described in Sectiocn 3. A liberal interpretation of compliance was
exercised in each case. A model was given credit in terms of scope if it
addressed the required phases regardless of the possibility of difrerences
in definition between the model and the standard. The same criterion was
used to describe compiiance with the needed level of detail.

The degree of model output compliance with each stated need is
described using a scale of 1 to 5, where 5 indicates nominal compliance.
In general a model was given one point for including each of ;he five
major phases in its estimates. The Installation Phase was not included
in the scoring. The detail scale was determined less objectively ard
depended on the analyst's view of the extent to which the model allows
the user to identify the different system elements - especialiy as they were
affected by phase boundaries.

Table 7 shows that:

¢ The models are better able to provide information needed in
early phases of the life cycle than in the later ones.

Most of the models provide the detail needed for system level cost estimates;
but none of them rate very highly when the CPCI and CPRC levels must be
described. Therefore, as the life cycle progresses and the need for
estimates becomes directed toward the components of the system, the model
ratings decrease.

The best performer with regard to detail is the Wolverton model. Its
matrix of phases and activities executed at the CPCI level is able to
provide most of the detail indicated in the WBS. It was not rated as 5
because the model structure does not incorporate a mechanisi for accounting

for the different WBS levels and their associated overheads. It was also
downgraded because it does not identify costs for facilities, training and
installation.




TABLE 7 SUMMARY OF MODEL COMPLIANCE WITH AIR FORCE ESTIMATING REQUIREMENTS

b
W o B |
fe2 =2 EBE
E SGspzfzii
STIMATING SITUATION 2288 a8
| |
| 1. CONCEPTUAL
! Scope 2 4 4 11 5 4 4
Detail 5 5 5 4 4 5 5
; 2. CONCEPTUAL |
5 Scope 2 4 41 1 3 5 4 4 §
| Detail 444555444
| 3. CONCEPTUAL |
| Scope 34422454 4]
Detail 2 4 322433 4|
{
4. VALIDATION l
Scope 334224534 |
Detail 132113271 4/
| 5. FULL SCALE DEVELOPMENT f
{ Scope 334334534 ;
I[ Datai]l 13211321 4y

NOTE: Numbers indicate degree to which the model satisfies the
particular estimating requirements. 5 indicates nominal
satisfaction of the requirement.




t The Wolverton, PRICE S and Boeing models offer more detail than mnst
of the other models. PRICE 3 allows the separate identification of subsystem
costs and includes allocation of the associated integration costs.

The most common failure in the scope dimension wac the omission cf
the Operation and Support Phase. Only the SLIM model includes an estimate
of these costs. This is followed in frequency by omi;ssion of the Analysis
and Design Phases.

As the system develops, the scope of the cost information naturally,
becomes less because the initial phases are completed. That is wny the
models are rated increasingly higher toward the bottom of Table 7.

-The best performer in the scope dimension is SLIM followed by the DoD
Micro Procadure, PRICE S and Wolverton. These latter three models do not
include the (&S Phase in their estimates. PRICE S is downgraded in the
first two estimating situaticns because it does not include the Analysis
Phase and part of the Design Phase.

From Tanle 7 we conclude that:

¢ HNone of the models inciuded in this study fully satisfy the
Air Force need for information with regard to scope or detail.

A common fault of the models is the failure to properly describe W8S
elements that cross phase boundaries. For example, a system design is
often changed after the Coding and Checkout Phase begins (Figure 15),
but few models or data sets identify the design effort that occurs in the
Coding and Checkout Phase. The PRICE S and Woiverton models with their
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Figure 15 Allocation of Work Breakdown
Structure Elements to Life Cycle Phases
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matrix representations of the cost elements do permit sucn distinctions to
be made. However, the PRICE S terminology does not allow direct comparisons
with the Air Force phases and WBS. In general we can state that:

¢ The models tend to be phase oriented and do not properly
describe activities that cross phase boundaries. This pre-
cludes obtaining data compatible with both management plan-
ning (phase related) and product cost [WBS).

The tested models, with exception of PRICE S, tend to be vague about
how the cost of developing systems relates to the cost of developing system
components. As cost analysts well know a system is more than the sum of
its parts. Each independently developed component must be designed and
redesigned in concert with every other system component. Interface and
performance specifications must be analyzed whenever a change is made to
any part of the system. This is especially true of large software systems,
yet software cost models seldom provide explicit descriptions of these costs.

PRICE S has an operating mode 1n’which individual subsystems can be
estimated using the normal techniques and then combined along with a spec:-
fied integration cost to produce a total system estimate. Both the system
and subsystem costs are presented.

The other models simply add subsystems together without regard to
size or the number of organizations contributing to the development. It is
the user's responsibility to add any integration costs and to properly
distribute them.

This leads to our observation:

e Although most of the models use the summation of program,
function, or module sizes to make their cost estimates, only one
model studied pi.ovides for keepina track of the cost on a
component basis and accounts for the cost of system integration.
None of the models provide for all four levels of system definition
called for in the Work Breakdown Structure.
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5.2 MODEL ESTIMATING ACCURACY

According to the procedure described in Sectior 4 and using
the Relative Root Mean Square Error measure of estimating performance
(Section 3.2), each of the subject models was executed using as many
different input data sets as possible given limitations on available time
and historical input data.

Appendix C shows the individual results obtained by executing the
models. The presentations include estimated and actual values of the
outputs for a given project and several performance measures. The follow-
ing paragraphs present the analysis of the estimating performance. The
objective is to identify specific attributes of the model structures or
the data sets that are associated with estimating accuracy.

The estimating performance of the subject models for the test data
sets is summarized in Table 8. In order to direct attention to structures
and to avoid the appearance of making‘general statements about the
prediction performance of the specific models, the models are identified
by codes in the charts. This is done to direct attention but there is
no intention to hide the results obtained for each model. Therefore,
Table C-17, in Appendix C, shows similar information as Table 8 and
includes the names of the models.

The analysis of estimating accuracy was accomplished by testing
several hypotheses associated with:

Jevelopment environment (Data Set)
Model structure

Model calibration

Use of system size as a model input
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TABLE 8

SUMMARY OF MODEL ESTIMATING PERFORMANCE

RMS ERROR*
MEAN PROJECT SIZE
DATA S ETT
MODEL TYPE COMMERCIAL 0SDC SEL
—
REGRESSION
A 1.35 ! 2.1 0.605
8 { 1.9 | |
c 16.9 |
D 4.92 |
E (Recalibrated) |  0.643 3933 1 533 |
HEURISTIC ! ]
F 0.787 ’
G 1.26
H 0.383 1.44 §.297
I 0.927 !
PHENOMENOLOGI CAL i
J 0.246 0.216 0.865

N
* RMS ERROR =[ Z ACT -EST ]
i-1

) 1/2




Four of the models (A, E, H, J) were executed on all three data
sets. The measures of accuracy obtained from these 12 cases were
subjected to a two-way analysis of variance [45]. The analyis of
variance is a systematic way of inferring the statistical significance
of the relative contributions of each model and data set to the total
sample error*., The contribution of each model to the total Root Sum
Square Errer is observed while controlling the contributions made by the
different data sets. The contributions of the data sets can be similarly
analyzed. This procedure was used to test the first three hypotheses
above,

The 12 test cases are tabulated separately in Table 9. Included
in the comparisons are two regression models (A is not calibrated, E ic
calibrated), a heuristic model, H, and the phenomenological model, J.
The heuristic and phenomenological models have calibration modes that
can be used before making estimates.

The two-way analysis of variance produces an inter-column f statistic
of 1.97 and an inter-row F statistic of 1.95. The null hypotheses that the
row and column effects on the total mean square error are zero, can both
be rejected with an 80 percent level of confidence. This means that taken
as groups there are differences in estimating accuracy among the models
and among the environments represented by the three test data sets.

* (Citing any statistical procedure implies certain assumptions about the
characteristics of the populations represented by the test sutjects.
The analysis of variance is restricted to normal populations with equail
variances. There is an assumption of linearity of the contributions
of group differences to the total sample difference, independence and
others. We cannot be certain that these conditions are even partially
satisfied. Therefore, the presentation of the statistical results is
not made as proof, but only as an indication of possible support. 0¥
course, even under rigorous satisfaction of all conditions, causalit -/
is never proved. Other observations will be offered in this secticr
without statistical justification, but only justified by conformin.
to intuitively acceptable patterns.
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TABLE 9

EFFECTS OF ENVIRONMENT AND MODEL
TYPE ON ESTIMATING PERFORMANCE

RELATIVE RMS ERROR
DATA SET
| COMMERCIAL | DSODC SEL

MOEL ME AN
| A 1.35 2.1 10.605 | 1.36 |
€ | 0.643 0.933 10.309 | 0.628
W 0.383 1.44 %o.297 0.707

J 0.246 0.216 |0.865 0.442
| MEAN 0.656 | 1.17 |0.519




Comparisons among the individual row and column members were made
to learn how the different models and data sets contributed to the over-
all results.

Table 10 is a presentation of the error totals by rows and columns.
The table entries are the differences between the marginal values. For
example, the first row and first column entry in the model table, 2.13,
is the difference between the total error on all three data sets for
Model A (4.01) and the similar measure for Model E (1.88). The null
hypothesis that the difference is zero can be rejected with an 80 percent
level of confidence for values in the model table greater than 1.73 and
in the data set table greater than 2.00. Asterisks indicaie the signifi-
cant values.

Table 10 indicates that significaft differences in estimating accuracy
exist between Model A and each of the other models. KHowever, the accuracy
differences among the other models are not significant. Model A (Aerospace)
is not recalibrated to any of the test data sets; and Model E has the same
form as A (MM = aIb) but has been recalibrated. Therefore, the results
indicate the effect that recalibration has on estimating performance.

The recalibration of the form used by Model A produces a model that
has the same estimating performance as the other two models. This suggests
that: '

e Recalibration is the primary factor contributing to the dit<ererce

in estimating performance experienced by the models in Tatles 9

and

e The contribution to estimating accuracy related to model struc-
ture is not significant when each of the model structures have
been calibrated to a giben data set.

almma e o
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TABLE 10
PATRWISE COMPARISCONS (= =777 TING

PEQFOPMANCE

Table Entries are Differences in total RMS Error

COMPARISONS OF MODELS

Total RMS ,
Model A E H J
Error 2.01 1.88 2.2 1,323
A 4.01
| E 1.88 2.13*
" 2.12 1.89% 0.24 f
b 1.33 2.68* 0.55 0.79 ‘:
COMPARISONS OF DATA SETS
Total RMS | Comm. DSOC SEL |
Data Set Error 2.62 4,79 2.08 j
Comm, 2.62
DSDC 4.70 2.08* ;
| SEL 2.08 0.54 2.62% |

Difference is significant with at least an

80 percent level of confidence.
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The second statement derives from the fact that the three calibrated
model structures are very different. E is the simple form MM = aIb, H
is the PRICE S model and J is SLIM.

The pairwise comparisons of the estimating performance of the models
among the different data sets indicates that the accuracy measurements are
significantly different for two data sets. This indicates that:

e The development environment is a significant factor affecting
the relative estimating performances of the models tested.

A given model structure will perform better in some environments than
others. This finding indicates the necessity of learning the specific
attributes of a development environment that determine when one or another
model structure should be used. This view is further supported by the
performance of Model J, SLIM, shown in Table 9. Model J is the best per-
former for the first two data sets and the worst performer on the third. It i
is‘essent1a1 that we identify the characteristics of the model structures
relative to those of the development environment that affect the ability
of the model to make accurate predictions. This result also substantiates

the need for making accuracy evaluations on as broad a range of environments
as possible. In effect we are saying:

o The effect of development environment on estimating performance
precludes the possibility of obtaining generally applicable

measures of the performance of any model or model structure
without appiying additional controls.

The measurement of the effect of recalibration on estimating per-
formance was repeated using some of the other results in Table 8. Since
some of the models are recalibrated on each data set and others are not,
the estimating accuracy of one set, the calibrated models, was compared
with the non-calibrated ones. In order to make the comparisons on the f

same basis only one data set was used and the models were separated by t ce.




The four non-calibrated Regression type models (A, B, C, D) with
a relative RMSE of 6.10 were found to be not significantly different from
the 0.933 value obtained for the calibrated Regression models (E). This
is because the large range in the error values has a correspondingly large
variance which reduces the statistical significance of differences between
the mean and any given value, This is true even when Model C is eliminated
from the group.

The exercise was repeated for the Heuristic model types. In this
case the calibrated models include F, G, and I. These with their relative
RMSE of 0.991 were compared with the 1,44 value obtained with Model H.

The difference is not significant.

These two experiments conducted on a single data set failed to sub-
stantiate the findings previously obtained by executing four models using
all three data sets. However, there is an important difference in the
two investigations. In the first analysis the effect of calibration was
obtained by using the same model structure to represent both non-calibrated
and calibrated models. In the second analysis a group of structures was
usea to represent the non-calibrated models. The results may only indicate
that there is too much variation among the models to allow a significant
comparison of estimating performance. This also indicates that better
criteria for stratifying the model structures are needed. This view is
also supported by the fact that the first analysis was more limited in the
number of model structures it included. Considering the effect of cali-
bration on estimating performance it is necessary to know the portion of
the variation in performance among the modal structures that would be
eliminated by calibration. Only after the model structures are recalibrated
would it be possible to explore the effects on accuracy of such model
ativibutes as: number and types of input variables, level of the initial
estimate, the method of making the initial estimate and the method for
making subsequent estimates.
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Examination of the results in Table 8 suggests some additional
findings that are presented without statistical justification. Considering
the previously observed effects on performance related to recalibration
and environment, these inferences must be considered tentative.

The only model in the test group that does not use a form of code
size as an input (G, DoD Micro Procedure) has estimating performance that
is comparable to the other models of its type. This suggests that:

¢ Models that do not use size as an input may perform as well as
those that do.

If this is true there may be an increase in accuracy obtained by
using a non-size input in the early phases of the life cycle when size
15 known less precisely (see Section 7.1).

TABLE 11
AVERAGE ESTIMATING PERFORMANCE

Average Relative Root Mean Square Error

A11 Models and Data Sets 1.930
Non-Calibrated Models 3.260
Calibrated Models 0.592 |

Table 11 indicates that:
e The average RMS Error for all tested models is unacceptably
large for Air Force estimating purposes,
e The use of models that are not calibrated to a given development
environment can 1ead.to very large estimating errors,
e The best performance obtained by any group of the models tested
(calibrated, RRMSE=0.592) is not adequate for Air Force needs.
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When using the Relative RMS Error to describe estimating accuracy,
it should be understood that the values do not represent expected values
of error for estimating situations. The RMS Error is a weighted measure
that penalizes large deviations from predicted values. Appendix 3 shows
that large deviations are common among the models and justifies the use
of this statistic.
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6 ANALYSIS OF RESULTS

6.1 ENVIRONMENT

A model is an abstraction of some real process that we try to
represent using some selected variables and a hypothesized relationship
among them. When we construct the model we hope that we have found the
importart variables. That is, that the forces at play that determine the
outcome of the process are adequately represented by the model. We never
know for sure if this is true; that is, if the model is valid for all
circumstances. We can only state that if it is observed for a long time over
a large part of the input domain and if its behavior is consistent with exper-
jence, we begin to feel comfortable that it will always behave as the proto-
type behaves. Then, the model is believed to be a valid representation of
the system behavior.

However, we never know when we may wander away from the domain on
which the model is valid. The Ptolemaic model of the solar system was
believed valid until deviations between the model and observation were
established. This process took hundreds of years.

The Newtornian model of dynamic behavior was believed valid until
the relativistic domain was encountered. In both cases behavior was in
zoncert with theory only until phenomena which had always been present
became evident. Then the models were understocd to be either speciai
cases of a more general representation or simply invalid.

Models of software development are in a primitive state. I* is
not possible to completely explain observed phenomena in controlled environ-
ments let alone make general statements. Therefore, we must view these
findings as indications of possible relationships and nothing more.

The forces acting on a software development project are many, com-
plex, often subtle aid even counter-intuitive [8][46]. They reflec*
haman performance and its variability imong ingividuals. Individuai




performance itself varies according to many circumstances. The forces also
reflect group behavior and the availability of resources. The total of all
factors affecting performance constitute the development environment. If
the personnel, equipment and management structure in a given organization
remain relatively unchanged over a period of time, we have a better prob-
ability of obtaining valid models of the organizational behavior. This is
tazause many of the forces that may have profound effects on performance
are not changing and therefore need not be considered explicitly., Their

v facts will be included in the narameters of the model. rHowever, if the
orgaaizational environment is changed, the model may become invalid and

its behavior may depart radically from its prototype.

The point of this discussion s cthat the results obtained hersz
were observed for three different organizations that constitute threv
gifferent development environments. We have observed that the collective

‘behavior of the model types differ among the environments. This suggests

we should b2 very cautious about drawing inferences about the behavior of
any model in the evaluation and apply them to another environment such as
o4r own organization. Notice that the rankings of the models on the basis
of accuracy was not consistent for the three data sets. Some of the
models moved from best to worst depending on the test data. We have
chserved some behavior but we must be very cautious about making any
generalizations. We have the basis for making some hypotheses, but we
haven't proved anything. What has been demonstrated in this study may

be the result of the choice of environments and project types.

6.2 THE EFFECTS OF INPUT ESTIMATING ERRORS

sectior 3, Evaluation Procedure, indicates that missing input
data were estimated when necessary to execute the models. It is desirable
to test the effect that such estimates may have on the measurement of
r~mparative estimating accuracy.

———




The model estimates are subject to random errors associated with
the values of the.innuts. This means that the observed differences in
estimating performance are expected values and they are significant subject
to soma uncertainty. It is possible that in some cases the uncertainty
may be great enough to prevent acceptance of the resuit. It was not
possibie to establish measures of variation for all the model estimates
for all the data sets. This should be done. It was possible to do it for
two models and the effect on the comparative accuracy measurement is pre-
sented here. However, the presentation is more an illustration of how the
effects of errors in the input values should be included in the analysis of
the model estimating accuracy rather than a representative finding.

Two models, F and G, were selected to test sensitivity to input
errors. These two models use different inputs; and each has several esti-
mated inputs. As shown in Table 8, Summary of Model Estimating Performance,
modeils F and G have relative RMS errors of 0,787 and 1.26 respectively. We
want to determine whether the variations in the predictions produced by the

uncertainties in the input values allows us to accept the difference with
reasonable confidence.

Tables 12 and13, taken from Appendix D, present the inputs for the
two models. Model F has three estimated inputs and Model G has five.
The tables contain the estimated error associated with each input.

Each model was executed 100 times using input values selected at
randus Trom normal distributions defined by the given means and standard
seviations. The distributions of the sampled values were truncated to

aamit only positive values.

The executions produced the following results:
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1
MODEL ‘
Relative RMS Error l F G|
Mean ! 0.787 1 1.26 !
Standard Deviation | 0.00893 |  0.0458 i
Stand. Dev. of Mean i 0.00282 : 0.0102

The hypathesis that the actual difference between the two means is zero

‘an be rejected with a confidence level greater thar .299. This finding
indicates that the relative estimating performance between the

two selected models is not a random result arising from uncertainties in
the model inputs.

6.3 MCDE. CALIBRATION

~& nave snown that the calibration of riode’l parameters may oe as
‘Tiportant as model structure in explaining estimating accuracy. ~Twe of
tre modeis tested incorporate calibration into the estimating process.
That is, these models require or suggest that data representative of the
gevelopment environment be used to compute model parameters before using
the model to estimate new projects. In effect the creators of these
models are saying that in addition to certain fixed parameters that are
permanent parts of the modei structure, there are additional values that
dascribe the effects of the circumstances under which a project is executec.
These values are ideally constant in a stable environment, but some users
apply judgement based on experience to the selection of values for a given
astimating situation.

Moaei H, PRICE S, utilizes two calibration parameters, one sensitive Tt
to total cost, the other to deve1opmeht time [47]. The user of the model is
instructed to execute the calibration mode of the model to obtain values
of tne two parameters from past projects that are representative of the
expecied cevelopment environment.




Model J, SLIM, has one calibration parameter which is éaid to
represent the efficienty with which a given organization can produce a
given type of system [48]. This model also has a calibration mode for
obtaining the parameter from project experience.

The calibration of each of the models did not produce constant
values of the parameters. It could be argued that the reasons the para-
meters varied was that the environments were not similar. But this is
circular reasoning. Since in both instances there is no way to measure
the calibration parameters directly, we can only observe their effects on
the model estimates. If deviations in the calibration parameters are
proof that development environments are different from one another when
it was assumed they were representative of the development environment,
then we must admit that we don't know what constitutes the a priori
indicators of environment. I[f that is t.ue, we have no way to know if
any new project will be represented by one past environment or another
and will not know which parameters to use for estimating.

It is necessary in any calibration of model parameters to know when

calibration is necessary and when any given parameters are applicaole in an
estimating stiuation. In the case of models H and J the calibration con-
stants vary significantly among projects within a given organization. This 1
coupled with the sensitivity of the model outputs to changes in the cali-

' bration constants makes the solution of the calibration problem the key to suc-
cessful model performance.

Calibration of models H and J was initially accomplished by
randomly selecting several projects from a set of test projects and
executing the calibration modes of the models. Significant variation in
values of the calibration parameters were obtained for both models. Since
the number of projects available fo measuring estimating accuracy were
lTimited, it was decided to systematically vary the calibration variables
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to obtain the best estimating performance. This biases the evaluation and
produces the best possible performance for a given data set, but we did not
want to compromise either model's performance because of a chance selection of
projects for calibration. Observing the effects of changes in the calibra-
tion parameters on the model predictions simulates the learning process

that would occur as experience is obtained using a model in the same environ-
ment. In the case of each model the experience mode gave better estimates
than the model calibration mode.

The recalibration, E, of the Aerospace model (A) was accompiished by a
linear least squares fit of the logarithm of the program size in lines of
source code for the three data sets. Since the parameters obtainea were
used to show estimating performance on the same data sets, the reciliorzticn
results are comparable to those obtained using the extended calibratien
pracedure cn mcdels H and J.

When model structures are calibrated to a given development envivon-
ment, the effect of structural differences tend to disappear. This is true
at Teast for an accuracy measurement derived from a total effort estimate.
However, this ability to predict is very sensitive to the environment and
it is not known how the success of a model in one environment ic ralated
to success in another. We don't know %ow to measdre an environment’'s attri-
butes to know if it belongs to the same population represented in a given
data set that was used to obtain the model parameters. We only know that
for the case where it is known that a project is a member of a cata :zet,
the performance is within observed limits. But even within a calibration
data set the differences in estimating accuracy can be large. We have
shown that calibration is effective 1n increasing estimatiny accuracy. it
we don't know when calibration is necessary or which nistorical projects
to include in a calibration to obtain the best accuracy. We have seen some
classifications of development projects according to 3uch descripriers s
commercial, scientific, and time critical 7227 [237 (337, sut taese
definitions are never explained.
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The problem of selecting a model for a given estimating situation
may be stated more clearly in terms ot specific models. Fcr example, assume
we nust select among models E, H, and J to make an estimate of software
cost. This presumes that data are available to calibrate the models. First
we must decide if the development environment is comparable to one described
by one of the three test data sets. If the development environment is
similar to SEL, Models E or H should provide the most accurate estimate.
If the environment is more like the Commercial or DSDC environments, Model
J should be the most accurate. The problem is that we don't know which of
the many attributes that may describe a development environment are suffi-
cient to determine the equivalence of two environments for estimating
purposes.

6.4 THE USE OF UNMEASURABLE VARIABLES AND PARAMETERS

It is possible to identify two points of view that are evident in
the choices of model predictor variables and parameters. One grcup of
models includes oniy variables that can be readily measured at some time
during or after the development of a software system. Definitions may
differ in detail, (e.g. program size) but they can be measured. The
important consideration is that the estimate of the variable can be
verified subsequently and if the prediction is off, we will know whether
it is because the estimate or the model was wrong.

The second tyre of model includes subjective variables that may be
representive of important attributes of softwara development but are not
expressable as measurable gquantities. An example would be a variaole repre-
senting the difficulty or complexity of the development effort relative to tne
ability of the devélopment group. [t may be possible to obtain a consensus
among analysts about what these values should be, but the values are never

observable before or after the software development. Therefore, if the




estimate subsequently differs from experience, we cannot know if the dif-

ference was because the predictor was not estimated properly or the model
failed to perform. We can discuss whether the initial extimates were appro-
priate given past experience and the characteristics of the software and

the development environment, but the results are aiways subject to inter-
pretation. This is especially true if the model estimates are sensitive

to the subjective parameters.

The exclusive use of measurable variables may unnecessarily limit
cne development of model structures. It may be that it is not possible,
given the state of the software engineering art, to identify and quantify
the variables that determine the cost of developing software. On the otner
hand, too much reliance on subjective inputs may perpetuate the concept of
2stimating as a black art that cannot be explored objectively. It may e
vest at this time to pursue a policy that favors the maximum use of measur-
able predictors but recognizes the possibility of using subjective inputs.
Subjective estimators supported by carefully documented guidelines for their
+aluatation may provide reliable estimafes. Therefore, we should accept such
models as Tegitimate interim steps which may provide accurate estimates
and possibly insights into more objective measures.

The problem remains, however, of making an objective measurement
of the prediction accuracy of models that include unmeasurable inputs.
There is a tendency to play with the subjective models until good results
are obtained. The fact that good results can be obtained may be signifi-
cant by {tself, but model sensitivity may ensure this. The process may be
compared to the natural use of the model in any stable prediction environ-
ment. But the fact remains that the comparisons between the models are
not being made on the same basis. Our conclusion is that the only evalua-
tion of a subjective model (one that includes one or more major parameters
that can't be measured) is to observe, if in a stable environment where
the type of software being developed is the same and there'are no
upheavals in the organizaticn o~ the personnel, whether the parameters

behave in a predictable fashion. If this is true, it would seem that the




model can be used in that environment for the tested type cof software.
But if given a stable environment, the parameters that give the best a
posteori predictions do not behave in a moderate, predictable fashion,
then the model probably is not a useful tool for that environment.

In either case no general conclusions may be drawn about the values
of the models in other environments or for that matter in the same environ-
ment if the type of development changes significantly. Here significant
is not definable because there are no reliable principles that define the
domain of the predictors. Therefore, we never know when they may become
unreliable or invalid. This will be true to some extent for the objective
models, but it is of much greater import for the subjective models.

Our evaluation objective is to learn if certain mocdel structures
can be demonstrated to be better predictors than others and {f So to
recommend how future model development should proceed. Our interest in
the subjective models should they exhibit positive qualities is perhaps
to learn if the subjective variables can be quantified or at least to
learn the boundaries of the regions within which they may be used success-
fully.

6.5 APPLICABILITY OF THE EVALUATION

The evaluation is made using data obtained from three different
environments. They were obtained using questionnaires to suppiement
other measures (e.g. time reports). The system developers were contacﬁed
whenever data seemed inconsistent with itself or failed .o satisfy the
analyst's intuition. However, as was the case with the SDC data and as
Nelson [50] expressed so well:

"Al1l the data used from both the statistical analysis

and the literature were data of opportunity, i.e., we

took what we were able to get in the time available.

Hard data on the costs of computer programming .

are scarce commodities both in computer programming




organizations and in the published literature. Few
numerical data are recorded; fewer yet are recorded
under 'controlled' conditions, and still fewer are
suitacle for generalization to other situations .
The responaents to the gquestionnaire were under no

obligation to assure completeness and accuracy even
when data were readily available. Because they were
suspect, some of the data collected were rejected
prior to the analysis. But even those data used in
the analysis are likely to nave a variation in
reliability . . ."

This is a frank and somewhat negative evaluation of the data quality,
but before anyone hastens to disparage the results because they don't support
their cwn experience or because they fail fo show their favorite model to
be as good a performer as they believe it to be, we should state that the
data used were of as good gquality as any other available for cost analysis
and considerably better than most. Given the opportunity to analyze most
software development data in detail [51] {52] we would find
the same kinds of deficiencies that we have expressed in assessing the
data on which this analysis is based. If someone has executed a model
that has historically performed better for them than is presented here,
then we would argue that there is a fortuitous fit between the character-
istics of the model and the environment in which it is being used. Nothing
in this report should be constri.ed as a general! statement about model per-
formance. We can only describe the models' performances as they were repre-
sented in a very careful analysis that used good quality data and an
objective comparison.

This evaluation has shown what >ther researchers have already expressed
[31] [43] [47] [48] [49] [50] {53] [54 (55]: that model performance given
the [imitations on standard development .r~c.eaures, derinitions ana under-

standing of the cost driving factors is very much environment dependent.




We think the results give a good indication of what can be expec-
ted when these models would be used by an outside agancy such as the Air
Force when trying to make estimates in support of the Major Weapon System
Acquisition Process. This was our objective and we think we accomplished
it. Ve readily concede that given the opportunity to calibrate a given
model over a period of time in a stable environment, that better performance
might be obtained than is presented here, but that is a different estimating
situation from that considered in this analysis.




7 RECOMMENDAT IONS

Four of the five cost estimating situations described
in Section 2 occur when very little is known about the development
environment. Given the si-nificance of the effects of environment and
calibration, it is necessary to develop methods whereby the Air Force
can overcome the disadvantage of operating at a distance. The Air Force
must identify and obtain the data items that will ensure accurate estim-
ates in any specific environment. These would include data that char-
acterize the past performance in that environment as well as items of
importance to the project being estimated. The Air Force must obtain
the visibility into a cost estimating situation that is presently avail-
able only to the persons who are members of the organization and who have
first hand experience with that organization's performance.

Under this approach model structures will be sought that are easily
calibrated to a given organization using auditable historical dJata provided
by the organization. These data and others specific to a given project
would enable the Air Force tu va]idaté a proposal for software development.
A collection of such data would characterize any group of organizations
and would be used in the initial phases of the Tife cycle.

The following recommendations describe a course of action that wi’l
provide the above capability. The objective of the recommendations is to
nlace the analysis and synthesis of Air Force software cost estimating
models on a systematic basis,

7.1 MODEL DEVELOPMENT

The results of the accuracy evaluation suggest that the best way
to make cost estimates is to use the simplest model structure and to
Ea]ibrate its parameters to repreSent the development environment. However,
this approach fails to consider several factors:

e The measurement of estimating accuracy in the present
study does not consider the need to estimate the elements
of the Work Breakdown Structure,
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e HNone of the model structures achieved the needed level of
accuracy,

e The accuracy of the models in this analysis is overstated because
it reflects no error attributable to uncertainty in the input
values. This error changes during the life cycle and is

different to each input.

It is very likely that the incorporation of these considerations
into a further analysis would affect the findings regarding the model
structure. Whereas a simple structure may be adequate for estimating total
development effort, a more complex structure is needed to define cost
elements for a single phase at a lower level of the WBS. Therefore, the
present findings must be considered inconclusive regarding the effects of
particular structures on prediction accuracy. The effects of calibration
and environment are of a comparable magnitude to the variations among
the individual models within a type category. Additional studies are
needed to quantify the following effects on prediction performance:

’ The level of the inftial estimate.
° The method of making the initial estimate.
) The method of making subsequent estimates.
) Alternatives to the size measure.

One analysis that is suggested by the present study is the determination
of the influence on estimating accuracy of the use of size of code as an
input. Models that use size as an input should be further classified

according to whether the code is decomposed into types (e.g. as in Boeing,

Wolverton, PRICE S). The basis for comparison in each case should be the

initial estimate because in most models a process different from the
~initial one is used to manipulate this value to obtain the full scope of

the model outputs. It is necessary to evaluate the two methods indepen-

dently.
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The DOD Micro Procedure, Farr and Zagorski and Wolverton models
should be calibrated to the evaluation test data. This would provide
seven calibrated models. They should be classified as follows:

o Size of code

- Types of code

- No types of code
o No size of code

The results should establish to a higher degree of confidence than
was possible in the present study the difference in estimating accuracy,
if any, afforded by the use of code size as an input. They would also
indicate if defining the type of code to be written increases estimating
accuracy. Other experiments should be designed to test the performance of
different methods of proceeding to other cost estimates.

The results of these investigations should be used to establish
the basic attributes of model structures that have demonstrated high
accuracy. When this has been accomplished using existing modeis, it will
be possible to design a series of second generation models based on the
structures that have performed well in systematic tests. These models
will be coordinated with the development of better data sets which will
permit more complete exploration of structures and more comprehensive
testing.

7.2 CATA DEFINITION AND COLLECTION

Data availability and quality has been a major limfting factor in
cost model development. This evaluation has indicated the importance of
data definitions to the interpretation of model performance. The
recommended direction for future model development puts additional require-
ments on data. The Air Force has recognized the need for software data
and has taken a major step in the establishment of the data repository at
the Data and Analysis Center for Software (DACS). We recommend that data
collection efforts continue to be focussed at DACS and that the model

7-2




development activities be used as the basis for establishing data report-
ing requirements under software development contracts. The DACS is the
ideal catalyst for coordinating the dissemination of information describ-
ing progress toward both objectives.

If program size is determined to be an important factor in making
accurate estimates, DACS should be responsible for maintaining standard
definitions under which project data could be reported and tabulated.

The same should be done for any other inputs or outputs required for cost
estimating. The present role is passive. Given a productive research
program the definition of data elements should become active. The Alr
Force should take charge of defining its needs for estimating data.

Software data reporting should become an integral part cf the
contracting process much as operating costs are now. Items and formats
should be defined by the Air Force and provided routinely by the
contractors. Audits should be possible if necessary to substantiate the
reported values. A well-designed data reporting scheme (e.g. ([43])
should not be burdensome on the contractors and should pay for itself in
better planned and managed system development projects.

A recommended data collection project is the acquisition of
estimates of input variables during the life cycle. Tne results in the
present evaluation were obtained using actual values usually recorded
after a project was completed. This reflects minimum uncertainty in the
inputs. Therefore, the accuracy of the different models is higher than
it would be if we included the precision with which the inputs are known.
The different inputs are not known equally well at the different times
that estimates are made. This biases the results in favor of those
models which use inputs that are known accurately only late in the develep-
ment cycle.
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APPENDIX A

DETAILED MODEL DESCRIPTIONS
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AERQSPACE MODEL
Description of the Model
The model was developed using regression techniques applied to data
from software development projects characterized by one-of-a-kind computers,
] limited support software, special languages and severe memory size and speed
requirements. The data were stratified into two groups. One group contained
¥ 13 projects for the development of real time software identified as primarily i
" large-scale airborne and space applications. The second group consisted of

7 operational support programs presumably without the size and speed require-
ments of the first group.

The model description is not clear concerning the exact composition of
the estimate of effort required to develop the software. Only the total
effort is estimated. The estimate is made using a relationship of the form:

MM = a (Instruction)b

where the constants, a and b, are determined by regression analysis.

The estimating relationships are:

Real Time Software

MM = 0.057 (1)°-9%
Support Software

MM = 2.012 (1)0-404

where:
MM = tota! development effort, manmonths

I = number of instructions (independent
of language).
Reference

T. G. James, Jr., "Software Cost Estimating Methodology," Proceedings ILEE
VAECON '77, May 77, PP 26-27.
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Boeing Computer Services

Description of the Model

The Boeing Computer Services (BCS) software cost model estimates
total project effort from a table of productivity rates that associates
different types of software. The rates are applied to the sizes of the de-
livered programs to obtain estimates of the direct effort required to
develop the programs.

The BCS model works best for aerospace types of systems. The most
reliable estimates of the inputs are obtained from project planners who
have related experience and a good knowledge of the system requirements.

; The method begins with decomposition of the systems into functions and
modules. This requires knowledge and a certain amount of component
definition, i.e., how the system functions will be performed and how they
should best be divided up for development.

g, -

The project leader is asked to divide the system according to its
composition among the following types of software:

Mathematical Operations

Report Generation

Logic Operations

Signal Processing or Data Reduction

Real Time or Executive (also Avionics Interfacing)

These assignments are based on experienced judgment and are subjective.

Then an estimate is made of the total number of delivered instructions.
BCS experience indicates that come care must be taken with thic estimate
because project Teaders tend to think in terms of developed code and not
delivered code. But they have found it necessar: to make this distinction
; because non-delivered code such as test drivers is normally not tested and
documented as thoroughly as delivered code and consequently requires
substantially different development resources.

— ———




The method then applies different productivity rates for each type
of software to obtain development effort. The rates were obtained
empirically from over two dozen sources. Some of these, for example,
include Wolverton, SDC, TRW, and Boeing projects such as Lunar Orbiter,
Code types were identified and productivity was obtained from total project
effort data. The factors were obtained by curve fitting. The results
were confirmed by knowledgeable people. The productivity rates range
from 6 to 40 manmonths per 1000 source statements.

The total development effort is divided into project tasks according
to a fixed schedule.

% OF TOTAL
Requirements Definition 5
Design and Specification 25
Code Preparation 10
Code Checkout 25
Integration and Test 25
System Test 10

The resulting values are then adjusted for 9 conditions:

Reimplementation of existing software
Follow-on contract

Number of programmers

Higher order language

Macro language

On line code/data entry

On 1ine debugging

Poor or no debug tools

Programming experience

The adjustment factors for each coniition are applied to the appropriate
task efforts.




The total development effort includes marmonths for all direct
personnel (except final documentation) and first line supervision (how-
ever, it should be noted that many of the sources of productivity data were
non-Boeing environments). A typical group would have a superviscr and 6
to 10 programmers. Larger projects with higher levels of management would
not include these managers in the total effort prediction.

Qutputs
Raw Development Effort. Man-months to fully check out, test and

document software of a given type and number of statements. The total
development effort is the sum of the development efforts required for each
type of code. This is a raw value that is derived from estimates (by type
of sortware) of numbers of delivered statements of new code divided by
productivity rates. The rates are different for each type of software. The
development effort is allocated among six development phases. The man-
] months in each phase are subsequently adjusted to account for existing
software, higher, order language, programming experience and other factors.

Distributed Raw Development Effort. The apportionment of the Raw

Development man-months according to fixod percentages.

Task or Development Phase Percent of Total Effort

Requirements Definition 5

Design and Specification 25 N
Code Preparation 10

Code Checkout 25

Integration and Test 25

System Test 10

Adjusted Development Effort. The man-months of development effort for

each software type separated into deve19pment tasks o phases and adjustad
for nine product and environmental factors.
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Reimplementation of existing software
Follow-on contract with current customer
Number of programmers

Higher order language
Macro language

On-Line code, data entry
On-Line debugging

Poor debugging tools

W O N OO0 O = W N~
« e e 2 e e e .

Programming experience.

Computer Time. Two time estimates are provided:

e Stand-alone time (dedicated computer)
e Computer resource units (not defined)

Stand-alone or dedicated computer availability may occur in develop-
ments utilizing minicomputers or special purpose computers that are totally
devoted to . given application. The,cost of the computer or the access 0
computer facilities is not shared with any other software development
project.

Computer resource units are used to measure the portion of a large
multi-user computer facility appropriated for a single cask. Usually, the
computer operating system measures the amount of time that the i .sk uses
computer memory, different peripheral devices, software packages, and other
resources such as multipart paper, tapes, etc. and uses an algorithm to
charge the user according to the portion of the total system that was made
available. The definition of a computer resource unit depends on the
computer eguipment configuration, the relative costs of the devices, and

the method ut allocating fixed costs. CRUs are not in general comparable
from one computer installation tc another.




Inputs
Product Related Inputs

Number of Statements. The number of statements to be written and
delivered to the customer. The count includes only new code and excludes,

“test drivers, test data bases, translators, simulators, etc.” that are
written but not delivered. These are separated from the delivered code
because they do not undergo the same level of testing and documentation.
They are accounted for in the estimating procedure by a subsequent
adjustment to the development effort.

The number of statements describes executable statements, but includes
storage defining statements (e.g., FORTRAN COMMON). An allowance should be
made if the specifications describe unusually severe requirements for
commentary within the code.

The number of statements are counted according to five types o¢f

software:
¢ Mathematical Operations
e Report Generation
¢ Logic Operations
e Signal Processor or Data Reduction
o Real Time, Executive, or Avionics Interfacing

Resource Related Inputs. The following outputs are used to modify the

estimates of the development effort required for each type of software
They are used to identify constant adjustment factors that are associated
with the different developument phases. Two of *he inputs, Number of
Programmers and Programming Experien~e, are cardinal numbers; the others
are either applicable to the planned development or not.

Number of Programmers. Three sizes of development team are described:

o 1-¢
e 6-10
e More than 20.




W
M

Each team size is associated with a factor that increases effort with
incr-asing team size. '

Program:ing Experience. The relative exverience of the group in the
technical descipline being programmed is identified by one of three levels:

¢ Entry-Level
e Moder._te
e High

The following inputs describe factors or conditions that may or may
not be appropriate to the development.

Reimplementation of existing software
Follow-0On contract with current customer
Higher-Order language (seasoned compiler)

Macro-Language
- In coding
- Forms for document
s On-Line debugging
e Poor (or no) debugging tools except dumps

Reference

R. n. E, Black, R. P. Curnow, R. katz, M.D. Gray, BCS Software Pr
Data, NTIS, AD A039852, Mar 1977. Y oduct .o
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DOD MICRO ESTIMATING PROCEDURE

Description of the Model

The primary estimating relationship comprising the DoD Micro Procedure
can be desc¢ribed as the ratio of a factor representing the software to be
developed or changed and a productivity measure.

The model form suggests that effort increases directly with the number
Jf input and output configurations operating on  the system being built.
Effort also increases with the number of routines being created or modified
v, 'hted by their difficulty. The total effort is scaled according to the
amount of work that must be done in entirety as opposed to modification
of an existing system.

The number of days needed to deliver the product {effectively the
days of effort per unit of product) depends on the general experience and
accomplisrment of the development group (measured by their job classifications)
weighted by their knowledge of the problem to be solved relative to the
knowledge required. One other factor that directly affects the productivity
is the ease of access to the computer (measured by turnaround time).

The basic form of the estimating relation for software development
time is:
Net Development Time = (Product) + (Productivity)
Where: Product is a measure describing the effort to be performed.
Productivity is the rate of creating the product from

the application of personnel time.

Product = (Number of Formats + Weighted Number of Functions)
x (Effort Relative to a New Development)
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The terms in parentheses along with the following terms are defined in the
discussion of model inputs below:

(Productivity)'] = (Work Days per Unit of Product for a Staff with
Average Experience) x (Job Knowledge Required)
x (Job Knowledge Available)
x (Access)

The result is the total hours required for code development.
Presumably this means detailed design, coding, and unit testing.

(Net Development Time)
(Other System Factor)
(Non-Project Factor + Lost Time Factor)

Gross Development Time

x xX 0

A value of 1.8 is recommended for the other system factor. This factor
represents the effort needed to convert the code development time to total
development time. This value is representative of an observed range from
1.2 to 2.1. Total development includes analysis, design, coding, testing
and documentation. It is the sum of the project direct charges. Whether
this includes support hours for clerical and other functions is not clear,
but any given organization could include these by modifying the 1.8 factor.

The net development time accounts for the time lost from normal
scheduled working hours for leave, sickness, holidays, and non-project
assignments. These add 25 percent to the total development time. There
is also a 10 percent efficiency factor (coffee breaks, time cards, code
rework, etc.). The code rework should probably be hand):d elsewhere. It
is probably included where it is to make the 10 percent palatable. Itshould
be included in the gross size adjustment and the 1.8 factor.

The effect of these adjustments is to estimate the number of personnel
who must be assigned to the project to ensure delivery of the total

development hours. These factors are organizational specific.




Although the resource estimating procedure includes weighting factors
for the input and output formats by type of device (see subsequent discussion),
the factors have a vaiue of one in each case. Therefore, the model describes
a linear relationship between the total number of file formats and the
effort required to implement them. It may be that future versions of the
mocdel will weight the types of file devices differently. Then the effort
required to implement a report format may be different from the ef-ort
required for a card format.

Program complexity, which is the second term in the product measure,
is the weighted sum of the functions to be implemented. The weights
depend on the function and its assumed level of complexity. The weights
range from 1 for a simple operating system control language change to 12
for a very complex edit-validation function.

The value 3 is the most common among the 24 possible function-complexity

i assignments. If the function types are equally represented in programs,
the average value is 4.

The programmer/analyst experience factor is an indication of the
effect of experience on productivity. Values range from .75 to 2.75
corresponding to a lead analyst or programmer and interns respectively.
Since experience is not evenly distributed over a group of programmers and
analysts, the following groups was hypothesized in order to obtain an

average or representative value for the experience factor.

Number Weighted

Experience in Group Factor Sum

Lead ] .75 .75

Senior 2 1.25 2.50

Journeyman 4 1.75 7.00

Nominal 8 2.25 18.00

Intern 5 2.75 13.7%

20 42.00

Average Value : 42+20 = 2.1
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No definitions are provided for the 10 job classifications.
The job knowledge and turn-around time factors are self-explanatory.

The System Factor adjuststhe product development effort to account
for work already done.; The product measure resulting from the format
count and the program complexity value is the same whether the system is
being developed in its entirety or it is a modification to an existing
system. The system factor has the effect of modifying the product value
to account for less than total development.

Seven levels of change are described by the System Factor. The values
range from 2 for a new development to 8 for an operating systems control
language change.

For a new system development the 2 in the primary estimating equation
is divided by a System Factor value of 2 and the product measure is un-
changed. Consequently, the System Factor values describing lesser amounts
of new development have larger values and are portions of 2. The effect
of the System Factor on the product measure is summarized as follows:

Effort Relative to

Type of Effort System Factor a New Development
New Development 2 1.00
Major Change 3 .67
Major Modification 4 .50
Minor Modification 5 .40
Maintenance 6 .33
Minor Technical Change 7 .29

Operating Systems
Control Language Change 8 .25




In order to get a feel for the relative magnitudes of the components
of the Micro Estimating Procedure, consider the following example.

Number of /0 formats = 10
Number of furctions = 20
Average compluexity factor = 4.
New Development {

. Product = (Number of Formats + Weighted Number >f Functions) _
: x (Effort Related to a New Development) i
! Product = (10 + 4 x 20) x 2+2 = 90 )

Experience = 2. (See above for computation)
Job knowledge required = 1.0

Job knowledge available = 1.0
Access = = 1.0
(Productivity)'] = (Work Days per Unit of Product for a Staff with

Average Experience)
x (Job Knowledge Required)
x (Job Knowledge Available)
x [Access)

2.0x 1.0x1.0x1.0=2.0

Net Development Time - (Product) «x (Productivity)"
= 90 x 2.0 = 180 Man-Days

'f the effort was a major modification (System Factor = 4), the

Product value becomes:

Product = (10 + 4 x 20) x 2+4 = 45
and
Net Development Time = 45 x 2.0 = 90 Man-Days




If the Job Knowledge Required is "Detailed" (Factor = 1.5) and the
Job Knowledge Available is “Limited” (Factor = 1.5), the productivity
becomes:

(Productivity)™’ = 2.0 x 1.5 x 1.5 x 1.0 = 4.5
then for the major modification:

Net Development Effort = 45 x 4.5 = 202.5 Man-Days

Qutputs
The primary output (i.e., the output that is sensitive or controlled

by project variables as opposed to the subsequent step which is a fixed
allocation) is: Gross Development Time (man-days). Gross Development Time
includes:
e Nonproject time (individual assigned to project but busy with non-
project tasks, e.g., training, non-product administrative duties,
etc., and vacation and holidays)

e Wasted or lost time

Therefore, Gross Develpment Time describes the staffing level that will
result in a needed amount of development time. The latter is predicted by
program and project characteristics.

The secondary outputs (i.e., those derived by applying fixed values

to the primary output are:

o Effort by project phase
e Total development cost

The project phases are:

Review and analysis
Design
Programming
Testing
Documentation




Gross Develgpment Time includes:

Analysis of present methods
Design of the new/changed system
Develop the system's support
Program design

Program development

Program testing

System testing

Installation and conversion
Staff training

Project officer

System manager

Technical managers

Support personnel
Documentation

Inputs
Product Related Inputs. The software is described by the numbers of

types of items it processes and the numbers of functions it includes. The
functions are described according to type and complexity. The result

is two product descriptors: one measures the size of the input/output
processing to be executed by the system; the other is a measure of the
number and difficulty of the functions to be performed.

Input File Formats. The number of different formats tc be read by

the system are counted and added together. The model asks for numbers

of card, tape, disk, and screen formats separately, but since the weighting
factor is always one, there is no distinction made among them regarding

the effort involved to implement them.

Qutput File Formats. The formats output by the system are totaled.

The same entries as for the inputs are requested plus the number of report
formats. As in the case of the inputs, the weighting factor for the
different types of output is always one, so there is no reason to differentiate.
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Pregram Complexity. The total program complexity measure is computed
by a weighted sum of the number of processing functions of given types. Each i
function is characterized as simple, complex, or very complex. The processing
functions are:

Edit Validation

Table Look-Up (Internal or External)
Calculations

Sort/Merge Process

Internal Data Manipulation
File Search
Utilities or Subroutines

Operating Systems Control Language

Job Knowledge Required. The amount of knowledge required to implement

. or change a system has a direct effect on the number of hours required to
accomplish the project. A system that requires very detailed knowledge will
require more effort than one that can be accomplished with limited knowledge.
This parameter is paired with the job knowledge available factor described
below to describe the relative influence on productivity. Three job
knowledge levels are used: Limited, General, Detailed.

System Factor. The effort required to complete a system development

or change project of given complexity depends on the state of the system.
That is, the work required to change three file formats is lesc than the
work required to develop a system with three file formats, all other
factors being equal.- The System Factor describes the level of effort
being undertaken. Seven levels are described:

System development
Major changes

Major maodification
Minor modification
Maintenance

Minor technical change

Operating systems control language
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Resource Related [aputs

Programmer/Analyst Experience Available. The available experience

measure is an effective productivity indicator. It quantifies the rate
at which the product can be produced in terms of the job classification

of the staff available for assignment to the system development. Two data
processing persaonnel classifications: Analyst and Programmer, are tabulated

according to five levels of experience: Lead, Senior, Journeyman, Nominal,
and Interr. Weights are associated with the difference experience levels.
The result is a weighted average productivity factor.

e —————— e

Job Knowledge Available. This factor has the effect of describing

the change in productivity associated with the level of knowledge about the
~work to be performed that exists among the persons available for assignment.
!t works together with the Job Knowledge Required factor described above

to quantify the effect of the knowledge of the system required compared

to that available on the time required to complete the work. In general,
the effect of the combined factors is to increase the development manhours
if the need exceeds the available and decrease the hours if the available
exceeds the need. Three levels of job knowledge availability are specifiec:
Limited, General, and Detailed.

Program Turn-Around Time. The effect of computer access on productivity

is described by four levels of average turn-around time:

e Interactive terminal
¢ More than one run per day
¢ Jne run per day

e Less than one run per day.

Rerevence

¢ ndard Dou ADP Resource Estimating Procedure (REP) for Software Develcpment
.Draft), Dept. of Defense, Sept 1979.
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Description of the tiodel ;
The model is actually a set of 15 estimating relationships. Eacn i
one to be used for a given type of software and software life cycle phase.
Equations have been derived empirically using regression analysis for
the following types of software:
e Command and Control
o Scientific
o Business
o Utility

The development effort for software representing each of the appli-
cation types may be estimated using one or three different relaticnsitips. An
additional three are given that are appiicable to all types of software. These
equations are to be used "when the appii.ation cannot be categorized or
is different than the categories noted". The procedure specifies that
when a software system is made up of subsystem; that are of different
types, the total size should be divided into the four categories and
the appropriate estimating equation used for each one. Then the individuai
manmonths are summed to give a total system development effort. The three
equations are divided into size measure (lines of source code or words at
object instructions) and the life cycle phase in which the estimate is
made (Concept Formulation and all others). If the estimate is to be made
using the words of object instructions, the same equation is used in all
life cycle phases. Similarly, for estimating large systems (more than
10,000 lines) using lines of source code requires the use of a different
equation in the Concept Formulation Phase than in the other life cycle
phases.

The use of the different equations can be described as follows
(A, B, and C refer to the three different relationships).




|
SOFTWARE LIFE CYCLE PHASE |

DESCRIPTION CONCEPT | OTHERS
WORDS OF OBJECT CODE A A
| LINES OF SOURCe CODE

LARGE SYSTEM > 10K LINES B B

SMALL SYSTEM < 10K LINES B C

_—

The forms of the estimating relationshws are -imilar. Equatrar;
* and B are of the form:

MM = 3 Ib
where MM = Manmonths of development effort.
I = either wcrds of object code (A) or iines of
executable source code (B).
a,b = Constants obtained empirically.

Equation C has the form:

14
MM=CIdI f
=1
Where f. = a set of parameters describing the development
J environment.
¢,d = constants obtained empirically

Values of the constants to be used for different types of applications
are given in Tables A-1 and A-2.

The followina guidelines are presented for selecting the proper
estimating reiationship.
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e In Concept Formulation, if the size of the program in object
code is known, use the object code estimators. They will give
more accurate estimates of manpower requirements.*

e If accurate estimates of manpower requirements are required
in the Analysis and Design and subsequent phases of develop-
ment, use equation B, in source code, for programs of I > 10,000
and equation C, in source code, for programs with I < 10,000.

® For budgetary purposes, use the equation that gives the higher
estimate.

Development time is estimated using the equation

10001
92.25 + 2331

.667

where D = Reasonable development time in months

—
il

Number of delivered object instructions.

This relationship was obtained using regression on data describing
74 development projects. The time estimate should describe "customary"
distributing of effort over time that is, it should avoid extremes of
project time compression or expansion.

* according to one of the authors, size of the object code is recommended
over size of the source code as an estimator because most of the deve-
lopments of interest to the study sponsors are in the area of command
and control and scientific systems. In these areas both estimators have
similar precision, but the authors believe that object code is more commonly
used and understood and 1s, therefore, a more reliabie estimator.
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It should be noted that a laige portion of the documentation
accompanying the description of the DAI estimating procedures is devoted
to discussions of factors that are believed to influence the cost of soft-
ware development. These factors are classified according to aspects of
software and its development environment. The factors are grouped according
to the following "domains":

) Fequirements
) System Architecture/Engineering
) Management.

Qutputs

Cost of Software Development

The estimate of total development cost is based on several relation-
ships that portion the cost into components that can be estimated by
applyinn available ratios to other costs and factors such as overhead
and administrative costs. By the proper use of relevant values fcr these
factors the relationships can represent either government in-house costs
or contractor development costs. A method is described for time phasing

the expenditure that is said to satisfy the requirements of DoD Directive
5000.1.

The procedure identifies costs that are incurred by the governmer-
during all phases of the software 1ife cycle except Operation and Support.

The total development cost includes:

C=C. +C

CF

where C = Development Cost
CCF = Conceptual Phase Cost
CVAL = Validation Phase Cost
CFSD = Full Scale Development Cost,




Information is inclnded that relates the government cost to the
contractor's full scale development cost. This cost is the one devel.ped
by the formal software cost estimating procedure.

The cost of development is divided into primary and secondary
costs, thus:
+C

D P S
where = Cost of Development
CP = Primary Cost (Manpower)
= Secondary Cost (Computer,
Documentation, Etc.)
Then,
CP = MM(Ce)
where MM = Total Development Man-Months
Ce = Average lLabor Cost
and '
n
Cg =L Gy = iCp
i=1
Therefore: CD = (MM) Ce (i + k)
where k = Ratio of Secondary to Primary Costs
(=.075)

The total software development cost (does not include government
Conceptual and Validation Phase costs) includes the costs of:

. Analysis
] Design
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. Code

) Debug
0 Test and Checkout

and is proportional to the total man-months of development effort.

Total Development Man-Months

This is the primary output varfable. It is the basis for the total
development cost estimate and it is the value from which the distribution
of effort by life cycle phase is derived. The hours include those
directly related to the development of the software system. They include
the direct hours needed for:

Analysis - interpreting the system requirements and producing
viable alternative system concepts

Design - preparing detailed designs of the data processing
system and the individual programs

Coding and Debugging - writing individual modules and programs
and performing individual tests

Tesning and Checkout - integrating the individual subsystems
into a complete system and conducting prescribed tests
on the entire system.

The discussion of the model does not indicate the extent that
support and management hours are included in the total. Also, there may
>e some question about the activities associated with concept development
ie.g., is the test plan furnished by the government following the validation
pnase or is it developed as part of the project). As in many cost estimating
situations, the Tine between concept analysis and the evaluation of soiutions
to selected concepts is hazy.

Although the DAl documentation and discussions with the authors
indicate that the model includes integrated system testing, it appears
that this effort is not included in the original SDC data which was the
nasis for the curve fits. (76% of the SDC data points describe programs
that do not interface with any other programs).




B _ _
- R T

Sortware Development Time
A nominal development time is presented that implies “customary
manloading". That is, the schedule does not reflect either crash

projects or allow for unnecessary delays.

Distribution of Development Effort
The expenditure of time and effort associated with major project

milestones is given for small projects (one level of supervision) and
large projects (more than one level of supervision). The distributions
are “or nominal projects and do not allow for any possible acceleration

or delay of the completion 0f *"e project.

Desirable Distribution of Effort

Development Milestones First Level Project Second lLevel Project

Schedule | Expenditure | Schedule | Expenditure

b ettt

Complete Unit Debug

Complete Package Test 8l% 78% 80% 3%
Complete System Test 100% 100% 100% 100%
|

Complete System Design (PDR) 10% 5% 10% 1s

Complete Package Design 35% 27% 35% 13s

Complete Unit Design (CDR) 44% 36% 42% 19%

Complete Unit Code 54% 49% 50% 28% .
64% 59% S7% 388 ]

LhEL=S

Program Size i

DAI has been very careful to describe the size variables which are
the primary inputs to the estimating equations. This should help make
more reliable estimates using the relationships. However, we should
point out that the respondents to the original SDC questionnaire were not
so well directed and it may be necessary when analyzing the structure of y
the model as it relates to prediction accuracy that significant errors
may have been introduced by this failure to be specific. The DAI model
may not overcome what are inrevert 'imitations in the cata.

o s e
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The DAI procedure calls for several estimates in support of the
DSARC process. It recognizes that the best estimates of program size are
obtained later in the development cycle. It suggests, then, that the
interpretation of the program size changes during the life cycle and that
associated with the changes are increases in estimating accuracy. The
report describes how the knowledge of the size estimator changes during
the 1ife cycle and how this affects the estimating precision. The
precisicn associated with the different size measures during the system
deveiopment 1i“e cycle is as follows.

Software estimate When Sizing basis % Error

1. Initial program Conceptual phase Total object code up to 200%*
budgetary estimate

2. Independent program | Validation prior | Total object minus | up to 100%

validation cost to RFP release data areas
estimate (Executable Code)
3. Independent FSD Completion of Total object minus | up to 75%
cost estimate system Spec data areas with
through PDR adjustments for

reusable code !

4. Update of FSD PDR through Total source code gp to 50%,
cost estimate remainder of improving
development to zero at

. completion

*The actual may be 200 percent of the estimated or the estimated may be 200
percent of the actual.
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Code that is developed as part of the project but is not delivered
to the customer is a source of variation in the estimate of the system
size and must be considered. However, no guidance is provided for making
any adjustment other than citing that the SDC data showed delivered code
to average 77 percent of the developed code with a standard error of
30 percent.

Allowance must also be made for support software development
especially when working with new hardware.

Total Okject Words !
During the Conceptual Phase when very little is known about the
system to be developed, the initial estimate is made using the analyst's
judgement (usually by analogy with previously developed systems, but
other methods are possible) of the number of object words occupied by

"every program needed to run and maintain the system in the field". This
measure is obtainable from listings of computer system routines that
build executable programs from tho output of the compiler. Taking

values from systems similar to the one being planned can provicde a basis
for estimating the value. Care should be taken, however, when program
overlays are involved. Also, extensive use of standard library routines
can greatly increase the words of object program size and not be repre-
sentative of a comparable increase in development effort.

Total Object Words Minus Data Areas

The memory space occupied by an executable program is composed of loca-
tions containing instructions and locations reserved for the data upon which
the program wi'll operate. Sometimes the data storage areas are signifi-

cantly larger than the area occupied by the actual instructions. CAI
suggests that the effort required to develop the programs is more closely
related to the size of the instruction space than to the size of the
combined data and instruction storage. However, as in the case of tke
total object words, there is no evidence of this distinction being made




in the original derivation of the estimating procedures. Also, there is
no guidance provided on how to apply the additional information when
preparing cost estimates. Some computer system executive processing
routines provide this information. However, many don't and, therefore,
it would be very difficult to obtain comparable historical information
to guide new estimates.

New Object Words Minus Data Areas

Only the writing of new code contributes to the software develop-
ment effort (if code written to modify existing modules is ccounted as
new code). To account for the work done to adapt existing code to a new
system, which includes analyzing the code and deciding how to modify it,
any existing module that will result is less than 50 percent utilization ¢
of existing code is considered to be entirely new.

New Source Lines

Counts of new source lines written (whether in a higher order or
machine oriented language) can be obtained from compiler 1istings, measuring
card decks or text editors. It is one of the easiest measures of size
to obtain. As in the previous case, modules containing less than 50 per-
cent reused code are considered to be new.

Cevelopment Environment

For estimates made using lines of source code where the size 1s less
than 10,000 1ines, the estimating relationship includes a number of fac-
tors describing the development environment. These are included in the
estimate when the indicated item is to be part of the development process.
Detailed definitions of the factors are presented in an Appendix.

f1 Special Display

f2 Detafled Definition of Operational Requirements
f3 Change to Operational Requirements

fy Real Time Operation
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f5 CPU Memory Constraint ‘ t
f6 CPU Time Constraint

f; First SW Developed on CPU r
f Concurrent Development of ADP Hardware

f9 Time Share Versus Batch Processing in Development
f]0 Developer Using Computer at Another Facility

f]] Development at Operational Site

f12 Development Computer Different from Target Computer
f]3 Development at More than One Site

f14 Programmer Access to Computer

After analyzing the method used by DAI to obtain their estimating
relationships and after comparing their definitions of input and output
variables with the original sources of data, it is clear that there are
discrepancies between the way the data are being applied and what they
originally represented. DAl does not explicitly justify their approach
but their presentation of the estimating procedure does give consideration
to errors arising from differing definitions of the variables.

DAl seems to be saying that consistent use of the estimating
procedures regardless of how they were obtained will produce results with
at least a predictable error. That is, knowing the range of error that
can occur because of differences in definitions and ability to predict
the input variables will, when applied to the given estimating relation-
ships, produce estimates with precision that is in accordance with
previous experience. DAI further substantiates the approach of throwing
all the error into the ability to define the input by presenting standard
error values for the size variables at different times in the life cycle.

References
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FARR AND ZAGORSKI MODEL
Description of the Model

System Development Corporation completed several projects for the
Air Force, Electronic Systems Division in which they attempted to develop
methods for predicting the cost of software developnent. The Farr and
Zagorski model represent an intermediate stage in the program,

Using historical data from internal projects and from other organizations,
the SDC team systematicaily tested over 100 variables to learn if they were sat-
isfactory predictors of program design, coding and debugging effort.

5 Farr and Zagorski published three equations* which were determined
to be the best predictors tested up to that time.

MM = 2.7X1 + 121X2 + 26X3 + 12X4 + 22X5 - 497 (1)
MM = 2.8X6 + ].3X7 + 33X3 - 17X8 + 10X9 + X.IO - 188 (2)
MM = 8.4X]] + 1.8X12 + 9.7X3 - 3.7X13 - 42 (3)

Definition of Qutput

MM is the number of manmonths needed to design, code and debug a
single program. The effort begins when a programmer or analyst is given a
complete operational specification for a program and it ends when the program
is released for integrated system testing.

Definitions of Inputs

X] = number of instructions in original estimate (in thousands)
X2 = subjective rating of information system complexity (scaie 1-~}
X3 = number of document types delivered to customer

X4 = number of document types for internal use

* L. Farr and H. J. Zagorski, "Quantitative Analysis of Ccmputer Programming
Cost Factors: A Progress Repor<,' Proceedings ICC Symposium, Rome, 1963
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X5 = number of computer words needed to store program data (10910)
X6 = number of instructions in delivered program (in thousands)
X7 = number of man-miles for travel (in thousands)

X8 = system programmer experience (average of total years of experience
with the computer, language, and application)

X9 = number of display consoles

x10 = percent of instructions new to this program (not re-used from
previous versions)

X]] = number of instructions to perform decision functions (in thousands)

X]2 = number of instructions to perform nondecision functions
(in thousands)

X13 = programmer experience with this application (average number of
years).

References

L. Farr, H. J. Zagorski, Factors that Affect the Cost of Computer Prcgramming,
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PRICE S

Description of the Model

PRICE S is a proprietary software cost estimating model developed
and maintained by PRICE Systems Division of RCA, Cherry Hill, New Jersey.
It is installed on the On-Line Systems, Inc. time sharing network and may
be accessed using several different types of terminal devices. On-Line
Systems provides local dial-up service in many cities throughout the
United States. '

PRICE S estimates software developmert costs by systematically
adjusting the estimate of an initial element of the cost structure. The
initial estimate is a function of the size of the system to be developed
and several other parameters describing the characteristics of the software
and the development environment.

According to Frank Freiman, the creator of PRICE S, the model design
reflects an understanding of why costs attain their values. This is in
contrast with estimating costs by fitting hypothesized relationships to histori-
cal data. The PRICE S developers contend that software development proj-
ects are complex undertakings whose costs are influenced by a wultiplicity
of factors too numerous to analyze and often impossible to measure.
Consequently, no two projects are alike. This makes it impossible to
identify common characteristics among past projects to be used for esti-
mating new ones. It also means that no past project is exactly relevant
to any future one.

Freiman contends that a manager's perception of what a project shouid
cost actually determines its estimated cost. Therefore, the proper formulation
of a cost estimating model is in terms of perceived relationships between
nost and aspects of software development that knowledgable managers believe
determine cost. PRICE S estimates the cost of developing code using hypo-
tnesized relationships that were subsequently supported by the opinigns c*
individual managers. The primary relationships describe:
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o The cost required to produce programs.
e The effect on cost of changing development time.
e The comparative costs of the development cycle elements,

In addition to the primary relationships there are many secondary
ones which may be subjective or empirical. The ultimate justification for
all the hypotheses is the model's estimating performance.

The relationship between the cost of producing a program and attri-
butes of the code was originally conceived using an analogy. The analogy
is between the force required to move an object and the effort needed to
write software. The mass of an object is the product of its volume anrd
density. The property of mass is a function of its spatial concentration
and its extent or volume. In a similar manner the cost or producing code
is related to the product of its density or difficulty and its extent or
size. Furthermore, the cost relationship should satisfy the empirical
observation that the cost per pound of a wide range of items decreases as
the weight increases.

In PRICE S the difficulty associated with a computer prcgram is
represented by a parametier called its APPLICATION (APPL). The value of
APPL is small for easy to write codes such as mathematical applicaticns
(APPL=0.86) and is large for interactive operations and operating systems
(APPL=10.95).

The size of the system is measured in terms of the number of machine
level instructions represented by the developed code. PRICE S uses the
mnemonic INST to represent the size of the software system.

The product (APPL) X (INST} is termed the weight or mass of the
system and represents a portion of the development effort.
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For a given system the development effort is affected by the develop-
ment time as well as the type of application. A system with an accelerated
schedule becomes more difficylt in the same sense that a system with a
greater value of app1icatioﬁ is more difficult.

The APPL values that are input to the model are related to a standard
schedule of 9 months. The model compares the schedule for the project
being estimated with the standard schedule and calculates an effective value

of APPL which is used by *he model to make estimates. The effective value
of APPL is not available %to the user.

The model does not require that the user specify the development
schedule. This is possible, but the reference manual recommends that the
schedule be calculated by the model using the following procedures.

A project with given size, application type, scope of work, etc. may
be developed with different schedules. The effect on cost of changes in schedule
is represented by the parameter called COMPLEXITY (CPLX) ". . . whicn
provides a quantitative description of the relative difficulty »~f the design
task."* CPLX describes the famiiiarity of the project staff with the functions
to be performed, their general experience, and factors that complicate the develop-
ment of the system such as new language, more than one user organization,
or state-of-the-art advancement. CPLX tends to be constant for a given
organization. It reflects the way the organization commits its resources
in order to achieve a perceived proper scheduling of a project. If CPLX
is input to PRICE S, the model calculates the schedule. If the schedule
is given, the model calculates CPLX. If both are given, the mode! caiculates
the schedufe according to the value of CPLX and makes adjustments in cest
depending on whether the stated schedule represents an acceleration or
deceleration of the first schedule.

In any case the resulting schedule s compared with the 9 month
standard schedule to obtain the effective value of APPL as described earlicr

*  Reference Manual PRICE Software Model, RCA/PRICE Systems, Cherry Hill,
New Jersey
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The initial estimate of cost in PRICE S is the Engineering Design
element. It is obtained from the relationship:

Engineering Design Cost = (WEIGHT) X (RESOURCE)

RESOURCE (RESO) is the cost per pound mentioned above. It repre-
sents the efficiency with which an organization uses its resources to
develop a system. Its value should be constant for an organization. The
value is obtained by operating the model in a calibration mode which cal-
culates RESO from data describing past projects.

RESO and CPLX act together to describe an organization. RESO measures
organizational attributes that affect cost independently of schedule, while
CPLX measures those attributes that affect schedule.

Other parameters than the ones described so far are used to calculate
cost. These will be described later under the description of inputs. The
primary purpose of this presentation of the model is to describe the general
model structure and the principal inputs. Figure A-1describes the sequence
of the calculations and the modei variabies.

The calculation of the cost elements follows from the initial estime*e
of Systems Engineering Design Cost using a sequence of :llccations called
the "Ripple Effect." These are shown in Table A-3. These allocations can
be modified by user inputs. The cost elements are defined in the discussion
of outputs.

Qutputs
PRICE S offers a number of operating modes. Many of these modes

involve tailoring or constraining the development process to satisfy user
requirements. In these cases the normal outputs of the model may become
inputs. The following presentation will assume that the standard estimating

situation is the description of software and unconstrained resources resulting

in nodel estimates of cost and schedule. Specified values and constraints
will be treated as special cases.

e
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TABLE A-3
SOFTWARE PROGRAM COSTS RIPPLE EFFECT

COSTS IN DOLLARS/1000 DESIGN T&I TOTAL
SYSTEMS ENGINEERING 4Q0. (49 } 761,
PROGRAMMING 6:74. 439,
CONFIG CONTROL, Q/A 67. )(’ 312
DOCUMENTATION 58. 19. 152.
PROGRAM MANAGEMENT 53. 19. 111

TOTAL 652. 355. 1775.
|
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Development Schedule
PRICE S divides the software development cycle into three phases:

e Design

o Implementation

¢ Test and Integration
The beginning and ending month and year is given for each phase along with
a bar graph representation of the schedule. The phases are allowed to
overlap in time.

The Design Phase begins with the design of the system to be developed
under the project. Activities in the Design Phase include:

o Establish system architecture

o Allocate system requirements to programs

o Design programs in detail
When each program design is completed, coding can begin ir that program.
If it is necessary to change the program design, the activity of design
is considered part of the design cost even if coding has begun. A’trough
this is a desirable distinction, the 'definition of the programming activity
(see below) does not permit the user to know how much redesign cost may
be included in an estimate.

The Implementation Phase is devoted to writing the program code
and debugging the individual programs. Under the development concept
reflected in the model, programs are designed, coded and debuggec as
individual units. Therefore, the Implementation Phase begins wnhen cading
starts on the first program to complete the design process ana continues
until the last program is ready for formal testing.

Implementation Phase activities include:
® Program coding
o Program debugging

¢ Program documentation




The Test and Integration Phase begins with the test planning activity.
Therefore, it can start before any coding begins. It extends until the
system is accepted by the user. The major activities include:

Test planning

System construction from individual programs
Program testing

System testing

The overall development schedule is obtained from the user-specified
start date (DSTART) and the system complexity (CPLX). In the absence of
any schedule constraints the model calculates a nominal schedule. The
calculation of resource distributions among the three phases and the over-
lap are performed using Beta functions.

RESGURCE ALLBCATION PROFILES
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The shapes of the three profiles can be changed by the user. PRICE
S adjusts the gverlap to obtain a smooth shape of the total rescurce curve
over time,

Development Cost, Constant Dollars
Development Cost is given by phase and activity. The phases

(Design, Implementation, and Testing and Integration) are described above.

Each phase is divided into 5 activities or cost elements:
¢ System engineering
e Programming
e Configuration control and quality assurance
¢ Documentation
.

Program management

Cystem Engineering is the technical direction of the system develop-
ment. It includes the following tasks:
o Development of system specifications
Allocation of the system functions to programs

°
o Description of program interfaces
e Evaluation of system performance
°

Protlem resolution

The Programming activity includes design and coding, and testing :
individual programs. These three tasks are normally performed in the
three corresponding phases, but as was stated above design can occur in
the Implementation Phase. Other activities can also occur in different
phases.




Documentation includes:
Draft preparation
Editing

Reproduction
Distribution

Review

Revision

Configuration Management is the control of the description of the
approved system. The three principal tasks are:

e Defining the system baseline

e Managing the process for changing the baseline

e Disseminating information describing the system

Program Management includes ". . . the supervisory, financial, legal,
and general administrative tasks necessary to plan, organize, direct and
control the project." ™

The preceding definitions along with the definitions of the develop-
ment phases are presented to give an idea of what the PRICE S creators
consider to be the principal cost elements of a software development project.
However, the nominal allocations of the costs by element (see the ripple
calculation in t he Description of the Model) can be changed by the user
to suit his own definitions. The ability to reallocate costs when exer-
cised along with the calibration of the model using cost values represen-
tative of a given organization make it possible for the user to define
the model cost elements almost any way he pleases.

Costs are calculated using a fixed reference year (1976 for the
version of PRICE S tested) and corrected for inflation to the first of
the year in which the project start date occurs. An internal table of
inflation rates (RTABLE) accomplished the adjustment of value. The stand-
ard table can be changed by the user if desired. 'nder the constant
dollar option, the costs are in base year dollars.

* 0Op. Cit.
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PRICE S provides an option for presenting costs in other currenciec
An input value establishes the conversion rate between dollars and the
other currency.

Development Cost, Inflated Dollars

PRICE S includes an option that allows the user to obtain all cost
alements in terms of an inflated currency. Dollars (or another specified
currency) are converted from the base year to time during the development
using a table of constants (RTABLE) that is either specified by the user
or obtained by default. The effect of inflation on each cost element is
determined by the Beta function distribution of resources over time (see
above).

Development Effort

An option is available under which PRICE S presents the ccst cie-
ments in terms of effort rather than currency. The user can select either
man-months or man-hours. All reports are appropriately labeled. ZIince
the internal calculations are in terms of dolilars, the user must specify
the cost per man-month to effect the conversion to the desired output .-
The effects of inflation on effort are obtained as in the case of .
reporting cost in currency.

Model Qutput QOptions

PRICE S incorporates many execution options and provides for many
alternative presentations of the output data. The model allows the uscr
a great amount of flexibility in stating his inputs and obtai~*nrg reports.
It should be noted, however, that these diverse representations need nct
be exercised if the user elects to use the default values provided by the
model. The following are a few of the model output options.

Normal Qutput

The default report written by PRICE S includes information der »-- -
bing the software and project parameters, cost and schedute, A sampl-
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report is shown in Figure A-2., PRICE S includes print control options that
~.  present specific portions of the information in Figure A-2.

Sensitivity Option
The effect on cost of changing the values of four variables can be

conveniently shown in a 3 X 3 matrix. Under one option RESQURCE and
COMPLEXITY are given nominal, higher and lower values and the development
costs for the nine pairs are calculated. Another option performs the same
calculations for the APPLICATION and INSTRUCTIONS inputs. Under either
option the user may let the model set the ranges of the input values or

he may specify them himself. The options offer a convenient way to examine
how uncertainty in the most important inputs affects the estimated develop-
ment cost. Figure A-3shows the matrices printed using the sensitivity
options.

Schedule Qption

If the user specifies the development schedule, this option compares
the user's schedule with the model's normal schedule and prints the effect
on the development cost of departing from the normal schedule. It is axio-
matic in the PRICE S model that either increases or decreases from the
normal schedule have the effect of increasing the development cost.

Curve Option
The model prints a monthly history of the effort and cost. A cumu-

lative percent completion is reported for each phase. st is given as
monthly and cumulative values and their related pe. 7= 4 -,

Design-to-Cost Option
Given values of the target cost, APPLICATION, RESQURCE, and COMPLEXITY,
PRICE S calculates the size of the Jargest system that can be built.

A-44 .
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--- PRICE SOFTWARE MODEL ---

DATE 29-AUG-79 TIME 09:47 FILENAME:S3
(790239)
SAMPLE 30X 1 SAMPLE FILE
DESCRIPTORS
INSTRUCTIONS 36000 APPLICATION 5.30% RESQURCE 3.50
UTILIZATION 0.33 PLATFORM 1.40 COMPLEXITY  1.I5
NEW DESIGN 3.¢3% NEW CODE 9.99%
¢0STS_IN DOLLARS/1000 DESIGN IMPL T TaTAL
SYSTEMS ENGINEZRING 375. 49. 2¢4. $55.
PLOGRAMMING §9. 19t 122, 332.
COHFIG CONTROL, G/A $2. 56. 149. 263.
DOCUMENTATION 564, 17. 59. r31.
PROGRAM MANAGEMENT 50. 17. 30. 37.
TaTAL 611, 322. 534 1537.
SCHEDULE AND CONSTRAINTS DESIGH TnPL Tl
START WORK ocT 80 FE3 1% MAY 8 1%
€MD _WORX JUL 81% DEC 1% AUG 82%
COST PER MAN=MONTH( 1980 DOLLARS) 0.3 9.0 0.0
MAXIMUM MAN-MONTHS PER MONTH 0.3 2.0 2.0
APPLICATION CATEGORISS NEW DEVELOPMENT HARCWARE INTERFACES
MIX DESIGH CODE TYPES QUANTITY
DATA $/R 0.3 - 9.0 0.0 2 9
ONLINE COMM 3.08 1.340 1.08 i i
REALTIME CiC 0.8 1.30 1.00 2 2
INTERACTIVE 9.2 1.90 .09 1 2
MATHEMATICAL  0.28 0.50 9.70 X% %%
STRING MANIP 0.25 1.00 1.00 % bk
PR SYSTENS 9.37 1.0 1.00 v 2R
SIZING DATA 4
FUNCTIONS 3 STRUCTURE 0.0 LEVEL 0.9
CAPACITY 0 SOURCE 5696% EXPANSION §.32
SUPPLEMENTAL INFORMATION ﬁ
YEAR 1980 MULTIPLIER (.390 ESCALATION 0.3 i
TARGET COST 9. INTEGRATION 3.50 ESC EFFECT  1.00%
SCHECULE GRAPH
0cT 80 ' AUG 82

SOOI EN DES TGN #3532 4N ¥ 4%
HNMMANNENEMN TMPLEMENT s
EMMNUNNMHEENNETRE TEST 2 IMTEORATE M35 X 4361603 5 % 6 9 % % ¢

Figure A-2. Standard PRICE S Cost Report




=== PRICE SOFTWARE MODEL ==~

151 FILENAME:S3

DATE 29-AUG-79 TIME 15
(790239)

COSTS IN 1980 DOLLARS/12090

COMPOSITE SENSITIVITY DATA
(RESOURCE - COMPLEXITY)

COMPLEXITY CHANGE

-0.100 6.1 +0.100
cosT 4308. :  COST 4631. :  COST 5057.
-9.100 : X
MONTHS 29.7 ¢ MONTHS 32.3 i MONTHS 34.9
R : :
E C e
SH T
Q a cosT 4697, ::i COST 438%. i1 cosT 5282.
U N 3.0 : H HIH
R G :  MONTHS 29.8 :: MONTHS 32.4 i:  MONTHS 35.0
cE : T e et
-2 S

.............................................................

=== PRICE SQFTWARE MODEL ---

SAMPLE BOX 1 SAMPLE FILE
COSTS IN 1980 DOLLARS/1000

SENSITIVITY DATA
(APPLICATION - INSTRUCTIONS)

INSTRUCTIONS

.............................................................

cosT 1362 ¢ cOsT 1510. :  COST 1658.
5.199 : :

A MONTHS 21.6 : MONTHS 22.2 : MONTHS 23.9
P e e
S 2

f cost 1336 oSt 1539 cast 1638

¢ 5.299

! MONTHS 21.5 MONTHS 22.4 MONTHS 23.2

¢ R S A
6

N cosT 1410 cosT 1564 casT 1718

...........................................................

Figure A-3. Sensitivity Analyses
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System Integration and Test Opvion

This operating mode calculates the cost associated with a system
that is composed of independently developed parts. The cost of such a
development is greater than the sum of the costs of the pieces. Additional
costs are incurred for defining and maintaining the specifications of the
subsystems and their interfaces. There are also costs associated with
integrating the subsystems into the total system and conducting total
system tests.

The amount of integration and test cost is determined by a single
input value (INTEG) for each subsystem. The value of INTEG ". . . relates
the level of engineering, programming and testing effort involved to
integrate the subsystem into the total unified operation.”* It takes on
values between 0 and 1.

The System Integration and Test Option is unique among the models
tested because it presents costs for the individual subsystems as well as
the total system with the added cost of integration.

Verification and Validation Option

PRICE S calculates the cost of independent verification and valida-
tion of the new system using values of INTEG between .7 and .8 and proceeding
as above.

Test Bed Option
The cost of installing the new system on a computer other than the
one which it was developed is estimated. The model performs cost calcu-

lations based on the assumption that installation on a new computer involves
redesigning and recoding a small part of the code. Ten percent redesign
and rewrite is considered representative.

* 0Op. Cit.
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Other Options
PRICE S has many additional output optians including:

Condensed cost and project reports (4 options)
Subsystem level reports
Model constants report

Inflation rate table

Cost multiplier table

Effort distribution constants
Sensitivity constants
Resource allocation profiles
Namelist table

® © & o o ¢ e o o

Inputs
Software development projects and their environments can be desCribed

by as many as 64 constants and 4 tables {Figure A-4). The use of some of
the inputs excludes some of the others and most of the parameters have
default values provided by the model. Therefore, the user may describe a
given development effort using different but equivalent inputs (e.g.,
number of Nbject Instructions or number of Source Statements and Expan-
sion Ratio) and at different levels of detail (e.g., an assumed value of
RESQURCE instead of a description of MIX), It is possible to execute the
model by specifying only 8 values:

INST

APPL

RESO

UTIL

PLTFM

crLx

YEAR

MULT

The following discussion explains each of these quantities, and
selected others that serve to describe the model’s ability to define soft-
ware and the development environment.
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System Size
The size of the software system produced by the development project

is stated in terms of INST, ". . . the total number of delivered, execu-
table, machine-level instructions. Comments, format statements and data
declaration statements should, in general, not be included."”

Delivered instructions 1imits the size measure to programs that are
turned over to the customer. This would exclude special development pro-

grams, file conversion routines or test drivers.

Executable instructions are those that involve computer operations
in contrast with data and constant storage.

Machine-level instructions are the most elementary operations of
the computer. Each one may require from one to several words of primary
storage. PRICE S operates internally using the above definition of size.
However, the model offers two alternative size measures. The first is in
terms of number of source instructions and an expansion ratio; the second
uses the number of system functions; and the third alternative uses the
system logic structure.

The selection of source statements (SOQURCE) and expansion ratio
(EXPAN) as the system size measure offers some flexibility in the defini-
tion of source program size. It is necessary only that the product of ‘he
expansion ratio and the source program measure approximate the number of
delivered executable machine-level instructions. Therefore, the expansion
ratio can include an allowance for comments and data storage instructicns
as long as the proportion of these to the total number of statements 1s
relatively constant. The number of machine-level instructinong i a-*
mated by the product of the number of source statements and the expans:.r
ratio:

INST = SOURCE ¥ EXPAN

* QOp. Cit.
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The second alternative size measure uses the product of the number
of functional modules to be included in the software development (FUNCT)
and the average number of machine instructions per function (INSPF):

INST = FUNCT X INSPF

INSPF is a table entry with a programmed value of 9C. The user
may specify a different value.

The third method for specifying size uses an empirically derived
variable (STRU) to relate the number of functional modules (FUNCT) and
the average functional level of the system (LEVEL):

FUNCT = STRU (1 + LveL)! -2 * STRU

PRICE S will calculate values of STRU given FUNCT and LEVEL from past
projects. The values obtained can be used to make new estimates.

N

\«_ LEVEL is obtained from the functional tree diagram (Figure A-%).
TREE
LEVEL
SYSTEM (= == = — — — . . —— . ——— 0
L
| B
FUNCTION Ay FUNCTION By| = = == — — — — = — = 1
sug- sus- Sug- sus- | _ . R
FUNCTION Ay| [FUNCTION A |FUNCTION By | JFUNCTION B2 :
COMPUTATION:
NO. OF
TREE FUNCTIONAL
LEVEL | MODULES PROQUCT LEVEL BB%ET_ ‘_70_
» v
0 1 0
1 2 2 » 1,429
2 4 8
sum 7 10

Figure A-5. Computation of LEVEL
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LEVEL is a weighted average with the weights being the number
b of furctions at each level of the tree. LEVEL, like STRU, can be calculated
from projects similar to the one being estimated.

Once a value of FUNCT is obtained, INST is calculated as before by
using INSPF.

spplication
PRICE S uses this parameter to characterize the difficulty of the

programming task. It is intended to adjust the relationship between cost
and program size to account for the inherent differences in resources
associated with different types of applications. The application param-
eter (APPL) “. . . represents an inherent instruction complexity, inde-
pendent of variation in resources, schedules, operating envifonment and
system utilization.”*

Acceptable values of APPL range from 0.866 to 10.952. The lower
end of the range is associated with pregrams that are predominantly math
and string manipulations; the higher values represent real-time command
and control and interactive applications. Increasing values of APPL
describe programming tasks that require more resources for a system of
given size.

Values of APPL for a given estimating situation may be assigned
on the basis of experience with :imilar systems. Or, APPL for the system,
may be calculated from a weighted sum of its component parts. This alter-
native determination of APPL is obtained by estimating the proportion of
the total system size represented by each of seven categories of automated
func-ions (Mix Categories, TableA-4). The model lets the user define his
owr category and APPL value if necessary.
* Po. Cit.
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TABLE A-4
MIX Categories

MIX CATEGORY

CCENTIFYING CHARACTERISTICS

DATA STORAGE AND RETRIEVAL:

(MDAT)
AppPL=dq. 10

~OPERATION OF DATA STORAGE DEVICES
~DATA 3ASE MANAGEMENT

-SECONDARY STCRAGE HANDLING

~DATA SLOCKING AND DEBLOCXING
«HASHING TECHNIQUES

~HARDWARE ORIENTED

ON~LINE COMMUNICATIONS:

{MONL)
APPL26.16

~MACHINE-TO-MACHINE COMMUNICATICNS
WITH QUEUING PERMITTED.

=TIMING REQUIREMENTS NCT AS
RESTRICTIVE AS WITH REAL TIME
COMMAND AND CONTROL

REAL TIME COMMAND AND
CONTROL:
(MREA)

APPL=8.46

~MACHINE-TO-MACHINE CTOMMUNICATIONS
UNDER TIGHT TIMING CONSTRAINTS
<QUEUING NOT PRAITICABLE
. ~HEAVY HARDWARE INTERFACZ
~STRICT PRQTOCQOL REQUIREMENTS

INTERACTIVE OPERATIONS:
(MINT)

ApPL=10.95

~MAN-MACHINE INTERFACES
~HUMAN ENGINEERING CCNSIDERATICNS
-ERROR DETECTION AND 2?ROTECTION

MATHEMATICAL APPLICATIONS:
{MMAT)

APPL=0.36

~ROUTINE MATHEMATICAL APPLICZATICNS

WITH NO OVERRIDING CONSTRAINTS

STRING MANIPULATION:
(MSTR)

APPL=2, 11

~ROUTINE APPLICATICNS WITH NO
OVERRINING CONSTRAINTS

~NOT ORIENTED TOWARD MATHEMATICS

~TYPIFIED BY LANGUAGE (OMPILERS,
SORTING, FORMATTING, BUFFER
MANIPULATION, ETC.

QPERATING SYSTEMS:
{MOPR)

APPL®10.5%

~TASX MANAGEMENT

-~MEMORY MANAGEMENT

~HEAVY HAROWARE INTERFACE
«STRICT TIMING REQUIREMENTS
~HIGH RELIABILITY
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Given the proportions of code in each category the system applica-
tion is calculated as follows:
8

APPL = Z (MIX )(APPL.)
1
i=)

where MIXi = the proportion of the system code in the ith MIX category

APPLi = the APPL value for the ith category (see Table A-4).

Resource

RESO represents the effects on cost of items such as:", . . skill
levels experience, productivity, efficiency, computer operating charges,
and labor and overhead rates of the organization.“* The PRICE S estimating
procedure reflects the assumption that this value remains fixed in an
organization. The value of RESC is obtained from historical data using
the PRICE S calibration mode.

A iarge organization that includes many separate groups may present
different values of RESO. In making cost estimates for such organizations
it would be necessary to ascertain that the RESO value is consistent with
the particular group that will undertake the project being estimated.

Utilization

UTIL describes the proportion of available computer memory occupied
by the application programs. It also describes the fraction of the computer
cycle time required to execute the program.

The PRICE S Reference Manual does not describe how combined time
and space constraints are represented by UTIL. Discussions with PRICE S
staff wembers suggest that the parameter represents a subiective assess-
ment of the effect of either one or both types of constraint in a given

situation. e

* Op. Cit.
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There is no effect on cost associated with values of UTIL less than
0.5, while values of UTIL greater than 0.9 have a very large effect (see
Figure A-6).

values of UTIL for shipborne or mobile applications range from 0.65
to 0.75, airborne applications range from 0.75 to 0.85, and space systems
have values close 0.9.

Platform

PLTFM “. . . denotes the operating environment of the software,
and is a measure of portability, reliability, structuring, and test and
documentaticn requirements to be provided for acceptable contract perfor-
mance." ™

PLTFM describes the specifications to be satisfied by the software.
It represents the degree of testing and documentation associated with it
The lower values denote one-time, in-house software with little or no
documentation. Increasing values describe more stringent testing ond
documentation up to systems such as man-rated space applications. Table A-5
shows typical values of PLTFM,

Complexity
CPLX guantifies the effect on the time raquired to complete the

software development of the organization's readiness to undertake the
project.

Values of CPLX range from -0.2 to +0.€6. Increasingly negative
values describe projects undertaken by experienced groups working on applr-
cations very similar to ones that have been done before. The iarger pos’-
tive values would represent projects in which there are one or more fa *n-¢

that have been associated with lcnger development times. Such factors

include inexperienced crews, unfamiliar applications, new hardware or
software and so forth. Table A-6 :nows the values of CPLX associated . -
the existence of different personnel and envirommental conditions.
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Figure A-6. Effect of UTIL on COST
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TABLE A-5
TYPICAL PLTFM VALUES

OPERATING ENVIRONMENT PLTFM ‘
PRODUCTION CENTER - INTERNALLY DEVELOPED SOFTWARE 0.6-0.8 | j
PRODUCTION CENTER - CONTRACTED SOFTWARE 1.0 {
MIL-SPEC GROUND 1.2
MILITARY MOBILE (VAN OR SHIPBOARD) 1.4
COMMERCIAL AVIONICS 1.7
MIL-SPEC AVIONICS 1.8
UNMANNED SPACE 2.0
MANNED SPACE 2.5 E
i
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PRICE S considers CPLX and schedule to be alternative representations
of the time required to complete a software development project. If either
one is given, the model can compute the other.

Jalues of CPLX, as in the case of RESQ, tend to he constant for a
given organization. The calibration mode is used to obtain values from
representative past projects. These are used to make estimates for new
software development efforts.

Reference Year

PRICE S incorporates a reference calendar that is used to calculate
changes in the value of the monetary unit and the rate of technological
change.

The reference year for PRICE S cost calculations is 1976, The
inflation rate table, RTABLE, is used to adjust calculated costs to the
year specified by YEAR.

If no project start date is given, the model assumes a start date
of 1 January of YEAR.

YEAR may be used to define the state-of-the art of system develop-
ment technology. It may be used along with the input TECIMP to represent
the decrease in cost associated with expected improvements in development
efficiency. TECIMP is included in DTABLE and represents the difference
in development technology expected to occur in the interval between YEAR
and the start of the project, DSTANT

Cost Multiplier

MULT is a multiplier for all cost values. "Its primary purpose fis
to adjust all costs to include mark -ups, such as G&A, IR&D, and profic
or fee."”

* QOp. Cit.
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Other Inputs
PRICE S includes many inputs in addition to the required ones

described above, These optional inputs serve to define the system in
greater detail when desirable and can specify constraints on the project
development parameters. They include:
NEWD - The amount of new design required for the software develop-
ment (Range: 0, 1)
NEWC - The amount of new code required for the software development
(Range: 0, 1)

NOTE: NEWD and NEWC are required inputs if APPL is entered rather than
calculated from the MIX categories.

SCHEDULE:
DSTART - The date design effort starts
DEND - The date design effort ends
ISTART - The date implementation effort starts
IEND - The date 1mp1ementati6n effort ends
TSTART - The date test and integration effort starts
TEND The date test and integration effort ends

RESQURCE CONSTRAINTS:
DCOST - Average Cost per Man-Month/Hour - Oesign Phase
DMAX - Maximum Man-Month/Hours per Month - Design Phase
ICOST - Average Cost per Man-Month/Hour - Implementation Phase
IMAX - Maximum Man-Month/Hours per Month - Implementation Phase
TCOST - Average Cost per Man-Month/Hour - Test/Integratiun Phase

TMAX - Maximum Man-Month/Hours per Month - Test/Integration
Phase

NEW DESIGN: The proportion of new design in each mix category required
for the software development.

DDAT - Date storage and retrieval
DONL - On-Line communications
DREA - Real-time command and control
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DINT - Interactive operations
DMAT - Mathematical applications
DSTR - String manipulation %
DOPR - Qperating systems
OPTIONAL
DAPP8 - Applies only when MAPPS8 and APPL8 are specified

NEW CODE: The proportion of new code in each mix category required for
the new development.

CDAT - Data storage and retrieval
CONL - On-Line communications

CREA - Real-time command and control
CINT - Interactive cperations

CMAT - Mathematical applications
CSTR - String manipulation
COPR - Operating systems

OPTIONAL
Applies only when MAPPB and APPL8 are specified

CAPP8

INTERFACE TYPES:

TDAT - Data storage and retrieval devices
TONL - On-Line communications devices
TREA - Real-time command and control devices

TINT - Interactive devices

INTERFACE QUANTITIES:
QDAT - Number of data storage and retrieval devices
QONL - Mumber on Of-Line communication devices
QREA - Number of real-time command and control devices
QINT < Number of interactive devices
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CAP -~ Available memory size. UYJTIL = INST/CAP.
INTEG - Adjustment for system integration cost.

Calibration (ECIRP)
PRICZ S incorporates the assertion that many different development

projects histories can be associated with software represented by a given
set of characteristics. These 1ifferences can be attributed to how an
organization undertakes a project. PRICE S recognizes two types of
project development. An organization may operate in a manner emphasizing
tight schedules and higher staffing rates or it may elect to limit staffing
and extend the completion time.

The discussion of inputs described the parameter RESQ to he assoc-
ciated with the expenditure of project resources and CPLX with the project
schedule. ECIRP is an execution mode of PRICE § that uses historical
project data to calculate values of these parameters. The values obtained
indicate how the organization has historically staffed and scheduled its
projects. The prerequisite for obtaining reliable cost estimates with
PRICE S is to verify that the values of RESO and CPLX behave in a ccnsis-
tent pattern for the organization. £Establishing these values using past
projects provides two important parameters that cannot be obtained with
any confidence from any outside source,

Data obtained from an organization's records reflects all the
definitions and processes peculiar to that organization. These become
implicitly represented in the calibration parameters and are reflected in
subsequent estimates.

The ECIRP mode is executed by entering a non-zero value for the

i input TARCST. TARCST is the total development cost for a completed praject.
Using this value, the project schedule descriptions of system size, appli-
cation and other characteristics allows the mode' to calculate values for
RESO and CPLX. Repeating the calibration for several projects provides

the basis for estimating RESO and CPLX for new projects,
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SLIM
Description of the Model

SLIM (Software Life Cycle Model) is a proprietary software cost esti-
3 mating model offered by Quantitative Software Management, Inc., Mclean,
Virginia. The model is presently resident on the American Management
Systems time sharing network which provides local dial-up facilities for
a variety of low-speed terminals in over 200 cities nation-wide.

SLIM has its origins in the work done by L. H. Putnam at the US Army
Computer Systems Command. Putnam applied the hypothesis presented Ly “orcen
of IBM* that given linear learning, the rate of expending effort on
the solution of problems follows a Rayleigh distribution function over time.
Both Norden and Putnam obtained good results by fitting the Rayleigh function
to the distribution of effort per unit time over the life cycle of large
software development projects. The Rayleigh representation was found to be 1
applicable for both the total life cycle effort and for the component activ-
ities such as Design and Coding, and Test and Validation.

SYSTEMS
DEFINI- FUNCTIONAL
TION DESIGN DEVELOPMENT OPERATION AND MAINTENANCE
— - — g —— — .
TEST AND ‘
VALIDATION

P INSTALLATION :
DESIGN V
AND
CODING ‘

Using the Rayleigh distribution has the advantage that the time i
distribution of effort during the software 1ife cycle is determined by i
two parameters: the area under the Rayleigh curve, which when applied ‘

r R :
P. V. Norden, Useful Tools for Project Management, Management of i
Production, M. K. Starr, Ed.. =:-yun Books, 1970, pp 71-101.
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to the rate of expending effort becomes the total life cycle effort; and
the time to reach the peak of the effort rate. Putnam showed that for
large systems this time is the development time. The result of applying
the Rayleigh form to the software development cycle is the equation:

2
[ K ‘t
y ==, texp (=)
td th
where:

y = the rate of expending effort, e.g., man-months per month;
K = the total life cycle effort, man-months or man-years;
td = the development time, months or years;

t = the time from the start of development, months or years.

Putnam then observed that the variable K/td2 was correlated with
the subjective difficulty of a system. He calls the ratio "Difficulty"
and has determined empirically that for large systems (more than 70000
source statements), the productivity (source statements per man-year of
development) is related to the Difficulty by the following equation:

PR = cnp~2/3

where:
PR = the average productivity, source statements per man-year of
development;
D = Difficulty, K/t %
Cn = empirical constant.

The portion of the l1ife cycle that produces the code (Design and
Coding Phase) defines productivity and this activity constitutes 1/6 the
tota® life cycle effort. The Desfgn and Coding Phase begins at the start
of the life cycle and is approximately 95 percent complete at the end of
development (some design and coding occurs after system installation).
These observed relationships along with the preceding ones define the
software equation:
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SS = CKK td
where:

CK = the Technology Constant.

Putnam states that the Technology Constant is quantized and it
"seems to relate machine throughput (or programmer turn-around, available
test time, etc.) and other technology improvements like the chief pro-
grammer team, top down structured programming, on-l1ine interactive job
submission, etc."*

The final equation developed by Putnam concerns an observed rela-
tionahip between the type of development being undertaken, the development
time and the difficulty. Putnam shows that the gradient of Difficulty:

Voag -.K.3

v Y4

is related to the type of development {(e.g., stand-alone system, rebuild,
composite, etc.). The Difficulty gradient takes on a specific value for

each type of system and has the effect of imposing a minimum development

time for any system with a given Difficulty and total life cycle effort.

Trying to develop the system in a shorter time increases the Difficulty;

conversely, increasing the development time decreases the Difficulty.

As a consequence of the Rayleigh/Norden distritution of effort per
unit time and the empirical relationships between productivity and D and
between vD and type of development, Putnam proposes that the following
equations govern the Tife cycle effort for large software systems:

1/3 t 4/3

SS =CK d

K
vo-%3
d
where:
CK = the Technology Constant and is known for a given environment;

vD = the Difficulty gradient and is known for a given type of
development.

—

~

F———
L. H. Putnam, Mea;urement Dat2 => Cupocrt Sizing, Estimatina and Control
of the Software Life Cycle, .£Z€ COMPC '\ 78, San Francisco, Calif,

Mar 1978, p 12. A-G5

-0




For a given value of the Techrology Constant, and iype of develop-
ment, the software equation and the Diffifculty gradient define time-effort-
Difficulty trade-offs for any system of a given size.

Ce = 100RC GAMO = 14.”
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The method to this point provides a minimum deveiopment time and
a relationship between effort and development time for a given system and
environment. Putnam recommends(]) that the selected development time
within the trade-off regqion be as long as possible within the constraints
imposed by the need for the system. As can be seen from the chart above, it
is advantageous to extend the development time as much as possible. Put in
a practical situation there are several additional constraints that affect the
development time and effort for a software system. Putnam has incorporateag
these into a linear programming problem which is cne of the operating modes
of SLIM. The linear programming solution satisfies the following rela-

ticnships(z).

(1) L. H. Putnam, The Real Economics of Software Development, Quantitative
Software Management, Inc., Jun 1980, p 5.

(@) | . Putnam, Software Costing and Life Cycle Control, Workshop on
Quantitative Software Models, [EEE (it. No. TH0067-9, Oct 1379, p 29.
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S K d software equation
K/td :jJ;}max maximum peak manpower
K/ty zﬁlsymax minimum peak manpower
kil < 1] maximum difficulty
K/td3 < |v0| maximum difficulty gradient

ty < contract delivery time

S/MY (YK)

IA

total budgeted amount for development

Providing that a solution exists that satisfies all the constraints,
the result is a range of development times and efforts extending from a
minimum time solution on one extreme to a minimum effort or cost on the

other.
TIME MAN-MONTHS COST (X $1000)
MINIMUM TIME 21,93 399 1662
22.43 364 1519
22.93 334 1390
23.43 306 1276
MINIMUM COST 24,00 278 1159

The notion that the cost of software develorment should be dependent
on management strategy as an explicit input to the cost estimating model
is unique. Although other models may be used to the same end, SLIM in-
cludes it as part of the model structure.

Another important feature of SLIM is the representation of the
uncertainty in the primary estimating variable and its effect on the

" development time and effort. Program size can be represented as a range

of possible values for system-level estimates or as smallest, largest,
and most 1ikely values for component estimates. In efther case, an
expc&ted value and variance is established for each size measure and
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these are used o perform a Monte Carlc type sirulation of the minimum
development time and its related effort. The result is statistical
distributions of times and efforts that can be used to establisk time and
effort values associated with differert values of risk, The model uses
these relationships in several of its operating modes. The applications

of these relationships are described in the discussion of the model outputs.

Having established the basic 1ife cycle cost estimates for a given
development situation, the model calculates "front end" 2ffort and time
as a function of the development effort. It also calculates computer
resource requirements and documentation size.

The description of SLIM presented here is based on materiais that
have been published widely by Putnam and that are derived in large
part from his work at the Army Computer Systems Command. The methods
are applicable to systems larger than 73000 source statements. The
extension of the model to systems between 10000 and 70000 statements is
held to be proprietary and there is no.available description of the
method used to make estimates for systems in this range of the size
variable. . The evaluated model rejects systems with fewer than 10000
statements. A new version of SLIM is now available that accepts systems
as small as 5000 statements.

Qutputs
Development Time

The development cycle begins with the detailed design of the system
programs. It is assumed that the system requirements and the system spe-
cifications are completed in activities that precede the development cycle.
Development ends when the system completes its acceptance testing and is
released to the user. The Development Time is the elapsed time in months
extending from the start of program design until the system is released.

Development Effort

A1l personnel hours, both direct and indirect, expended during the
period defined by the Development Tire ira included in the development
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effort. In many models the precise definition of the indirect hours is

an important factor that affects the accuracy of the predictions. The
effects of variations in the definitions are minimized in SLIM (as in any
models that are self-calibrating) because the important model parameters
are calculated from historical data that should reflect the same cost
accounting practices as will be applied to the project being estimated.

In using such models it is important that the historical data be represen-
tative of the estimated project in such definitions as types of personnel
hours to be recorded and reported against the project, the lev2l of manage-
ment reported directly and indirectly and the method of distributing the
overhead charges.

T"he indirect effort is incorporated into the SLIM estimates by way
of the Technology Factor. The Technclogy Factor is cbtai~ec .: ng the
calibration mode of the model from cata describing pas:t projects.

The Technology Factor includes a factor related to the organizational
v productivity. The average procuctivity is gefined as the ratio of the total
end product code to the total effort to produce the code. The total

effort includes all direct and indirect activities.* Therefore, as long

as the size of the system from historical records and the total

effort to produce the system are measured on the same basis as the project
being estimated, the Technology Factor obtained from the historical data will
be appropriate and the details of the definitions of total effort need not
be specified as part of the model definitions.

Development Cost, Constant Dollars

The Development Cost is obtained from the Develnpment Effort using
a constant cost per unit effort (labor rate) measured in dollars per man
year for a specified year. Care must be exercised to ensure that the in-
direct and overhead costs are consistent with the definitions used to obtain
the Technology Factor. If they are not, omissions or double-counting will
occur,

L. H. Putnam, A General Empiricai Solution to the Macro Software Sizing
and Estimating Problem, IEEE T-ansactions on Software Engineering,

Vol. SE-4, No. 4, Jul 1978. 5 I53.
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Development Cost, Inflated Dollars
Costs are expressed in current year dollars using an inflation rate

specified in the model inputs.

MODEL OUTPUT QPTIONS

Simulation Option
This is the primary operative mode of SLIM. It performs the calcu-

lations that are reflected in almost all the other options. The mean and
standard deviation are estimated for the following:

e System Size,

o Minimum Deveiopment Time,

o Development Effort,

e Development Cost (inflated and uninflated dollars).

A sensitivity profile is presented that shows the change in Develop-
ment Time, Effort and Cost with System Size.

A consistency check is made with similar systems as represented by
‘ the RADC data base. Calculated values of development effort, time, and
, productivity and average number of personnel are compared with the 20 percent
range of values taken from the data base for the given system size. The
5 model indicates whether the estimated values are within the range, above
% it, or below it,

' The variance in the estimates comes from the assumed uncertainty
in the size estimate, the cost per unit effort, and the difficulty gradient.

Linear Program Qption

The user specifies the constraints operating on the system develop-
ment project and the Linear Pragram Option calculates various time and
effort alternatives that satisfy the constraints. The constraints include:
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Maximum Development Cost,
Maximum Development Time,
Maximum Number of People at Peak Staffing,
Minimum Number of People at Peak Staffing.

The software equation is satisfied subject to the above constraints.
The model indicates if no solution exists. If a solution is possible,
SLIM prints a matrix showing the time, effort, and cost associated with a
minimum cost project and a minimum time project. Since these two solutions
represent only the extremes of the feasible region, the model also presents
effort and cost for a number of intermediate development times.

Front-End Option

Low, expected, and high values of time and effort are calculated
for the activities that precede the Development Phase of the software
1ife cycle. These include:

o Feasibility Study,,

e Functional Design.

The estimates are said to be made using IBM data* and the values
estimated for the Development Cycle.

Life Cycie Option

SLIM calculates monthly, quarterly, or yearly estimates of the number
of people, the cost, and the cumulative cost for the system 1ife cycle.
The mean and standard deviation is presented for each value.

Risk Analysis Option

Tables are oresented that indicate the probability that time, effort,
énd cost to develop the system will not exceed the given amounts., From
these outputs it is possible to make an inference such as: "There is a
95 percent probability given the input assumptions that the system develop-
ment will not take longer than 22.3 months." Similar statements can be
made for effort and cost. ‘

“*
SLIM User's Guide, Quantitac .» Sc-=.: = “aragement, inc.
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Benefit Analysis Option
Using the user-specified economic 1ife of the system and the desired

annual rate of return, the modetl calculates the discounted cash flow value
of the system that amortizes its development and maintenance cost.

New Schedule Qption

The Simulation option provides estimates of time, cost, and effort
based on the minimum time to develop a given system. The New Schedule
option permits the user to specify times greater than the minimum develop-
ment time and obtain corresponding estimates of effort and cost. The
results are compared with similar size system experience as in the case
for the Simulation option. The Manioading, Cashflow and Life Cycle options
may be executed and reflect the new schedule.

Design to Cost Option

Given an effort Tess than that established by the minimum time
(maximum effort) solution will result in a new development time and cost.
Consistency checks and subsequent exécutions of the Manloading, Cashflow,
and Life Cycle options are executed in the same manner as the New Schedule
option.

Desigr to Risk Option
The user is asked to choose among three levels of risk (.99, .95,

and .90) describing the probability of exceeding a user-specified maximum
development time. The model calculates expected values and standard devia-
tions of development time, effort, and cost associated with the selected
level of risk. The Manloading, Cashflow, and Life Cycle options may bde
executed using the new parameters.

Qther Ogptions

SLIM has several additional output options including:

P TP a—




'IIIIIlllllllllllllllll-l!lllllllllllllllIllllllllll'lIllllllllll""""""'lllIllllil""""""L-

RS

Manloading by Project Month
Cashflow by Project Month
Major Milestones

Monthly Code Production
Monthly Computer Hours
Documentation

PERT Sizing

Inputs
SLIM has three primary inputs: System Size in number of developed

source statements, Level or Difficulty Gradient, and Technology Factor.

The System Size is estimated by someone familiar with the functions to be
automated and is the primary descriptor of the work to be done. The other
two inputs affect the type of effort involved and the development environ-
ment., These are obtained from user experience with previous SLIM estimates
and by calibrating the model using historical data that is representative
of the project to be estimated. The process of obtaining these values is
described below in the section on calibration.

Additional input parameters describe other properties of the system
and the development process.

System Size
The system size is described in terms of the number of executable

source language statements to be written. Data declaration and input/
output statements are included in the size measure, but comment statements
are not. SLIM accepts two alternate methods for describing system size.
The first is suggested for use during the early phases of the life cycle
before the system functions are defined. The user makes an estimate of the
the possible range of values for the total system size, Thg model uses
this range to calculate the expected value of the system size and its
standard deviation,
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The representation of the system size as a random variable is used
to caiculate the effect of the uncertainty in the size measure on the model ]
estimates. Using the Monte Carlo technique, SLIM performs repeated calcu-
lations of the output values using values of the system size defined by a
normal distribution with the mean and standard deviation calculated as
described above. The statistics of the outputs (mean and standard devia-
tion) are printed and these values are used in executing several of the

model options. Ultimately this approach gives the user an explicit state-
ment of the risk assiciated with the mode) predictions.

The second method used by SLIM to calculate the system size requires
the user to make estimates of the sizes of each of the system functions.

It is suggested that several analysts make three estimates of the size of
each system function: the least possible number of statements, the greatest,
and the most 1ikely. These are used to make composite estimates for each
function by combining the range values and calculating the mean of the
expected values for each function. The three values obtained for each
function are used to calculate the system expected value and standard
deviation using the relationships:

N
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where:
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the expected system size in number of source statements
N = the number of system functions

= the expected value of the size of the ith function

—
!l

the range of the size of the ith function from smallest
to largest

[+7]
—te
-
o
—
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my = the most likely value of the size of the ith function

the estimated standard deviation of the system size

g. = the estimated standard deviation of the size of the
ith function.

The values of the system expected size and its standard deviation are
used in the same way as the first method described above.

Level

This parameter is related to the Difficulty Gradient, K/td3,
discussed above. The Difficulty Gradient was observed by Putnim to assume
discrete values that are representative of the type of development asso-
ciated with the system being estimated. Consequently, Level measures,
" . . . the amount of interfacing, new design, and concurrent programming
that will go on during development".* Level takes on integer values from
1 to 5 depending on the following considerations:

(1) The system is entirely new - designed and coded from scratch.
It has many interfaces and must interact with other systems
within a total management information svstem structure.

(2) This is a new stand-alone system. It 1s also designed and coded
from scratch but is simpler because the interface problem with
other systems is eliminated.

JENSUREEESES

* SLIM User's Guide, p 4-12.
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(3) This is a rebuilt system where large segments of existing logic

exist. The primary tasks are recoding, integration, inter-
facing, and minor enhancements.

(4) This 1s a composite system made up of a set of independent
subsystems with few Interactions and interfaces among them.
Development of the independent subsystems will occur with
considerable overlap.

(5) This is a composite system made up of a set of {ndependent
subsystems with a minimum of interactions and interfaces among
them. Development of the independent subsystems will occur
virtually in parallel.

Past data have shown that large systems (>200,000 1ines) are typically of
Type 3, 4, or 5.

Technology Factor

The Technology Factor is an integer parameter related to the Tech-
nology Constant described above. SLIM accepts values in the range from
0 to 22. The 0 value, however, is simply a code that indicates that the
model is to provide the Technology Factor. For large systems the Techno-
logy Constant can be expressed as:

where:
Ck = The Technology Constant

2.49 = A constant that represents the ratio of total life cycle
effort to the design and coding effort - 1t represents
the overhead labor associated with code pfoduct1on. It
is valid for large systems, but becomes a variable for
systems in the range of 18000 to 70000 statements.
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6 = A constant that indicates that 1/6 the life cycle effort is
expended on logic design and code production. Valid for large

systems; variable for intermediate size systems.

C, = An empirical constant that was shown above to relate coding
productivity and system difficulty. It assumes discrete
values.

For large systems, then, the Technology Constant can be seen to account

for the rate of code production for a given system Difficulty, overhead
labor and the distribution of the life cycle effort. The Technology Factor,
which is used to index the Technology Constant and which preserves its
discrete property, is said to be " . . . a measure of the state of
technology of the human-machine system"*, environmental influences

and functional complexity of the system.

The interpretation of the Technology Factor is the same for smaller
systems as it is described above for large systems, but the relationship
shown is modified in a way that is proprietary.

The Technology Factor is obtained by calibrating the model using
historical data that are representative of the project to be estimated.
The factor should be stable in a given organization, but should be expected
to change to refiect differences in:

Computer access and availability
Software support tools, language
Use of modern programming practices
Type of application

Staff experience

Customer relationship

The SLIM manual indicates that few organizations are represented by
a Technology Factor greater than 14 or less than 5.

: L. H. Putnam, A General Empi-~<-31 Solution, etc., op.:@.%. p 383,
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Additional Inputs
SLIM requires a number of inputs in addition to the ones described

above.

MONTH, YEAR = the month and year when detailed design of the sys:zem
will start. MONTH is an integer between 1 and 12; YEAR is an
-integer between 40 and 90.

LABOR RATE - the fully burdened average $/MY at the user's
organization.

STDDEV - the uncertainty associated with the above LABOR RATE.
INFLATION RATE - the anticipated inflation rate at project start

ONLINE - the proportion of development that will occur in online,
interactive mode.

DEVELOPMENT TIME - the proportion of the development computer that
is dedicated to this development effort.

PRODUCTION TIME - the proportion of the available capacity of the
development computer that is used for other production work.

HOL - the proportion of the system that will be coded in a higher
order language.

LANGUAGE - the primary language to be used; should correspond to
the legena below.

(1) APL (4) FORTRAN (7) ALGOL (10) ASSEMBLER
(2) PL/T (5) BASIC (8) JOVIAL (11) RPG
(3) COBOL (6) CMs (9) PASCAL-ADA (12) OTHER

UTILIZATION - the proportion of the memory of the target machine
that will be utilized by the end system.

REAL TIME CODE - the proportion of code which is devoted to real
time or time critical functions.




MODERN PROGRAMMING PRACTICES - the 4 variables include: STRUCTURED
PROGRAMMING, DESIGN/CODE INSP, TOP-DOWN DEVELOPMENT, and Chief
Programmer Team usage. The responses for each of these variables
should correspond to the legend below.

(1) <25% (2) 25-75% (3) >75%
TYPE - description of the type of software system:

(1) Real time or time critical system

(2) Operating system

(3) Command & control

(4) Business application

(5) Telecommunication & message switching
(6) Scientific system

(7) Process control

PERSONNEL EXPERIENCE - the 4 vdriables include: OVERALL, SYSTEM
TYPE, LANGUAGE, and HARDWARE. The responses are used to get an
indication of the level of personnel experience -- overall, on a
system of similar size and appliication, with the programming
language to be used on this effort, and on the development
machine.

(1) MINIMAL (2) AVERAGE (3) EXTENSIVE

The Technology Factor describes the development environment. As was described
above, the Technology Factor is an indicator of the efficiency with which
effort (and therefore cost) is expended to obtain the desired software system.
Values of the Technology Factor can be obtained from data describing completed
projects by using the SLIM calibration option. Given the. values of:
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o Size
e Development Effort
o Development Time

for one or more projects, the model calculates the Technology Factors
that would have produced the indicated experience. The user is cautioned
to examine any Technology Factor outside the "reasonable range.” This

is indicated by an asterisk in the printout.

The Technology Factor may vary for selected projects taken from
a single organization. This may be caused by differences among the
projects in computer access, software support, management methods staff
experience, language, user characteristics, requirements stability and
functional complexity. It is the user's responsibility to examine these
possibilities and to verify that the project being estimated is compatible
with the selected value.

rReference

SLIM User's Guide, Quantitative Software Management, Inc.

- A b




o pon g i I, .

-~

(i e Ep——— -

i
i

TECOLOTE

Description of the Model

The Tecolote provisional software cost estimating model was developed
to predict cost and resources needed to develop tactical software.
Specifically it was derived using data representing Navy fire control
systems designed to operate against air and sea threats. These two
classes of fire control systems present different software requirements
because of the effects of threat speed on system response speed.

The justification for the model form is the hypothesis that develop-
ment effort is determined by software size, system time criticality and
system fast storage capacity. The model is limited to tactical systems
characterized by time criticality, that is, where the time required to
access the fast storage memory is comparable to the speed with which the
computer is capable of moving data during processing.

The software resource-driving factors (storage capacity and time
criticality) were assumed to be predictable in terms of the related threat
characteristics. Data from five Navy software developments were used
to relate the storage and time requirements to threat size for two speed
regions representing the air and sea threats.

A relationship was derived between "delivered code" (the total
code developed including drivers and simulators) and "operational code"
(the coaa that ends up in the operational computer). All code size
measurements are in terms of machine instructions. The number of machine
instructi is taken to be the same as the number of words of computer
storage required to store the program.

Operating instructions are related to total fast storage capacity
using one sea threat data point and two 2ir threat points. A relation-
ship between total delivered instructions and operational instructions
is obtained from two data points.
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Man-months of direct labor are shown as functions of first total
operating instructions and then total delivered instructions.

A matrix of the above relationships was prepared (Table A-7). Its pur-
pose is ". , . for evaluating software proposals from the standpoint of soft-
ware design as well as software costs.” It should be noted that there
are redundancies in the relationships and that the model does not indicate
which relationship should be preferred in any given estimating situation,

Labor and computer costs were presented in 1973 dollars as func-
tions of direct labor man-months. These were obtained from the only
project for which costs were available.

Reference

Brad C. Frederick, A Provisional Model for Estimating Computer Program
Development Costs, Tecolote Research, Inc., TM-7, Dec. 1974.
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Wolverton

Description of the !Model

Estimates of routine size are converted to costs using cost per
instruction values that are functions of the routine tvpe and complexity.
The costs are fully burdened and when summed for all the system routines
represent the total system development cost. Development extends from analysis
and design through operational demonstration. A matrix of ratios is used
to allocate the total cost to 7 phases with each phase divided into up to
25'activities. This allocation is compared from the standpoints of staff,
schedule, and general credibility.

The model, then, is a combination of formal algorithm and judgement.
It has been used successfully at TRY. As described by Wolverton, it features
a data base of historical data that provide the necessary cost per instruction
and allocation values. The procedure is adaptable to any new environment
by creating a new data set representing local definitions of phases and
activities and burdoned cost conventions. In fact, Wolverton cautions
that the given values of cost per instruction are for illustration and users
should prepare their own values.

TRY has computerized the maintenance of the cost data base and the
allocation process. Given the inputs of size and complexity, the system
calculates the cost allocations and facilitates any subsequent adjustments.
Since most models are used in a similar manner, even if the procedure for
using the model does not say so, there should be no compromise of the
model's performance if the evaluation is based on a single estimate of costs.
Other adjustments that are necessary to execute the model in different
environments will be discussed later.

The estimating procedure begins by identifying all the routines

comprising the system. Each routine size, category, and relative degree
of difficulty are estimated by knowledgeable persons.
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[ The categories that have "stood the test of usage" at TRW are:

Control routine

Input/Output routine

Pre or Post algorithm processor
Algorithm

Data Management routine

Time-Critical processor

Relative difficulty is indicated by six levels depending on whether
a routine is 01d or New and then by simply: Easy, Medium or Hard.

The cost per instruction for the 36 different attributes (6 soft-
ware categories by 6 levels of difficulty) is given in Figure A-7. Multi-
plying the cost per instruction for each routine by jts number of object
instructions and summing the products for all the routines yields the
estimated total development cost.

The development cost is allocated to the following 7 phases using
proportions for each phase that were obtained from the historical data base.

Performance and Design Requirements
Implementation Concept and Test Plan
Interface and Data Requirements Specification
Detailed Design Specification

Coding and Auditing

System Validation Testing

Certification and Acceptance Demonstration

MW M MmO O W X

Then, the cost for each phase is divided into up to 25 activities
(Tables A-8 and A-9).

- RTINS e T TR TR R T T TR

A matrix of computer hours by phase and software type is used to
estimate computer usage costs for development.
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TABLE A-8

ACTIVITIES AS A FUNCTION OF SOFTWARE DEVELOPMENT PHASE

Qeveoreny | MMASEA PASE 8 PaASE € MASE D ags € l PHASE £ MasE G PRASE ¥
PHASE [pgasQAMANCE | IMPLEMENTATION | INTERFACE AN Y CERTIFICATION | OPEAATIONS
ACTIVITY AN OESIGN CONCEPT AN0 | 20 nrwents g::é:::v?;:‘“ §°31'1'3.2'° "r:g:ta:; prs? -
REQUINEMENTS | TEST PLAN | ECRICATION v ACCEPTANCE MAINTENARCE
3 PAOGRAN PROGAAN PROGRAN PMROGRAN MOGRAM PROGRAN PROGRAN PROGRAN
WANAGEMENT MANAGEMENT BARAGEMENT EMENT Y AN, Y MANAGEMENT
NARAGEMENT
2| PeoGRAM PROGRAN PROGRAM PMOGRAN PROGRAN PROGAAN PROGAAN PROGAAR
conTROL CONTAOL CONTROL CONTROL coNTACL ConTAOL CONTROL CONTROL
eviews , TeEiR ANy | eERsace Pl TYSTEM TEST ACCEPTARCE OMERATIONAL
AEVIEW (3TR} TESY AEVIEW (ATHY| CRITIQUES
AEVIEW (POR) AEVIEW (1OR) AEVIEW ICON)
. 1 v DOCUMENT 00CUMENT 00CUMENT 00CUMENT
JoCuNERTS AN EOIY ANDEOIT i AND EDIT AND EDIT AND EOIT AND EDIT AND EOIY
1
$ li'!ODUCTIOI[ REPRODUCTION \ REPROCUCTION AEPAQDUCTION NEPRODUCTION AEPRODUCTION REPRODUCTION
B | evenr PRODUCT CONFIG | TECHWICAL || PRODUCT CONFIG SOFTWARE
' ::f:’.'"‘f::'“r OiemaL | GCEMERATION (| OETAILED TECH | ODESCAIPTION OETAILED TECH 2::;‘,':,25,';: PROSLEM
| NTERFACE | oeschirtiow UPOATE Joescat ueoare REPORTS (PR}
(PART I} ART U a AL
AEQUIREWEATS| | PERFORMANCE | CONMAND TRAINING
Mauacuens 7 | acLocaTion | { ano oEmiGN gesimion yr | MHTHOUT LITINGSI { o0 e rarign [\ 1T LTINGE [ docUmenTarion
TERFACE
PECIFICATIONS PART 1) TELEMETRY L
' ; { T ow s PECISICATIONS
. 1 OPERATIONAL
ENVIRCNMENRT VF
" TRADE ' TRADE TRADE TAADE
STuoiEs sTUDIES sTuoIEs STuoiEs
" INTERFACE r EUNCTIONAL OATA ALGORITHE ALGORITNG PROGAAN
REQUIAEMENTS,  QEFINITION QEFINITIONS DESIGH UPOATE UPOATE
STORAGE
NUNAN
L] ANO TIING W PROGRAN
otnce IRTERACTION | [ (LocATiON DESIGN
N Hraed oty 2ATA BASE 0ATA BASE OATA 8asE
convenrioms | oerimmon DEEN uroATE UPDATE
SOFTWARE SOFTNARE
N OVERVIEW ovERVIEW
PRELIWNARY) UPDATE
PROTOTYPE OPERATIONAL
conme " co0ING co0ING
PROOUCT AND PRODUCT AND PRCOUCT AND PROOUCT AND PROJUCT ANO PROOUCT ANG PRODUCT AND
" CONFIGURATION | CONFIGURATION | CONEIGURATION | ComFigumamon | CONFiGURATION | cOmfiGUNATION | COMFIGUAATION
CONTAOL "0L CONTAGL CONTROL CONTROL CONTAOL CONTROL
" OATA 8ASE DATA BASE OATA 8ASE DATA BASE DATA sast OATA daSE DATA SASE
i coRTAOL CONTROL CONTAOL CONTAOL conTAOL CONTROL contaat
[ 2B ACCEPTANCE
Test et v OEVELOPMENT | (rovem rest ATEGRATION
" INTERFACES TESTING ANO TE3T
NEQUIREWENTS nam PROCEDUNES PANNING PLANNING PANNING TesTING
resTNG.
CONFIGURATION OEVELOPMENT |  SOFTWARE ACCEPTANCE
contaoLane . | TEST svstew Test | oewowsTaarion | Y CLOSURE
28 ] MARDWARE/
» SOFTWARE
SYSTEM TESTING
Ll B ey QA AND A QA AND RA QAND aa a ANO A4 0 ANO aa 0 AnO RA
REQUINEMENTS| ASSURANCE PLANS HONITORING MONITORING MOMITONING MOMITORING MONITONING MONITONING
n TEST SUOAT | TEST SusPOAT TESTSUPPORT | TEST SURPOAT
) St
1 OPERATIONAL | OPERATIONAL | OPERATIONAL USER'S MANUAL | DPERATIONAL VSERS MARUAL | NTEGRATION
concErY TIMELINE CONCEPY UPDATE PRELAHNARY) | TIBELINE UPOATE UPBATE SUPPORT
ortharions " TRAAIRING T ” Y TRAINIRG ANO TRAINING AND
AN PLAN UPOATE AEMEARSAL REMEANSAL

A-87




! TABLE A-9
i
COST MATRIX DATA, SHOWING ALLOCATION OF RESOQOURCES
AS A FUNCTION OF ACTIVITY BY PHASE
r PHASE
| ACTIVITY A 8 c D E E G H
| 8  (19) 3 (14 (23 (21n (1220 (0 |
1 10 6 8 6 7 5 10 2
. 2 8 3 3 3 3 3 3 5
‘ 3 6 4 6 3 8 5 |
; 4 13 8 5 6 5 5 4 2
5 5 2 2 3 3 2 2 ]
; 6 22 8 7 12 3 7 5 8
: 7 10 8 7 2 6
5 8 7 5
li 9 s 2
10 17 10 10 8
11 2 10 10 9 7 6
12 2 5 13
13 4 7 10 3 5
14 4 3
15 5 25
16 4 4 5 4 4 10 10
17 3 6 5 6 5 8 10
18 5 -8 3 8 5 2 5 10
19 10 15 14 5
20 10
21 2 4 5 5 7 9 9 3
22 5 6 8 4
23
| 24 4 3 2 3 3 25
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Qutputs

Development Cost

The given cost values are in 1972 dollars. The value of cost resuits
from applying "bid rates" to labor costs which accounts for fringe benefits,
overhead, administrative expenses and other indirect costs. Documentation
and travel costs are added to the labor costs. Finally, estimates are
made of the computer costs. The distribution of the costs by phases and
activities were described above.

Development Effort

Cost is not a suitable basis for evaluating the different software
estimating models because of differences in accounting practices among
organizations and because of inflation. Therefore, the Wolverton cost
values were converted to manmonths using an average burdened cost per
manmonth of $4600. This value was obtained from the article describing
the TRW estimating procedure and, therefore, should be representative of
the cost environment.

Inputs

Object Instructions

The model input measure of size is applied to programs or routines.
These are taken to be functionally distinct elements of a system that would
be developed independently then intergrated into the delivered system. It
is expected that these would be independently operable using test drivers.
Such a definition is consistent with industry usage. The reference document
is not specific on this point. The term "instructions™ is taken literally.
This means estimating the number of instructions in the executable program
exclusive of any data areas. The number of instructions may be estimated
by obtaining the words of memory occupied by the executable code and dividing
by the average words per instruction.
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Software Categories

Each routine is characterized according to one of the following

categories:

C. Control Routine. Controls execution flow and is nontime critical.

I. Input/Output Routine. Transfers data into and out of computer.

P. Pre-or Post Algorithm Processor. Manipulates data for subsequent

processing or output.
A. Algorithm. Performs Togical or mathematical operations.

0. Data Management Routine. Manages data transfer within the computer.

T. Time Critical Processor. Highly optimized machine-dependent code.

Degree of Difficulty

Wolverton indicates that any numeric representation of complexity may
be used. The main purpose is to distribute the cost per instruction values
over the range of experience for a given category of software. He suggests
a simple designation of old or new, depending on a loose interpretation of
the amount of reusable code, and eaéy medium or hard compared with other
programs in the same category.

Reference

L. H. Putnam, R. W. Wolverton, Tutori.1, Quantitative Management:
Software Cost Estimating, IEEE Computer Society, No. EHO 129-7, Nov 1977.




APPENDIX B

WORK BREAKDOWN STRUCTURE

LEVEL 1.

1. DEFINITION

2. CODING

3. DATA CONVERSION

4. INFORMAL TEST AND INTEGRATION
5. FORMAL TEST AND INTE RATION
6. INSTALLATION

7. DEVELOPMENT FACILITIES

8. TRAINING

9. MANAGEMENT

B-1
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LEVEL 2.

1. DEFINITION

—

SYSTE4 LEVEL
.2 SYSTE SEGHENT LEVEL
CPCI LEVEL

w

2. CODING

p—

CPCI LEVEL
.2 CPRC LEVEL

3. DATA CONVERSION
.1 CPCI LEVEL

4. INFORMAL TEST AND INTEGRATION
.1 CPCI LEVEL
.2 CPRC LEVEL

5. FORMAL TEST AND INTEGRATION
.1 SYSTEM LEVEL
.2 SYSTEM SEGMENT LEVEL
.3 CPCI LEVEL

6. INSTALLATION
.1 SYSTEM LEVEL

7. DEVELOPMENT FACILITIES
.1 SYSTEM LEVEL
.2 SYSTEM SEGMENT LEVEL

8. TRAINING
.1 SYSTEM LEVEL
.2 CPCI LEVEL

9. MANAGEMENT
.1 SYSTEM LEVEL
.2 SYSTEM SEGMENT LEVEL
.3 CPCI LEVEL




LEVEL 3.
1. DEFINITION

.1 SYSTEM LEVEL

O ~NOYO £ W —

System
System
System
System
System
System
System
System

Requirements Collection and Definition
Requirements Evaluation

Design

Design Verification

Change Proposal Evaluation and ECP Preparation
Requirements Documentation

Design Documentation

Definition Monitoring and Direction

.2 SYSTEM SEGMENT LEVEL

O~NOYUI B WO —

.3 CPCI LEVEL

O~ UTB W —

Segment
Segment
Segment
Seament
Segment
Segment
Seament
Segment

DEFINIT

CPCI Re
CPCI Re
CPCI De
CPCI De
CPCI Ch
CPCI Re
CPCI De
CPCI De

Requirements Definition

Requirements Evaluation

Design

Design Verification

Change Proposal Evaluation and ECP Preparation
Requirements Documentation

Design Documentation
Definition Monitoring and Direction
ION

quirements Coilection and Definition
quirements Evaluation

sign

sign Verification

ange Proposal Evaluation and ECP Preparation
quirements Documentation

sign Documentation

finition Monitoring and Direction
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LEVEL 3 (Con't)

2. CODING

.1 CPCI LEVEL

.1 CPCI Level Coding
.2 CPCI Code Documentation
.3 Monitoring and Direction of CPCI Coding

.2 CPRC LEVEL
.1 CPRC Level Coding, Compilation, and Informial Review

3. DATA CONVERSION

.1 CPCI LEVEL

.1 CPCI Data Conversion
.2 Data Conversion Documentation
.3 Monitoring and Direction of CPCI Data Conversion

4. INFORMAL TEST AND INTEGRATION

.1 CPCI LEVEL

Informal CPCI Test. and Integration Planning

Informal CPCI Test and Integration Conduct

Documentation of Informal Test and Integration

Informal CPCI Test and Integration Monitoring and Direction

W —

.2 CPRC LEVEL

CPRC Test and Integratior Planning

CPRC Test and Integration Conduct

Documentation of CPRC Test and Integration

CPRC Test and Integration Monitoring and Jirectives

ey —

e e e et

e,




LEVEL 3 {(Con't)

5. FORMAL TEST AND INTEGRATION

.1 SYSTEM LEVEL DT&E

.1 System DT&E Planning

System DT&E Procedure Development
System DT&E Execution

System DT&E Data Reduction

System DT&E Error Identification
System DT&E Documentation

System DT&E Moritoring and Direction

e s e o s
NOY AW

.2 SYSTEM SEGMENT LEVEL DT&E

Segment Test Planning

Segment Test Procedure Development
Segment Test Execution

Segment Test Data Reduction

Segment Test Error Identification
Segment Test Documentation

Segment Test Monitoring and Direction

.3 CPCI LEVEL DT&E

CPCI Qualification Test Planning

CPCI Qualification Test Procedure Development
CPCI Qualification Test Execution

CPCI Qualification Test Data Reduction

CPCI Qualification Test Error Ilde..tification
CPCI Qualification Test Documentation {
CPCI Qualification Test Monitoring and Direction

NOYOY A W —

~NOH WD —

6. INSTALLATION

.1 SYSTEM LEVEL

.1 Planning for Installation

.2 Site-Specific Adaptation

.3 Installation Documentation

.4 Installation Monitoring and Direction




LEVEL 3 (Con't)

7. DEVELOPMENT FACILITIES

.1 SYSTEM LEVEL

Development Facility Planning

Development Facility Site Preparation

Development Facility Equipment Acquisition

Development Facility Equipment Maintenance

Development Facility Software Acquisition

Development Facility Software Maintenance and Modification

Development Facility Operation

Development Facility Documentation

Monitoring and Direction of Development Facility Provision
and Operation

OWOoOoONOYOT A WA —

.2 SYSTEM SEGMENT LEVEL

8. TRAINING

.1 SYSTEM LEVEL

System Training Planning

System Training Material Development

Instruction in System Use, Operation, and Maintenance
System Training Documentation

Monitoring and Direction of System Training

BN

.2 CPCI LEVEL

.1 CPCI Training Material Development

.2 Instruction in CPCI Use, Operation, and Maintenance
.3 CPCI Training Documentation

.4 Monitoring and Direction of CPCI Training

B-6
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LEVEL 3 (Con't)

9. MANAGEMENT

.1 SYSTEM LEVEL

System Management Planning

System Project Direction

System Configuration Management
Reporting System Development Status

o  p—

« o & e
S wn -

.2 SYSTEM SEGMENT LEVEL

.1 Segment Managemeat Planning

.2 Segment Development Direction

.3 Segment Configuration Management

.4 Reporting Segment Development Status

.3 CPCI LEVEL

.1 CPCI Management Planning

.2 CPCI Development Direction

.3 CPCI Configuration Management

.4 Reporting CPCI Development Status
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MODEL ESTIMATING PERFORMANCE
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TAB.t C-1
MODEL ESTIMATING PERFORMANCE - AZROSPACE CORPORATION, COMMERICAL

MODEL : AEROSPACE CORPORATIOWN
DATA SET: COMMERCIAL

Mi3 i ACT
CASE ACTUAL EST EST
1 Al 127.2 190.9 0.666
2 A2 38.0 130.5 0.291
3 A3 48.7 163.3 0.298
4 A4 29.3 115.2 0.237
5. A5 45.5 189.6 0.240
6. A6 44 .9 216.2 0.208
7 A7 30.5 118.2 0.258
8 A8 53.0 _ 169.5 0.313
9. A9 232.8 307.1 0.758
10. AlO 2111, 274.6 0.769
1. AN 13.8 119.2 0.116
Mean 79.5 0.378
Standard 76.2 0.234

Deviation

RMS ERROR: 107.

RELATIVE RMS ERROR: 1.35

* Support software relationship (Sece Appendix A)




TABLE (-¢

MODEL ESTIMATING PERFORMANCE - AEROSPACE CORPORATION, DSDC

i1ODEL : AEROSPACE CORPORATION
DATA SET:

MM MM * ACT
CASE ACTUAL EST EST
1. DC 2.3 79.4 0.0290
2. DK 79.9 134.8 0.583
3. DS 8.8 101.5 0.0867
4. DU 2.9 95.5 0.0304
5. FB 88.9 169.1 0.526
6. FD 7.1 134.8 0.0527
7. FE 4.9 125.2 0.3091]
8. FF 2.6 103.7 0.0251
9. BH 17.8 144 .2 0.123
10. B8 9.5 105.4 0.0901
11. GG 48.8 122.3 0.399
12. BI 3.5 76.4 0.0458
13. 1IP 9.8 81.9 0.121
14. US 172.9 190.0 0.910
15. J0 45.4 111.4 0.408
16. QD 23.0 153.3 0.150
17. DJ 247.5 104.3 2.37
Mean 45.6 0.353
Standard 68.8 0.579

Deviation

RMS ERKOR: 9.0
RELATIVE RMS ERROR: 2.1

* Support software relationship (See Appendix A)
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TABLE C-3
MODEL ESTIMATING PERFORMANCE - ACROSPACE CORPORATION, SEL

MODEL : AEROSPACE CORPORATION

DATA SET: SEL
M Pive ACT
CASE ACTUAL EST EST
L 1.  AA 111.0 209.3 0.530
’ 2. AB 221.3 182.7 1.21
3. AC 254.3 209.3 1.22
4. AD 268.8 187.9 1.43
5. AE 324.4 239.9 1.35
6. AF 77.6 160.5 0.484
7. AG 53.1 116.5 0.4, !
8. AH 29.0 117.8 0.246 |
g. AI 79.8 157.0 0.508
10. AT 19.5 84.7 0.230
M. AK 25.3 79.0 J2.320
12. AL 20.5 103.0 0.199
, 13, AM 13.9 60.7 0.229
14. AN 23.5 8.3 0.283
15. A0 276.8 218.5 1.27
16. AP 67.0 119.1 0.563
‘ 17. AQ 43.8 104.7 0.418
} Mean ne. 0.643
Standard 109. 3.450
Deviation
: RMS ERROR: 67.8
RELATIVE RMS ERROR: 0.605

* Support software relationshin /See Appendix )




TABLE C-4
MODEL ESTIMATING PERFORMANC: - BOEING COMPUTER SERVICES, DSDC

MODEL : BOEING COMPUTER SERVICES

DATA SET: 0SDC

CASE ACTOAL 227 5
1. 0C 2.4 4.4 0.542
2. DK 82.7 15.0 5.52
3. DS A 7.6 1.19
4. DU 3.0 6.5 0.465
5. FB 92.0 30.8 2.98
6. FD 4 13.5 0.550
7. FE 1 16.0 0.319
8. FF 7 7.8 0.345
9. BH 18.4 241 0.764
10. 88 9.8 9.8 0.997
1. 66 50.5 14.8 3.42
12. BI 3.6 3.7 | 0.983
13. 7P 10.1 4.7 2.14
14, US 178.9 161.2 1.1
15. JD 47.0 10.5 4.48
16. QD 23.8 31.4 0.757 !
Mean 34.2 1.66
Standard 48.1 1.60
Deviation

RMS ERROR: 26.9

RELATIVE RMS ERROR: 0.787
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TABLE C-5
MODEL ESTIMATING PERFORMANCE - DOD MICRO PROCEDURE, DSCC

MODEL : DOD MICRO ESTIMATING PROCEDURE
DATA SET: DSDC
CASE ACTUAL s o
1. 0OC 2.8 2.7 0.882
2. DK 82.7 14.0 5.90
3. DS 9.1 4.4 2.06
4, DU .0 7.7 7.39]
5. FB 92.0 26.0 3.54
6. FD 4 2.2 3.29
7. FE 5.1 99.6 0.0512
8. FF 2.7 6.5 0.414
9. BH 18.4 74.5 0.247
10. BB 9.8 9.3 1.05
11. GG 50.5 9.6 5.24
12. BI 3.6 1.9 1.89
13. 7P 10.1 6.8 1.49
14. US 178.9 121.7 1.47
15. JD 47.0 6.0 7.88
16. QD 23.8 68.6 0.347
Mean 34.2 2.26
Standard 48.1 2.32
Deviation
RMS ERROR: 43.2

RELATIVE RMS ERROR: 1.26




TABLE C-6
MODEL ESTIMATING PERFORMANCE - DOTY ASSOCIATES, INC, DSDC

MODEL : DOTY ASSOCIATES, INC.
DATA SET:  DSDC
CASE - e | ACT
| ACTUAL EST EST
l
1. 0C | 1.0 7.1 0.141
2. K 32,6 23.2 1.4 !
3. DS L 49 12.3 0.398 |
4. Dy ! 1.1 10.7 0.103
5. FB 38.8 8.5 | 1.0
6. FD 3.9 23.2 ' 6.00
7. FE 2.4 19.6 5 0.122
8. FF 1.7 12,6 ! 0.131
9. BH 6.0 26.9 0.223
10. B8 2.8 13.4 0.209
11. GG 8.9 18.6 0.479
12. 8l 1.9 6.5 0.292
13. 2 5.7 7.4 0.770
4. US 48.3 50.0 0.966
15. JD " 21.6 15.1 1.43
16. QD 0.8 30.9 0.0259
Mean 1.4 | 0.725
, Standard 15.3 } 0.966
; Deviation
RMS “E RROR: 12.0
REATIVE RMS ERROR: 1.05

* Business programs relationship (See Appendix A)
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TABLE C-7
MODEL ESTIMATING PERFORMANCE - FARR AND ZAGORSKI, DSDC
MODEL : FARR AND ZAGORSKI
DATA SET: 0S0C
-
M i * ACT ;
CASE ACTUAL EST EST !
-
|
1. 0oC 1.0 100. 0.0100 '
2. DK 32.6 230. 0.142
5. DS 4.9 147. 0.0333
6 Ty 1.1 131, 0.00840
5. FB 38.8 343, 0.113
6. D 3.9 208. 0.0188
7. FE 2.4 163. 0.0147
8. FF 1.7 140. 0.0121
9. BH 6.0 266. 0.0226
10. 8B 2.8 155. 0.0181
1. 66 8.9 192. 0.0464
12. BI 1.9 9%, 0.0202
13. 2p 5.7 106. 0.0538
4. US 48.3 464 0.104
15. JD 21.6 178. 0.121
16. QD 0.8 285, 0.00281
17. 0J 21.2 147. 0.144
Mean 12.0 0.0521
Standard 15.0 0.05C9 |
Deviation ]
RMS ERROR: 203.
RELATIVE RMS ERROR: 16.9

* Relationship (3) (See Appendix A)
C-8

e R ="



TABLE C-8
MODEL ESTIMATING PERFORMANCE - PRICE S, COMMERCIAL

MODEL : PRICE S
DATA SET: COMMERCIAL

‘ M M ACT

i\ CASE ACTUAL EST ST

5 1. Al 87.2 48 1.82
2. A2 22.9 17 1.35
3. A3 38.8 44 0.882
4. A6 37.2 7 0.524
5. A8 40.7 12 3.39
6. A9 192.0 176 1.99
7. AN 10.5 17 0.618
Mean 61.3 1.38
Standard 62.3 0.990

Deviation

RMS ERROR: 23.5
RELATIVE RMS ERROR: 0.383
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TABLE C-9
MODEL ESTIMATING PERFORMANCE - PRICE S, DSDC
MODEL: PRICE S

DATA SET: DSDC

MM MM ACT
CASE ACTUAL EST ST
1. DC 1.7 36 .0472
2. DU 2.4 8 .300
3. FD 5.5 1 .500
4. FE 3.8 14 2N
5. FF 2.0 9 .222
6. BH 14.5 19 763
7. BB 7.4 10 .740
8. GG 40.2 12 3.35
9. P 8.0 6 1.33
10. US 129.5° 35 3.70
1. J0 35.2 A 3.20
12. QD 1.7 22 .532
Mean 21.8 I RS-
Standard 36.¢ 1.35
Deviation | N
RMS ERROR: 3.3
RELATIVE RMS ERROR: 1.44
c-10 \




TABLE C-10
MODEL ESTIMATING PERFORMANCE - PRICE S, SEL

MODEL : PRICE S
DATA SET:  SEL

o MM ACT
CASE ACTUAL EST EST
1. AA 39.6 48 0.825
2. AB 79.0 85 0.929
3. AC 90.7 96 0.945
4. AD 95.9 78 1.23
5. AE 115.7 150 0.771
6. AF 27.7 27 1.03
7. AG 18.9 22 0.860
8. AH 10.3 22 0.470
9. Al 28.5 39 0.730
10. A 7.0 5 1.39
171. AK 9.0 10 0.902
12. AL 7.3 16 0.458
13. AN 8.4 11 0.764
Mean 4.1 0.870
Standard 39.4 0.260

Deviation

RMS ERROR: 12.3

RELATIVE RMS ERROR: 0.297




TABLE C-11
MODEL ESTIMATING PERFORMANCE - SLIM, COMMERCIAL

MMODEL : SLIM
DATA SET: COMMERCIAL

M MM ACT
CASE ACTUAL EST EST
1. Al Al 38.5 1.84
2. A3 38 20.7 1.84
3. A5 32 § 37.1 0.863
4. A6 36 l 34.0 1.06
5. A9 184 2121 0.868
6. A0 163 138.5 1.18
Mean B87.3 1.27
Standard 68.5 0.454

Deviation

RMS ERRCR: 21.5
RELATIVE RMS ERROR: 0.246
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1ABLE C-12
MODEL ESTIMATING FERFORMANCE - SLIM, DSODC
MODEL : SLIM
DATA SET: DSDC
.
¥ M MM ACT
CASE ACTUAL EST EST
1. FB 81.3 79.8 1.02
. BH 17.4 27.1 0.642
3. UuUs 155.6 125.4 1.28
Mean 84.8 0.967
Standard 69.2 - 0.303
Deviation
RMS ERROR: 18.3
RELATIVE RMS ERROR: 0.216




TABLE C-13
MODEL ESTIMATING PERFORMANCE - SLIM, SEL
MODEL : SLIM
? DATA SET: SEL
i M ACT
CASE . ACTUAL EST EST
1. M | 39.6 45,1 . 0.878
2. A8 79.0 76.9 1.03
{ 3. AC 90.7 90.0 1.01
4, AD 95.9 102.7 0.934
5. AE 115.7 307.9 0.376
6. Al 28.5 44 .6 0.639
7. A6 138.3 148.2 . 0.933
8. A7 98.4 179.7 " 0,548
Mean 85.8 ‘
Standard 36.6
deviation
RMS ERROR: 74.2

RELATIVE RMS ERROR: 0.865




TABLE C-14
MODEL ESTIMATING PERFORMANCE - TECOLOTE, DSDC

-

MODEL : TECOLOTE
CATA SET: DSDC

MM MM * ACT
CASE ACTUAL EST EST
1. OC 2.4 38.1 0.J629
2. K 82.7 193.1 0.428
3. IS 9.1 30.8 0.113
4. DU 3.0 67.1 0.0447
5. FB 92.0 387.4 0.233
6. FD 7.4 193.3 0.0383
7. FE 5.1 153.9 0.0331
8. FF 2.7 86.4 0.0313
9. BH 18.4 237.7 0.0774
0. BB 9.8 90.7 0.108
1. 66 50.5 143.2 0.353
12, BI 3.6 33.8 0.106
13. ¢ 10.1 40.5 0.250
4. U 178.9 554.5 | 0.323
15, JD 47.0 107.6 ' o.a3
' 16. QD 23.8 286.7 | 0.0830
| Mean 34.2 0,170
| Standard 48.1 i 0.580 ;
| Deviation [ !
L | 1 |
RMS ERROR: 168.
RELATIVE RMS ERROR: 4.92

* Estimating relationship using number of

operating instructions. ; i
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TABLE C-15
MODEL ESTIMATING PERFORMANCE - WOLVERTON, DSDC
MODEL : WOLVERTON
DATA SET: DsDC
CASE ACTUAL FsT toT
1. DC 2.4 3.4 0.712
2. DOK 82.7 45.4 1.82
3. 0§ 9.1 6.4 1.43
4. DU 3.0 24.8 0.121
5. FB 92.0 124.7 0.738
6. FD 7.4 16.8 0.447
7. FE 5.1 45.5 0.112
8. FF 2.7 29.7 0.0910
9. BH 18.4 11.6 1.59
10. B8 9.8 23.2 0.422
1. GG 50.5 23.6 2.14
12. BI 3.6 8.1 0.445
13. IpP 10.1 6.9 1.46
14. US 178.9 106.5 1.68
15. JD 47.0 17.7 2.65
16. QD 23.8 48.6 0.49
Mean 34.2 1.02
Standard 48.1 0.802
Deviation
RMS ERROR: 3.7

RELATIVE RMS ERROR:

0.927

RS TR
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TABLE C-16"~
MCDEL ESTIMATING PERFORMANCE - RECALIBRATED SIZE EQUATION

MODEL: SECALIBRATED SIZE EQUATION (M = aIP)
‘-'TUEMERC{fL R Dsoc 3Z-810-° ST a7 20X !
Ll o | acT Ma | v !oacT woomm b oacT j
SYS { ACT| EST | EST | svs{ AcT| esT| EST | svs| ACT | esT | £57
1. Al | Nisto]1.39 | oc! 2.0 3.110.645 | AA | 39.60 ! 36.2 [1.09
2. A2 | 16| 29.3)0.546] Dk | 66.8 |21.713.08 | B |78.95! 63.311.25
3. A3 | 38|40.6{0.936| 0S| 8.5| 7.6 '1.12 | AC |90.71 | 67.2 '1.35
4. A4 | 171 24.5)0.694| DUl 2.9| 6.110.475 | AD | 95.90 | 60.5 |1.59
5. A5 | 32150.5)0.638| B | 81.3150.1{1.62 | A N15.71 |122.7 {0.943 |
€. A6 | 36]61.1]0.589| FD | 6.5|21.7/0.300 | AF |27.69 | 45.9 10.603 |
7. A7 | 28} 9.602.50 | FE] 4.5 116.500.273 | ac [18.93 | 19.9 [0.9¢1
' 8. A8 | 38!23.111.65 | FF| z.4! 8.2:0.293 | AW |10.33 | 15.7 [0.658
9. A9 [1840101.811.81 | BH | 17.4 |27.810.626 | Al |28.48 | 35.8 [0.796
10. A10/163186.5/1.88 | 88 | 8.8 8.711.01 | AJ | 6.96 | 7.2 [0.967
1. M| 10125.710.389 | 66 | 48.3 |15.1 53.20 A | 9.02 1 6.9 (1.3
L2, * BI | 351 271130 | AL | 7.32 ' 141 lo.519 |
13. 1 o9.7|3302.94 | am| 496! 37013
14. | US 1155.6 177.112.02 | AN | 8.40 | 7.9 11.06
15. ; JD | 42.3 110.713.95 | A0 |98.74 | 99.2 10.995
16. : QD | 14.0 134.910.401 | A 123.92 1 19.2 .25
17. : AQ !15.63 ! 15.1 11,04
Mean  157.2 1.18 29.7 1.45 40,1 1.04
Standard |59.9 0.697 41.8 1.23 | 38.9 0.28¢%
Deviation; | i i
RMS ERROR: 36.8 27.7 12.4
RELATIVE AMS ERROR: | G.643 ! 0.933 0.309
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TABLE C-17
SUMMARY OF MODEL ESTIMATING PERFCRMANCE

s

RMS ERROR*

MEAN PROJECT STZE
DATA SET
MOCEL TYPE COMMERCIAL { DS DC |SEL
| REGRESSION

*  AEROSPACE 107. %.0 |67.8

B DOTY 12.0

C FARR & ZAGORSKI 203.

D TECOLOTE 168.
| £ (al®) 36.8 21.7 | 12.4
| HE'RISTIC
| F o SOEING 26.9
| G COD MICRO 43.2

H PRICE S 23.5 3.4 | 12.3
| I WOLVERTON 31.7

PHENGMENOLOGI CAL

J SLIM 21.5 18.3 | 74.2

;o 2172

* RMS ERROR = [ 1§1 (ACT, - EST;)“]

L :
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APPENDIX D

DESCRIPTION OF MODEL INPUTS




AEROSPACE AND TECOLOTE MODELS

TABLE D-1

SUMMARY OF INPUTS

COMMERCIAL DSDC SEL
0BJ. 08J. 0BJ.

sys. | INs. sYs. | INS. SYS. | INS.
L]oA 78335 DC 8943 AA 98402
2. | A2 30543 DK 33090 AB 70306
3.0 A3 | 53200 DS 16390 AC 98402
4. | A 22459 DU 14110 AD 75357
5. AS 1 77039 | FB 58010 AE 137944
6. | A6 | 106573 | FD 33120 AF 51030
7.0 A7 23939 FE 27560 AG 24575
8. A8 | 58391 FF 17290 AH | 23726
9. | a9 | 254232 | BH 39120 AL | 48273
1. | A0 | 192706 BB 17990 A | 10476
. boan | 24420 66 26000 AK 8823
12, | } BI 8116 AL 17022
13. | zp 9383 AM . 459
14, | us 77470 AN 1 9985
15. | JD 20640 AO | 109466
16. i QD 45510 AL 24392
17. | BJ 17560 AQ i, 17725

A s aas s
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TABLE D-5

FARR & ZAGORSKI MODEL
SUMMARY OF INPUTS

DSDC DATA
r
!

! SYSTEM Xq1 X12 X5 X3 X13
Lo, DC 4.655 3.674 | 2.788 6 3.6 }

|2 0K 16.427 14.010 3.424 6 3.6
Y DS 8.910 6.080 | 3.146 6 3.6 i
4. ou 7.326 5.721 3.027 6 3.6 |

;5. FB 27.538 | 25.328 | 3.7 6 5.2
L s, FO | 14.865 | 16.032 | 3.347 5 6.6 |
7. FE 9.569 15.996 3.300 6 6.3 |

8. FF 9.273 7.061 3.200 6 6.1

f 9, BH 19.064 16.764 3.517 6 1.5
10. BB 8.909 7.626 3.163 6 2.3 |
1. 66 | 12.733 | 11.196 | 3.316 | 6 3.6 }

12. BI 4.001 3.518 | 2.776 6 3.6

13. zp 4.616 4.060 2.849 |- 6 2.6

14, us 37.696 33.148 3.821 6 0.0

15. JD 11.135 7.276 3.348 6 1.9

16. @ | 21.242 20. 304 3.598 6 3.6




TABLE D-6

PRICE S
SUMMARY OF INPUTS

COMMERCIAL
SYSTEM { INST E APPL RESO | UTIL | PLTFM  CPLX y NEWD | NEWC | CCST
Al 142732 { 3.00 1.88 0.50 1.00 {1.00 10.7810.83 | 4000
A2 45200 ; 3.00 1.88 0.50 1.00 ;1.00 | 0.70 §0.80 | 4000
A3 148700 é 3.00 1.88 0.50 1.00 {1.00 | 0.90 }0.50 | 4000
A6 194748 % 3.00 1.88 0.50 1.00 [1.00 | 0.90 j1.200 i 4000
A8 2800 i 3.00 1.88 0.50 1.00 }1.00 ; 0.80 }C.70 ; 400C
A9 585200 ; 3.00 1.88 0.50 1.00 }1.00 | 0.8510.35 | 4000
AN 38800 3.00 1.88 0.50 1.00 11.00 {0.80]1.00 | 4000




TABLE D-7
PRICE S
SUMMARY OF INPUTS

DSt
S T
SYSTEM | INST | APPL | RESO | UTIL |PLTFM | CPLX | NEWD | NEwC | COST
1.1 oc | 89431 2.45 1 2.13 | 0.50 | 1.00 ! 1.00 |0.90 | 1.00 i 4000
2.0 DU {14110 | 2.58 | 2.13 | 0.50 | 1.00 | 1.00 |0.90 | 1.-0 5 4000
3.1 f |3320 ] 2.56 | 233 [ 0.5 | 1.00 1 1.00 {0.20 | 1.00 ! 4000
4.1 FE 27560 | 2.50 | 2.13 [ 0.50 | 1.00 | 1.00 {1.00 | 1.00 | 4000
5. FF 117290 | 2.43 | 213 | 0.50 | 1.00 | 1.00 | 1.00 | 1.00 . 4000
6.0 B4 {39.20 | 2.51 ] 2.13 | 0.50 | 1.00 | 1.00 | 1.00 | 1.00 | 4000
7.1 88 |179907 2.5 i 2.13 | 0.50 | 1.00 | 1.00 i 1.00 | 1.00 | 4000
% 8.1 66 |26000 | 2.36 | 2.13 | 0.50 | 1.00 | 1.00 E 1.00 | 1.00 | 4000
9. | z» | 9383{ 2.51 | 2.13 | 0.50 | 1.00 | 1.00 | 1.00 | 1.00 | 4000
0.1 Us {77470 { 2.51 | 2.13 E 0.50 | 1.00 I 1.00 5 1.00 | 1.00 % 4000 l
111 uD (20640 | 2.51 | 213 g 0.50 | 1.00 | 1.00 i 1.00 | 1.00 i 4000
2| @ a0 251203 0.5 | 100 | 1.00 j1.00l1.oo j 4000
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TABLE D-8

PRICE S

SUMMARY OF INPUTS

SEL

U'SYSTEM| INST |APPL | RESO | UTIL | PLTEM | CPLX | NEWD | NEWC | COST
1.0 aa 1150800 |5.7+ | 2.25 | 0.80 | 1.20 | 0.60 i 0.20 | 0.30 | 4000
2. AB | 101800 |5.73 | 2.25 | 0.80 | 1.20 | 0.60 ' 0.90 g 0.90 | 4000
3.] AC | 150800 {5.65 | 2.25 { 0.80 | 1.20 | 0.60 § 0.60 *0.70 | 4000
4.1 AD 1110400 {5.52 ; 2.25 | 0.8 | 1.20| 0.60 | 0.70 0.8 | 4000
5.1 AE | 223800 [5.55 | 2.25 | 0.80 | 1.20 | 0.60  9.70 0.8 | 4000
6. AG | 29800 |5.99 § 2.25 | 0.80 | %.20 | 0.60 ; 0.80 0.80 | 4000
7.1 an | 28600 |5.44 | 2.25 | 0.80 | 1.20 | 0.60 | 0.80 | 0.70 | 4000
8.1 Al | 65600 |5.58 E 2.25 | 0.8 | 1.20 | 0.60 i 0.50 ' 0.60 | 4000
9.| AJ | 11000 |3.53 ; 2.25 | 0.80 | 1.20 | 0.60 | 0.30  0.50 | 4000
0. AK | 9000 {5.52 ' 2.25 | 0.80 | 1.20 | 0.60 § 1.00 : 0.90 5 4000
M. AL | 19400 |5.42 % 2.25 | 0.80 | 1.20 | 0.60 } 60 ; 0.80 E 4000
12.{ AN | 10400 |5.99 | 2.25 | 0.80 | 1.20 | 0.60 | 0.90 | 0.90 | 4000

1 [ | [
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TABLE D-11

RECALIBRATED SIZE EQUATION

SUMMARY OF INPUTS

COMMERCIAL DSOC SEL
SYSTEM | STMTS [ SYSTEM [ STMTS SYSTEM STMTS
i 1. Al 28879 be 2205 AA 13400
2. A2 9605 0K 10182 AB 25000
3.0 A3 18373 S 4479 AC 26800
4.1 A4 6706 DW 376 " AD 23750
5. A5 28321 FB 19624 AE 52350
6. A6 41384 FD 10190 AF 17500
7.1 A7 1046 FE 8222 AG 6900
8. A8 5950 FF 4768 AH 5300
9. A9 114325 BH 12381 Al 13250
10. A10 82687 B8 4993 AJ 2200
11. All 7395 GG 7680 AK 2100
12. BI 1970 AL 4700
13. Zp 2334 AM 1050
14, us 27519 AN 2450
15. J0 5865 AC 41300 !
16. QD 14776 AP 6606 {
7. AQ 5077 J
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