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1 INTRODUCTION AND SUMMARY

1.1 COST ESTIMATING AND SOFT'-'ARE COST MODELS

Cost estimating is an integral part of the Air Force major weapon

system acquisition process [1] [2] [3]. The Air Force manages the weapon

system life cycle by continually balancing performance, cost, and risk for

the system and its components. Throughout the weapon system life cycle it

is necessary to estimate the cost of part or all of the system over a part

or all of its development and operational life.

Computers are an increasingly important part of Air Force weapon

systems in terms of both function and cost [4] [5]. Until recently, most

of the cost analysis and planning related to computer subsystems was directed

to the hardware. However, increased capabilities and reductions in the cost

of hardware have had the effect of increasing the amount of software needed

for each system and its cost relative to the cost of the hardware. it is now

often necessary to budget large portions of the system life cycle cost to the

development and maintenance of these software components [6] [7] [3].

Therefore, more attention is being given to the methods used for making

estimates of the resources to be invested in the software subsystems.

A software cost model is a systematic procedure that relates cost

to certain variables or cost factors. A number of such models are available

to cost analysts. The Air Force has commissioned this study to examine some

of these models to learn the extent to which they satisfy Air Force needs and

to learn how the quality of software estimating can be improved.

1.2 THE AIR FORCE PERSPECTIVE AND SOFTWARE COST %1ODEL RELIABILITY

There are cost estimating situations in which the Air Force must

consider the effect on software cost of who builds it or how it is built.

herefore, it is useful to divide cost factors into those that describe the

product under development and those that describe the manner in which it is

built. Cost factors other than those that describe the product are affected
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by the selection of a development organization or the development process.

These non-product cost factors are difficult to identify and measure. In the

case of hardware porducts they include such things as experience, tools, and

facilities. Given the proper adaptation of definitions, the same terms are

applicable to software development. In either case, these environmental

factors may appear explicitly in cost estimating procedures or, more often,

they may influence the applicability of a given model to a given development

environment in some unknown way. A major consideration in evaluating models

for Air Force use is measuring the ability of the model to define the environ-

mental parameters. This is because the Air Force must always make its

estimates at arms length. It must know how the cost of software is influenced

oy how it is developed and who develops it.

It may be helpful to compare methods for estimating software cost

with those used for estimating computer hardware cost. Computer hardware

cost estimating is more advanced than software cost estimating. This is

because there has been a recognized need for it for a longer time and

because cost estimating techniques that were developed for other electronic

components were adaptable to computers. Hardware possesses readily

identifiable measures of size and performance that have been correlated with

cost [9] [10]. Given a hardware product with specified physical and

functional characteristics, methods exist [11] [12] [13] [14] for considering

the effects on cost of non-product factors such as state of the art advance,

experience, learning and manufacturing techniques. Therefore, it is possible

to make early cost estimates using average industry performance (or some

desired increase over the existing average); and then, in later phases of

the life cycle, it is possible to evaluate proposals and give proper credit

for new approaches and to identify high risk or infeasible concepts.

Although software costs are also affected by non-product factors

[15] [16] [17], there are no reliable procedures for quantitatively

describing their effects on cost. The most common existing procedure

for accounting for differences in development methods or organizational
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experience is to base model estimates on historical experience similar

to the proposed development environment. However, there is very little

objective basis for distinguishing among projects to determine whether

they are truly applicable to the proposed environment. This capability is

essential if the Air Force is to properly evaluate software development

and maintenance proposals from diiifrent organizations.

There are several reasons why software cost estimates are not as

reliable as those for hardware [18] [19]:

" Software development engineering is a relatively new discipline.

" Software design and development methods have been affected by

the explosive development of computer hardware which has changed

the cost incentives relating software and hardware.

" Software has only recently become a major cost item in the weapon

system life cycle.

" The relationships between cost and generally accepted cost factors

are not established.

" Reliable historical data on software costs are almost nonexistant.

None of these deterrents to reliable software cost estimates represents

an insurmountable barrier. One purpose of this project is to evaluate a

number of existing cost estimating techniques or models to learn how to

overcome past problems.

1.3 OVERVIEW OF THE SOFTWARE MODEL EVALUATION

The evaluation design stems from the belief that any evaluation

of the merits of different approaches to a given objective (i.e., obtaining

good cost estimates) should be based on the comparison of the approaches

with some standard. To permit the evaluation to be only a comparison

of how the several existing software models are alike and different is

an abdication of the evaluator's prerogative to impose the standard of

measurement. To look at all existing models, make a list of their
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characteristics and then show how each compares with all the others.

makes the assumption that the Air Force needs are represented in the study

population. It implies that there are no requirements other than those

that prompted the designs of the test subjects. Furthermore, it fails

to consider whether the existing models have satisfied even their creators'

objectives.

A detailed statement of Air Force estimating needs (Section 2.1),

establishes objective standards for cost models that avoids features or

qualities of existing models that may be expensive or difficult to achieve,

and which are not needed. It is then relatively easy to compare model

characteristics and evaluation objectives. Since the evaluation is based

on satisfaction of needs, this approach provides a ready basis for

establishing priorities for possible research programs.

Past comparative studies of software cost models [20] [21] [22]

[23] [24] [25] [26] [27], have provided descriptions of model features and

discussed different methods for making estimates. Several studies [28]

[29] [30] have been published describing estimating experience with the PRICE S

model. 'ut there has been no comprehensive analysis of predictions

relative to needs nor a comparative analysis of estimating performance

using data from different environments. This evaluation compares

estimating performance using three different development data sets.

This is an important part of the evaluation design because several

reports indicate that environment is a significant factor affecting model

estimating accuracy [31] [32] [33]. The use of three data sets is

intended to help identify model features that are sensitive to environ-

mental change. Controlling these factors should help uncover other

determinants of accuracy.

If the objective of the accuracy evaluation was to determine which

of the nine models is the most accurate estimator on a given data set, it

would only be necessary to execute the models using the same data and

1-4

MENEM---



tabulate the difference between the prcdicted and measured values of the

test variable. Such an evaluation, however, would not tell the Air Force

whether the measured accuracy would be obtained for all estimating

situations or guide future model development by indicating model attributes

that contribute to higher estimating accuracy.

The evaluation of model accuracy should address the following

considerations:

e The effect of the software development environment on model

performance.

e Attributes of the environment that are associated with the best

and worst performance of a model. That is, factors that indicate

when it is best to use a given model and when it should not be used.

a The effect on the accuracy measurement of incomplete input sets

amono the test data.

The characterization of model structures in a way that will help

to identify correlations between structural attributes and

estimating performance.

1.4 SUMMARY OF THE REPORT

The material in this report is presented in much the same sequence

that the evaluation project was completed. The models to be evaluated

were selected and analyzed, the evaluation criteria including Air Force

cost estimating needs and accuracy were established, data sets were

identified and qualified, and finally the evaluation protocol was executed

and the results analyzed. Specifically, the pertinent sections of the

report are:

2 Descriptions of the Evaluated Models

3 Definition of the Evaluation Procedure

4 The Establishment of the Evaluation Criteria

5 Execution of the Evaluation Procedure

6 Analysis of the Results of the Evaluation

7 Recommendations for Future Model Development

1-5



Section 2 presents the general selection criteria used for the

models and includes a one-page summary of each model. The models are

described according to the three structural types developed in Section 4.2,

their method of making their initial and subsequent estimates, and their

outputs.

Section 3 3xplains the evaluation criteria established for Air Force

cost estimating needs and the measurement of prediction accuracy. The

cost estimating information needs are established by the Major Weapon

System Acquisition Process (Section 3.1). Consistent with this process

is the Air Force Software Life Cycle and a comprehensive Work Breakdown
Structure (Appendix B). The Weapon System Acquisition Process gives rise

to five cost estimating situations that should be supported by cost

models. The Software Life Cycle defines the set of activities and events

that describe the boundaries of the cost estimates. The Work Breakdown

Structure establishes the elements of the product within the life cycle

phases that must be identifiable by separate cost values. The evaluation

of the extent to which existing models satisfy the five estimating situa-

tions is made by comparing the model outputs with the requirements in

terms of scope and detail.

Estimating accuracy may be measured using different variables.

Section 3.2 discusses several alternative methods and explains why the
Average Relative Root Mean Square Error was selected.

A large part of the effort spent on the project was devoted to

obtaining accurate descriptions of model inputs and outputs (Section 3.1).

Most published model descriptions are vague in their definitions of their

variables. It is difficult to know exactly which cost elements are

included in the model estimates. One common problem was the variations

in the use of the most frequently used input: size of code. Many

different definitions were encountered.
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Section 4.2 describes the three categories used to designate the

model structures:

* Regression

# Heuristic

e Phenomenological

Section 4.3 describes the three organizations that contributed data

to the evaluation and some of the processes used to obtain and qualify it.

The nine test models are associated with such a large number of

different input and output variables that none of the data sets was rich

enough to provide measured values of each. Section 4.4 describes how the

missing data items were handled.

The results of the evaluation are presented in Section 5. Section 5.1

describes how well the models satisfy the cost information needs established

by the five cost esti ating situations, the Software Life Cycle definitions

and the Work Breakdown \tructure. 'Section 5.2 contains the results of the

accuracy measurements. Estimating performance is related to model and

environmental characteristics.

The evaluation ihdicates that the performance of the models tested

is very sensitive to the development environment. Within an environment

characterized by similar projects, personnel experience and management

techniques, the most accurate models achieved an average estimating error

of about 25 percent on the basis of the root mean square error. However,

a model that exhibits such performance on one data set may demonstrate an

average error approaching 100 percent on another. Even within a single

environment one of the best performing models has an error range of + 50

percent. These error measurements were made after the models were calibrated

on the test data sets. Therefore, the accuracy is greater than woulo re

expected when estimating a new project.
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These results indicate that in virtually all estimating situations

there are factors that are not properly accounted for by the models tested.

These factors are affected by changes occuring between environments and

within an environment.

The results of the evaluation are summarized as follows:

A comparison of the outputs of the models under investigation with

the Air Force estimating needs indicates that:

" The supporting materials for most of the models do not clearly

state the elements included in their estimates and are not precise

about their definitions.

" The existing models are better able to satisfy information needs

early in the acquisition life cycle.

" None of the models included in this study fully satisfy the Air

Force need for information either with regard to scope or detai,.

" The models tend to be phase oriented and do not properly describe

activities that cross phase boundaries. This precludes obtaining

data compatible with both management planning (phase related) and

product cost (WBS).

" Although most of the models use the summation of program or module

sizes to make their cost estimate, only one model studied provides

for keeping track of the cost on a compcnent basis and accounts

for the cost of system integration. None of the models provide

for all four levels of system definition called for in the Work

Breakdown Structure (Ref. Appendix B).

Based on the relative root mean square error measure of performance:

" Recalibration* is the primary factor contributing to the

differences in estimating performance among the models tested.

" The contribution of model structure* to esti-mating accuracy is

not significant when the models have been calibrated to the

development environment*.

Definitions of these terms are given in Section 1.6.
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* The development environment significantly affects the relative

performance of the models tested.

The effect of development environment on estimating performance

precludes the possibility of obtaining generally applicable

measures of model performance without applying additional controls.

" Models that do not use size as an input may perform as well as

those that do.

" The average RMS Error for all tested models is unacceptably large

for Air Force estimating purposes.

" The best performance obtained by any group of the models tested is

not adequate for Air Force needs.

Caution must be exercised to avoid extending the interpretation of

the results of the accuracy measurements beyond the constraints of this

study. Section 6 discusses five considerations affecting the reliability

of the measurements.

Section 6.1 explains how the development environment affects

estimating performance and the rankings of the models.

Section 6.2 considers the effects on the accuracy measurement of

errors in the estimated input values.

Section 6.3 describes the methods used to calibrate the models on

the historical data sets and the implication for the evaluation.

Section 6.4 explains the use by some models of parameters and

variables that can never be measured.

The recommendations for future model development are divided into

two parts. Section 7.1 describes needs for new experiments identified during

this project. Section 7.2 makes recommendations for better data definition

and collection.
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1 .5 SOME DEFINITIONS

The discussions in this document include several terms that have

specific meanings within the context of the evaluation. They are defined

here to clarify the presentation of the results.

Model Structure. A cost estimating model is considered to be the specific

representation of the model structure and its associated parameters that

is to be executed in a given cost estimating situation. A model structure

includes imputs, a calculation process and outputs. It is the formal

representation of how the outputs are related to the cost driving variables

or inputs. In addition to the inputs, which represent the attributes of a

specific project or development effort, there are parameters of constants

that complete the quantification of the model. The parameters may be obtained

empirically from representative past projects or they may be subjective.

They determine and represent the universe of environments for which the model

is applicable. In some cases, different parameters are given for different

estimating situations (e.g. Doty); in others, the models are presented with-

out restrictions on the applicability of the parameters. Two models (PRICE S

and SLIM) identify the parameters and provide means for estimating them for

any environment.

Throughout this report the term "model" refers to the combination

of the "model structure" and values of the parameters. The "model structure"

is the representation of the estimating hypothesis. Our ultimate objective

is to relate the attributes of the model structure to accuracy.

Calibration. The process by which values of model parameters are obtained

for a given cost estimating situation is called "calibration". The calib-

ration of a model structure may be performed using formal curve fitting

methods on a representative historical data set, by using an execution

mode of the model, or by selecting values from experience. An important

consideration in this evaluation was the proper selection of representative

data and methods for calibrating the model structures.
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Environment. This is a general term used to describe the source of

influencing forces that are external to the product being developed. As

was mentioned before, it is conceptually helpful when analyzing model

structures to divide the cost-driving factors into two groups: factors

that describe the product and are therefore unchanged by how or where

the development is completed; and factors that affect the resources needed

to develop the product but are independent of its characteristics. The

first group are usually referred to as input variables and the second

group constitutes the environmental parameters. Examples of environmental

factors are: type of development organization, type of contract, method

of project organization, development methods, supporting software,

facilities, and description and availability of computer hardware.
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2 MODEL DESCRIPTIONS

Software cost estimating models were selected for evaluation for
one or more of the following reasons:

* Possessing a unique structure

e Representing a common type of structure
* A representative choice of input variables
* A unique choice of input variables

* Widespread use

e Otherwise interesting to the Air Force.
The following models were evaluated:

* Aerospace Corporation

e Boeing Computer Services

* DoD Micro Estimating Procedure

* Doty Associates, Inc.

s Farr and Zagorski

* PRICE S

* SLIM
* Tecolote Research Corporation

* Wolverton

Detailed descriptions of the models including their inputs and
outputs are prese,,ted in Appendix A. The following are one-page summaries
of the models (Table 1) that describe the characteristics upon which inferences
concerning the contribution of model structure to performance are based.
These attributes include:

* Model type

@ Estimating Procedure

- Level of initial estimate

- Method of making initial estimate
- Method of making subsequent estimates

& Characterization of productivity

* Outputs

2-1



AEROSPACE CORPORATION

STRUCTURE

Type. Regression

First estimate. Development effort.
Single parameter

Subsequent estimates. No further breakdown of effort.

Development effort is calculated given the number of instructions using
an estimating equation of the form:

MM = aIb

where MM = Manmonths of development effort

I = Number of instructions

a,b = Constants

OUTP UTS

Effort.

Scope. Assumed to be Analysis through 3ystem Test.

Detail. System or CPCI level.

Table 1 Summary of Model Characteristics
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BOEING COMPUTER SERVICES

STRUCTURE

Type. Heuristic

First estimate. Development effort.
Multi-parameter

Subsequent estimates. Allocations using fixed ratios followed by phase-
related adjustments.

The system is divided into five types of software and the number of delivered
instructions is estimated for each component. The system development effort
is obtained by multiplying the productivity rate in manmonths per instruction
for each type of software and adding the values for the components. The
development effort is divided into six life cycle phases using fixed ratios.
The phase estimates are adjusted for certain development and software charac-
teristics and recombined to form a revised total development effort.

OUTPUTS

Effort.

Scope. Analysis through System Test

Detail. System level

Table 1 'Cont) Summary of Model Characteristics
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DOD MICRO PROCEDURE

STRUCTURE

Type. Heuristic

First estimate. Portion of development effort (Direct
development effort)
Mul ti-parameter

Subsequent estimates. Fixed ratios

Net development effort is calculated using an estimating equation
that includes software function and complexity variables along with
experience measures.

A constant factor is used to estimate gross development effort
which then divided into phases using ratios.

OUTP UTS

Effort.

Scope. Analysis through Installation

Detail. System level

Table 1 'Coit) Summary of Model Characteristics
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DOTY

STRUCTURE

Type. Regression

First estimate. Development effort.
MuI ti-parameter

Effort is related to size and type of code by estimating equations.
For small systems the effects of 14 environmental parameters are
included using a product function.

OUTP UTS

Effort.

Scope. Detailed Design through Coding and Checkout

Detail. Total effort for a CPCI

Development time.

Table 1 (Cont) S. nary of Model Characteristics

2-5



FARR AND ZAGORSKI

STRUCTURE

Type. Regression

First estimate. Development effort.
Mul ti -parameter

Subsequent estimates. No further breakdown of effort

Effort is related to 5 predictor variables by an estimating equation.

OUTP UTS

Effort.

Scope. Detailed design through coding and checkout

Detail. Total effort for a CPCI

Table 1 :Cont) Summary of Model Characteristics
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PRICE S

STRUCTURE

Type. Heuristic

First estimate. Portion of development cost (design cost)
Multi-parameter

Subsequent estimates.. Functional relationships

Cost is related to predictor variables by Tables and equations that
are either subjective or empirically derived.

Cost and effort are related by cost per unit time values that are
constant for a given phase.

OUTPUTS

Cost.*

Scope. Detailed Design through Installation

Detail. Three phases, Design Implementation Test and
Installation. For each phase by activities
system analysis, programming, documentation,
management, quality assurance. Model options
include independent V&V, system integration.

Time.

Computer units.

• Alternative outputs are manhours or manmonths.

Table 1 ,Cont) Summary of Model Characteristics
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TECOLOTE

STRUCTURE

Type. Regression

First estimate. Development effort.
Single parameter

Subsequent estimates. No further breakdown of effort.

Development effort is calculated using a cost estimating equation with
number of instructions as the independent variable.

OUTPUTS

Effort.

Scope. Requirements through Operational Demonstration

Detail. System or CPCI level.

Table 1 (Cont) Summary of Model Characteristics
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SLIM

STRUCTURE

Type. Phenomenological

First estimate. Development cost.
Multi-parameter, (linear programming)

Subsequent estimates. Allocations using fixed ratios

Effort is related to predictor values using the "software equation."
This along with constraints on time, effort and cost define a range
of acceptable solutions (if any).

Cost and effort are related by a constant value of cost per unit.

OUTPUTS

Effort.

Scope. Detailed design through installation for the
primary output. Additional outputs include
analysis effort.

Detail. System level

Time.

CPU Time.

Documentation.

Table 1 (Cont) Summary of Model Characteristics
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WOLVE RTON

STRUCTURE

Type. Heuristic

First estimate. Development cost.
Mul ti-parameter

Subsequent estimates. Allocation using fixed ratios

Cost is related to routine size and category by a constant cost per
instruction for each category of software.

OUTPUTS

Cost.

Scope. Analysis through Operational Demonstration

Detail. Seven phases, each with up to 25 activities an
eighth phase, Operations and Maintenance has
allocations amonG the 25 activities, but there
is no guidance for allocating the eighth phase
from the total.

Computer cost.

Table I (Cont) Summary of Model Characteristics
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3 EVALUATION CRITERIA

The Air Force needs reliable procedures for estimating software

costs to support its activities as the manager of weapon system development.

It is necessary when examining methods for making cost estimates to be

mindful of the Air Force's perspective as the system development manager.

The Air Force does not develop system components itself. When estimating

the cost of developing and operating a new system, it must at first consider

industry-wide capabilities as represented by experience with similar weapon

systems. This representation of development performance is adequate for

conceptual studies, but it is not valid for evaluating proposals for specific

subsystems to be built by specific organizations. For example, a single

organization may obtain good results using a given method of cost estimating;

but it must be recognized that many variables such as experience, support

facilities, and management techniques are relatively fixed in that organization.

Their influence on any estimates made by that organization are minimal.

However, if the method were adopted by the Air Force and applied to many

organizations such as might occur in a major weapon system development, the

results may not be satisfactory at all. The model evaluation was designed

to look at software cost estimating from the Air Force's point of view.

The choice of evaluation criteria was affected by the following

considerations:

* A number of different software cost estimating models already exist.

e Proponents of the models offer testimonials based on their

particular experience and estimating needs.

& There is no model or approach that is not without both supporters

and critics.

* luch of the existing literature claims there is no reliable method

of making software cost estimates.

Given the conflicting evidence it seemed reasonble to conduct an

evaluation of representative cost models to address the following:
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e The needs of the Air Force for software cost estimates.
* The extent to which existing software cost models satisfy

those needs.

* The characteristics of existing model structures that make

them good or bad performers for Air Force purposes.

a Methods for improving the quality of future Air Force

software cost estimates.

The evaluation was divided into two parts:

* The satisfaction of Air Force needs for software cost estimates

in terms :f specific items of information.

a The realization of estimates with accuracy acceptable for

making decisions concerning selections of alternative design

concepts, allocation of resources, and managing the software

life cycle.

This section of the report describes how criteria were defined that

establish the Air Force needs for cost model performance in terms of items

of information and accuracy.

The first subsection describes the Major Weapons System Acquisition

Process, the Software Life Cycle and the Work Breakdown Structure. It then

shows how these lead to five cost estimating situations which are described

in terms of scope of the life cycle addressed, level of detail in the

estimates and the desired estimating accuracy.

The second subsection establishes the criteria for measuring

estimating accuracy; and the final subsection discusses some evaluation

criteria that were considered but not included.

3.1 INFORMATION NEEDS

The Air Force identifies two types of computer system development.

One is the creation of computer systems that are end products. That is,
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they perform a separate function. These are for the most part management

information systems. The other type of computer system is an integral

part of a larger system. It is characterized by stringent and complex

interfaces with its environment. These are usually called, "embedded

systems."

For the purpose of this evaluation, the needs for software cost

information will be established by the process governing the development

of embedded software. However, this should not limit the applicability

of the results. For one thing, most of the models are used for both

types of development; and, for another, the software portion of the develoD-

ment cycle is nearly the same for both types of systems. The embedded

system development must be governed in addition to its own requirements

by the needs of the weapon system.

The representation of both the software life cycle and its controlling

environment, the weapon system life cycle, allows us to specify the needs for

software cost estimates considering the points of view of the weapon system

and the software components. The weapon system manager must know how the

needs of the software components will affect the cost, schedule and risk

of the weapon system. He must also know how the performance of the weapon

system in terms of functions, speed, reliability, etc. are affected by the

software system cost, schedule, and risk. When the software resources have

been allocated, the software subsystem manager must assess his cost, schedule,

and risk in terms of lower level design choices. He as well as the weapon

system manager must make preliminary cost-performance trade-offs, prepare

statements of work, evaluate proposals, and monitor contracts.

The following sections describe the evolution of the weapon system

definition as it occurs during the Major Weapon System Acquisition Process.

The aspects of the weapon system that establish the software requirements

are highlighted. The software life cycle is presented along with the

definition of the characteristics that contribute to the estimation of its

cost, schedule, and risk.
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The Acquisition Life Cycle for Major Defense Systems is the formal

decision process regulating the acquisition of electronic systems that

include software. Electronic Systems are one of seven types of system

identified in MIL-STD-881A, Work Breakdown Structures for Defense Material

Items [34]. The acquisition of computers and software that are embedded in

a weapon or command and control system are normally governed by the Air

Force 800 series of regulations.

AFR 800-2 defines the Acquisition Life Cycle for Major Defense

Systems as normally comprising five sequential phases (Figure 1):

o Conceptual

s Validation

s Full-Scale Development

* Production

* Deployment

Review by the Defense Systems Acquisition Review Council (DSARC)

normally follows each of the first three phases and Secretary of Defense
approval is required to proceed from one phase to another. There is some

flexibility in the composition of the phases. In general the process is

designed to insure:

o Continuing operational need

e Adequate system performance

* Acceptable cost

* Favorable cost effectiveness relative to other alternatives

A Decision Coordinating Paper (DCP) is prepared to support each

DSARC review.'

The procedure used as the basis for the definition of need is taken

from [34] which is based mainly on interpretations of:
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AFSCP 800-3

AFR 800-14, Vol. II

AFR 800-2

DoDI 5000.2

Summary of the Development Phases.

Conceptual Phase.

1. Explore, formulate, and evaluate possible system requirements.

2. If necessary, devise an optimum, affordable, and cost effective

preferred approach to the system's development, production,

and deployment.

Considerable preliminary design and analysis of software may be necessary

to support these objectives. Demonstration, prototype and simulation

software may be required. Conceptual Phase design and analysis should be

limited to whatever is necessary to establish technical feasibility and

credible estimates of costs and development times. Design and analysis

should be most detailed where technical risk is greatest.

The Conceptual Phase has no prescribed tie limit. Before DSARC

review of the draft DCP begins, the program can be terminated with the

approval of the highest command level which authorized it. Once DSARC

review begins, the Conceptual Phase will normally end with the Secretary

of Defense's Program Decision to proceed into the Validation Phase (with

or without specific redirection), or to end the program.

Validation Phase.

1. Assess the preferred design approach selected during the

Conceptual Phase by comparing it with the Initial System

Specification.

2. Rectify any difficiencies or develop a new approach if necessary.

3. If and when a sound system design approach is achieved, provide

sound technical, contractual, economic, and organizational bases

for the Full-Scale Development.
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Most Validation Phase work is to demonstrate the feasibility

of doubtful components and subsystems and interface definitions, and to

improve estimates of performance cost and schedule. All can be

considered risk-reduction measures.

The Validation Phase may also include contracted design competitions.

The Validation Phase is intended to reduce risk significantly and

to allow negotiation of clear contracts for the subsequent acquisition

phases. The development of unambiguous specifications and testable require-

ments is most important.

Full-Scale Development.

1. A working prototype of the system (or the system if there are

no replicas).

2. Test results proving that this prototype can meet its functional

and performance requirements.

3. A Cadre trained in the system's operation and maintenance.

4. The documentation needed to begin the system's Production

Phase (if any) or otherwise needed for its Deployment Phase.

For the system's software the Full-Scale Development Phase is

intended to yield the initial operational versions of the computer programs,

not prototypes.

Tne system's operational software (i.e. the executives and applica-

tions programs necessary to meet the system's operational requirements),

, us the support software necessary to build and maintain the operational

softwdre and to support the Design, Test, and Evaluation and initial

Operational Test and Evaluation functions must normally be completed

daring Full-Scale Development.
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If proprietary software is to be incorporated into the system, the

Government must decide whether the price represents an advantage

over contracted development.

Production Phase.

Activities are limited to maintenance and modification of existing

software. They may also include site-specific testing and installation.

Software has a life cycle of its own (Figure 2) that exists in

concert with the weapon system life cycle. Software requirements for

embedded subsystems are established primarily by the needs of the Weapon

System.

Table 2 [34] describes the activities and products comprising the

Software Life Cycle.

The functions assigned to the software comprise, along with the

definition of the computer elements, the basis for estimating the time,

effort, and other resources required to create the software and test it.

If the investment needed to provide the prescribed software functions are not

acceptable, then a redefinition of the allocation of functions among

hardware and software may be necessary. If this doesn't resolve the

conflict, it may be necessary to revise the requirements.

This iteration between software requirements and feasibility is

continuous throughout the development phases. Problems thought solvable

during the Concept Phase may later prove not to be. Sometimes the software

definition and design process must go on for some time before negative

re, are obtained.

development of systems that contain software is an iterative

proct the steps of the software life cycle are an integral part of

the system life cycle. Figure 3 [35] describes the combined system-software

life cycles.
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2
TABLE 2 SOFTWARE LIFE CYCLE ACTIVITIES AND PRODUCTS

ANALYSIS PHASE

Activity Product(s)

A. Devise & analyze alternatives A.l. Tradeoff study reports
for the system, Segment (if 2. Initial or Authenticated
any), or any Software Subsystem System Specification &
directly containing the Computer Segment Specification
Program. (if any).

B. Allocate requirements to B.l. Authenticated Development
the Computer Program: i.e., Specification for each CPCI.

Functions. 2. Possible higher-level speci-
Performance (e.g., response fication, and ICD, changes.
times). 3. Parts of draft Product Speci-
Interface (with others). fications containing design
Design Constraints (e.g., approaches for each CPCI.
prescribed algorithms, core
& processing time budgets).

Testing.

C. Conduct PDR(s) for the C. PDR minutes and action item
Computer Program's CPCI(s). responses.

DESIGN PHASE

Activity Product(s)

A.l. Define algorithms not pre- A.l. Functional flowcharts.
viously prescribed. 2. Detailed flowcharts.

2. Design data storage structures. 3. Data Format descriptions.
3. Define Computer Program logic. 4. Description of algorithms

not previously prescribed.

B. Allocate Computer Program B. Preliminary Product Specifi-
requirements internally cations, including the above.
(e.g., to CPCs)

C. Test Planning. C.l. System, Segment (if any)
and CPCI Test Plans.

2. Preliminary CPCI Test Procedures.

D. CDR(s) for the Computer D. CDR minutes & action item responses.
Program's CPCI(s).
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TABLE 2 (Cont) SOFTWARE LIFE CYCLE ACTIVITIES AND PRODUCTS

CODING AND CHECKOUT PHASE

Activity Product(s)

A. Coding. A-B. Code.

B. Limited checkout of compiler
or assembly units.

C. Corresponding logic & data C. Altered Product Specifications,
structure revisions, including compiler/assembly

listings.

TEST AND INTEGRATION PHASE

Activity Product(s)

A. Test Planning. A.l. Final CPCI Test Procedures.
2. Segment (if any) and system-

level Test Procedures.

B. Module tests. B-0.1. Test Reports.
2. Computer Program coding

changes.
C. CPCI tests (PQT & FQT). 3. Modified Product

Specifications.
4. Possible high-level specifi-

D. Software Subsystem integration, cation, and ICD, changes.

INSTALLATION PHASE

Activity Product(s)

A.l. DT&E of any Segments. A.l. Segment (if any) Test Reports.
2. System-level DT&E. 2. System-level DT&E Test Reports.

3. Computer Program coding
changes.

4. Modified Product Specificaitons.
5. Possible higher-level specifi-

cation, and ICD changes.

B. Site Adaptation (if any). B.l. Possible site-specific coding
changes. If so:

2. Version Description Documents &
3. Test Reports.

C. IOT&E C. IOT&E Test Reports.
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TABLE 2 (Conc) SOFTWARE LIFE CYCLE ACTIVITIES AND PRODUCTS

OPERATION AND SUPPORT PHASE

Activity Product(s)

A. FOT&E A. Analogs of Test and Integration
Phase products.

B. Construction, installation, & B. Related documentation.
checkout of software mainten-
ance & training facilities.

C. Software maintenance & C.]. New software Versions
modification. 2. Version Description

Documents.
3. Possible specificaiton

changes.
4. New or revised Test Plans

and Test Procedures.
5. Additional tests.
6. Additional Test Reports.

Abbreviations

CDR Critical Design Review
CPC Computer Program Component
CPCI Computer Program Configuration Stem
DT&E Development Test and Evaluation
FOT&E Follow-On Operational Test and Evaluation
FQT Formal Qualification Test
ICD Interface Control Drawing
IOT&E Initial Operational Test and Evaluation
PDR Preliminary Design Review
PQT Preliminary Qualification Test

Source: [343
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Software cost models must contribute to a rapid determination of

economic feasibility of the software components. Ideally a model will

help integrate time, effort and risk in order to establish feasibility.

It will do this using information describing the system attributes.

In the following discussion, the weapon system acquisition cycle

is used to define the cost estimating needs and the software life cycle

is used to describe the elements of software system cost.

Table 3 [34] details the weapon system and related software subsystem

activities comprising tne acquisition life cycle.

Analysis of Table 3 *ndicates a continuous transition in the

needs for estimates over the development cycle. During the early phases

the need is for high level or aggregated estimates of development time

and cost for any number of alternative design concepts. As the system

design matures, its elements become defined at lower levels and each has

a greater number of attributes. The individual element has a more limited roe

in the system, but it is described in greater detail and it must function in

concert with many other elements. Initially, we might speak of the

navigation subsystem and its functions. Later, we would describe the

alignment element with its functions, speed, accuracy and interfaces with

the accelerometers, gyros, etc. Therefore, inherent with the process

of increased system definition is the need to describe levels of inter-

gration and interface in addition to component attributes.

The need for software cost and resource estimating during the

development life cycle proceeds from the rapid calculation of gross

estimates for several concepts to rather detailed estimates devoted to

a single design. Ideally the estimAting methods needed to support this

process would be functionally oriented in the early phasesand evolve to

variables describing design characteristics in the end phases.
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The need for precision goes through a similar evolution. During

the early phases it is only necessary to determine' if a concept is totally

out of reach in terms of cost or development time. Subsequently it is

necessary to weigh the cost and risk of one design concept relative to

another. The final estimates involve the commitment of funds and

personnel and demand the greatest possible precision.

Table 3 has been used to prepare descriptions of five cost

estimating situations that represent the different kinds of estimates

described above. These descriptions (Table 4) which include the scope

and detail of the estimates and their accuracy are the basis for evaluating

how well each model satisfies the needs for cost information during the

weapon system life cycle.

Having described the general need for cost information in terms

of life cycle scope and detail, it is possible to extend the criteria in

Table 4 to include the Work Breakdown Structure (Appendix B). This

extension provides a means of precisely describing all the software estima-

ting needs. Each major element of the WBS (Level 1) is divided into

appropriate measures of the software product (Level 2). The relationship

between the two levels is shown in Table 5.

Appendix B describes three WBS levels. Table 3 indicates that

program management needs extended to the third level. However, none of

the models evaluated provide cost estimates in such detail. Carrying

this detail in the evaluation process is a needless complication consider-

ing that none of the models can provide the information. Therefore, the

third level of the WBS is considered to be a description of the data that

should be included in the higher level estimates. The first two levels

will be the only ones considered in the remainder of the report.

Figure 4 depicts the software cost elements in graphical form, The

col'umns represent the Software Life Cycle phases and the rows represent
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TABLE 4 FIVE COST ESTIMATING SITUATIONS

I. Conceptual Phase, Cost Feasibility

NEED

In support of the analysis of perceived deficiencies In existing

systems,, estimate software component costs and development times

for defined alternatives.

SCOPE

Total life cycle cost, Conceptual through O&S.

LEVEL OF DETAIL

Weapon System - Total cost of all software components.

INPUTS

System performance and functions.

LEVEL OF PRECISION
+ 30%

E XAM LE

The software-related costs for a new interceptor aircraft.
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TABLE 4 ,Cont) FIVE COST ESTIMATING SITUATIONS

2. Conceptual Phase, Preliminary System Design Studies

NEED

Support the evaluation of functional allocations for system

components by estimating software development time and cost.

SCOPE

Cost of defining, designing, producing and owning major

software components.

LEVEL OF DETAIL

System functional components.

INPUTS

System segment performance, preliminary performance allocations,

preliminary size and system interface descriptions.

LEVEL OF PRECISION
+ 25%

E XAMP LE

Compare the software development time and cost for a four

function versus a five function navigation system.
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TABLE 4 (Cont) FIVE COST ESTIMATING SITUATIONS

3. Conceptual Phase, Preliminary Contract Cost and Schedule Estimates

NEED

This need is repeated as necessary to support the

evaluations of alternatives leading to DCP I. The level of detail

remains fairly constant although some analyses may require

defining critical components to more detail than the others.

The only thing really changing is the confidence in the results.

System components are defined by function and performance.

SCOPE

Validation through O&S.

LEVEL OF DETAIL

First level WBS for each software component

INPUTS

Software functions, performance, interfaces, inputs, outputs.

LEVEL OF PRECISION

+ 20%

EXAMPLE

Estimate the development time and cost for a real time display

system to be let out for bids.
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TABLE 4 'Cont) FIVE COST ESTIMATING SITUATIONS

4. Validation Phase, Support of Validation Phase Contracting

NEED

Allocate funds, support RFP preparations and assist in software

related proposal evaluations for Validation Phase contracts.

SCOPE

Software system design through O&S.

LEVEL OF DETAIL

Software WBS level 2, system segment.

INPUTS

CPCI characteristics and performance.

LEVEL OF PRECISION
+ 15%

EXAMPLE

Estimated cost including facilities, training, etc for the

weapon delivery software for a fighter-bomber.
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TABLE 4 ,Conc) FIVE COST ESTIMATING SITUATIONS

5. Full Scale Development, Evaulate Progress

NEED

Monitor the progress of software system components during

development.

SCOPE

CPCI design through O&S

LEVEL OF DETAIL

Software WBS level 3, CPCI and CPCR.

INPUTS

CPCI and program functions and performance.

LEVEL OF PRECISION
+ 10%

E XAMP LE

Prepare management decision boundaries for cost and schedule

for a software development project under contract.
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TABLE 5

DECOMPOSITION OF SYSTEM ELEMENTS BY MAJOR WORK
BREAKDOWN STRUCTURE DEFINITIONS

LEVEL 2

i I , c t

DEFINITION XI X X

CODING xX IX

DATA CONVERSION x

IINFORMAL TEST ' INTEGRATION ix X

II I

INSTALLATION lx
DEVELOPMENT FACILITIES x x I

TRAINING X IX
MANAGEMENT i x if xif li
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L!FE CYCLE PHASE
CODING ,TEST AND

ANALYSIS DES:G'J AND INTERAT INS O&S
ICHECKOUT NE,

WBS ELEMENT

DEFINITION SYSTEM *

SEGMENT*

CODING C PCI
CPRC*B

DATA CONVERSION CPC100 00

!NFORMAL TEST AND INTEGRATION r.

FORMAL TEST AND INTEGRATION ISYSTEM

SEGMENT

S CPCI

'NSTALLATION I PISYSEMD

DEVELOPMENT FACILITJIES SYSEM ~ H8H~

7RAINING SYSTEM CC

MANAGEMENT SYSTEM

SEGMENT

BASELINE ESTABLISHED

* Definitions of these terms are given in Section 3.1.

Figure 4 The Oefinition of the System Elements and
Their Relationship to t'ie Software Life
Cycle and WBS
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the elements of the Work Breakdown Structure (WBS). The WBS elements are

identified according to the physical decomposition of the software system.

The software system is composed of the following elements:

* System A body of software that performs an identified function

in the weapon system. It is complete and distinguish-

able from other bodies of software.

e Segment A major subsystem or component of a system usually

identified with a specific function.

e Computer Program Contract Item (CPCI) A body of software

identified for acquisition by separate contract. In

large systems it is usually part of a Segment. In

smaller systems a CPCI may be equivalent to a Segment

or even a System.

* Computer Program Reporting Component (CPRC) In large systems this

represents a body of software defined for purposes of

configuration control and program management.

Figure 4 indicates that the system cost elements may cross life

cycle phase boundaries. It is important to depict this relationship because

many cost models do not make clear distinctions between the WBS elements

and phase costs.

Figure 4 represents a detailed template for depicting the estimating

needs represented by the five cost estimating situations in Table 4. if

the cost estimating situation calls for a system level estimate that includes

the entire life cycle, the ideal cost model would be shaded at the system

level for the entire row. WBS elements stated at the lower levels such as

Coding and Data Conversion would be cross-hatched to indicate that tneY are

included in the estimates at the system level of aggregation.

In Section 5, Results, Figure 4 is used to describe each model',

outputs. In that section a summary is presented that indicates how we!
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the model satisfies the needs associated with the five cost estimating

situations.

3.2 ACCURACY

Total effort was selected as the performance measure for evaluating

model prediction accuracy. The selection was made because of it is relative-

ly easy to justify and interpret. It was also done to fix attention to the

single model output that everyone should agree is the most important indi-

cator of model prediction accuracy.

It is possible to envision several alternatives for specifying the

accuracy of a model estimate. For example, we might use estimated values

of the costs of the life cycle phases to construct a weigi'eo estimating func-

tion. The function values obtained from the outputs of the models for a

given project would be compared withothe value obtained from actual measure-

ments to produce error measures. The weights in such an approach might

also be obtained from the test data sets. Error functions could also be

constructed from the different types of output information such as effort,

computer time and facilities.

Total effort was chosen rather than cost because most of the

models being evaluated calculate effort and because the available

historical data are in terms of effort. However, the use of effort is

desirable also because it avoids the need for adjusting estimates for

variations in the value of the monetary unit and the problem of measuring

overhead and indirect costs. These items vary significantly from one

organization to another.

Unfortunately, it is not possible to specify a uniform basis for

the total effort measurement. As can be seen in the Results section, the

different models do not include the same scope of life cycle activities

in their estimates. Therefore, the measurement of prediction accuracy had

to be applied to the primary span of the model prediction. In most cases

this means the prediction that is constructed using the primary elements

of the model structure. Some models use these primary estimates to
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compute other phases from fixed ratios. We believe that the performance

of the model structure is better represented by the initial estimate in

such cases. Having selected the basis for measuring model estimating

performance, it remains to define the way to use the measurement to obtain

comparisons among the models.

Mean Proportional Error. The ratio of actual to estimated project

size describes the error as it relates to the estimate. It is

directly transformable into the percentage error of the estimate

itself. Being a proportion it allows larger errors in larger

projects, but this is acceptable because we tend to think in terms

of percent error rather than absolute difference. A 10 manmonth

error in a 1000 manmonth project is not as important as the same

error in a 6 manmonth project. The disadvantage of the MPE as it

is formulated is that it becomes compressed by estimates that

are large compared with the actual value. This makes the standard

deviation small when taken over a given data set. To reverse the

numerator and denominator results in a similar weighting when

comparing samples containing large projects with samples made up

of small ones.

Average Error. The average difference between the estimated and

actual effort taken over a data set presents a measure of accuracy

that is not weighed by either the size of the estimate or of the

actual measure. This avoids the problem associated with the mean

proportional error, and dividing the average error by the mean

project size in the test sample provides scaling for the measure.

Root Mean Square Error. A characteristic of some software cost

models is their tendency to"produce estimates that are very

different from the actual experience under certain conditions.
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It was decided to select an error measurement scheme that

penalizes such extreme behavior. The root sum square error

measure provides such a penalty and therefore it was selected

as the method for making comparisons among the models. The RSS

error is divided by the average project size in the sample set

for scaling. The measure is defined to be:

N 2 1/2
RMSE (ACTi " EST i ) ]

ACT l NCT
Cl T

Where:

ACT The measured size of the ith

project in the sample set.

EST i = The estimated size of the ith

project.

N = The number of projects in the

sample.

3.3 OTHER EVALUATION CRITERIA

In addition to the information provided and the prediction accuracy

of software cost estimating models, there are a number of model attribute%

that would influence the decision to select one model structure over the

others. These would include:

e Data needed to execute the model

* Effort needed to execute the model.

* Time required to obtain estimates.

* Total cost of estimates.
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Infor ation is presented that would allow anyone to make inferences

regarding a model's ranking regarding such criteria. However, no attempt

was made to compare the models according to them for the following reasons:

# The criteria are difficult to measure. Any weighting of the

attributes to obtain a composite score would be arbitrary.

o Any deficiencies would be model specific and the evaluation

is concerned with the performance of model structures.

4 A model that provides the information needed and does it

accurately would be preferred no matter how badly it scored

on the other measures.

The findings in this report should indicate how well one model

structure performs in The test environments compared with the others

evaluated. If two models satisfy the primary criteria equally well, it

is a simple matter to observe the other attributes that may be important

to an individual organization such as ease of execution, data, cost, etc.

These considerations would have different importance to using organizations.
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4 EVALUATION PROCEDURE
The following steps were executed in performing the evaluation of

the cost estimating models:

1. Select models for inclusion in the evaluation.

2. Obtain model descriptive materials.

3. Analyze definitions of model input and output variables.

4. Prepare model descriptions.

5. Classify models by type.

6. Prepare list of input and output variables.

7. Compare model outputs with established evaluation criteria

for needed information.

8. Construct test data sets.

9. Analyze definitions of items in test data sets.

10. Establish means for estimating missing input data items.

11. Prepare input data.

12. Execute models.

13. Calculate comparative estimating accuracy according to

established accuracy evaluation criteria.

Several steps presented problems or require some explanation:

e Definitions of model and data set variables.

* Model types.

e Test data sets.

a Missing input data items.

DEFINITIONS OF MODEL AND DATA SET VARIABLES.
A problem that continues to limit the development of accurate

software cost models is the lack of good quality data With which to test

theories describing the relationships between cost and predictor varia-

bles. An important aspect of data quality is the enunciation ana consis-
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tent application of definitions of the variables describing the software,

its development environment, and its performance. A substantial amount

of effort was spent during the evaluation of the models to minimize the

adverse effects arising from discrepancies in data definitions. The

following paragraphs will examine in detail two important model variables:

software size and development effort.

Size Definitions. Eight of the nine models included in this evaluation

use size as an input, yet problems occur when trying to determine precisely

what a value of the size attribute represents. Often researchers either

through oversight, lack of precise data or ignorance of the problem fail

to specify the size measure completely. For example, nu.mber of source

statements and number of object instrjctions are two of the terms Lhat

are frequently presented to software developers in questionnaires qithout

further qualification. As a result it is possible to obtain historical

data that are internally inconsistent by 100 percent because of the vague

definitions. Obviously if a model is being used for predictions and the

inputs are off by such an amount the estimates will be similarly affected.

It is likely that in many cases neither the person supplying the historical

data nor the cost analyst realize there are differences in interpretation

of the data.

Consider the deliberation of a programmer who is being asked the size of

one of his programs by questionnaire. The question is: "Number of

Source Statements." If the programs are written say in FORTRAN, the

compiler will normally give a count of the number of lines in the program

which in most cases will be equal to the number of statements. Most

FORTRAN compilers limit one statement per line. If the statement is

spread over several lines for clarity, the compiler still courts ?t as

one line. For the most part the FORTRAN programmer has a ready soirce fir

his response to the question.
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At the other end of the scale is the programmer writing in a

freely structured language such as COBOL. His response is considerably

more difficult. Such language structures use punctuation to delimit

statements and therefore a line of code may have several statements or a

statement may stretch over several lines. Since COBOL compilers do not

usually indicate the number of statements in a program, but only the

number of lines, the programmer has no easy source for the requested

i nformati on.

Theconscientious programmer may make this problem known to the

cost analyst who may or may not be in a position to address it. More

often the programmer will assume the question calls for lines of code or

he may make some arbitrary judgement about the relationship between

statements and lines. In either case there is considerable opportunity

for error in the capture of the most commonly used predictor of program

development cost.

There are other pioblems in interpreting the term "source code

state^,rts" as the descriptor of program size.

Most higher order languages permit the inclusion of comment

statements throughout the source code. These statements usually describe

what the program is doing at various points. Some programmers write

many comments. Large programs exist in which there are twice as many

comment lines as code lines. Other programmers do not write any comment

lines. Even within a single group a large variation exists among

programmers. A programmer who normally comments a program extensively

may do so very sparingly if he is being pressed to complete the program

on a tight schedule.
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Some cost models treat comments the same as lines of cooe;

others specifically exclude them. If asked to measure his program without

comments, the programmer can only estimate. If he has the time and inclin-

ation, he may sample parts of his program to get proportions of comment
lines to code lines; or he may guess. Either way, additional error is

introduced into the measure.

Data specification statements are eliminated from size estimates

for some models. As in the case of the comment lines, the proportion

of specification statements may vary substantially from program to pro-

gram. There is no ready way to count the number of specification state-

ments in FORTRAN. By comparison, COBOL groups these together for easy

access.

Compilers usually make it easy to share source code among programs.

Often code is stored in libraries and automatically called in by the

compiler at the time of complilation. Some compilers count the copied

lines in addition to the rest of the program lines; other compilers

count only the lines calling the library code; and still other compilers

count both sets thereby producing two line counts. Unless the cost
analyst has specified how copied code is to be counted, the responses

among different programmers will not be consistent.

The number of object instructions associated with a program

written in a higher order language has at least as many possible inter-

pretations as the number of source statements.

When a program is written in a higher order language, the code

produced by the compiler and executive support programs is of little
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concern to the programmer unless the code is constrained by size or

speed limitations. But even if the programmer is faced with these

problems, normal practice is to work with the higher order language to

satisfy the constraints. The tendency to work with the higher order

language and the decreasing involvement of programmers with machine level

operations mean that the Information describing the attributes of the

program in its executable form is not generated during compilation and

link editing or, if it is, it is ignored or even not understood.

Given the inclination toward higher level language use, even

if the definition of object program size were very precise, there are

many programmers who would not know how to respond to it properly.

Furthermore, these programmers are not very likely to be frank about

tneir ignorance.

Probably the more common situation, however is that the defini-

tion of the number of object instructions is not precise. There are

several ways that misinterpretations'can occur.

Programs written in a higher order language (or in assembly

language for that matter) go through a two-step process before they can

be executed by the computer. The first step is under the control of the

higher order language processor and it produces machine level code that

needs other code before it can be executed. This code is sometimes referred

to as a relocatable module. The relocatable module is processed by a link

editor routine that produces an executable program. The executable program

inc.ludes all the routines needed in addition to the relocatable module and it

nas an integrated addressing scheme. The executable module is the program that

,.ds needed to solve a given problem. But it can easily be several times

ri: size of the sum of the reloGatable modules that were actually

written. Much of the executable code is taken from the executive library

nid performs standard mathematical functions or drives the computer

ystem peripheral equipment. Furthermore, some computers copy the basic
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library routines many times and insert them in the code; others share the
common code among the modules without duplicating it. Therefore, the

same definition of program size can elicit very different responses for

a program written to the same specifications because of the way the

computer executive software operates or the way the programmer directed

the link editing process.

The computer memory occupied by the executable progra' contains

not only the instructions but also areas reserved for program constants,

data, and temporary input-output data storage. These areas in total

indicate the amount of memory required to execute the programs. The

available memory may be a constraint or otherwise specified by the user.

Sometimes the size of the executable module in words of memory is ,.;_e

synonymously with number of instructions. These two measures may

substantially different.

The data storage area size may be very small comparec w-th the

memory area containing the executable .instructions or it may be many

times as large. Therefore, if the number of instructions is taken to be

the words of memory occupied by the data and instructions, a large error

may result.

Most computers do not incorporate instructions that are al', theu

same size. The number of words of memory required to contain a single

instruction may range from one to several. Some estimate of the average

words of storage per instruction must be made. This average will depend

on the distribution of the different length instructions in a program

and would vary with different types of programs. A program that has a

large percentage of input-output would have a longer average instruction

than one in which logic and mathematical computations predominate.

In order to avoid introducing error into the program size

definition it is necessary to know the following information:
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o Higher Order Language

- Whether the measure is statements or lines of code

- Whether comments are to be included

- How code copied from another source is to be counted

- How data specification statements are to be treated

0 Machine Level Language

- How to count instructions

- Whether data areas are to be included

- Whether relocatable or executable code measures

are wanted

- How to describe the library or copied modules.

Some of the models give very explicit instructions on how to

describe the code size measure. When such information is provided,

we can describe the size input with confidence. Other models are vague

about the definitions and we have had to make some assumptions about

what measure is appropriate.

The purpose of this discussion has been to point out the errors

that may be associated with the use of the size measurement in software

cost estimating. We have been mindful of the points presented above

both in collecting and interpreting the data used to evaluate the models
for this study and in preparing inputs for the different models. We
have read model descriptive materials and when possible we have contacted

the authors when necessary to clarify definitions. When it was necessary

to make assumptions about either the data or the inputs, we have ues-

cribed them. We have also prepared estimates of the errors aszcciatea

with possible interpretations of size measures. Table 6 summarizes
the size definitions found to be used by the models in this evaluation.
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TABLE 6

SIZE DEFIiNITIONS

USED IN THE DIFFERENT MODELS

C,)

0

C) <cj

0j - x NJ L&) Z

(A

S U-1 ~ C-) -- j
"w 0 0 0) 1< " - L

HIGHER ORDER LANGUAGE ( 1 )

'WRITTEN ( 2 )  U S(4) L S(6)

EXECUTABLE S
DATA DEFINITION S
COMMENTS

ADAPTED U L S(6)

EXECUTABLE S
DATA DEFIINITION S
COMMENTS

COPIED OR TRANSFERRED INTACT U
EXECUTABLE S
DATA DEFINITION S
COMMENTS

MACHINE LEVEL LANGUAGE(
3 )

WRITTEN U (4)
EXECUTABLE W I I
DATA DEFINITION
COMMENTS

ADAPTED U (
EXECUTABLE W I I
DATA DEFINITION
COMMENTS

COPIED OR TRANSFERRED INTACT U I
EXECUTABLE
DATA DEFINITION
COMMENTS

(1 Described as Lines (L), Statements (S), Unspecified (U)
(2.; May be further specified as Delivered or Not Delivered
(3 Described as Number of Instructions (I) or Number of Words of Storage (W),

Unspecified (U)
(4 Delivered Code Only
(5' Judgement necessary for consistent results
(6' Secondary input may be used to calculate primary input.
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Development Effort Definitions. Many of the differences between the stated

needs for estimating costs and the outputs of models are semantic. Models

are directly or indirectly formed from experience and what is being pre-

dicted depends on what has been observed. Past data is seldom the product

of uniform consistent definitions or is it even composed of the same

elements. Furthermore, there is no common set of definitions that are

accepted by all cost analysts. When we ask different cost accountants

what is included in a data set under program design cost, we will get

different answers. Even if the answers are in the same terms there is

no guarantee they are consistently interpreted by its originators.

Our best approach is to consider the costs on a relatively high

level of definition (total costs as opposed to subtotals). Then our main

concern is scope. This we will address as carefully as possible. All

this is said not to be negative, but to present an accurate picture of

the conditions under which all cost estimating is done. We as an industry

have established a certain value on historical cost data and this produces

results of a certain quality. As long as the results obtained with this

data are satisfactory, there is no reason to invest resources into making

it better. We can tell if the presentation of the data is consistent

with the Air Force life cycle definitions and the prescribed Work Break-

down Structur. (WBS), but when totals are given we cannot always know if

the elements specified are actually included in the model estimates.

Different elements that comprise development time:

1. Actual at-the-desk design, coding and testing hours.

The physical direct effort required to produce the code.

2. The time charged .to the project but including lost time

or inefficiency (breaks, small routine administrative

chores, etc.)

3. The time not usually charged to the project, but part of

every job. It is understood that in order to realize the
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direct effort described in I., it is necessary to overstaff

so that when these additional hours are lost, the proper

net will result. This last category includes: sick leave,

vacation, training, other scheduled lost time.

Depending on the method used by an organization to identify how personnel

time is accounted for, different portions of items 2 and 3 will be

associated with a given project.

For example, consider how two government organizations, one

from the Air Force, the other from the Army account for non-project time.

AIR FORCE

Hours per Month

Military Civilian

Holidays 6.0 6.0

Leave 6.9 14.8

Medical 3.9 6.8

Education and Training 3.8 1.4

Social Actions,

Organization Duties, etc. 9.4 1.0

30.0 30.0

ARMY

Non-Project Training

Vacations

Excused Time

Holidays

Military Leave 44 Hours per Month

Sickness

Non-Project Meetings

Special Assignments

Assignments to Other Projects J
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There are some measurements that are not possible to interpret

with confidence even after careful analysis of the sources and contacts

with the model developers. Questions would have to be asked of each

respondent or originator of an item of data. We can only list the

possible errors and speculate about what implications the probability

of their existence has for the interpretation of the results.

4.2 MODEL TYPES

Our objective is to obtain insights into the relationships between

types of models and their prediction qualities. Therefore, it is desirable

to establish some method of characterizing the models that describes their

approach to making estimates.

We have selected a scheme that classifies ndel structures into

three types:

* Regression

e Heuristic

@ Phenomenological

The following discussion explains why these classifications were

selected and how they are related to the development of more accurate

model s.

Classification of the models by type is equivalent to forming a

hypothesis about the structural characteristics that affect accuracy.

Selecting only a few types limits the consideration to the major struc-

tural attributes. This is more likely to provide statistically meaning-

ful results.

At the detailed level, each model is unique. It makes its est ,,m:ites

using different parameters and procedures. If it is better or w,'vc. tan

another model, we don't know to which of the differences between tn %cEt.?>
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to attribute the performance. On the other hand, if we hypothesize that

the models fall into certain catagories and if the categorizations are re-

lated at least intuitively to accuracy, then the measures of prediction

performnace can be associated with the selected attributes and model develop-

ment can be directed toward structures with the desirable attributes. The

process decreases the number of model characteristics that are considered

co contribute to estimating performance. If the results indicate no rela-

tionship between the categories and prediction accuracy, then the hypotheses

-in be restated and the analysis repeated.

Top down and bottom up are not sufficient to describe models. For

example, SLIM estimates the development cost (which is not the same

development cost estimated by the Boeing, Doty, or DoD Micro models) for

the entire system then extends the scope of the estimate to include the

Requirements and Specifications phases. The Design and Coding, Integra-

tion and Testing, and Installation phases are fixed portions of the

Development Phase. Therefore SLIM at least in one of its operating modes,

is a top level estimate constructed from individual subsystem

size estimates. That initial estimate, however, includes only a part

of the life cycle effort. The model derives higher and lower level

phase elements from the core estimate.

The Dod Micro Procedure describes the system at the function level

and assembles the weighted components into a net development effort for

the entire system. The net development is extended to include indirect

effort and to create a total system development estimate. This is then

decomposed into phases at the system level.

These two examples illustrate the problem of trying to fit models

to the simple descriptors "top-down" and "bottom-up." It is necessary to

indicate what the top and bottom refer to. When is a system described at

the Lop? How does the scope of the life cycle included in the estimate

compare with the level of, detail in the system description?
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We have tried to develop a method of describing system structures

that considers these questions. By following a line of reasoning that

utilizes a two-dimensional description of software life cycle effort it

is possible to address the life cycle scope and system level of detail

independently. This is an important distinction that has not been

explicitly addressed by most model developers (Wolverton and PRICE S are

two exceptions). Proceeding in this manner it is possible not only to

describe models more accurately, but it provides an insight into the way

the different models proceed from inputs to outputs that is the basis for

categorizing the structures. Hopefully the way models proceed: the method

of making the initial estimate, the method for extending or detailing the

scope and the way of developing detail can be associated with prediction

performance.

As a first attempt, the categorizations are very broad. They

concentrate on the method of making the initial estimate. They also

indicate the general method of making the subsequent estimates. If we look

at the nine models included in this study, we can see three distinct ways

of making estimates. These are described in the following paragraphs.

The Regression Type of Model Structure. One class of model structures

reflects a design based on the selection of the life cycle element of

interest (e.g. life cycle effort, development effort, or coding effort)

and a hypothesized relationship between the element and a number of selected

inputs. The parameters of the hypothesized relationship are obtained by

regression and the model becomes a single cost estimating relationship which

is treated as valid for whatever population is believed by the creator and

the user to be represented by the data used to calculate the parameters.

The data may be stratified in some way thereby producing a set of estima-

ting equations with each member of the set applicable for the estimating

sit. ation described by the stratification parameter.
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We have termed models structures this type "Regression Models"

and they include the Aerospace, Doty, Farr and Zagorski, and Telecote

models. The scopes and levels of these models differ, but they share

the attribute of a single estimating relationship derived by linear

or log-linear regression using various inputs. This is believed to

represent a recognizable approach to model construction and it is an

objective of this eval-uation to learn if the approach produces more

accurate estimates than the others.

The Heuristic Structure. Looking again at the mocels under investigation

we can identify another approach to making estimates.

If we examine the Boeing model, for example, we see that the

system is divided into groups of code that are characterized by type.

Each type has an associated productivity. These values have been obtained

from historical data by visual curve fitting, regression or by subjective

assignment. The application of judgement both in the creation of tne

procedure and in the establishment of parameters is typical of this class

of model structures. A system level estimate is calculated by sunming

the effort for the different code groups. The system level estimate

includes the entire development cycle. This is divided into phases using

fixed ratios. Again, the ratios may be obtained by objective or subjective

means. The phases are adjusted to account for development or system-

related factors that are believed to be phase dependent. The adjusted

phase values are added together to produce an adjusted development effort.

PRICE S, calculates the cost of the Engineering Design life

cycle element from values of system size, resource, aria complexity.

Adjustments are made to this value-to account for development time,

technology, and other factors. The adjusted value is used to calculate

the other elements of the system development cost by means of a

cascading technique. The final time distribution of system cost is

subjected to further adjustments to obtain a predetermined time phasinQ

of the development cost.
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The Boeing and PRICE S models along with the DoD Micro Procedure

..and the Wolverton model have been termed "heuristic." The dominant

characterfst-,icof the Heuristic models is their freedom from any single

mathematical formula'-ion.. This distinguishes them from the cost

estimating relationship that is th, hallmark of the Regression type of

structure. Heuristic models usually combine a number of different estima-

ting techniques. The calculation of the estimate usually flows through

a series of estimates and adjustments. The selection of the individual

steps, the cost elements treated in the steps and the method of determining

the adjustment parameters differ significantly among the models. However,

as an approach to making software cost estimates it is describable and

distinguishable from the Regression approach. Measuring the differences

in estimating accuracy between the two methods would give considerable

guidance for future model development.

The Heuristic model structure combines observation and interpretation

with supposition. It is the formal representation of the subjective pro-

cess of applying experience. Relationships among variables are stated

without justification (e.g. cost per pound decreases with increasing size,

development effort is related to number of file formats, the number of

instructions per month depends on the type of code, etc.). Then subjective,

semi-empirical, or empirical adjustments are made to the base estimate. In

some of the models included in this evaluation this process is extremely

complicated.

The advantage of the Heuristic structure is that it does not have

to wait for the establishment of formal relationships descrio)4-g how the

cost-driving variables are related. The process of model development

proceeds intuitively. As situations are encountered where the model falls

to perform acceptably, an adjustment or addition is made and the prtcces

continues. Over a period of time a given model can become very effe" ,e

in a stable predicting environment. It becomes the repository for t>

collected experience and insights of the model designers and users.
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The Phenomenological Model. One model in the evaluation group, SLIM

is unique in that it incorporates a concept that is explainable in terms

of a basic phenomenon that is not limited to the mechanics of software

development. The relationship can be derived in terms of the rate of

solving problems.

SLIM uses the Rayleiah-Norden function [36] [37] [38] to describe

tne time distribution of effort during the software life cycle. It has

been shown [36] that this function represents the time distribution

of effort required to solve a given number of problems under the assumption

of a constant learning rate. The ability to describe observed processes in

terms of elementary phenomena is characteristic of the more mature sciences.

It allows complex relationships to be explained by interactions among

elementary functions. These functions are verifiable by con-

trolled experiments.

Although it may be argued that SLIM incorporates too many empirical

adJustments to be a purely phenomenological model, it nevertheless is the

only model to use an observed basic relationship to make estimates.

The difference between a Phenomenological model and a model based

on one or more hypothesized relationships which could be used in either a

Regression of Heuristic structure depends on the source of the hypotheses.

If the hypotheses are motivated by tendencies observed among the variables

describing software and its development resources, and if the hypotheses

are describable only within the context in which they are used, then the

resulting model structure is not phenomenological. The phenomenological

model must incorporate ideas or processes that can be observed and

measured independently of the software development process. The justifica-

tion can be derived after it was observed in a scftware context and a model

may oecome phenomenological after it was previously classified otherwise

if tne qualifying condition is satisfied.
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Given the present situation, where no generally accepted statement

exists of the elements of the software development process, the true

phenomenological model is mostly an ideal. But the search for basic

understanding and description must be made if we are to obtain real

improvements in prediction quality. After a while a heuristic model may

collapse of its own weight as it tries to adapt to each new experience.

The phenomenological model ultimately promises the simplicity of represen-

tation that characterizes scientific laws.

The development of phenomenological models requires the explanation

of basic processes. Some of these processes are being investigated.

Halstead [39], for exanle, has explored the relationships between algorithms

and the effort needed to code them. Other researchers have identified

phenomena related to the development of systems such as the law of

increasing entropy [40], life cycle phase interrelationships [41], ripple

effect [42], and others. These elements will undoubtedly contribute to the

establishment of new models based on elementary phenomena.

Describing the Estimating Process. The definition of the model type

classifications is intended to establish general approaches to estimating

that are associated with greater or less prediction accuracy. Within each

general type of structure it is necessary to describe more detailed aspects

of the estimating process.

The estimating procedure is described according to the cost element

that is estimated first and the method used to make it and then the method

used to obtain subsequent estimates.

The cost element used for the initial estimate has an important

bearing on the level of aggregation that is associated with the greatest

accuracy. There may be certain combinations of the level of the first

estimate and different methods for making it that have implications for

accuracy.
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Having identified the best way to obtain the initial estimate, it

should be useful to investigate how subsequent estimates are either

expanded in scope to obtain a synthesis of the entire life cycle or

decomposed to allocate portions of it.

The classifications used for describing the estimating procedure

are as follows:

Level of Initial Estimate

System Total Development

System Analysis

System Design

System Coding

System Test

CPCI ,Total Development

CPCI Analysis

CPCI Design

CPCI Coding

CPCI Test

Method of Making Initial Estimate

Single Parameter

Multi Parameter

Method of Making Subsequent Estimates

Cost Estimating Relationship

Ratios

No Further Decomposition

4.3 TEST DATA SETS

The characteristics of each test data set are d-,. :bc i Appendix

D, Data Preparation. This section describes the environments from whi,.n

the data were obtained and tells how they were obtained.

The data used to evaluate model estimating performance was

compiled from three sources:
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0 U.S. Air Force Data Systems Design Center (USAF/DSOC)

* Goddard Spaceflight Center, Software Engineering

Laboratory (GSFC/SEL)

* The system development center of a large corporation

The data sets from the first and third sources were obtained

by GRC from the developing organizations using questionnaires and

other devices that will be cescribed later. The second data set was

given to us by Prof. V. R Basili of the Computer Science Department,

University of Maryland. The University operates the Software Engineer-

ing Laboratory under a grant from the National Aeronautics and Space

Administration (NASA).

Air Force Data Systems Design Center. The DSDC develops large, standard

'data systems for Air Force use world-wide. These are data management

systems such as payroll, logistics, and personnel applications. The

programs are written in COBOL and are developed and maintained at a

single site. Under two separate Air Force contracts, (Electronic Systems

Division, 1975 [43] and Sacremento Air Logistics Center, 1978 [44]) GRC

collected data describing data system development hours, system

characteristics and personnel data. From these data 17 projects were

selected for use in this evaluation.

Data describing the hours charged by individuals to each

project were obtained from the PARMIS history files. PARMIS was a

project status reporting system used at the Design Center during the

years 1971 through 1978. Hours were reported by project staff members

on a weekly basis. The hours were identified according to project and

activi ty.

GRC wrote a computer program that tabulates the hours for each

system according to a standard set of life cycle phases and activities.
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A questionnaire was given to project leaders who provided

information describing the systems and the experience of the personnel.

The characteristics of the programs were obtained from two

different sources. The command-level systems, which are implemented on

Honeywell H-6000 computers, were processed by a program called the

Program Profile System (PPS), which was developed at the Design Center.

The PPS analyzes the source code and tabulates the number of lines,

statements, record descriptions, etc. The base-level systems, which

are implemented on Burroughs B-3500 equipment were described in the

materials prepared by the Air Force as part of the request for proposals

to replace the base-level systems.

Using these sources and with considerable help from the

personnel at the Design Center, a rather complete and reliable set of

data have been compiled describing the systems.

Goddard Spaceflight Center, Software Engineering Laboratory. The SEL is

responsible for maintaining a high quality data base describing the

software development experience at the Goddard Spaceflight Center. A

full-time staff collects and analyzes data describing the system

attributes, development methodologies, and resource expenditures. The

software operates on large ground-based computers in support of

satellite operations. The primary language is FORTRAN and much of the

code operates under a time constraint.

The data used for the evaluation of estimating accuracy represent

seven systems. Two of the systems are partitioned into ten subsystems.

Commercial Data. GRC has an arrangement with a large corporation where-

by the two companies exchange information describing software develop-

ment experience. The data used in this study was provided by the

company's central system development facility. The applications are

4-20



data management systems written in COBOL and two data base management

languages. The facility utilizes modern programming practices and

provides the programmers with online programming and debugging capability.

Data describing eleven systems were tabulated from company

records onto a modified version of the questionnaire used to capture

the Air Force Data System Design Center data.

4.4 MISSING DATA

The models selected for evaluation represent a range of different

estimating methods. They were constructed in many environments and as a

result they include as a group many different input and output variables.

It was demonstrated in the last section how two of the most common model

variables, size and effort, can be represented by over a dozen different

definitions. Add to these differences, the number of types of variables

that may be used in model construction and it is easy to see how the

requirements for test data variables becomes very large. The nine models

in the test group require more than thirty variables to define their inputs

and outputs, and that does not include the minor variations that exist

among the variables.

It was rot possible to obtain test data that includes all the

model variables and their variations. The compatibility between data

availability and that needed to execute and compare model outputs is

represented in Figure 5.

The Roman numerals identify the inputs and outputs contained in

a given data set. A data set may contain some of the inputs for each of

the models (Greek letters) and some of the outputs, but all the models

could not be executed and compared using the same data.

Our approach was to execute each model according to the outputs

it provides and the inputs needed to make them. If a model is designed

to predict design, code, and test effort, then the test data were adjusted

to describe these portions of the life cycle.
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Missing inputs were obtained using estimating relationships con-

structed from the other inputs. For example, if a model called for a

number of object instructions and a given data set -;ontained only lines

of source code, a relationship was developed from other available data

that could be used to predict number of object instructions from lines

of source code.

Whenever it was necessary to estimate missing input data, both

the expected value and its variance were estimated. The variance is used

to indicate the effect of the uncertainty in the estimate in the evalua-

tion of prediction accuracy.

The input data for each of the models are presented in Appendix D,

Data Preparation. The effect of missing data on the evaluation are

discussed in Section 6.0, Analysis of Results.
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5 RESULTS

The cost model evaluation criteria (Section 3) were designed

to consider two aspects of the state of the art in software cost model

construction:

e The satisfaction of US Air Force needs for software

cost information (Section 3.1); and

e The satisfaction of US Air Force needs for cost estimating

accuracy (Section 3.2).

The objective of the evaluation of the first aspect is to measure

how well existing models satisfy Air Force information needs with regard

to software cost items and their levels of detail.

The evaluation of the second aspect, accuracy, relates estimating

accuracy to model structures. The objective is to identify ways of making

estimates that can be demonstrated to produce greater accuracy. The

objective does not include a ranking of the existing cost models or any

general statements of their individual estimating accuracies. The results

will be used to design a research program for improving the accuracy of

software cost models.

A comparison of the outputs of the models under investigation with

the Air Force estimating needs indicates the following:

e The supporting materials for most of the models do not clearly

state the elements included in their estimates and are not

precise about their definitions.

* The existing models are better able to satisfy information

needs early in the acquisition life cycle.

# None of the models included in this study fully satisfy the

Air Force need for information either with regard to scope or

detail.
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e The models tend to be phase oriented and do not properly describe

activities that cross phase boundaries. This precludes obtaining

data compatible with both management planning (phase related) and

product cost (WBS).

* Although most of the models use the summation of program or

module sizes to make their cost estimates, only one model studied

provides for keeping track of the cost on a component basis and

accounts for the cost of system integration. None of the models

provide for all four levels of system definition called for in

the Work Breakdown Structure (Ref. Appendix B).

Based on the relative root mean square error measure of performance:

* Recalibration* i- the primary f-ctor crtributing to

differences in estimating performance among the models tested.

* The contribution of model structure* to estimating accuracy is

not significant when the models have been calibrated to the

development environment*.

* The development environment significantly affects the relative

performances of the models tested.

* The effect of development environment on estimating performance

precludes the possibility of obtaining generally applicable

measures of model performance without applying additional controls.

* Models that do not use size as an input may perform as well as

those that do.

# The average RMS Error for all tested models is unacceptably

large for Air Force estimating purposes.

e The use of models that are not calibrated to a given development

environment can lead to very large estimating errors.

* The best performance obtained by any group of the models tested

is not adequate for Air Force needs.

The detailed presentation of the results of the evaluation of the

software models is in two parts. The first part compa,es the outputs or

* Definitions of these terms are given in Section 1.5.
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estimates produced by the models with the needs associated with the major

weapon system development process. The second part shows the prediction

accuracy of the different models.

5.1 COMPLIANCE WITH AIR FORCE COST INFORMATION NEEDS

The description of each of the models was studied to learn exactly

what the outputs represent. The Air Force estimating needs (Figure 4)

require information that includes certain cost components (admi nistrative

expenses, non-delivered software expenses, overhead, holidays, etc.)

presented at specific levels of the Work Breakdown Structure (Appendix B.

Table 5).

The following paragraphs describe the outputs of the models in

terms of the needed information. In many cases it was not possible to

determine whether the information being sought is included in the model

est-nates. Model descriptions are often vague about the details of the

outputs. Sometimes it was necessary to acquire a detailed knowledge of

the original data used to construct the model in order to identify the

elements. It is likely that precise answers to some of the questions of

definition are unknown to anyone save the individuals who originally

recorded the data. In many cases, data were not recorded consistently.

Our attempts to obtain precise definitions of model estimates and

to identify the included cost elements indicates that:

s The supporting materials for most of the models do not clearly

state the elements included in their estimates and are not

precise about their definitions.

Our approach was to read the model descriptions, check the

assertions with the original data source when possible, ask questions

of the model creators when they were available and finally to draw o-

our own experience. Hopefully, the results are valid descriptions o;

the model outputs.
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Notice that the figures (Figures 6 through 14) differentiate between

output items that are explicitiy presented (shaded segments) and those

that are included as parts of other values (cross-hatched segments). The

numbers in parentheses indicate how some of the items are grouped for

presentation by the model. A model that completely satisfied all Air Force

cost information needs would have all the segments shaded.

merospace Corporation _kFigure 6). The presentation is typical of the

regression models. System level estimates of cost or effort are obtained

ov fitting linear or iog-linear functions to historical data. The elements

believed to be represented in the total are indicated by the cross-hatching.

However, since the historical data often comes from several sources, the

components are often not the same. Data quality is usually a problem so

little confidence can be given - any description of the elements included.

The figures show only those data items explicitly mentioned in the

model descriptions. Therefore, items such as data conversion and instalia-

tion may actually be included in the Aerospace Model estimates depending

on the data collection and tabulation practices governing the historical

data from which the model is derived. The model does not provide any

breakdown of the system level estimate.

3oeing Computer Services (Figure 7). This model divides the system level

estimate into life cycle phases. The process is similar

to that used in a formal manner by PRICE S and informally or subjectively

by the Wolverton model. In all three models the effort distributed

among the phases is not in fixed proportions. In the case of the Boeing

model adjustment factors reflecting environmental characteristics are phase-

dependent. Therefore, the recombination of the phases makes a total tnat,

is different from the original life cycle estimate. PRICE S allows

wei-nting factors to be applied to the distribution among phases and

Wolverton allows the estimates to be changed to accomodate staffing and

scriedule constraints. All the other models that decompose the total effort

into phases do so with fixed ratios.
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Figure 5 Comparison Between Estimating Requirements and Model

Outputs -Aerospace Corporation
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Figure 7 Comparison Between Estimating Requirements and Model
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Notice that while the Boeing model includes the coding effort, only

the portion that occurs during the Coding and Checkout Phase would be

specifically identified. Any coding done during the Test and Integration

Phase would be represented as Test and Integration effort. A similar

misrepresentation occurs for design that is done after the end of the Design

Phase. This problem exists in all the models. The proper identification

of the elements in the work breakdown structure according to their proper

occurrence in the life cycle will not be possible until considerably more tffc.'t

is applied to the proper identification and tabulation of data describing

the software development process.

DoD Hicro Estimating Procedure_.(Figure 8). A system level estimate is

obtained by a weighted count of program functions. The estimate is

allocated to the life cycle phases using a fixed distribution. Training,

management and other indirect activities are included as a multiplier of

the direct effort.

Doty Associates; and Farr and Zagorski (Figures 9 and 10). These two

models were derived from the same data definitions. The data used in the

Farr and Zagorski model was a subset of that used in the Doty model. The

estimates are made at the program level. The included activities begin

with the detailed program designed and extend to release of the programs to

integration and system testing. The Doty model includes an estimate ot

development time.

PRICE S (Figure 11). By properly choosing weighting factors for the three

life cycle phases and five activities presented by this model, it is

possible to obtain many elements of the desired cost information. PRI E

is unique among the models evaluated in that it allows subsystem level defi-

nitions to be explicitly presented for all of its life cycle and acti,,t!

elements. Adjustments to account for the additional effort needed to

integrate the subsystem into the system may be specified by the user.
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The estimating life cycle begins with the detailed system design;

that is, the definition of the allocated system functions. The phases

overlap in time. The schedule is given.

SLIM (Figure 12). SLIM produces a primary estimate of the development

cost at the system level. It provides an optional "front-end" estimate

that includes the Analysis and Design phases. The Operations and Support

cost can be obtained from another option. Additional options provide

estimates for computer hours and documentation. The life cycle components

are described as overlapping and fixed in relative size. Milestone events

describe the beginnings and ends of the phases.

Tecolote Research (Figure 13). A single system level estimate is procuced

by the model. No allocation of effort among the phases is given.

Wolverton (Figure 14). A very detailed matrix allocates the system

development cost into seven phases each composed of up to 25 activities.

Therefore, a complete description of phases and activities is obtained at

the system level.

Model Compliance with Cost Estimating Situations. In Section 2, the

Air Force need for software life cycle cost data was described in terms

of five cost estimating situations. The imprecise nature of the data

requirements and the dissimilarities in the outputs of the models preclude

the creation of a checklist of defined data items. Therefore, the compari-

son of the model outputs with the needs must be partly subjective.

The comparison of model outputs with estimating needs is made in

two dimensions: scope and detail. The scope of the estimating needs

describes the cost elements associated with the life cycle phases. The

scope of a model's outputs may be limited, for example, to the Codina and

Checkout and Test and Integration Phases. The output detail describes the

ext.ent to which cost elements in each phase represent the system its components

and its associated elements such as Facilities and Training.
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Table 7 4s a summary comparison of the model outputs with the needs

described in Sectin 3. A liberal interpretation of compliance was

exercised in each case. A model was given credit in terms of scope if it

addressed the required phases regardless of the possibility of differences

in definition between the model and the standard. The same criterion was

used to describe compliance with the needed level of detail.

The degree of model output compliance with each stated need is

described using a scale of 1 to 5, where 5 indicates nominal compliance.

In general a model was given one point for including each of the five

major phases in its estimates. The Installation Phase was not included

in the scoring. The detail scale was determined less objectively arj

depended on the analyst's view of the extent to which the model allows

the user to identify the different system elements - especially as they were

affected by phase boundaries.

Table 7 shows that:

@ The models are better able to provide information needed in

early phases of the life cycle than in the later ones.

Most of the models provide the detail needed for system level cost estimates;

but none of them rate very highly when the CPCI and CPRC levels must be

described. Therefore, as the life cycle progresses and the need for

estimates becomes directed toward the components of the system, the model

ratings decrease.

The best performer with regard to detail is the Wolverton model. Its

matrix of phases and activities executed at the CPCI level is able to

provide most of the detail indicated in the WBS. It was not rated as 5

because the model structure does not incorporate a mechanism for accounting

for the different WBS levels and their associated overheads. It was also

downgraded because it does not identify costs for facilities, training and

installation.
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TABLE 7 SUMMARY OF MODEL COMPLIANCE WITH AIR FORCE ESTIMATING REQUIREMENTS

I.~C COCPTA

2. C (DC ccA
coe 4- Lij -3 j U4

ESTIMATING SITUATION -1( 9 - 1 :

1. CONCEPTUAL

Scope 2 4 4 1 1 3 5 4 4

Detail 5 5 5 5 4 5 55

2. CONCEPTUAL

Scope 2 4 4 1 13 5 4 4

Detail 4 4 4 5 5 5 4 4 4

3. CONCEPTUAL

Scope f3 4 4 224 54 4
Detail 2 4 32 24 33 4

4. VALIDATION

Scope 3 3 4 2 2 4 5 3 4

Detail l 3 2 ll 3 2 l 4

15. FULL SCALE DEVELOPMENT
SScope 133 43 3 453 4

D-.taiI 3 2 1 1 3 2 1 4 1

NOTE: Numbers indicate degree to which the model satisfies the
particular estimating requirements. 5 indicates nominal
satisfaction of the requirement.
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The Wolverton, PRICE S and Boeing models offer more detail than most

of the other models. PRICE S allows the separate identification of subsystem

costs and includes allocation of the associated integration costs.

The most common failure in the scope dimension wac the omission cf

the Operation and Support Phase. Only the SLIM model includes an estimate

of these costs. This is followed in frequency by omi;sion of the Analysis

and Design Phases.

As the system develops, the scope of the cost information naturally,

becomes less because the initial phases are completed. That is Vny t ,e

models are rated increasingly higher toward the bottom of Table 7.

The best performer in the scope dimension is SLIM followed by the DoD

Micro Procedure, PRICE S and Wolverton. These latter three models do not

include the O&S Phase in their estimates. PRICE S is downgraded in the

first two estimating situations because it does not include the Analysis

Phase and part of the Design Phase.

From TaDle 7 .ve conclude that:

* None of the models included in this study fully satisfy the

Air Force need for information with regard to scope or detail.

A common fault of the models is the failure to properly describe WiBS

elements that cross phase boundaries. For example, a system design is

often changed after the Coding and Checkout Phase begins (Figure 15),

but few models or data sets identify the design effort that occurs in the

Coding and Checkout Phase. The PRICE S and Woiverton models with their
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Figure 15 Allocation of Work Breakdown
Structure Elements to Life Cycle Phases
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matrix representations of the cost elements do permit sucn distinctions to

be made. However, the PRICE S terminology does not allow direct comparisons

with the Air Force phases and WBS. In general we can state that:

* The models tend to be phase oriented and do not properly

describe activities that cross phase boundaries. This pre-

cludes obtaining data compatible with both management plan-

ning (phase related) and product cost (WBS).

The tested models, with exception of PRICE S, tend to be vague about

how the cost of developing systems relates to the cost of developing system

components. As cost analysts well know a system is more than the sum of

its parts. Each independently developed component must be designed and

redesigned in concert with every other system component. Interface and

performance specifications must be analyzed whenever a change is made to

any part of the system. This is especially true of large software systems,

yet software cost models seldom provide explicit descriptions of these costs.

PRICE S has an operating mode in which individual subsystems can be

estimated using the normal techniques and then combined along with a speci-

fied integration cost to produce a total system estimate. Both the system

and subsystem costs are presented.

The other models simply add subsystems together without regard to

size or the number of organizations contributing to the development. It is

the user's responsibility to add any integration costs and to properly

distribute them.

This leads to our observation:

* Although most of the models use the summation of program,

function, or module sizes to make their cost estimates, only one

model studied povides for keepina track of the cost on a

component basis and accounts for the cost of system integration.

None of the models provide for all four levels of system definition

called for in the Work Breakdown Structure.
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5.2 rIODEL ESTIMATING ACCURACY

According to the procedure described in Section 4 and using

the Relative Root Mean Square Error measure of estimating performance

(Section 3.2), each of the subject models was executed using as many

different input data sets as possible given limitations on available time

and historical input data.

Appendix C shows the individual results obtained by executing the

models. The presentations include estimated and actual values of the

outputs for a given project and several performance measures. The follow-

ing paragraphs present the analysis of the estimating pe-formance. The

objective is to identify specific attributes of the model structures or

the data sets that are associated with estimating accuracy.

The estimating performance of the subject models for the test data

sets is summarized in Table 8. In order to direct attention to structures

and to avoid the appearance of making'general statements about the

prediction performance of the specific models, the models are identified

by codes in the charts. This is done to direct attention but there is

no intention to hide the results obtained for each model. Therefore,

Table C-17, in Appendix C, shows similar information as Table 8 and

includes the names of the models.

The analysis of estimating accuracy was accomplished by testing

several hypotheses associated with:

e Development environment (Data Set)

e Model structure

* Model calibration

@ Use of system size as a mhodel input
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TABLE 8 SUMMARY OF MODEL ESTIMATING PERFORMANCE

RMS ERROR*
MEAN PROJECT SIZE

D A T A S E T

MODEL TYPE COMMERCIAL DSDC SEL

REGRESSION

A 1.35 2.11 0.605

B 135

C 16.9

0 4.92

E (Recalibrated) 0.643 3.933 1 3J9

HEURISTIC

F 0.787

G 1.26 I

H 0.383 1.44 U'-.297I 1
I 0.927

PHENOMENOLOGI CAL

J 0.246 0.216 0.865

N

* RMS ERROR =[ E (ACTi -ESTi) 2]
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Four of the models (A, E, H, J) were executed on all three data

sets. The measures of accuracy obtained from these 12 cases were

subjected to a two-way analysis of variance [45]. The analyis of

variance is a systematic way of inferring the statistical significance

of the relative contributions of each model and data set to the total

sample error*. The contribution of each model to the total Root Sum

Square Error is observed while controlling the contributions made by the

different data sets. The contributions of the data sets can be similarly

analyzed. This procedure was used to test the first three hypotheses

above.

The 12 test cases are tabulated separately in Table 9. Included

in the comparisons are two regression models (A is not calibrated, E is

calibrated), a heuristic model, H, and the phenomenological model, J.

The heuristic and phenomenological models have calibration modes that

can be used before making estimates.

The two-way analysis of variance produces an inter-column F statistic

of 1.97 and an inter-row F statistic of 1.95. The null hypotheses that the

row and column effects on the total mean square error are zero, can both

be rejected with an 80 percent level of confidence. This means that taken

as groups there are differences in estimating accuracy among the models

and among the environments represented by the three test data sets.

* Citing any statistical procedure implies certain assumptions about the
characteristics of the populations represented by the test s.tjects.
The analysis of variance is restricted to normal populations with equal
variances. There is an assumption of linearity of the contributions
of group differences to the total sample difference, independence and
others. We cannot be certain that these conditions are even partially
satisfied. Therefore, the presentation of the statistical results is
not made as proof, but only as an indication of possible support. D'

course, even under rigorous satisfaction of all conditions, causalit,
is never proved. Other observations will be offered in this sectior
without statistical justification, but only justified by conformir.,
to intuitively acceptable patterns.
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TABLE 9 EFFECTS OF ENVIRON'ENT AND MODEL
TYPE ON ESTIMATING PERFORMANCE

RELATIVE RMS ERROR

DATA SET I

COMMERCIAL DSDC I SELMODE L II MEAN

1.35 2.11 0.605 1.36

0.643 0.933 0.309 0.628

H 0.383 1.44 0.297 0.707

J 0.246 0.216 0.865 0.442

MEAN 0.656 1.17 I0.519
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Comparisons among the individual row and column members were made

to learn how the different models and data sets contributed to the over-

all results.

TablelO is a presentation of the error totals by rows and columns.

The table entries are the differences between the marginal values. For

example, the first row and first column entry in the model table, 2.13,

is the difference between the total error on all three data sets for

Model A (4.01) and the similar measure for Model E (1.88). Th2 null

hypothesis that the difference is zero can be rejected with an 80 percent

level of confidence for values in the model table greater than 1.73 and

in the data set table greater than 2.00. Asterisks indicai.e the signifi-

cant values.

TablelO indicates that significant differences in estimating accuracy

exist between Model A and each of the other models. However, the accuracy

differences among the other models are not significant. Mooel A (Aerospace)

is not recalibrated to any of the test data sets; and Model E has the same

form as A (MM = al b) but has been recalibrated. Therefore, the results

indicate the effect that recalibration has on estimating performance.

The recalibration of the form used by Model A produces a model that

has the same estimating performance as the other two models. This suggests

that:

* Recalibration is the primary factor contributing to the difference

in estimating performance experienced by the models in Tatle 9

and

* The contribution to estimating accuracy related to model struc-

ture is not significant when each of the model structures have

been calibrated to a given data set.
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TABLE 10

OAT'04SE COPA!K'S -'; -!NG DE FCPMANCE

Table Entries are Differences in total RMS Error

COMPARISONS OF MODELS

Total RMS A E H i
Model Error 2.12

A 4.01

E 1.88 2.13*

H 2.12 1.89* 0.24

J 1.33 2.68* 0.55 0.79

COMPARISONS OF DATA SETS

Total RMS Comm. DSDC SEL
Data Set Error 2.62 4.70 2.08

Comm. 2.62

DSDC 4.70 2.08*

SEL 2.08 0.54 2.62*

* Difference is significant with at least an 80 percent level of confidence.
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The second statement derives from the fact that the three calibrated

model structures are very different. E is the simple form MM = alb, H

is the PRICE S model and J is SLIM.

The pair-wise comparisons of the estimating performance of the models

among the different data sets indicates that the accuracy measurements are

significantly different for two data sets. This indicates that:

a The development environment is a significant factor affecting

the relative estimating performances of the models tested.

A given model structure will perform better in some environments than

others. This finding indicates the necessity of learning the specific

attributes of a development environment that determine when one or another

model structure should be used. This view is further supported by the

performance of Model J, SLIM, shown in Table 9. Model J is the best per-

former for the first two data sets and the worst performer on the third. It

is essential that we identify the characteristics of the model structures

relative to those of the development environment that affect the ability

of the model to make accurate predictions. This result also substantiates

the need for making accuracy evaluations on as broaJ a range of environments

as possible. In effect we are saying:

9 The effect of development environment on estimating performance

precludes the possibility of obtaining generally applicable

measures of the performance of any model or model structure

without applying additional controls.

The measurement of the effect of recalibration on estimating per-

formance was repeated using some of the other results in Table 8. Since

some of the models are recalibrated on each data set and others are not,

the estimating accuracy of one set, the calibrated models, was compared

with the non-calibrated ones. In order to make the comparisons on the

same basis only one data set was used and the models were separated by type.

I
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The four non-calibrated Regression type models (A, B, C, D) with

a relative RMSE of 6.10 were found to be not significantly different from

the 0.933 value obtained for the calibrated Regression models (E). This

is because the large range in the error values has a correspondingly large

variance which reduces the statistical significance of differences between

the mean and any given value. This is true even when Model C is eliminated

from the group.

The exercise was repeated for the Heuristic model types. In this

case the calibrated models include F, G, and I. These with their relative

RMSE of 0.991 were compared with the 1.44 value obtained with Model H.

The difference is not significant.

These two experiments conducted on a single data set failed to sub-

stantiate the findings previously obtained by executing four models using

all three data sets. However, there is an important difference in the

two investigations. In the first analysis the effect of calibration was

obtained by using the same model structure to represent both non-calibrated

and calibrated models. In the second analysis a group of structures was

usec to represent the non-calibrated models. The results may only indicate

that there is too much variation among the models to allow a significant

comparison of estimating performance. This also indicates that better

criteria for stratifying the model structures are needed. This view is

also supported by the fact that the first analysis was more limited in the

number of model structures it included. Considering the effect of cali-

bration on estimating performance it is necessary to know the portion of

the variation in performance among the mod3l structures that would be

eliminated by calibration. Only after the model structures are recalibrated

would it be possible to explore the effects on accuracy of such model

at:H.butes as: number and types of input variables, level of the initial

estimate, the method of making the initial estimate and the method for

making subsequent estimates.
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Examination of the results in Table 8 suggests some additional

findings that are presented without statistical justification. Considering

the previously observed effects on performance related to recalibration

and environment, these inferences must be considered tentative.

The only model in the test group that does not use a form of code

size as an input (G, DoD Micro Procedure) has estimating performance that

is comparable to the other models of its type. This suggests that:

# Models that do not use size as an input may perform as well as

those that do.

If this is true there may be an increase in accuracy obtained by

using a non-size input in the early phases of the life cycle when size

is known less precisely (see Section 7.1).

TABLE 11

AVERAGE ESTIMATING PERFORMANCE

Average Relative Root Mean Square Error

All Models and Data Sets 1.930

Non-Calibrated Models 3.260

Calibrated Models 0.592 i

Tdble 11 indicates that:

" The average RMS Error for all tested models is unacceptably

large for Air Force estimating purposes,

" The use of models that are not calibrated to a given development

environment can lead to very large estimating errors,

" The best performance obtained by any group of the models testeo

(calibrated, RRMSE=0.592) is not adequate for Air Force needs.
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When using the Relative RMS Error to describe estimating accuracy,

it should be understood that the values do not represent expected values

of error for estimating situations. The RMS Error is a weighted measure

that penalizes large deviations from predicted values. Appendix 3 shows

that large deviations are common among the models and justifies the use

of this statistic.
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0 ANALYSIS OF RESULTS

6.1 ENVIRONMENT

A model is an abstraction of some real process that we try to

represent using some selected variables and a hypothesized relationship

among them. When we construct the model we hope that we have found the

important variables. That is, that the forces at play that determine the

outcome of the process are adequately represented by the model. We never

know for sure if this is true; that is, if the model is valid for all

circumstances. We can only state that if it is observed for a long time over

a large part of the input domain and if its behavior is consistent with exper-

ience, we begin to feel comfortable that it will always behave as the proto-

type behaves. Then, the model is believed to be a valid representation of

the system behavior.

However, we never know when we may wander away from the domain on

which the model is valid. The Ptolemaic model of the solar system was

believed valid until deviations between the model and observation were

established. This process took hundreds of years.

The Newtonian model of dynamic behavior was believed valid until

the relativistic domain was encountered. In both cases behavior was in

;oncert with theory only until phenomena which had always been present

became evident. Then the models were understocd to be either special

cases of a more general representation or simply invalid.

Models of software development are in a primitive state. It 4s

not possible to completely explain observed phenomena in controlled environ-

ments let alone make general statements. Therefore, we must view these

findings as indications of possible relationships and nothing more.

The forces acting on a software development project are many, c -

plex, often subtle aid even counter-intuitive [8][461. They reflec'

himan performance and its variability Among individuals. Individual
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performance itself varies according to many circumstancet.. The forces also

reflect group behavior and the availability of resources. The total of all

factors affecting performance constitute the development environment. If

the personnel, equipment and management structure in a given organization

remain relatively unchanged over a period of time, we have a better prob-

ability of obtaining valid models of the organizational behavior. This is

,azause many of the fcrces that may have profound effects on performance

are not changing and therefore need not be considered explicitly. Their

Jfects will be inclded in the oarameters of the model. However, if the

irganizational environment is changed, the model may become invalid and

its behavior may depart radically from its prototype.

The point of this discussion ;s :hat the results obtairieu ier-

were observed for three different organizations that constitite three

different development environments. We have observed that the collective

behavior of the model types differ among the environments. This suggests

we should be very cautious about drawing inferences about the behavior of

any model in the evaluation and apply them to another environment such as

o:jr own organization. Notice that the rankings of the models on the basis

of accuracy was not consistent for the three data sets. Some of the

models moved from best to worst depending on the test data. We have

cbserved some behavior but we must be very cautious about making any

generalizations. We have the basis for making some hypotheses, but we

haven't proved anything. What has been demonstrated in this study may

be the result of the choice of environments and project types.

6.2 THE EFFECTS OF INPUT ESTIMATING ERRORS

Section 3, Evaluation Procedure, indicates that miIssing ;rA

data were est"mated when necessary to execute the models. It is desirable

to test the effect that such estimates may have on the measurement of

,!,:,parative estimating accuracy.
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The model estimates are subject to random errors associated with

the values of the innuts. This means that the observed differences in

estimating performance are expected values and they are significant subject

to some uncertainty. It is possible that in some cases the uncertainty

may be great enough to prevent acceptance of the result. It was not

possible to establish measures of variation for all the model estimates

for all the data sets. This should be done. It was possible to do it for

two models and the effect on the comparative accuracy measurement is pre-

sented here. However, the presentation is more an illustration of how the

effects of errors in the input values should be included in the analysis of

the model estimating accuracy rather than a representative finding.

Two models, F and G, were selected to test sensitivity to input

errors. These two models use different inputs; and each has several esti-

mated inputs. As shown in Table 8 , Summary of Model Estimating Performance,

models F and G have relative RMS errors of 0.787 and 1.26 respectively. We

want to determine whether the variations in the predictions produced by the

uncertainties in the input values allows us to accept the difference with

reasonable confidence.

Tables12 and13, taken from Appendix D, present the inputs for the

two models. Model F has three estimated inputs and Model G has five.

The tables contain the estimated error associated with each input.

Each model was executed 100 times using input values selected at

ratilaco i Trom normal distributions defined by the given means and standard

leviations. The distributions of the sampled values were truncated to

aomit only positive values.

The executions produced the following results:
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MODEL

Relative RMS Error F G

Mean 0.787 f 1.26

Standard Deviation 0.00893 0.0458

Stand. Dev. of Mean 0.00282 0.0102
I

The hypothesis that the actual difference between the two means is zero

:in be rejected with a confidence level greater than .999. This finding

indicates that the relative estimating performance between the

two selected models is not a random result arising from uncertainties in

the model inputs.

6.3 MODES CALIBRATION

.e nave snown that tne calibration of r)ode' parameters ray ce as

1-iportant as model structure in explalning estimating accuracy. Two of

.re models tested incorporate calibration into the estimating process.

That is, these models require or suggest that data representative of the

oevelopment environment be used to compute model parameters before using

the mocel to estimate new projects. In effect the creators of these

models are saying that in addition to certain fixed parameters that are

permanent parts of the model structure, there are additional values that

describe the effects of the circumstances under which a project is executec.

These values are ideally constant in a stable environment, but some users

aPply judgement based on experience to the selection of values fcr a given

estimating situation.

Mooel H, PRICE S, utilizes two calibration parameters, one sensi*ie '

to total cost, the other to development time [471. The user of the model is

instructed to execute the calibration mode of the model to obtain values

of tne two parameters from past projects that are representative of the

expected development environment.
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Model J, SLIM, has one calibration parameter which is said to

represent the efficienty with which a given organization can produce a

given type of system [48]. This model also has a calibration mode for

obtaining the parameter from project experience.

The calibration of each of the models did not produce constant

values of the parameters. It could be argued that the reasons the para-

meters varied was that the environments were not similar. But this is

circular reasoning. Since in both instances there is no way to measure

the calibration parameters directly, we can only observe their effects on

the model estimates. If deviations in the calibration parameters are

proof that development environments are different from one another when

it was assumed they were representative of the development environment,

then we must admit that we don't know what constitutes the a priori

indicators of environment. If that is t, ue, we have no way to know if

any new project will be represented by one past environment or another

and will not know which parameters to use for estimating.

It is necessary in any calibration of model parameters to know when

calibration is necessary and when any given parameters are applicable in an

estimating stiuation. In the case of models H and J the calibration con-

stants vary significantly among projects within a given organization. This

coupled with the sensitivity of the model outputs to changes in the cali-

bration constants makes the solution of the calibration problem the key to suc-

cessful model performance.

Calibration of models H and J was initially accomplished by

randomly selecting several projects from a set of test projects and

executing the calibration modes of the models. Significant variation in

values of the calibration parameters were obtained for both models. Since

the number of projects available fo measuring estimating accuracy were

limited, it was decided to systematically vary the calibration variables
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to obtain the best estimating performance. This biases the evaluation and

produces the best possible performance for a given data set, but we did not

want to compromise either model's performance because of a chance selection of

projects for calibration. Observing the effects of changes i, the calibra-

tion parameters on the model predictions simulates the learning process

that would occur as experience is obtained using a model in the same environ-

ment. In the case of each model the experience mode gave better estimates

than the model calibration mode.

The recalibration, E, of the Aerospace model (A) was accJmpiishec by a

linear least squares fit of the logarithm of the program size in lines of

source code for the three data sets. Since the parameters obtaineo Nere

used to show estimating performance on the same data sets, the recilihr-.:cn

results are comparable to those obtained using the extended calibr3 ie'

prQcedure on mcdels H and J.

When model structures are calibrated to a given development environ-

ment, the effect of structural differences tend to disappear. This is true

at least for an accuracy measurement derived from a total effort estimate.

However, this ability to predict is very sensitive to the environment and

it is not known how the success of a model in one environment i! r503ted

to success in another. We don't know huv, to measire an 3nvirontient's attr -

butes to know if it belongs to the same population represented in a given

data set that was used to obtain the model parameters. We only know that

for the case where it is known that a project is a member of a Cata iet,

the performance is within observed limits. But even within a cdlibration

data set the differences in estimating accuracy can be large. We have

shown that calibration is effective in increasiig estimatin,. acc.jracy, It

we don't know when calibration is necessary or which nistoricd oroje,:t

to include in a calibration to obtain the best accuracy. We have seen some

classifications of development projects according to Suc& descriptiers is

commercial, scientific, and tioie critica 'U :" " .se

definitions are never explained.
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The problem of selecting a model for a given estimating situation

may be stated more clearly in terms of specific models. Fcr example, assume

we nst select among models E, H, and J to make an estimate of software

cost. This presumes that data are available to calibrate the models. First

we must decide if the development environment is comparable to one described

by one of the three test data sets. If the development environment is

similar to SEL, Models E or H should provide the most accurate estimate.

If the environment is more like the Commercial or DSDC environments, Model

J should be the most accurate. The problem is that we don't know which of

the many attributes that may describe a development environment are suffi-

cient to determine the equivalence of two environments for estimating

purposes.

6.4 THE USE OF UNMEASURABLE VARIABLES AND PARAMETERS

It is possible to identify two points of view that are evident in

the choices of model predictor variables and parameters. One grcup of

models includes only variables that can be readily measured at some time

durinq or after the development of a software system. Definitions may

differ in detail, (e.g. program size) but they can be measured. The

important consideration is that the estimate of the variable can be

verified subsequently and if the prediction is off, we will know whether

it is because the estimate or the model was wrong.

The second type of model includes subjective variables that may oe

representive of important attributes of software development but are not

expressable as medsurable quantities. An example would be a variaole repre-

senting the difficulty or complexity of the development effort relative to the

ability of the development group. It may be possible to obtain a consensus

among analysts about what these values should be, but the values are never

observable before or after the software development. Therefore, if the
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estimate subsequently differs from experience, we cannot know if the dif-

ference was because the predictor was not estimated properly or the model

failed to perform. We can discuss whether the initial extimates were appro-

priate given past experience and the characteristics of the software and

the development environment, but the results are always subject to inter-

pretation. This is especially true if the model estimates are sensitive

to the subjective parameters.

The exclusive use of measurable variables may unnecessarily limit

re development of model structures. It may be that it is not possible,

given the state of the software engineering art, to identify and quantify

the variables that determine the cost of developing software. On the otner

hand, too much reliance on subjective inputs may perpetuate the concept of

estimating as a black art that cannot be explored objectively. It may L±

best at this time to pursue a policy that favors the maximum use of measur-

able predictors but recognizes the possibility of using subjective inputs.

Subjective estimators supported by carefully documented guidelines for their

ialuatation may provide reliable estima4les. Therefore, we should accept such

models as legitimate interim steps which may provide accurate estimates

and possibly insights into more objective measures.

The problem remains, however, of making an objective measurement

of the prediction accuracy of models that include unmeasurable inputs.

There is a tendency to play with the subjective models until good results

are obtained. The fact that good results can be obtained may be signifi-

cant by itself, but model sensitivity may ensure this. The process may be

compared to the natural use of the model in any stable prediction environ-

ment. But the fact remains that the comparisons between the models are

not being made on the same basis. Our conclusion is that the only evalua-

tion of a subjective model (one that includes one or more major parameters

that can't be measured) is to observe, if in a stable environment where

the type of software being developed is the same and there are no

upheavals in the organization o- the personnel, whether the parameters

benave in a predictable fashion. If this Is true, it would seem that the
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model can be used in that environment for the tested type of software.

But if given a stable environment, the parameters that give the best a

posteori predictions do not behave in a moderate, predictable fashion,

then the model probably is not a useful tool for that environment.

In either case no general conclusions may be drawn about the values

of the models in other environments or for that matter in the same environ-

ment if the type of development changes significantly. Here significant

is not definable because there are no reliable principles that define the

domain of the predictors. Therefore, we never know when they may become

unreliable or invalid. This will be true to some extent for the objective

models, but it is of much greater import for the subjective models.

Our evaluation objective is to learn if certain model structures

can be demonstrated to be better predictors than others and if so to

recommend how future model development should proceed. Our interest in

the subjective models should they exhibit positive qualities is perhaps

to learn if the subjective variables can be quantified or at least to

learn the boundaries of the regions within which they may be used success-

fully.

6.5 APPLICABILITY OF THE EVALUATION

The evaluation is made using data obtained from three different

environments. They were obtained using questionnaires to supplement

other measures (e.g. time reports). The system developers were contacted

whenever data seemed inconsistent with itself or failed o satisfy the

analyst's intuition. However, as was the case with the SDC data and as

Nelson [50] expressed so well:

"All the data used from both the statistical analysis

and the literature were data of opportunity, i.e., we

took what we were able to get in the time available.

Hard data on the costs of computer programming .

are scarce commodities both in computer programming
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organizations and in the published literature. Few

numerical data are recorded; fewer yet are recorded

under 'controlled' conditions, and still fewer are

suitacle for generalization to other situations .

The responoents to the questionnaire were under no

obligation to assure completeness and accuracy even

when data were readily available. Because they were

suspect, some of the data collected were rejected

prior to the analysis. But even those data used in

the analysis are likely to have a variation in

reliability .

This is a frank and somewhat negative evaluation of the data quality,

but before anyone hastens to disparage the results because they don't support

their own experience or because they fail fo show their favorite model to

be as good a performer as they believe it to be, we should state that the

data used were of as good quality as any other available for cost analysis

and considerably better than most. Given the opportunity to analyze most

software development data in detail [51] [52] we would find

the same kinds of deficiencies that we have expressed in assessing the

data on which this analysis is based. If someone has executed a model

that has historically performed better for them than is presented here,

then we would argue that there is a fortuitous fit between the character-

istics of the model and the environment in which it is being used. Nothing

in this report should be constr,.ed as a general statement about model per-

formance. We can only describe the models' performances as they were repre-

sented in a very careful analysis that used good quality data and an

objective comparison.

This evaluation has shown what Dther researchers have already expressed

[31] [431 [47] [48] [49] [50] [53] [54' [55]: that model performance given

the ilmitations on standard development ._c~eaures, derinitions ana under-

standing of the cost driving factors is very much environment dependent.
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We think the results give a good indication of what can be expec-

ted when these models would be used by an outside agancy such as the Air
Force when trying to make estimates in support of the Major Weapon System

Acquisition Process. This was our objective and we think we accomplished

it. We readily concede that given the opportunity to calibrate a given
model over a period of time in a stable environment, that better performance
might be obtained than is presented here, but that is a different estimating

situation from that considered in this analysis.
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7 RECOMMENDATIONS

Four of the five cost estimating situations described

in Section 2 occur when very little is known about the development

environment. Given the si-nificance of the effects of environment and

calibration, it is necessary to develop methods whereby the Air Force

can overcome the disadvantage of operating at a distance. The Air Force

must identify and obtain the data items that will ensure accurate estim-

ates in any specific environment. These would include data that char-

acterize the past performance in that environment as well as items of

importance to the project being estimated. The Air Force must obtain

the visibility into a cost estimating situation that is presently avail-

able only to the persons who are members of the organization and who have

first hand experience with that organization's performance.

Under this approach model structures will be sought that are easily

calibrated to a given organization using auditable historical data provided

by the organization. These data and others specific to a given project

would enable the Air Force tu validate a proposal for software development.

A collection of such data would characterize any group of organizations

and would be used in the initial phases of the life cycle.

The following recommendations describe a course of action that wi'l

provide the above capability. The objective of the recommendations is to

place the analysis and synthesis of Air Force software cost estimating

models on a systematic basis.

7.1 MODEL DEVELOPMENT

The results of the accuracy evaluation suggest that the best way

to make cost estimates is to use the simplest model structure and to

calibrate its parameters to represent the development environment. However,

this approach fails to consider several factors:

* The measurement of estimating accuracy in the present

study does not consider the need to estimate the elements

of the Work Breakdown Structure,
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* None of the model structures achieved the needed level of

accuracy,
* The accuracy of the models in this analysis is overstated because

it reflects no error attributable to uncertainty in the input

values. This error changes during the life cycle and is

aifferent to each input.

It is very likely that the incorporation of these considerations

into a further analysis would affect the findings regarding the model

structure. Whereas a simple structure may be adequate for estimating total
development effort, a more complex structure is needed to define cost

elements for a single phase at a lower level of the WBS. Therefore, the

present findings must be considered inconclusive regarding the effects of

particular structures on prediction accuracy. The effects of calibration
and environment are of a comparable magnitude to the variations among

tne individual models within a type category. Additional studies are
needed to quantify the following effects on prediction performance:

e The level of the initial estimate.

0 The method of making the initial estimate.

s The method of making subsequent estimates.

0 Alternatives to the size measure.

One analysis that is suggested by the present study is the determination

of the influence on estimating accuracy of the use of size of code as an

input. Models that use size as an input should be further classified

according to whether the code is decomposed into types (e.g. as in Boeing,

Wolverton, PRICE 5). The basis for comparison in each case should be the

initial estimate because in most models a process different from the

initial one is used to manipulate this value to obtain the full scope of

the model outputs. It is necess'ary to evaluate the two methods indepen-

dently.
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The DOD Micro Procedure, Farr and Zagorski and Wolverton models

should be calibrated to the evaluation test data. This would provide
seven calibrated models. They should be classified as follows:

0 Size of code

- Types of code

- No types of code

@ No size of code

The results should establish to a higher degree of confidence than

was possible in the present study the difference in estimating accuracy,

if any, afforded by the use of code size as an input. They would also

indicate if defining the type of code to be written increases estimating

accuracy. Other experiments should be designed to test the performance of

different methods of proceeding to other cost estimates.

The results of these investigations should be used to establish

the basic attributes of model structures that have demonstrated high

accuracy.. When this has been accomplished using existing models, it will

be possible to design a series of second generation models based on the

structures that have performed well in systematic tests. These models

will be coordinated with the development of better data sets which will

permit more complete exploration of structures and more comprehensive

testing.

7.2 DATA DEFINITION AND COLLECTION

Data availability and quality has been a major limiting factor in

cost model development. This evaluation has indicated the importance of

data definitions to the interpretation of model performance. The

recommended direction for future model development puts additional require-

ments on data. The Air Force has recognized the need for software data

and has taken a major step in the establishment of the data repository at

the Data and Analysis Center for Software (DACS). We recommend that data

collectlon efforts ontinue to be focussed at DACS and that the model
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development activities be used as the basis for establishing data report-

ing requirements under software development contracts. The DACS Is the

ideal catalyst for coordinating the dissemination of information describ-

ing progress toward both objectives.

If program size is determined to be an important factor in making

accurate estimates, DACS should be responsible for maintaining standard

definitions under which project data could be reported and tabulated.

The same should be done for any other inputs or outputs required for cost

estimating. The present role is passive. Given a productive research

program the definition of data elements should become active. The Air

Force should take charge of defining its needs for estimating data.

Software data reporting should become an integral part cf the

contracting process much as operating costs are now. Items and formats

should be defined by the Air Force and prnvided routinely by the

contractors. Audits should be possible if necessary to substantiate the

reported values. A well-designed data reporting scheme (e.g. [43])

should not be burdensome on the contractors and should pay for itself in

better planned and managed system development projects.

A recommended data collection project is the acquisition of

estimates of input variables during the life cycle. Tne'results in the

present evaluation were obtained using actual values usually recorded

after a project was completed. This reflects minimum uncertainty in the

inputs. Therefore, the accuracy of the different models is higher than

it would be if we included the precision with which the inputs are known.

The different inputs are not known equally well at the different times

that estimates aremade. This biases the results in favor of those

models which use inputs that are known accurately only late in the develop-

ment cycle.
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APPENDIX A

DETAILED MODEL DESCRIPTIONS
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AEROSPACE MODEL

Description of the Model

The model was developed using regression techniques applied to data

from software development projects characterized by one-of-a-kind computers,

limited support software, special languages and severe memory size and speed

requirements. The data were stratified into two groups. One group contained

13 projects for the development of real time software identified as primarily

large-scale airborne and space applications. The second group consisted of

7 operational support programs presumably without the size and speed require-

ments of the first group.

The model description is not clear concerning the exact composition of

the estimate of effort required to develop the software. Only the total

effort is estimated. The estimate is made using a relationship of the form:

MM = a (Instruction)b

where the constants, a and b, are determined by regression analysis.

The estimating relationships are:

Real Time Software

MM = 0.057 (1)0.94

Support Software

MM = 2.012 (1)0.404

where:

MM = total development effort, manmonths

I = number of instructions (independent

of language).

Reference

T. G. James, Jr., "Software Cost Estimating Methodology," Proceedings ILEE
VAECON '77, May 77, PP 26-27.
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Boeing Computer Services

Description of the Model

The Boeing Computer Services (BCS) software cost model estimates

total project effort from a table of productivity rates that associates

different types of software. The rates are applied to the sizes of the de-

livered programs to obtain estimates of the direct effort required to

develop the programs.

The BCS model works best for aerospace types of systems. The most

reliable estimates of the inputs are obtained from project planners who

have related experience and a good knowledge of the system requirements.

The method begins with decomposition of the systems into functions and

modules. This requires knowledge and a certain amount of component

definition, i.e., how the system functions will be performed and how they

should best be divided up for development.

The project leader is asked to divide the system according to its

composition among the following types of software:

* Mathematical Operations

* Report Generation

* Logic Operations

@ Signal Processing or Data Reduction

* Real Time or Executive (also Avionics Interfacing)

These assignments are based on experienced judgment and are subjective.

Then an estimate is made of the total number of delivered instructions.

BCS experience indicates that come care must be taken with this estimate

because project leaders tend to think in terms of developed code and not

delivered code. But they have found it necessary to make this distinction

because non-delibered code such as test drivers is normally not tested and

documented as thoroughly as delivered code and consequently requires

substantially different development resources.
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The method then applies different productivity rates for each type

of software to obtain development effort. The rates were obtained

empirically from over two dozen sources. Some of these, for example,

include Wolverton, SOC, TRW, and Boeing projects such as Lunar Orbiter.

Code types were identified and productivity was obtained from total project

effort data. The factors were obtained by curve fitting. The results

were confirmed by knowledgeable people. The productivity rates range

from 6 to 40 manmonths per 1000 source statements.

The total development effort is divided into project tasks according

to a fixed schedule.

% OF TOTAL

Requirements Definition 5

Design and Specification 25

Code Preparation 10

Code Checkout 25

Integration and Test 25

System Test 10

The resulting values are then adjusted for 9 conditions:

Reimplementation of existing software

Follow-on contract

Number of programmers

Higher order language

Macro language

On line code/data entry

On line debugging

Poor or no debug tools

Programming experience

The adjustment factors for each conlition are applied to the appropriate

task efforts.
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The total development effort includes manmonths for all direct

personnel (except final documentation) and first line supervision (how-

ever, it should be noted that many of the sources of productivity data were

non-Boeing environments). A typical group would have a superviscr and 6

to 10 programmers. Larger projects with higher levels of management would

not include these managers in the total effort prediction.

Outputs

Raw Development Effort. Man-months to fully check out, test and

document software of a given type and number of statements. The total

development effort is the sum of the development efforts required for each

type of code. This is a raw value that is derived from estimates (by type

of software) of numbers of delivered statements of new code divided by
productivity rates. The rates are different for each type of software. The

development effort is allocated among six development phases. The man-

months in each phase are subsequently adjusted to account for existing

software, higher, order language, programming experience and other factors.

Distributed Raw Development Effort. The apportionment of the Raw

Development man-months according to fixed percentages.

Task or Development Phase Percent of Total Effort

Requirements Definition 5
Design and Specification 25

Code Preparation 10

Code Checkout 25

Integration and Test 25

System Test 10

Adjusted Development Effort. The man-months of development effort for

each software type separated into development tasks o- phases and adjusted

for nine product and environmental factors.
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1. Reimplementation of existing software

2. Follow-on contract with current customer

3. Number of programmers

4. Higher order language

5. Macro language

6. On-Line code, data entry

7. On-Line debugging

8. Poor debugging tools

9. Programming experience.

Computer Time. Two time estimates are provided:

* Stand-alone time (dedicated computer)

9 Computer resource units (not defined)

Stand-alone or dedicated computer availability may occur in develop-

ments utilizing minicomputers or special purpose computers that are totally

devoted to given application. Thecost of the computer or the access to

computer facilities is not shared with any other software development

project.

Computer resource units are used to measure the portion of a large

multi-user computer facility appropriated for a single .ask, Usually, the

computer operating system measures the amount of time that the >-sk uses

computer memory, different peripheral devices, software packages, and other

resources such as multipart paper, tapes, etc. and uses an algorithm to

charge the user according to the portion of the total system that was made

available. The definition of a computer resource unit depends on the

computer equipment configuration, the relative costs of the devices, and

the method ut allocating fixed costs. CRUs are not in general comparable

from one computer installation tc another.
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Inputs

Product Related Inputs

Number of Statements. The number of statements to be written and

delivered to the customer. The count includes only new code and excludes,

"test drivers, test data bases, translators, simulators, etc." that are

written but not delivered. These are separated from the delivered code

because they do not undergo the same level of testing and documentation.

They are accounted for in the estimating procedure by a subsequent

adjustment to the development effort.

The number of statements describes executable statements, but includes

storage defining statements (e.g., FORTRAN COMMON). An allowance should be

made if the specifications describe unusually severe requirements for

commentary within the code.

The number of statements are counted according to ive types t,f

software:

e Mathematical Operations

@ Report Generation

e Logic Operations

* Signal Processor or Data Reduction

9 Real Time, Executive, or Avionics Interfacing

Resource Related Inputs. The following outputs are used to modify the

estimates of the development effort required for each type of software

They are used to identify constant adjustment factors that are associated

with the different development phases. Two of the inputs, Number of

Programmers and Programming Experien-e, are cardinal numbers; the others

are either applicable to the planned development or not.

Number of Programmers. Three sizes of development team are describcd:

* l-;

* 6-10

* More than 20.
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Each team size is associated with a factor that increases effort with

incr-asing team size.

Prograrriing Experience. The relative exoerience of the group in the

technical descipline being programed is identified by one of three levels:

9 Entry-Level

9 Moderate

* High

The following inputs describe factors or conditions that may or Tay

not be appropriate to the development.

* Reimplementation of existing software

* Follow-On contract with current customer

* H~gher-Order language (seasoned compiler)

* Macro-Lnguage

- In coding

- Forms for document

a On-Line debugging

* Poor (or no) debugging tools except dumps

Reference

R. N. E. Black, R. P. Curnow, R. Katz, M.D. Gray, BCS Software Product-on
Data, NTIS, AD A039852, Mar 1977.
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DOD MICRO ESTIMATING PROCEDURE

Description of the Model

The primary estimating relationship comprising the DoD Micro Procedure

can be described as the ratio of a factor representing the software to be

developed or changed and a productivity measure.

The model form suggests that effort increases directly with the number

,)f input and output configurations operating on the system being built.

Effort also increases with the number of routines being created or modified

,,:hted by their difficulty. The total effort is scaled according to the

amount of work that must be done in entirety as opposed to modification

of an existing system.

The number of days needed to deliver the product (effectively the

days of effort per unit of product) depends on the general experience and

a:complishment of the development group (measured by their job classifications)

weighted by their knowledge of the problem to be solved relative to the

knowledgE required. One other factor that directly affects the productivity

is the ease of access to the computer (measured by turnaround time).

The basic form of the estimating relation for software development

time is:

Net Development Time = (Product) - (Productivity)

Where: Product is a measure describing the effort to be performed.

Productivity is the rate of creating the product from
the application of personnel time.

Product = (Number of Formats + Weighted Number of Functions)
x (Effort Relative to a New Development)
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The terms in parentheses along with the following terms are defined in the

discussion of model inputs below:

1
(Productivity)- . (Work Days per Unit of Product for a Staff with

Average Experience) x (Job Knowledge Required)
x (Job Knowledge Available)
x (Access)

The result is the total hours required for code development.

Presumably this means detailed design, coding, and unit testing.

Gross Development Time = (Net Development Time)
x (Other System Factor)
x (Non-Project Factor + Lost Time Factor)

A value of 1.8 is recommended for the other system factor. This factor

represents the effort needed to convert the code development time to total

development time. This value is representative of an observed range from

1.2 to 2.1. Total development includes analysis, design, coding, testing

and documentation. It is the sum of the project direct charges. Whether

this includes support hours for clerical and other functions is not clear,

but any given organization could include these by modifying the 1.8 factor.

The net development time accounts for the time lost from normal

scheduled working hours for leave, sickness, holidays, and non-project

assignments. These add 25 percent to the total development time. There

is also a 10 percent efficiency factor (crffee breaks, time cards, code

rework, etc.). The code rework should probably be handl2d elsewhere. It

is probably included where it is to make the 10 percent palatable. It should

be included in the gross size adjustment and the 1.8 factor.

The effect of these adjustments is to estimate the number of personnel

who must be assigned to the project to ensure delivery of the total

development hours. These factors are organizational specific.
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Although the resource estimating procedure includes weighting factors

for the input and output formats by type of device (see subsequent discussion),

the factors have a value of one in each case. Therefore, the model describes

a linear relationship between the total number of file formats and the

effort required to implement them. It may be that future versions of the

model will weight the types of file devices differently. Then the effort

required to implement a report format may be different from the ef~ort

required for a card format.

Program complexity, which is the second term in the product measure,

is the weighted sum of the functions to be implemented. The weights

depend on the function and its assumed level of complexity. The weights

range from 1 for a simple operating system control language change to 12

for a very complex edit-validation function.

The value 3 is the most common among the 24 possible function-complexity

assignments. If the function types are equally represented in programs,

the average value is 4.

The programmer/analyst experience factor is an indication of the

effect of experience on productivity. Values range from .75 to 2.75

corresponding to a lead analyst or programmer and interns respectively.

Since experience is not evenly distributed over a group of programmers and

analysts, the following groups was hypothesized in order to obtain an

average or representative value for the experience factor.

Number Weighted

Experience in Group Factor Sum

Lead 1 .75 .75

Senior 2 1.25 2.50

Journeyman 4 1.75 7.00

Nominal 8 2.25 18.00

Intern 5 2.75 13.75

20 42.00

Average Value 42 +20 - 2.1
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No definitions are provided for the 10 job classifications.

The job knowledge and turn-aroind time factors are self-explanatory.

The System Factor adjuststhe product development effort to account

for work already done. The product measure resulting from the format

count and the program complexity value is the same whether the system is

being developed in its entirety or it is a modification to an existing

system. The system factor has the effect of modifying the product value

to account for less than total development.

Seven levels of change are described by the System Factor. The values

range from 2 for a new development to 8 for an operating systems control

language change.

For a new system development the 2 in the primary estimating equation

is divided by a System Factor value of 2 and the product measure is un-

changed. Consequently, the System Factor values describing lesser amounts

of new development have larger values and are portions of 2. The effect

of the System Factor on the product measure is summarized as follows:

Effort Relative to

Type of Effort System Factor a New Development

New Development 2 1.00

Major Change 3 .67

Major Modification 4 .50

Minor Modification 5 .40

Maintenance 6 .33

Minor Technical Change 7 .29
Operating Systems
Control Language Change 8 .25
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In order to get a feel for the relative magnitudes of the components

of the Micro Estimating Procedure, consider the following example.

Number of 1/0 formats = 10

Number of furctions = 20

Average complxity factor = 4.

New Development

Product = (Number of Formats + Weighted Number of Functions)
x (Effort Related to a New Development)

Product = (10 + 4 x 20) x 2+2 = 90

Experience = 2. (See above for computation)

Job knowledge required = 1.0

Job knowledge available = 1.0

Access = = 1.0

(Productivity)-  = (Work Days per Unit of Product for a Staff with
Average Experience)

x (Job Knowledge Required)
x (Job Knowledge Available)
x (Access)

2.0 x 1.0 x 1.0 x 1.0 = 2.0

Net Development Time (Product) x (Productivity)-

= 90 x 2.0 = 180 Man-Days

'f the effort was a major modification (System Factor 4), the

Product value becomes:

Product = (10 + 4 x 20) x 2+4 = 45

and

Net Development Time = 45 x 2.0 = 90 Man-Days
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If the Job Knowledge Required is "Detailed" (Factor - 1.5) and the

Job Knowledge Available is "Limited" (Factor - 1.5), the productivity

becomes:

(Productivity)- = 2.0 x 1.5 x 1.5 x 1.0 = 4.5

then for the major modification:

Net Development Effort = 45 x 4.5 = 202.5 Man-Days

Outputs

The primary output (i.e., the output that is sensitive or controlled

by project variables as opposed to the subsequent step which is a fixed

allocation) is: Gross Development Time (man-days). Gross Development Time

includes:

* Nonproject time (individual assigned to project but busy with non-

project tasks, e.g., training, non-product administrative duties,

etc., and vacation and holidays)

* Wasted or lost time

Therefore, Gross Develpment Time describes the staffing level that will

result in a needed amount of development time. The latter is predicted by

program and project characteristics.

The secondary outputs (i.e., those derived by applying fixed values

to the primary output are:

o Effort by project phase

o Total development cost

The project phases are:

* Review and analysis

e Design

* Programming

e Testing

* Documentation
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Gross Development Time includes:

Analysis of present methods

Design of the new/changed system

Develop the system's support

Program design

Program development

Program testing

System testing

Installation and conversion

Staff training

Project officer

System manager

Technical managers

Support personnel

Documentation

Inputs

Product Related Inputs. The software is described by the numbers of

types of items it processes and the numbers of functions it includes. The

functions are described according to type and complexity. The result

is two product descriptors: one measures the size of the input/output

processing to be executed by the system; the other is a measure of the

number and difficulty of the functions to be performed.

Input File Formats. The number of different lormats to be read by

the system are counted and added together. The model asks for numbers

of card, tape, disk, and screen formats separately, but since the weighting

factor is always one, there is no distinction made among them regarding

the effort involved to implement them.

Output File Formats. The formats output by the system are totaled.

The same entries as for the inputs are requested plus the number of report

formats. As in the case of the inputs, the weighting factor for the

different types of output is always one, so there is no reason to differenti.ite.
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Program Complexity. The total program complexity measure is computed

by a weighted sum of the number of processing functions of given types. Each

function is characterized as simple, complex, or very complex. The processing

functions are:

* Edit Validation

* Table Look-Up (Internal or External)

* Calculations

* Sort/Merge Process

e Internal Data Manipulation

* File Search

a Utilities or Subroutines

a Operating Systems Control Language

Job Knowledqe Required. The amount of knowledge required to implement

or change a system has a direct effect on the number of hours required to

accomplish the project. A system that requires very detailed knowledge will

require more effort than one that can be accomplished with limited knowledye.

This parameter is paired with the job knowledge available factor described

below to describe the relative influence on productivity. Three job

knowledge levels are used: Limited, General, Detailed.

System Factor. The effort required to complete a system development

or change project of given complexity depends on the state of the system,

That is, the work required to change three file formats is less than the

work required to develop a system with three file formats, all other

factors being equal. The System Factor describes the level of effort

being undertaken. Seven levels are described:

* System development

* Major changes

* Major modification

e Minor modification

* Maintenance

9 Minor technical change

* Operating systems control language
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Resource Related Inputs

Programmer/Analyst Experience Available. The available experience

measure is an effective productivity indicator. It quantifies the rate

at which the product can be produced in terms of the job classification

of the staff available for assignment to the system development. Two data

processing personnel classifications: Analyst and Programmer, are tabulated

according to five levels of experience: Lead, Senior, Journeyman, Nominal,

and Intern. Weights are associated with the difference experience levels.

The result is a weighted average productivity factor.

Job Knowledge Available. This factor has the effect of describing

the change in productivity associated with the level of knowledge about the

aork to be performed that exists among the persons available for assignment.

't works together with the Job Knowledge Required factor described above

to quantify the effect of the knowledge of the system required compared

to that available on the time required to complete the work. In general,

the effect of the combined factors is to increase the development manhours

if the need exceeds the available and decrease the hours if the available

exceeds the need. Three levels of job knowledge availability are specified:

Limited, General, and Detailed.

Program Turn-Around Time. The effect of computer access on productivity

is described by four levels of average turn-around time:

* Interactive terminal

* Mere than one run per day

s One run per day

* Less than one run per day.

Re'e' ence

,t'nddrd Dou ADP Resource Estimating Procedure (REP) for Software Development

,Draft), Dept. of Defense, Sept 1979.
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Doty Associate,, Inc.

Description of the 'Model

The model is actually a set of 15 estimating relationships. Eacn

one to be used for a given type of software and software life cycle phase.

Equations have been derived empirically using regression analysis for

the following types of software:

e Command and Control

e Scientif'c

* Business

* Utility

The development effort for software representing each of the appli-

cation types may be estimated using one o, three different relationsiips. An

additional three are given that are applicable to all types of softwdre. These

equations are to be used "when the appli-az.on cannot be categorized or

is different than the categories noted". The procedure specifies that

when a software system is made up of subsysteffJ that are of different

types, the total size should be divided into the four categories and

the appropriate estimating equation used for each one. Then the individual

manmonths are summed to give a total system development effort. The three

equations are divided into size measure (lines of source code or words ot

object instructions) and the life cycle phase in which the estimate is

made (Concept Formulation and all others). If the estimate is to be made

using the words of object instructions, the same equation is used in all

life cycle phases. Similarly, for estimating large systems (more than

10,000 lines) using lines of source code requires the use of a different

equation in the Concept Formulation Phase than in the other life cycle

phases.

The use of the different equations can be described as follows

(A, B, and C refer to the three different relationships).
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SOFTWARE LIFE CYCLE PHASE

DESCRIPTION CONCEPT OTHERS

WORDS OF OBJECT CODE A A

LINES OF SOURCL CODE

LARGE SYSTEM > 10K LINES B B

SMALL SYSTEM < 10K LINES B C

The forms of the estimating relationshimos are -imilar. Equat:)r-

and B are of the form:

MM = a I

where MM = Manmonths of development effort.

I = either words of object code (A) or ines of

executable source code (B).

a,b = Constants obtained empirically.

Equation C has the form:

14
MM = c Id

j=1 j

Where f. = a set of parameters describing the development
environment.

c,d = constants obtained empirically

Values of the constants to be used for different types of applications

are given in Tables A-1 and A-2.

The followina guidelines are presented for selecting the proper

estimating relationship.
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* In Concept Formulation, if the size of the program in object

code is known, use the object code estimators. They will give

more accurate estimates of manpower requirements.*

* If accurate estimates of manpower requirements are required

in the Analysis and Design and subsequent phases of develop-

ment, use equation B, in source code,for programs of I > 10,000

and equation C,. in source code, for programs with I < 10,000.
e For budgetary purposes, use the equation that gives the higher

estimate.

Development time is estimated using the equation

10001
92.25 + 2331 .667

where D = Reasonable development time in months

I = Number of delivered object instructions.

This relationship was obtained using regression on data describing

74 development projects. The time estimate should describe "customary"

distributing of effort over time that is, it should avoid extremes of

project time compression or expansion.

* according to one of the authors, size of the object code is recommended

over size of the source code as an estimator because most of the deve-

lopments of interest to the study sponsors are in the area of command

and control and scientific systems. In these areas both estimators have

similar precision, but the authors believe that object code is more commonly

used and understood and is, therefore, a more reliable estimator.
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It should be noted that a large portion of the documentation

accompanying the description of the DAI estimating procedures is devoted

to discussions of factors that are believed to influence the cost of soft-

ware development. These factors are classified according to aspects of

software and its development environment. The factors are grouped according

to the following "domains":

o Requirements

* System Architecture/Engineering

o Management.

Outputs

Cost of Software Development

The estimate of total development cost is based on several relation-

ships that portion the cost into components that can be estimated by

applyinn available ratios to other costs and factors such as overhead

and administrative costs. By the proper use of relevant values fcr these

factors the relationships can represent either government in-house costs

or contractor development costs. A method is described for time phasing

the expenditure that is said to satisfy the requirements of DoD Directive

5000.1.

The procedure identifies costs that are incurred by the governmer-.

during all phases of the software life cycle except Operation and Support.

The total development cost includes:

C C CF + CVAL + CFSD

where C * Development Cost

CCF Conceptual Phase Cost

CVAL Validation Phase Cost

CFSD - Full Scale Developmen't Cost.
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Information is inclided that relates the government cost to the

contractor's full scale development cost. This cost is the one develped

by the formal software cost estimating procedure.

The cost of development is divided into primary and secondary

costs, thus:

CD a CP + Cs

where CD = Cost of Development

Cp a Primary Cost (Manpower)

C S  Secondary Cost (Computer,

Documentation, Etc.)

Then,

Cp aMM(Ce)

where MM = Total Development Man-Months

Ce = Average Labor Cost

and

n
CS  Ci = kCpi=l

Therefore: CD = (MM) Ce (i + k)

where k - Ratio of Secondary to Primary Costs

(-.075)

The total software development cost (does not include government

Conceptual and Validation Phase costs) includes the costs of:

0 Analysis

0 Design
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* Code

* Debug

0 Test and Checkout

and is proportional to the total man-months of development effort.

Total Development Man-Months

This is the primary output variable. It is the basis for the total

development cost estimate and it is the value from which the distribution

of effort by life cycle phase is derived. The hours include those

directly related to the development of the software system. They include

the direct hours needed for:

Analysis - interpreting the system requirements and producing

viable alternative system concepts

Design - preparing detailed designs of the data processing

system and the individual programs

Coding and Debugging - writing individual modules and programs

and performing individual tests

Testing and Checkout - integrating the individual subsystems

into a complete system and conducting prescribed tests

on the entire system.

The discussion of the model does not indicate the extent that

;upport and management hours are included in the total. Also, there may

:e some question about the activities associated with concept development

te.g., is the test plan furnished by the government following the validation

Dhase or is it developed as part of the project). As in many cost estimating

situations, the line between concept analysis and the evaluation of solutions

to selected concepts is hazy.

Although the DAI documentation and discussions with the authors

indicate that the model includes integrated system testing, it appears

that this effort is not included in the original SDC data which was the

,,3sis for the curve fits. (76% of the SDC data points describe programs

that do not interface with any other programs).
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Software Development Time

A nominal development time is presented that Implies "customary

manloading". That is, the schedule does not reflect either crash

projects or allow for unnecessary delays.

Distribution of Development Effort

The expenditure of time and effort associated with major project

milestones is given for small projects (one level of supervision) and

large projects (more than one level of supervision). The distributions

are for nominal projects and do not allow for any possible acceleration

or delay of the completion of *e project.

I Desirable Distribution of Effort

Development Milestones First Level Project Second Level Project

Schedule Expenditure Schedule Expenditure

Complete System Design (PDR) 10% 5% 10% 1%
Complete Package Design 35% 27% 35% 13%
Complete Unit Design (CDR) 44% 36% 42% 19%
Complete Unit Code 54% 49% 50% 28%

Complete Unit Debug 64% 59% 57% 38%
Complete Package Test 81% 78% 80% 73%
Complete System Test 100% 100% 100% 100%

m

Program Size

DAI has been very careful to describe the size variables which are

the primary inputs to the estimating equations. This should help make

more reliable estimates using the relationships. However, we should

point out that the respondents to the original SDC questionnaire were not

so well directed and it may be necessary when analyzing the structure of

the model as it relates to prediction accuracy that significant errors

may have been introduced by this failure to be specific. The DAI model

may not overcome what are ir'e-ert '"mitations in the data.
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The DAI procedure calls for several estimates in support of the

DSARC process. It recognizes that the best estimates of program size are

obtained later in the development cycle. It suggests, then, that the

interpretation of the program size changes during the life cycle and that

associated with the changes are increases in estimating accuracy. The

report describes how the knowledge of the size estimator changes during

the life cycle and how this affects the estimating precision. The

precis!:n associated with the different size measures during the system

development li':e cycle is as follows.

Software estimate When Sizing basis % Error

1. Initial program Conceptual phase Total object code up to 200%*

budgetary estimate

2. Independent program Validation prior Total object minus up to 100%
validation cost to RFP release data areas

estimate (Executable Code)

3. Independent FSD Completion of Total object minus up to 75%

cost estimate system Spec data areas with
through PDR adjustments for

reusable code

4. Update of FSD PDR through Total source code up to 50%,

cost estimate remainder of improving
development to zero at
development____ompletinn

*The actual may be 200 percent of the estimated or the estimated may be 20Q

percent of the actual.
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Code that is developed as part of the project but is not delivered

to the customer is a source of variation in the estimate of the system

size and must be considered. However, no guidance is provided for making

any adjustment other than citing that the SDC data showed delivered code

to average 77 percent of the developed code with a standard error of

30 percent.

Allowance must also be made for support software development

especially when working with new hardware.

Total Object Words

During the Conceptual Phase when very little is known about the

system to be developed, the initial estimate is made using the analyst's

judgement (usually by analogy with previously developed systems, but

other methods are possible) of the number of object words occupied by
"every program needed to run and maintain the system in the field". This

measure is obtainable from listings of computer system routines that

build executable programs from tho output of the compiler. Taking

values from systems similar to the one being planned can provide a basis

for estimating the value. Care should be taken, however, when program

overlays are involved. Also, extensive use of standard library routines

can greatly increase the words of object program size and not be repre-

sentative of a comparable increase in development effort.

Total Object Words Minus Data Areas

The memory space occupied by an executable program is composed of loca-

tions containing instructions and locations reserved for the data upon which

the program will operate. Sometimes the data storage areas are signifi-

cantl larger than the area occupied by the actual instructions. OAI

suggests that the effort required to develop the programs is more closely

related to the size of the instruction space than to the size of the

combined data and instruction storage. However, as in the case of the

total object words, there is no evidence of this distinction being made
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in the original derivation of the estimating procedures. Also, there is

no guidance provided on how to apply the additional information when

preparing cost estimates. Some computer system executive processing

routines provide this information. However, many don't and, therefore,

it would be very difficult to obtain comparable historical information

to guide new estimates.

New Object Words Minus Data Areas

Only the writing of new code contributes to the software develop-

ment effort (if code written to modify existing modules is counted as

new code). To account for the work done to adapt existing code to a new

system, which includes analyzing the code and deciding how to modify it,

any existing module that will result is less than 50 percent utilization

of existing code is considered to be entirely new.

New Source Lines

Counts of new source lines written (whether in a higher order or

machine oriented language) can be obtained from compiler listings, measuring

card decks or text editors. It is one of the easiest measures of size

to obtain. As in the previous case, modules containing less than 50 per-

cent reused code are considered to be new.

Development Environment

For estimates made using lines of source code where the size is less

than 10,000 lines, the estimating relationship includes a number of fac-

tors describing the development environment. These are included in the

estimate when the indicated item is to be part of the development process.

Detailed definitions of the factors are presented in an Appendix.

f1  Special Display

f2 Detailed Definition of Operational Requirements

f3  Change to Operational Requirements

1 4 Real Time Operation
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f5 CPU Memory Constraint

f 6 CPU Time Constraint

f7  First SW Developed on CPU

f8 a Concurrent Development of ADP Hardware

f 9 Time Share Versus Batch Processing in Development

f10  Developer Using Computer at Another Facility

f11  Development at Operational Site

f 1 2  Development Computer Different from Target Computer

f 1 3  Development at More than One Site

f1 4  Programmer Access to Computer

After analyzing the method used by DAI to obtain their estimating

relationships and after comparing their definitions of input and output

variables with the original sources of data, it is clear that there are

discrepancies between the way the data are being applied and what they

originally represented. DAI does not explicitly justify their approach

but their presentation of the estimating procedure does give consideration

to errors arising from differing definitions of the variables.

DAI seems to be saying that consistent use of the estimating

procedures regardless of how they were obtained will produce results with

at least a predictable error. That is, knowing the range of error that

can occur because of differences in definitions and ability to predict

the input variables will, when applied to the given estimating relation-

ships, produce estimates with precision that is in accordance with

previous experience. DAI further substantiates the approach of throwing

all the error into the ability to define the input by presenting standard

error values for the size variables at different times in the life cycle.

References

J. H. Herd, J. N. Postak, W. E. Russell, K. R. Stewart, Software Cost
Estimating Study, Study Results, Vol. I, NTIS AD A042264, Jun 1977.

D. L. Doty, P. J. Nelson, K. R. Stewart, Software Cost Estimation Study,
Guidelines for Improved Software Cost Estimating, Vol. II, NTIS AD A042264.
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FARR AND ZAGORSKI MODEL

Description of the Model

System Development Corporation completed several projects for the

Air Force, Electronic Systems Division in which they attempted to develop

methods for predicting the cost of software developnent. The Farr and

Zagorski model represent an intermediate stage in the program.

Using historical data from internal projects and from other organizations,

the SDC team systematically tested over 100 variables to learn if they were sat-

isfactory predictors of program design, coding and debugging effort.

Farr and Zagorski published three equations* which were determined

to be the best predictors tested up to that time.

MM = 2.7X 1 + 121X 2 + 26X 3 + 12X 4 + 22X5 - 497 (1)

MM = 2.8X6 + 1.3X 7 + 33X 3 - 17X 8 + lOX9 + Xo- 188 (2)

MM z 8.4X11 + l.8X12 + 9.7X3 - 3.7X1 3 - 42 (3)

Definition of Output

MM is the number of manmonths needed to design, code and debug a

single program. The effort begins when a programmer or analyst is given a

complete operational specification for a program and it ends when the program

is released for integrated system testing.

Definitions of Inputs

X = number of instructions in original estimate (in thousands)

X2 = subjective rating of information system complexity (scale l-

X3 = number of document types delivered to customer

X4 = number of document types for internal use

* L. Farr and H. J. Zagorski, "Quantitative Analysis of Ccmputer Programmin-4

Cost Factors: A Progress Report,' Proceecincs ICC Symposium, Rom , 1965
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X5 = number of computer words needed to store program data (loglo)

X6 = number of instructions in delivered program (in thousands)

X7 = number of man-miles for travel (in thousands)

X8  = system programmer experience (average of total years of experience

with the computer, language, and application)

X9  = number of display consoles

XIO = percent of instructions new to this program (not re-used from

previous versions)

Xl 1 number of instructions to perform decision functions (in thousands)

X = number of instructions to perform nondecision functions

(in thousands)

X13 =programmer experience with this application (average number of

years).

References

L. Farr, H. J. Zagorski, Factors that Affect the Cost of Computer Prcgramming,
Vol II, A Quantitative Analysis, NTIS,-AD607546, Sep 1964. Quantitative
Software Models, Data and Analysis tenter for Software, SRR-I, Mar 1979
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PRICE S

Description of the Model

PRICE S is a proprietary software cost estimating model developed

and maintained by PRICE Systems Division of RCA, Cherry Hill, New Jersey.

It is installed on the On-Line Systems, Inc. time sharing network and may

be accessed using several different types of terminal devices. On-Line

Systems provides local dial-up service in many cities throughout the

United States.

PRICE S estimates software development costs by systematically

adjusting the estimate of an initial element of the cost structure. The

initial estimate is a function of the size of the system to be developed

and several other parameters describing the characteristics of the software

and the development environment.

According to Frank Freiman, the creator of PRICE S, the model design

reflects an understanding of why costs attain their values. This is in

contrast with estimating costs by fitting hypothesized relationships to histori-

cal data. The PRICE S developers contend that software development proj-

ects are complex undertakings whose costs are influenced by a ,ultiplicity

of factors too numerous to analyze and often impossible to measure.

Consequently, no two projects are alike. This makes it impossible to

identify common characteristics among past projects to be used for esti-

mating new ones. It also means that no past project is exactly relevant

to any future one.

Freiman contends that a manager's perception of what a project should

cost actually determines its estimated cost. Therefore, the proper formulation

of a cost estimating model is in terms of perceived relationships between

,:o.t and aspects of software development that knowledgable managers believe

determine cost. PRICE S estimates the cost of developing code using hypo-

tnesized relationships that were subsequently supported by the opinions -f

individual managers. The primary relationships describe:
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a The cost required to produce programs.

* The effect on cost of changing development time.

* The comparative costs of the development cycle elements.

In addition to the primary relationships there are many secondary

ones which may be subjective or empirical. The ultimate justification for

all the hypotheses is the model's estimating performance.

The relationship between the cost of producing a program and attr
4-

butes of the code was originally conceived using an analogy. The analogy

is between the force required to move an object and the effort needed to

write software. The mass of an object is the product of its volume and

density. The property of mass is a function of Its spatial concentration

and its extent or volume. In a similar manner the cost or producing code

is related to the product of its density or difficulty and its extent or

size. Furthermore, the cost relationship should satisfy the empirical

observation that the cost per pound of a wide range of items decreases as

the weight increases.

In PRICE S the difficulty associated with a computer program is

represented by a parameter called its APPLICATION (APPL). The value of

APPL is small for easy to write codes such as mathematical applications

(APPL=O.86) and is large for interactive operations and operating systems

(APPL~l 0.95).

The size of the system is measured in terms of the number of machine

level instructions represented by the developed code. PRICE S uses the

mnemonic INST to represent the size of the software system.

The product (APPL) X (:NSTY is termed the weight or mass of the

system and represents a portion of the development effort.
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For a given system the development effort is affected by the develop-

ment time as well as the type of application. A system with an accelerated

schedule becomes more difficult in the same sense that a system with a

greater value of application is more difficult.

The APPL values that are input to the model are related to a standard

schedule of 9 months. The model compares the schedule for the project

being estimated with the standard schedule and calculates an effective value

of APPL which is used by ".e model to make estimates. The effective value

of APPL is not available to the user.

The model does not require that the user specify the development

schedule. This is possible, but the reference manual recommends that the

schedule be calculated by the model using the following procedures.

A project with given size, application type, scope of work, etc. may

be developed with different schedules. The effect on cost of changes in schedule

is represented by the parameter called COMPLEXITY (CPLX) ". . . whiicn

provides a quantitative description of the relative difficulty 'f the design

task."* CPLX describes the familiarity of the project staff with the functions

to be perforned, their general experience, and factors that complicate the develop-

ment of the system such as new language, more than one user organization,

or state-of-the-art advancement. CPLX tends to be constant for a given

organization. It reflects the way the organization commits its resources

in order to achieve a perceived proper scheduling of a project. If CPLX

is input to PRICE S, the model calculates the schedule. If the schedule

is given, the model calculates CPLX. If both are given, the model caiculates

the schedule according to the value of CPLX and makes adjustments in cost

depending on whether the stated schedule represents an acceleration or

deceleration of the first schedule.

In any case the resulting schedule is compared with the 9 month

standard schedule to obtain the effective value of APPL as described earliEr

* Reference Manual PRICE Software Model, RCA/PRICE Systems, Ch'?rry Hill,

New Jersey
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The initial estimate of cost in PRICE S is the Engineering Design

element. It is obtained from the relationship:

Engineering Design Cost = (WEIGHT) X (RESOURCE)

RESOURCE (RESO) is the cost per pound mentioned above. It repre-

sents the efficiency with which an organization uses its resources to

develop a system. Its value should be constant for an organization. The

value is obtained by operating the model in a calibration mode which cal-

culates RESO from data describing past projects.

RESO and CPLX act together to describe an organization. RESO measures

organizational attributes that affect cost independently of schedule, while

CPLX measures those attributes that affect schedule.

Other parameters than the ones described so far are used to calculate

cost. These will be described later under the description of inputs. The

primary purpose of this presentation of the model is to describe the general

model structure and the principal inputs. Figure A-i!describes the sequence

of the calculations and the modei variables.

The calculation of the cost elements follows from the initial estima'e

of Systems Engineering Design Cost using a sequence of -alocations called

the "Ripple Effect." These are shown in Table A-3. These allocations can

be modified by user inputs. The cost elements are defined in the discussion

of outputs.

Outputs

PRICE S offers a number of operating modes. Many of these modes

involve tailoring or constraining the development process to satisfy user

requirements. In these cases the normal outputs of the model may become

inputs. The following presentation will assume that the standard estimating

situation is the description of software and unconstrained resources resulting

in model estimates of cost and schedule. Specified values and constraints

will be treated as special cases.
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TABLE A-3

SOFTWARE PROGRAM COSTS RIPPLE EFFECT

COSTS IN DOLLARS/1000 DESIGN IMPI T & I TOTAL

SYSTEMS ENGINEERING 1/400, (49. 1313. 71.

PROGRAMMING 7'h4. 20.) 4~5.39.
CONFIG CONTROL. a/A '67. 61. 184. 312.

DOCUMENTATION 58. 19. 75 52
PROGRAM MANAGEMENT 53. 19. 39. il

TOTAL 652. 355. 769. 175
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Development Schedule

PRICE S divides the software development cycle into three phases:

e Design

e Implementation

e Test and Integration

The beginning and ending month and year is given for each phase along with

a bar graph representation of the schedule. The phases are allowed to

overlap in time.

The Design Phase begins with the design of the system to be developed

under the project. Activities in the Design Phase include:

# Establish system architecture

* Allocate system requirements to programs

* Design programs in detail

When each program design is completed, coding can begin in that program.

If it is necessary to change the program design, the activity of design

is considered part of the design cost even if coding has begun. A:trough

this is a desirable distinction, the'definition of the programming activity

(see below) does not permit the user to know how much redesign cost may

be included in an estimate.

The Implementation Phase is devoted to writing the program code

and debugging the individual programs. Under the development concept

reflected in the model, programs are designed, coded and debugged as

individual units. Therefore, the Implementation Phase begins wnen coding

starts on the first program to complete the design process and continues

until the last program Is ready for formal testing.

Implementation Phase activities include:

* Program coding

e Program debugging

a Program documentation
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The Test and Integration Phase begins with the test planning activity.
Therefore, it can start before any coding begins. It extends until the
system is accepted by the user. The major activities include:

e Test planning

* System construction from individual programs

e Program testing

* System testing

The overall development schedule is obtained from the user-specified

start date (DSTART) and the system complexity (CPLX). In the absence of
any schedule constraints the model calculates a nominal schedule. The

calculation of resource distributions among the three phases and the over-

lap are performed using Beta functions.
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The shapes of the three profiles can be changed by the user. PRICE

S adjusts the Qverlap to obtain a smooth shape of the total resource curve

over time.

Development Cost, Constant Dollars

Development Cost is given by phase and activity. The phases

(Design, Implementation, and Testing and Integration) are described above.

Each phase is divided into 5 activities or cost elements:

* System engineering

* Programming

e Configuration control and quality assurance

9 Documentation

* Program management

system Engineering is the technical direction of the system develop-

ment. It includes the following tasks:

# Development of system specifications

* Allocation of the system functions to programs

* Description of program interfaces

9 Evaluation of system performance

a Problem resolution

The Programming activity includes design and coding, and testing

individual programs. These three tasks are normally performed in the

three corresponding phases, but as was stated above design can occur in

the Implementation Phase. Other activities can also occur in different

phases.
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Documentation includes:

* Draft preparation

* Editing

e Reproduction

e Distribution

* Review

s Revision

Configuration Management is the control of the description of the

approved system. The three principal tasks are:

* Defining the system baseline

e Managing the process For changing the baseline

a Disseminating information describing the system

Program Management includes . the supervisory, financial, legal,

and general administrative tasks necessary to plan, organize, direct and

control the project." *

The preceding definitions along with the definitions of the develop-

ment phases are presented to give an idea of what the PRICE S creators

consider to be the principal cost elements of a software development project.

However, the nominal allocations of the costs by element (see the ripple

calculation in the Description of the Model) can be changed by the user

to suit his own definitions. The ability to reallocate costs when exer-

cised along with the calibration of the model using cost values represen-

tative of a given organization make it possible for the user to define

the iodel cost elements almost any way he pleases.

Costs are calculated using a fixed reference year (1976 for the

version of PRICE S tested) and corrected for inflation to the first of

the year in which the project start date occurs. An internal table of

inflation rates (RTABLE) accomplished the adjustment of value. The stand-

ard table can be changed by the user if desired. Under the constant

dollar option, the costs are in base year dollars.

* Op. Cit.
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PRICE S provides an option for presenting costs in other currencies

An input value establishes the conversion rate between dollars and the

other currency.

Development Cost, Inflated Dollars

PRICE S includes an option that allows the user to obtain all cost

elements in terms of an inflated currency. Dollars (or another specified

currency) are converted from the base year to time during the development

using a table of constants (RTABLE) that is either specified by the user

or obtained by default. The effect of inflation on each cost element is

determined by the Beta function distribution of resources over time (see

above).

Development Effort

An option is available under which PRICE S presents the cost C~e-

ments in terms of effort rather than currency. The user can select either

man-months or man-hours. All reports are appropriately labeled. -ince

the internal calculations are in terms of dollars, the user must specify

the cost per man-month to effect the conversion to the desired output.-

The effects of inflation on effort are obtained as in the case of

reporting cost in currency.

Model Output Options

PRICE S incorporates many execution options and provides for many

alternative presentations of the output data. The model allows tie uscr

a great amount of flexibility in stating his inputs and obtai',' .g reports.

It should be noted, however, that these diverse representations need not

be exercised if the user elects to use the default values provided by tke

model. The following are a few of the model output options.

Normal Output

The default report written by PRICE S includes information de-..

bing the software and project parameters, cost and schedule. A sampl.
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report is shown in Figure A-2. PRICE S includes print control options that

present specific portions of the information in Figure A-2.

Sensitivity Option

The effect on cost of changing the values of four variables can be

conveniently shown in a 3 X 3 matrix. Under one option RESOURCE and

COMPLEXITY are given nominal, higher and lower values and the development

costs for the nine pairs are calculated. Another option performs the same

calculations for the APPLICATION and INSTRUCTIONS inputs. Under either

option the user may let the model set the ranges of the input values or

he may specify them himself. The options offer a convenient way to examine

how uncertainty in the most important inputs affects the estimated develop-

ment cost. Figure A-3shows the matrices printed using the sensitivity

options.

Schedule Option

If the user specifies the development schedule, this option compares

the user's schedule with the model's normal schedule and prints the effect

on the developr.ent cost of departing from the normal schedule. It is axio-

matic in the PRICE S model that either increases or decreases from the

normal schedule have the effect of increasing the development cost.

Curve Option

The model prints a monthly history of the effort and cost. A cumu-

lative percent completion is reported for each phase. t is given as

monthly and cumulative values and their related pu. , .

Design-to-Cost Option

Given values of the target cost, APPLICATION, RESOURCE, and COMPLEXITY,

PRICE S calculates the size of the largest system that can be built.
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--PRICE SOFTWARE MODEL--

DATE 29-AUG-79 TIME 09:47 FILENAME:S3
(790239)

SAMPLE BOX I SAMPLE FILE

DESCRIPTORS
INSTRUCTIONS 36000 APPLICATION 5.3014 RESOURCE 3.50
UTILIZATION 0.33 PLATFORM 1.40 COM1PLEXITY 1-15
NEW DESIGN 3.93A NEW CODE 19*

COSTS IN COLLARS/1000 DESIGN iMPL T & I TOTAL
SYSTEMIS ENGINEERING 375. 40. 244. 45
PROGRAMM~IN7G 69. 1. 2.33:.
CONFIG C^NTROL. V/A 62. 56. 749. Z63.

DOU ENATIOU 54. 17. 59. 131.
PROGRAM MANAGEMENT 50. 17. 50. 97.

TOTAL 611. 3212. 604. 1537.

SCHEDULE AND CONSTRAINTS DESIG4 :"!L T I I
START WORK OCT 80 FEB 814 MAY 81*
END WORK JUL 814 DEC aim AUG 324
COST PER MA -MONTH(1930 DOLLARS) 0.0 a0 0 .3
.*AXIMUM MAN-MONTHS PER MONTH 0.3 0.0 0.0

APPL.ICATION CATEGORIES NEW DEVELOPMENT HAR014ARE INTERF.,CES
mix DESIGN rODE TlYPES QUANTITY

DATA S/R 0.0 0.0 0.0 0 0
ONL:NT COMM 1.08 t.30 1.00 1
REALTIME c&C 0.113 1.30 7.00 2 2
rNTERACTI'JE 0.23 1.00 1.00 1 2
MATHEI ATICAL 0.2s 0.50 0.70 444
STRING MANIP 0.26 1.00 1 .00 444L
CPR SYSTEM S 0.07 7.00 1.30 *44 4.

SIZING DATA
FUNCTIONS 3 STRUCTURE 0.0 LEVEL 0.0
CAPAC:TY 0 SOURCE 3696A EXPANSION 6.32

SUPPLEMIENTAL INFORMATION
YENR 1980 MULTIPLIER t.300 ESCALArrON 0.2
TARGET COST 0. INTEGRATION 0.50 ESC EFFECT 1.00.4

SCHEDULE GRAPH
OCT 80 AUG 82

WWWWDESIGN Am**%N**mwW
1 I1PLEMIENT *w4%Wm*m4~~ TEST 4 INTEGRATE

Figure A-2. Standard PRICE S Cost Report
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PRICE SOFTWARE MODEL ---

DATE 29-AUG-79 TIME 15:51 FILENAME:S3
(790239)

COSTS IN 1i80 DOLLA"S/1000

COMPOSITE SENSITIVITY DATA

(RESOURCE - COMFLEX!TY)

COMPLEXITY CHANGE

-0.100 0.0 +0.100

COST 430. : COST 4637. : COST 5057.
-0.100

MONTHS 29.7 : MONTHS 32.3 : MONTHS 34.9

E C ................... :....................:.....................

S H: ................... :
0 A : COST 4497. COST 4339. :: COST 5282.
U N 0.0
RG: MONTHS 29.8 :: MONTHS 32.4 :: MONTHS 35.0
C E .. .............. . .. . . . . .
E .. . . . . . . . . .. ... .. . ... .. . .,.. . ... . .... °. ..... ..... . -. .

COST- 4690. COST 5099. : COST 5 10.
+0.100

MONTHS 29.9 MONTHS 32.5 MONTHS 35.1

.....°° ~ .... .. .. .. ... ..°...°° ° ° , , °. .. .. °..° o .... o.....

PRICE SOFTWARE MODEL ---

SAMPLE BOX 1 SAMPLE FILE
COSTS IN 1980 DOLLARS/tOOO

SENSITIVITY DATA
(APPLICATIO - INSTRUCTIONS)

INSTRUCTIONS

32400 36000 39600
... ... ... ... ...; . ... ... ... ... .;.. ................

COST 1362 : COST 1510. COST !653.
5.199 :

A MONTHS 21.4 MONTHS 22.2 : MTONTHS 23.1

P ................................................... .. .....

I COST 1336. . COST 1537. : COST 1688.
C 5.299 :
A MONTHS 21.5 MONTHS 4.: MONTHS 23.2
T : .°.. ... * ,.... .... :

I . ... . . ... . ,. ........ : . .. . . .. . .. ... .. .. .. :.. .. . .. .. .. . .. . .. . .,

NCOST 1410. COST 1564. COST 1719. :.399:

MONTHS 21.6 MONTHS 22.5 =ONTHS 23.3

.. . . . . .° . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .? . . . .° . . . . . . . . . . . . . . .

Figure A-3. Sensitivity Analyses
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System Integration and Test Option

This operating mode calculates the cost associated with a system

that is composed of independently developed parts. The cost of such a

development is greater than the sum of the costs of the pieces. Additional

costs are incurred for defining and maintaining the specifications of the

subsystems and their interfaces. There are also costs associated with

integrating the subsystems into the total system and conducting total

system tests.

The amount of integration and test cost is determined by a single

input value (INTEG) for each subsystem. The value of INTEG " . relates

the level of engineering, programming and testing effort involved to

integrate the subsystem into the total unified operation."* It takes on

values between 0 and 1.

The System Integration and Test Option is unique among the models

tested because it presents costs for the Individual subsystems as well as

the total system with the added cost of integration.

Verification and Validation Option

PRICE S calculates the cost of independent verification and valida-

tion of the new system using values of INTEG between .7 and .8 and proceeding

as above.

Test Bed Option

The cost of installing the new system on a computer other than the

one which it was developed is estimated. The model performs cost calcu-

lations based on the assumption that installation on a new computer involves

redesigning and recoding a small part of the code. Ten percent redesign

and rewrite is considered representative.

77c i t.
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Other Options

PRICE S has many additional output options including:

* Condensed cost and project reports (4 bptions)

* Subsystem level reports

* Model constants report

6 Inflation rate table
* Cost multiplier table

* Effort distribution constants

e Sensitivity constants

# Resource allocation profiles

a Namelist table

Inputs
Software development projects and their environments can be described

by as many as 64 constants and 4 tables (Figure A-4). The use of some of

the inputs excludes some of the others and most of the parameters have

default values provided by the model. Therefore, the user may describe a

given development effort using different but equivalent inputs (e.g.,

number of abject Instructions or number of Source Statements and Expan-

sion Ratio) and at different levels of detail (e.g., an assumed value of

RESOURCE instead of a description of MIX). It is possible to execute the
model by specifying only 8 values:

@ INST

* APPL

* RESO

* UTIL

e PLTFM

a CPLX

# YEAR

* MULT

The following discussion explains each of these quantities, and

selected others that serve to describe the model's ability to define soft-
ware and the development environment.
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11NST APPL RiSO UTIL PLTFM CPLX NEWO NamC

OSTANT DENO ISTART 1514D TSTART TEND

Ramum OCOS MMX IOST MAX TCOST TMAX

WM A HONL HR.A, Mild! MMAT HAiR MOMR KM APLE

COAT COWL - R& cas cr cuM, csWM OWN CAPPS
Now 000

TUAT TOWL TREA TINT
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FUNCT STRU. LEV'EL CAP SGU~d EXPAM.

Yuimt EAR MULT E= TARCSr INTID

A -i
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System Size

The size of the software system produced by the development project

is stated in terms of INST, ". . . the total number of delivered, execu-

table, machine-level instructions. Comments, format statements and data

declaration statements should, in general, not be included."*

Oelivered instructions limits the size measure to programs that are

turned over to the customer. This would exclude special development pro-

grams, file conversion routines or test drivers.

Executable instructions are those that involve computer operations

in contrast with data and constant storage.

IMachine-level instructions are the most elementary operations of

the computer. Each one may require from one to several words of primary

storage. PRICE S operates internally using the above definition of size.

However, the model offers two alternative size measures. The first is in

terms of number of source instructions and an expansion ratio; the second

uses the number of system functions; and the third alternative uses the

system logic structure.

The selection of source statements (SOURCE) and expansion ratio

(EXPAN) as the system size measure offers some flexibility in the defini-

tion of source program size. It is necessary only that the product of 1h6

expansion ratio and the source program measure approximate the number of

delivered executable machine-level instructions. Therefore, the ewpansion

ratio can include an allowance for comments and data storage instruct',ons

as long as the proportion of these to the total number of stateer, ts is

relatively constant. The number of machine-level instructinns ie P":

mated by the product of the number of source statements and the expans .. :r

ratio:

INST SOURCE X EXPAN

* Op. Cit.
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The second alternative size measure uses the product of the number

of functional modules to be included in the software development (FUNCT)

and the average number of machine instructions per function (INSPF):

INST - FUNCT X INSPF

INSPF is a table entry with a programmed value of 90. The user

may specify a different value.

The third method for specifying size uses an empirically derived

variable (STRU) to relate the number of functional modules (FUNCT) and

the average functional level of the system (LEVEL):

FUNCT = STRU (I + LEVEL)
1 .2 + STRU

PRICE S will calculate values of STRU given FUNCT and LEVEL frr.: past

projects. The values obtained can be used to make new estimates.

LEVEL is obtained from the functional tree diagram (Figure A-S).

TREE
LEVEL

SYSTEM-------------- - 0-

FUC O lFUNCTION8 1- - - - - - - - - - - - -
I

I

suB- "suB- SBSU
FUNCTIONA IFUNCTIONA, FUCTION 1  FUNCT I ON B

COMPUTATION:

NO. OF
TREE FUNCT IONAL
LEVEL MODULES PROQUCT LEVEL PRODUCT , 10

suI 7
0 1 0
1 2 2
2 4 8

SUM 7 10

Figure A-5. Computation of LEVLL
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LEVEL is a weighted average with the weights being the number
of furctions at each level of the tree. LEVEL, like STRU, can be calculated

from projects similar to the one being estimated.

Once a value of FUNCT is obtained, INST is calculated as before by

using INSPF.

Application

PRICE S uses this parameter to characterize the difficulty of the

programming task. It is intended to adjust the relationship between cost

and program size to account for the inherent differences in resources

associated with different types of applications. The application param-

eter (APPL) ". . represents an inherent instruction complexity, inde-

pendent of variation in resources, schedules, operating environment and

system utilization." *

Acceptable values of APPL rang: from 0.866 to 10.952. The lower

end of the range is associated with programs that are predominantly math

and string manipulations; the higher values represent real-time command

and control and interactive applications. Increasing value3 of APPL

diescribe programming tasks that require more resources for a system of

given size.

Values of APPL for a given estimating situation may be assigned

on the basis of experience with .Imilar systems. Or, APPL for the system,

may be calculated from a weighted sum of its component parts. This alter-

native determination of APPL is obtained by estimating the proportion of

the total system size represented by each of seven categories of automated

functions (Mix Categories, TableA-4). The model lets the user define his

owr category and APPL value if necessary.
* Oo. Cit.
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TABLE A-4

MIX Categories

MIX CATEGORY :ZENTIFY:NG CHARACTERISTICS

DATA STORAGE AND RETRIEVAL: -OPERATION OF DATA STORAGE DEVICES
(MOAT) -OATA BASE MANAGEMENT

-SECONDARY STORAGE HANDL:NG
APPL-4. 10 -DATA SLOCKING AND DEBLOCKING

-HASHING TECHNIQUES

-HARDWARE ORIENTED

ON-LINE COMMUNICATIONS: - MACHINE-TO-MACHINE C)MMUNICAT:ONS
(MONL) WITH QUEUING PERMITTED.

-TIMING REQUIREMENTS NOT AS
APPL-6. 16 RESTRICTIVE AS WITH REAL T:ME

COMMAND AND CONTROL

REAL TIME COMMAND AND
CONTROL: -MACHINE-TO-MACHINE OOMMUNICATIONS

(MREA) UNDER TIGHT T:MING COMSTRA:NTS
I -QUEUING NOT PRACTICABLE

APPL-8.46 I -HEAVY HARDWARE :NTERFACE
-STRICT PROTOCOL REQUIREMENTS

INTERACTIVE OPERATIONS: I -MAN-MACNINE ZNTERFACES
i4INT -HUMAN ENG:NEERING _'ONS:DERATZ:NS

PI -ERROR DETECTION AND PROTECT:ON

MATHEMATICAL APPLICATIONS: -ROUTINE MATHEMATICAL APPL:CATIZNS
(,MMAT) WITH NO OVERRIDING CONSTRAINTS

APPL-0.36

STRING MANIPULATION: -ROUTINE APPLZCATICNS WITH NO
(MSTR) OVERRIIING CONSTRAINTS

-NOT ORIENTED TOWARD MATHEMATICS
APPL-2.31 -TYPIFIED BY LANGUAGE C-OMPILERS,

SORTING, FORMATT:NG, 3UFFER
MANIPULATION, ETC.

OPERATING SYSTEMS: -TASK MANAGEMENT
(MOPR) -MEMORY MANAGEMENT

-HEAVY HARDWARE INTERFACE

APPL-10.SS -STRICT TIMING REQUIREMENTS
-HIGH RELIABILITY
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Given the proportions of code in each category the system applica-

tion is calculated as follows:

8

APPL (MIX)(APPLi )
1=1

where MIX i = the proportion of the system code in the ith MIX category

APPL i = the APPL value for the ith category (see Table A-4).

Resource

RESO represents the effects on cost of items such as:".., skill

levels experience, productivity, efficiency, computer operating charges,

and labor and overhead rates of the organization."* The PRICE S estimating

procedure reflects the assumption that this value remains fixed in an

organization. The value of RESO is obtained from historical data using

the PRICE S calibration mode.

A large organization that includes many separate groups may present

different values of RESO. In making cost estimates for such organizations

it would be necessary to ascertain that the RESO value is consistent with

the particular group that will undertake the project being estimated.

Utilization

UTIL describes the proportion of available computer memory occupied

by the application programs. It also describes the fraction of the computer

cycle time required to exerute the program.

The PRICE S Reference Manual does not describe how combined time

and space constraints are represented by UTIL. Discussions with PRICE S

staff ,iembers suggest that the parameter represents a subjective assess-

ment of the effect of either one or both types of constraint in a qiven

situation.

* Op. Cit.
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There is no effect on cost associated with values of UTIL less than

0.5, while values of UTIL greater than 0.9 have a very large effect (see

Figure A-6).

Values of UTIL for shipborne or mobile applications range from 0.65

to 0.75, airborne applications range from 0.75 to 0.85, and space systems

have values close 0.9.

Platform

PLTFM " . denotes the operating environment of the software,

and is a measure of portability, reliability, structuring, and test and

documentatiun requirements to be provided for acceptable contract perfor-

mance."*

PLTFM, describes the specifications to be satisfied by the softwAre.

It represents the degree of testing and documentation associated with 4t.

The lower values denote one-time, in-house software with little or no

documentation. Increasing values describe more stringent testing and

documentation up to systems such as man-rated space applications. Table A-5

shows typical values of PLTFM.

Complexity

CPLX quantifies the effect on the time required to complete the

software development of the organization's readiness to undertake the

project.

Values of CPLX range from -0.2 to +0.6. Increasingly negative

values describe projects undertaken by experienced groups working on app1,-

cations very similar to ones that have been done before. The larger pos4-

tive values would represent projects in which there are one or more f *

that have been associated with Icnger development times. Such factors

include inexperienced crews, unfamiliar applications, new hardware or

software and so forth. Table A-6 ;nows the values of CPLX associated

the existence of different personnel and environmental conditions.

*op. cit.
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Figure A-6. Effect of UTIL on COST
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TABLE A-5

TYPICAL PLTFM VALUES

OPERATING ENVIRONMENT PLTFM

PRODUCTION CENTER - INTERNALLY DEVELOPED SOFTWARE 0.6-0.8

PRODUCTION CENTER - CONTRACTED SOFTWARE 1.0

MIL-SPEC GROUND 1 1.2

MILITARY MOBILE (VAN OR SHIPBOARD) 1.4

COMMERCIAL AVIONICS 1.7

MIL-SPEC AVIONICS 1.8

UNMANNED SPACE 2.0

MANNED SPACE 2.5
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PRICE S considers CPLX and schedule to be alternative representations

of the time required to complete a software development project. If either

one is given, the model can compute the other.

Values of CPLX, as in the case of RESO, tend to be constant for a

given organization. The calibration mode is used to obtain values from

representative past projects. These are used to make estimates for new

software development efforts.

Reference Year

PRICE S incorporates a reference calendar that is used to calculate

changes in the value of the monetary unit and the rate of technological

change.

The reference year for PRICE S cost calculations is 1976. The

inflation rate table, RTABLE, is used to adjust calculated costs to the

year specified by YEAR.

If no project start date is given, the model assumes a start date

of 1 January of YEAR.

YEAR may be used to define the state-of-the art of system develop-

ment technology. It may be used along with the input TECIMP to represent

the decrease in cost associated with expected improvements in development

efficiency. TECIMP is included in OTABLE and represents the difference

in development technology expected to occur in the interval between YEAR

and the start of the project, DSTART.

Cost Multiplier

MULT is a multiplier for all cost values. "Its primary purpose is

to adjust all costs to include mark-ups, such as G&A, IR&D, and profi-

or fee."*

* Op. Cit.
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Other Inputs

PRICE S includes many inputs in addition to the required ones

described above. These optional inputs serve to define the system in

greater detail when desirable and can specify constraints on the project

development parameters. They include:

NEWD - The amount of new design required for the software develop-

ment (Range: 0, 1)

NEWC - The amount of new code required for the software development

(Range: 0, 1)

NOTE: NEWD and NEWC are required inputs if APPL is entered rather than
calculated from the MIX categories.

SCHEDULE:

DSTART - The date design effort starts

DEND - The date design effort ends

ISTART - The date implementation effort starts

IEND - The date implementation effort ends

TSTART - The date test and integration effort starts

TEND - The date test and integration effort ends

RESOURCE CONSTRAINTS:

DCOST - Average Cost per Man-Month/Hour - Design Phase

DMAX - Maximum Man-Month/Hours per Month - Design Phase

ICOST - Average Cost per Man-Month/Hour - Implementation Phase

IMAX - Maximum Man-Month/Hours per Month - Implementation Phase

TCOST - Average Cost per Man-Month/Hour - Test/Integratiun Phase

TMAX - Maximum Man-Month/Hours per Month - Test/Integration
Phase

NEW DESIGN: The proportion of new design in each mix category required

for the software development.

DDAT - Date storage and retrieval

DONL - On-Line communications

DREA - Real-time command and control
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DINT - Interactive operations

DMAT - Mathematical applications

DSTR - String manipulation

DOPR - Operating systems

OPTIONAL

DAPP8 - Applies only when MAPP8 and APPL8 are specified

NEW CODE: The proportion of new code in each mix category required for

the new development.

CDAT - Data storage and retrieval

CONL - On-Line communications

CREA - Real-time command and control

CINT - Interactive operations

CMAT - Mathematical applications

CSTR - String manipulation

COPR - Operating systems

OPTIONAL

CAPP8 - Applies only when MAPP8 and APPL8 are specified

INTERFACE TYPES:

TDAT - Data storage and retrieval devices

TONL - On-Line communications devices

TREA - Real-time command and control devices

TINT - Interactive devices

INTERFACE QUANTITIES:

QDAT - Number of data storage and retrieval devices

QONL - Number on Of-Line communication devices

QREA - Number of real-time command and control devices

QINT - Number of interactive devices

A-61



CAP - Available memory size. UTIL = INST/CAP.

INTEG - Adjustment for system integration cost.

Calibration (ECIRP)

PRICE S incorporates the assertion that many different development

projects histories can be associated with software represented by a given

set of characteristics. These lifferences can be attributed to how an

organization undertakes a project. PRICE S recognizes two types of

project development. An organization may operate in a manner emphasizing

tight schedules and higher staffing rates or it may elect to limit staffing

and extend the completion time.

The discussion of inputs described the parameter PESO to be asso-

ciated with the expenditure of project resources and CPLX with the project

schedule. ECIRP is an execution mode of PRICE S that uses historical

project data to calculate values of these parameters. The values obtained

indicate how the organization has historically staffed and scheduled its

projects. The prerequisite for obtaining reliable cost estimates with

PRICE S is to verify that the values of RESO and CPLX behave in a consis-

tent pattern for the organization. Establishing these values using past

projects provides two important parameters that cannot be obtained with

any confidence from any outside source.

Data obtained from an organization's records reflects all the

definitions and processes peculiar to that organization. These become

implicitly represented in the calibration parameters and are reflected in

subsequent estimates.

The ECIRP mode is executed by entering a non-zero value for the

input TARCST. TARCST is the total development cost for a completed project.

Using this value, the project schedule descriptions of system size, appli-

cation and other characteristics allows the mode' to calculate values for

RESO and CPLX. Repeating the cdlibration for several projects provides

the basis for estimating RESO and CPLX for new projects.
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SLIM

Description of the Model

SLIM (Software Life Cycle Model) is a proprietary software cost esti-

mating model offered by Quantitative Software Management, Inc., McLean,

Virginia. The model is presently resident on the American Management

Systems time sharing network which provides local dial-up facilities for

a variety of low-speed terminals in over 200 cities nation-wide.

SLIM has its origins in the work done by L. H. Putnam at the 'JS Army

Computer Systems Command. Putnam applied the hypothesis presented 'y Norcer

of IBM* that given linear learning, the rate of expending effort on

the solution of problems follows a Rayleigh distribution function over time.

Both Norden and Putnam obtained good results by fitting the Rayleigh function

to the distribution of effort per unit time over the life cycle of large

software development projects. The Rayleigh representation was found to be

applicable for both the total life cycle effort and for the component activ-

ities such as Design and Coding, and Test and Validation.

SYSTEMS

OEFINI- FUNCTIONAL
ION _ DESIGN DEVELOPMENT OPERATION AND MAINTENANCE

F -- TEST AND

Using the Rayleigh distribution has the advantage that the time

distribution of effort during the software life cycle is determined by

two parameters: the area under the Rayleigh curve, which when applied

P. V. Norden, Useful Tools for Project Management, Management of

Production, M. K. Starr, Ed.. -u',n Books, 1970, pp 71-101.
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to the rate of expending effort becomes the total life cycle effort; and

the time to reach the peak of the effort rate. Putnam showed that for

large systems this time is the development time. The result of applying

the Rayleigh form to the software development cycle is the equation:

= 2 t exp (--22
t d 2tdtd d

where:

= the rate of expending effort, e.g., man-months per month;

K = the total life cycle effort, man-months or man-years;

td = the development time, months or years;

t = the time from the start of development, months or years.

Putnam then observed that the variable K/t d2 was correlated with

the subjective difficulty of a system. He calls the ratio "Difficulty"

and has determined empirically that for large systems (more than 70000

source statements), the productivity (source statements per man-year of

development) is related to the Difficulty by the following equation:

- CnD
2/3

where:

P= the average productivity, source statements per man-year of
development;

o = Difficulty, K/td2

Cn = empirical constant.

The portion of the life cycle that produces the code (Design and

Coding Phase) defines productivity and this activity constitutes 1/6 the

total life cycle effort. The Design and Coding Phase begins at the start

of the life cycle and is approximately 95 percent complete at the end of

development (some design and coding occurs after system installation).

These observed relationships along with the preceding ones define the

software equation:
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I

S CKK1/
3td4/3

where:

C K the Technology Constant.

Putnam states that the Technology Constant is quantized and it
"1seems to relate machine throughput (or programmer turn-around, available

test time, etc.) and other technology improvements like the chief pro-

grammer team, top down structured programming, on-line interactive job

submission, etc."*

The final equation developed by Putnam concerns an observed rela-

tionahip between the type of development being undertaken, the development

time and the difficulty. Putnam shows that the gradient of Difficulty:

D K
td td

is related to the type of development (e.g., stand-alone system, rebuild,

composite, etc.). The Difficulty gradient takes on a specific value for

each type of system and has the effect of imposing a minimum development

time for any system with a given Difficulty and total life cycle effort.

Trying to develop the system in a shorter time increases the Difficulty;

conversely, increasing the development time decreases the Difficulty.

As a consequence of the Rayleigh/Norden distribution of effort per

unit time and the empirical relationships between productivity and D and

between vD and type of development, Putnam proposes that the following

equations govern the life cycle effort for large software systems:

SS CKK1 /3 td4/3

0 - 3
td

where:

C K - the Technology Constant and is known for a given environment;

vD the Difficulty gradient and is known for a given type of
development.

L. H. Putnam, Measurement Dan) tz % crt Sizing, Estirmatina and Control
of the Software Life Cycle, .E--E COMP<\ 78, San Francisco, Calif,
Mar 1978, p 12. A -5



For a given value of the Technology Constant, and type of develop-

ment, the software equation and the Difficulty gradient define time-effort-

Difficulty trade-offs for any system of a given size.

.. ... a 00 - 14.1

,. ;0 1 30.20 10.CS 0.20 12,0 60.301 72.,,0 SC.Zf C. 3 0 . 30. .

s4 SIZ E sc ou:e s:a:m.n"s

The method to this point provides a minimum development time and

a relationship between effort and development time for a given system and

environment. Putnam recommends (1 ) that the selected development time

within the trade-off region be as long as possible within the constraints

imposed by the need for the system. As can be seen from the chart above, it

is advantageous to extend t"e development time as much as possible. Eut in

a practical situation there are several additional constraints ttat affect the

development time and effort for a software system. Putnam has incorporatea

these Into a linear programming problem which is cne of the operating modes

of SLIM. The linear programming solution satisfies the following rela-

t4onships(2)

(1) L. H. Putnam, The Real Economics of Software Development, Quantitative
Software Management, Inc., Jun 1980, p 5.

(2) L. H. Putnam, Software Costinq and Life Cycle Control, Workshop on

Quantitative Software Model,, LEEE C5z. No. TH0067-9, Oct 1979, p 29.
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S SW C KI / t d4/3 software equation

K/td !/ Ymax maximum peak manpower

K/td V'eYmax minimum peak manpower

K/td2< 01 maximum difficulty

K/td 3 < 1,O0 maximum difficulty gradient

td I contract delivery time

TNM (YK) i total budgeted amount for development

Providing that a solution exists that satisfies all the constraints,

the result is a range of development times and efforts extending from a

minimum time solution on one extreme to a minimum effort or cost on the

other.

TIME MAN-MONTHS COST (X $1000)

MINIMUM TIME 21.93 399 1662

22.43 364 1519

22.93 334 1390

23.43 306 1276

MINIMUM COST 24.00 278 1159

The notion that the cost of software development should be dependent

on management strategy as an explicit input to the cost estimating model

is unique. Although other models may be used to the same end, SLIM in-

cludes it as part of the model structure.

Another important feature of SLIM is the representation of the

uncertainty in the primary estimating variable and its effect on the

development time and effort. Program size can be represented as a range

of possible values for system-level estimates or as smallest, largest,

and most likely values for component estimates. In either case, an

expected value and variance is established for each size measure and
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these are used to perform a Monte Carlo type sirulation of the minimum

development time and its related effort. The result is statistical

distributions of times and efforts that can be used to establish time and

effort values associated with differert values of risk. The model uses

these relationships in several of its operating modes. The applications

of these relationships are described in the discussion of the model outputs.

Having established the basic life cycle cost estimates for a given

development situation, the model calculates "front end" iffort and time

as a function of the development effort. It also calculates computer

resource requirements and documentation size.

The description of SLIM presented here is based on materials ta-

have been published widely by Putnam and that are derived in large

part from his work at the Army Computer Systems Command. The methods

are applicable to systems larger than 70000 source statements. The

extension of the model to systems between 10000 and 70000 statements is

held to be proprietary and there is no~available description of the

method used to make estimates for systems in this range of the size

variable. The evaluated model rejects systems with fewer than 10000

statements. A new version of SLIM is now available that accepts systems

as small as 5000 statements.

Outputs

Development Time

The development cycle begins with the detailed design of the system

programs. It is assumed that the system requirements and the system spe-

cifications are completed in activities that precede the development cycle.

Development ends when the system completes its acceptance testing and is

released to the user. The DevelopMent Time is the elapsed time in months

extending from the start of program design until the system is released.

Development Effort

All personnel hours, both direct and indirect, expended during the

period defined by the Development 7 r- included in the development
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effort. In many models the precise definition of the indirect hours is

an important factor that affects the accuracy of the predictions. The

effects of variations in the definitions are minimized in SLIM (as in any

models that are self-calibrating) because the important model parameters

are calculated from historical data that should reflect the same cost

accounting practices as will be applied to the project being estimated.

In using such models it is important that the historical data be represen-

tative of the estimated project in such definitions as types of personnel

hours to be recorded and reported against the project, the lev2l of manage-

ment reported directly and indirectly and the method of distributing the

overhead charges.

-he indirect effort is incorporated into the SLIM estimates by way

of the Technology Factor. The Technology Factor is obtaiec ..s g the

calibration mode of the model from data describing pasz projects.

The Technology Factor includes a factor related to the organizational

productivity. The average procuctvity is aefined as the ratio of the total

end product code to the total effort to produce the code. The total

effort includes all direct and indirect activities.* Therefore, as long

as the size of the system from historical records and the total

effort to produce the system are measured on the same basis as the project

being estimated, the Technology Factor obtained from the historical data will

be appropriate and the details of the definitions of total effort need not

be specified as part of the model definitions.

Development Cost, Constant Dollars

The Development Cost is obtained from the Development Effort using

a constant cost per unit effort (labor rate) measured in dollars per man

year for a specified year. Care must be exercised to ensure that the in-

direct and overhead costs are consistent with the definitions used to obtain

the Technology Factor. If they are not, omissions or double-counting will

occur.

L. H. Putnam, A General Empirical Solution to the Macro Software Sizino
and Estimating Problem, IEEE T7-nsactions on Software Engineer=n,
Vol. SE-4, No. 4, Jul 1978. E3.
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Development Cost, Inflated Dollars

Costs are expressed in current year dollars using an inflation rate

specified in the model inputs.

MODEL OUTPUT OPTIONS

Simulation Option

This is the primary operative mode of SLIM. It performs the calcu-

lations that are reflected in almost all the other options. The mean and

standard deviation are estimated for the following:

* System Size,

* Minimum Development Time,

# Development Effort,

e Development Cost (inflated and uninflated dollars).

A sensitivity profile is presented that shows the change in Develop-

ment Time, Effort and Cost with System Size.

A consistency check is made with similar systems as represented by

the RADC data base. Calculated values of development effort, time, and

productivity and average number of personnel are compared with the 90 percent

range of values taken from the data base for the given system size. The

model indicates whether the estimated values are within the range, above

it, or below it.

The variance in the estimates comes from the assumed incertainty

in the size estimate, the cost per unit effort, and the difficulty gradient.

Linear Program Option

The user specifies the constraints operating on the system develop-

ment project and the Linear Program Option calculates various time and

effort alternatives that satisfy the constraints. The constraints include:
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* Maximum Development Cost,

a Maximum Development Time,

* Maximum Number of People at Peak Staffing,
* Minimum Number of People at Peak Staffing.

The software equation is satisfied subject to the above constraints.

The model indicates if no solution exists. If a solution is possible,

SLIM prints a matrix showing the time, effort, and cost associated with a

minimum cost project and a minimum time project. Since these two solutions

represent only the extremes of the feasible region, the model also presents

effort and cost for a number of intermediate development times.

Front-End Option

Low, expected, and high values of time and effort are calculated

for the activities that precede the Development Phase of the software

life cycle. These include:

e Feasibility Study,,

e Functional Design.

The estimates are said to be made using IBM data* and the values

estimated for the Development Cycle.

Life Cycle Option

SLIM calculates monthly, quarterly, or yearly estimates of the number

of people, the cost, and the cumulative cost for the system life cycle.

The mean and standard deviation is presented for each value.

Risk Analysis Option

Tables are oresented that indicate the probability that time, effort,

and cost to develop the system wil'l not exceed the given amounts. From
these outputs it is possible to make an inference such as: "There is a
95 percent probability given the input assumptions that the system develop-

ment will not take longer than 22.3 months." Similar statements can be

p de for effort and cost.

SLIM User's Guide, Quantitnz . So.. ,aracement, inc.
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Benefit Analysis Option

Using the user-specified economic life of the system and the desired

annual rate of return, the model calculates the discounted cash flow value

of the system that amortizes its development and maintenance cost.

New Schedule Option

The Simulation option provides estimates of time, cost, and effort

based on the minimum time to develop a given system. The New Schedule

option permits the user to specify times greater than the minimum develop-

ment time and obtain corresponding estimates of effort and cost. The

results are compared with similar size system experience as in the case

for the Simulation option. The Manloading, Cashflow and Life Cycle options

may be executed and reflect the new schedule.

Design to Cost Option

Given an effort less than that established by the minimum time

(maximum effort) solution will result in a new development time and cost.

Consistency checks and subsequent executions of the Manloading, Cashflow,

and Life Cycle options are executed in the same manner as the New Schedule

option.

Desigr to Risk Option

The user is asked to choose among three levels of risk (.99, .95,

and .90) describing the probability of exceeding a user-specified maximum

development time. The model calculates expected values and standard devia-

tions of development time, effort, and cost associated with the selected

level of risk. The Manloading, Cashflow, and Life Cycle options may be

executed using the new parameters.

Other Options

SLIM has several additional output options including:
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Manloading by Project Month

Cashflow by Project Month

Major Milestones

Monthly Code Production

Monthly Computer Hours

Documentation

PERT Sizing

SLIM has three primary inputs: System Size in number of developed

source statements, Level or Difficulty Gradient, and Technology Factor.

The System Size is estimated by someone familiar with the functions to be

automated and is the primary descriptor of the work to be done. The other

two inputs affect the type of effort involved and the development environ-

ment. These are obtained from user expcrience with previous SLIM estimates

and by calibrating the model using historical data that is representative

of the project to be estimated. The process of obtaining these values is

described below in the section on calibration.

Additional input parameters describe other properties of the system

and the development process.

System Size

The system size is described in terms of the number of executable

source language statements to be written. Data declaration and input/

output statements are included in the size measure, but comment statements

are not. SLIM accepts two alternate methods for describing system size.

The first is suggested for use during the early phases of the life cycle

before the system functions are defined. The user makes an estimate of the

the possible range of values for the total system size. The model uses

this range to calculate the expected value of the system size and its

standard deviation.
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The representation of the system size as a random variable is used

to calculate the effect of the uncertainty in the size measure on the model

estimates. Using the Monte Carlo technique, SLIM performs repeated calcu-

lations of the output values using values of the system size defined by a

normal distribution with the mean and standard deviation calculated as

described above. The statistics of the Outputs (mean and standard devia-

tion) are printed and these values are used in executing several of the

model options. Ultimately this approach gives the user an explicit state-

ment of the risk assiciated with the model predictions.

The second method used by SLIM to calculate the system size requires

the user to make estimates of the sizes of each of the system functions.

It is suggested that several analysts make three estimates of the size of

each system function: the least possible number of statements, the greatest,

and the most likely. These are used to make composite estimates for each

function by combining the range values and calculating the mean of the

expected values for each function. The three values obtained for each

function are used to calculate the system expected value and standard

deviation using the relationships:

N

II
E(S i

i--l
E a. + 4m. + b.

1 6

N

bi - ai
1 6
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where:

E (Ss) = the expected system size in number of source statements

N = the number of system functions

Ei = the expected value of the size of the ith function

ai,b i = the range of the size of the ith function from smallest

to largest

mi = the most likely value of the size of the ith function

ass = the estimated standard deviation of the system size

i = the estimated standard deviation of the size oe the

ith function.

The values of the system expected size and its standard deviation are

used in the same way as the first method described above.

Level

This parameter is related to the Oifficulty Gradient, K/td

discussed above. The Difficulty Gradient was observed by Putrnam to assume

discrete values that are representative of the type of development asso-

ciated with the system being estimated. Consequently, Level measures,

. . . the amount of interfacing, new design, and concurrent programming

that will go on during development".* Level takes on integer values from

I to 5 depending on the following considerations:

(1) The system is entirely new - designed and coded from scratch.

It has many interfaces'and must interact with other systems

within a total management information system structure.

(2) This is a new stand-alone system. It is also designed and coded

from scratch but is simpler because the interface problem with

other systems is eliminated.

* SLIM User's Guide, p 4-12.
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(3) This is a rebuilt system where large segments of existing logic

exist. The primary tasks are recoding, integration, inter-

facing, and minor enhancements.

(4) This is a composite system made up of a set of independent

subsystems with few interactions and interfaces among them.

Development of the independent subsystems will occur with

considerable overlap.

(5) This is a composite system made up of a set of independent

subsystems with a minimum of interactions and interfaces among

them. Development of the independent subsystems will occur

virtually in parallel.

Past data have shown that large systems (>200,000 lines) are typically of

Type 3, 4, or 5.

Technology Factor

The Technology Factor is an integer parameter related to the Tech-

nology Constant described above. SLIM accepts values in the range from

0 to 22. The 0 value, however, is simply a code that indicates that the

model is to provide the Technology Factor. For large systems the Techno-

logy Constant can be expressed as:

C 2.49
Ck = 2 Cn

where:

Ck The Technology Constant

2.49 = A constant that represents the ratio of total life cycle

effort to the design and coding effort - it represents

the overhead labor associated with code production. It

is valid for large systems, but becomes a variable for

systems in the range of 18000 to 70000 statements.
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6 = A constant that indicates that 1/6 the life cycle effort is

expended on logic design and code production. Valid for large

systems; variable for intermediate size systems.

Cn = An empirical constant that was shown above to relate coding

productivity and system difficulty. It assumes discrete

values.

For large systems, then, the Technology Constant can be seen to account

for the rate of code production for a given system Difficulty, overhead

labor and the distribution of the life cycle effort. The Technology Factor,

which is used to index the Technology Constant and which preserves its

discrete property, is said to be ". . . a measure of the state of

technology of the human-machine svstem"*, environmental influences

and functional complexity of the system.

The interpretation of the Technology Factor is the same for smaller

systems as it is described above for large systems, but the relationship

shown is modified in a way that is proprietary.

The Technology Factor is obtained by calibrating the model using

historical data that are representative of the project to be estimated.

The factor should be stable in a given organization, but should be expected

to change to reflect differences in:

e Computer access and availability

s Software support tools, language

@ Use of modern programming practices

* Type of application

e Staff experience

9 Customer relationship

The SLIM manual indicates that few organizations are represented by

a Technology Factor greater than 14 or less than 5.

L. H. Putnam, A General Empi '-- 1 Solution, etc., op. :.. 3 353.
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Additional Inputs

SLIM requires a number of inputs in addition to the ones described

above.

MONTH, YEAR = the month and year when detailed design of the sys.em

will start. MONTH is an integer between 1 and 12; YEAR is an

integer between 40 and 90.

LABOR RATE - the fully burdenea average S/MY at the user's

organization.

STDDEV - the uncertainty associated with the above LABOR RATE.

INFLATION RATE - the anticipated inflation rate at project start

ONLINE - the proportion of development that will occur in online,

interactive mode.

DEVELOPMENT TIME - the proportion of the development computer that

is dedicated to this development effort.

PRODUCTION TIME - the proportion of the available capacity of the

development computer that is used for other production work.

HOL - the proportion of the system that will be coded in a higher

order language.

LANGUAGE - the primary language to be used; should correspond to

the legend below.

(1) APL (4) FORTRAN (7) ALGOL (10) ASSEMBLER

(2) PL/I (5) BASIC (B) JOVIAL (11) RPG

(3) COBOL (6) CMS (9) PASCAL-ADA (12) OTHER

UTILIZATION - the proportion of the memory of the target machine

that will be utilized by the end system.

REAL TIME CODE - the proportion of code which is devoted to real

time or time critical functions.
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MODERN PROGRAMMING PRACTICES - the 4 variables include: STRUCTURED

PROGRAMMING, DESIGN/CODE INSP, TOP-DOWN DEVELOPMENT, and Chief

Programmer Team usage. The responses for each of these variables

should correspond to the legend below.

(1) <25% (2) 25-15% (3) >75%

TYPE - description of the type of software system:

(1) Real time or time critical system

(2) Operating system

(3) Command & control

(4) Business application

(5) Telecommunication & message switching

(6) Scientific system
(7) Process control

PERSONNEL EXPERIENCE - the 4 vdriables include: OVERALL, SYSTEM

TYPE, LANGUAGE, and HARDWARE. The responses are used to get an

Indication of the level of personnel experience -- overall, on a

system of similar size and application, with the programming
language to be used on this effort, and on the development

machine.

(1) MINIMAL (2) AVERAGE (3) EXTENSIVE

The Technology Factor describes the development environment. As was described

above, the Technology Factor is an indicator of the efficiency with which

effort (and therefore cost) is expended to obtain the desired software system.

Values of the Technology Factor cah be obtained from data describing completed

projects by using the SLIM calibration option. Given the. values of:
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* Size

e Development Effort

s Development Time

for one or more projects, the model calculates the Technology Factors

that would have produced the indicated experience. The user is cautioned

to examine any Technology Factor outside the "reasonable range." This

is indicated by an asterisk in the printout.

The Technology Factor may vary for selected projects taken from

a single organization. This may be caused by differences among the

projects in computer access, software support, management methods staff

experience, language, user characteristics, requirements stab'lity and

functional complexity. It is the user's responsibility to examine these

possibilities and to verify that the project being estimated is compatible
with the selected value.

Reference

SLIM User's Guide, Quantitative Software Management, Inc.
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TECOLOTE

Description of the Model

The Tecolote provisional software cost estimating model was developed

to predict cost and resources needed to develop tactical software.

Specifically it was derived using data representing Navy fire control

systems designed to operate against air and sea threats. These two

classes of fire control systems present different software requirements

because of the effects of threat speed on system response speed.

The justification for the model form is the hypothesis that develop-

ment effort is determined by software size, system time criticality and

system fast storage capacity. The model is limited to tactical systems

ciaracterized by time criticality, that is, where the time required to

access the fast storage memory is comparable to the speed with which the

computer is capable of moving data during processing.

The software resource-driving factors (storage capacity and time

criticality) were assumed to be predictable in terms of the related threat

characteristics. Data from five Navy software developments were used

to relate the storage and time requirements to threat size for two speed

regions representing the air and sea threats.

A relationship was derived between "delivered code" (the total

code developed including drivers and simulators) and "operational code"

(the coca that ends up in the operational computer). All code size

measurements are in terms of machine instructions. The number of machine

instructi is taken to be the same as the number of words of computer

storage required to store the program.

Operating instructions are related to total fast storage capacity

using one sea threat data point and two air threat points. A relation-

ship between total delivered instructions and operational instructions

is obtained from two data points.
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Man-months of direct labor are shown as functions of first total

operating instructions and then total delivered instructions.

A matrix of the above relationships was prepared (Table A-7). Its pur-

pose is " . for evaluating software proposals from the standpoint of soft-

ware design as well as software costs." It should be noted that there

are redundancies in the relationships and that the model does not indicate

which relationship should be preferred in any given estimating situation.

Labor and computer costs were presented in 1973 dollars as func-

tions of direct labor man-months. These were obtained from the only

project for which costs were available.

Reference

Brad C. Frederick, A Provisional Model for Estimating Computer Program
Development Costs, Tecolote Research, Inc., TM-7, Dec. 1974.
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Wolverton

Description of the Model

Estimates of routine size are converted to costs using cost per

instruction values that are functions of the routine tvpe and complexity.

The costs are fully burdened and when summed for all the system routines

represent the total system development cost. Development extends from analysis

and design through operational demonstration. A matrix of ratios is used

to allocate the total cost to 7 phases with each phase divided into up to

25 activities. This allocation is compared from the standpoints of staff,

schedule, and general credibility.

The model, then, is a combination of formal algorithm and judgement.

It has been used successfully at TR.. As described by Wolverton, it features

a data base of historical data that provide the necessary cost per instruction

and allocation values. The procedure is adaptable to any new environment

by creating a new data set representing local definitions of phases and

activities and burdnned cost conventions. In fact, Wolverton cautiois

that the given values of cost per instruction are for illustration and users

should prepare their own values.

TR, has computerized the maintenance of the cost data base and the

allocation process. Given the inputs of size and complexity, the system

calculates the cost allocations and facilitates any subsequent adjustments.

Since most models are used in a similar manner, even if the procedure for

using the model does not say so, there should be no compromise of the

model's performance if the evaluation is based on a single estimate of costs.

Other adjustments that are necessary to execute the model in different

environments will be discussed later.

The estimating procedure begins by identifying all the routines

comprising the system. Each routine size, category, and relative degree

of difficulty are estimated by knowledgeable persons.
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The categories that have "stood the test of usage" at TRW are:

e Control routine

i Input/Output routine

* Pre or Post algorithm processor

* Algorithm

s Data Management routine

e Time-Critical processor

Relative difficulty is indicated by six levels depending on whether

a routine is Old or New and then by simply: Easy, Medium or Hard.

The cost per instruction for the 36 different attributes (6 soft-

ware categories by 6 levels of difficulty) is given in Figure A-7. Multi-

plying the cost per instruction for each routine by its number of object

instructions and summing the products for all the routines yields the

estimated total development cost.

The development cost is allocated to the following 7 phases using

proportions for each phase that wre obtained from the historical data base.

A. Performance and Design Requirements

B. Inplementation Concept and Test Plan

C. Interface and Data Requirements Specification

D. Detailed Design Specification

E. Coding and Auditing

F. System Validation Testing

G. Certification and Acceptance Demonstration

Then, the cost for each phase is divided into up to 25 activities

(Fables A-8 and A-9).

A matrix of conuter hours by phase and software type is used to

estimate conuter usage costs for development.
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Figure A-7. Cost Per Object Instruction Versus
Relative Degree of Difficulty
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TABLE A-B
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TABLE A-9

COST MATRIX DATA, SHOWING ALLOCATION OF RESOURCES
AS A FUNCTION OF ACTIVITY BY PHASE

PHASE
ACTIVITY A a C D E F G H

(8) (19) (3) (14) (23) (21) (12) (0)

1 10 6 8 6 7 5 10 2

2 8 3 3 3 3 3 3 5

3 6 4 6 3 8 5

4 13 8 5 6 5 5 4 2
* 5 5 2 2 3 3 2 2 1

6 22 8 7 12 3 7 5 8
7 10 8 7 2 6
8 7 5
9 6

10 17 10 10 8
11 2 10 10 9 7 6
12 2 5 13
13 4 7 10 3 5
14 4 3

15 5 25

16 4 4 5 4 4 10 10
17 3 6 5 6 5 8 10

18 5 3 8 5 2 5 10
19 10 15 14 5
20 10
21 2 4 5 5 7 9 9 3
22 5 6 8 4

23

24 4 3 2 3 5 3 25
25 2 1 2 3 5 10
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Outputs

Development Cost

The given cost values are in 1972 dollars. The value of cost results

from applying "bid rates" to labor costs which accounts for fringe benefits,

overhead, administrative expenses and other indirect costs. Documentation

and travel costs are added to the labor costs. Finally, estimates are

made of the computer costs. The distribution of the costs by phases and

activities were described above.

Development Effort

Cost is not a suitable basis for evaluating the different software

estimating models because of differences in accounting practices among

organizations and because of inflation. Therefore, the Wolverton cost

values were converted to manmonths using an average burdened cost per

manmonth of $4600. This value was obtained from the article describing

the TRW estimating procedure and, therefore, should be representative of

the cost environment.

Inputs

Object Instructions

The model input measure of size is applied to programs or routines.

These are taken to be functionally distinct elements of a system that would

be developed independently then intergrated into the delivered system. It

is expected that these would be independently operable using test drivers.

Such a definition is consistent with industry usage. The reference document

is not specific on this point. The term "instructions" is taken literally.

This means estimating the number of instructions in the executable program

exclusive of any data areas. The number of instructions may be estimated

by obtaining the words of memory occupied by the executable code and div 4ding

by the average words per instruction.
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Software Categories

Each routine is characterized according to one of the following

categories:

C. Control Routine. Controls execution flow and is nontime critical.

I. Input/Output Routine. Transfers data into and out of computer.

P. Pre-or Post Algorithm Processor. Manipulates data for subsequent

processing or output.

A. Algorithm. Performs logical or mathematical operations.

0. Data fManagement Routine. Manages data transfer within the computer.

T. Time Critical Processor. Highly optimized machine-dependent code.

Degree of Difficulty

Wolverton indicates that any numeric representation of complexity may
be used. The main purpose is to distribute the cost per instruction values

over the range of experience for a given category of software. He suggests

a simple designation of old or new, depending on a loose interpretation of

the amount of reusable code, and easy medium or hard compared with other

programs in the same category.

Reference

L. H. Putnam, R. W. Wolverton, Tutori 1, Quantitative Management:
Software Cost Estimating, IEEE Computer Society, No. EHO 129-7, Nov 1977.
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APPENDI:X B

WORK BREAKDOWN STRUCTURE

LEVEL 1.

1. DEFINITION

2. CODING

3. DATA CONVERSION

4. INFORMAL TEST AND INTEGRATION

5. FOFWAL TEST AND INTE RATION

6. INSTALLATION

7. DEVELOPMENT FACILITIES

8. TRAINING

9. MANAGEMENT
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LEVEL 2.

I. DEFINITION

.1 SYSTEil LEVEL

.2 SYSTEIi SEGiENT LEVEL

.3 CPCI LEVEL

2. CODING

.1 CPCI LEVEL

.2 CPRC LEVEL

3. DATA CONVERSION

.1 CPCI LEVEL

4. INFORAL TEST AND INTEGRATION

.1 CPCI LEVEL

.2 CPRC LEVEL

5. FORMAL TEST AND INTEGRATION

.1 SYSTEM LEVEL

.2 SYSTEM SEGMENT LEVEL

.3 CPCI LEVEL

6. INSTALLATION

.1 SYSTEM LEVEL

7. DEVELOPMENT FACILITIES

.1 SYSTEM LEVEL

.2 SYSTEM SEGMENT LEVEL

8. TRAINING

.I SYSTEM LEVEL

.2 CPCI LEVEL

9. MANAGEMENT

.1 SYSTEM LEVEL

.2 SYSTEM SEGMENT LEVEL

.3 CPCI LEVEL
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LEVEL 3.

1. DEFINITION

.1 SYSTEM LEVEL

.1 System Requirements Collection and Definition

.2 System Requirements Evaluation

.3 System Design

.4 System Design Verification

.5 System Change Proposal Evaluation and ECP Preparation

.6 System Requirements Documentation

.7 System Design Documentation

.8 System Definition M.onitoring and Direction

.2 SYSTEM SEGMENT LEVEL

.1 Segment Requirements Definition

.2 Segment Requirements Evaluation

.3 Segment Design

.4 Segment Design Verification

.5 Segment Change Proposal Evaluation and ECP Preparation

.6 Segment Requirements Documentation

.7 Segment Design Documentation

.8 Segment Definition t-onitoring and Direction

.3 CPCI LEVEL DEFINITION

.1 CPCI Requirements Collection and Defirition

.2 CPCI Requirements Evaluation

.3 CPCI Design

.4 CPCI Design Verification

.5 CPCI Change Proposal Evaluation and ECP Preparation

.6 CPCI Requirements Documentation

.7 CPCI Design Documentation

.8 CPCI Definition Monitoring and Direction
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LEVEL 3 (Con't)

2. CODING

.1 CPCI LEVEL

.1 CPCI Level Coding

.2 CPCI Code Documentation

.3 Monitoring and Dircction of CPCI Coding

.2 CPRC LEVEL

.1 CPRC Level Coding, Compilation, and Inforal Review

3. DATA CONVERSION

.1 CPCI LEVEL

.1 CPCI Data Conversion.2 Data Conversion Documentation.3 Monitoring and Direction of CPCI Data Conversion

4. INFORMAL TEST AND INTEGRATION

.1 CPCI LEVEL

.7 Informal CPCI Test, and Integration Planning

.2 Informal CPCI Test and Integration Conduct

.3 Documentation of Informal Test and Integration

.4 Informal CPCI Test and Intergration Monitoring and Direction

.2 CPRC LEVEL

.1 CPRC Test and Integratior Planning

.2 CPRC Test and Integration Conduct

. Documentation o-f CPRC Te~t and Integration

.4 CPRC Test and Integration Monitoring and Directives
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LEVEL 3 (Con't'

5. FORMAL TEST AND INTEGRATION

.1 SYSTEM LEVEL DT&E

.1 System DT&E Planning

.2 System DT&E Procedure Development

.3 System DT&E Execution

.4 System DT&E Data Reduction

.5 System DT&E Error Identification

.6 System DT&E Documentation

.7 System DT&E Monitoring and Direction

.2 SYSTEM SEGMENT LEVEL DT&E

.1 Segment Test Planning

.2 Segment Test Procedure Development

.3 Segment Test Execution

.4 Segment Test Data Reduction

.5 Segment Test Error Identification

.6 Segment Test Documentation

.7 Segment Test Monitoring and Direction

.3 CPCI LEVEL DT&E

.1 CPCI Qualification Test Planning

.2 CPCI Qualification Test Procedure Development

.3 CPCI Qualification Test Execution

.4 CPCI Qualification Test Data Reduction

.5 CPCI Qualification Test Error Ide.,Lification

.6 CPCI Qualification Test Documentation

.7 CPCI Qualification Test Monitoring and Direction

6. INSTALLATION

.1 SYSTEM LEVEL

.1 Planning for Installation

.2 Site-Specific Adaptation

.3 Installation Documentation

.4 Installation Monitoring and Direction
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LEVEL 3 (Con't)

7. DEVELOPMENT FACILITIES

.1 SYSTEM LEVEL

.1 Development Facility Planning

.2 Development Facility Site Preparation

.3 Development Facility Equipment Acquisition

.4 Development Facility Equipment Maintenance

.5 Development Facility Software Acquisition

.6 Development Facility Software Maintenance and Modification

.7 Development Facility Operation

.8 Development Facility Documentation

.9 Monitoring and Direction of Development Facility Provision
and Operation

.2 SYSTEM SEGMENT LEVEL

8. TRAINING

.1 SYSTEM LEVEL

.1 System Training Planning

.2 System Training Material Development

.3 Instruction in System Use, Operation, and Maintenance

.4 System Training Documentation

.5 Monitoring and Direction of System Training

.2 CPCI LEVEL

.1 CPCI Training Material Development

.2 Instruction in CPCI Use, Operation, and Maintenance

.3 CPCI Training Documentation

.4 Monitoring and Direction of CPCI Training
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LEVEL 3 (Con't)

9. MANAGEMENT

.1 SYSTEM LEVEL

.1 System Management Planning

.2 System Project Direction

.3 System Configuration Management

.4 Reporting System Development Status

.2 SYSTEM SEGMENT LEVEL

.1 Segment Management Planning

.2 Segment Development Direction

.3 Segment Configuration Management

.4 Reporting Segment Development Status

.3 CPCI LEVEL

.1 CPCI Management Planning

.2 CPCI Development Direction

.3 CPCI Configuration Management

.4 Reporting CPCI Development Status
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APPENDIX C

MODEL ESTIMATING PERFORMANCE
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TABE C-I

MODEL ESTIMATING PERFORMANCE - AEROSPACE CORPORATION, COMMERICAL

MODEL: AEROSPACE CORPORATION

DATA SET: COMMERCIAL

S M.1 1 ACT

ACTUALCASE ACTUAL EST EST

I i

1. Al 127.2 190.9 0.666

2. A2 38.0 130.5 0.291

3. A3 48.7 163.3 0.298

4. A4 1 29.3 115.2 0.237

5. A5 45.5 189.6 0.240

6. A6 44.9 216.2 1 0.208

7. A7 30.5 118.2 0.258

8. A8 53.0 169.5 0.313

9. A9 232.8 1 307.1 0.758
10. AlO 211.1, 274.6 0.769

11. All 13.8 119.2 0.116

Mean 79.5 0.378

Standard 76.2 0.234
Deviation

RMS ERROR: 107.

RELATIVE RMS ERROR: 1.35

* Support software relationsbip (The Appendix A)
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TABLE C-2

MODEL ESTIMATING PERFORMANCE - AEROSPACE CORPORATION, DSDC

iODEL: AEROSPACE CORPORATION

DATA SET: DSOC

rI*I I ~ i?.1 * J ACT
CASE ACTUAL EST EST

l DC 2.3 79.4 0.0290

2. DK 79.9 134.8 0.583
3. DS 8.8 101.5 0.0867

4. DU 2.9 95.5 0.0304

5. FB 88.9 169.1 0.526
6. FD 7.1 1 134.8 0.0527

7. FE 4.9 1 125.2 0.3091

8. FF 2.6 103.7 0.0251

9. BH 17.8 144.2 0.123
10. BB 9.5 105.4 0.0901

11. GG 48.8 122.3 0.399
12. BI 3.5 76.4 0.0458

13. ZP 9.8 81.0 0.121
14. US 172.9 190.0 0.910
15. JD 45.4 111.4 0.408

16. QD 23.0 153.3 0.150
17. DJ 247.5 104.3 2.37
Mean 45.6 1 0.353

tandard 68.8 0.579

RMS ERkOR: 96.0

RELATIVE RMS ERROR: 2.11

• Support software relationship (See Appendix A)
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TABLE C-3

MODEL ESTIMATING PERFORMANCE - AEROSPACE CORPORATION, SEL

MODEL: AEROSPACE CORPORATION

DATA SET: SEL

I Mh iM* ACT
CASE ACTUAL EST ET

I I

AA 111.0 209.3 0.530

2. AB 221.3 182.7 1.21
3. AC 254.3 209.3 1.22

4. AD 268.8 187.9 1.43

5. AE 324.4 239.9 1.35

6. AF 77.6 160.5 0.484

7. AG 53.1 119.5 0.44 ,
8. AH 29.0 117.8 0.246
9. AI 79.8 157.0 0.508

10. AT 19.5 84.7 0.230

11. AK 25.3 79.0 0.320
12. AL 20.5 103.0 0.199
13. AM 13.9 60.7 0.229
14. AN 23.5 8.31 0.283

15. AO 276.8 218.5 1.27
16. AP 67.0 119.1 0.563
17. AQ 43.8 104.7 0.418

,Mean 112. 0.643
S tandard 109. 0. 450

Deviation

RMS ERROR: 67.8

RELATIVE RMS ERROR: 0.605

* upport software relationshi (See ApDenclix )
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TABLE C-4

MODEL ESTIMATING PERFORMANCE - BOEING COMPUTER SERVICES, DSDC

MODEL: BOEING COMPUTER SERVICES

DATA SET: DSDC

MM MM ACT
CASE ACTUAL ESTE

1. DC 2.4 4.4 0.542

2. OK 82.7 15.0 5.52

3. DS 9.1 7.6 1.19

4. DU 3.0 6.5 0.465

5. FB 92.0 30.8 2.98

6. FD 7.4 13.5 0.550

7. FE 5.1 16.0 0.319

8. FF 2.7 7.8 0.345

9. BH 18.4 24.1 0.764

10. BB 9.8 9.8 0.997

11. GG 50.5 14.8 3.42

12. BI 3.6 3.7 0.983

13. ZP 10.1 4.7 2.14
14. US 178.9 161.2 1.11

15. JD 47.0 10.5 4.48
16. OD 23.8 31.4 0.757
Mean 34.2 1.66

Standard 48.1 1.60
Deviation

*S ERROR: 26.9

RLATIVE RMS ERROR: 0.787
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TABLE C-5

MODEL ESTIMATING PERFORMANCE - DOD MICRO PROCEDURE, OS'C

MODEL: DOD MICRO ESTIMATING PROCEDURE

DATA SET: DSDC

MMMM ACT
CASE

ACTUAL EST EST

l. DC 2.4 2.7 0.882

2. DK 82.7 14.0 5.90

3. DS 9.1 4.4 2.06

4. OU 3.0 7.7 0.391

5. FB 92.0 26.0 3.5,,

6. FD 7.4 2.2 3.29

7. FE 5.1 99.6 0.0512

8. FF 2.7 6.5 0.414

9. BH 18.4 74.5 0.247

10. BB 9.8 9.3 1 1.05

11. GG 50.5 9.6 5.24

12. BI 3.6 1.9 1.89

13. ZP 10.1 618 1.49

14. US 178.9 121.7 1.47

15. JD 47.0 6.0 7.89

16. QD 23.8 68.6 0.347I I
Mean 34.2 2.26
Standard 48.1 2.32

Deviation

RMS ERROR: 43.2

RELATIVE RMS ERROR: 1.26
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TABLE C-6

MODEL ESTIMATING PERFORMANCE - DOTY ASSOCIATES, INC, DSDC

MODEL: DOTY ASSOCIATES, INC.

DATA SET: DSDC

MM MM ACT
ACTUAL EST EST

1. DC 1 1.0 7.1 1 0.141
2. DK 32.6 23.2 1 .41

3. DS 4.9 12.3 0.398

4. DU 1 . 10.7 0.103
5. FB 38.8 38.5 1.01

6 FO 3.9 23.2 6.00

7. FE 2.4 19.6 0.122

8. FF 1.7 12.9 0.131

9. BH 6.0 26.9 0.223

10. BB 2.8 1 13.4 0.209

11. GG 8.9 18,6 0.479

12. BI 1 1.9 6,5 0.292

13. ZP 5.7 7.4 0.770

14. US 48.3 50.0 0.966

15. JO 21.6 15.1 1.43

16. QD 0.8 30.9 0.0259

Mean 11.4 0.725

Standard J 5.3 0.966! i Deviation

RMS ERROR: 12.0

RE1.ATIVE RMS ERROR: 1.05

• 3usiness programs relationship (See Appendix A)

C-7



TABLE C-7

MODEL ESTIMATING PERFORMANCE - FARR AND ZAGORSKI, DSDC

MODEL: FARR AND ZAGORSKI

DATA SET: DSDC

I I I, * I ACT1
Ti~ i il ACT

CASE ACTUAL EST EST

1. DC 1.0 100. 0.0100
2. DK 32.6 230. 0.142

DS 4.9 147. 0.0333

01 rU 1.1 131. 0.00840

5. FB 38.8 343. 0.113

6. FO 3.9 208. 0.0188

7. FE 1 2.4 163. 0.0147

8. FF 1.7 140. 0.0121

9. BH 6.0 266. 0.0226

10. BB 2.8 155. 0.0181

11. GG 8.9 1 192. 0.0464

12. BI 1.9 94. 0.0202

13. ZP 5.7 106. 0.0538

14. US 48.3 464. 0.104

15. JD 21.6 178. 0.121

16. QD 0.8 285. 0.00281
17. DJ 21.2 147. 0.144

Mean 12.0 0. 0521

Standard 15.0 0.05C9
Deviation

RMS ERROR: 203.

RELATIVE RMS ERROR: 16.9

• Relationship (3) (See Appendix ,,
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TABLE C-8

MODEL ESTIMATING PERFORMANCE - PRICE S, COMMERCIAL

MODEL: PRICE S

DATA SET: COMMERCIAL

.I~lW1F ACT
CASE ACTUAL EST -3T

1. Al 87.2 48 1.82

2. A2 22.9 17 1.35

3. A3 38.8 44 0.882

4. A6 37.2 71 0.524

5. A8 40.7 12 3.39

6. A9 192.0 176 1.09
7. All 10.5 17 0.618

Mean 61.3 1.38

Standard 62-.3 0.990
Deviation

P1S ERROR: 23.5

RELATIVE RMS ERROR: 0.383
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TABLE C-9

MODEL ESTIMATING PERFORMANCE - PRICE S, DSOC

MODEL: PRICE S

DATA SET: DSDC

MM M, ACT
CASE ACTUAL EST ET

1. DC 1.7 36 .0472

2. DU 2.4 8 .300

3. FD 5.5 11 .500

4. FE 3.8 14 .271

5. FF 2.0 9 .222

6. BH 14.5 19 .763

7. BB 7.4 10 .740

8. GG 40.2 12 3.35

9. ZP 8.0 6 1.33

10. Us 129.5 35 3.70

ii. JD 35.2 11 3.20

12. QD 11.7 22 .532

Mean 21.8

Standard 36. - .35
Deviation

RMS ERROR: 31.4

RELATIVE RMS ERROR: 1.44
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TABLE C-10
MODEL ESTIMATING PERFORMANCE - PRICE S, SEL

MODEL: PRICE S

DATA SET: SEL

M, ACT
CASE ACTUAL EST

1. AA 39.6 48 0.825

2. AB 79.0 85 0.929

3. AC 90.7 96 0.945

4. AD 95.9 78 1.23

5. AE 115.7 150 0.771

6. AF 27.7 27 1.03

7. AG 18.9 22 0.860

8. AH 10.3 22 0.470

9. AI 28.5 39 0.730

10. AJ 7.0 5 1.39

11. AK 9.0 10 0.902

12. AL 7.3 16 0.458

13. AN 8.4 11 0.764

Mean 41.1 0.870

Standard 39.4 0.260
Deviation

RMS ERROR: 12.3

RELATIVE RMS ERROR: 0.297
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TABLE C-11

MODEL ESTIMATING PERFORMANCE - SLIM, COMMERCIAL

MODEL: SLIM

DATA SET: COMM;IERCIAL

,NiIl MM ACT
CASE ACTUAL EST B-ST

1. Al 71 , 38.5 1.84

3. AS 32 37.1 0.863
4. A6 36 34.0 1.06
5. A9 184 1 212.1 0.868

6. AlO 163 138.5 1.18

Mean 87.3 1.27

Standard 68.5 1 0.454
Deviation

RMS ERROR: 21.5

RELATIVE RMS ERROR: 0.246
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- BLE C-12

MODEL ESTIMATING PERFORMANCE - SLIM, OSOC

MODEL: SLIM

DATA SET: DSDC

I KM ACT
CASE ACTUAL EST rT

1. FB 81.3 79.8 1.02

2. BH 17.4 27.1 0.642

3. US 155.6 125.4 1.24

Mean 84.8 0.967

Standard 69.2 0.303
Deviation

RMS ERROR: 18.3

RELATIVE RMS ERROR: 0.216
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TABLE C-13

MODEL ESTIMATING PERFORMAN4CE- SLIM, SEL

,ODEL: SLIM

DATA SET: SEL

Midl M ACT
CASE ACTUAL EST

1. AA 39.6 45.1 0.878

2. AB 79.0 76.9 1.03

3. AC 90.7 90.0 1.01

4. AD 95.9 102.7 0.934

5. AE 1 15.7 307.9 0.376
6. AI 28.5 44.6 0.639

7. A6 138.3 148.2 0.933

8. A7 98.4 179.7 0.548

Mean 85.8

Standard 36.6
Deviation I I

RMS ERROR: 74.2

RELATIVE RMS ERROR: 0.865
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TABLE C-.14

MODEL ESTIMATING PERFORMANCE - TECOLOTE, DSDC

MODEL; TECOLOTE

LATA SET: DSDC

MM MM ACT

CASE ACTUAL EST EST

1 DC 2.4 38.1 0.J629

2. DK 82.7 193.1 0.428
3. DS 9.1 30.8 0.113

4. DU 3.0 67.1 0.0447

5. FB 92.0 387.4 0.238

6. FD 7.4 193.3 0.0383

7. FE 5.1 153.9 0.0331

8. FF 2.7 86.4 0.0313

9. BH 18.4 23".7 0.0774
10. BB 9.8 90.7 0.108

11. GG 50.5 143.2 0.353

12. BI 3.6 33.8 0.106
13. ZP 10.1 40.5 0.250

14. US 178.9 554.5 0.323

15. JD 47.0 107.6 0.437

16. QD 23.8 236.7 0.0830

Mean 34.2 0.170

Standard 48.1 0.580
Deviation

RMS ERROR: 168.

RELATIVE RJlS ERROR: 4.92

* Estimating relationship using number of
operating instructions.
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TABLE C--15

MODEL ESTIMATING PERFORMANCE - WOLVERTON, DSDC

MODEL: WOLVERTON

DATA SET: DSDC

CAEMM MM ACT

CASE ACTUAL EST E AC

1. DC 2.4 3.4 0.712

2. OK 82.7 45.4 1.82

3. DS 9.1 6.4 1.43

4. DU 3.0 24.8 0.121
5. FB 92.0 124.7 0.738

6. FD 7.4 16.8 0.441

7. FE 5.1 45.5 0.112

8. FF 2.7 29.7 0.0910

9. BH 18.4 11.6 1.59

10. 88 9.8 23.2 0.422
11. GG 50.5 23.6 2.14

12. BI 3.6 8.1 0.445

13. ZP 10.1 6.9 1.46

14. US 178.9 I106.5 1 .68

15. JO 47.0 17.7 2.65

16. QD 23.8 48.6 0.49

Mean 34.2 1.02

Standard 48.1 0.802Deviation

RMS ERROR: 31.7

RELATIVE RMS ERROR: 0.927
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TABLE C-10;

MODEL ESTIMATING PERFORMANCE - RECALIBRATED SIZE EQUATION

b
MOCEL: .E-.ALIBRATED SIZE EQUATION (MM = al

COMMERCIAL a = 0.293 -S C a=I.9x1O 4  S L a=7.21xlO-3
I ACT MM MM ACT

SYS EST EST SYS ACT EST SYS ACT EST
SY C~3.1065+

1. Al 71 51.0 1.39 DC 2.0 30.645 AA 3960 36 11.09

2. A2 16 29.3 0.546 DK 66.8 21.7 AB 78.95 .633 1 125
3. A3 38 40.6 0.936 DS 8.5 7.6 1.12 AC 90.71 I 673 1135

4.A4 171 24.5 0694 DU 2.9 6 0475 AD 95. 60.4 11.595. A5 321 50.5 0.634 FB 81.3 50.1 11.62 AE 115.7I1122.7 0.943
C. A6 36161.1 0.589 FD 6.5 21.710.300 AF 27.69 45.9 0.603
7. A7 241 9.6 12.50 FE 1,4.5 16.5 10.273 AG 18.93 1 19.9 0.9%

S. A8 38 0 23.1 1.65 FF 2.4 8.2 10.293 AH 10.33 15.7 10.658
9. A9 1841101.8 11.81 BH 17.4 27.8 10.626 AI 28.48 35.8 10.796

10. AlO 1631 86.5 11.88 BB 8.8 8.7 ii.01 AJ 6.96 7.2 0.967

11. All 101 25.7 0.389 GG 48.3 115.1 i3.20 AK 9.02 6.9 11.31
12. BI 3.5 I 2.711.30 AL 7.32 1 14.1 0.519

13. ZP 9.7 13.3 12..94 AM 4.96 I 3.7 11.34

14. U 05. US 1 77.1 '2.02 AN 8.401 7.9 11.06

15. JD 1 42.3 110.7 13.95 AO 1 98.74 99.2 10.995

16. 1 QO I 14.0 134.9 10.401 AP 123.92 I 19.2 11.25
17. I I _I AQ 15.63 I 15.1 1.04

Mean 15721 1.18 1 29.7 1 11.45 40.1 11.0
1 I I . I I

Standard 159.9 0.697 I 41.8 11.23 138.9 I 10.289
Deviation I I I ,

Rt4S ERROR: j6.8 12. 12.4
RELATIVE RMS ERROR: 0.643 I 0.933 0.309
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TABLE C-17
SUMMARY OF MODEL ESTIMATING PERFORMANCE

RMS ERROR*

MEAN PROJECT SIZE

DATA SET

MODEL TYPE COkMERCIAL 0 S 0 C S E L

REGRESSION

AEROSPACE 107. 96.0 67.8

B DOTY 1 12.0
C FARR & ZAGORSKI 1 203.
0 TECOLOTE 1 168.

E (alb) 36.8 1 27.7 12.4

HE'RISTIC

F SOEING 26.9

G COD MICRO 43.2

H PRICE S 23.5 j 31.4 12.3

1 WOLVERTON 31.7

PHENOMENOLOGICAL -

J SLIM 21.5 I 18.3 74.2

* lRM S E R R O R : F1  (A T 2. / 2
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DESCRIPTION OF MODEL INPUTS
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TABLE D-1

AEROSPACE AND TECOLOTE MODELS

SUMMARY OF INPUTS
I I

COMMERCIAL DSDC SEL

OBJ. OBJ. OBJ.
SYS. INS. SYS. INS. SYS. INS.

1. A) 78335 DC 8943 AA J 98402
2. A2 30543 DK 33090 AB 70306

3. A3 53200 DS 16390 AC 98402

4. A4 22459 DU 14110 AD 75357

5. A5 77039 FB 58010 AE 137944

6. A6 106573 FD 33120 AF 51030

7. A7 23939 FE 27560 AG 24575

8. A8 58391 FF 17290 AH 23726

9. A9 254232 BH 39120 AI 48273

10. AIO 192706 BB 17990 AJ 10476

11. All 24420 GG 26000 AK 8823

12. BI 8116 AL 17022

13. ZP 9383 AM 4596

14. us 77470 AN 9985

15. j JD 20640 AO I109466

16. QD 45510 AP 24392

17 DJ 17560 AQ 17725
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TABLE D-5

FARR & ZAGORSKI MODEL

SUMMARY OF INPUTS

DSDC DATA

I i I
, 1*, SSEM t XlIi X12 X5 X3 X13 l

I. DC 4.655 3.674 2.788 6 3.6
2. OK 16.427 14.010 3.424 6 3.6

3. DS 8.910 6.080 3.146 6 3.6
4. DU 1 7.326 5.721 3.027 6 3.6

5. FB 27.538 25.328 3.711 6 5.2

6. FD 14.865 16.032 3.347 6 6.6

7. FE 9.569 15.996 3.300 6 6.3

8. FF 9.273 7.061 3.200 6 6.1

9. BH I 19.064 16.764 3.517 1 6 1.5
I . I . I I10. BB 8.909 7.626 3.163 6 2.3

I11. GG 12. 733 11.196 3.316 6 3.6
12. BI 4.001 3.518 2.776 6 3.6

13. ZP 4.616 4;060 2.849 6 2.6

14. US 37.696 33.148 3.821 6 0.0

i15. Jo 11.135 7.276 3.348 6 1.9

16. QD 21.242 20.304 3.598 6 3.6
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TABLE D-6

PRICE S

SUMMARY OF INPUTS

COMMERCIAL

SYSTEM I !NST APPL RESO UTIL PLTFM CPLX NEWD NEWC COST

Al 142732 1 3.00 1 1.88 1 0.50 1.00 11.00 1 0.78 0.83 4000
. A2 45200 I3.00 1.88 0.50 1.00 1 1.00 1 0.70 10.80 4000

3. A3 48700 3.00 1.88 0.50 1.00 11.00 0.90 1 0.80 4000

4. A6 194748 3.00 1.88 o.5o 1.00 .00 0.9011.00 4000

I I I I I I I

5. A8 2800 3.00 1 .88 0.50 1.00 1.00 0.90 C.70 4000

A9 A9 585200 1 3.00 1.88 0.50 1.00 11.00 0.85 0.95 4000
All 38800 3.00 1.88 0.50 1.00 I.00 0.80 1.00 4000

,_ _ __ I I _
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TABLE D-7

PRICE S

SUMMARY OF INPUTS

I
iSYSTEM INST APPL RESO UTIL PLTFM CPLX NEWD NEWC COSTI I I

I. DC 1 8943 I 2.45 I 2.13 0.50 1.00 1.00 10.90 1.00 4000
! I

2. ou ,14110 2.58 1 2.13 0.50 1.00 1.00 0.90 1.-0 1 4000# I

3. FO 33120f 2.56 12.13 0.50 1.00 1.00 0.20 1.00 4000035I I I

4. 1 FE 1 27360 2.50 1 2.13 1 0.50 1 1.00 1.00 .00 1.00 4000
5. FF 117290 2.43 2.13 10.50 1 1.00 11.00 1.00 1.00 4000
6. BH 13920 2.51 2.13 0.50 I 1.00 1.00 1.00 1.00 4000

6. BB 17990 2.51 2.13 0.50 1.00 1.00 1.00 1.00 4000
8. GG 126000 2.3612.13 0.5o 1.00 1.oo 1.00 1.00 4000

i i

9. ZP 1990 2.51 2.13 0.50 1.00 1.00 1.00 1.00 4000
80. US 77470 I2.51 2.13 0.50 1 .00 1.00 1.00 1.00 4000
91. ZD 93831 2.51 2.13 0.50 1.00 1.00 11.00 1.00 4000

I
11. JD 140 2.51 . 2.13 0.50 1.00 1.00 1.00 1.00 4000
11. 30 120640 2.51 ']2.13 10.50I1.00 1.00 1.00 1.00 4o00,__ I I I I
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TABLE D-8

PRICE S

SUMMARY OF INPUTS

SEL

SYSTEM1  INST jAPPL I RESO UTIL PLTFM CPLX NEWD NEWC I COST

1. AA 150800 5.71 1 O.i80 1.20 0.60 0.20 0.30 4000

2. AB 101800 5.73 1 2.25 I 0.80 1 1.20 0.60 0.90 0.90 4000

3. AC 150800 5.65 2.25 0.801 1.20 0.60 0.60 0.70 4000

4. AD 110400 5.52 2.25 0.80 I 1.20 0.60 0.70 0.80 4000
5. 1AE 223800 5.55 2.25 10.80 20 0.60 0.70 0.80 4000

6. AG 29800 5.99 2.25 0.80 I .20 0.60 0.80 0.80 4000

7. AH 28600 5.4 2.25 0.80 1.20 0.60 0.80 0.70 4000

8.1 AI 65600 5.58 2.25 0.80 1.20 0.60 0.50 0.60 4000

9. AJ 11000 3.53 2.25 0.80 1.20 10.60 0.30 0.50 4000
I 07

10. AK 9000 5.52 2.25 0.80 1.20 0.60 0.50 0.90 4000
I A

19. AN 10400 5.99 2.25 0.80 1.20 0.60 0.90 0.90 1 4000
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TABLE D-11

RECALIBRATED SIZE EQUATION

________________ SUMMARY OF INPUTS

COMMERCIAL DSOC SEL_____

SYSTEM SrMrS SYSTEM STMTS SYSTEM STMTS

1. A] 28879 DC 2205 AA 13400
2. A2 9605 DK 10182 AB 25000

3. A3 18373 DS 4479 AC 26800
4. A4 6706 DW 3761 AD 23750

5. AS 28321 FB 19624 AE 52350
6. A6 41384 FO 10190 AF 17500

7. A7 1046 FE ) 8222 AG 6900
8. A8 5950 FF 4768 AH 5300

9. A9 114325 BH 12381 Al 13250
10. A10 82687 88 4993 AJ2200

11. All 7395 GG7680 AK 2100

12. BI 1970 AL 4700

13. ZP 23J4 AM 1050

~4. us 271 N2450

15. jo 5865 AO 41300

16. QD 14776 AP 6606

17. AQ 5077
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