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FOREWORD

This lecture course provides a full-year
introduction to Military Geodesy and Geospace Sci-
ence. Throughout the presentation a military per-
spective is maintained which links Mapping, Chart-
ing, and Geodesy (MC&G) issues with modern defense
requirements. Elementary preparation is assumed in
the subjects of general physics, mechanics, chemis-
try, astronautics, and linear system theory. The

student should also be familiar with differential
equations, analytic geometry, and linear algebra.

Some acquaintance with vector calculus is useful but
not essential.

The topics covered herein are intended to
provide concep tual rather than working knowledge.
Ideally, the student completing this course will
have attained .a broad understanding of the MC&G
field and will l. able to develop specialized ex-
pertise quickly when required.

The notes are intended to be presented in
chapter/section order within each of the four Units
of Instruction. However, several of the subsections
in these notes contain more advanced material which
may be omitted without loss of continuity. These
subsections are denoted with the symbol (T) after
the title.

The organizational flow of the lectures is
from concepts in the initial sections, particularly
in Unit One, to applications and specific systems
later on. As a result the student is often referred
ahead to provide motivation in regard to relevancy.
In later chapters, however, the situation is reversed
with the student referred back to review important
conceptual material as necessary.
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UNIT ONE

INTRODUCTION TO MAPPING, CHARTING, AND GEODESY (MC&G)

CHAPTER ONE

INTRODUCTION

Unit One introduces the student to Mapping, Charting,

and Geodesy. Basic concepts and principles are presented that

will be applied during the remainder of the course. The sub-

jects to be covered include:.

-Earth.modeling'

" Coordinate systems, - -

* 'Techniques of mapping, charting, and
geodesy.

All of these areas are part of the science of geodesy, which

is defined by the three principal subjects with which it is

concerned:

0 The size and shape of the earth*

* -The relative location of points on or
near the surface of the earth,

* .The earth's gravity field.

The first two areas are referred to as geometric geodesy; the

third is physical geodesy. The geometric and physical (or

gravitational) aspects of geodesy are closely related to one

1-1



oanother, since the physical surface of the earth does not de-

viate greatly from an equipotential surface of the graviLy

field.

The material of Unit One is organized into three chap-

ters, each examining geodesy from a different point of view:

* -Geometric geodesy (Chapter Two) -- includ-
ing material on relevant aspects of carto-
graphy and surveying,,

& -Physical geodesy (Chapter Three)

o .Satellite geodesy (Chapter Four) -- empha-
sizing the unique contributions to geodesy
resulting from the use of earth satellites.

*The physical concepts of field and potential are reviewed
in Appendix A.
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CHAPTER TWO

GEOMETRIC GEODESY

1.2.1 The Ellipsoid and the Geoid

The Ellipsoid

For many purposes, it is adequate to consider the

earth to be a sphere. When a more precise model is required,

.a mathematically defined surface called a spheroid is used to

model the deviation of the earth from true spherical form,

consisting principally of a flattening at the poles and bulging

of the equator by about one part in 300. Many sphere-like

surfaces have been used, at one point or another, some of them

extremely complicated in their mathematical form. Since about

1930 it has been standard practice to use a relatively simple

surface, the ellipsoid of revolution (Fig. 1.2-1), to model

the earth. Considerable effort has been expended to deduce

values for the shape and size of the ellipsoid that best de-

scribes the earth. Table 1.2-1 lists some of the ellipsoids

that have been used at various times.

It is important to note that the ellipsoid is not

only a model for the shape of the earth, but for the gravity

field as well, since the ellipsoid can be considered a surface

of equal potential* for which a theoretical or normal value of

gravity can be determined. Normal gravity provides a general

approximation to the earth's actual gravity field. Gravity

field modeling will be discussed further in Section 1.3.2

Points on the surface of an ellipsoid can be located

in terms of their ellipsoidal coordinates, as shown in Fig.

1.2-2. The geodetic latitude 0, at point P, is defined as

*The concept of potential is reviewed in Appendix A.

1-3
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MINOR AXIS

ELLIPSE

MAJOR AXIS

ELLIPSOID IS GENERATED BY ROTATING ELLIPSE
AROUND ITS MINOR AXIS

(a) GENERATION OF ELLIPSOID

b

b SEMf-MINOR AXIS a = SEMI-MAJOR AXIS

f - -b FLATTENING

(Ul DIMENSIONS OF ELLIPSOID

Figure 1.2-1 The Ellipsoid of Revolution
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NORMAL TO ELLIPSOID

EQUATOR

P: POINT ON SURFACE
0: GEODETIC LATITUDE
0': GEOCENTRIC LATITUDE

(a) LATITUDE

MERIDIAN OF
GREENWICH

P: POINT ON SURFACE
X.: GEODETIC LONGITUDE

(b) LONGITUDE

Figure 1.2-2 Ellipsoidal (Geodetic) Coordinates
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TABLE 1.2-1

EARTH ELLIPSOIDS

DESIGNATION SEMI-MAJOR AXIS FLATTENING

Airy (1830) 6377563 1/299.32

Bessel (1841) 6377397 1/299.15

Clarke (1866) 6378206 1/294.98

Clarke (1880) 6378249 1/293.46

International (1924) 6378388 1/297.00

Kaula (1961) 6378165 1/298.30

Smithsonian (1966) 6378165 1/298.25

Geodetic Reference 6378160 1/298.25
System (GRS 67)

World Geodetic 6378135 1/298.26
System (WGS 72) 6 1

the angle between the normal to the ellipsoid at point P and

the equatorial plane. The geocentric latitude .', used in
some applications, is defined as the angle at the center of

the ellipsoid between the plane of the equator and a line to

point P. The mathematical relationship between * and * 'is
given by the formula:

tan 1' = (1-f) 2 tanO (1.2-1)

Sometimes it is more convenient to have a direct expression

for the difference (*-*'):

0-4' - (f+ f2) sin 20- f2 sin 4 (1.2-2)

The maximum value of #-0' is about 1/5 deg.
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The Geoid

Another basic reference surface is the geoid, a level

(or equipotential) surface of the earth's gravity field. The

ocean surface (mean sea level) corresponds to the geoid. The

direction of the gravity vector at any point (plumb line or ver-

tical) is normal to the geoid. The relation between the geoid

and ellipsoid surfaces is shown schematically in Fig. 1.2-3.

Of particular interest are two features of the diagram:

* The difference in direction between the
normal to the geoid (which is the direc-
tion of the gravity vector) and the nor-
mal to the ellipsoid. This difference
in direction is known as the deflection
of the vertical.

" The vertical separation between the geoid
and ellipsoid surfaces, known as the
geoid.height or undulation.

These concepts (to be studied in more detail in Chapter Three)

are used frequently throughout the text.

1.2.2 Geodetic Positioning

Geodetic positioning refers to the determination of

the geodetic coordinates (latitude, longitude, and height) of

various points on or near the earth's surface, for the purpose

of defining precisely the spatial relationships that exist

among those points. Reduced to its simplest terms, the goal

is this: Given points A and B, answer the questions:

0 How far?

0 What direction?

*To be studied in more detail in Section 1.3.1.

1-7
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Figure 1.2-3 Relation Between Geoid'and Ellipsoid
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Although perhaps not usually thought of in exactly these terms,

maps and navigational charts of all kinds are, in effect, ana-

log devices for answering such questions. The geodetic coor-

dinates are expressed with respect to a particular ellipsoid,

as shown in Fig. 1.2-4 and 1.2-5, and are measured in a partic-

ular coordinate system (called a datum), based on an adopted

origin (for which the geodetic coordinates are known or as-

sumed). The subject of datumns will be covered in detail in

Section 1.2.5.

Datums were originally developed on a purely local

basis, and then extended to provide uniform coverage of an

entire region, like a continent. However, it was not possi-

ble, in the pre-satellite era, to provide accurate ties be-

tween one datum and another, or to develop a unified worldwide

geodetic system in which the coordinates of widely separated

points could be expressed with great precision. Intensive

efforts have been directed, since the end of the 1950s, toward

these ends; some of the details are discussed in Unit 2, Section 2.2,

under the heading World Geodetic Systems.

The basic techniques of geodetic positioning are di-

vided into:

0 Horizontal control, referring to the
determination of latitude and longitude

0 Vertical control, referring to the deter-
mination of height

and different approaches have been developed in these two area -

Three methods of horizontal control, triangulation, trilatera-

tion, and traverse, are discussed in the next sections. Treat-

ment of vertical control methods follows.

1-9
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MINOR AXIS
OF ELLIPSOID ORIGIN OF ELLIPSOID

P
MERIDIAN OF POINT P

MERIDIAN
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Figure 1.2-4 Geodetic Longitude
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HEIGHT OF POINT P
MINOR AXIS

OF ELLIPSOID
GEODETIC
LAITUDE

MAJOR AXIS OF ELLIPSOID

Figure 1.2-5 Geodetic Latitude and Height
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Triangulation - Triangulation, the most common form

of geodetic survey (for horizontal control), consists of the

measurement of the angles of a series of triangles. The prin-

ciple of triangulation is based on simple trigonometric pro-

cedures. If the length of one side of a triangle and the an-

gles at each end of the side are accurately measured, the other

two sides and the remaining angle can be computed. Normally,

all of the angles of every triangle are measured to furnish

exact data for use in computing the precision of the measure-

ments.(Fig. 1.2-6). Also the known geodetic latitude and lon-

gitude at one end of the measured side, along with the length

and direction (azimuth) of the side, provide sufficient data

to compute the latitude and longitude of the other end of the

measured side.

The measured side of the basic triangle is called a

base line. Measurements are made as carefully and accurately

as possible with specially calibrated tapes or wires of invar,

an alloy highly resistant to changes in length resulting from

changes in temperature. The tapes or wires are checked peri-

odically against standard measures of length (at the Bureau of

Standards in the United States and corresponding agencies in

other countries). The geodimeter and tellurometer, operating

on electro-optical and electronic principles respectively,

have replaced the older methods of base measurement in the

more precise surveys. Using such equipment the work of mea-

suring distances can be completed more rapidly and accurately

than with wire or tape. The laser-equipped geodimeter has

proven to be the most accurate, particularly over long dis-

tances.

To establish an arc of triangulation between two wide-

ly separated locations, a base line may be measured and longi-

tude and latitude determined for the initial points at one
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KNOWN DATA:
Length of baseline AB.
Geodetic latitude and longitude of points A and B.
Azimuth of line AB.

MEASURED DATA:
Angles to new control points.

COMPUTED DATA:
Geodetic latitude and longitude of point C, and other new points.
Length and azimuth of line AC.
Length and azimuth of all other lines.

Figure 1.2-6 Example of a Simple Triangulation Net

end. The locations are then connected by a series of adjoin-

ing triangles forming quadrilaterals (four-sided figures) ex-

tending from each end, as shown in Fig. 1.2-6. All angles of

the triangles are observed repeatedly to reduce errors. With

the longitude, latitude, and azimuth of the initial points,

similar data can be computed for each vertex of the triangles.

This establishes, at each of these points, a triangulation or
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geodetic control station. The coordinates of each of the sta-

tions are definee as geodetic coordinates.

Triangulation is extended over large areas by connect-

ing and extending series of arcs and forming a network or tri-

angulation system. The network is adjusted in a manner which

reduces the effect of observational errors to a minimum. A

denser distribution of geodetic control is achieved in a sys-

tem by subdividing or filling in with other surveys. Major

triangulation networks have been established over large parts

of the land surface of the earth.

There are four levels, or categories, of triangula-

tion, based on accuracy requirements. Uniform specifications

for these levels of triangulation are established as part of a

broader set of standards and procedures known as the "Classi-

fication, Standards.of Accuracy, and General Specifications of

Geodetic Control Survey," developed by an interagency Federal

Geodetic Control Committee (FGCC). First-Order (Primary Hori-

zontal Control) is the most accurate triangulation. It is cost-

ly and time-consuming, because it uses the best instruments

and the most rigorous computation methods. First-Order tri-

angulation is used to provide the basic framework of horizontal

control for a large area (such as for a national network). It

has also been used in preparation for metropolitan expansion

and for scientific studies requiring exact geodetic data. Its

accuracy should be at least one part in 10 5.

Second-Order, Class I (Secondary Horizontal Control)

includes the area networks between the First-Order arcs and

detailed surveys in very high-value land areas. Surveys of

this class strengthen the U.S. National Horizontal Control

Network and are adjusted as part of the network. Therefore,

this class also includes t+he basic framework for further
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densification. Second-Order, Class I triangulation should
.4

maintain an accuracy of at least one part in 5 x 10

The demands for reliable horizontal control surveys

in areas that are not highly developed (and where no develop-

ment is expected in the near future) create a need for triangu-

lation classified as 'Second-Order, Class II (Supplemental Hori-

zontal Control). This class is used to establish control along

the coastline, inland waterways, and interstate highways. The

control data contribute to the National Network and are published

as part of the network. The minimum accuracy allowable in

Class 11 of Second-Order is one part in 2 x 10~

Third-Order, Class I and Class 11 (Local Horizontal

Control), is used to establish control for 'Local improvements

and developments, topographic and hydrographic surveys, or for

other projects requiring moderate accuracy. This triangula-

tion is carefully connected to the National Network. The work

should be performed with sufficient accuracy to satisfy the

standards of one part in 10~ for Class I and one part in

5 x 10~ for Class 11. Spires, stacks, standpipes, flag poles,

and other identifiable objects located to this degree of accu-

racy also have significant value for many surveying and engi-

neering projects.

The sole accuracy requirement for Fourth-Order tri-

angulation is that the positions be located without any ap-

preciable error on maps compiled on the basis of the control.

The accuracy standards for the various orders of tri-

angulation are summarized in Table 1.2-2.
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TABLE 1. 2- 2

ACCURACY STANDARDS FOR ORDERS OF TRIANGULATION

ORDER ACCURACY REQUIREMENT

First Order One part in 105 or better

Second Order

Clas I ne prt n 5 104
Class II One part in 2 x 10 4

Third Order

Class 1 One part in 1
Class II One part in 5 x 1

Fourth Order Sufficient for purposes of map
construction

Normally, triangulation is carried out by parties of

surveyors occupying preplanned locations (stations) along the

arc and making all the measurements as they proceed. When

distances between two points are too long for conventional

methods, connections were sometimes made, in the past, by a

method known as flare triangulation. Stations are occupied on

either side of the gap and flares or beacons are parachuted

from aircraft or shot into the air from ships at suitable

points between the stations. Intersections of lines are made

simultaneously at all of the stations and reasonably accurate

bridges established. Historically, a pioneering connection of

this type was established between Norway and Denmark. Flare

triangulation is now obsolete, and much longer gaps are now

bridged routinely by using modern techniques such as Satellite

Geodesy (Chapter Four).

*Extracted from publications of the Federal Geodetic Control
Committee.
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Trilateration - The concept of trilateration is es-

sentially the same as triangulation, except that it is based

exclusively on distance measurements and involves no measure-

ment of angles. Figure 1.2-7 illustrates the basic technique.

In older surveying practice, triangulation was more important

than trilateration because there were no practical ways of

measuring great distances directly, to the required degree of

accuracy, while precise measurement of angles was feasible.

Modern methods of electronic distance measuring make trilater-

ation a useful alternative over distances on a continental

scale. Two examples of modern distance measuring technol-

ogy -- the geodimeter and the tellurometer -- have already

been mentioned in the discussion of Lriangulation techniques.

The geodimeter, a laser device, has been used, for example, to

attain internal accuracies better than one part per million

for transcontinental surveys in the United States. These sur-

veys consist of a series of high-precision length, angle, and

astronomic azimuth determinations running approximately east-

west and north-south through the conterminous states. The

tellurometer is a microwave device; an example of its use is

the completion of the Australian Geodetic Datum network cover-

ing that continent. With an average loop length of about 1500

km, the internal accuracy was of the order of two to three

parts per million.

Other examples of electronic distance measuring sys-

tems are SHORAN, HIRAN, and SHIRAN, also used for purposes of

aircraft navigation and reconnaissance. These systems measure

long lines (up to 800 km), permitting the extension of geodetic

triangulation networks over vast areas in comparatively short

periods of time. In addition, the surveys of islands and even

continents separated by extensive water barriers have been

connected by trilateration based on these techniques. The

Canadian SHORAN Network, connecting the sparsely-populated
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KNOWN DATA: 
Length of baseline AB. 
Latitude and longitude of points A and B. 
Azimuth of line AB . . 

MEASURED DATA: 
Length of all triangle sides. 

COMPUTED DATA: . 
Latitude and longitude of point C, and other new points. 
Length and azimuth of line AC. 
Length and azimuth between any t\No points. 

R-47201 

Figure 1.2-7 Example of a Trilateration Net 

northern coastal and island areas with the central part of the 
' country, and the North Atlantic HIRAN Network, tying North 

America to Europe, are further examples of trilateration. 

Many other trilateration networks (SHORAN and HIRAN) have been 

established throughout the world. SHIRAN has been used in the 
interior of Brazil. 
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Only distances are measured in trilateration and each

side is measured repeatedly to insure precision. The entire

network is then adjusted to minimize discrepancies. The angles

of the triangles are computed, and geodetic positions are ob-

tained, as in triangulation, for the stations at the vertices

of the triangles.

When baseline distances are large, it is essential to

make precise corrections for a number of effects to preserve

the inherent accuracy of the electronic or laser devices.

These include:

0 Correction for effective velocity of
propagation of electromagnetic energy
through the atmosphere, as influenced by
pressure, temperature, and relative
humidity

0 Correction for path length changes be-
cause of refraction, caused by changes
in the index of refraction (propagation
velocity) from one place to another

0 Geometric corrections to relate the ray
path distance (straight line, except as
affected by refraction) to a correspond-
ing arc length on the ellipsoid.

Refraction and geometric corrections are shown schematically

in Fig. 1.2-8.
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ACTUAL PROPAGATION PATH

STATION A STATION B-

a) REFRACTION EFFECT

RAY PATH
(corrected for refraction)

b) GEOMETRIC EFFECTS

Figure 1.2-8 Refraction and Geometric Effects
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Traverse - A third method of establishing the posi-

Lion of survey points is known as traverse. Traverse involves

both length and angle measurements, and is analogous to dead

reckoning in navigation. A simple example is shown in Fig.

1.2-9a. If the coordinates of the starting point (Point 1)

are known accurately, then the measurement of the initial azi-

muth (a 0), the distances (s,, 21 and S3 ) , and the angles (p,
and P)will permit the computation of the coordinates of

Points 2, 3, and 4. In an open traverse like that shown in

Fig. 1.2-9a, the accuracy degrades steadily as additional

points are added. A method of maintaining accuracy control is

to close the loop -- that is, to return to the starting point

(Fig. 1.2-9b). The coordinates of the starting point as com-

puted from the traverse (that is, by computation from the coor-

dinates of Point 5, using distance s5and angle 04 ) are compared

with the known values for these coordinates. The discrepancies

provide a measure of the accuracy level maintained in the tra-

verse process. This procedure, known as closure, is used in

all precise survey methods for accuracy control. Figure 1.2-9b

illustrates the concept of a closed (or polygon) traverse.

A more accurate approach to position determination by

traverse is illustrated in Fig. 1.2-9c. Here there are two

known points (Points 1 and 5 in Fig. 1.2-§c), and the computa-

tions can proceed from the ends toward the' middle, thus reduc-

ing the opportunity for error buildup.
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NORTH

KN2 N4ON

1KNOWN POINTS

aoMEASURED INITIAL AZIMUTH

0-2MEASURED ANGLES
3s~ S1'.25S MEASURED DISTANCES

a) OPEN TRAVERSE

NORTH

ao KNOWN POINT
S1S UNKNOWN POINTS

02 a,):MEASURED INITIAL AZIMUTH

01. 02- 03 04 MEASURED ANGLES

SS 0,4S3 S1 S2. S3. S4. S5 MEASURED DISTANCES

b) CLOSED TRAVERSE (Polyqon)

NORTH NORTH

(D(:KNOWN POINT

4 a 3,04 UNKNOWN POINTS

S2 02~ a a MEASURED INITIAL AZIMUTHS

S3 0 4 5 010- 3 MEASURED ANGLES

3 S 1. 2' S3. S4 : MEASURED DISTANCU.

c) TRAVERSE WITH BILATERAL TIE

Figure 1.2-9 Examples of Traverse
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Vertical Control - Triangulation, trilateration, and

traverse are methods of horizontal control -- that is, deter-

mining the geodetic latitude and longitude of various points

on the surface of the earth. It is also necessary to provide

vertical control, by deter-mining the height of a point above

the surface of the ellipsoid (measured along a local normal to

the ellipsoid). In general there is no direct way to relate a

point to the ellipsoid -- except over short distances by com-

putations based on points whose height with respect to the

ellipsoid is known (or assumed). Most methods of vertical

control are more directly related to the geoid because:

* They are based on mean sea level

0 They use the concepts of level surfaces
(surfaces of constant potential) and
local vertical (plumb line).

The student should note that even for a point at mean sea level

(on the geoid), the height determination is not trivial, because

geoid and ellipsoid may deviate by as much as 100 meters. The

RMS geoid undulation is about 30 meters. For points not at

sea level, two kinds of height are used:

" Orthometric (or normal) height (distance
from the geoid measured along a plumb
line)

* Geodetic (or ellipsoidal) height (dis-
tance from the ellipsoid measured along
a normal to the ellipsoid).

The relation between them is very complicated and depends on

the local structure of the gravity field. For certain appli-

cations, of course, such as geodetic surveys executed primarily

for mapping purposes, there is no problem in the fact that
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geodetic positions are referred to an ellipsoid and the eleva-

tions of the positions are referred to the geoid. But, in

general (especially for such applications as the targeting of

missiles), an adjustment in the elevation information to com-

pensate for the undulations of the geoid above and below the

regular mathematical surface of the ellipsoid is essential.

Such an adjustment uses complex geodetic techniques, requiring

precise knowledge of the gravity field. This is an example of

the close connection between geometric geodesy (dealing with

size, shape, and relative locations) and physical geodesy (deal-

ing with the structure of the gravity field).

There are three commonly used leveling techniques for

determining height above sea level -- differential, trigono-

metric, and barometric -- which yield information at different

levels of accuracy. Differential leveling is the most accu-

rate of the three methods. With the leveling instrument (Fig.

1.2-10) locked in position, readings are made on two calibrated

qtaves held in an upright position ahead of and behind the

instrument. The difference between readings is the difference

in elevation between the points.

The optical instrument used for leveling contains a

bubble tube (or spirit level) to adjust it in a position pre-

cisely parallel to the geoid. When properly set up at a point,

the telescope is locked in a perfectly horizontal (level) po-

sition so that it will rotate through a 360' arc. The exact

elevation of at least one point in a leveling line must be

known; the rest of the elevations are computed from it.

Trigonometric leveling (Fig. 1.2-11) involves measur-

ing a vertical angle from a known distance with a theodolite

and computing the elevation of the point. With this method,

vertical measurements can be made at the same time horizontal
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LINE-OF-SIGHT IS
HORIZONTAL

(Level)

STAVES
ld

__Jic
4b

MEAN SEA LEVEL _

KNOWN DATA:
Elevation of starting point, A.

MEASURED DATA:
Elevation differences, a,b,c,d, etc.

COMPUTED DATA:
Elevation of B, C and all other points.

Figure 1.2-10 Elevation Determination by
Differential Leveling

angles are measured for triangulation. It is, therefore, a

somewhat more economical method but less accurate than dif-

ferential leveling. It is often the only practical method of

establishing accurate elevation control in mountainous areas.
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MEAN SEA LEVEL Ad 1 dC

KNOWN DATA:
Elevation of starting point, A.
Horizontal distances, dj, d2 between points.

MEASURED DATA:
All vertical angles.

COMPUTED D)ATA:
Elevation of B, C and all other points.

Figure 1 .2-11 F~.\~tinDeterminat ion by the
Tr igonometric M'et ho~jl
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In barometric leveling (Fig. 1.2-12), differences in

height are determined by measuring the differences in atmos-

pheric pressure at various elevations. Air pressure is meas-

ured by using mercury or aneroid barometers, or a boiling point

MEAN SEA LEVEL OR
PNT OF KNOWN

ELVATION

KNOWN DATA:
Elevation of starting point A.
Meteorological data.

MISU RED DATA:
Air pressure a A, B, C ar d all other points.

COMPUTED DATA:
Elevation of B, C and all other points.

Figure 1.2-12 Elevation Determination by the
Barometric Method
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thermometer. Although the degree of accuracy possible with

this method is not really suitable for survey work, it can be

used to obtain relative heights between widely separated points

very rapidly. It is also used in reconnaissance and exploratory

surveys when more precise measurements will be made later (or

are not required).

All three of these methods are based ultimately on

the surface corresponding to mean sea level, determined by

obtaining an average of the hourly water heights for an ex-

tended period (generally a number of years) at a tidal gauge.

As a general surveying strategy, precise geodetic leveling is

used to establish a basic network of vertical control points.

From these, the height ot other positions in the survey can be

determined by suppltnjertary methods of lesser accuracy, as

required.

1.2.3 Photograme t;rv

In the most general sense of the term, photogrammetry

refers to the measurerraent and analysis of photographic images

in order to deterwine the size, shape, and relative configur-

ation of the objects visible in an image. In the context of

mapping, charting, and geodesy, the images involved are photo-

graphs of the surface of the earth taken from aircraft or or-

biting satellites; the goal of photogrammetric techniques is

to prepare accurate maps using the information contained in

the photograph. This section presents a brief review of the

essentials of photogrammetry.

Basic Principles - The question of how to prepare

accurate planimetric and/or topographic maps from aerial pho-

tographs is the essential material of this section. The answer

to this question involves the following elements:
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" Aerial photography

" Ground control surveys

* Analytical aerotriangulation

• Stereocompilation

0 Final presentation.

Aerial Photography - Precision aerial cameras mounted

in fixed-wing aircraft are largely standardized within the

commercial photogrammetric industry as well as among those

federal agencies having mapping/charting responsibilities.

The industry-standard aerial camera yields a 9 in by 9 in

negative image on 9.5 in wide aerial film having roll lengths

up to 400 ft. It has a nominal focal length of 6 in, and is

equipped with a distortion-free lens.

Knowing the focal length of the lens and the flight

altitude above mean terrain, a user of aerial photography can

determine the scale of any resultant vertically exposed nega-

tive by use of the following formula:

Scale ratio camera focal length (1.2-3)
flight altitude

For example, using the above-mentioned camera (with a

6 in focal-length lens) from an aircraft flying at an altitude

of 6000 ft above mean terrain,

0.5
Approximate scale ratio = 05- 1:12,000 (1.2-4)

6000-

meaning that 1 in on the photographic negative is equal to

12,000 in on the ground.
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This simple calculation leads to rhe next logical 

step of determining the size of the area covered by the nega­

tive. Since the approximate scale is 1 in = 1000 ft, and the 

negative is 9 in by 9 in, the photographic exposure covers a 

square 9000 ft on a side. Another simple means of calculating 

coverage can be derived from the above example by noting the 

ratio of coverage to flight altitude. It is seen, in this 

example, that coverage is a factor of 1.5 times the flight 

altitude. This method of calculating scale must be considered 

an approximation, for there are, in reality, several factors 

'working against the achievement. of true scale in any aerial 

exposure: 

• Variations in aircraft altimeter readings 
caused by local temperature/barometric 
changes 

• Inability of the camera to achieve a 
true vertical exposure because of minor 
aircraft tip/l" i 1 t residuals at_t:hc moment 
of exposure 

• Atmospheric refraction tending to bend 
the light-rays entering the camera lens 

• Distortions within the camera lens and 
inability of the camerA to hold the film 
in a true flat plane 

e Distortions caused by vertical relief of 
the terrain being photographed. 

Of the above factors, the last one tends to be the most pro­

nounced, especially· in terrain having excessive relief. Ter­

rain at higher altitudes dppears larger than lower terrain. 

Since stereoscopic viewing of aerial photography is 

essential to the photogrammetric process, it is necessary to 

extend the concept of single-exposure geometry to multiple­

exposure stereoscopic relationships. Figure 1.2-13 shows how 
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Figure 1.2-13 Stereoscopic Aerial Photography Along
a Linear Flight Path

stereoscopic aerial photography along a linear flight path is

achieved. In practice, the aircraft tracks along a line on the ground

from a specified flight altitude. The cameraman monitors the.

flight line through a viewfinder and instructs the pilot to

make minor left/right heading changes in order to maintain

the track. Often, the viewfinder shows a moving grid that the

cameraman can synchronize with the moving terrain. With such

synchronization achieved, the intervalometer connected with

the camera will trigger each exposure at a preset percentage

of forward overlap. An approximate 60% forward overlap is

standard. If a single flight line of overlapping photographs

fails to provide stereoscopic coverage for a particular site

or area, it is necessary to fly additional parallel flight

lines having side lap relationships of approximately 30% (see

Fig. 1.2-14). It should be emphasized that the forward lap
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i - 30%W
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Figure 1.2-14 Side Lap and Spacing of Adjacent
Flight Lines

and side lap percentage-, just mentioned are averages, and are

subject to adjustment in coping with extreme differentials in

terrain relief.

In addition to the terms forward lap and side lap,

there is another term useful in understanding the photogram-

metric process: stereo-model (or simply model). In any ad-

jacent pair of exposures taken along a flight line, the gross

model is the total area for which the same limits of imagery

appear on each exposure. -Within the gross model is the neat

model, which defines the practical limits for which photogram-

metric data are to be acquired (see Fig. 1.2-15).
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Figure 1.2-15 Computing Size of the Gross Model and
the Neat Model

The completion of the aerial photographic phase of a

photogrammetric mapping project can yield a wide variety of

photographic products, such as 9 in by 9 in contact prints,

photo-enlargements, photo-indexes, and glass diapositives (pos-

itive contact images on optically flat glass plates). Contact

prints are of greatest value to the photogrammetrist because

they provide the first stereoscopic view usually available.

Ground Control Surveys - It has already been noted

that a single aerial photograph does not possess true scale,
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but only an approximation of scale. Likewise, the stereo-

scopic viewing of a stereo-pair offers two photographs having

approximate scale. Since it is the goal of the photogramme-

trist to produce a model of the terrain by recreating the pre-

cise spatial geometry of the stereo-pair, there is additional

information required beyond flight altitude, camera attitude,

and distance between exposure stations. The more precise data

can be generated through the use of ground control surveys

(divided, as indicated in Section 1.2.2, into horizontal con-

trol and vertical control).

In carrying out horizontal control surveys, it is the

intent to acquire geodetic coordinate values for discrete points

(called horizontal picture points) on the ground, which also

appear in the aerial photography. In general, these discrete

points can be corners of buildings, intersections of fence-

lines, ends of highway centerline stripes, or any other image

point allowing positive identification on the ground of its

corresponding imagery in the photography. Such horizontal

control surveys are carried out by the methods outlined in

Section 1.2.2 -- triangulation, trilateration, and traverse --

or by combinations of these methods.

Vertical control surveys provide the photogramnetrist

with elevation data in a similar manner. The vertical control

points (vertical picture-points) must provide positive identi-

fication on the ground as well as on the aerial photography.

Current methods of vertical control include differential

leveling, trigonometric leveling, and barometric leveling (as

discussed in Section 1.2.2).

Figure 1.2-16 represents typical locations of hori-

zontal/vertical controls within a flight strip. The large out-

side rectangle indicates the limits of photographic coverage,
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A .LOCATION OF HORIZONTAL PICTURE POINTS

*LOCATION OF VERTICAL PICTURE POINTS

Figure 1.2-16 Sample Flight Strip Showing Best Location
for Picture-Point Control

while the small interior rectangles define the individual neat

stereo-mod -els within the flight strip. 1t,; should be noted

that four vertical picture points and a minimum of two hori-

zontal picture points are necessary for each model. Three

vertical points can define a datum plane (the fourth point

being a test), and two horizontal points allow horizontal

scaling. Vertical picture-points are ideally located in the

corners of the neat stereo-model, whereas there is no optimum

position for horizontal picture points other than the require-

ment that they form a reasonably long baseline spanning the

length of the neat stereo-model. However, ideal conditions

seldom occur in practice, and the horizontal/vertical picture-

point locations are normally compromised somewhat to fit exist-

ing field conditions and accessability to identifiable points.
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Standard practice dictates that field-survey person-

nel pin-prick and label the locations of the horizontal/verti-

cal picture-points on the photographs. The accumulated field

data are reduced, computed, and adjusted. Then the final coor-

dinate values are entered adjacent to the pin-pricks for the

corresponding picture-points.

Analytical Aerotriangulation - Because of the low

density of existing survey control data for a particular proj-

ect area, or because special situations (for example, rugged

terrain) may make it difficult to accomplish control surveys

by normal methods, analytical aerotriangulation methods are

employed to supplement or substitute for actual field qurveys.

Referring to Fig. 1.2-16, assume that field surveys can be

carried out in only the first, fifth, and eighth stereo-models

(reading from left to right). Analytical aerotriangulation

methods allow the dqtermination of coordinate values for those

picture points in the remaining stereo-models within required

accuracy constraints.

Although the details of the subject are beyond the

scope of this text, the steps are generally as follows:

0 Picture points are selected for those
stereo-models that cannot be field-
surveyed

0 On glass diapositives, small holes are
drilled in the photographic emulsion at
the identical picture-point locations
previously pin-pricked on the aerial
contact print

0 Each glass diapositive is placed in an
optical comparator, and the cartesian
coordinates of all picture-points are
recorded (to the nearest micron). In
addition to the cartesian coordinates of
picture-points on each glass diapositive,
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the coordinate values for the camera
fiducial mark (normally there a re four
or eight fiducial marks in each photo-
graph) are included as a means Of pro-
viding a reference frame

Finally, all the known data (Cartesian
coordinates for fiducial marks and sur-
veyed/unsurveyed picture-points, plus
field-surveyed coordinate values) are
manipulated by computer to yield coor-
dinates for all picture-points.

Stereocompilation - Stereocompilation instruments (or

stereoplotters) are used in the final stage of map preparation.

This section considers the use of the direct-viewing optical-

train stereoplotter. The direct-viewing stereoplotting i'sLru-

ment allows an operator to view a stereo-pair of photographs

through a series of prisms in such a way that the left eye is

directed to a portion of the left photograph and the right eye

to the corresponding portion of the right photograph in the

stereo-pair. Within the optical train associated with the

eyepieces is a dot, cross, or small circle which serves as a

reference mark within the operator's field of view. When the

operator first sets up a stereo-model, he must bring the imag-

ery of the left eyepiece into coincidence with the imagery in

the right eyepiece through the use of rotational and transla-

tional controls. When he has eliminated the parallax (or imag-

ery mismatch) in the stereo-model, the operator has completed

the operation called inner-orientation. The next step, exterior

orientation, adjusts the stereo-model to its correct scale and

level datum. I

The reference mark (often termed floating point) that

the operator sees in each eyepiece can be displaced along the

axis connecting the centers of the two photographs. Movement

of a reference mark introduces a parallax which causes an ap-

parent vertical displacement of the reference mark when viewed
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against the stereoscopic terrain image. The controls causing

this displacement allow direct read-out of the elevation of

the reference mark. The reference mark can be made to appear

to float above, on, or below the apparent surface of the ter-

rain. Through mechanical linkages the operator can shift the

reference mark over the entire stereomodel (in the x and y

plane) and can move the reference mark vertically (in the z

axis). The same linkages connect to a pantograph, to which a

pencil or pen is attached for marking points and lines on the

map being prepared.

In practice, the operator plots a building (or any

other man-made or natural feature) by bringing the reference

mark to the proper elevation of the object, then moving it in

the x-y plane around the visual outline of the object. As

this is done, the pencil at the end of the pantograph traces a

replica of the object. In contract, to plot a contour, the

operator sets the elevation of the desired contour on the dial

of the z-motion control, moves the reference mark until it is

in apparent contact with the surface of the terrain, drops the

pencil/pen on the pantograph into contact with the drawing,

and finally moves the reference mark in the x-y plane in such

a manner as to maintain visual contact with the surface of the

terrain. The operator follows the general procedure of first

plotting all planimetric features (buildings, roads, fences,

cross-country utility lines, vegetation outlines, etc.) then

completes the stereo-model by adding contours, spot elevations,

or any other specialized data (cross-sections, profiles, etc.).

The product of the operator's efforts is a working drawing (in

pencil or ink on mylar film to insure that dimensional stabili-

ty is maintained throughout the project).

Final presentation - Inked or negative-engraved final

sheet layouts are made by drafting personnel, who also edit
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the completed stereo-compiled manuscripts for accuracy and add

place names, symbolization, etc. In mapping large areas it is

rare for the final sheet layout (normally oriented with North

to the top of the sheet) to coincide with the direction of the

flight lines. Therefore, finalization of drafting may find

any one final sheet extending beyond the limits of one stereo-

model into another (either on the same flight line or on an

adjacent one).

As just described, the final presentation is in the

form of a map or chart. It is also possible to finalize photo-

grammetric data as digital information for storage and use in

a computer. In the case of aerial photogrammetry, such digital

data would be referred to as a digital terrain model.

Equipment and Film Considerations - Air (or space) to

ground photography serves one of two purposes -- photorecon-

naissance or photomapping --and the equipment considerations

are considerably different in these two applications. In photo-

reconnaissance the identification of objects is the most impor-

tant requirement, leading to the consideration of camera and

film resolution as an overriding criterion. For photomapping

applications, on the other hand, adequate resolution is cer-

tainly important, but the overriding metric considerations are

such things as:

* Film flatness

" Stability and rigidity of the camera
body and mount

* Minimization of lens distortions.

Not only are lens systems for use in photomapping designed and

constructed with great care, and thoroughly tested on an indi-

vidual basis, but they are generally also provided with detailed
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calibration and residual distortion data, which can be used

for correction purposes during the analysis and plotting proc-

ess. As an example, a hypothetical distortion curve is shown

in Fig. 1.2-17. In this plot, the independent variable, P, is

the angle between the center of the field (camera axis) and

the object. The dependent variable is the linear displacement

of the actual image point on the film plane from its theoreti-

cal (or geometric) location.

The film also plays an important part in the accuracy

of the photogrammetric process. While a discussion of film

characteristics is given in Unit Three (Section 3.2.1), it

should be emphasized that a major criterion for film used in

photomapping is dimensional stability. This depends not only

on the film base material but also on the details of photo-

graphic processing and on storage conditions. Ideally, it

would be best to use photographic materials coated on glass

plates, but the obvious inconvenience in handling and storing

such materials, as well as the increased weight, often pre-

cludes this choice. The dimensional stability is an important

consideration not only for the photographic film on which ex-

posures are made in an aircraft or a satellite, but also with

regard to the print film or photographic paper on which images

are printed for use by photo-interpretation personnel. Ordi-

nary photographic paper, for example, undergoes dimensional

changes (non-uniform in direction) of as much as three percent

during the various stages of processing and drying.

1.2.4 Geodetic Astronomy

Because observations of stars permit the determina-

tion of directions that can be regarded, for practical pur-

poses, as fixed in space (and, hence, unaffected by the rota-

tion of the earth and its motion through space), there is a
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branch of geodesy that is concerned with the use of astronomic

techniques in determining the location of points on or near

the earth's surface. As a preliminary to the discussion of

astronomic positioning, it is necessary to review two topics of

an astronomical nature:

" The rotational and translational motions
of the earth, as observed in a coordinate
system fixed with respect to the distant
stars - - a so-called inertial* coordinate
system (Section 1.2.4.1). This topic
also includes a brief summary of the
astronomic determination of time.

" The establishment and use of inertial
coordinate systems, related to star posi-
tions, that are important in astronomy
and geodesy (Section 1.2.4.2).

1.2.4.1 Rotation and Translation of the Earth with
Respect to Space

The motion of the earth with respect to a coordinate

system fixed in space involves:

* The translational motion of the center
of mass through space

0 The rotational motion of the earth around
its center of mass.

The inertial coordinate system, fixed in space, with respect

to which earth motion is defined, is related to the apparent

positions of the distant stars and is usually called the stel-

lar inertial reference frame. This coordinate system is dis-

cussed in Section 1.2.4.2.

*The student will recall from physics and mechanics courses
that an inertial coordinate system is one in which Newton's
laws of motion are valid. An alternative characterization:
a coordinate system which is non-rotating and not accelerating.
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Reiating positions on the earth to a frame fixed in

space is required, for example, in celestial navigation and in

the observation of artificial satellites. In either of these

cases, observations are made from a point on or near the earth's

surf~ce (whose position is defined in terms of a coordinate

syst- :.oving with and rotating with the earth) of objects

whose position is defined in terms of, or computed in, the

space-fixed inertial frame.

The translational motion of the earth is easily de-

scribed in terms of the earth's orbital motion around the sun.

For more precise purposes, it is ,etter to consider the motion

of the center of mass of the eart-i-moon system around the cen-

ter of mass of the solar system (which is very close to, but

not coincident with, the geometrical center of the sun); this

is supplemented by a description of the motion of the center

of the earth around the center of mass of the earth-moon sys-

tem. In general terms, the motion of the earth is elliptical

with the sun at one focus. In addition it undergoes slight

perturbations caused by the other planets in the solar system

(particularly Jupiter). The plane of the earth's orbit is

known as the ecliptic. Depending on the degree of accuracy

required, various sets of formulas and tabular representations

are available to predict the position of the earth with re-

spect to other bodies in the solar system as a function of

time.

It ig'more difficult to describe the rotational motion

of the earth around its center of mass. Such a description

must consider these two aspects:

0 The orientation of the earth's spin axis
with regard to the axes of the inertial
space-fixed coordinate frame
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0 The orientation of idenxtifiable features
on the crust of the earth with respect
to the spin axis.

Both aspects of the rotational motion of the earth will be

discussed in the present section.

The Coordinate Systems - The two fundamental planes

for the definition of stellar and earth-fixed coordinate sys-

tems are the ecliptic (the plane of the earth's orbit around

.the sun) and the ecguator (the plane normal to the earth's spin

axis, passing through the center of the reference ellipsoid),

as shown in Fig. 1.2-18. These planes intersect in a line

called the nodal line or the line of equinoxes. This line

marks the apparent direction of the sun at the vernal (Spring)

and autumnal (Fall) equinoxes, when the sun appears to be over-

head at the equator, and the day and night are of equal length.

The vernal eguinox .is taken as the fundamental direction

(x-axis) for the space-fixed system. The plane of the equator

is the x-y plane, and the z-axis is parallel to the earth's

spin axis.

For the earth-fixed reference frame, the z-axis is

also taken to be the earth's spin axis and the x-y plane is

the equator. The x-axis is defined to be the direction from

the center of the earth to the meridian of Greenwich, with the

y-axis completing a right-handed coordinate system. Because

of the non-rigidity of the earth and the existence of signifi-

cant crustal motion, this definition is not complete. Further

details are considered later under the heading Polar Motion.

Rotation - Because of the rotation of the earth, the

angle between the x-axis of the earth-fixed system and the x-

axis of the space-fixed system advances through 360 deg every

day. This angle, called the Greenwich sidereal time, is the

basis for ordinary time keeping, and determines Universal Time
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(UT) and civil time (standard time for the various time zones).

It is customary to express this angle in time-like units, rather

than in degrees. Thus, one complete revolution is equivalent

to twenty-four hours; one quarter of a revolution (90 deg) is

six hours; etc. Although historically it was assumed that the

earth's rotation rate was constant, it has been discovered in

the present century that this is not the case. The earth is

subject to a gradual deceleration caused by the friction of the

tides, particularly in shallow seas and along the continental

margins. This tidal deceleration causes an increase in the

length of the day by approximately 4 msec per century. In

addition, there are seasonal variations in the rotational

speed of the earth, with periods of a year and a half-year.
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Superimposed on these are a large number of smaller effects,

some of which appear to be random. The relation between the

earth's rotational orientation (i.e. Universal Time) and the

uniform time as kept, for example, by an atomic clock is trbu-

lated in astronomical references; however, it is not possible

to make precise predictions of the earth's rotational orien-

tation at times far in the future. Further details of the

timekeeping aspects of the earth's rotation are discussed in a

later section.

Motion of the spin axis - It has been known since

ancient times that the spin axis of the earth is not fixed in

space. The present North Star (Polaris) -- less than a degree

from the actual pole right now -- was nowhere near the pole in

3000 BC, when a different star (now called a Draconis) was the

pole star. The motion of the pole has a long-period component

known as precession, superimposed upon which is a short-period

component of much smaller amplitude, the nutation. These two

motions will now be discussed in detail.

Precession - Precession refers to the very long-

period motion of the axis of rotation of the earth with re-

spect to inertial space. The effect is caused by the gravi-

tational torques of the sun and the moon and is similar in

nature to the precession of a spinning top in the presence of

a gravitational field. Historically this phenomenon was de-

tected as early as the second century BC, when it was noticed

that the observed longitudes of stars show a gradual change

with time. This systematic motion can be construed as a secu-

lar (changing steadily with time) motion of the vernal equinox.

The gravitational torques of the sun and the moon

cause the earth's spin axis to describe a circular motion in

the sky about the pole of the ecliptic. In addition, the
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gravitational effects of the other planets (principally Jupiter)

cause small changes in the orientation of the earth's orbital

plane; hence, the ecliptic also undergoes a regular motion with

respect to an inertial coordinate system. As a consequence,

the vernal equinox (defined by the intersection between the

equatorial and ecliptic planes) moves in space because both of

these planes change their orientation with the passage of time.

The motion of the vernal equinox, and of the stellar reference

frame for which it is the principal direction, is known as

general precession. The two contributions to general preces-

sion are the motion of the equatorial plane, called luni-solar

precession, and the motion of the ecliptic plane, called plane-

tary precession. The spin axis describes a circular motion in

space with a period of twenty-five thousand eight hundred years.

The radius of the motion is approximately 23.5 deg.

Nutation - Precession, as described above, refers to

the long-period circular motion of the earth's axis of rotation.

Superimposed on this motion are a variety of smaller periodic

motions in space. This set of motions is called nutation. As

a result of nutation, the actual axis of rotation describes a

complicated series of more or less elliptic motions about the

average position described by the theory of precession.

The nutational motion is resolved into two components.

The first, called the nutation in longitude, is the motion of

the vernal equinox along the plane of the ecliptic. The sec-

ond component, called the nutation in obliquity, is the vari-

ation in the angle between the equatorial plane and the plane

of the ecliptic. The periods of these nutational motions are

much shorter than the precessional motion, ranging from 18.6

years down to about 5 days. The principal components of the

nutational motion, with their periods and amplitudes, are listed

in Table 1.2-3.
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TABLE 1.2-3

COMPONENTS OF THE NUTATION

1 AMPLITUDE
COMPONENT PERIOD (A )

Principal nutation 18.6 years 9.21

Semi-annual nutation 0.5 years 0.57

9-year nutation 9.0 years 0.09

Semi-monthly nutation 13.7 days 0.09

Annual nutation 1.0 years 0.06

Monthly nutation 27.6 days 0.02

122-day nutation 122.0 days 0.02

Polar Motion - The theory of precession and nutation

describes the motion, of the earth's spin axis with respect to

a reference frame fixed in space. But the axis of rotation is

not fixed with respect to the surface of the earth. The chang-

ing orientation of the axis of rotation with respect to an

axis fixed in the body of the earth is called polar motion.

It is made up of a number of components that must be deter-

mined observationally. A rigorous mathematical theory for the

polar motion has not been developed.

The major component of the polar motion is known as

the free nutation or the Chandler wobble. The period of this

motion, which cannot be accounted for exactly without consid-

ering the elasticity of the earth, is approximately 430 days.

The excitation and damping mechanisms of the free nutation are

poorly understood and cannot be modeled precisely. In addition

to the 430 day free nutation, there is also an annual motion

of the axis of rotation. The amplitude of this motion is com-

parable to that of the free nutation (about 0.1 . Recent
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research indicates a strong correlation of the annual compo-

nent with the redistribution of mass in the atmosphere asso-

ciated with meteorological phenomena.

Local Effects - In addition to the global aspects of

the motion of an earth-fixed reference frame in a space-fixed

coordinate system, local motions must also be considered for

extremely accurate work. These include the effects of solid-

earth tides *and both local and large-scale deformations of

the crust (plate tectonics). The magnitude and direction of

these motions are strongly dependent on local geology and re-

quire the location of geophysical instruments at the observa-

tion site to evaluate any effects that might occur. Generally,

these are phenomena of small magnitude.

Time Based on Earth Rotation - The rotational speed

of the earth is not observed directly. Rather, the rotational

rate is determined from observations of the angle of rotation

over a period of time. The most important information for

navigation as well as geodesy is the relationship between

these two time scales:

* A uniform time scale derived from atomic
clocks

* A time scale defined in terms of the
rotation of the earth.

Universal Time (UT) is the earth rotadtion time scale

used as the basis for time keeping all over the world. UT is

related to the actual rotation of the earth with respect to a

*That is, motion of the earth's crust due to the gravitational
attraction of the sun and moon.
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space-fixed reference frame. In practice, it is determined

from astronomical observations of stars. Numerous observator-

ies all over the world include, as part of their observing

program, the measurement of star transits across the meridian

for the purpose of maintaining the precise calibration of Uni-

versal Time.

The time determined directly from star observations

is designated UTO. UTO refers to the instantaneous orienta-

tion of the pole of rotation with respect to the surface of

the earth. If corrections are applied for polar motion, in

order to reori.ent the measurements to an internationally agreed

upon mean polar position, the resulting time scale is known

as UTI. Corrections for the seasonal variation in rotational

speed, determined empirically from past observations, are ap-

plied to UTl to arrive at a third time scale, known as UT2.

Each of these time scales is directly related to the rotation

of the earth and is, therefore, not precisely uniform.

For scientific purposes, accurate time scales based

on the use of atomic clocks of various kinds (cesium clock,

rubidium clock, hydrogen maser) have been developed within the

last decade. Atomic time, as kept by such clocks, has been

coordinated with another physical time scale called ephemeris

time, derived from a study of the motion of the planets and

other bodies in the solar system (primarily the motion of the

moon around the earth). Ephemeris time is regarded as the

independent variable in the equations of motion that define

the physics of the solar system. Considerable effort has been

expended to achieve consistency between the atomic and the

ephemeris scales.

*Known as the Conventional International Origin (CIO).
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Despite the advantages of atomic time for precise sci-

entific work, it is still necessary to maintain a time scale

that will be consistent with the irregular rotation of the

earth, because time is used, in navigation and in astronomy,

to describe the rotational orientation of an earth-fixed frame

with respect to the space-fixed coordinate system. Thus, a

perfect atomic clock would not, after a lapse of many years,

correctly predict such phenomena as sunrise, sunset, star tran-

sits, eclipses, etc. A time scale has been adopted interna-

tionally which attempts to combine the best features of atomic

time with the earth-synchronous requirement of Universal Time.

This scale, known as Coordinated Universal Time (UTC), is now

the basis for civil time keeping and is broadcast by time and

frequency standard radio stations throughout the world (in the

United States, the National Bureau of Standards' WWV and re-

lated stations).

UTC is a uniform time scale in that it is based on

atomic time. It is closely compared with the Universal Time

scale based on earth rotation, and whenever the two scales

have deviated by an appreciable fraction of a second, a step

adjustment by one second is made in the UTC clock. Such an

adjustment is known as a leap second. At the present time,

leap seconds are necessary once or twice a year. Whenever

feasible, the adjustments are made at the end of December and

the end of June. The goal of the leap second adjustments is

to keep the difference between UTC and UT1 from ever exceeding

0.8 seconds. Along with UTC, the time and frequency standard

broadcasts make available the predicted (or estimated) differ-

ence between UTi and UTC. This difference, known as DUT1,

permits the user to calculate the earth rotation time. On the

other hand, the transformation from UTC to the International

Atomic Time scale is simple, since the two scales differ by an

integral number of seconds (equal to the number of times the

leap second correction has been applied).
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Figure 1.2-109 is a graphical representation of the

relationships among the International Atomic Time (TAI), UTC,

and UTI scales during the period 1973 to 1978.
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Observational Techniques - A number of techniques

exist for the determination of the orientation of the earth

with respect to a non-rotating space-fixed coordinate system,

generally based on observational data obtained from precise

optical instruments. As an example, the transit circle has

been used for precise determination of the positions of stars

and planets, in order to determine the constants describing

precession and nutation. The transit circle is an instrument

consisting of a refracting telescope that can rotate about a

fixed horizontal axis precisely oriented in an East-West di-

rection. The telescope is thus constrained to move only in

the plane of the meridian.

Observations of stars for the purpose of determining

polar motion and time are generally made with the following

precise optical instruments:

* The visual zenith" telescope (VZT)

* The photographic zenith tube (PZT)

* The Danjon astrolabe.

The VZT is designed to be oriented in the plane of the local

meridian to measure zenith distances of stars as they transit

the meridian. The zenith is defined by spirit levels attached

to the instrument. Measurements are made with a micrometer at

the eyepiece of the telescope. Such instruments have been

used since 1900 to observe up to 10 stars per night at various

locations to determine polar motion (also called the variation

of latitude). The PZT is a long-focus refracting telescope

constrained to point only in the direction of the zenith. A

shallow basin of mercury reflects the incident light from the

*Zenith refers to the upward vertical direction.
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lens to a photographic plate. The surface of the liquid mer-

cury is parallel to the local geopotential surface; hence, the

perpendicular to the mercury surface defines the direction of

the local zenith. A typical night's observing program involves

four observations of about thirty stars to produce an estimate

of time as well as latitude variation. The Danjon astrolabe

is an optical instrument involving visual observation rather

than the use of a photographic plate.

Another source of polar motion data is Doppler meas-

urements of navigation satellites. The satellite orbit is

used as a reference in space, and range differences to the

satellite with respect to time from each of a number of track-

ing stations are used to determine the polar motion components

of the earth's orientation with respect to the satellite orbits.

Other techniques, such as laser ranging to the moon and radio

interferometry, are.expected ultimately to provide higher ac-

curacy than the classical optical techniques for the deter-

mination of polar motion and Universal Time.

International Distribution of Time and Polar Motion

Data - In order to predict the precise orientation of the earth's

spin axis and the precise orientation of an earth-fixed refer-

ence frame with respect to the space-fixed coordinate system,

it is necessary to have up-to-date information regarding polar

motion and the Universal Time correction. Such information is

collected and distributed internationally by the cooperative

effort of a number of countries. Polar motion information is

contributed by the International Polar Motion Service (IPMS).

Time information, as well as polar motion data, is the re-

sponsibility of the Bureau International de l'Heure (BIH).

Cooperating organizations within the United States for polar

motion and time determination include the U.S. Naval Observa-

tory, the Defense Mapping Agency, and the National Geodetic

Survey (now part of the National Ocean Survey).
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A major source of polar motion data has been the five

International Latitude Stations, the locations of which are

listed in Table 1.2-4. These stations are equipped with visual

zenith telescopes and determine the instantaneous position of

the pole with respect to a mean pole position called the Con-

ventional International Origin (CIO). Polar motion is deter-

mined by the use of least-squares procedures to analyze the

variation of latitude at each of the five stations for the

common component due to polar motion. The results appear in a

monthly report issued by the International Polar Motion Service

(IPMS), which also receives and processes data from a second

network of fifty-four stations.

TABLE 1.2-4

THE INTERNATIONAL LATITUDE STATIONS

STATION NUMBER LOCATION

1 Gaithersburg, MD, USA

2 Ukiah, CA, USA

3 Mizusawa, Japan

4 Kitab, USSR

5 Carloforte, Italy

The BIH uses the results obtained from observational

programs involving approximately 70 astronomical instruments,

together with data from the Doppler tracking of satel.Yites, in

order to determine both polar motion and Universal Time. In-

struments reporting to the IPMS also contribute data to the

BIH. Elaborate computational procedures are followed by the

BIH to maintain the greatest possible degree of accuracy.

Five-day values for the coordinates of the pole and the dif-

ference between UTI and UTC are distributed on a monthly basis.
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4 This information is redistributed in the United States by the

U.S. Naval Observatory. The BIH also provides a weekly tele-

type service listing of coordinates of the pole and UTl - UTC

for users with an immediate need for the data.

Within the United States, the U.S. Naval Observatory

makes astronomical observations using photographic zenith tubes

located at Washington, D.C. and Richmond, Florida, for the

determination of Universal Time and the variation of latitude.

Published results are summarized in Table 1.2-5. The National

Geodetic Survey is responsible for the operation of the Inter-

national Latitude Stations within the United States. Their

data are contributed to the IPMS, which publishes the results.

TABLE 1.2-5

NAVAL OBSERVATORY PUBLICATIONS

PUBLICATION FREQUENCY CONTENTS

Time Service Monthly Data on the UTl scale
Announcement
Series 6

Time Service Weekly Coordinates of the pole;
Announcement DUTi
Series 7

Time Service Yearly Summary of Naval Observatory
Announcement observations and results
Series 11

Time Service Monthly Five-day coordinates of the
Announcement pole and values of DUTI as
Series 15 determined by the BIH
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1.2.4.2 Stellar Reference System

The use of space-fixed coordinate systems to define

the motion of the earth has already been referred to in Sec-

tion 1.2.4.1. Such coordinate systems are also useful for

orbital computations (planets and natural satellites, as well

as artificial satellites), because the equations of motion are

simplest when expressed in an inertial reference frame.

The origin of a stellar inertial reference frame may

be chosen for convenience in one of several ways. For example:

* The center of mass of the earth

" The center of mass of the earth-moon

system

" The center of mass of the sun

" The center of mass of the solar system.

For the present discussion the origin is taken as the center

of mass of the earth.

The directions of the coordinate axes may be defined

in several ways, giving rise to a variety of reference frames.

For example, the instantaneous direction of the earth's spin

axis may be taken as the z-axis. The x-y plane, normal to this,

is the instantaneous equator. The x-axis is the vernal equi-

nox of instant (that is, at the moment for which the defini-

tion is valid), defined by the intersection of the equatorial

and ecliptic planes (see Fig. 1.2-20). Coordinates measured
with respect to this frame are identified by the designation

true of instant or true of date.
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Figure 1.2-20 Coordinate Frames: True of Instant

The true of date coordinate system just described is

not actually space-fixed (or inertial), because of the effects

of precession and nutation. When a non-rotating system is

required, it can be defined by fixing the coordinate axes in

space as they were at some instant of time -- the beginning of

the current year, or the beginning of a standard year like

1950 or 1975 (Fig. 1.2-21). The z-axis will then no longer

coincide with the actual spin axis, nor the x-y plane with the

actual equator. Coordinates measured in such a frame are iden-

tified by the date associated with the reference frame -- for
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VERNAL EQUINOX AT
PRESENT TIME

VERNAL EQUINOX
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AXES REMAIN FIXED IN SPACE. EXAMPLE SHOWN
IS FOR STANDARD YEAR 1950.0

Figure 1.2-21 Coordinate Frames: True as of a
Specific Date

example, "true of 1950.0," where the notation 1950.0 refers to

an instant of time near the beginning of the calendar year.

A further step in the direction of removing non-

inertial effects is to smooth the motion of the pole (and the

equinox) by averaging out the periodic effects of nutation.

The mean equinox, mean pole, and mean equator are affected

*For the exact definition of notation like 1950.0, the student
should refer to the American Ephemeris and Nautical Almanac
(AENA), or a textbook on positional (or spherical) astronomy.
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only by precession (Fig. 1.2-22). The mean reference frame

may be based on the equinox of date (Fig. 1.2-23) or it may be

held fixed in space as of a particular instant of time -- e.g.,

1950.0. The coordinates relative to these frames are called

mean of instant or mean of date in the first case, and mean

of 1950.0 -- for example -- in the second case.

Table 1.2-6 summarizes these four kinds of coordinate

systems.

The location of any object with respect to one of

these coordinate systems is giv,-n in terms of polar coordi-

nates analogous to latitude and longitude. The angle indicat-

ing distance north or soutf! of the equator is called declina-

tion and is measured in degrees, from -90 deg (south) to +90

deg (north). The angle corresponding to longitude (measured

positive toward the.east) is the right ascension. It is cus-

tomary to measure this angle in time-like units, with 24 hours

corresponding to 360 deg. Right ascension and declination are

illustrated in Fig. 1.2-24, while some examples of the corre-

spondence between angular measure and time measure for right

ascension are shown in Table 1.2-7.

Star positions, in particular, are listed in star

catalogs in terms of their declination and right ascension.

Table 1.2-8 reproduces a segment of a star catalog from the

American Ephemeris and Nautical Almanac (AENA), with the co-

ordinates shown as mean coordinates for 1980.0 (corresponding

to Fig. 1.2-24). It is important for the student to under-

stand that it is actually a collection of star positions -- a

star catalog -- that defines the axes of the coordinate system.

A considerable effort is expended at observatories around the

world on careful measurement and remeasurement of stellar coor-

dinates, in order to refine the definition of the various stellar

inertial reference frames.

1-59



MEAN 11PIOd AXIS

#TPOUE VPIN AXIS

MUTATIONI
EPPECTS I

/y

PRECESSION/
/TRUE VERNAL

,'0 EQUINOX

MEfANVEMNAL
EQUINOX

X

AXES SH IFT WITH RESPECT TO FIXED DIRECTIONS IN
SPACE, BUT SHIFT DOES NOT INCLUDE NUTATION EFFECTS.

Figure 1.2-22 Coordinate Frames: Mean of Instant
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TABLE 1.2-6

TYPES OF COORDINATE SYSTEM

IDENTIFICATION AXES MOVE? AXES FIXED

PRECESSION NUTATION

True of instant yes yes no

True as of a no no yes
specific date

Mean of instant yes no no

Mean as of a no no yes
specific date

R-47488

SPIN AXIS

' DECLINATION

z VERNAL
EOUINOX

Figure 1.2-24 Right Ascension and Declination
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TABLE 1.2-7

RIGHT ASCENSION IN TIME-LIKE UNITS

ANGLE IN DEGREES ANGLE IN TIME-LIKE UNITS

1 second of arc 0!067

1 minute of arc 4s

1 degree 4m

5 degrees 20m

20 degrees lh20m

90 degrees .
h

360 degrees 24h

Note the convention that hour, minute,
and second are indicated as superscript
letters.
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TABLE 1.2-8

SEGMENT OF A STAR CATALOG

NAME MAG. SP. RIGHT DECLINATION
ASCENSION

h m s ,

v Gem 4.1 B5 6 27 46.5 +20 13 33
P Mon 4.6 B2e 6 27 51.2 - 7 01 14
4 CMa 4.3 B1 6 31 01.3 -23 24 11
13 Mon 4.5 AOp 6 31 49.3 + 7 20 55
t2 CMa 4.5 AO 6 34 13.0 -22 56 54

N Car 4.4 AO 6 34 32.1 -52 57 32
v CMa 4.1 KO 6 35 48.7 -19 14 17
y Gem 1.9 AO 6 36 33.4 +16 25 03
8 CMa 4.6 KO 6 37 00.6 -18 13 09
v Pup 3.2 B8 6 37 08.9 -43 10 40

S Mon 4.7 Oe5 6 39 52.6 + 9 54 55
E Gem 3.2 G5 6 42 42.1 +25 09 07
30 Gem 4.6 K0 6 42 51.6 +13 14 57
t Gem 3.4 F5 6 . 10.0 +12 55 05
a CHa -1.6 AO 6 44 16.0 -16 41 16

18 Mon 4.7 KO 6 46 49.1 + 2 26 06
a Pic 3.3 A5 6 47 59.2 -61 55 11
K CMa 3.8 B2p 6 49 05.6 -32 29 05
A Car 4.4 G5 6 49 25.2 -53 35 54
T Pup 2.8 KO 6 49 25.3 -50 35 26

Notes:

1. Mag. refers to the magnitude, a logarithmic
measire of the brightness of the star.

2. Sp. Aefers to the spectral class, or color, of
the star.

3. The segment includes Sirius (a CMa), the brightest
star in the sky.
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1.2.4.3 Astronomic Positioning

The position of a point on the surface of the earth

(latitude and longitude) can be obtained directly by observing

the stars. Astronomic positioning is the oldest positioning

method. It has been used for many years by mariners and, more

recently, by aviators for navigational purposes. Explorers

have relied on the astronomic method to locate themselves in

uncharted areas. Geodesists use positions determined by as-

tronomic methods along with other types of survey data (such

as triangulation and trilateration) to establish precise posi-

tions.. A pair of isolated astronomic positions not intercon-

nected by geodetic surveys cannot ordinarily be related to one

other (for the computation of distance and direction between

points) with the accuracy required for modern military appli-

cations.

The principle of the astronomic method is to measure

the angles relating the local vertical (plumb line) at a sur-

vey point to the apparent position of an identified star.

Included is the precise time at which the measurements are

made. By combining these data with information from a star

catalog, which provides the coordinates of the star in a stel-

lar inertial reference frame, the surveyor determines the di-

rection of the plumb line (zenith direction) in the inertial

frame. From these data he can then deduce local latitude.

As an illustration, a simple method of latitude de-

termination is presented. In the northern hemisphere, this

would consist of measuring the elevation of Polaris (the North

Star) above the horizon of the observer. Since Polaris is not

exactly aligned with the earth's spin axis, a correction must

be applied, as determined (once the time is known) from stan-

dard navigational tables. The geometric relations involved in

the definition of latitude are shown in Fig. 1.2-25.
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Figure 1.2-25 Astronomic Coordinates

The definition of longitude at a point involves the

concept of the local meridian. As shown in Fig. 1.2-25, this

is the plane defined at the point by:

a The earth's spin axis

* The local vertical (plumb line, or per-
pendicular to the geoid).
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Longitude is then defined as the angle between the plane of

the meridian at Greenwich (Prime Meridian) and the local as-

tronomic meridian of the point. The actual measurement of

astronomic longitude is really a time measurement: the time

difference between the passage of an identified star over the

meridian of Greenwich (as calculated from the star's coordi-

nates and other astronomical reference data) and its observed

passage over the local meridian, as timed by an accurate clock

calibrated against international standard time transmissions.

Time differences are translated into longitude differences on

the basis of the earth's rotation rate with respect to the stars

(one complete rotation in approximately 23 hours 56 minutes).

Astronomic observations are made by optical instru-

ments -- theodolite, zenith camera, prismatic astrolabe --

which all contain 1-veling devices. When properly adjusted,

the vertical axis of the instrument coincides with the direc-

tion of gravity and is, therefore, perpendicular to the geoid.

Thus, astronomic positions are referenced to the geoid, and

must be distinguished from geodetic positions, referenced to

an ellipsoid (Fig. 1.2-26). The astronomic and geodetic coor-

dinates (latitude and longitude) of a point are related to one

another by the deflection of tfte vertical -- the angular dif-

ference between the normal to the geoid and the normal to the

ellipsoid. The difference in direction between these two nor-

mals is usually described in terms of its north-south component,

,and its east-west component, q. Astronomic and geodetic

coordinates are then related by the equations

*This concept has been introduced in Section 1.2.1.
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These relationships are shown in Fig. 1.2-27. The student

should bear in mind that deflections of the vertical are mea-

sured in seconds of arc, and -- in the worst cases -- can ex-

ceed one minute of arc. But it is essential to take them into

account for accurate positioning. Recall from Section 1.2.1

that the geoid is an irregular surface, not defined in tracta-

ble mathematical form; hence, on the basis of the astronomic

coordinates of two points of interest, it is not feasible to

describe their exact geometric relationship (for example, di-

rection and distance). Geodetic coordinates, on the other

hand, refer to an exactly defined ellipsoid. If the geodetic

coordinates are known, the spatial relationship between two

points (launch point and target, for example) is defined

exactly by the geometry of the ellipsoidal surface.

AXIS OF
ROTATIONROTAIONPLUM8 LINE

(goo~dal X.Orll

ELLIPSOIDAL
NORMAL

A - astronomic longitude * north-south component of
A - geodetic longitude deflection of the vertcal - 0 - 6

: * astronomic latitude r - east-wen component of deflection
0 geodetic latitude of the vertical (A -A) cosO

0- center of the earth

Figure 1.2-27 Relation Between Astronomic and

Geodetic Coordinates
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It should be emphasized that for most applications

requiring high precision, astronomic coordinates are not usa-

4 ble unless they can be reduced to the corresponding geodetic

coordinates by applying corrections:

* For the deflection of the vertical to
latitude and longitude

* For the undulation (radial separation
between ellipsoid and geoid) to the
height above sea level

* in order to obtain geodetic latitude and longitude, as well as

height above the ellipsoid. Thus, local gravity-field informa-

* tion is required in order to make geodetic use of astronomical

results, pointing out -- once again -- the intimate connection

between the fields of geometric geodesy (size, shape, and rela-

* tive locations) and physical geodesy (structure of the gravity

* field).

This brief review of astronomic positioning has emnpha-

sized principles at the expense of details. As one example,

the astronomically observed latitude and longitude refer to

the instantaneous pole (direction of the earth's spin axis).

Since the spin axis is not fixed with respect to the earub

but undergoes small, roughly periodic motions around a rne: n

position with a principal period somewhat greater than a :a

(see Section 1.2.4.1), it is necessary to reduce observed

latitude and longitude to a standard mean pole, defined j~

international agreement, using tabulated polar motion dart.

1.2.5 Datums

A datum, in geodesy, is a coordinate system for (N-

pressing the locations of points on (or near) the surface o

the earth. Since (as discussed in Section 1.2.1) the earth's
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surface is closely approximated by an ellipsoid, it is general-

ly taken for granted that the system will involve geodetic lat-

itude and longitude based on a particular ellipsoid. These

terms, defined in Section 1.2.1, are reviewed in Fig. 1.2-28.

The datum, therefore, is specified by the choice of an ellip-

soid and the association of that ellipsoid with one or more

points on the earth's surface.

From the historical point of view, datums were origi-

nally selected to express locations only within a particular

region. Such regional datums were based on an ellipsoid cho-

sen to fit the geoid within that particular region, and ori-

ented with respect to a specific point (origin) within the

region. More recently, interest has shifted to the develop-

ment of global datums, with an ellipsoid chosen to fit the

geoid in a global sense, and having its center at the earth's

center of mass.

In addition to the distinction between regional and

global datums, it is also useful to distinguish between hori-

zontal and vertical datums. The horizontal datum provides a

basis to which horizontal coordinates (latitude and longitude)

of a position are related; the vertical datum provides a basis

to which elevations are related. Most of the discussion in this

section pertains to the subject of horizontal datums, with a

brief reference to vertical datum control concluding the section.

How a datum is defined - The specification of a par-4

ticular datum involves an ellipsoid, an-origin, and a way of

aligning the ellipsoid with the geoid at the origin. More

specifically, the definition involves:
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Figure 1.2-28 Geodetic Latitude and Longitude
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* Ellipsoid -- determined by its semimajor
axis, a, and flattening, f

* Origin -- a specific point, centrally
located, which will serve as the base
station for a survey network

* Alignment -- at the origin, the relative
orientations of ellipsoid and geoid are
defined by

the relative deflection between the
normal to the ellipsoid and the norm-
al to the geoid (plumb line), usually
expressed in terms of its North-South
and East-West components. These may
be taken to be zero, in which case
geoid and ellipsoid are locally pa-
rallel.

the geoid height or undulation at the
origin (separation between geoid and
ellipsoid, measured along the normal
to the-ellipsoid). The undulation is
also sometimes set to zero, making
geoid and ellipsoid locally tangent.

- the azimuth from the origin to another
specified point, establishing the first
line of a survey network.

The final condition usually imposed is that the minor axis of

the ellipsoid is parallel to the earth's axis of rotation.

Some examples of regional datums are given in Table

1.2-9; a few global datums are listed in Table 1.2-10. Four of

the regional-datums will be discussed in more detail below.
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TABLE 1.2-9

EXAMPLES OF REGIONAL DATUMS

T-3678

DATUM NAME ORIGIN ELLIPSOID ELLIPSOID PARAMETERS
NAME SEMIMAJOR AXIS FLATTENING

North American Meades Ranch, Kansas Clarke (1866) 6378206 1/295.0
Datum - 1927
(NAD 27)

European Datum Potsdam (near International 6378388 1/297.0
(ED) Berlin), Germany (Hayford)

Russian Datum Pulkova Observatory Krasovskii 6378245 1/298.3
(Pulkovo 42) Leningrad, USSR (1938)

Tokyo Datum Tokyo, Japan Bessel (1841) 6377397 1/299.2
(TD)

Indian Datum Kalianpur, India Everest 6377276 1/300.8

TABLE 1.2-10

EXAMPLES OF GLOBAL DATUMS

T-3679"

ELLIPSOID PARAMETERS
DATUM NAME ELLIPSOID NAME SEMIMAJOR AXIS

() FLATTENING

Kaula 1961 Kaula 6378165 1/298.30

Modified Mercury Datum Fischer (1968) 6378150 1/298.30
1968 (MMD 68)

Smithsonian Datum SAO 66 6378165 1/298.00
1966 (SAO 66-C6)

World Geodetic System WGS 72 6378135 1/298.26
1972 (WGS 72)

NOTE: No origin is given, since global datums are based on the
center of mass of the earth.
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How the ellipsoid is oriented to the geoid -Two ex-

amples will be given to illustrate the basic principles of

geoid -ellipsoid alignment. In the first method, the align-

ment is based entirely on the point selected as origin. The

second method involves a best-fit solution over a number of

points.

It is helpful to recall the definitions of a few terms

introduced in Section 1.2.4.3 (Astronomic Positioning). When

latitude and longitude are determined by star sightings, using

the local horizon and local vertical (plumb line, normal to

the geoid), together with the earth's axis of rotation, as a

directional reference, they are called astronomic latitude and

longitude. Azimuths measured using the astronomically defined

north and vertical directions are likewise called astronomic

azimuths.

Single-position datum orientation is based on the

selection of a station, usually one located near the center of

a triangulation network, to serve as the datum origin. Then

the astronomical coordinates of the station and the astronomi-

cal azimuth of a line from the station to another control sta-

tion are observed. The observed astronomical coordinates and

azimuth are adopted, without any correction, as the geodetic

coordinates and azimuth of the datum origin on the reference

ellipsoid. Usually, the geoid and ellipsoid are assumed to

coincide at thatfpoint. This means that the deflection of the

vertical and the separation (or undulation) between the ellip-

soid and geoid are defined as zero at the origin. By this

choice of orientation, the normal to the ellipsoid is arbitrar-

ily made to coincide with the plumb line at the datum origin.

Figure 1.2-29 illustrates the relation between geoid and

ellipsoid when the orientation is based on a single station.
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Figure 1.2-29 Datum Orientation Based on Single Station

Although the computed positions are correct with re-

spect to each other in this type of orientation, the entire

net is shifted with respect to the axis of the earth. This is

not significant for local use of the positions but may intro-

duce large systematic errors far from the origin.

Note that although the deflections of the vertical

and undulation are defined as zero at the origin, deflections

occur at other positions within the network. When the geo-

detic latitude and longitude of other points in the net are

compared with the corresponding astronomical latitude and

longitude, differences appear between the two sets of values.
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Also, positions derived from different astronomically

oriented datums are not directly comparable to each other in

any geodetic computation. The Tokyo Datum is an example of

this type of datum orientation.

Multiple-Station datum orientation is based on the

best average fit between the ellipsoid and the geoid at sev-

eral selected survey stations in the area for which the datum

is designed. The principles are illustrated in Fig. 1.2-30.

GeOIO AND ELLPSOID RE ORIENTED SO 7.AT A-4.T

THE SUM OF THE SQUARES OF SEVERAL DEFL9C
TIONS Of THE VERIrCAL SELECTED THROUGHOUT
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POSSIOLE

ASTRO4ODETIC DEFLECTIONSIT '-,. " "" . , OF THE VERTICAL

EARTH'S

ROTATION LTITDE

Z GEOID
AXIS OF

ELLIPSOID T

GEODETIC 
ELIPOI

I 'LTITUDES,'\

L ASRONOMIC LATITUDES

-- EARTH'S CENTER

LIELUPSmOIO CENTER

Figure 1.2-30 Datum Orientation Based on Multiple Stations

Discrepancies between datums - In areas of overlap

between two geodetic survey networks, each computed with re-

spect to a different datum, the coordinates of any particular

point given with respect to one datum differ from those given
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with respect to the other. The differences occur because of

the different ellipsoids used. There is possible offset be-

tween the centers of the ellipsoids, relative rotation between

the systems, and differences of scale. As a consequence, the

computation of geodetic information from one datum to another

unconnected datum is virtually impossible, regardless of the

accuracy of the individual datums for internal computations.

With the development of both intermediate and long-

range weapon systems, these geodetic problems have taken on

major military significance. To satisfy military requirements,

it is necessary to provide detailed cartographic coverage of

areas of strategic importance and to perform geodetic computa-

tions between these areas and launch sites which are often on

unrelated datums. Both of these requirements call for the

unification of major datums; this is done by the use of one

(or a combination) of several existing methods.

Datum connection - There are three general methods by

which horizontal datums can be connected. The first method is

restricted to surveys of a limited scope and consists of sys-

tematic elimination of discrepancies between adjoining or over-

lapping geodetic survey networks. This is done by moving the

origin, rotating, and stretching networks to fit each other.

The method, known as datum transformation or datum reduction,

is used to connect local surveys for mapping purposes. Figure

1.2-31 illustrates the basic principles. The second method,

called the celestial method, uses observations of astronomical

bodies or events (eclipses, occultations) from points within

the two networks to effect the connection between them. These

methods are now largely superseded by techniques of satellite

geodesy (described in more detail in Chapter Four). The third

approach involves the use of gravimetric data to tie the indi-

vidual datums into a unified world system. This will be dis-

cussed later (Unit Two) under the heading World Geodetic Systems.
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Figure 1.2-31 Datum Reduction Applied to Overlapping
Survey Systems

Major local datums before World War II - By 1940,

every technically advanced nation had developed its own geo-

detic system to an extent governed by its economic and mili-

tary requirements. Some systems were developed by the expan-

sion and unification of existing local surveys and others by

new nationwide surveys replacing outdated local ones. Nor-

mally, neighboring countries did not use the same geodetic
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datum. Not only were there no economic requirements for com-

mon geodetic information, but the use of common datums was

often seen as contrary to the military interests of the indi-

vidual countries. The only surveys of an international nature

based on one datum were the few measurements of long arcs ac-

complished for the purpose of determining the size and shape

of the earth. The net result was that there were many dif-

ferent surveys of varying size which differed from each other

remarkably. The national maps based on the surveys also dif-

fered widely. Figure 1.2-32 illustrates the profusion of geo-

detic datums in Southeast Asia in 1940.

DATUM

DDATUM

Figure 1.2-32 Example of Different Geodetic Datums
in Southeast Asia
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As military distance requirements increased, posi-

tioning information of local or even national scope became

unsatisfactory. The capabilities of the various weapon sys-

tems increased until datums of at least continental limits

were required. The solution that evolved was the establish-

ment of a preferred datum for an area and the adjustment of

all local systems to it. The North American, European, Tokyo,

and Indian Datums were (initially) selected for this purpose.

Figure 1.2-33 illustrates, in a general manner, the coverage of

these four datums. Other major geodetic datums of the world

include the Arc and Adindan Datums in Africa, the Australian

Geodetic Datum, South American 1969 Datum, and the Russian

Pulkovo 1942 Datum. The four preferred datums are now reviewed.

K -4104

/ // / o
404M

ll' 2 Oq "60E 120El 180El

Figure 1.2-33 The Preferred Datums
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The preferred datumns -The North American Datum (1927)

has evolved from the first official geodetic datum in the United

States, the New England Datum, adopted in 1879. It was based

on surveys in the eastern and northeastern states and refertnc-d

to the Clarke 1866 Ellipsoid. Through the years this datumt

was extended to the south and west and, in 1901, the expanded

network was officially designated the United States Standard

Datum. The survey station at Meades Ranch in Kansas was se-

lected as the origin, with adopted geodetic coordinates:

Latitude = 390 13' 26."1686 N (1.2-7)

Longitude = 980 32' 30.11506 W (1.2-8)

The initial azimuth was between Meades Ranch and the survey

station designated Waldo, with a value of

Azimuth = 7' 28' 09."164 (1.2-9)

In 1913, Canada and Mexico formally agreed to base their sur-

vey networks on the United States system. The datum was then

renamed the North American Datum. Adjusting new surveys to

fit into the network created many problems and, therefore,

during the five-year period 1927-1932 all available first-

order data were adjusted into a system now known as the North

American 1927 Datum. The datum is computed on the Clarke 1866

Ellipsoid, which was oriented by a multiple-station method.

The system not only incorporates Canada and Mexico but has

connections to the South American Datum 1969 through the West

Indies and Central America.

The European Datum has its origin at Potsdam, Gernianv.

(just outside of Berlin). Numerous European national systems

were joined into a large datum based upon the International
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Ellipsoid, oriented by multiple-station methods. The U.S.

Army Map Service, now known as the Defense Mapping Agency Hy-

drographic Topographic Center (DMAHTC), connected the European

and African geodetic survey chains and filled the gap in the

African arc measurement from Cairo to Cape Town. This work

related the Adindan Datum in North Africa, which roughly fol-

lows the Twelfth Parallel, and the Arc Datum, extending from

the Equator to the African Cape, to the European Datum. Through

common survey stations, a datum transformation was derived be-

tween the old Russian Pulkovo 1932 and European systems. This

extended the European Datum eastward to the 84th meridian. In

1946 the Pulkovo 1932 system was united with a basic Siberian

network and the new datum was designated the 1942 Pulkovo Sys-

tem of Survey Coordinates (Pulkovo Datum 1942). Additional

ties across the Middle East connected the European with the

Indian Datum.

The Indian Datum has been accepted as the preferred

datum for India and several adjacent countries in Southeast

Asia. It is computed on the Everest Ellipsoid with its origin

at Kalianpur in Central India. Derived in 1830, the Everest

Ellipsoid is the oldest of the ellipsoids in use and is much

too small from a global point of view. As a result, the datum

cannot be extended too far from the origin because very large

geoid separations occur. For this reason and the fact that

the ties between local surveys in Southeast Asia are typically

weak, the Indian Datum is probably the least satisfactory of

the preferred datums.

The Tokyo Datum is the fourth of the initially se-

lected preferred datums. It is defined in terms of the Bessel

Ellipsoid and oriented by means of a single astronomic station.

With survey ties through Korea, the Tokyo Datum is connected

with the Manchurian Datum. Unfortunately, Tokyo is situated
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on a steep geoid slope and the single-station orientation has

resulted in large systematic geoi d separations as the system

is extended from its initial point.

For military distance and direction problems limited

to continental areas (or smaller), the preferred datums are

satisfactory. However, while they are improvements over the

limited national datums, they do not provide the precise geo-

detic information required for intercontinental ballistic mis-

siles.

As an example, the European and North American Datums

have been connected by electronic surveying techniques (the

North Atlantic HIRAN tie), but the required level of precision

is still not attained. For each of these datums, the ellip-

soid chosen is an adequate fit in the area of the origin, but

neither ellipsoid provides a good fit for the entire earth.

Also, the process of connecting various datums by means of

intervening datums or survey ties allows errors to accumulate

which do not always provide agreement with newly observed data.

The surveys joining India to the European and the Tokyo Datums

present similar problems. Further discussion of this problem

is deferred to Unit Two (World Geodetic Systems).

Vertical datums - Just as horizontal surveys are re-

ferred to specific original conditions (datums), vertical sur-

veys are also related to an initial quantity or datum. It is

customary to refer elevations to the geoid (rather than the

ellipsoid) because the instruments used either for differen-

tial or trigonometric leveling (see Section 1.2.2, Vertical

Control) are adjusted with the vertical axis coincident with

the local vertical. As with horizontal datums, there are many

discrepancies among vertical datums. However, the root mean
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square (RMS) difference between leveling nets based on differ-

ent mean sea level datums can be as large as two meters. Ele-

vations in some areas are related to surfaces other than the

geoid; errors are larger in such areas.

prolemthn ine Asiapeand afria. tetensve eveltigl wokdas

proles tainh Europeand Afra tEensre ervertical doka

been done in Europe and practically all of it has been referred

to the same mean sea level surface. However, in Asia and Africa

the situation has been different. There is very little relia-

ble, recent, vertical data available for much of the area of

these continents. In places there is precise leveling infor-

mation available based on mean sea level. In other areas the

zero elevation is an assumed elevation which sometimes has no

connection to any sea level surface. China is an extreme exam-

ple of this situation, since nearly all of the provinces have

an independent zero reference.

The mean sea level surface for the United States was

determined using 21 tidal stations in this country and five in

Canada. This vertical datum has been extended over most of

the continent by first-order differential leveling.

1.2.6 Cartographic Applications

The only way to model the relative size, shape, and

orientation of features on the surface of the earth - - with

complete accuracy, free of any distortion -- is by the use of

a globe. For obvious reasons of convenience and portability,

it is necessary to depict either the whole earth or specific

portions on a flat surface. In this process of map construc-

tion, distortions arise inevitably (technically expressed, an

ellipsoid is not developable to a plane). The study of these
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distortions, and the choice of mapping systems to minimize

them, is the subject of map projections.

The position of a point in a planar map is described

in terms of rectangular coordinates, as shown in Fig. 1.2-34.

Traditionally, the Y-coordinate is called the northing; the

X-coordinate, the easting. The location of a point on the

ellipsoid (representing the surface of the earth) is given by

the geodetic latitude and longitude (Fig. 1.2-34). A particu-

lar projection is defined by the pair of equations

y (northing) R-47478

x(easting)

MAP ORIGIN

Figure 1.2-34 Map Projection Coordinates

X = f(¢,X) (1.2-10)

Y = g(OA) (1.2-11)

*The reader is cautioned that many textbooks on cartography

and map projections reverse these meanings of X and Y.
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where

0 is the geodetic latitude of a point on the

ellipsoid

A is the geodetic longitude of a point on the

ellipsoid (the same as the geocentric longitude)

X,Y are the rectangular coordinates of the cor-

responding point on the map

The simplest possible map projection corresponds to

the equations of transformation

Y = ko (1.2-12)

X = kX (1.2-13)

in which the latitude and longitude are used directly as rec-

tangular coordinates. While this projection, known by its

French name, plate carrie, has the advantage of simplicity

(and is sometimes used for computer-generated maps), it has

three major disadvantages:

* It does not represent distances between
points correctly (it is not equidistant)

0 It does not represent shapes and angles
correctly (it is not conformal)

4 It does not represent areas correctly
(it is not equivalent).

These three forms of distortion are illustrated in Fig. 1.2-35.
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If areas A and B are equal on the globe, are the areas A' and B' equal on the map?

c) EQUIVALENCE

Figure 1.2-35 Map Distortions
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Many important map projections are designed to reduce

one of the sources of distortion to zero. These projections

can be categorized as

* Equidistant

* Conformal

* Equivalent.

These classifications will be used to organize the map projec-

tions to be discussed in this section. For applications in

geodesy and navigation, as well as for most other military

purposes, conformal maps are most widely used, with equidis-

tant maps also of significance. Equivalent maps are most

widely used in geography, and for the depiction of various

kinds of statistical and economic data.

Many (but not -all) map projections can also be de-

fined geometrically, in terms of an actual perspective projec-

tion onto a plane, cr onto a cone or cylinder (either of which

can then be unrolled, or developed, to form a planar map).

Projections are then classified according to

0 The type of surface projected upon -

plane, cylinder, or cone (see Fig.
1.2-36)

* The location of the center of perspec-
tive (see Fig. 1.2-36).

Methods of geometric map construction, based on the character-

ization of maps according to geometric perspective properties,

were formerly of considerable importance when mapping was done

entirely by hand. Map reconstruction is now carried out by

computer implementation of equations of the form of Eqs. (1.2-10)

and (1.2-11), with the output used to control automatic plotting

1-88



--- , LINE Of ~
CO NlTACTLI 

E O
---I---4 CONTACT

PLANE CONE CYLINDER

a) PROJECTION SURFACES

A -47510

'"

b) DIFRN ETRSO ESETV

1-8



equipment. As a consequence, the geometric interpretation of

map projections is of significance primarily for descriptive

purposes.

An obvious way to summarize the general nature of any

particular map projection is to plot the network of lines (or

curves) corresponding to equally spaced meridians of longitude

and parallels of latitude. This network is called a graticule.

For the plate carrie, for example, the graticule is a network

of squares (Fig. 1.2-37).

GRID R-47652

NORTH

NP

L+X

A

MERIDIAN

PARALLEL

IGRID
EAST

Figure 1.2-37 Example of Graticule
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Conformal Projections - Conformal projections are the

most widely used maps in navigation and geodesy, because they

represent shapes and angles correctly (review Fig. 1.2-35).

Three kinds of conformal projections are studied -- those

based on perspective projection onto a

" Cylinder (Mercator, Transverse Mercator,

and Universal Transverse Mercator)

" Cone (Lambert Conical)

* Plane (Polar Stereographic).

Mercator Projection - The Mercator projection, cer-

tainly the best known of all maps, has been widely used for

navigation (and other purposes as well) for over 400 years.

It may be remembered as the result of two distinct stages:

" Projecting the ellipsoid onto a cylinder
(Fig. 1.2-38)

" Stretching the resulting map (in the
North-South direction) by an amount that
increases with increasing latitude, in
order to achieve conformality.

The Mercator projection is defined formally by the equations

~ l-e sin *12(.214
Y k In tan (450 + ) L1+e sin (1.2-14)

X kA (1.2-15)

where

X and Y are the rectangular coordinates
(northing and easting) of the map

o is the geodetic latitude

1-91

-



3 ,Qmonaaosao 6R--49741

a) GLOBE PROJECTED ON CYLINDER

00 A--49742

-t ~800

V 00j; 40

.* 0

00

-. 400

- -t I - 1... - 1 - -700

b) STRETCHING TO ACHIEVE CONFORMALITY

Figure 1 .2-38 Mercator Projection
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X is the geodetic longitude

e is the eccentricity of the ellipsoid

in indicates the natural logarithm

The eccentricity of the ellipsoid, e, is related to the flat-

tening, f, by the formula

e 2 = l-(1-f)2 = f(2-f) (1.2-16)

and has the approximate value

e = 0.082 (1.2-17)

The bracketed quantity in Eq. (1.2-14) can be expressed, to a

good degree of approximation, as

e
1i-e sin0 2 l -e 2 sin 4(1.2-18)

11+e sin 41

and ranges from 1.0 at the equator to about 0.993 at high lati-

tudes. It represents the effect of the flattening of the el-

lipsoid at the poles, and -- in large-scale maps -- displaces

the position of points of high latitude by a visible amount

(of the order of a few millimeters) from their position based

on a sphere (e = 0). On the other hand, variations in the

flattening between one ellipsoid and another (review Section

1.2.1) are not sufficient to have a visible effect.

The most important property of the Mercator projec-

tion, from the point of view of navigation, is that a straight

line connecting two points on a Mercator chart (Fig. 1.2-39)

corresponds to a rhumb line or loxodrome on the ellipsoid.
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Figure 1.2-39 Rhumb Line on Mercator Projection

This is a curve that crosses all meridians at a constant angle,

and is thus the ground track of a vehicle that maintains a

constant compass heading. While such a track is, in general,

not the shortest path between the two points, it is often pre-

ferred because of the convenience of steering a constant head-

ing. It is assumed, of course, that the compass heading re-

ferred to is a true heading, as determined by inertial or

electronic techniques, or a magnetic heading properly corr-

ected for deviation and variation.

Particularly on a global map, it is quite obvious

that the Mercator projection is neither equidistant nor equiv-

alent, since there is a scale expansion with increasing lati-

tude, as shown in Fig. 1.2-40. If the latitude range is lim-

ited, though, the distortion is small, and a Mercator projec-

tion can be used as a general-purpose map for a region that

extends, for example, from the equator to 15 deg North latitude.

Transverse Mercator Projection - Another application

of the Mercator principle is based on a projection from the
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Figure 1.2-40 Scale Expansion in the Mercator Projection

ellipsoid to a horizontal (transverse) cylinder that is tangent

along a meridian (Fig. 1.2-41). This projection is useful for

maps of regions that are limited in the east-west direction,

but of great extent north to south. An example would be a map

of South America, or of one of the U.S. states that extends

mostly north to south (Maine, Indiana, or Nevada, for example).

The equations describing the transverse Mercator projection

are quite complicated, but if the earth is approximated by a

sphere, then the mapping simplifies to the following form:

Y =1 k In l+cos 0 cos A (1.2-19)
2 1-cos 0 Cos X

X = k arctan (-cot 0 sin X) (1.2-20)
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Note: For the Universal Transverse Mercator (UTM), the radius
of the cylinder is slightly less than that of the globe.

Figure 1.2-41 The Transverse Mercator Projection

where

X and Y are the rectangular coordinates of
the map

is the geodetic latitude

A is the geodetic longitude measured from the
central meridian (meridian of tangency)

k is a scale constant

The graticule of the transverse Mercator projection does not

consist of straight lines (although on maps of reasonably small

regions the curvature of the latitude and longitude lines is

not very great), nor does the map have the rhumb line property

of the ordinary Mercator projection.
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Universal Transverse Mercator - A slight modification

of the transverse Mercator projection is of great importance

in world mapping, particularly for military applications. The

Universal Transverse Mercator (UTM) projection is based on a

transverse cylinder of radius slightly less than that of the

earth, so that the cylinder cuts the sphere (secant) rather

than being tangent to it. The world is divided into 60 zones,

each covering 6 deg of longitude. By international agreement,

the zones are numbered consecutively toward the east, with

Zone 1 lying between 180 deg W and 174 deg W. In each zone,

the secant cylinder is symmetric with respect to a central

meridian, and the map extends 30 on either side. The latitude

coverage is from 80 deg S to 84 deg N.

The fact that the transverse cylinder is a secant,

rather than tangent, surface results in a more even spread of

scale distortions across the entire zone. The central meridian

has a scale factor of 0.9996, rather than 1.0 (see Fig. 1.2-40),

and the scale distortion is limited to one part in 2500 thrrough-

out the zone.

Another feature of the UTM system is a plane rectan-

gular metric grid superimposed on each zone, with the central

meridian given the value 5C0,000 meters (to avoid negative

values). For the same reason, the equator is labelled zero

for the northern hemisphere, but is offset by 10,0u0,000 me-

ters for the southern hemisphere. Grid coordinates (in meters)

are often used in place of latitude and longitude.

Lambert Conformal Conic Projection - The Lambert Con-

formal Conic Projection is the most widely used of the maps

based on projection onto a cone. The cone is oriented to be a

secant to the ellipsoid, cutting the earth's surface along two

parallels of latitude', called the standard parallels. Map
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scale is exact along the standard parallels, small between

them, and large beyond them (Fig. 1.2-42). For the United

States, the standard parallels are generally taken to be 33 deg N

and 45 deg N. The meridians on a Lambert projection are straight

lines, converging toward a point beyond the limits of the map;

the parallels of latitude are concentric circles.

P - 49 i4

SCALE TOO LARGE'9 ' I SCALE EXACT

49LIMIT OF PROJECTION r-SCALE A F 1LTOO SMALL
o STANDAnD PARALLEL 39

39
° "

, : q • ," .SCALE EXACT

,STANDARD PARALLEL. 33' - ~ ,SAL XC
33 LIMIT (IF PROJECTION

2,0 S, ALE 2;'A TOO LARGE

25,

Figure 1.2-42 The Lambert Conformal Conic Projection

The Lambert conformal conic projection is frequently

used for state and country maps, aeronautical charts, and radio

navigation. Even over an area as large as the United States,

the Lambert projection is nearly equidistant and equivalent.

Polar Stereographic Projection - The polar stereograph-

ic projection is an example of a map based on projection onto

a plane (Fig. 1.2-43). Its graticule consists of meridians

(straight lines) radiating outward from the pole, with the

parallels of latitude appearing as concentric circles. The

projection is used for navigation in the polar regions (within

about 20 deg of the pole) as well as for general representation

of those regions, since all forms of distortion are small as

long as the map does not extend too far from the pole. For
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Figure 1.2-43 Polar Stereographic Projection

simplicity, equations for the polar stereographic projection

are given only for the spherical case:

p = 2K tan (450 - q) (1.2-21)P2

6 = X (1.2-22)

Y = p cos 8 (1.2-23)

X = p sin e (1.2-24)

where

p, e are polar coordinates on the map

X, Y are rectangular coordinates on the map

4 is geodetic latitude

A is geodetic longitude

K is a scale factor relating distance on the
map to distance on the earth's surface
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Equidistant Projections - Equidistant projections are

used in situations where accurate representation of distances

(rather than shapes, angles, or areas) is the major criterion.

An example of this category is the azimuthal equidistant proj-

ection, often used for determining bearing and distance from a

specific fixed point, the origin, to other points on the earth's

surface. Two applications are global navigation and radio

propagation studies.

The azimuthal equidistant projection is not a projec-

tion in the geometric sense, but is related to a perspective

projection called the gnomonic projection (Fig. 1.2-44a), by an

adjustment of the distance scale to achieve the equidistant

property (Fig. 1.2-44b).

Equivalent Projections - The variety of projections

devised to satisfy the criterion of equivalence (equal area)

is very great, and many of these -- on a global scale -- ob-

tain equivalence at the expense of considerable distortion in

shape and orientation, as shown by the two examples in Fig.

1.2-45. The simplest of the equivalent projections is the

Lambert equivalent cylindrical projection, defined (for the

spherical case) by the equations

Y = K sin *(1.2-25)

X=K X (1.2-26)

This, like the Mercator projection, is derived from perspective

projection onto the cylinder by an alteratio n of the scale in

the north-south direction. For the Mercator projection, the

*Such projections do not reproduce all distances correctly,
but only those from one specific point (or, in some cases,
from each of two points).
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and P on the earth.
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Figure 1.2-44 Gnomonic and Azimuthal Equidistant Projections
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Figure 1.2-45 Examples of Equivalent Projections
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scale is expanded at high latitudes; since the process of pro-

jection onto the cylinder extends the east-west scale (because

the meridians appear to remain at a constant distance apart,

rather than converging), the north-south expansion maintains

shapes (although areas are distorted). To maintain correct

representation of areas, the Lambert equivalent cylindrical

projection shrinks the north-south scale in proportion to the

expansion of the east-west scale (Fig. 1.2-46). In the vicin-

ity of the equator, this projection is very nearly conformal

and equidistant, but distortion is very great at high latitudes.
X R--47g16
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a) PROJECTION ON THE CYLINDER
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b) SCALE ADJUSTMENT
Figure 1.2-46 Lambert Equivalent Cylindrical Projection
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1.2.7 Techniques

Two particular techniques of importance in geometric

geodesy are presented in this section. These are:

0 Inertial Survey Systems (Section 1.2.7.1)

0 Radio Interferometry (Section 1.2.7.2).

1.2.7.1 Inertial Survey Systems

Inertial Navigation Systems (INS), to be discussed in

more detail in Unit Two, determine a vehicle's velocity and

position by integrating measurements of the accelerations ex-

perienced by the vehicle.

Inertial systems enjoy widespread use in many weapon

systems where high accuracy autonomous navigation or guidance

is required. Because of their precision and accuracy, iner-

tial systems are also used as survey tools. Typical inertial

surveys involve position determination over a line which can

extend fifty kilometers or more. Each such survey line or

traverse *is usually completed in several hours - - before in-

strument errors in the inertial system build up and require

the system to be recalibrated. Constant-heading traverses are

usually preferred because inertial system calibration factors

often deteriorate with azimuth changes. A typical traverse is

illustrated in Fig. 1.2-47.

Note that in Fig. 1.2-47, frequent stops of the survey

vehicle are indicated. The purpose of these stops is to compare

*The reader may wish to review the concept of traverse in
Section 1.2.2.
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Figure 1.2-47 Inertial Survey Traverse

the inertial system's velocity output to the known (zero) velo-

city of the vehicle. Any difference is used to trim the iner-

tial system calibration, thus holding the effects of inertial

system errors to a very low level. The process of adjusting

the inertial system to indicate zero velocity during a vehicle

stop is termed zero velocity update or ZUPT.

In addition to automotive vehicles, inertial surveys

are often conducted from helicopters, particularly in moun-

tainous or remote areas such as the Arctic. Advantages of

helicopter surveys include greater distances covered in the

time between ZUPTs and a capability to cover impassable ter-

rain. Disadvantages include the problem of finding landing

sites every few minutes, the difficulty of maintaining con-
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stant heading, and aircraft upkeep expense. Nonetheless,

helicopter-borne inertial surveys provide sufficient accuracy

-and productivity that several private companies use them in

the course of their Alaskan survey operations.

In addition to providing geodetic position, inertial

survey systems can also measure the gravity disturbance vector.

The gravity disturbance field is ordinarily an inertial system

error source. Unmodeled gravity accelerations are integrated

in the same way as vehicle accelerations. As a result, posi-

tion and velocity errors occur because the gravity accelera-

tions are independent of the vehicle's motion. For survey

operations the ZUPT measurements can be used to estimate the

gravity disturbance field as well as reduce the effective level

of the inertial system instrument errors. These calculations

are usually performed after a traverse and typically involve

the use of sophisticated mathematical models for the error

propagation dynamics of the inertial system. Post-mission

data processing is usually accomplished with algorithms that

take advantage of the different behavior of gravity and the

inertial system errors over the length of the traverse.

Because inertial system errors grow with time, the

accuracy of an inertial survey deteriorates from the time of

initial point calibration to the end of the traverse. If a

recalibration at the final point of the traverse is used in

combination with post-mission processing, the largest errors

occur near the survey midpoint. Such a case is illustrated in

Fig. 1.2-48 for a simulated survey 64 km in length with ZUPTs

*The gravity disturbance (discussed in Chapter Three) is the
difference between the true (measured) value of gravity at a
point, and the (approximate) value calculated from a gravity
model.

**Inertial system error dynamics is discussed in Unit Two.
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Figure 1.2-48 Survey Error vs Distance Along Traverse

every three mi. Precise position and vertical deflection

calibration of the inertial system is assumed to be performed

at the terminal points of the traverse. The effect of the

ZUPT measurements is readily apparent in the position error

profile. Note the steep rise in position error from the start

of the survey until the first ZUPT. If it were not for the

ZUPT measurements, survey error would continue to grow rapidly

until, within a few kilometers of the starting point, the sys-

tem output became unusable.

Current inertial survey system hardware and software

can achieve accuracies of about 0.5 m for lateral position and

30 - 40 cm in height over traverse distances of about 75 kin.

Gravity and deflection of the vertical determinations can be

accurate to 2 mgal and 1.5 sec, respectively. Users of heli-

copter-based systems, like the Geodetic Survey of Canada, are

achieving comparable horizontal position accuracies and slight-
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ly less accuracy vertically (because of rapid vertical excur-

sions of the helicopter). The mission distances by helicopter

are appreciably greater. Typically, they range from 150 to

200 km.

Inertial survey systems in wide use today are vari-

ants of the Litton LN-15 aircraft inertial navigation system.

Other inertial survey systems are marketed by Ferranti (Scot-

land) and Honeywell. More modern inertial components, par-

ticularly improved gyros, could improve performance appreci-

ably, particularly by permitting the time interval between

ZUPTs to be increased. The Honeywell system may represent a

step in this direction insofar as it incorporates a more ad-

vanced gyro and inertial platform technology (electrostatical-

ly suspended gyros). It is clear that the future trend in

inertial surveying is toward the incorporation of high quality

inertial components and software into systems capable of higher

accuracy, increased ZUPT intervals, and longer traverse times.

1.2.7.2 Radio Interferometry

Introduction - Interferometry is a distance measure-

ment technique which takes advantage of the wave-like nature

of radiation to achieve very high accuracies. In particular,

signals which propagate over different, but similar, paths can

be made to nearly cancel (or interfere with) each other. In-

terferometric measurement systems are designed so that the

residual signal, after cancellation, provides information

about the propagation-path difference. Because very small

propagation distance differences can be measured accurately,

interferometry is of particular interest to the geodesist as a

precision distance measuring tool.
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Interferometric methods were first applied to visible

light and used to determine differences in optical pathlengths
0 *

of the order of hundreds of Angstroms. In early optical sys-

tems the measurement was a series of light and dark areas on a

screen (fringes). The fringes are projections of the inter-

ference pattern which results when two light beams originating

from the same source, but traversing slightly different opti-

cal paths, are superposed. The distance between fringes is

proportional to the wavelength of the light. Highly accurate

relative velocity measurements can be made by counting fringe

rates (i.e., number of interference maxima or minima passing

an observation point in unit time). This technique allowed

the velocity of light to be measured with sufficient precision

in the classic Michaelson-Morley experiment to establish that

the speed of light is constant, regardless of the speed of the

source or observer.

Radio interferometry, like its optical counterpart,

measures the propagation pathlength differences of two radio

signals from the same source, as illustrated schematically in

Fig. 1.2-49.

The extra time, At, that the signal takes to reach

receiver No. 1 defines the additional path length cAt, where c

is the speed of light. In terms of the baseline distance be-

tween the two receivers, b, and the look-angles 01 and 02' the

time delay is given by

cos 01+02

at = b 2 (1.2-27)c
cos 2

0 i0
*Angstrom Unit = 10 m.
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Comparison of the two received signals allows the delay time,

at, to be ascertained. This is done by time shifting one sig-

nal with respect to the other and observing when the two sig-

nals most closely match or correlate. The delay time informa-

tion can be used to determine the length of b when the antenna

pointing angles, p, and A2 , are known. Note that At is a dif-

ferential measurement; neither the distance from the receiver

to the radio source nor the propagation characteristics over

the equal portions of the paths need to be known. If the

source is far away compared to the baseline length, a81 is es-

sentially equal to P2 and Eq. (1.2-27) simplifies to

At = b Cos P,(1.2-28)c

This approximation is particularly appropriate when

stellar objects are used as radio sources. In such cases,

when the value of b is known, Eq. 1.2-28 can be used to deter-

mine the celestial position of a radio source to much higher

accuracy than antenna resolvers would allow. Artificial satel-

lites can also be used as radio sources, and several schemes

have been proposed using signals from satellites to determine

geodetic distances among receiving stations in a ground network.

Accuracy is expected to be of the order of a few cm.

Mt
Practical Considerations - Of course Fig. 1.2-49

and Eq. 1.2-27 are quite simplified descriptions. Operational

radio interferometry is conducted with advanced radio telescope

equipment and typically involves the support of large univer-

sity communities. Since the baseline is located on the earth,

it continually changes position with respect to an extrater-

restrial radio source. In addition to accounting for the radio

(tThis section contains material at a more advanced level

than the rest of the text.
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Figure 1.2-49 Simplified Radio Interferometer
Measurement Geometry

source's position in the sky (both right ascension and de-

clination, rather than a single look angle such as Ai ) , cor-

rections must be made for anomalous time delays caused by

atmospheric differences along the two propagation paths.

Additional corrections for instrumentation-caused propagation

delay differences are required as well. Finally, there is an

ambiguity in the correct amount of phase delay which brings

the output signals from the two receivers into coincidence.

The ambiguity is readily apparent when a single frequency

transmission is considered. If the output of the first re-

ceiver is

S1 (t) = cos 2nft (1.2-29)

then the output of receiver two will be
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S2(t) = cos 2nf(t+At) (1.2-30)

where f is the frequency and At is the propagation delay illu-

strated in Fig. 1.2-49.

If the received signal S1 is shifted by an amount T

until it matches or correlates with S29 i.e.

S2 = SI(t+T) = cos 2nf(t+T) (1.2-31)

an infinite number of solutions for T are possible, namely

At = T ± n n = 0,1,2, ... (1.2-32)

Often, when the baseline is small, the phase ambiguity number,

n, can be determined by allowable limits on the range of At.

For example, suppose it is known that the differen-

tial propagation length, cAt, is between 20 and 30 cm, corre-

sponding to a propagation delay time difference in the range

0.67 < A t < 1.0 nsec. Let the frequency be 5 GHz, (5x10

Hz) and suppose data analysis shows the smallest value of T

which can correlate the two receiver outputs to be 0.23 nsec.

Using Eq. 1.2-32,

At =-0.23 + 0.2n nsec (1.2-33)

Since only one value of n leads to a result that falls within

the allowable range of At, n is three and the actual differen-

tial propagation length is 24.9 cm.

*c = 30 cm/nsec (1 nsec = 109 sec).
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However, many radio interferometer observations do

not permit such simple resolution of the phase ambiguity.

Often, too, the change in n over the time interval of the ob-

servations is not easy to ascertain. The value of n may be

different for observations of different sources or even for

observations of an individual source made at different times

(because of variations in baseline orientation, the atmosphere,

or instrumentation delay). A variety of techniques are used

to surmount this difficulty, one being to make observations at

several frequencies. Advanced signal processing techniques

are used to take advantage of the fact that each measurement

spans a finite rather than infinitesimal frequency bandwidth.

This approach is referred to as group delay measurement.

Systems - Two types of interferometer systems are of

particular interest for application to geodetic distance de-

termination. One, often referred to as conventional, involves

an electrical connection between the separate antennas. The

interferometric phase delay is measured in real time. In the

other type, the so-called very-long-baseline interferometer,

(VLBI), there is no real-time connection between the antennas.

The received signals are tape-recorded simultaneou:sly, but

independently, at the two sites and the recordings are later

cross-correlated to determine the interferometric observables.

The most important features of both types of interferometer

systems are described below.

Figure 1.2-50 shows, in simplified form, a typical

conventional interferometer with two antenna-receiver systems.

At each antenna the radio-frequency (RF) signal received from

the source being observed is converted to a lower intermediate

frequency (IF) by mixing with a local-oscillator (LO) signal.

The LO signals are supplied to the mixers at both antennas via

transmission lines from the centrally located oscillator. The
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Figure 1.2-51 Very-Long-Baseline Interferometer

IF signals are carried by similar lines back to the central

station where the interferometric phase, equal to the dif-

ference between the RF signal phases, is determined by cross-

correlation of the two IF signals. Ideally, the electrical
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path lengths of the transmission lines from the central os-

cillator to the two antennas' mixers, and the phase delays of

the two sets of receiving electronics, are equal; any differ-

ences not accounted for will introduce errors in the observed

interferometric phase. In current practice, these phase er-

rors can be reduced to the level of one deg at a frequency of

5 GHz, or the equivalent of 0.2 mm of path-length error for a

5-km baseline interferometer.

In the VLBI, the LO signal used for the RF to IF con-

version at each antenna is derived from an independent fre--

quency standard (see Fig. 1.2-51). At each site the IF signal

is tape recorded with a reference time base derived from the

same standard. Tapes recorded simultaneously at the two an--

tenna sites are later replayed at a processing station, where

the reproduced signals are cross-correlated to determine the

interferometric phase and related observables.

The advantage of substituting independent frequenc.y

standards and tape recorders for real-time signal transmission

links is an economic one: once the need for a real-time con-

nection between the ends of the baseline is eliminated, base-

line lengths of thousands of kilometers become practical. Ai

present, the main disadvantages of VLB1 are that: (a) the IF

bandwidth limitation set by the tape recorders may be more

stringent than the corresponding limitation of a real-time

transmission medium, and (b) very high stabilities are de-

manded of the frequency standards.

Accuracy - Currently operational radio interferointt-

tic systems can measure the angular position of stellar radio

sources to an accuracy of 0.05 sec. Relative positions of

sources with small angular spacings can be determined to 10

se. Distance measurement accuracy for short baselines (9e,-
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eral kilometers) has been demonstrated to be better than one

centimeter (by comparison with other measurement techniques).

Similar comparisons for very long baselines (>5000 km) show

current state-of-the-art accuracies of the order of one meter

or better. The internal self-consistancy and repeatability of

the VLBI measurements is about 10 cm.

Applications - In addition to obvious uses of inter-

ferometry for the determination of geodetic distances, other

possible applications include measurement of the earth's crustal

motion and monitoring of earthquake fault displacements. Radio

interferometry has also been used to determine changes in uni-

versal time (UTO), measure polar motion and precession, and

detect solid earth tides. Scientific applications range from

tests of general relativity to the calibration of other precise

position measuring systems such as those using radio navigation

satellites.
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CHAPTER THREE

PHYSICAL GEODESY

Physical geodesy is concerned with the gravity field

of the earth. Certain basic concepts -- vector and scalar

fields, potential, gravity, and gravitation -- are fundamental

to the material covered in this chapter. While familiarity

with these concepts is assumed (from previous course work in

physics and mechanics), a brief review is provided for the

reader's convenience in Appendix A.

1.3.1 The Geoid

If the earth were entirely fluid, its physical sur-

face would be a surface of constant gravity potential. The

water-covered four-fi~fths of the planet should, therefore,

obey this rule, and the surface agreeing with mean sea level

(assuming the effects of tides, wind, currents, etc. to be

averaged out) is a surface of constant potential called the

geoid. For land areas, the geoid is defined in a less direct

manner, by imagining that the sea level surface is extended

beneath the land, in imaginary canals or conduits, with the

water permitted to rise to conform to a surface of constant

potential (Fig. 1.3-1). This basic definition implies that

some of the mass of the earth, in continental areas, lies above

the geoid. For theoretical work in geodesy, this is sometimes

undesirable. Thus, other surfaces, related to the geoid, are

defined in such a way that the surface encloses the entire

mass of the earth.

The geoid is an irregular surface for which no conven-

ient mathematical expression exists, although it may be approxi-

mated in various ways. It is defined by its relation to a
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Figure 1.3-1 Concept of the Geoid

particular ellipsoid, as shown in Fig. 1.3-2, in terms of the

geoid height, or undulation, at every point. One way of de-

scribing the geoid is by the use of a map, like Fig. 1.3-3,

showing contours of equal geoid height. Another important

relation between the geoid and the ellipsoid, also shown in

Fig. 1.3-2, is the deflection of the vertical. This is the

angle between the normal to the geoid and the normal to the

ellipsoid.
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1.3.2 Gravity

Gravity, at any point on the earth's surface, is the

resultant of two accelerations acting in opposite directions:

* Gravitation, the integrated effect of
the attraction of all of the mass making
up the earth

Centrifugal, the outward-tending accel-
eration caused by rotation of the earth.

As an acceleration, gravity is measured in the basic units of

meters per second per second (m/sec2 ) and has the approximate

surface value of 9.8 m/sec2  Other units frequently used in

gravity studies are summarized in Table 1.3-1.

TABLE 1.3-1

GRAVITY UNITS

UNIT ABBREVIATION CONVERSION

gal gal I gal = 10 - 2 m/sec2

milligal mgal 1 mgal = 10- 3 gal = 10 - 5 m/sec 2

microgal pgal 1 pgal = 10- 6 gal = 10 -8 m/sec 2

gravity unit gu 1 gu = 10 - 6 m/sec = 0.1 mgal

Since the value of gravity varies considerably from

point to point on the earth's surface, it is of vital import-

ance in many military applications to be able to predict, or

model, the value of gravity to be expected at any given loca-

tion. As a first approximation, a formula may be used LO pre-

dict sea-level gravity which is based on the assumption that

the ellipsoid (or other spheroid) approximating the earth is,
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itself, a surface of constant potential. Such a formula,

called a normal gravity formula, is associated with a particu-
lar ellipsoid. Many such formulas have been used at various

times. 4

For example, when the Helmert Ellipsoid (a = 6378200 m;

f = 1/298.2) was widely used in the early part of this century,

the corresponding normal gravity formula was

Y = 978030(1+0.005302 sin 2-0.000007 sin 2) (1.3-1)

where

y is the normal gravity, in mgal

0 is the geo,'itic latitude

A formula adopted in 1917 by the U.S. Coast and Geodetic Sur-

vey was based on modified values for the semi-major axis and

the flattening. It is of the same form, but with slightly

altered coefficients:

Y = 978039(1+0.005294 sin 20-0.0000007 sin 2 20) (1.3-2)

In 1930, an ellipsoid and an associated gravity formula were

adopted for international use, known as the International El-

lipsoid and the International Gravity Formula. The ellipsoid

parameters are.

a = 6378388 m (1.3-3)

f = 1/297.0 (1.3-4)

and the gravity formula

y 978049(1+0.0052884 sin 20-0.0000059 sin 2 24) (1.3-5)
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This was the standard formula until the adoption of the cur-

rent international standard, the Geodetic Reference System

1967 (GRS 67), based on the ellipsoid parameters

a = 6378160 m (1.3-6)

f = 1/298.247 (1.3-7)

The gravity formula for GRS 67 is presented in the following

form:

= 978031.84558 1 + (0.00193166338321) sin 2 ' (1.3-8)
[1-(0.00669460532856) sin

2 *]1/2

for which the following approximations are often used:

y = 978031.85 (1 + 0.005278895 sin 2 + 0.000023462 sin 4)

(1.3-9)

with a maximum error of 0.004 mgal, and

y 978031.8 (1 + 0.0053024 sin20 - 0.0000059 sin 2 2*)

(1.3-10)

which is accurate to within about 0.1 mgal.

It is seen from any of these formulas that the value

of gravity increases by about 0.5% from the equator to the

pole.

In the remainder of this section, three approaches to

the more precise modeling of gravity will be considered.
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Global Gravity Models Global models that predict

gravity at any point on the surface, as well as gravitation at

points in near-earth space, are of paramount importance. Such

models express the scalar potential of gravity as a function

of geocentric spherical coordinates in an earth-fixed coordi-

nate system. From the potential, the gravity vector is ob-

tained by differentiation (using the gradient operator), while

the component of gravity in any particular direction is given

by the directional derivative in that direction. Models for

the potential of gravity (usually called geopotential) are of

the general form

Vr',)+1 2r2 o2, (1.3-li)

W(r,r',A) + V1rw2,r )cos+

where

W is the potential of gravity

V is the potential of gravitation

r,0',A are the geocentric -spherical coordinates
(radius vector, latitude, longitude)

w is the earth's angular velocity of rotation
-5

(about 7.3 x 10 rad/sec)

Depending on whether it is gravity or gravitation being modeled,

the second term on the right side of Eq. (1.3-11) is included

or left out. The geocentric latitude, 0', is written with a

prime to avoid confusion with geodetic latitude, 0 (review

Section 1.2.1). The function V is written in the form of a

spherical harmonic expression, which is an extension of the

concept of a Fourier series (harmonic expansion) to the two-

dimensional surface of a sphere:

V GM I ) Pn(sin 0')[C cos mA + S sin mA]
r n=0 m=0 r LA riM nm

(1.3-12)
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In this formula, V is the potential of gravitation; r, 0', and

A are geocentric spherical coordinates; R is the equatorial

radius of the earth, and r is the distance from the earth's

center. The physical constants G, M, and R are described in

Table 1.3-2. The set of functions P nm(x) are known as associ-

ated Legendre functions, the properties of which are reviewed

in Appendix B. The set of constants Cnm and Snm are the spheri-

cal harmonic coefficients (informally referred to as "the Cs

and Ss") that specify the particular model. Equation (1.3-12)

is thus seen to specify the geopotential as a combination of

individual components of the form

= qr (V + V 2 ) (1.3-13)

with

Vnml (r,',x) = . Pm(sin 0') cos mA (1.3-14a)

and

V ((r,0),,) - Pm(sin 0') sin mA (1.3-14b)

where the index n is the degree and the index m is the order.

Each component is called a spherical harmonic and is the pro-

duct of two parts; for example,

Vnml (r,Y',A) 1 Y (,',A) (1.3-15)

where

Ynml (W',A) Pnm(sin 0') cos mA (1.3-16)
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TABLE 1.3-2
PHYSICAL CONSTANTS IN THE EXPRESSION

FOR THE GEOPOTENTIAL

SYMBOL NAME APPROXIMATE VALUE(SI UNITS)

G Universal constant of 6.67x10 "I I m3/kg sec 2

gravitation

M Mass of the earth 5.97xi024 kg

GM Geocentric gravitational 3.986x1014 m3/sec 2

constant

R Earth's equatorial radius 6.38x106 m

W Earth's angular rotation rate 7.292x10 -5 rad/sec

called a surface spherical harmonic, describes the pattern of

variation over the surface of the sphere, and the (,) term
indicates how this particular contribution to the geopotential

decreases as r increases. The surface spherical harmonics are

of three kinds, !s shown in Table 1.3-3 and Fig. 1.3-4.

TABLE 1.3-3

TYPES OF SURFACE SPHERICAL HARMONICS

TYPE INDEX ILLUSTRATION COMMENTSVALUES

Zonal m=0 Fig. 1.3-4A No longitude variation; Pno is

usually written as P (Legendren

polynomial); n zeroes along a
Imeridian

Sectoral m=n Fig. 1.3-4B No zeroes along a meridian; 2n
zeroes around a parallel of
latitude

Tesseral mX0 Fig. 1.3-4C 2m zeroes around a parallel
min of latitude; n-m zeroes along

a meridian
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Figure 1.3-4' Examples of Surface Spherical Harmonics
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The + signs in Fig. 1.3-4 designate areas of the surface in

which the surface spherical harmonic is positive; the - signs,

areas where the function is negative. On the lines separating

such areas, the harmonic function is equal to zero. For exam-

ple, in Fig. 1.3-4a, a point moving along the central meridian

from north (top) to south (bottom) would traverse a positive

region, a zero line, a negative region, a zero line (the equa-

tor), a positive region, a zero line, and a negative region.

As a second example, a point moving frim left to right along

the equator of Fig. 1.3-4b successively traverses regions of

negative, positive, and then ntcgative values.

In theory, the Cnm and S coefficients could be de-

termined exactly, by mathematical formulas, if either

* The density were known at every point
within the earth

* The gravity were known at every point on
the surface of the earth.

In practice, a limited set of coefficients is determined from

available surface measurements and/or by analyzing the effects

of the earth's gravity field on the orbits of near-earth satel-

lites (which are described at greater length in Chapter Four).

A simpler model of gravity and gravitation ignores

the variation with longitude, retaining only terms with m=O in

Eq. (1.3-12). Then the potential becomes

F (,)n]

V(r,0') 2 L - (- Pn(sin 0') (1.3-17)' r n= 2 nr n

where
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jn -Cno

= n Pno (the Legendre polynomial of degree n)

Regional Gravity Models - From a review of Fig. 1.3-4,

it should be evident that harmonic terms with very high values

of n and m are necessary to describe variations'in gravity on

a scale much smaller than continental. The present state of

the art cannot produce spherical harmonic models of high enough

order to describe the fine structure of the gravity field at

the level required, for example, for a missile launch area.

An example of an approach to detailed modeling of gravity with-

in a small region (a few degrees or less) is the point mass

model. This model represents gravity as the sum of two parts:

0 Gravity as predicted by the normal grav-
ity formula (Eq. 1.3-8) or perhaps by an
available *spherical harmonic model

* Local effects as modeled by a number of
hypothetical point masses of arbitrary
mass and location.

The locations and mass values for the point masses are deter-

mined by requiring a best fit to gravity actually measured at

a large number of control points within the region of interest.

Point mass models are discussed at further length in Section

2.3.4 of Unit Two.

Local Gravity Modeling - At any particular point,

the actual measured gravity can differ by a significant amount

(hundreds of mgals) from values computed by gravity formulas.

These differences are referred to as gravity anomalies or

gravity disturbances, which may be defined informally as the

difference between actual and computed gravity at a point.

The magnitude and direction of the gravity vector may deviate

significantly (up to a minute of arc, or more) from what is
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computed by finding the difference between the gravity vector

normal to the geoid (the actual direction of the gravity

vector) and the vector normal to the computational surface

(the ellipsoid). This difference in direction is called the

deflection of the vertical (Fig. 1.3-5). It is identified by

its meridian, (north-south) component (), and its prime

vertical (east-west) component (n), measured in seconds of

arc.

NORMALPTO
THE GEOID ." ,

/ GEOID

, , DEFLECTION OF (pol l % )

UNDULATION I

J 
i E L L IP SO ID

(lpowntill -We )

NORMAL TO THE
ELLIPSOID

IM!": auagw t a2  IWI: t| I ity8t O 7 (O)o I, fo)l

lJ I(P) -YE1): grvityumaly W vctor

AnI (P) - 1 0): FiW yafnmly

Figure 1.3-5 Gravity Anomaly for Point on Geoid

Local modeling of the gravity field then consists of a

representation of measured gravity anomalies and deflection of

the vertical values at a number of points, with some provision

for interpolation to permit prediction of values at intermediate
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points of interest. A standard way of doing this has tradi-

tionally been by use of maps on which contours of equal gravity

anomaly, inferred from the measured points, have been drawn.

Similar maps are prepared for the components of the deflection

of the vertical. More recently, digital data bases stored in

computers have been used for this purpose. The gravity anomaly

and deflection of the vertical results, however obtained, are

combined with normal gravity for the point in question to give

the gravity vector at that point. Gravity is computed from the

normal gravity formula for the ellipsoid normal. How accur-

ately this can be done depends primarily on the level of detail

that be included in the gravity anomaly and deflection maps

(or data bases) and is thus strongly influenced by practical

considerations of time, cost, and data availability.

Because these concepts play an important role in dis-

cussions to follow later, it is necessary to give more precise

and formal definitions of gravity anomaly, gravity disturbance,

and deflectioni of the vertical. The gravity anomaly is defined

first. For a point, P, on the geoid (at sea level), Fig. 1.3-5

shows a related point, Q, on the ellipsoid. The vector differ-

ence between the actual gravity at P, and the normal gravity

at Q, is the gravity anomaly vector. The difference in direc-

tion between the two vectors is the deflection of the vertical.

The scalar difference between the magnitude of the actual

gravity at P and the normal gravity at Q is the gravity anomaly.

The definition of gravity anomaly is more complicated

for a point not on the geoid (above the earth). The measured

gravity at P must be reduced to the geoid by the use of formulas

that describe the variation of gravity with height, taking into

account the effect of mass (if any) between the geoid and
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Figure 1.3-6 Gravity Anomaly for Point Above Geoid
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the point P. This is shown in Fig. 1.3-6A. A second approach*

is shown in Fig. 1.3-6B. There is a surface of constant poten-

tial (in a sense, parallel to the geoid) passing through the

point P on which the potential has a value Wp. An ellipsoid is

constructed which requires the gravity potential on the ellip-

soid to be equal to Wp. Then the anomaly and deflection of the

vertical are defined as before in terms of the points P and 0.

The gravity disturbance vector is defined as shown in

Fig. 1.3-7. The two surfaces involved are:

* A surface of constant geopotential pass-
ing through the point P

0 An ellipsoidal surface also passing through
the point P.

I-47487

GEOPOTENTIAL SURFACE
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ELLIPSOIDAL SURFACE
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TIP)
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61 - g (P) - t (P): GRAVITY DISTURBANCE

Figure 1.3-7 Gravity Disturbance Vector

*Although these two approaches may yield different answers in
theory, such differences are generally negligible in practice.
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Although the gravity disturbance may appear to be a simpler concept, the
gravity anomaly traditionally has been more important in practice because

it can be obtained directly: g(P) is either measured on the geoid or reduced

to the geoid; y(Q) is computed from the normal gravity formula for the

ellipsoid.

1.3.3 Gravimetry and Gradiometry

Introduction - The gravity field of the earth may be

represented by a scalar geopotential field, by the gradient of

the geopotential (gravity vector), or by derivatives of higher

order. Second derivatives of the geopotential can also be

expressed as gradients of each component of the gravity vec-

tor. These gradients define the gravity gradient tensor. The

relations are illustrated in Table 1.3-4.

TABLE 1.3-4

DIFFERENT CHARACTERISTICS OF THE EARTH'S GRAVITY FIELD

Gravitational Potential (V)

Gravitational Vector (a) VV

Gradient Tensor (F) = V = V (VV)

V = gradient operator

.8 + k (in rectangular coordinates)
ax B y - az

Note: i, a, and k are unit vectors along the coordinate
axes.

Direct measurements of the geopotential are usually

accomplished by the satellite techniques discussed in the pre-

vious section and in later chapters. Measurements involving

the magnitude of the gravity vector are usually referred to as
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gravimetry. It can be shown that an error-free, continuous

set of such measurements, taken over the entire surface of the

earth, is sufficient (in principle) to determine the earth's

gravity field everywhere on or above the surface.

Gravity Gradients - Gravity gradiometry is the term

used for measurement of one or more elements of the gravity

gradient tensor. Although the entire geopotential field could,

in principle, be specified from worldwide measurements of one

element of the gravity gradient tensor, the local character of

gravity gradients precludes such an approach. Modern gradio-

metry generally involves measurement of all five independent

elements of the gradient tensor.

Although there are nine elements of the gradient tensor,

only five of these are independent. That is, the gravity gradi-

ent field can be completely specified at a spatial point by

five appropriate elements of the gradient tensor. In the fol-

lowing paragraph this fact is.illustrated by the use of rec-

tangular coordinates.

The gravity gradient tensor is symmetric because of

the commutativity of mixed partial derivatives, i.e.

a 2  - X r =r
8xay i-y Ox xy yx

hence three of the nine tensor elements are immediately seen

to be redundant. The remaining redundancy is noted by observ-

ing the sum, S, of the diagonal elements of the gradient tensor

(i.e., the trace)

s = rxx +ryy +r (r. 3-19)
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Rewriting (1.3-11 in terms of second derivatives of the geopo-

tential gives

a 2 a 2V + a2V
2 _ 2 (.-0

ax By 3

which is recognized as Laplace's equation. Since gravity

fields are conservative, Laplace's equation applies everywhere

outside of the surface of the body which generates the field.

Hence S = 0 and only two independent measurements of the dia-

gonal elements of the gradient tensor are required.

Gravity gradient measurements are frequently expressed

in units called E6tv6s (pronounced ,t vos) and symbolized by

the letter E. One Ebtvos represents a gravity change of one

mgal in a span of ten kilometers. Other equivalents are listed

in Table 1.3-5.

TABLE 1.3-5

ALTERNATIVE DEFINITIONS OF THE EOTVOS UNIT (E)

One E6tv6s

= 0.1 mgal/km

= 0.1 pgal/m

= 10 - pgal/cm

= 10 - 9 gal/cm

Note that since one gal equals one cm/sec2 the final

entry in Table 1.3-5 can be expressed as

1.0 E 10-9 gal/cm =10- 9 (cm/sec2 )/cm =10 - 9 sec 2
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Thus, gravity gradients can be expressed in fundamental units

which involve only time.

Gravimeters - Gravimeters fall into two broad cate-

gories. Absolute gravity meters measure the magnitude of the

gravity vector with very great accuracy, typically to a few

microgal or better. Such measurements are used where gravity

values of high precision are required (for example, to deter-

mine a gravity base station value at a key survey location or to

study time-varying properties of the gravity field at geo-
physically interesting sites). Because of their expense, fra-

gility, and time-consuming operatin&, characteristics, absolute

gravity meters are usually not employed for widespread gravity

surveys. Instead, most gravity surveys are conducted with re-

lative measuring- instruments, carefully leveled or stabilized

on a self-leveling platform. Usually, the term gravimeter

refers to this type of device. Such instruments have scale

ranges of plus and minus several hundred mgal with zero cor-

responding to nominal calibrated value of g (for example, 980

gal). The accurate determination of the value of gravity for

zero gravimeter output typically involves calibration at abso-

lute gravity meter measurement sites. Carefully performed gravi-

meter measurements are repeatable to better than 0.1 mgal. Such

accuracies are routinely achieved for modern instruments like

the LaCoste and Romberg Model S and the Bell BGM-2 gravimeter.

Unfortunately, instrument error is not the key source

of inaccuracy in gravimeter surveys. Because the surface of

the earth cannot be defined in analytical terms, gravity data

are more usefully related to the geoid or to an ellipsoidal

reference surface which approximates the geoid as discussed in

Section 1.2.1). The reduction or downward continuation of

data to such a reference surface requires assumptions about

the local field which are rarely satisfied in practice. As a
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result, errors as large as several mgal can be introduced into

reduced gravity data such as gravity anomalies. The investi-

gation of methods for treating gravity data to mitigate the

effect of reduction errors is a current area of active research.

Traditionally, gravimeter measurements have been made

at fixed, land-based sites but the need for ocean data has

motivated development of systems which operate in a dynamic

environment. Because the gravimeter cannot distinguish be-

tween vehicle accelerations and gravity, vehicle motion must

be accounted for and compensated to the greatest possible ex-

tent. Heave motion is typically of sufficiently high frequency

to be filtered away, but the Coriolis acceleration due to the

vehicle's velocity must be compensated (the Ebtvbs correction).

In addition, the gravimeter measurements must be corrected for

any maneuver-related accelerations. Despite the increased

complexity, shipboard gravimetry has enjoyed considerable suc-

cess and sizable portions of the ocean have been mapped to

accuracies approaching one mgal.

Attempts to apply the same moving-base gravimetry

techniques to aircraft have been unsuccessful for several rea-

sons. The vibration and maneuver motion of aircraft typically

involves larger accelerations than seagoing vessels. The prob-

lem of compensating for the kinematic accelerations is compli-

cated by high aircraft velocities -- the gravity signal is no

longer spectrally distinct from the acceleration noise. Higher

aircraft velocities (and velocity errors) result in deteriora-

tion of the accuracy of the E6tv6s correction as well. Final-

ly the gravity signal itself is attenuated at high altitudes.

At 20,000 ft (approximately 6 km), for example, the root

*Note that the same problem occurs in inertial systems -- see

Section 1.2.7.
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mean square value of the vertical gravity disturbance is about

80 percent of the surface root mean square value. These fac-

tors in combination have resulted in aircraft gravimeter sur-

vey errors in excess of 10 mgal, an accuracy level generally con-

sidered to be unacceptable. The need for quick and accurate

mapping of the gravity field over large areas of the earth has

encouraged examination of alternative ways to conduct airborne

or satellite surveys. This has been one motivation for the

development of gravity gradiometers.

Gradiometers - Devices which measure elements of the

gravity gradient tensor, while available since the turn of the

century, are currently not widely used. Although gravity gradi-

ents provide very detailed information about the local gravity

field, the bulkiness, sensitivity, and immobility of the instru-

ments, as well as time-consuming site preparation procedures,

have resulted in relatively little application of gradiometers

for practical field work. More recently, however, the advan-

tages of measuring gravity gradients from a.moving vehicle

have prompted development programs for such instruments.

Moving-base gradiometers presently under development, when

used with an inertial navigation (or survey) system, will be

able to distinguish between gravity and kinematic accelerations.

If development is successful, gradiometers will measure local

variations in the gravity field over large regions and conduct

rapid, accurate gravity field surveys.

Although considerable progress has been made toward

operational moving-base gradiometers, a viable sensor has not

yet emerged from the laboratory. Currently, prototype gradio-

meters are under development by the Charles Stark Draper Labora-

tory and the Bell Aerospace Division of Textron, Inc. The Draper

device measures two cross-gradient elements of the gradient ten-

sor. Three instruments, aligned symmetrically and inclined

1-138



from the vertical by 35 degrees, provide enough linearly inde-

pendent measurements to determine all of the gradient tensor

elements. (Recall that only five elements of the tensor are

required.)

The Bell gradiometer also provides two measurements,

a cross-gradient and the difference between two of the diagonal

axis gradients. Three Bell instruments oriented at right an-

gles are required to measure the five independent elements of

the gravity gradient tensor.

Despite the slow emergence of this technology, labora-

tory instruments have demonstrated noise levels near one E

and have been successfully operated under some simulated mov-

ing vehicle conditions. It is generally believed that, if

successful, moving vehicle gradiometer technology will become

operational during the mid 1980s.

*Such measurements usually involve averaging the noise over a
specified period. Ten seconds is a benchmark often used for
gradiometers.
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CHAPTER FOUR

SATELLITE GEODESY

The subject of satellite geodesy deals with the use

of artificial earth satellites to provide information about

the questions with which the subject of geodesy is concerned:

* The size and shape of the earth

* The relative location of points on the
earth's surface

0 The detailed nature of the earth's gravity
field.

Important geodetic and geophysical information has been obtained

from a very large number of satellites -- beginning with the

first Sputnik, launched on October 4, 1957 -- including a small

number of geodetic satellites, some examples of which are:

* ANNA-IB, launched in 1962 (the acronym
represents Army Navy NASA Air Force)

* The GEOS series (Geodetic Earth Orbiting
Satellite), including GEOS-l (1915),
GEOS-2 (1968), and GEOS-3 (1975)

* LAGEOS (Laser Geodynamic Satellite),
launched in 1976

0 SEASAT (1978).

The material covered in this Section includes:

0 * The two principal approaches to the use
of artificial satellites for geodetic
purposes -- termed geometric and dynamic

*SEASAT's primary mission was as an oceanographic, rather
than geodetic, satellite. However, it has been used for
geodetic purposes.
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* The instrumentation and types of obser-
vational data used for satellite geodesy

* A geodetic application of laser ranging
to the earth's natural satellite, the
moon

* Results obtained from satellite geodesy;
prospects for the future.

1.4.1 Methods of Satellite Geodesy

1.4.1.1 Geometric Satellite Geodesy

The geometric method uses the satellite (or satel-

lites) as a target for surveying, and does not differ in prin-

ciple from techniques for ground surveying. Geometric approaches

are principally concerned with determination of the relative

coordinates of tracking stations. They normally involve in-

tervisible tracking of several passes of a satellite by a net-

work involving known and unknown station locations.

The basic factor tying the network together is the

simultaneous observations of points in space (satellites) from

two or more stations. Figure 1.4-1 illustrates a possible

geometric configuration. A and B are the known stations; C is

the unknown. At least two sets of satellite positions (F 1 and

F2 in Fig. 1.4-1) must be observed simultaneously from all

three stations. To provide better geometry, F 1 and F2 should

be from different satellite passes. The observed directions

to the satellites from the three stations are combined with

the known geodetic coordinates of A and B to obtain the rec-

tangular coordinates of the satellite positions by celestial

triangulation. The satellite positions then become known sta-

tions and with directions from C available, the position of C
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CELESTIAL PHERE
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TWO DIFFERENT ORBITS

A. B - Known sations

C - Unknown
F1 , F2 - Satellite

A 1 . A 2. B1. B2- Apparent positions
of satellite (on Celestial

sphere)

Figure 1.4-1 Simultaneous Observation Method
With Angular Data

is computed. It then becomes part of the network to which A

and B belong. Coordinates obtained by the geometric method

are not geocentric. They depend on the position and precision

of the known stations from which they were computed and, there-

fore, are subject to the same limitations as the coordinates

of points in any geodetic system. In addition, errors in the

measurement process will affect the accuracy of the unknown

station.

If only angular measurements are available (as is

usually the case with optical instruments), then one or more

accurate baselines must be known to provide the scale for the

survey. The lengths of the baselines need to be comparable to
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Figure 1.4-2 Simultaneous Observation with Range Data

the average distance between adjacent stations in the network.

This average distance should approximate the altitude of the

satellite observed.

If only range information is available as when satel-

lites are observed using only radio signal delay information,

then a configuration like that of Fig. 1.4-2 can be used.

There are three known ground stations and one unknown station.

The position of the satellite is fixed at the moment of obser-

vation by the simultaneous ranging information from the known

stations. To insure good geometry, each satellite position

observation should be established on a different pass of the

satellite. The position of the unknown station is then com-

puted from the simultaneously observed distances from it to

the known satellite positions. Although two satellite passes

are an absolute minimum, a large number of passes are usually
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observed to secure the best geometric conditions. A least

squares solution is then applied to the data to produce the

best position for the unknown station. The coordinates of the

station are in terms of the same datum as the known stations

and, therefore, subject to the same limitations as those in-

volved in the simultaneous solution from optical observations.

Geodetic systems can be extended this way by a bootstrap ap-

proach. After enough observations are obtained for position-

ing one unknown point, it then becomes a known station and the

mobile equipment at a former known site moves up to occupy the

next unknown site.

1.4.1.2 Dynamic Satellite Geodesy

The dynamic method is based on the physical laws that

govern satellite motion, *as well as the geometric configura-

tion of satellites and-.tracking stations. In principle, the

variation with time of any observed quantity (angle, range,

range rate, etc.) associated with a satellite and an observing

station can be modeled mathematically in the form

h =h (ait pit Yi.9 6i Ci; t)(.41

where the observable, h, is given as a function of time and a

large number of parameters grouped in the following categories:

0 a.i are parameters defining the location

of the observing station in the coordi-
nate system used to model the motion of
the satellite -- generally the stellar
inertial coordinate frame

* P are parameters associated with the
measuring instrument (bias or offset
quantities, for example)

*Further material on the motion of earth satellites is

included in Unit Four.
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e y are parameters defining the orbit of
the satellite -- for example, the six
classi. 1 or Keplerian elements

* 16. are the geopotential coefficients

defining the earth's gravitational field

0 are other physical parameters to be
determined or improved (for example, the
velocity of light).

On the basis of observational data from many stations, involv-

ing many passes of a large number of satellites, values for

the unknown parameters that lead to the best agreement between

model and data are determined by a variety of computational

techniques.

For best results with the dynamic method, satellites

must be tracked periodically over a relatively long period of

time with many successive observations. The known stations

(tracking stations) should be well positioned on a worldwide

basis and their coordinates periodically corrected with data

derived from the computations. With such a network, unknown

stations can be added and tied into the network after a few

days of observations. It is also important to use satellites

having a variety of orbital configurations for the purpose of

determining the earth~s gravitational field. Especially im-

portant is a wide range of orbital inclinations. Once the

gravity field is known to sufficient accuracy, station posi-

tions can be determined from observations on a single satellite.

There are several variations of the dynamic method,

characterized by the determination of only certain subsets of

the parameters. For example, if only station positions are

desired, the semi-dynamic long arc method may be used. This
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requires a precise determination of the position of each satel-

lite as a function of time. Such position time histories are

often referred to as ephemerides. When the orbit ephemeris is

available, then the data gathered during the observation period

need not be used to compute the path of the satellite. The

satellite track in space is considered to be without error and

is held fixed during the solution for survey system coordi-

nates. Stations positioned using this method are referred to

the coordinate system in which satellite motion is computed,

which is earth-centered to within the degree of accuracy stated

by the source of the orbit determination. Since satellite

orbits cannot actually be determined without error, the as-
sumption is made that if enough passes (30 or more) are seen

by the station in all directions and at all elevation angles,

then the effects of the orbit errors will largely cancel out.

In another important modification of the dynamic me-

thod, called the short-arc method (or sometimes the semi-

dynamic short-arc method), station coordinates and orbital

parameters are solved for, but the coefficients of some pre-

viously determined gravitational model are accepted as known.

The term short-arc stems from the fact that only portions of

satellite arcs are observed -- the arc lengths usually being

less than a quarter of a revolution. These arcs become the

baselines for determining positions of the observers. In a

short-arc solution, points along an arc are computed for the

times of the observations as an intermediate step towards de-

riving the station positions. The values computed for these

points are influenced by the gravitational model, the observa-

tions from the ground stations, and an initial state vector

composed of three position and three velocity coordinates.

The coordinates refer to a point usually chosen near the cen-

ter of the arc. Since the state vectors do not have to be

*That is, the sets of position and velocity coordinates.
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known exactly (they are determined in the course of the solu-

tion), an observer is free to use other satellites besides

those for which precise orbits are available. This allows for

a more economical survey project as the needed observations

can be acquired over a shorter time period.

If appropriate constraints are not placed on the ini-

tial state vcctors, then additional constraints are needed

(involving at least three stations) to define the coordinate

system of the survey. For example, the positions of three

stations can be held fixed, or the position of one station can

be fixed in conjunction with constraints on some orientation

parameters such as station-to-station azimuth and elevation

angles.

If effective constraints are known and are placed on

-the state vectors, then no constraints need be applied to the

coordinates of the stations. At least one station should be

continuously occupied during a survey project, while other

receivers can move from station to station. The purpose of

this scheme is to effect the interrelation of all stations

through connections to the permanent station or stations.

The short-arc method is used to best advantage when

two or more stations observe passes in common. Four well-

distributed stations observing the same pass can yield ad-

justed orbits of high accuracy. A single-station short-arc

reduction, in which the-orbital state vectors are held fixed,

would correspond to the semi-dynamic long-arc method.

*That is, satellite position and velocity time histories are as-
sumed to be known, and are not solved for in the course of de-
fining the station coordinates.
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1.4.2 Observational Data for Satellite Geodesy

Some of the more important systems used to obtain

satellite-related measurements for use in geodesy are now re-

viewed. In general, these systems serve to measure angle,

range, or range-rate information.

Optical tracking consists of photographic observa-

tions of a satellite against a background of stars. Typical

instrumentation consists of special telescopic cameras such as

the BC-4, PC-1000, MOTS, or Baker-Nunn. Large satellites with

no independent source of illumination can be photographed af-

ter dusk or before dawn when sunlight illuminates the vehicle

against a dark sky. Other satellites are equipped with flash-

ing lights whose firing times are carefully controlled. Since

star positions are recorded to a high degree of precision in

star catalogs, the background stars -- once identified -- pro-

vide a framework on the photographic plate or film for a de-

termination of precise directions from camera station to satel-

lite. Analytical photogrammetric methods (refer to Section

1.2.3) are used to derive the direction. Camera observations

are used in both geometric and dynamic methods. In either

case, the timing record is a vital part of the data obtained.

The clock time must be carefully controlled at every station

to achieve accurate results.4

Range tracking is illustrated by the SECOR system

(Sequential Collation of Range), developed by the U.S. Army.

The first SECOR transponder was orbited on ANNA-lB in 1962.

The SECOR system continued in use through 1970. It consists

of four ground stations and an earth orbiting satellite. The

system operates on the principle that an electromagnetic wave

propagating through space undergoes a phase shift proportional

to the distance traveled. A phase modulated signal transmitted
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fr~~m a ground station is received by the satellite-borne tran-

sponder and then returned to the ground. The phase shift ex-

perienced by the signal during the round trip from ground to

satellite and back to ground is measured electronically at the

ground station. From the phase delay a digitized representa-

tion of range is provided. Other examples of range tracking

include radar installations of various kinds, operating in

conjunction with beacons (transponders) on the satellite, or

skin-tracking passive or uncooperative satellites.

Range-rate tracking is often called Doppler tracking,

because it-depends on the Doppler effect. While a satellite

transmitter sends a continuous unmodulated wave at a fixed

frequency, the received signal at the tracking stations exhib-

its a shift in frequency due to the relative velocity of the

satellite and observing station. A similar phenomenon may be

observed with sound waves, as the source of the sound approaches

and recedes from the observer. Although the sound waves travel

at a constant rate, they become crowded together as the source

approaches the observer, the wave lengths become shorter, and

the pitch increases. The opposite effect takes place as the

source moves away. The frequency change is described by the

equation

Af -v (1,4-2)
c

where

Af =frequency change

f = original frequency

*Skin-tracking refers to tracking based on the reflected radar
beam. Beacon tracking refers to tracking performed with a
cooperative vehicle which transmits a return signal to the
ground station upon receiving a signal from the ground.
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v= relative source-observer velocity

c = velocity of signal propagation (light

or sound)

The frequency received at the tracking station is a

function of the transmitted frequency, velocity of propagation,

and the rate of change of the slant range (i.e., straight line

distance) between satellite and station. From observations at

one station, the satellite's period, time of closest approach,

distance of closest approach, and relative velocity with re-

spect to the station can be determined. If observations are

made from three or more known stations, the orbital parameters

may be derived.

In practice, receiving equipment does not measure

instantaneous range-rate or Doppler. Rather, the receivers

count carrier cycles received over a given time interval (in-

directly, after mixing the received signal with a ground-

generated signal to decrease the frequency). Although the

ratio of the cycle count to the interval is an approximation

of the frequency, the duration of the count is too long to

allow neglect of nonlinearity in the frequency.. Therefore,

the cycle counts are either directly used as observational

data, or, more often, converted to range differences (rather

than range rates).

Dopplez? tracking has been a very fruitful source of

data for satellite geodesy, for a number of reasons:

" It is passive, requiring neither an in-
terrogation nor directionally sensitive
antennas at the receiver

" The data obtained (Doppler counts) are
in digital form
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0 The radio frequencies used permit all-
weather day and night tracking

0 Accuracies have steadily improved.

The Defense Mapping Agency operates a worldwide Doppler track-

ing network called TRANET with stations at several permanent

sites. Automatic portable receiving equipment for Doppler

tracking is available from several suppliers. For example,

the GEOCEIVER (geodetic receiver) has played an important role

in various survey projects. Positions of thousands of sites

determined with the use of Doppler receivers have provided a

global geodetic network. The Defense Mapping Agency has used

Doppler data routinely for the determination of polar motion

since 1970. Since the Bureau International de L'Heure con-

siders these data to be the most accurate currently available,

its final results are heavily weighted to the Doppler data.

Laser ranging systems measure the time interval be-

tween an outgoing pulse and the reflection of the pulse from a

satellite. The time interval is measured very accurately and

then transformed into a range measurement that is corrected

for atmospheric refraction. Electronic and mathematical cor-

rections are applied to ensure that the time interval measure-

ment is taken between identical portions of the outgoing and

returning pulses. Laser ranging is possible even when the

satellite is in the earth's shadow as well as during daylight

hours. The satellites used as targets by laser system are

usually equipped with special retroreflectors (corner cube

reflectors*) to enhance reflectivity.

*Corner reflectors are described in more detail in Section
1.4.3.
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Simultaneous laser ranging to a near-earth satellite

from two sites is used to determine the coordinates of one

laser site relative to the fixed position of the other site.

The intersite distance is also determined. The National Aero-

nautics and Space Administration (NASA) has used laser track-

ing since 1972 to measure the distance between points in North

America. One application includes tests to determine the Pc-

curacy of laser tracking in measuring the crustal motion be-

tween points on opposite sides of the San Andreas fault. Re-

peated measurement of baselines across the fault are involved

over a period of several years. Simultaneous laser tracking

has also been achieved between United States east coast sites

and Bermuda. Recall from Section 1.2.2 that this makes possi-

ble a determination of the Bermuda site's relative location

and the baseline between Bermuda and each coastal site. Laser

ranging data have been incorporated into the development of

world geodetic systems by the Smithsonian Astrophysical Ob-

servatory (SAO) and the Department of Defense (DoD). NASA has

also included laser data in their development of gravitational

models.

Satellite-to-satellite tracking is a relatively new

concept with a variety of possible implementations. A high-

altitude satellite (in synchronous or near-synchronous orbit)

may act as a relay from ground tracking stations to a low-

altitude satellite. In this way, low-altitude satellites may

be observed when they are not accessible to ground stations.

With this type of tracking, the signal generated by a tracking

station is received at the relay satellite and then retrans-

mitted to the lowe altitude satellite. A return signal is

then sent from the low satellite back to the high satellite

and on to the ground station. In another variation, two low-

altitude satellites track one another, observing mutual orbital

variations caused by gravity field irregularities. Another
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concept calls for several high altitude satellites with accu-

rately known orbits to fix the position of a low-altitude sat-

ellite. More detail is provided in Unit Four.

Satellite-to-satellite tracking data are currently

being collected and analyzed in a high-low configuration be-

tween the ATS-6 radio relay satellite and GEOS-3, a low alti-

tude geodetic satellite. This system is being studied to

evaluate its potential for both orbit and gravitational model

refinement.

Satellite radar altimetry is used for direct measure-

ment of the geoid in ocean areas. The satellite altimeter

consists of a downward ranging radar that measures the time

delay from the transmission to the reception of a pulse of

energy. The apparent one-way distance from the transmitting

antenna to the surface is equal to one-half the product of the

time delay and the speed of light. From this distance or height,

the local surface effects such as tides, winds, and currents

are removed to obtain the satellite height above the geoid.

Precise knowledge of satellite position from other tracking

data sources permits the determination of the distance from

the center of the earth

a To the satellite

a To the ellipsoid

along the same line on which the satellite's height above the

geoid was obtained. Thus the geoid can be related to the ref-

erence ellipsoid, giving the geoid height, or undulation, a

quantity of direct geodetic interest.

The SKYLAB spacecraft, launched in 1973, was the first

attempt at satellite-based radar altimetry. This was a research
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mission from which information was obtained for the design of

future altimeter instruments. The GEOS-3 altimeter incorpor-

ated many of the design features that were tested in SKYLAB.

Launched in 1975, GEOS-3 provided geoid measurements over the

water areas of the earth from 65 deg N to 65 deg S. A consid-

erably improved altimeter, launched in the SEASAT satellite in

June 1978, returned voluminous data of extremely high quality

until the premature failure of the spacecraft's power system.

1.4.3 Lunar Laser Ranging

Introduction - The concept of lunar laser ranging

involves a precise measurement of the distance between a point

on the surface of the earth and a point on the surface of the

moon. This measurement is made by sending a laser beam (a

pulse of light) from the surface of the earth to a specially

designed reflector placed on the moon during one of the lunar

missions and by measuring the time interval required for the

laser beam to complete its round-trip. The round-trip time is

approximately 2.4-2.7 seconds. By multiplying the time inter-

val by the speed of light and dividing by 2 to account for the

round trip, the distance between the two points can be measured.

Since the time intervals can be measured to an accuracy of

approximately 1 nsec, the corresponding range measurement ac-

curacy is about 15 cm.

Laser ranging measurements of this accuracy have been

important to scientists for several applications. The princi-

.pal contributions of lunar ranging to geodesy, thus far, have

been to provide a more accurate estimate of the parameter GM

which is the product of the gravitational constant, G, and the

*See Section 1.3.2.
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mass of the earth, M, and to provide more precise data con-

cerning the rotation of the earth. Other important contri-

butions in lunar astronomy have been to enable scientists to

determine a more precise description of the orbit of the moon

about the earth and of the angular rotation of the moon about

its axis.

Background - The concept of lunar laser ranging was

proposed first in 1962 for use on one of the early Ranger

missions. Ranger was a NASA program of unmanned spacecraft

launched on trajectories designed to impact on the moon. The

Ranger spacecraft provided the first close-up photography of

the moon which was later used in planning the Apollo lunar

missions. The first lunar laser reflector was placed on the

moon in a "semi-soft" Ranger impact. Successful processing of

these first lunar laser signal returns was reported in 1962.

This is of historical interest only. The quality of later

laser systems made the above data obsolete.

The next lunar laser reflector system was placed on

the moon by astronauts Neil Armstrong and Edwin Aldrin during

the Apollo 11 mission. Additional laser reflectors were placed

on the moon by both American and Russian Luna spacecraft. Their

positions and the mission which placed them are indicated in

Fig. 1.4-3.

The availability of several reflectors on the moon

provides capability for scientists to measure with high preci-

sion relative changes in the distances from their ground sta-

tions to these lunar locations. This information provides

them with data which can be used to determine changes in both

the lunar rotation and the earth's rotation.
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tiFigure 1.4-3 Locations of Lunar Laser Reflectors
~(AP denotes Apollo, L denotes Luna)

Lunar Laser Reflectors - A lunar laser reflector is a

simple device. It is designed as the corner of a cube. When

the laser beam strikes the surface of the reflector, it is

reflected in precisely the same direction from which the beam

originated. This helps to ensure that the antenna that was

used to transmit the beam is also able to receive it.

The surface of the laser reflectors is made of highly

polished fused silica. This surface is designed specially to

provide high reflectivity for the laser beam.
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A schematic diagram of a lunar laser reflector is

shown in Fig. 1.4-4. This figure illustrates the reflection

of the beam from its surface.

REFLECTOR SURFACE R47198

REFLECTED

INCIDENT
BEAM

Figure 1.4-4 Schematic of Lunar Laser Reflector

Each of the lunar laser reflecting systems is com-

posed of an array of these corner cube reflectors. The largest

reflector was placed on the moon by the Apollo 15 astronauts.

Its dimensions are 104 cm by 61 cm, and it contains 300 corner

cubes.

Lunar Laser Ranging Operations - Lunar laser ranging

data have been collected by many organizations. Scientists at

the MacDonald Observatory of the University of Texas, the Smith-

sonian Astrophysical Observatory in Cambridge, MA, the Air

Force Geophysics Laboratory at Hanscom Air Force Base, MA, the

Ecole Polytechnique in Paris, France, and in the Soviet Union

have reported results from the analysis of laser ranging data.
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Observing periods can be scheduled for approximately

three weeks per month. Nights of the month close to a new

moon are avoided because of poor antenna pointing control.

Other limitations on operating periods may result from periods

of clouds and rain.

During a successful operation, the laser transmits

pulses at time intervals of approximately 2-3 seconds. Since

the round-trip time is approximately 2.4-2.7 seconds, there is

no ambiguity in determining which return pulse is connected to

which transmitted pulse. The accuracy of the timing circuits

which measure round-trip time has been improved during the

operation of the laser ranging systems and can now be cali-

brated to within 0.1 nsec, with an overall system accuracy of

approximately 1 nsec. The laser signal is a high energy pulse

with a width of approximately 2-4 nsec and a single-pulse out-

put energy of approximately 3 joules.

Principal Results - As stated in the Introduction,

the principal results for geodesy in the lunar laser ranging

program have been in the determination of GM and in the meas-

urement of the earth's rotation. At this writing, more than 9

years of lunar laser ranging data have been collected. Other

techniques such as VLBI, discussed in an earlier section, are

also being used to provide related meas'rr nts. The results

obtained have allowed scientists to g,. , *ssively more

accurate measurements. For example, a current estimate of the

parameter GM derived from lunar laser ranging data is given by

GM = 398600.46 ± 0.03 km3/sec
2

Current results from the analysis of laser ranging

data have enabled scientists to determine the earth's angular

position in space to an accuracy of 0.01 s (corresponding to
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7x10 - ec of time). This gives an agreement with astronomical

techniques to approximately 2x10 sec over an average period

of 5 days. The data have shown that there is little evidence

of rapid variations in the earth's rotation. Significant fur-

ther advances are expected from increasing the accuracy of

determination of the earth's rotation and the variation in the

universal time scales as more accurate lunar laser ranging

data are collected over long periods of time.

Prospects for the Future - New lunar laser ranging

stations are being established in Hawaii, Australia, Japan,

France, and West Germany. These newer stations include plans

for the development of lasers with 200 picosec (1 picosec =

10-12 sec) pulses and 3 cm accuracy. Furthermore, a broader

geographical distribution of these stations will lead to in-

creased accuracy in the determination of GM and the earth's

rotation. As scientists continue to collect lunar laser rang-

ing data, their understanding of variations in the earth's

rotation and gravity field, as well as the moon's orbit, ro-

tation, and mass, will continue to improve. The lunar laser

ranging system is one of the many significant scientific re-

sults from the lunar landing programs.

1.4.4 Results of Satellite Geodesy

The use of artificial satellite data during the two

decades that have passed since the first launches has led to

an enormous increase in knowledge of the size and shape of the

earth and the detailed structure of the gravity field. Some

indication of the level of detail with which the gravity field

can be modeled at any given time is given by the number of

geopotential coefficients known. A few months of tracking

*Review Section 1.3.2.
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the first artificial satellite (in 1957) led to greatly im-

proved knowledge of the C2 0 term (and also the semi-major axis

and flattening of the reference ellipsoid). Not long there-

after several additional zonal harmonic terms were computed,

and by 1962 about eight zonal terms and a few tesseral terms

were published.

A 1962 solution of this type developed by the Naval

Surface Weapons Center (NSWC) was used in 1963 in satellite

orbit computations required to position LORAN-C sites in the
Pacific. In 1965, NSWC developed over 144 terms (complete to

degree and order 12) in the gravity model; this model was an

important contribution to the development of Department of De-

fense World Geodetic System 1966 (DoD WGS-66), and was used

for several years in orbit computations used in developing

positions of sites in a worldwide geodetic network to 10 m

accuracy. These solutions were based primarily on Doppler

data.

In 1966 an earth gravity model based mainly on op-

tical satellite data was published by the Smithsonian Astro-

physical Observatory (SAO). It included 123 geopotential co-

efficients (the model was complete to degree and order 8, with

zonal terms to degree 13, and a few tesseral terms of degrees

9 through 15). Six years later, SAO's Standard Earth III,

based on camera and laser data, and combining satellite and

surface gravimetry results, included

" Zonal terms up to C2 3 ,0 with C35 ,0 and

C3 6 ,0 also determined

" Approximately 360 tesseral terms (com-
plete through the 18,18 terms, with
additional terms up to degree 24).
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By 1970, NSWC expanded the gravity field to include

nearly 500 terms; this solution (based primarily on Doppler

data) formed a basis for DoD-WGS-72 and allowed positioning of

sites to about 1 m accuracy. As a final example, ar improved

Goddard Earth Model (GEM lOB) was published in 1978, complete

through degree and order 36. It was based on satellite track-

ing data, surface gravity measurements, and satellite altimeter

measurements from GEOS-3.

With the increased use of new measurement types --

satellite altimetry, satellite-to-satellite tracking, and laser

ranging -- satellite geodesy will continue its contribution to

geodetic and geophysical knowledge in the future.
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APPENDIX A.1

FIELDS AND POTENTIAL

The concepts of scalar field, vector field, and po-

tential - - used throughout Unit One - - are reviewed briefly

for the convenience of the reader.

Scalar and vector fields - The term field is used to

describe a physically observable quantity that is defined at

every point of some region of space. Examples of regions in

which field quantities might be defined:

* All of space

0 The interior of a sphere, including the
surface

* The exterior of a sphere, excluding the
surface.

A scalar field is defined by a single number at each point--

for example, temperature or humidity. A vector field has magni-

tude and direction at each point, and requires the specification

of three numbers (the rectangular coordinates, for example).

A scalar f. I over a region is specified, therefore$ by a

single function of the three space variables:

u =u(X,y,z) (A.1-1)

.-11 vector field requires three functions of the space
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rv

V y (A. 1-2)

v x = Vx (X,y,zl, (A.1-3)

V= (xy,z) (A.1-4)
y y
V z = V Z(X,y,Z )  (A.1-5)

The gravity field - The gravity field on or near the

surface of the earth is a specific example of a vector field.

The field quantity is the acceleration due to gravity, varying

in a complicated way with position but generally decreasing

with distance from the center of the earth.

In the case of a point mas the associated gravity

field is characterized by:

* A magnitude inversely proportional to the
square of the distance from the mass point

* A direction pointing inward toward the mass
point.

For a point of mass M placed at the origin of a rectangular

coordinate system (Fig. A.1-1), the field of acceleration is

described by the equations

a - xX (A.I-6)
x r

a 3 y  (A.1-7)
y r

_ GM
a - z (A.1-8)

r2
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Figure A.1-1 Field of Acceleration Due to a Point Mass

where:

a components of acceleration (m/sec )

x,y,z coordinates of point at which acceleration
is measured (m)

r (x2 + y2 + z2

M mass (kg)

G = universal constant of gravitation
(6.67 x 10 "11 m3/kg2sec 2

The acceleration due to a pair of point masses (see Fig. A.1-2)

is the vector sum of the individual accelerations, each having

the form of Eq. A.1-6 through A.1-8. For example, the x-

component of the acceleration at point P due to the mass M1 is

A-3
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Figure A.1-2 Field of Acceleration Due to a System of

Point Masses

and the x-component of the acceleration at point p due to the
mass M2is

GM2
(a )2  32xp-x2 (A.1-10)

where:

r p ~x- )2+ (YI1 Y p) 2 + (l-zp)2(A.1-11)

and

r 2p= I(x2 -x ) 2 + y2-yp~ )2 + (z 2 -z ) 2 ~(A.1-12)
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The x-cowponent of the resultant acceleration at point p is

then given by the sum:

a G i[M1 -pi + 2 x (A.1-13)

For a system of n point masses, Eq. A.1-13 generalizes to the

form

n x -x.
a G 14. (A.1-14)

i=l .
ip

A solid body may be approximated by a large number of

masses, each within z small volume element (Fig. A.1-3), and

the acceleration field external to the body is represented by

three sums (one for each component) having the form of Eq.

A.1-14. By the use of limiting processes familiar from the

calculus, the approximating sums become integrals, and Eq.

A.1-14 takes on the limiting form

fi (x p-x) p dx dy dzax = -G p(2p2X3/2 (A.I-15)
v [x Px)2 + (y p-y)2 + (z p-Z)213/2

where the integral extends over the volume occupied by the

body. The notation is defined in Fig. A.1-3. Note that the

mass of a volume element is given by

dm = p dx dy dz (A.1-16)

where p is the density (measured in units of mass per unit

volume).
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p

Py

(Xp, yp, Zp)

v

ELEMENT OF VOLUME LOCATED
AT (x, y, z) WITH:

VOLUME = dx dy dz

and

x MASS = P dx dV dz

where

P - DENSITY

Figure A.l-3 Field of Acceleration Due to a Solid Body

If the body is a sphere, and if the density depends

only on the distance from the center of the sphere, then the

acceleration at an external point is the same as if all the

mass were concentrated at the center. This remarkable fact

was proved by Isaac Newton in the 1 7th century.

Conservative fields and potential - The vector field

characterizing the external gravitational acceleration due to

*This condition of radial symmetry is automatically satisfied,

of course, if the density is constant (uniform) throughout
the body.
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any arbitrary body (or collection of point masses) has an im-

portant special property that greatly simplifies gravity cal-

culations. Fields having this property are called conserva-

tive. Such a field can be described by a scalar quantity known

as a potential. More specifically, the vector is equal to the

gradient of the scalar potential:

ax

grad U = (A.1-17)

8U

az

where:

a = a conservative vector field quantity (for
example, the acceleration due to gravity)

U = the associated scalar potential (for example,
the gravity potential)

The significance of the conservative property is thata single
function of the space variables (the potential) suffices for a

complete 'characterization of a vector field that otherwise

would require three functions for its specification.

Gravitational Potential - The acceleration vector asso-

ciated with a point mass, as given in Eqs. A.1-6 through A.1-8,

can be expressed in terms of a potential, U:

a grad U (A.1-18)

where

U GM (A.1-19)
r
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as the reader may verify by differentiation of Eq. A.1-19.

Similarly, the acceleration due to a pair of point masses (Eq.

A.1-13) is described by the potential

U = G + !(A.1-20)

and the acceleration due to n point masses (Eq. A.l-14) by the

potential

n Mi
U = G Z (A.1-21)i=l r ip

As a final example, the gravitational acceleration associated

with a solid body (Eq. A.1-15) is derived from the potential

U G ff/ " p dx dy dz 2]k (A.1-22)
v (x p-x)2 + (y p-y)2 + (z p-Z)-
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APPENDIX B.1

LEGENDRE POLYNOMIALS AND ASSOCIATED LEGENDRE FUNCTIONS

The Legendre polynomials are defined as follows:

1 dn 2 nP (x) = d n (x 2 -1) n  (B.1-1)n 2nn! dx"

where n is the degree of the polynomial. Some examples are:

P0 (x) = 1 (B.1-2)

Pl(x) = x (B.1-3)
3 2 1(.I)

P2 (x) x -(B1-4)

P3x) =5 x3  35 x (B.1-5)

35 4 15 x2  3
P4 (x) = - x - X-- + (B.1-6)

For computational purposes, recursion formulas like the fol-

lowing are used:

Pn(x)=-nl Pn- 2(x) + 2nl x Pn-l(x) (B.1-7)

starting with the simple expressions for P0 and P1.

The associated Legendre functions may be derived from

the Legendre polynomials by the following formula:
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Pnm(x) (l-x2)m / :2 d mPn(X)(B18
= m(B.I-8)run dx m

but are usually computed from recursion formulas analogous to

Eq. (B.1-7). Since the associated Legendre functions appear

in Eq. (1.3-12) with

x = sin 0' (B.1-9)

as the argument, examples will be given of Pnm(sin 0') as a

function of 0':

Pl1(sin 0') = cos 0' (B.1-10)

P2 1 (sin 0') = 3 cos 0' sin 0' (B.1-11)

P2 2 (sin 0') 3 cos2 0' (B.1-12)

P31 (sin 0') cos '- sin2 0' 2 (B.1-13)

P32 (sin 0') = 15 cos2 0' sin 0' (B.1-14)

P33 (sin 0') = 15 cos3 0' (B.1-15)

For some purposes it is advantageous to modify the

definition of the Legendre functions, through multiplication

by a numerical constant, in order that the mean square value

of any surface spherical harmonic, over the entire surface of

the sphere,be equal to one. This is done by multiplying Pnm'

as defined above, by the normalizing factor

F21 +1) (n-mr) 1

Knm = [(2n+l) (n+m)! (B.-16)

for mXO, and

KnO = (2n+l) (B.1-17)
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for m=O. The resulting normalized Legendre functions

Pnm= KM Pnm (B.1-18)

may be used in Eq. (1.3-12) in place of the ordinary functions,

provided that the Cn and Snm coefficients are correspondingly

adjusted:

C (B.1-19)
rim K rimrim

S (B.1-20)rim K rimrim

The reader is cautioned that other definitions of normaliza-
tion (different from that given above) are used in specific

application areas -- for example, the study of the geomagnetic

field.
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UNIT ONE

REVIEW EXERCISES

Chapter Two

(Section 1.2.1)

1. At what latitude is the difference between geodetic and

geocentric latitude a maximum?

(Section 1. 2.2)

2. A triangulation survey starts with a baseline (running

west to east) of 2000 m connecting points P 0 and P 1. At

point Pop the angle between the baseline and an unknown

point, P 2, is measured as 44 deg. At point P1, the angle

between the baseline and point P2 is measured to be 106

deg. Using P 0 as origin, what are the coordinates of

point P ?

3. Continuing the triangulation survey of Exercise 2, the

line P IP 2 is used as a baseline to survey a -new point,

P 3. At P1 , the angle between the baseline (P 1 P2 )and

point P3 is 52 deg. At P, the angle between the base-

line and P 3 is 88 deg. Find the coordinates of P 3 rela-

tive to the origin, P 0.

4. A trilateration survey starts with a baseline from the

origin, PO, to an initial point, P1 . with length 900 m

and azimuth (measured positive from north toward east) of

30 deg. The following distances are measured:

RE -1



FROM TO MEASURED DISTANCE

P 1 P 2 1000

P0  P2  1100

P2 P3  1200

P1  P3  1800

Find the coordinates of PI, P2, and P3 relative to the

origin (P0).

5. An open traverse (refer to Fig. 1.2-9) begins at the ori-

gin, P0 along an initial'baseline with azimuth 75 deg

and length 1600 m, connecting P0 with P1 . The traverse

continues as shown:

FROM TO MEASURED DISTANCE MEASURED ANGLE
(W) (deg)

P1  P2  2000 160

P2 P3  800 200

P3  P4  2500 250

Angles are measured in a clockwise sense from the previ-

ous traverse line. Find the coordinates of points PI,

P2' P3' and P4 relative to the origin (P0).

6. Referring to Exercise 5, suppose that distance measure-

ments are correct to within 0.1 percent, while angles

are correct to within 1.0 min. Find upper bounds for the

position error of point P4.
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(Section 1.2.3)

7. Describe the factors that limiL the accuracy of maps pre-

pared by photogrammetric techniques from overlapping aerial

photographs.

(Section 1.2.4)

8. It is stated in the text (Section 1.2.4.1) that "a per-

fect atomic clock would not, after a lapse of many years,

correctly predict such phenomena as sunrise, sunset, star

transits, eclipses, etc." Explain why this is the case.

9. Using the Star Catalog section reproduced as Table 1.2-7

(Section 1.2.4.2), calculate the angular distance between

the stars a CMa (Sirius) and y Gem.

Chapter Three

10. If an individual weighs exactly 80 kg at sea level on

the equator, how much would this person weight at the

North Pole?

11. If the earth were to stop rotating, by how much would

gravity at the equator change?

12. Compute the excess gravity acceleration (gravity anomaly)

at the surface of the earth, caused by a sphere of depleted

uranium, with a mass of 100 kg, buried 10 m below the

surface. Would the presence of this object be detectable

by the use of ordinary gravimeters?

13. Referring to Appendix B as required, verify Fig. 1.3-4b.
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14. Referring to Appendix B as required, plot the Legendre

polynomial P3 (sin .1) and verify Fig. 1.3-4a.

(Section 1.3.2)

15. What is the normal gravity at latitude 48 deg N using

the International Gravity Formula [Eq. (1.3-5)]?

16. What is the normal gravity at latitude 48 deg N using

the Geodetic Reference System 1967 gravity formula?

17. At a point at sea level at latitude 48 deg N, there

is a measured gravity of 980933.8 mgal. What is the

gravity anomaly at that point?

(Section 1.3.3)

18. Suppose that a gravity measurement is to be made using a

pendulum. If the pendulum's period is to be measured

very precisely, how accurately must the dimensional sta-

bility of the pendulum's length be maintained for meas-

urement accuracy of one mgal? one pgal?

19. In Exercise 18, what is the timing accuracy required to

be commensurate with a one mgal level of dimensional

stability.

20. Suppose that a pendulum gravimeter has both a one part

per million (RMS) dimensional error and an RMS timing

error as computed in the previous exercise. If both of

these errors are random and are unrelated, what is the

RMS error in measured gravity?
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