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Tutorial material on the real daea-types .n Aca

B A Wichmann, National Physical Laboratory

Note: These notes are designed as material to be
presented with a set of viewgraphs. The complete
material can be presented in about four hours
assuming only a limited knowledge of Ada
beforehand. The viewgraphs are reproduced at the
end of these notes, and are referenced in the text
by numbers in the right hand margin.

1. Fixed and Floating point

FThe real data types in Ada are for approximate computation. The
L majority of physical quantities are necessarily approximatebecause of the inherent errors involved in their observation. Such

quantities are therefore naturally handled by means of the realr- data types in Ada. The purpose of these notes is to explain the
L facilities in Ada so that the programmer can use the language

reliably and in a manner appropriate to the job in hand.

I The real data types in Ada are divided into two classes - fixedL..

point and floating point. There can be any number of fixed point
and floating point data types in -. program. It is convenient toF
have an intuitive view as to what .fixed point and floating point

L. means. Thinking in decimal, fixed point means a fixed number of

places before the decimal point and a fixed number after:

L +d.dd or +ddd.d or +ddd.

whereas floating point means that there are a fixed number of
significant digits and an exponent ("scientific notation" ofcalculators) :

_ .d.ddE+dd or +d.dE_+d or +d.dddE+dd
4...

where the integer after the E gives the decimal exponent.

[ The data type thus determines how values are stored since any one
type will have the same format. With a fixed point data type with
the format

L +d.dd

r a half is stored as +0.50 and one third as +0.33 which is, of
course, in error to a small extent. The fact that computed values
and even constants cannot be stored exactly is the reason why real

r
L
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-2-I. data types are said to be approximate. Note that with this data1
type values of magnitude less than 0.005 will be represented a83

zero (assuming rounding is performed).

Now consider an example of a floating point data type with the ]2
format:M

.d.ddEed7

Then

100.0 is stored as .1.OOE.21

One might think it could also be stored as +0.10E+3 but this is
not permitted because values are ' normalized' . The importance of
norr-ialisation is easy to appreciate when considering storing the
value 101.0 with the same format. This is

+1 .01E+e2

whereas putting an initial zero would lose the final 1 giving a
one per cent error. Note that floating point values have a roughly
constant relative error whereas fixed point quantities have a
constant maximum-absolute error.

In Ada, data types are distinguished by their names, not just
their formats. Hence two data types having identical formats are
distinct. This means that data types should be given names to
reflect the logical properties rather than their formats. if two]
sensors read temperature and distance, then they should be given
distinct data types DEGREES and FEET rather that one type just
because the range of values and accuracy requires an identical
format. _

Note that the fixed point data types in Ada have formats which are s
not quite the same as those used by calculators. With a
calculator, dividing 1.23 by ten gives .123, but with the format
*d.dd, the division will yield .0.12. To do the division
accurately in Ada, then the result must be stored in a type withj
the format +.ddd. Clearly, the reduced flexibility of the Ada
fixed point means that it is very easy to lose accuracy in
performing computations. Losses also arise with floating point
computations but they are less marked due to the automatic
normalization. For this reason, most programmers would prefer to
use floating point, which is of course, why modern scientific
computations use this mode. As a rough estimate, one should expect
an algorithm to be three times more expensive to program in fixed
point. The reason for using fixed point is usually the absence of
floating point on a particular machine or because the digitised
signal input is in fixed point.

The description given above Using decimal formats is merely to
illustrate the general nature of Ada data types. In fact, Ada



defines the data formats in binary since this is almost universal
for modern computers. To give a more accurate description. we
first need some notation from the kda language.

2. Notation for literals

We are only concerned with numeric literals. These can either
be for integers or real values. Real values are distinguished by
the presence of a decimal point. If a real value is required by a

7- particular context in the language, then an integer is not
permitted. In other words, if the real value one is required 1.0
must be written and 1 will not be sufficient. This means that it
is always easy to see if approximate computation is being
performed. even with parameters to a procedure because literal

L values will have a decimal point.

Decimal integer values are written in the conventional manner.
Spaces may not appear within the digits of the value, but an
underscore can be used instead. This is very convenient with large
values since the thousands or millions can be separated to aid the

F eye.
Examples: 1 01_234_567

The following are not valid

1- 2. 1 234

Large integer values can conveniently use the exponent notation.
For instance, six million can be written as:

6_000_000 or 6E6 or 6_OOOE+e3 etc.

- An implementation may limit the size of literals which can be
handled, but such limits are likely to be quite large. The line
length also restricts the magnitude of literals.

Real literals can be written in the conventional decimal notation
with a decimal point. An exponent can optionally be used. For
instance, the following all represents the same value:

3.14J 0-314E+1 314.OE-2 03.1_4000

The accuracy with which a literal value is stored in the program
is determined by the context and not by the way in which the
literal value is written in the program. Hence merely writing 20
decimal digits does not imply that the value will be stored with
that accuracy. The accuracy will depend upon the types used in the
computations containing the literal.

Both integer and real literals can be written using bases other
than ten. One reason for this facility is that some machine

F



properties are specified by the manufacturer in octal or
hexadecimal and hence this notation is the logical one to Use in
these contexts. An additional reason for permitting other bases 1
for real literals Will soon be apparent. The bases which Ada
allows are those from 2 to 16. Base 16 uses a notation similar to
that of hexadecimal on the IBM computers and in consequence A
stands for 10, B for 11 , C for 12, D for 13, E for 14 and F for
15. The base is determined by a decimal value before a sharp
character which brackets the based number sequence. Note that the
base and the exponent are written in decimal and in consequence -

the A-F characters when Used as a digit, can only appear between
the pair Of sharp characters. For example:

20101# means 4 +i 1=5 with a base of 2

4#101# meays 4+ 1 =1

16#FF# means 15 * 16 + 15 = 255

The notation can be Used both with exponents and with a point for
real literals.

Hence 4#101#E2 means 4#10100# 44 + 4 2 = 256.16 z272

Writing and reading values in other bases requires care since we
tend to think in decimal. This is -especially true with real
values.

The syntax of numeric literals Is most easily portrayed by means
Of syntax diagrams. The art-owed lines are followed according to 1
the syntax units being analysed. For instance, an integer with
interleaved understores permitted is given by the diagram

integer:

digit]

The box for digit can also be given by a diagram with just ten01
alternatives for each of the digits 0 to 9. Similarly, one has

based-integer:
digit
A
B
C I

D
E
F



Now the syntax diagram for numeric iterals can be given using the

diagrams for integer and basedinteger

numeric literal:

based integer

ba it# - basedinteger#

One further language facility needs to be given because of its
convenience in explaining the language later in this material.
This is number declarations. Both real and integer literal valuesr can be given an identifier in a number declaration. For instance

PI: constant := 3.14159_26535;
MAXLINELENGTH: constant : 96;

L
Within the Ada program where these identifiers can be used, the
use of the identifier is equivalent to writing the literal value.
Such number declarations can be used to separate out key numerical
values.

Exercises

Write the following based number values in decimal:

16#FF# 4#1.01#E2 3#0.1# 8#0-1# 16#0.8#

What value is 16#0.99999# just a bit less than?

What is wrong with the following literals?

3._14 4#._0.1#2 16#FF#E-1 8#0.9#

3. A model of approximate computation

Ada defines the properties that the approximate computation of
real arithmetic must satisfy. Because the real arithmetic is
implemented on machines with very different underlying hardware,
the definition is permissive. In other words, the properties must
be satisfied, but this can be achieved in a number of different
ways. A particular real data type definition specifies an accuracy
that must be met. An implementation is free to provide greater
accuracy than that specified. This is essential because a machine
can usually only conveniently implement a small range of different
accuracies. The problem is to define the properties so that

L



-6-

different implementations are Possible and yet make the properties
good enough to meet the demands of the numerical analyst. The
method Used is based upon the work of W S Brown from Bell]
Laboratories on floating point (2). There are differences between
Brown's work and the definition of Ada because of the different
objectives - Brown was interested in providing a model of actual
hardware whereas with Ada a machine independent language
definition is required. Ada also handles fixed point.

Ada assumes that the arithmetic facilities are provided using]
binary. There are a few additional complexities with fixed point,
so let Us start by considering floating point. Floating point
computation involves storing values with a sign, a mantissa and a]
signed exponent. The difficulty is that we do not Wish to say how
long the mantissa will be, nor the actual range of the exponent
since this will depend upon the particular hardware in Use. Hence
we say that the Mantissa Must be at least so long, and the
exponent range Must be at least so long.

With a particular mantissa length and exponent range guaranteed,
certain values are capable of being stored exactly. As an example.
assume that the mantissa length is 14 hexadecimal places
(corresponding to 16 binary places). Then 1

16#0.8000# =0.5 is stored exactly
as is 16#0 .FOOOI 15.0/16 a0.9375
and 16*0.FFFF#E4 z#FFFF.Q# 65535.0 1
With such a data type, these values are handled exactly in the
sense that if one assigns a value to a variable, then one can test
for equality and obtain the expected result. These values are
called model numbers. Equality and inequality of model numbers
have the characteristics Of the exact values. However, an
implementation will typically have values which are not modelI
numbers and almost all the difficulties of real arithmetic are due
to these values. Given one of these additional numbers it is
Usually bounded by a model interval. For instance, with the above
data type

161 0.ABCD4# is bounded by
161 O.ABCD# and 16#0.ABCE#

and 0.1 which is 16#0.1999999... #0 is therefore bounded by

16#0.1999# and 16#0.199A#

Literal values in an Ada program nust be converted by the compiler
to values within these bounds inclusively. Hence these model
intervals perform a vital role in defining the errors that can
arise in a computation. This role is extended to operations as
follows. Given two operands A and B and an operation op, then we
want to bound A op B. Corresponding to A and 3. there are nodel
intervals. The operation is then applied to the two intervals. The



resulting set of values is then w,.dened, if necessary, to a
further model interval. This model interval bounds the machine
computed value of A op B. This night seem complicated and
indirect, but it has a number of simple consequences. For
instance, the model interval for a model number is just tne model
number. Hence if the operands are both mnodel numbers and the
correct, mathematical result is also a model number, then the
machine result must be the exact, correct result.

Exactly the same logic of model numbers. model intervals and the
calculation of model intervals which bounds the result of an
operation applies to fixed point as well. The difference between
fixed point and floating point lies in the model numbers
themselves. There are some additional complexities which arise in
the case when a computed result lies outs, de the range of model
numbers.

Exercises

Given a floating point type which has model numbers with 14

hexadecimal places, what is
I L Ca) the next model number above 1.0?

(b) the next model number below 1.0?
(c) the ratio of ((a) - 1.0)/(1.0 - (b))?

What rational numbers are not represented exactly in Ada with any
accuracy using floating point?

4. Floating Point Data types

Ada allows the programmer to specify the minimal accuracy of aI real data type. For floating point this specification is an
integer giving the number of decimal digits of significance in
stored values. This method of specification is used because of itsI strong intuitive appeal in spite of the fact that the detailed
semantics of floating point uses binary.

The number of decimal digits determines the model numbers of the
type. Since a binary radix is used, the floating point model
numbers consist of

L sign ' binary mantissa * (2.0 ** exponent)

where the mantissa length and the exponent range must be
determined from the number of decimal digits. There is an obvious

L relationship between a binary mantissa and the corresponding
decimal one. For D decimal digits one needs more than
Dlog(10)/log(2) binary places to give at least the same accuracy.
Hence Ada defines the mantissa 'length to be the next integer
greater than D*log(10)/log(2).

L
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Unfortunately, there is no obvious natural value for the exponent
range. In fact, the exponent range is independent and logically
should be separately specified by the programmer. Such a detailed
specification would not be useful since actual hardware does not
permit an independent choice of both parameters. Also, to be
convenient to the ordinary user, default values are needed for the ]
range which would again be arbitrary. Some algorithms do require a
reasonable range in relation to the mantissa and from a study of
existing machines, the value has been set of -44B .. 4eB where B
is the number of binary places in the mantissa.

Let us now consider an example of a minimal working accuracy of
five decimal digits. This requires at least 5 * 3.32 = 16.6 binary
places. Hence the length of the binary mantissa is taken as 17
places. The binary exponent range is -68 .. 68. Hence we have

smallest model number greater than zero = 2#0.1#E-68= 2.000(-69) about 1.69E-21

largest model number = 2#0.11111111111111111#E68 ]
= 2.0e068 - 2.0**51 about 2.95E20

The next model number greater than 1.0
= 2#0.10000000000000001, El
* 1.0 + 2.0 **(-16)

Such a floating point type is defined by the declaration

type F is digits 5; ]
Having declared such a type, it is clearly convenient to be able
to access the basic constants associated with it. By this means,
algorithms can be written where the accuracy is isolated to the
single type declaration. These constants are called attributes of
the type and, in this case, they are predefined by the language

definition.

The predefined attributes are written as the type identifier (F) a
prime (') and then the name of the attribute. The attributes for a
floating point type which are related to the model numbers are:

F'DIGITS: the value of the expression after 'digits'
in the type declaration, and hence 5 in this case,

F'ANTISSA: the binary length of the mantissa and
hence 17 in this case,

F'EMAX: the maximum value of the exponent which is
68 in this case and is always 4*F'MANTISSA

F'SMALL: the smallest positive model number, which
is about 1.69E-21 in this case. :ts value is

|Moisto-



always 2.0**(-F'EMAX-1).

F'LARGE: the largest model number, which is about
2.95E20 in this case. Its value is always
2.0**FIEMAX*(1.0-2.0**(-Ft MANTISSA)),

F'EPSILON: the absolute value of the difference
between 1.0 and the next model number above 1.0.
The value in this case is about 1.52E-5 or in
general 2.00*(-F'MANTISSA+I)

Of course, because of the relationship between these values, there
is little logical need for them all. In practice, however, they
are needed for program clarity. F'MANTISSA and F'EMAX give the
basic properties of the model g numbers whereas in actual
programming the values F'SMALL, F'LARGE and F'EPSILON are usually
needed.

VConsider the problem of determining the errors in a computation. A
literal value such as 0.1 cannot be stored exactly since it has a
recurring binary representation. What is the error involved? In
handling binary values, it is convenient to use hexadecimal
otherwise the based numbers are rather long to write. We have

F 0.1 = 16#0.19999.. .#

With the type F we have 17 binary places and hence the value 0.1
is bounded by the model interval

16#0.19999#..16#0.1999A#

The difference is 16#0.00001# = 16#0.1#E-4 = 16.0"*(-5)
= F'EPSILON/16

The relative error is thus less than or equal to 9.54 E-6 in this
case.

In general, it is easy to see that the relative error depends upon
the relationship between the value and the powers of 2. For
instance, a value Just greater than one has a relative error of
F'EPSILON (the definition of the value) whereas a value of just
less than 1.0 has half that relative error. In practice, the
actual values of constants are not so important, and in any case

cannot be used for variables and hence the general rule is

lowest possible machine value representing the true value
z (1.0-F'EPSILON)*true value

highest possible machine value representing the true value

(1.0+FIEPSILON)*true value

These are the relationships used for classical error analysis,
combined of course, with corresponding relationships involving the
numerical operations. Note that constants may be converted by

L-
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-10 ]
rounding implying half the maximum relative error. This paper does
not aim to teach classical error analysis. The formal proof of the 7
inequalities of classical error analysis from the Ada model number
definition is given in References [1,2).

Classical error analysis is satisfactory provided the values
computed are either zero or lie in the ranges F'SMALL .. FtLARGE
and -F'LARGE .. F'SMALL. Consider the computation of a value 16
smaller in magnitude than FISMALL, or even such a value written in
a program. Then the value in the machine will be in interval
-F'SMALL .. 0.0 or 0.0 ..F'SMALL according to the sign of the
value. This implies that all precision could be lost. For
instance, the actual machine may only handle model numbers and
round literal values. Hence values greater than 0.0 and less then
F'SMALL/2 will be converted to zero. A compiler could warn the
programmer of such a conversion of a non-zero value to zero, but
there would be little reason to do so since the same values
calculated dynamically would lead to zero without warning. Hence
the programmer needs to beware of this condition called underflow,
if an algorithm requires the accurate computation of saall values.

As an example of underflow, consider the computation of the length
of the hypotenuse of a right angled triangle:

X := SQRT(Ae'2 + B*e2);

It might seem reasonable that if A or B >= F'SMALL then X >=

FISMALL. However, F'SMALL4*2 may underflow to 0.0, giving X=0.0 if
both values are small. Hence if the specification of this
calculation requires that non-zero values of A or B gives a
non-zero value for X, then one must take this into account by
writing (for instance):

SM: constant F := 2.0**(-F'EMAX/2); -EMAX is even
- calculate A and B
if ABS(A) < SM and ABS(B) < SM then

A := A/SM; 7
B := B/SM;
X : SQRT(A**2 + B*02) ' SM;

-- other case
end if; - (p1)

Note that the use of powers of two for scaling reduces the
potential errors to a minimum.

Ada does not require that there are no machine values between 0.0
and F'SMALL. On a particular machine, such values could be present
making the cautious code above less necessary. The programmer is

('1) This example is merely an illustration, see section 10
for a realistic example.



strongly advised to take the precautions for underflow illustrated
above because the algorithm will then be portable.

The problem of overflow, that is, when computed values or
constants are greater than F'LARGE, is more severe. Clearly, there
must be some limit to values that a machine can handle and beyond
that limit it is, in general, unreasonable to replace the true
value by a single value. Ada only requires that values uptoF'LARGE are handled correctly. A machine can, and often does,

provide further values. The implemented range for any Ads scalar
- type is FIFIRST .. F'LAST. When the implemented range of values is

exceeded, most machines provide an indication of this fact. In

Ada, this is signalled by means of the NUMERIC ERROR exception,
for computed values. If a literal value exceedF the implemented
range, then the CONSTRAINT ERROR exception is raised. With
underflow, the computation -proceeds in spite of obtaining
potentially meaningless results, but with overflow an exception
could lead to the termination of the computation. Hence the
specification of a numeric computation should indicate if these
exceptions can arise. The specification of a routine should
indicate which of the following three cases hold with respect toF the NUMERICERROR and CONSTRAINT.ERROR exceptions:

(a) The routine has been written so as to avoidFraising the exceptions.
(b) Local handlers have been written for the

exceptions so that these exceptions cannot be
propagated to the caller.L.

(c) The exceptions can indeed arise from a call of[ the routine (the conditions should be stated).

Consider now the computation

[ X :z SQRT(A*e2 + B*e2);

but this time considering the question of overflow. The safest
method is to avoid overflow by testing the values of A and B in a
similar method of that used for underflow:

L
F

L

L

L
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SL: constant F := 2.0*(F'EMAX/2-1);
- calculate A and B
if ABS(A) > SL or ABS(B) > SL then

A A/SL;

B B/SL;
X :z SQRT(A**2 + B**2) ' SL; ]

elsif
- other cases

end if; ('1)

An alternative strategy is to write a handler for the
NUMERIC ERROR exception and only in this case, scale for a large
value. This is not to be recommended in general because it is _
machine dependent. The raising of the NUMERIC ERROR exception is
not guaranteed and indeed, on machines which allow computation
with values representing infinity, the exception might never be
raised.

A user can declare subtypes of a type (or subtype). Unlike a type,
a subtype is potentially dynamic in its characteristics. Consider ]

type F is digits 5;
X:F := F(READ FROM DEVICE);
subtype TF is range 0.0 ..X;

Then the range of values that the subtype TF can have may vary
from one execution of these declarations to another. On the other
hand, the properties of F remain the same since the expression
after 'digits' is a static integer expression.

Subtypes of real types have both advantages and disadvantages in
Ada. Obviously, it is useful to place bounds on values and have
these bounds checked by the system as both a documentation aid and
also to improve the reliability of the software. Unfortunately,
the checking overhead on every assignment to variables of subtype
TF is not insignificant. The check is necessary since the program
is required to raise the exception CONSTRAINT ERROR if the range
is violated. The programmer can suppress the checking by means of
a pragma, but this defeats the object of the facility. Hence

subtypes with a real range constraint must be used with care.

Subtypes can also be used to indicate a need for less accuracy
than that specified by the type definition. For instance:

subtype SF is F digits 4;

or Just against an object

(01) Again, this example is illustrative only, and section
10 gives a realistic example.



Y: F digits 4;

For a subtype, the model numbers are reduced by a corresponding
reduction in the mantissa length, while keeping the exponent range
the same. Hence this would mean a binary mantissa length of 14
places (3 less than F). This means that SF'LARGE is only a very j.

small amount less than F'LARGE corresponding to losing three 's
at the least significant end of the binary mantissa. Note that
SF'SMALL = F'SMALL.

Since compilers must handle objects of a subtype in effectively
the same way as objects of the type, it is unlikely that compilers
can take much advantage of the reduced precision of a subtype.
Hence the advantages of subtypes just giving an accuracy
constraint are minimal. Since there is no checking for accuracy
constraints at run-time, there is no run-time penalty.

Exercises

If F'DIGITS = 2*G'DIGITS, does F'MANTISSA = 2*G'MANTISSA?

What is the largest positive value X:F such that X does not
L overflow and 1.O/X does not underflow?

5. The predefined floating point operations

For every floating point type, a conventional set of predefined
operations are available as follows:

single operand + no operation[change sign

two operands multiplication
(of the same floating point type) / division

+ addition
subtraction

[ single parameter ABS( ) absolute value

Each of these operations yields a result which is of the same type
as the operands. The description of the error bounds and the
circumstances under which the exception NUMERIC ERROR can occurcan now be given in detail (see 4.5.8 of manual), by means of the

L following steps:

1. For each operand, a model interval of the

appropriate type or subtype is obtained.

6- 2. The mathematical operation is performed on the
model intervals, obtaining a new interval.

L
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3. The interval from the last step is expanded, if
necessary, to a model interval. ]

The model interval obtained from this last step bounds the
accuracy of the operation. ]
Consider the computation of X/Y; X,Y:F and X=15.0 and Y=3.0. Both
X and Y are model numbers (as are all small integers). Hence the
two model intervals obtained from step 1 are Just the two single
values. Step two yields the mathematical result 5.0. Now step 3
gives the model interval consisting of this single value, since
5.0 is also a model number of type F. One can clearly see from
this that computations involving small integer values and giving
small integer values are exact.

Consider now a slightly more realistic example of X'Y, X,Y:F and X
- 0.1 and Y = 10.0

Then X is in model interval 16#0.19999#..16#0.1999A#
and Y is the model number 16#0.A#E1

Step 2 then gives the interval 16#0.FFFFA#..16#1.00004#
Step 3 then gives the model interval 16#0.FFFF8#..16#1.0001#

If the programmer had written O.I*Y in his program, then 0.1 is
converted to the type F by the compiler and hence the same error
analysis applies. Note that the resulting bounds are approximately
symmetric about the correct result, although some actual machines
may produce results with these bounds but with a bias.

Consider another example of X Y, XY:F with X=1.0 and Y=F'SMALL.
Then the interval at step 2 is the single value 1.0 + F'SMALL but
this is widened to the model interval 1.0 .. 1.0 + F'EPSILON. This I
analysis assumes that F'SMALL < F'EPSILON which is a consequence
of fixing the exponent range in relation to the mantissa length.

One situation has not been detailed. In steps 1 and 3 above, it
may be impossible to form a model interval because a value exceeds
F'LARGE in absolute value. In this case, the interval is said to
overflow. When this happens, the NUMERIC ERROR exception may be
raised. It need not be raised because the machine can handle
larger values adequately or because no indication is given by the
hardware. Because these different circumstances cannot be
distinguished, portable software cannot rely upon the
NUMERICERROR exception.

One other operation is available for floating point which is
irregular since the operands are of different types. This is the
exponentiation operator written as *. The left hand operand is
any floating point type and the right hand operand is any, integer
type. The result is of the same type as the left hand operand. The
operation gives the result of repeatedly multiplying the left hand
operand by itself for a positive exporent. The number of



multiplications being one less than the value of the right
operand. A negative exponent gives the inverse of the positive
expoent value. Hence:

X **2 is equivalent to X * X
X **(-2) "1.0/(X*X)

X 001 " X
- X*0 1.0

Hence the semantics of this operation are defined in terms of the

multiplications involved. The compiler can reduce the number of
multiplications by calculating X**4 as (X*X)*(X*X) rather than
(X*X)*X)*X. This gives a faster computation for large values of
the exponent but does not give (in general) more accuracy.

The remaining operations on floating point operands are more
regular than *0 but give a BOOLEAN result. These are the
relational operators. All six relational operators are available~although they must be used with caution, as we shall see.

In comparing two values, everything is straightforward if the two
values are not approximately equal and both are in range (ie

between - F'LARGE and F'LARGE). However, if the two values are
nearly equal, one has a potential problem. Under such

circumstances, the result will depend upon the actual accuracy of
the hardware. The precise formulation of this again depends upon

the use of model intervals as follows:

Firstly, the appropriate model intervals are constructed for each
operand as in the case of the other operations. Then one of five
cases determines the result:

(a) The intervals are disjoint: the mathematical result
is obtained

(b) Each interval is the same single model number: the
mathematical result is obtained

(c) The two intervals intersect in a single model number:
either the exact result is obtained or that of comparing
one operand with itself

(d) The intervals have more than one number in common: the
result is implementation dependent.

(e) One of the two intervals overflows: the result is again

implementation dependent, but the NUMERICERROR exception
can be raised (although it need not).

L
L
I
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These cases are easily illustrated by means of a table with type F
of five digits again.

X op Y case result

0.1 10.1 (a) mathematical result ]
F'SMALL F'SMALL (b) mathematical result

0.1 0.1*F'EPSILON/8 (c) (Intersect at 16#0.1999A#)

mathematical result or
0.1 op 0.1 (:Y op Y)

0.1 0.1+F'SMALL (d) implementation defined ]
F'LARGE -F'LARGE 1.0 (e) implementation defined or

F'L.AGE -NUMERICERROR

0.1 0.1 (d) implementation defined ('1)

Exercises1

With A, B, C:FLOAT;

(A + B) + C = A +-(B + C)?
A + B =B + A?

What is wrong with the following?
A + 12
24'S
CO2.0?

6. Derivation from the hardware types for floating point I
As explained so far, it would appear that an implementation would
have to provide a large number of distinct types for digits N,
N=1..30 (say). However, as is well known, machines typically have
only one or two hardware types. We would appear to have a problem.
However, as defined, an accuracy of N digits can be implemented
with a hardware type having N or more digits of accuracy. Hence,
given a machine with two hardware types of 10 and 20 digits -

accuracy, all the types of accuracy <: 10 would be handled with 10
digits, and the ones with more than 10 and less than or equal to

('1) It might seem odd that 0.1=0.1 is not necessarily true.
The reason is that many machines perform calculations with
more accuracy than results can be stored in main memory.
This is the so-called overlength accumulator. Hence 1.0/10.0
would give more accuracy than 0.1 stored in main memory,
giving the unexpected false to 1.0/10.0 = 0.1.
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20 digits with 20 digits of accuracy. The vital fact which permits
this is that the model numbers for accuracy of digits N are model I
numbers for all larger accuracies.

The hardware types have conventional names, namely SHORT FLOAT,
FLOAT and LONGFLOAT. Of course, if there are only two hardware
types, the names actually in use will depend upon the
implementation. A valid Ada system could have no such types if the
target hardware provides no approximate facilities. Assuming that
floating point is provided, then type FLOAT should be available.
Hence, if one is not concerned with control of accuracy for small
amounts of code, then one can just use the type FLOAT. Direct use
of the hardware types is not to be recommended since it is clearly
machine dependent. However, if it is necessary to implement basic

-software effectively to augment the hardware, then such machine
L dependence is needed. Note that the attributes of FLOAT

(SHORTFLOAT and LONGFLOAT) characterise the machine.

tGiven
type F is digits D;

such that F is implemented by the hardware type FLOAT, we say that

F is derived from FLOAT which is written in full as

Ftype F is new FLOAT digits D;

The full form is not appropriate in most cases, since on another
system F could be implemented by SHORT FLOAT. Hence the short form
of declaration is to be preferred to-increase portability. Even
with the long form, F'DIGITS = D and this is not necessarily equal
to FLOAT'DIGITS. Given either form of declaration, it is
occasionally necessary to access the characteristics of the
implemented type. This can be done by means of the notation

T F'BASE'DIGITS meaning FLOAT'DIGITS etc.

The advantage of the 'BASE notation is that it is possible to
exploit the additional fortuitous accuracy provided by the
implementation. Consider for instance the summing of a series T(I)
until convergence is obtained:

SUM := 0.0;
while ABS(T(I)) > F'EPSILON * SUM loop

SUM := SUM + T(l);
7 1 := I+ I;

L end loop;

As written it will stop summation appropriate to the declared
properties of F. However, on a particular machine more accuracy
might be obtained by writing F'BASE'EPSILON - going further than
that would be pointless. Of course, a numerical analyst would sum

T such a series from the smallest term upwards, but the principle

L

Ir-L
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remains the same.

Exercises

What is the relationship between F'DIGITS and F'BASE'DIGITS?

What is the relationship between F'LARGE and F'BASE'LARGE?

If F'DIGITS z G'DIGITS does F'BASE'DIGITS = G'BASE'DIGITS?

7. Fixed point data types

With fixed point data types, the user specifies the maximum
acceptable absolute error bound. It is also necessary to specify
the total range of values that must be covered, since the range
and the error bound are required to determine the representation
of values. A fixed point data type has the form:

type FX is delta D range L .. U;

where the D. L and U are static real expressions. All three values
can be accessed as attributes of the fixed point type:

D = FX'DELTA, the absolute error bound,
L = FX'FIRST, smallest value of the type,
U = FX'LAST, the largest value of the type. 7

The type definition, together with a possible representation
specification determines the set of model numbers of the type. The
model numbers of the type are integer multiples of a value called
the actual delta, which is an attribute of the type
(=FX'ACTUAL_DELTA). This value is smaller than or equal to
FX'DELTA so that values can be represented to within the accuracy 7
specified. The range of integer values for the model numbers must
be sufficient to be within FX'DELTA of both L and U. In an
analogous way to the mantissa for floating point, the integer
multiple (including the sign) is assumed to have a total range of 7
-2e*N+1.. 2*eN-1 for some N. Hence to summarise, the model numbers
are:

sign * multiple 0 FX'ACTUALDELTA

where 0 <= multiple <= 2 ** N - 1 (for some N).

There are some essential differences here between fixed point and
floating point. In floating point, some values such as 1.0 are
always model numbers. This is not the case with fixed point. The
value 1.0 could be less than FX'ACTUAL DELTA and in consequence
represented as 0.0. Conversely, 1.0 could exceed the range of
values of the type and hence use of such a value could raise
CONSTRAINT ERROR. In general, unless a representation
specification has been given which explicitly states the value of
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ACTUA. DELTA, the model numbers are unknown. Hence one cannot
assume that certain values, such as powers of two which are in

range. wtil be represented exactly.

Let us now consider a practical example. The need is to process
data which has an observational error of 0.01 and a range of 0.0
to 100.0. To ensure the ability to hold negative values, the type
definition could be

type F is delta 0.01 range -100.0 .. 100.0;

A typical implementation could then choose a power of two for the
ACTUAL DELTA. This could be 1.0/128 or a smaller power, depending
upon the word length of the machine. In this case, assume that
F' ACTUAL DELTA = 1.0/128. Then the model numbers are multiples of -'
this value to a limit which must be at least within the range
-100.0 * 0.01 .. 100.0 - 0.01. Since the multiples are a power of
two. the model numbers are:

M * 1.0/128 where -2"*14 < M < 2**1.
Hence the largest model number is 128.0 - 1.0/128. This model
number is outside the range of the type and in consequence cannot

be assigned to values of type F.

Ordinarily, the ACTUAL DELTA value is choosen by the compiler, the
only constraint being that it must be less than or equal to the
delta for the type. In a respresentation specification, the user
may specify the ACTUALDELTA value. By such a specification, the
representation of values can be constrained to conform to external
requirements. For instance, if an analogue to digital converter
from a camera places values in the memory of the computer, it is
important that the Ada program should use the same representation.

Consider the case when values 0 to 127 are input in binary, but
these are regarded as fractions of unit intensity from 0.0 to[127.0/128. Then one might have:

type INTENSITY is delta 1.0/128 range 0.0 .. 127.0/128;
for INTENSITY'ACTUAL DELTA use INTENSiTY'DELTA;

for INTENSITY'SIZE use 7;

Note that -1.0/128 is a model number of the type but that it
cannot be stored in values because of the range constraint and in
consequence, the sign is not needed in the representation.

rAs a further example of a representation specification, consider
L handling a type analogous to DURATION in Ada ie, timing intervals.

The obvious representation is in clock ticks so that the

ACTUAL DELTA value might be 1.0/60 seconds. The programmer would
wish t7o work in seconds to avoid changing the program to work in
Europe (with 50 cycle mains supply). Hence one might have:

.

p

Ii
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type DURATION is delta 1.0/60 range -24.0 .. 24.0;
for DURATION'ACTUALDELTA use DURATION'DELTA;

The special attributes of a fixed point types are as follows:

F'DELTA: A real literal value equal to the value of - 7
the expression after the 'delta'. In this case the
value is 0.01.

F'ACTUAL DELTA: The real literal value used by the ]
implementation as the constant for the multiples
which give the model numbers. In this case the

value is 1.0/128 z 0.0078125.

F'BITS: This is the number of bits needed to
represent the unsigned model numbers. In this

case, 7 bits is required before the point and 7 I
bits after making 14 in all, ie F'BITS=14. The
value is that of the integer literals (see section 7

9).

F'LARGE: The largest model number of the type F. In
this Case the value is 128.0 - 1.0/128 =

127.992175. The value has the same type as that of
real literals. In general, one has
F'LARGE = (2**F'BITS - 1) * FACTUALDELTA. -

Subtypes Of fixed point types can be declared explicitly or

implicitly by giving an accuracy constraint on the declaration of
a variable. In an exactly analogous way to floating point, there
is no run-time check for an accuracy constraint for fixed point.
Consider:

subtype SF is F delta 0.02; -.

Note that the range constraint is not needed since the range of -,

values is determined from the type definition (-100.0 .. 100.0 in
this case). This subtype definition means that the set of model
numbers is correspondingly reduced by the value SF'ACTUALDELTA
being a binary power multiple of F'ACTUAL DELTA. In this case,
with F'ACTUAL DELTA = 1.0/128, SF'ACTUAL DELTA could be 1.0/64.
The implementation need not reduce the- model numbers for a
subtype. For this reason, it is not permitted to set the
ACTUALDELTA for a subtype in a representation specification.
Hence the only action required by the compiler for the above
subtype declaration is to check that the expression after delta
has a value greater than or equal to F'DELTA. If an implementation
does reduce the model numbers for a subtype, then the values

SF'BITS and SF'LARGE reflect the value of SF'ACTUALDELTA.



Exercises

Civen: type FX is delta D range L .. U;

(a) Are D, L and U model numbers?

(b) Can the range constraint be omitted?

(c) If L < 1.0 < U, is 1.0 a model number?

What is wrong with the following?

(d) type FD is delta 0.01 range 0.0 .. SQRT(2.0);

(ej type FE is delta 0.01 range 0 .. 10;

(f) type FF is delta 10.0 range 0.0 .. 100*FFYDELTA;

8. The predefined fixed point operations

With floating point, the specification of each operation was
Leasy since with the exception of **, the type of the operands and

the result was the same. It is easy to see that in general this is
not possible with fixed point. The rescaling of intermediate
results is done by explicit type conversion. This rescaling is
only essential on multiplication and division since the magnitude

rof values only changes significantly with these operations.
The operations which do not involve rescaling are tabulated below.
Here X is of any fixed point type and I of any integer type, the[result always being the same as X.

Example meaning

+ X no operation
- X change sign
X + X addition

_ X - X subtraction
I * X equivalent to repeated addition
X * I equivalent to repeated addition

LABS(X) absolute value
X / I division without rescaling

r Now consider some examples of the calculation of error bounds for
computation using the same example type F as above:

type F is delta 0.01 range -100.0 .. 100.0;

Given

ONE : F := 1.0;
then it is not safe to assume that ONE is represented exactly

L_
U
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unless it is known that F'ACTUAL DELTA is a submultiple of 1.0. An
implementation is free to truncate or round a constant on
conversion to F, and in consequence all one can say is that 1
ABS(ONE-1.0) <= F'DELTA. To simplfy the remaining discussion,
assume that F'ACTUAL DELTA is 1.0/128, Then, of course, 1.0 is a
model number and therefore is stored exactly. Now consider

TENTH : F := 0.1;
Here the value is bounded by the model interval 12.0/128
13.0/128, and could be either of the two extremes or a value in
between. Now consider the expression 10TENTH. This is equivalent I
to repeated addition and in consequence can yield any value in the
interval 120.0/128 .. 130.0/128. Of course, on a binary machine,
the expression will never yield 1.0 exactly since 0.1 has a
recurring binary representation.

The fixed point operations follow the same logic as for floating
point as far as the definition of error bounds is concerned. In 2
consequence, all of the operations above except, possibly,
division by an integer, will yield exact results for multiples of
F'ACTUALDELTA assumming the result is in range. Since in some
cases, the implementation will not have values between model
numbers, this implies that all these operations are exact. In
fact, values between model numbers can only arise from division by
an integer, from constant, and type conversions from other types. L
The nature of the inexact operation can be illustrated from

X: F := 10.1;
Y: F X/2; J

The X value is bounded by the interval 1292.0/128 .. 1293.0/128.
The Y value is then bounded by the interval 646.0/128
647.0/128. fence multiplication of Y by 2 will yield a larger
bounding interval than that of X. If, of course, one knew that X_
was equal to an even multiple of F'ACTUAL DELTA, then Y := X/2;
and X := Y*2; would leave X unchanged. ('1) The model nimbers for
an integer type in fixed point operations are just the integers
themselves.

The rescaling operations are general fixed point multiplication
and division. The operands are of any, possibly distinct, fixed I
point types. Consider the types:

type F is delta 0.01 range -100.0 .. 100.0;
type G is delta 1.0 range -10000.0 .. 10000.0:

Given F1,F2:F, consider the product Fl * F2. This product is very
likely to overflow the range of F and hence in general it cannot
be considered to be of type F. Using the intuitive concept of
formats, it is quite clear that a product has a different format.

(1) If the statements Y:=X/2; X:=Y'2; appeared in a
program, compiler optimization could give the exact result
in all cases (since CONSTRAINT ERROR cannot arise,
optimization is safe).
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On the other hand, given G1:G, it is clear that one should be able
to assign the product to GI without overflow. In Ada, the product
is regarded as Universal Fixed - a hypothetical type of
arbitrarily high accuracy. This type does not have an Ada name so
that no variables can be declared of this type. All that can be
done with such a product is to convert it into another type. In

this case, one can write:
G1 := G(F1 0 F2);

To calculate error bounds, the operation is regarded as a whole:
ie calculating the product and the conversion. Assuming that
F'ACTUALDELTA = 1.0/128 and G'ACTUALDELTA z 1.0, then one has:

F1 1.0 10.0 10.1

F2 2.0 0.1 10.1

bounds on F1
1.0..1.0 10.0...0 1292.0/128..1293.0/128

bounds on F2
T- 2.0..2.0 12.0/128..13.0/128 1292.0/128..1293.0/128

bounds on F1*F2
2.0..2.0 120.0/128..130.0/128 101.88 .. 102.04

bounds on G1

2.0..2.C 0.0 .. 2.0 101.0 .. 103.0

In this case, the error bounds are about 2 units in the resulting
type. Clearly, if the operands have high accuracy as well as the
resulting type for the product, then no accuracy need be lost.

Fixed point division works in the same way with the requirement to
convert to result of the operation. Naturally, if the right hand
operand has a small value, then substantial inaccuracies can
occur.

Exercises

(a) Given a fixed point type with a range of positive values only.
can the function ABS have any use?

(b) Should an implementation limit the smallness of the delta
value?

(c) What purpose does the 'DELTA value serve if errors are bounded
by multiples of 'ACTUALDELTA?

(d) Given type FD is delta 0.01 range -1.0 .. 1.0;, and assuming
FD'ACTUAL DELTA 1,0/128, and X 0.1, calculate the error bounds

L



- 24 - ]
242

on:
Y on 0.6 + FD(O.2*X) FD(0.1*FD(X*X));and on]
Y := FD((FD(0.1*X) + 0.2)*X) + 0.6;

9. Literal expressions .

In the preceeding sections one problem has been avoided,
namely, the type of a numeric literal. It has been noted tnat
literals are implicitly converted to the type required by the
context. This implicit conversion can lose accuracy and can also
raise the exception CONSTRAINTERROR if the value exceeds the
implemented range of the type.

Integer literals are regarded as being of type Universal Integer
and real literals of type Universal Real. The names of these types
are not available as Ada names and in consequence, cannot be used
to declare variables etc. However, it often happens, especially
with fixed point working, that there are relationships between I
literal values which cannot be easily expressed be means of typed
expressions. Ada therfore allows for the evaluation (by the
compiler) of literal expressions. Hence, wherever Ada permits an
integer expression 1+1 (say), can be written. Each literal 1 is of
type Universal Integer and the "+" is evaluated by the compiler
independently of the context. Consider the following:

type INT is range -10 .. 10;
TEN: constant INT := 10;
THOUSAND: constant := 1000;
I : INT;

I := TEN; -OK

I : 1000 * TEN; - (1)
I :: THOUSAND - THOUSAND; - (2) OK I := 0;
I :2 THOUSAND - 1000; - (3)

In case (1), the actions are as follows: 1000 is implicitly
converted to INT, the INT "*" operation is applied, the result is
checked for range, and lastly the assignment is performed. In this I
case, the first step fails as 1000 is not within the range of the
type, and hence CONSTRAINTERROR is raised.

In cases (2) and (3), the result is to assign zero to I since the
subtraction is that of Universal Integer which is performed by the
compiler (within an unbounded range).

Similar remarks apply to real literal expressions:

type F is digits 5;
RATIO: constant F := 3.14;



P: constant 3.14159_26535;
F! : F;

F1 2.0 * PI; - Universal Real multiplication

F1 2.0 * RATIO; - Multiplication of type F

F1 :: 1.0E200 - 10.0 * 1.0E199;
- Literal expression value 0.0
- no overflow possible

Of course, with both Universal Integer and Universal Real, a
compiler will have some limitation in the size of values and
accuracy respectively. These limits should not be of any practical
significance and in consequence will be larger than any
implemented type available on typical target machines.

The type Universal Real is not strictly a floating point or fixed
point type but has the functionality of both. In consequence, all
the following operations are legal as illustrated by the number
declarations:

ADD: constant := 1.0 + 3.0;
SUB: constant := 6.0 - 8.0;
PLUS: constant := +12.0;
NEG: constant :: - 8.4;
MULTI: constant := 2 * 3.0;
MULT2: constant :4 1.0 10;

L. MULT3: constant :: 5.0 10.1;
DIVi: constant :: 10.0/2;
DIV2: constant := 10.0/2.0;
EXP: constant := 3.0 ** 2;LhABSI: constant := ABS(6.0):

The relational operators are also available for Universal Real
giving the BOOLEAN result as usual. The semantics of these
operations is the same as that for the typed operations except
that the model intervals are smaller than any implemented real
type. Intuitively, one can envisage a compiler storing values in a
floating point type of high accuracy.

[Exercises
Are the following literal expressions?

(a) F'DIGITS + 10
(b) FX'DELTA / 10.0

r (c) FX'LAST - 0.1
(d) 1/FX'ACTUAL DELTA
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10. A floating point example, Blue's algorithm

Blue's algorithm [5] is for the calculation of the Euclidean ]
norm of a vector (ie square root of the sum of the squares of the
elements). It is a natural extension of the calculation of
SQRT(AO*2+B'*2) which was used above. The algorithm is very
carefully written to avoid overflow and underflow and also to
guarantee the precision of the result. Hence it is a good example
of a high-quality algorithm (orginally written in FORTRAN). The
paper itself should be studied for the numerical analysis ]
involved.

The paper presents the algorithm in two forms: a mathematical
formulation using Greek letters and conventional notation; and a
formulation in RATFOR, a FORTRAN preprocessor. The major
differences between the RATFOR version and that for Ada below are
that the Ada version works for any implemented precision and does
not depend on an additional subroutine to set critial constants.
In Ada, these constants are model numbers and hence the definition
of the language guarantees that the values are set correctly from ]
the predefined attributes.

The identifiers used are those of the RATFOR implementation, but
in upper case. In practice, longer identifiers that show the
relationship to the mathematical formulation of the algorithm
would be preferable.

The function itself, called NORM must assume an appropriate
context for the types of its parameters and for the SQRT routine.
This context is: ]

type REAL is digits D;
type VECTOR is array (INTEGER) of REAL;
function SQRT(X: REAL) return REAL;

The body of the function can now be given. The main logic is to go
once through the vector accumulating three sums according to the
magnitude of each element. The three sums are then scaled as
appropriate to give the final answer.

function NORM(X: VECTOR) return REAL is

- calculate constants which depend upon REAL.
- Floor and ceiling functions of the paper avoided
- by using the truncation of integer division.
EBI: constant := (REAL'EMAX * 1)/2; - -(exponent of BI)
B1 : constant REAL := 2.0 **(-EB1); - model number of REAL

EB2: constant := (REAL'EMAX - REAL'MANTISSA + 1)/2;

B2 : constant REAL := 2.0 ** EB2;

ESiM: constant := REAL'EMAX/2 + 1;
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S1M : constant REAL := 2.0 *' ES1M;

ES2M: constant := (REAL'EMAX + REAL'MANTISSA + l)/2;
S2M : constant REAL := 2.0 *4 (-ES2M);
OVERFL: constant REAL := REAL'LARGE S $2M;

- this value can be calculated oy the compiler

RELERR: constant REAL :: SQRT(REAL(REAL'EPSILON));
- Conversion necessary as 'EPSILON is a literal.
- Note that this value must be calculated dynamically.

ABIG, AMED, ASML: REAL := 0.0; - the three accumulators
AX: REAL;
N: constant INTEGER := X'LENGTH;

begin
- size of array = 0 is not special case in Ada (unlike FORTRAN)
if N > 2**REAL'MANTISSA thenr raise CONSTRAINTERROR; - not clear how to handle this case
end if;
for J in X'FIRST .. X'LAST loop

AX := ABS(X(J));
if AX > B2 then

LABIG := ABIG + (AX * S2M)*0 2;
elsif AX < B1 then

ASML := ASML + (AX * S1M)**2;
else

AMED := AMED + AX**2;
r- end if;

end loop;
L. if ABIG > 0.0 then

ABIG := SQRT(ABIG);
if ABIG > OVERFL then

return REAL'LARGE; - can't raise NUMERIC ERROR as well as
- returning a result

end if;
if AMED > 0.0 then

ABIG ABIG / S2M;
AMED := SQRT(AMED);

else
return ABIG/S2M;

end if;

r- elsif ASML > 0.0 then
L_ if AMED > 0.0 then

ABIG := SQRT(AMED);
AMED := SQRT(ASML)/SlM;

[else
return SQRT(ASML)/S1M;

end if;
else

return SQRT(AMED); - the standard path
end if;

if ABIG > AMED thenLASML := AMED;

[



- 28 -

else
ASML :- ABIG;
ABIG :z M4ED; I

end if;
if ASML <= ABIG * RELERR then

return ABIG;
else I

return ABIG * SQRT( 1.0 * (ASML/ABIG)**2);
end if;
end NORM; - ('1)

The algorithm is not completely satisfactory in the sense that
although it will work for any real type, the algorithm uses only
the Ada properties of the type. By replacing each occurance of
'REAL by REAL'BASE, the algorithm would use the properties of the
implemented type. With such a replacement, there would only be one
effective version of the function for each of the hardware types. ]
Further 'improvements' can be made by exploiting specific
machine-dependent properties of the type (see section 13).

11. A fixed point example

A common requirement in fixed point is to mimic floating point
to conserve either time or space. The evaluation of a polynomial
is sometimes used to approximate a function. Such polynomials are
typically truncated power series which rely upon the decreasing I
contributions from the higher order terms. Given:

Y := A + B*X + C*X**2 + D*X**3;
the most effective evaluation method is nested multiplication, ie

Y := ((D*X + C)*X + B)*X + A; I
As X is small, with floating point, the normalization on the
addition of A is the only source of rounding error. With fixed
point using a pure fraction as the data type, each partial product I
can be calculated with minimal errors so that the resulting error

is again minimised. Note that performing the calculation in
polynomial fashion both involves more operations and is, in
general, less accurate.

To illustrate the use of fixed point for approximation, the
calculation of the sine and cosine functions is given from Cody
and Waite [6]. It is assumed that floating point is expensive on
the target machine and therefore the major computation uses fixed
point. The algorithm illustrates a number of other features
including type conversion, literal expressions, integer type
definitions and conditional compilation. The algorithms given in
[61 include a number of options which would ordinarily be chosen
by the implementor. Some of the choices in this case are inserted
into the algorithm so that the compiler selects the necessary
code.

(1) Not yet tested with an Ada compiler
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In order to correspond to conventional usage, the routines SIN and
COS are coded for the type FLOAT. No assumptions are made about
the type except that integer and fixed point types are available
with sizes about the same as the mantissa length of the type
FLOAT.

The argument reduction is a difficult aspect of sine and cosine.
The constants Cl and C2 (whose sum is PI) are used for this in the
way recommended for a machine without guard digits on floating
point. The code illustrates that compiler "optimization" of
floating point can be very unsafe.

package SINCOS is
function SIN( X: FLOAT) return FLOAT;
function COS( X: FLOAT) return FLOAT;

end SIN COS;

-- package body SINCOS is
PI: constant := 3.14159_26535_89793_23846;

L PI DIV 2: constant :% PT/2;

ONE DIT PI: constant := 1.0/PI;
SGN-POS- BOOLEAN;

L. Y: FLOAT;

procedure COMMONPART( X: FLOAT );

function SIN( X: FLOAT) return FLOAT is
begin

rif X < 0.0 then
SGNPOS := FALSE;

Y :- - X;
elseF SGNPOS := TRUE;

Y :Z X;
end if;
COMMON PART(X);
return-Y;
end SIN;

function COS( X: FLOAT ) return FLOAT is
- begin

SON POS := TRUE;
Y := ABS(X) + PIDIV 2;F COMMON PARTX;
return Y;

' end COS;

procedure COMMONPART( X: FLOAT ) is
B: constant := FLOAT'MANTISSA;

L type INT is range 0 .. 0 2e(B/2);

YMAX: constant INT := INT(PI'2'0 (B/2)+0.5);I
I
L
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N: INT;

X1. X2. XN, F: FLOAT;
Cl: constant FLOAT := 8#3.1104#;
C2: constant FLOAT :: -8.9089_10206_76153_73566_17E-6;
EPS: constant := 2.0 ** (B/2);

D: constant := 2.0 *, (-B);
type FR is delta D range -1.0 D 0 .. 1.0 - D;
G: FR; ]
begin
if Y >= FLOAT(YMAX) then

raise CONSTRAINT-ERROR;
else

N :=INT( Y * ONEDIVPI);
XN := FLOAT(N); j
if N mod 2 = 1 then

SGN POS := not SGN POS:
end if; -
if ABS(X) /= Y then

XN := XN - 0.5; - COS wanted
end if;
Xl FLOAT(INT(ABS(X)));
X2 := ABS(X) - X1;
F := ((Xl - XN*Cl) + X2) - XN*C2;
if ABS(F) < EPS then ]

Y := F;
else

G FR(F/2.0);
G FR(G * G);
if B <= 24 then

Y := FLOAT(
FR((

FR((
FR(O.0066_60872 ' G)

- 0.01267 67480) * G)
0.13332 8T022) * G)

- 0.66666_62674) * G)

elsif B <= 32 then
Y :FLOAT(

FR((
FR((
FR((

FR((
FR(-O.0000244411_867 * G)

+ 0.00070_46136 593) * G)
- 0.01269_81330_068) * G)

* 0.13333__32915 289) * G)
- 0.66666_66643530) G)



elsif B <= 50 then
Y FLOAT(

FR((
FR((

FR((
FR((

FR((
FR((

FR(-O.00120_76093_891E-5 * G)
+ 0.06573 19716 142E-5) * G)

- 0.00002 56531 784 674) * 0)
- 0.00070 5673 00385 092) * G)

- 0.01269 81126 86862 404) - G)
+ 0.1333333333_32414_742) * G)

- 0.66666_66666_66638_613) * G)

elsif B <= 60 then
Y FLOAT(

FR((
FR((

FR(
L FR((

FR((
FR((FR((

FR(0.0000178289_31802E-5 * G)
- 0.00125 22156 53481E-5) G 0)

+ 0.06577 7Z038 6Z562E-5) * G)
- 0.00002 56533 57361 43317) 4 0)

+ 0.00070_.14673_7-1779§_-1056) * G)
- 0.01269 84126 98369 17789) G)

+ 0.13333 33333 33330 6M050) * G)
- 0.66666_66666_6666_60209) a G)

else
raise CONSTRAINTERROR;

end if;
Y := F + F*R;

end if;

if not SGN POS then
Y := -7y;

end if;

end COMMONPART;

r- end SIN COS; - (p1)

L

[(01) Not yet tested with an Ada compiler

I
L
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12. The complex data type - an example of generics

An essential difficulty with both fixed point and floating ]
point subroutines is that they can only be used with one type -
and in consequence one accuracy. Usually, the text of a subroutine
will be more general than this although when it is compiled, it
will be for a specific accuracy. The full generality of the source
text can be exploited by means of generics. The numeric types are
made generic parameters so that specific instantiations give any
specific accuracy (supported by the implementation).

As an example of generics, the package for providing complex data
types is used. This is very similar to the rational number package ]
given in the language reference manual (which does not use

generics).

generic ]
type REAL is digits 0; - matches any floating point type

package COMPLEX OPS is
type COMPLEX is record

RE, IM: REAL;

end record;
function "-" ( X: COMPLEX) return COMPLEX;
function ABS( X: COMPLEX) return REAL;
function X ( , Y: COMPLEX ) return COMPLEX;
function "-" ( X, Y: COMPLEX ) return COMPLEX;
function "' ( X, Y: COMPLEX ) return COMPLEX;
function "/" ( X, Y: COMPLEX ) return COMPLEX;

end COMPLEXOPS; --

The package body does not repeat the generic parameters, and could -)
be:

-J

with MATH LIB;
package body COMPLEXOPS is

function "-" ( X: COMPLEX) return COMPLEX is
begin
return C - X.RE, - X.IM );
end "-";

function ABS( X: COMPLEX) return REAL is
A, B: REAL;
begin
if ABS(X.RE) > ABS(X.IM) then

A := ABS(X.RE);
B := ABS(X.IM);

else
A := ABS(X. IM);
B :: ABS(X.RE);

end if;
if A > 0.0 then



return A M .ATH _.IB.SOPT(1.0 + (S/A)**2);

else
return 0.0:

end if;
end ASS;

function " " ( X, Y: COMPLEX ) return COMPLEX is

begin
return ( X.RE + Y.RE, X.1.M + Y.TM );
end f.1+.

function "-" ( X, Y: COMPLEX ) return COMPLEX is
begin

return ( X.RE - Y.RE, X.IM - Y.TM );
end "-;

L. function "" ( X. Y: COMPLEX ) return COMPLEX is
begin

return C X.RFOY.RE - X.IMOY.tM.

X.IM*Y.RE + X.RE*Y.IM );
end ,,*,,.

function "/" ( X, Y: COMPLEX ) return COMPLEX is
A: REAL := Y.RE**2 + Y.IM**2;
begin

return C (X.RE*Y.RE + X.IM*Y.IM) / A,

(X.IMOY.RE - X.RE*Y.TM) / A );
end "/" ;

[ end COMPLEXOPS; - ('1)

[ 13. Portability Issues

The Ada language does not aim at eomplete portability. To do so
would mean that it would be impossible to write machine-specifir!

code such as that illustrated in section 11. Also, the differenoes
in actual hardware does not make portability achievable at
acceptable costs. Ultimately. tho flai.ing point addition of a
machine is defined hy the mintocode, which cannot even bo

characterized by a few simple parameters. Hene programmers tiped
to be aware of potential portahility prhlems so that node is not[ needlessly machine-specific.

Integer Types.
New types should be introdiined for reasons ,of abstraction and
modularization. It is particularly important to introduce newU9
integer types in handling large ranges ( > 16 bits) since thepn
may not be supported, or will have some -ianificant penalty. If q
large integer type is only used in one small routine, then
recoding is much simpler than if INTEGER is used thoughout (and

U(01) Not yet tested with an Ada nompiler

U,
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only during execution it is found that one routine assumes
INTEGER'LAST > 2e*16).

A trap for the unwary is that intermediate results in an
expression of type T can exceed the range T'FIRST..T'LAST. In
consequence, portability is not assured since on other hardware T
may correspond exactly to the range of a hardware type. Diagnostic
compilers can trap this condition and cause NUMERIC ERROR to be
raised at run-time. Of course, the values for which NUMERIC ERROR
is raised is again dependent upon the hardware. On some machines,
calculations are done to 32 bits but stored values are 16 bits

giving the overlength accuirulator problems analogous to floating
point.

Floating Point Types.
Similar difficulties arise with the handling of NUMERIC ERROR for
floating point. The actual range of the implemented type-is likely
to exceed the range -F'LARGE .. F'LARGE due to having a larger
exponent than that guaranteed by Ada. A machine may have

'infinite' values such as those of the IEEE standard (7], in which 1
case substantial care is necessary to ensure such facilities are
avoided or used in a portable fashion. For this reason, the values
F'FIRST and F'LAST should be avoided. It must be remembered that
the NUMERICERROR exception might never be raised.

Explicit use of the type FLOAT should be restricted to small
sections of code. It would be reasonable to assume that FLOAT has J
5 digits of precision. Of course, some machines may not have any
floating point. Apart from the use as a tool for abstraction, new
types should be introduced when different accuracies are needed.
The use of accuracy constraints in subtypes should only be j
regarded as a comment, rather than attempting to rely upon
sophisticated optimization.

A set of machine specific attributes for floating point is
available which, if used, is unlikely to give portable code. For
this reason, these attributes have names beginning with MACHINE_.
They are as follows:

F'MACHINE RADIX. This is the radix used to represent
machine values. To support the Ada model of
floating point properly, it must be a power of 2.
It is 16 for the IBM 360/370 and 2 for the IEEE
standard.

F'MACHINE MANTISSA. This is the mantissa length in
radix units. It is at least conceivable that there
is not a whole number of radix places in the
mantissa, although the value is defined to be an
integer.

F'MACHINE EMAX. The maximum exponent value in radix
units. (So F'MACHINERADIX ** F'MACHINEEMAX is



approximately the largest machine number.,

F'MACHINE EMIN. The minimum exponent va.ue in radix
units.

F'MACHINE ROUNDS. A BOOLEAN value which is true only
if all floating point operations perform true
rounding, such as that of the IEEE standard.

F'MACHINE OVERFLOWS. A BOOLEAN value which is true
only if the NUMERIC ERROR exception is raised
whenever the result of an operation cannot be
represented with the usual precision due to
exceeding the range of machine values.

With cane, the MACHINE RADIX value can oe uses to overcome the
problem of 'wobbling precision' and the attribute
MACHINE OVERFLOWS can be used to provide an alternative coding
which relies upon the NUMERICERROR exception. Note that one
cannot easily determine the largest and smallest positive machine
values due to the differences between i's and 2's complement
arithmetic, underflow etc.

Fixed Point Types.
A similar remark applies to fixed point about not relying upon
values outside the range -LARGE..LARGE. A program can also depend
upon the arithmetic of the machine. With a pure fraction, on a 2's
complement machine, -1.0 is a machine number but 1.0 is not,
whereas neither are machine values on a i's complement machine.
Although it is highly likely *that the default value for
ACTUAL DELTA will be a power of two, the program should not rely
upon this.

In the same way that one should not rely upon the existance of
floating point with a large number of digits, so with fixed pointLone should not expect very high precision (exceeding 32 bits,
say).

rFixed point types have the attribute FX'MACHINEROUNDS which is

true only if all the operations perform true rounding.
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Answers to exercises

Page 5 (section 2)

16#FF# = 15 0 16 15 = 240 15 = 255 j
4#1.01#E2 = 4#101.0# = 4.0 " 2 + 1.0 a 17.0
3#0.1# = 3.0 0e (-1) = 0.33333 (no exact decimal equivalent)
8#0.1# = 8.0 ** (-1) = 0.125 j
16#0.8# = 8* 16.0 ** (-1) = 0.5
16#0.999999 ... # = 9.0/(16-1) = 3.0/5 = 0.6
3. 14 - no underscore after decimal point I

4# 0.1#2 - no underscore after sharp
16#FF#E-1 - not integer valued and no decimal point
8#0.9# - 9 not a radix character.

Page 7 (section 3)

(a) Next model number above 1.0 is 16#0.8001# * 2
=16#1.0002#

(b) Next model number below 1.0 Is 16#0.7FFF8#
= 16#0. FFFF#

(c) The ratio is 2.0 which is the radix.

The rational numbers which cannot be represented exactly are those
with recurring binary representation.

Page 13 (section 4)



Not necessar'ly, If F'DIGITS 14 then F'MANTISSA -- 7 but
G'DIGITS = 7 gives G'MANTISSA = 24.

X = F'LARGE since 1.O/F'LARGE > F'SMALL and hence does not
unoerflow. Of course. the actual machine may permit larger and
smaller values without over/under flow.

Page 16 (section 5)

(A*B) C=AA(B+C) is nor. necessarily true since floating point
addition is not associative. For values A, B and C which are model
numbers such that the true sum (and partial sums) are model
numbers, the result will be true.

A+B=B+A is usually true but is not necessarily so. A+B could be
calculated in the accumulator of the machine and then stored while
B A is evaluated in the accumulator. The comparison may then fail
if the accumulator gives more precision than that of stored
values.

A + 12 - 12 is not real, must write A + 12.0
- 24 13 - 24 is not real, must write 24.0 * B

C 2.0 -- exponent must be integer, hence should be C*r2

- Page 18 (section 6)

F'BASE'DIGITS >= F'DIGITS

F'BASE'LARGE >= F'LARGE

Not necessarily, since if the shor.t form is used (without new),
the compiler is free to choose the hardware type which need not be
the same.

Page 21 (section 7)

(a) Not necessarliy, but there must be model numbers close to L
L. and U.

(b) No, it is required to determine the representation.
(c) Not necessarily, if the actual delta is not a submultiple of
1.0, then 1.0 will not be a model number. The actual delta value
could exceed 1.0.
(d) The range must be static, hence the call of SORT is not
permitted.

L (e) The range is a real range and hence should read "0.C .. 10.0".

(f) The attribute 'DELTA is not defined until the end .f the type

definition and hence cannot be used within the definition.
L

Page 23 (section 8)

(a) Yes, values of the type always include negative values since
model numbers can be negative. These negative values may cause
CONSTRAINT ERROR on assignment. If the sign of a small value is in[ doubt, ABS-can be used before assignment.

tF
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(b) There should be no practical lower limit. An implementation is
likely to limit the number of model numbers for a type so that
values can be held in one or two words. Hence if the delta value ]
is very small, the L and U values should be also.

(c) Since 'DELTA >= 'ACTUAL DELTA. the bounds can be expressed in
terms of DELTA (ie the type definition).
(d) In both cases, 0.6 is of type FD and bounded by 76.0/128 1
77.0/128. The constants 0.1 and 0.2 are Universal Real and in the
first case are held to the relative accuracy of FD ie. 7 bits.
This implies that 0.1 is bounded by an interval of width
1.0/(80128) and 0.2 by an interval twice that width.

CASE 1
0.6 bounded by 76.0/128 .. 77.0/128
FD(O.2*X) bounded by 2.0/128 .. 3.0/128
P:FD(X*X) bounded by 1.0/128 .. 2.0/128
FD(0.1eP) bounded by 0.0/128 .. 1.0/128 ]
Y bounded by (76.0+2.0+0.0)/128 .. (77.0+3.0+1.0)/128

- 78.0/128 .. 81.0/128

CASE 2
QZFD(0.1X) bounded by 1.0/128 .. 2.0/128
R--Q + 0.2 bounded by 26.0/128 .. 28.0/128
T=FD(ReX) bounded by 2.0/128 .. 3.0/128 ]
Y=7+0.6 bounded by 78.0/128 .. 80.0/128

The effectiveness of nested multiplication increases with the ]
number of terms, as can be seen from the relative error of the
higher order terms.

Page 25 (section 9) 1
(a) Yes, F'DIGITS is Universal Integer.
(b) Yes, FX'DELTA is Universal Real.
(c) No, FX'LAST is of type FX.
(d) No, UniversalInteger/Universal Real is not permitted.
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