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ABSTRACT

Algorithms for solving the isotonic regression problem in

two dimensions are difficult to implement because of the

large number of lower sets present. Here a new algorithm for

solving this problem based on a simple iterative technique

proposed and shown to converge to the correct solution ;3%
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1. INTRODUCTION. Algorithms for calculating the least

squares isotonic regression function have received a great deal

of attention in the literature and six such algorithms are dis-

cussed in Section 2.3 of Barlow, Bartholomew, Bremner and

Brunk (1972). In situations where there is one independent

variable all of the algorithms work very efficiently. Perhaps

the most widely used algorithm is the "pool adjacent violators

algorithm" which is applicable only in the case of a simple

linear ordering or an amalgamation of simple orderings. In

many isotonic regression problems we have more than one inde-

pendent variable present and are concerned with partial order-

ings. An important example involves the prediction of success

in college. Usually, this prediction is based upon several

independent variables such as rank in high school graduating

class and score on a standardized examination such as the ACT

composite and is measured in terms of a predicted grade point

average or predicted probability of obtaining a particular GPA

or better. The predicted value is usually obtained by regres-

sion methods and is assumed to be nondecreasing in each inde-

pendent variable. The isotonic regression function has been

found to compare very favorably with other techniques with

respect to predictive accuracy (cf. Perrin and Whitney (1976)

* .and Kolen and Whitney (1978)).

Some of the algorithms described in Barlow et al. are

applicable to the case of computing the doubly nondecreasing
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least squares regression function but the number of computa-

tions required can become prohibitive. For example, consider

the minimum lower sets algorithm described in Section 2.3 of

Barlow et al. Suppose one of our two independent variables has

a possible values and the other has b possible values. By

counting paths from the upper left hand corner to the lower

right hand corner of our a xb grid, it follows that the number

of lower sets is equal to (a~b). If a = b this number is

approximately (a) - /1 1 2 . 4a by Stirling's formula. Thus if

a = b = 20, and if consideration of each lower set were to

require one microsecond of computer time, then finding the

first level set would require 2312 minutes or 38.5 hours of CPU

time. (One microsecond seems conservative in light of the fact

that computation of the average value over that set would take

at least two multiplications, two additions and a division and

the comparison would require a subtraction. The present stan-

dard for making such predictions is four arithmetic operations

per microsecond.) Moreover, if the first level set is small

(as it would be with good data) the second cycle is nearly as

difficult as the first, etc.

Since the doubly nondecreasing regression function is so

difficult to compute, researchers have proposed using ad hoc

estimators based upon one dimensional smoothings. (The number

of computations required for one dimensional smoothings is

essentially linear in the number of entries.) Makowski (1974)

studied consistency properties of estimators obtained by
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successive one dimensional smoothings. Kolen, Smith and Whitney

(1977), Perrin and Whitney (1976), and Kolen and Whitney (1978)

proposed two different techniques for producing estimates which

are nondecreasing in each variable. One of their techniques

was to first do one dimensional row smoothings. After all rows

had been adjusted, reversals in the columns were adjusted by

the same method. They then returned to the original table and

did one dimensional column smoothing followed by row smoothings.

Neither smoothing necessarily produces a doubly nondecreasing

table so they averaged the two results. (The average is

not necessarily doubly nondecreasing but was for their data.)

This method was applied to the problem of estimating the prob-

ability of obtaining a 11B or better" GPA for entering college

students. The data is presented in Table 1. The two entries

are the total cell frequencies and the observed relative fre-

quencies. We note that there are a number of "reversals,"

even with a relatively large sample size. The smoothed esti-

mates, by their method, are presented in Table 2 and the iso-

tonic regression function with weights equal to frequencies

in Table 3. Note that not only the estimates but also the level

sets are different. These level sets are very useful for making

inferences about equivalent scores within the table.

Several of the algorithms discussed in Section 2.3 of

Barlow et al. are basically methods of finding linear orders

which are consistent with a partial order. We have not been

able to write a program which implements any of these methods



TABLE 1

The probability of making a "B or better" GPA
(top number = total cell frequency; bottom number = relative frequency)

ACT High School Grade Point Average

0 to 1.55 1.56 to 2.25 2.26 to 2.95 2.96 to 3.65 3.66 to 4.00Composite

28+ 0 7 10 47 44
.0000 .2857 .2000 .5745 .8864

23-27 7 56 88 180 84
.0000 .1250 .1818 .2833 .5238

18-22 23 166 152 149 33
.0435 .0301 .0724 .1946 .1212

27 149 96 61 4
13-17 .0000 .0470 .0313 .0492 .5000

10 57 33 7 0
.0000 .0000 .0606 .0000 .0000

TABLE 2

The probability of making a "B or better" GPA
Kolen and Whitney Method

.0314 .2353 .2353 .5745 .8864

.0314 .1250 .1818 .2833 .5238

.0314 .0375 .0724 .1867 .1934

.0000 .0375 .0402 .0493 .1784

.0000 .0000 .0383 .0421 .0425

TABLE 3
The probability of making a "B or better" GPA

Least squares isotonic regression (weights = cell frequencies)

.0333 .2353 .2353 .5745 .8864

.0333 .1250 .1818 .2833 .5238

.0333 .0377 .0724 .1881 .1881

.0000 .0377 .0377 .0492 .1881

.0000 .0000 .0377 .0377 .0377
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for a doubly nondecreasing regression function in a reasonable

amount of time.

In this paper we present an algorithm for calculating the

least squares isotonic regression function which is increasing

in each of two variables. This algorithm uses successive one

dimensional smoothings and is very efficient and easy to program.

To illustrate, we applied the algorithm to a 20 by 20 table of

random numbers. The isotonic regression was obtained, correct

to four significant digits, after 400 iterations, required 39

seconds of CPU time at a cost of one dollar and thirty-five

cents. This algorithm is described in Section 3. In Section 2

we summarize some well known properties of isotonic regression

which will be used in the proof that the algorithm yields the

desired result.

2. SOME PRELIMINARIES. We let 0 = [(i,j); i =l,2,..,a;

j =1,2,..-,b] and define the partial order << on 0 by

(ij) << (k,l) if and only if i-k 0 and J- - 0. We

denote an arbitrary real function whose domain is Q as a

matrix, i.e.,

G = (g = (g((i,J))), i =1,2,...,a; J =l,2, -..,b.

(Note that this is not the usual matrix notation where giJ

refers to the entry in the i t h row and j-_h column.)



We say that a function F : -, R is isotonic or order preserv-

ing if (i,j) << (k,y) implies fiJ : f k2 This is equiva-

lent to requiring that F be nondecreasing along both rows

and columns. The least squares isotonic regression problem is

to

Minimize Fi,j(gij -fij) 2 wij

for F belonging to the class, K, of isotonic functions

where wij > 0 and G are given.

Since the class of isotonic functions forms a closed convex

cone, it is well known (for example, see Theorem 7.8 in Barlow

et al.) that the solution to the isotonic regression problem,

say G*, is characterized by the properties, G* E K,

(2.1) J(gJ -g gJ wi 0 and

(2.2) ZJ(gJ -gi *)hij 0,

for all functions H E K.

I.



3. THE ALGORITHM. The algorithm which we propose requires

only the ability to solve the isotonic regression problem with

the usual nondecreasing order (in one dimension) along rows and

columns. Our algorithm is given as follows:

1. Let G (gi ()) denote the isotonic regression solu-

Ai

tion of G = (g)ij over rows, i.e., ) minimizes

a
(g - fij)wij subject to flJ f2j :"' 5faj for

ij ij--l,.--.,b. We call R 1) - (r ii ) - (gij -giJ th

first set of "row increments."

-I
I

9.I.
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2. Let denote the isotonic regression solu-

tion over columns from the initial values G +R (I )  i.e.,
()b subec tof 2
minimizes L (gJ +r ij  ij)ij subject to

fl fi2 " f ib  for i =l,..,a. We call

C (1) () (G +R ( I ) the first set of "column increments."

Note that G(l) = G +R(l) +C (1).

3. Etc. At the beginning of the nth cycle, we obtain G(n)

by isotonizing G +C(n -l) over rows. The nth set of row

increments is defined by R(n) G (n) _ (G +C(n -l)) so that

6(n) = G+C n -1) +R (n) We then obtain G(n) by isotoniz-

ing G +R(n) over columns. The nth set of column incre-

ments is given by c(n) = (n) _(G +R(n)), or equivalently

(n)= G (n) +0(n).

The utility of the algorithm lies in the following theorem.

Theorem 3.1. Both G(n) and (n) converge to the true solu-

tion G* as n -4.

Proof. If we denote the inner product norm as

1 a b1

= (FF) fJ w
i=l J=l

we first show



(3.1) I1 (n)12 112 for all n.

To establish some additional notation, we denote the "1row "oe'

by

K r= [F; f lj!fj :g !5f ajfor j =l,--,b],

and the "column cone" by

K c=(F; f ii-<f 12 :5.. f ibfor i =1,--,a].

The respect ive dual cones, as discussed in Barlow and Drunk

(1972), are

a
K~W ( H; E h1 f1 w1  :50 for J =l, ',b; for every F EK)
r i=1 ji r

and

b
Kw ( H; E h. f w 0~ for i =1,** *,a; for every F c3

C ~ j=l ij ijwi ,

Since -R (nsl the projection of G +C onon)r th

work of Barlow and Drunk guarantees that

-R(n+l) minimizes JIG +C (n) _F 112  for F E K*ww

Similarly,

-C~n) minimizes JG +R (n) _-F 12 for F E K1w.
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Therefore, since -R (n ) E K*w and -C (n - 1) E K w
r C 3

jiG +R( n ) -(-c(n-l )12 fG+R(n) - (c(n)) 12 IG+C(n) -(R(n+l))II2

which is equivalent to (3.1).
Next we show that (C(n )C and [R(n )  are bounded. If

not, let (i0 ,j0 ) be a minimal point in C (with respect to

our partial ordering <<) such that either [r(n) IJ or

c (n )  3 is unbounded. Say there exists a subsequence [ni)i iJ 
io0

such that ri-- (Since 0 r (n) < 0 for allsuhta i 0 ,j 0  i-l ijJ0

(ni)

n (see Barlow and Brunk (1972)), r i  --# would contradict
iojo

the fact that (ioj O ) is minimal.) But this, together with

(n) = G +R n +C(n) and the fact that G(n) is bounded in

norm (cf. (3.1)) implies that Ci -) This, in turn,

contradicts the fact that (ioJ O ) is minimal since
i0

E (n) 0 for all n.
j=l o'

Projections onto convex sets are distance reducing so that

1C( i ) - c(i-l) 12 = JIG +C(i) -(G+C(i-1))11
2

(3.2) J IR(i+l) -R(i) 112  JIG +R ( i + l ) - (G+R(i))112

11Ci(i+l) -c(i)I1 2  for all i.

We now show that



(3.3) 1J(J l R(i) 112 (and hence UiC(+l) -C(i)II2l 0

as i-a

If (3.3) were not the case, there would exist (i0,j0 ) E 0

and c > 0 such that

(3.4L) -ri4 r(') I> e for infinitely many i.i~jjo iou 0o

However, since [R (n), is bounded, there exists a finite M

such that

(j
(3.5) Ir i) -r I < M for all i,j.

i0,JO i0,%J0

If we write

(3.6) R IIR(i+l) -Ri)! - i~~) C~i

J IG +R(i) +C(i) -(G+R (i+l) +C (i+l)i1 2

+ ~~ 2(URi)+ ) - G+(i+l) c(i+l)),(i+l) Mci)

the left side of (3.6) converges to 0 since by (3.2) both

terms converge to the same quantity. The last term of the right

side is nonnegative by (2.1) and (2.2). Thus

(3-7) (R (i+l) -R i)+ (C(i+1) - C i) 0 a s i --

In similar fashion, beginning with



C 1;1

we can conclude

(3.8) (R (i+2)_ R (i+l) )+(C (i+l) - C~1 ) -. 0 as i

Subtracting (3.7) from (3.8) yields

c(+ 2  Rli) (R~l R(i)) -. 0 as i

Thus, for a sufficiently large N 0and fixed n0, we can keep

(N 0+1+i) (N 0+i)

arbitrarily close to

(N +l) (N)
(r 0 ~r 1  0

This, however, contradicts (3.14) and (3.5) both being true.

Since (R (n)) and t0 (n) I are bounded, there must exist

convergent subsequences. Suppose R n~)- R and C ± .C.

Then, in light of (3.3),

(n(n i (n)

and
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A(n +l) - (ni) (n)

G G +R +

both converge to

G =G+R+C (in anticipation of this being the desired solution).

Sice6()is an element of K and Tn is an element ofr
K for all n, we know that G*- r K Kl K (these cones are

closed). Furthermore,

(G-G*,G*) =(G+R-G1 ,G*) - (B,G I)

=lim(G+R 1 _Gn 1  G(i + lim(G+C (n 6~n~)~n~)
i -#CO i 4

0 +0.

Similarly, if V E K rfl K 1

(G-G*,V) = (G+R-G* ,V) -(R,V)

= ~ ( li(+ (n) (n) + i(+ (ni+l) ,)~00
i~oi

Thus G1  is the desired solution by (2.1) and (2.2). Moreover,

since

-C minimizes JIG + R - F112, F E K*w
C

and
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2 ,w
-R minimizes JIG +C -FI1 , F E Kr ,

we may use the distance reducing property of projections to say

~(n)  - l2  I + (n)_( 11I2  l(n+l)- 112

1C0 -C 1 JIG +C n)(G+C)~

J jig+R( n + l ) - (G+R)112  I jC(n+l) -cjj 2 for all n.

Thus

R ( n ) -R and C -- C as n-

which implies that

&(n)- G +R (n ) +C(n - 1) and (n) = G +R(n) +C ( n )

both converge to

G G+R+C as n--, .

4. OTHER POINTS. It is important to note that the solution

G* = G +R +C does not uniquely determine R and C. In fact,

if we begin with a column smoothing rather than row smoothing

we will obtain different limiting values from R and C even

though the same limiting G* is obtained.

As one would expect, this procedure works equally well when
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the order restrictions are modified to require nonincreasing

rows, or nonincreasing columns, or both. One has only to

change the one dimensional smoothing to operate in the appro-

priate direction. The procedure can also be adapted to higher

dimensions, although in this case the number of required

smoothings quickly becomes large.

We also wish to point out that G* itself solves many more

minimization (maximization) problems than the least squares

problem stated above. For example, from Theorem 1.10 of Barlow

et al., if § is an appropriate convex function and p is a

subgradient (basically a derivative) of f, then G solves

the problem

a b
(4.1) Maximize E Z (§(f j) + (gj-fij )P(f)ijAw .

FEK flK i=l j=lr c

Along somewhat similar lines, Theorem 3.1 of Barlow and

Brunk guarantees that the problem

a b
(4.2) Minimize E E (f( )-giJ

FEK flK i=l J=lr c

is solved by (p 1 (gij)) where once again § is an appropriate

convex function and ep is a subgradient of *.

Thus G* solves a much wider range of problems than is

readily apparent. For example, suppose one has a multinomial

random vector Xii, where the cell probabilities PJ are

placed in a rectangular grid and one wishes to find the maximum
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likelihood estimators for the PJ subject to nondecreasing

(nonincreasing) rows and columns. This problem can be phrased

in terms of (4.1) from which it follows that the solution is

given by G* where G = (Xij/n) and wij = 1.

Similarly, if the X are independent binomial (nij,Pj)

random variables, one can show that the maximum likelihood esti-

mators for the PJ subject to nondecreasing (nonincreasing)

rows and columns is given by G* where G = (Xij/nij) andw =nij-

Finally, in order to illustrate the algorithm on a larger

table,we considered the data presented in Table 4. The entries

are the first year grade point averages of 2397 students who

entered the University of Iowa in the Fall of 1978. The inde-

pendent variables are the composite scores on the ACT Assess-

ment and the student's high school percentile rank. The

expected first year grade point average is assumed to be a non-

decreasing function of both of these independent variables.

(The number in parentheses is the number of students in the

category.)

The least squares solution, correct to four significant

digits, was obtained after 500 iterations (250 row smoothings

and 250 column smoothings) at a cost of 9 seconds CPU time and

84 cents. These results are given in Table 5 with the level

sets indicated. Since the cost of our algorithm is essentially

linear in the number of points in the grid, even very large

arrays can be isotonized at a reasonable cost.

I



17

000 00 0 m0
r-'

4-4 -C -3-4

0- Z-? C s - -0 H 0 0M

t-% Hz %1 H 1 0 r

m' NU NU NCU: 1 CU CU U C

+)

V. mY 0D \0 VN V\ VN V\ %

*.-I H UNr CU Ha 0 -\ O U\ 0 t- - t.- _ CUj C\ 0 0 a%

* +' co, CU CJ CU CU (N4 C4 C6
4) CA CU NU NU H H H H cu

H H-:T 0 H 1 O\N ID' U\ UN U'\ UN \D

H - HN - H 00 -41 L- l zt 0U O ON
HEn m C o 0 WNU)mO C C

:4CU C CU C4 C U f CUj

O 4)
H- m' -t-O - \D0 LN U'\ UN U'\ \D0

\10 1l- L - - - --r\~U.* CU C 0 O
4- CUj H- Hi U t- (Y1 H- C
o H- H H- t-- UN (Y1 H H- t- (Y (\iC CUi CU CU CU N N H

4') ON'. \D N V\ rV% (y) CC) 0 1 c
-4CU LCN4d)

WO CU C4 C4 CU CU CU CU H CUC
U t- C\ t.- \0 UN\ Lt\ N C \O0

a\~4 % 4) O UN _z CU CU C ON 0\

3 NLr\ -C (' R CU t-4-- - CU CU CU4 U C U C

\10 CC (y)OO

19 CU CU C CU C C H H

in4 CO\ 0= H ON\ ONN H' In_

\,O H NY UN\ WC \'1 I'DN U

(\ C CU OCU UN t- MN H ON H7 \0
to U-) ' U H O~

4' C CU CU CU CU CU H4 H; H

'dI UN H (Y) H H A. U C
-- - - - -\

4-) H 4 (NCj 10 W _r %0 t~- H
U) H ON 0' C O C CUl If'. 00 --- _---- .0 - t-

A ~ HHHH ON ON ON VN
f+1 CU CU CU CU H 4 H (NJ H

W CU CU C U CU CU H H

0l HH~- .-

m~ C\ '0 H '0 H '0 0 r D H ,

O\ OC H0'. \0 Ul\-T ON'. w' I C CO O



18

ACKNOWLEDGEMENT. We thank Gordon Bril for writing a Fortran

program to implement this algorithm. This program is available

upon request from the authors. We thank Dr. Anne Cleary of the

University of Iowa Evaluation and Examination Services for

providing the data in Table 4.

i



19

REFERENCES

Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T., & Silverman, E.

(1955). An empirical distribution function for sampling

with incomplete information. Ann. Math. Statist. 26,

641-647.

Barlow, R.E., Bartholomew, D.J., Bremner, J.M., & Brunk, H.D.

(1972). Statistical Inference under Order Restriction.

John Wiley & Sons, New York.

Barlow, R.E. and Brunk, H.D. (1972). The isotonic regression

problem and its dual. J. Amer. Statist. Assoc. 67, 140-147.

Brunk, H.D., Ewing, G.M., & Utz, W.R. (1957). Minimizing inte-

grals in certain classes of monotone functions. Pacific

J. Math. 7, 833-847.

Kolen, Michael J., Smith, William M., & Whitney, Douglas R.

(1977). Methods of smoothing double-entry expectancy

tables applied to the prediction of success in college.

Research Report No. 91. Evaluation and Examination Service,

The University of Iowa (Presented at the annual meeting,

American Educational Research Association, New York, N.Y.

April 1977.)

Kolen, Michael J. & Whitney, Douglas R. (1978). Methods of

smoothing double-entry expectancy tables applied to the

prediction of success in college. J. Educational Measure-

ment 15, 201-211.



?20

Makowski, Gary G. (1974). Consistency on logarithmic conver-

gence for iterated nondecreasing regression estimators,

unpublished manuscript.

Perrin, D.W. & Whitney, D.R. (1976). Methods for smoothing

expectancy tables applied to the prediction of success in

college. J. Educational Measurement 13, 223-231.


