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1. INTRODUCTION. Algorithms for calculating the least
squares isotonic regression function have received a great deal
of attention 1n the literature and six such algorithms are dis-
cussed in Section 2.3 of Barlow, Bartholomew, Bremner and
Brunk (1972). In situations where there is one independent
variable all of the algorithms work very efficiently. Perhaps
the most widely used algorithm 1is the "pool adjacent violators
algorithm" which is applicable only in the case of a simple
linear ordering or an amalgamation of simple orderings. 1In
many isotonic regression problems we have more than one inde-
pendent variable present and are concerned with partial order-
ings. An important example involves the prediction of success
in college. Usually, this prediction is based upon several
independent variables such as rank in high school graduating
class and score on a standardized examlnation such as the ACT
composite and 1s measured in terms of a predicted grade point
average of predicted probability of obtalning a particular GPA
or better. The predicted value 1s usually obtained by regres-
sion methods and 1s assumed to be nondecreasing in each inde-
pendent variable. The isotonlc regression function has been
found to compare very favorably with other techniques with
respect to predictive accuracy (cf. Perrin and Whitney (1976)
and Kolen and Whitney (1978)).

Some of the algorithms described in Barlow et al. are

applicable to the case of computing the doubly nondecreasing




least squares regression function but the number of computa-
tions required can become prohibitive. For example, consider
the minimum lower sets algorithm described in Section 2.3 of
Barlow et al. Suppose one of our two independent variables has
a posslible values and the cother has b possible values. By
counting paths from the upper left hand corner to the lower

right hand corner of our a xb grid, 1t follows that the number

a+b)
a

by Stirllng's formula. Thus if

of lower sets 1s equal to ( If a =b this number is

approximately (arr)-l/2 . 48
a=>b =20, and if consideration of each lower set were to
require one microsecond of computer time, then finding the
first level set would require 2312 minutes or 38.5 hours of CPU
time. (One microsecond seems conservatlive in light of the fact
that computation of the average value over that set would take
at least two multiplications, two additions and a division and
the comparison would require a subtraction. The present stan-
dard for making such predictions 1s four arithmetic operations
per microsecond.) Moreover, if the first level set is small
(as it would be with good data) the second cycle is nearly as
difficult as the first, etc.

Since the doubly nondecreaslng regression function 1s so
difficult to compute, researchers have proposed using ad hoc
estimators based upon one dimensional smoothings. (The number

of computations required for one dimensional smoothings 1s

essentially linear in the number of entries.) Makowski (1974)

studied consistency propertles of estimators obtained by




successlve one dimensional smoothings. Kolen, Smith and Whitney
(1977), Perrin and Whitney (1976), and Kolen and Whitney (1978)
proposed two different techniques for producing estimates which
are nondecreasing in each variable. One of thelr techniques
was to first do one dimensional row smoothings. After all rows
had been adjusted, reversals in the columns were adjusted by
the same method. They then returned to the original table and
did one dimensional column smoothing followed by row smoothings.
Neither smocthing necessarily produces a doubly nondecreasing
table so they averaged the two results. (The average is
not necessarily doubly nondecreasing but was for their data.)
This method was applied to thé problem of estimating the prob-
ability of obtaining a "B or better" GPA for entering college
students. The data 1s presented in Table 1. The two entries
are the total cell frequencies and the observed relative fre-
quencies. We note that there are a number of "reversals,"
even with a relatively large sample slize. The smoothed estl-
mates, by their method, are presented 1n Table 2 and the 1iso-
tonlc regression function wilth weights equal to frequenciles
in Table 3. Note that not only the estimates but also the level
sets are different. These level sets are very useful for making
inferences about equivalent scores within the table.

Several of the algorithms discussed in Section 2.3 of
Barlow et al. are basically methods of finding linear orders
which are consistent with a partial order. We have not been

able to write a program which implements any of these methods
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TABLE 1
The probability of making a "B or better" GPA
(top number = total cell frequency; bottom number = relative frequency)
ACT High School Grade Point Average
Composite 0 to 1.55 1.56 to 2.25 2.26 to 2.95 2.96 to 3.65 3.66 to L4.00
8" 0 7 10 L7 Ly
l .0000 .2857 .2000 5745 .8864
. 23-27 7 56 88 180 8k
§ .0000 .1250 .1818 .2833 .5238
’ ' 18-22 23 166 152 1k49 33
“ .0k435 .0301 .072L .1946 .1212
P 27 149 96 61 by
1 13-17 .0000 .0470 .0313 .0lg2 .5000
, 0-12 10 =7 33 7 0
3 .0000 .0000 .0606 .0000 .0000
TABLE 2

The probability of making a "B or better" GPA
Kolen and Whitney Method

.031h .2353 .2353 L5745 .886L
.031k .1250 .1818 .2833 .5238
.031h .0375 L0724 .1867 .193h
. 0000 .0375 .0k02 .0493 L1784
_ .0000 .0000 .0383 L0421 .0k25
3
‘ TABLE 3

The probability of making a "B or better" GPA
Least squares isotonic regression (weights = cell frequencies).

.0333 .2353 .2353 .5TL5 .886k
.0333 .1250 .1818 .2833 .5238 5
; .0333 L0377 L0724 .1881 .1881 i

- .0000 L0377 .0377 .0kg2 .1881 '
.0000 .0000 .0377 .0377 .0377 :




for a doubly nondecreasing regression function in a reasonable
amount of time.

In this paper we present an algorithm for calculating the
least squafes isotonic regression function which is increasing

in each of two variables. This algorithm uses successive one

dimensional smoothings and 1s very efficient and easy to program.

To illustrate, we applied the algorithm to a 20 by 20 table of
random numbers. The isotonlc regression was obtained, correct
to four significant digits, after 400 iterations, required 39
seconds of CPU time at a cost of one dollar and thirty-five
cents. This algorithm is described in Section 3. In Section 2
we summarize some well known properties of lsotonilc regression
which will be used in the proof that the algorithm ylelds the

desired result.

2. SOME PRELIMINARIES. We let Q= {(1,3); 1=1,2,---,a;
J=1,2,---,b) and define the partial order << on { by
(1,3) << (k,%4) 1if and only if 1-k £ 0 and J-4 < 0. We
denote an arbitrary real function whose domain is O as a

matrix, i.e.,
G = (811) = (g((i,,j))), 1=1,2,--+,a; J=1,2,--+,b.

(Note that this is not the usual matrix notation where g

refers to the entry in the iﬁg row and jgﬁ column.)
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We say that a functlion F :Q0 —- R 1s isotonlc or order preserv-

ing 1if (1,J) << (k,4) 1implies f,,k6 =< fkﬂ' This is equiva-

13

lent to requiring that F Dbe nondecreasing along both rows

and columns. The least squares isotonic regression problem is

to

Minimize U £, )2

1,3 815 = T15) W

1] ;
for F belonging to the class, K, of 1sotonic functions
where Wy >0 and G are given. ]

Since the class of isotonic functlons forms a closed convex
cone, it is well known (for example, see Theorem 7.8 in Barlow

et al.) that the solution to the 1sotonic regression problem,

say G*, is characterized by the properties, c* € K,

% oy ¥ -
(2.1) Zi,J(gij —gij)gij Wyg o= 0, and

(2.2) Zﬁ,j(gij 'g;j)hij Wy g <0,

for all functions H € K.
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3. THE ALGORITHM. The algorithm which we propose requires
only the abllity to solve the isotonic regression problem with
the usual nondecreasing order (in one dimension) along rows and

columns. Our algorithm is given as follows:

A
1. Let G(l) = (Qiél)) denote the isotonic regression solu-

A
tion of G = (gij) over rows, i.e., G(l) minimizes

a
2 . .o
i};l(gij—f‘ij) Wy subject to flj sf2J < sfaJ for
=71 ... (1) _ (1y, _ DM (D)
j=1, ,b. We call R = (rij ) = (gij - 8y
first set of "row lncrements."

) the




8
2. Let ﬁ(l) = (Eigl)) denote the isotonic regression solu-
tion over columns from the initial values G +R(1), i.e.,

b
ﬁ(l) minimizes 2 (g,, *+T (1) -f )2w

5 13 1 13 subject to

1

f,.<f - <f for i=1,---,a. We call

1154025 1b .

C(l) = 5(1) - (G +R(1)) the first set of "column increments."

Note that &(1) = g +r() +c(1),

th (n)

A
3. Etec. At the beginning of the n cycle, we obtain G

(n-1) th

by isotonizing G +C over rows. The n set of row

A -
increments is defined by R = &) (g +cm1)y 5o that

8n) = 5 4c(n-1) LR(N) 4o then obtain g(n)

(n) over columns. The nth set of column incre-

by isotonlz-

ing G +R

ments 1s given by c(m) _ g(n) - (G +R(n)), or equivalently
g™ - g+r(™ o),

The utility of the algorithm lles in the following theorem.

A ~
Theorem 3.1. Both G(n) and G(n) converge to the true solu-

tlon G* as n =+ <,

Proof. 1If we denote the inner product norm as

1

' = a b
IFl = (F,F)2 = (S I £2. W)
1=1 J=1

1
H

>

13 13

we first show
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(3.1) 182 4 )2 8012 fon 211 .

To establish some additional notation, we denote the "row cone"
by

K = {Fr; £

. <f, ,<+*+<f . for j=1,---,b},

1j 2]J aj

and the "column cone" by

K = {F; fy,,sfy,s"° =f, for 1=1,---,al.

The respecﬁive dual cones, as discussed in Barlow and Brunk

(1972), are

a .
KW _ . =] .+ .b:
r {H; 12 hijf‘ij 13 sQ for j=1, ,b; for every F exr}
and
K*W = {4, E <0 for 1=1,---,a; for every F €K J.
c > 5=1 1J iJ ij ? > c
Since -R(n+1) is the projection of G +C(n) onto K;w, the

work of Barlow and Brunk guarantees that

RO*L) inimizes 6 +¢™ _F|° for F € K"
Similarly,
~c(m) minimizes ||G +r(M) -FH2 for F € K*w.




g(0) ¢ g*v
r

Therefore, since and C(n'l) € K:w,

o+ (o125 o+ - (M2 o + o) - (ROHDy 2

which 1is equivalent to (3.1).
Next we show that {C(n)} and {R(n)} are bounded. If

not, let (io,jo) be a minimal point 1“; i (with respect to

(n)
{r {0
} is unbounded. Say there exists a subsequence {ni}

)

our partial ordering <<) such that either } or
3o

{c(n)
19249

such that —_w. (Since Z M) 2§ for all

0°J0 11t
(ny)

19539
the fact that (io,jo) is minimal.) But this, together with
g(n) (n) ,-(n)

n (see Barlow and Brunk (1972)), r, —+ o would contradict

and the fact that E(n) 1s bounded in
(ny)
norm (cf. (3.1)) implies that Cy P This, in turn,
0’70
contradicts the fact that (iO,JO) is minimal since
i

0
z (n)J < 0 for all n.
J=1 0°?

Projections onto convex sets are dlstance reducing so that

= G +R

e —c-2242 o g+ _aec1)y 2

(1+1)

- (G+R

(3.2) N R A

la +R (i))”2

(1+1) _

z |c c(i)ll2 for all 1.

We now show that




(3.3) IR CrRA2 (and nence o1 _cD2)m

as {1 — o,

If (3.3) were not the case, there would exist (iO,JO) €Q
and € > 0 such that

(3.4) lr§i+§) -rii)J | > ¢ for infinitely many 1.
0°°0 0°“0

However, since {R(n)} is bounded, there exlsts a finite M

such that

(3.5) |rfi) _p{d) | <M for all 1,J.
10do 1020

If we write

(3.6)  [ROFL) _p(1)y2 _yo(141) (1))

(1) (1) (1+1)+C(1+1)”2

= |lc +R +C - (G+R

¢ 206 +RD) 40 B) | g ag(IHD) Lo (141 (141 _ (1))

the left side of (3.6) converges to 0 since by (3.2) both
terms converge to the same quantity. The last term of the right

side 1s nonnegative by (2.1) and (2.2). Thus

3.7y (R gy LoD _oc)y g a5 1 o e,

In similar fashion, beginning with

PPy
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e+ _c()y2 _yg

(1+42) _R(1+1)“2

we can conclude

(3.8) (R(1+2)—R(1+1))+(c(i+1) -c(i)) — 0 as 1 — o,

Subtracting (3.7) from (3.8) yields

(1+2) _R(i+1)) (1+41) _

(R - (R R1)y 40 as 1—o.

Thus, for a sufficiently large N and fixed n we can keep

0 0’

(N0+1+1) (N0+i)

(Piosjo —Pio’jo ) i=l’2’”.’n0 ]

arbitrarily close to

(N.+1) (N.)
0 0
. -r ).
19234 19290 i

This, however, contradicts (3.4) and (3.5) both being true.

Since {R(n)} and lC(n)} are bounded, there must exist

convergent subsequences. Suppose R — R and C — C.
Then, in light of (3.3),

(ny) (n,) (n,)

§ Y -6+r T 4c ¢

and

T T T s T PP G B W SR~ g AT T e e - R




P &

+1) (n,)

i i

G = G +R +C

both convefge to

G* = g+R+C (in anticipation of this being the desired solution).

Since &M is an element of K, and a(n) is an element of

K, for all n, we know that G¥*¢ Krf\Kc (these cones are

closed). Furthermore,

(6-c*,c*) = (G+r-G*,a*) - (R,a")

(n,) _(n,) (n,) (n;) A(n,+1) ,(n ,+1)
- 1im(a+r 1§ 1 8 1) 4 uamaee 8L 8T
i+ 14
= 0 +0.

Similarly, 1f V € Kr n KC,

(6-G*,v) = (G+r-G*,V) - (R,V)

) (n,) (n,) (n,+1)
= 1m(G+R T -§ 1 .v) + 1im(g+c L -8 1

{ 4 14>

, V) <« 0 +0.

Thus G* 1s the desired solution by (2.1) and (2.2). Moreover,

since

-C minimizes |G +R-—F”2, F € K;w

YLV S R D
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-R minimizes |G +C —FHE, F €K, »

we may use the distance reducing property of projections to say

let™ —ol? = o +c{(aro) ) = R gy

2

(n+1) cl|® for all n.

(n+l) _

= |lc +R -(G+R)l|2 = |ic

Thus

R(n) C(n)

— R and —(C as n —®

which implies that

80) 2 g 4r™ o) ang g < g 4r(R) 4o

both converge to

G = G+R +C as n— o,

4. OTHER POINTS. It is important to note that the solution
G¥ = G+R+C does not uniquely determine R and C. In fact,
if we begin with a column smoothing rather than row smoothing
we will obtain different limiting values from R and C even
though the same limiting G* 1s obtained.

As one would expect, this procedure works equally well when
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the order restrictions are modified to require nonincreasing

rows, or nonincreasing columns, or both. One has only to

change the one dimensional smoothing to operate in the appro-

fer e ———

prilate direction, The procedure can also be adapted to higher
dimensions, although in this case the number of required
smoothings quickly becomes large.

We also wish to polint out that G*¥ 1tself solves many more
minimization (maximization) problems than the least squares
problem stated above. For example, from Theorem 1.10 of Barlow
et al., if ¢ 1s an appropriate convex function and ¢ 1is a
subgradient (basically a derivative) of &, then 6* solves

the problem

a b
(4.1) Maximize L Z {&(f,,) +(g, -f, )0(f,  )lw,,.
FEK  NK, i=1 j=1 13 13 "1 137°74)

Along somewhat similar lines, Theorem 3.1 of Barlow and
Brunk guarantees that the problem
a b

(4.2) Minimize L L (¥(f

Y=g, L. W
FEK, NK, 1=1 j=1 13 137137713

is solved by (w-l(gzj)) where once again ¢ 1is an appropriate
convex function and ¢ 1is a subgradient of &,

Thus G* solves a much wider range of problems than 1s
readlly apparent. For example, suppose one has a multinomial
random vector X

where the cell probabilities are

placed in a rectangular grid and one wishes to find the maximum
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likelihood estimators for the subject to nondecreasing

piJ
(nonincreasing) rows and columns. Thls problem can be phrased
in terms of (4.1) from which it follows that the solution 1s

given by G* where ¢ = (Xij/n) and w,, = 1.

1)

Similarly, if the X are independent binomial (nij’pi1)

13
random variables, one can show that the maximum likelihood esti-
mators for the piJ subject to nondecreasing (nonincreasing)
rows and columns 1s given by G* where G = (Xij/nij)‘and wiJ

Finally, in order to illustrate the algorithm on a larger
table,we considered the data presented in Table 4. The entries
are the first year grade point averages of 2397 students who
entered the University of Iowa in the Pall of 1978. The inde-
pendent variables are the composite scores on the ACT Assess-
ment and the student's high school percentile rank. The
expected first year grade point average 1s assumed to be a non-
decreasing function of both of these independent variables.
(The number in parentheses is the number of students in the
category.)

The least squares solution, correct to four significant
digits, was obtalned after 500 iterations (250 row smoothings
and 250 column'smoothings) at a cost of 9 seconds CPU time and
84 cents. These results are given in Table 5 with the level
sets 1ndicated. Since the cost of our algorithm 1is essentially

linear in the number of points in the grid, even very large

arrays can be isotonized at a reasonable cost.
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