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SECTION 1
INTRODUCTION

1-1  OBJECTIVE
’ Titanium is a candidate shroud material for advanced missile
systems. Under certain conditions, titanium is known to exhibit sustained
combustion, thus causing a catastrophic failure. The objective of this
program was to investigate the response of titanium in a simulated upper
atmosphere nuclear encounter environment. This program was a joint effort
between Acurex Corporation and Physics International Company.
1-2 PROGRAM SCOPE

A combination experimental and analytical approach was adopted for
this investigation. The work was performed under a two-phase program.
Phase I includec the design, fabrication, and checkout of experimental i
hardware and the acquisition of preliminary data on the titanium response {
to the simulated environment. An evaluation of the simulation with regard 3
to critical encounter parameters such as material bulk temperature, oxygen
diffusion rate, and pulised deposition profile was also performed.
Phase II efforts encompassed a computer modeling of the titanium surface
combustion reaction and its implementation as an analytica!l tool for
devising a comprehensive simulation test matrix. The otjective was to
develop a high-confidence model for the evaluation of the survivability of
a titanium shroud under upper-atmosphere nuclear encounter environments.
Phase I of the program has been successfully completed. The reader is
referred to the Phase I final report {DNA Report 5134F, 1 Nov /9) for
additional information. This report summarizes the results of the Phase

ik

Il efforts undertaken by Acurex.

The Acurex program responsibility was to define the aerothermal
environment, design and fabricate experimental hardware for environment
simulation, assist in fielding the experiments, and model the surface
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Paysics International provided a pulsed electron

combustion reaction.
beam (e-beam) machine which simulated the nuclear energy denosition

prof ile and performed an analysis of the pulsed radiation effects.
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SECTICON 2
TECHNICAL DISCUSSION

2-1 BACKGROUND AND SIMULATION REQUIREMENTS

Titanium is a candidate material for advanced missile shrouds.
Because titanium may combust under the proper conditions, survivability
and vulnerability assessments must be performed to determine the shroud's
ability to survive a radiation threat.

During the ascent phase of the missile trajectory the shroud is
heated convectively by the atmosphere. Upon exposure to a nuclear
environment in the upper atmosphere, the lower energy X-ruys from the burst
will cause the surface scale to blow off and heat the base material leaving
a fresh titanium surface at a temperature of Tme]t' or 1,900k, Since
this is above the published ignition temperature of 1,600K for titanium,
sufficient oxygen availability could cause the shroud to ignite and burn.
The objective of this program was to investigate the response of titanium
to a nuclear environment by performing a lahoratory scale experiment which
simulated the conditions of an upper atmosphere nuclear encounter.

Phase I analysis of the potential environments showed that the
relevant parameters that must be included in the simulation are: (1) the
titanium bulk temperature caused by ascent heating, (2) surface
temperature and temperature gradient caused by the nuclear energy
deposition, and (3) oxygen flux through the boundary layer to the hot
titanium surface. A variable pressure wind tunnel and sample heater was
designed, fabricated, and calibrated to produce the required oxygen
difTfusion rate to the sample surface and the proper material bulk
temperature. This hardware was coupled to an e-beam machine at Physics
International Company to provide a pulsed radiation source. Details of
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the e-beam simulation will not be given here, but are contained in a
report on this project from Physics International (PI).

Prior to the test, simulation and nuclear environmental parameters

=
s s T ST PO

Lo were compared to determine the numerical relationship between the
experiment and a projected encounter. The comparison was based on energy

@ : balance calculations which quantified the various energy loss and gain

g : mechanisms associated with the titanium surface immediately following

% % either X-ray or e-beam deposition. Energy is supplied to the surface by
- the Ti0, reaction kinetics while convection, radiation, and conduction

;

are all loss mechanisms. Results of these preliminary calculations showed
that the simulation could be considered a factor of 10 overtest when
compared tc a nuclear threat. The oxygen diffusion rate to the surface

was higher than flight predictions resulting in incrcased reaction energy
and the flatter e-beam deposition profile resulted in a factor of 10 Tower
conduction loss than was present with X-ray deposition.

Based on the above calculations it was anticipated that the
titanium surface in the experiment would exhibit a brief combustion period
following e-beam deposition which would last uvntil the surface cooled
beTow the 1,600K ignition temperature. This behavior was observed in
Hi-Cam film records of the titanium sample surface. A combustion phase

lasting on the order of 100 msec following e-beam deposition was
recorded. The sample bulk temperature for the Phase I experiments ranged
from 294 to 977K, the surface temperature following e-beam deposition was

1,900K, and the oxygen diffusicn rate was 7.8 x 107¢ kg/mé-sec which
was a factor of four greater than the predicted maximum value at 90 kft in
the missile ascent trajectory.

The final phase of this program demonstrated the simultcneous
simulation of the critical parameters of an overtest of a 90 kft nuclear
encounter. Sustained combustion of the titanium was not observed under

any of the test conditions. It is expected that the modeling efforts
under Phase Il would be able to uredict those regions of the parameter

HoT

space where sustained combustion could occur. If possible, these
predictions would be confirmed by simulation experiments.
2-2 COMBUSTION MODEL

The modeling effort began with a brief review of previous studies

o
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of titanium combustion/ox:dation mechanisms. A kinetic model was then
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developed and incorporated into a computer program for parametric
aralyses,
2-2.1 Titanium Oxidation Kinrtics
The characterization of titanium oxidation rate is difficult due to
the various oxides which may he present. At least three intermediate
oxides (Ti0, Ti,05, Ti0p) may be present in addition to the solid
colution of oxygen in titanium. It is also possible that additional oxides
(Ti302 and Ti303) are formed. With many oxide lavers, the rate
controlling processes are complex, will change with temperature and
pressure, and may be time dependent. As a consequence of the complex
activities, the reaction of titanium with oxygen has been the subject of
many studies. Earlier work has been reviewed by Hauffe (Reference 1) and
Kofstad (Reference 2); the more recent studies have been discussed by Wolf
(Reference 3).
At low temperatures a iogrithmic rate law has been observed; at
higher temperatures (350° to 1,0000C) a parabolic oxidation law has
been identified. Experiments at high temperatures (900° tc 1,000°C)
have also found that a Tinear oxidation law may dominate which is followed
by a decreasing oxidation r ‘e. Besides variations in the oxidation law
with temperature, other pruolems which hamper oxidation modeling are:
e Kinetic constants vary by an order of magnitude between
investigators
o All experimental data are from tests longer than 3 min
¢ A1l experimental data are from essentially isothermal tests
The most comprehensive model identified in the literature review is
by Dunbar, et al. (Reference 4). Reference 4 reviewed previous titanium
studies and proposed a model which accounts for both scale buildup over
the oxidizing titanium, diffusion of oxygen in-depth (dissolution), and
the appropriate energy of reaction (both heat of oxidation and
dissolution). For the case of long-te m oxygen exposure and isothermal
in-depth temperature, this model results in a parabolic rate law that
agrees with experime:.tal data. When applied to short-term transient test
data, the model was only moderately successful.
The Reference 4 model aiso does not account for situations in which
boundary layer aiffusion (rather than subsurface diffusion) dominates the
consumption of oxygen. This situation, whicn may be applicable during a
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high altitude atmospheric nuclear encounter, must be considered for a
realistic model of the combustion/oxidation phenomenon.

2-2.2 Model Description
The wodel proposed in this program can be considered to be a

modification of the Reference 4 mode!. One major difference in the
present model is the accommodation of a boundary layer, oxygen
diffusion-1imited reaction case. Similar to the Reference 4 model, the
simultaneous formation of an oxide scale (dominated by Ti0,) and the
in-bulk dissclution of oxygen are considered. The basic model is
exemplified in Figure 1. An oxygen concentration gradient across the
scale caused oxygen to diffuse inward. At the Ti02/7i interface this
oxygen either reacts with Ti to form T102 or continues to diffuse into
the Ti region. Both the reaction of oxygen with Ti to form TiOz and the
dissolution of oxygen into Ti are exothermic processes and result in heat
release at the T102/Ti interface.

The model assumes that the concentration gradient is linear and
that the diffusion coefficient is approximately constant in the thin
Ti0, region. These assumptions allow the oxygen flux through the scale
to be calculated by:

m_(c. -C.) (2-1)

m
scale = T ¢

where

diffusion coefficient of Ti0; scale at T,

T = mean temperature in Ti0, scale

£ = scale thickness

C. = oxygen concentration at outer surface of scale

C. = oxygen concentration at scale-metal interface
In the Ti metal region, the diffusion equation:

o
—
-
—
3
e
[}

D, (1) & (2-2)

3 ax { 2 ax}
is applied to determine the in-depth oxygen concentration profile. At the
Ti0,/Ti interface, one of two boundary conditions is imposed. These

boundary conditions are:
10

R ™

ot st oM

2, il A e A R0 ik aras n -



- - S DT g ..swdﬁiﬁ. WY R u.\.‘g,iﬂ N W TR £ T T e R L I T T - -

-wd3}SAS 312ULPLCOD pue |3pow uoLiepLx) ° d4nbiyg

3 0
x -
(N~ UoLIN|OSSLP
- uabAx(Q
~
S Noe
N —
\ e =
o] 3
o) 5 n
- H
> c
B ] N .,
> *~ ajess
B Sde
'3 g’
@|®0Ss .
% 2001
te3aw ti ’ t

ER] JWENT)| 7




SR gt

TR O

Py e

aC (2_3)

and
(2-4)

Equation (2-3) is applied when the interface concentration (Cu) is less

than the saturation concentration (Csat) (i.e., all oxygen passing
through the scale diffuses into the Ti region). C,» however, is not
allowed to rise above the saturation concentration. If the saturation
concentration is reached, all oxygen not accommodated by dissolution into
the Ti region is forced to react with Ti, adding T102 to the scale layer.

The diffusion coefficients (D1 and Dp) are modeled by:

£y
Di(T) = Aiexp(- "R-T') (2—5)

Values for Aj, A,, Ey, and E, were calculated by Reference 4 for
Ti - 6 Al - 4V, In addition, Reference 4 reports values for Csat'

€4 - Cg, and the heat of solution (aHgy1) and oxidation to Ti0p(aHg,).
These values are given in Table 1.

Table 1. Combustion model constants for Ti - 6 Al - 4V,

A} = 1,884 cm?/sec
Ay = 582 cml/sec

€} = 61,800 cal/mole
E2 = 61,800 cal/mole

I
~sat

Ca - Cs = 0.0144 gm/cm3

0.644 gm/cm3

aHox = 12,024 Btu/bm
AH50] = 15,575 Btul]bm
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It should be noted that when the value of Ca - Cg was
established in Reference 4, the following assumptions were made: (1) the
boundary layer does not limit the oxygen flux to the surface, and
(2) C, - C, does depend on ﬁsca]e‘ Ideally, the effect of the boundary
layer limitation can be accounted for by solving Ca and Cg
independently. This would require a relationship tc express C; as a
function of the oxygen partial pressure (902) adjacent to the T1‘02 scale
surface. Since such a function is not known, to adjusc for boundary layer
limitations the mass {lux through the scale (mscale) was simply not
allowed to exceed the value of the oxygen mass flux. Through the boundary
layer (ﬁb]), wnich is given by:

ﬁlb1 = °euecm(%02,e - K02,a> (2-6)
where
Po = density of gas at boundary layer edge
Mg = velocity of gas at boundary layer edge
Cm = mass transfer Stanton number
K02,e = mass fraction 02 at boundary layer edge
Kop,a = mass fraction of 0, adjacent to Ti0, scale

A simultaneous solution of Equations (2-1) through (2-6) with a
given set of initial and boundary conditions should yieid the response of
the titanium in accordance with the oxidation model described above. The
applicabilrty or usefulness of this model is determined by the degree of
agreement between the prediction and actual experimental data. A
discussion of this comparison is presented in Section 3.

2-3 COMPUTER CODE OF COMBUSTION MODEL

The transient or time dependent equations of the titanium
combustion model were solved numerically. This task was accomplished by
modifying the Aerotherm Charring Materials Ablation Code (CMA) to include
the titanium combustion model as described in Section 2-2. A detailed
description of CMA and its capabilities is not warranted here and the
interested reader is referred to Reference 5.
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Briefly, CMA is a one-dimensional computer code which calculates
the transient thermal and ablation response of a charring material
structure. All heat transfer mechanisms -~ conduction, convection, and
radiation -- are accounted for in CMA. The program can treat complex
systems including a main ablating material and several charring and
noncharring backup materials. An unusual feature of this code is the
capability to handle very general heated surface boundary conditions which
may range from simple specified temperature and recession rate to a
general thermochemical erosion model incorporating compiete chemical
erosion computations for any material exposed to a specified environment.

In the present application, modifications were made to CMA to
provide an implic.t means of calculating in-depth oxygen diffusion
phenomena and to account for the appropriate energy release at the
T10,/Ti boundary according to the model described in the ahove section.
This modified CMA program vias the basic tool for prediction and analysis
of the e-beam heated titanium combustion data. In addition to the usual
input requirements of material properties and boundary conditions, an
initial temperature profile of the titanium metal and a heat transfer
coefficient are necessary for a typical run. The temperature profile can
be calculated from the e-beam energy deposition profile, whereas the heat
transfer coefficient is obtained by calibration from surface cooling
curves of known flow conditions.

2-4 SIMULATION SYSTEM AND ANALYSIS

A schematic of the simulation experimental configuration is shown
in Figure 2. Details of each component were described in the Phase I
final report and will not be repeated here. The simulation system
consists of an e-beam generator for simulated nuclear irradiation, a
variable speed wind tunnel for aerodynamic flows, énd a quartz Tamp system
for controlling titanium bulk temperature.

Simulation parameters of the experimental setup were calibrated for
comparison with those of a nuclear encounter. For the most part, the
simulated environment was either equivalent cr more severe than an actual
encounter in terms of catastrophic failure probability. The quartz lamp
system (at 2X rated voltage) was able to heat the sample to 1,500K which
is higher than the predicted bulk temperatures for the MX shroud mnnocogque
design as shown in Figure 3. Figure 4 shows the predicted oxygen

14
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Test configuration

Magnet coils

Optical access port
Irradiation area

Test specimen (heated
by quartz lamps from hack)

Flow out

~ Nozzle

Electron beam
Wind tunn&l

Q
N
&
Anode 'y
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access port ;
Electron beam transport . |
chamber Flow in
Anode foil
Cathode
High vacuum -

-
[ S el

Figure 2. Simulation experimental configuration,
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iffusion rate to sample center (kg/m2 x 103)

Oxygen d

15.0 T g
14.0 |~ :
5
13.0 Range of 90 kf* <
flight values
12.0 |- 3 e
1.0 b /
10.0 |- »”
9.0 |-
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7.0
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5.0
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0 Flow velocity = Mach 1
. i
.0 )
1.0 F §
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50 100 150 200 250 300 350 400 450500 550 600 650 f

Plenum pressure (torr)

Figure 4. Predicted oxygen diffusion rate to sample surface.
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diffusion rate to the sample surface as a function of wind tunnel plenum
pressure for a flow velocity of Mach 1 (the wind tunnel was operated in
the choked condition for all test runs due to vacuum system design).

These predicted values, calculated assuming simple laminar flows over a
smooth wall, constitute a lower limit. Actual oxygen diffusion rate for a
test run was calculated from the surface temperature cooling curve using
heat transfer principles as explained in Section 3. As can be seen from
the Figure 4 graph, these calculated oxygen diffusion rates cover the
whole range of 90 kft flight values as given in Reference 6 except in the
vicinity of the stagnation point.

An analysis was performed to investigate the magnitude of the
combustion threat. The analysis wac bHased on an energy balance
calculation performed for the time imuediately following energy deposition
{nuclear or e-beam). When the energy is deposited in the titanium
surface, the outermost material is biown off because of the sudden
pressure rise and the vaporization of the surface generated by the
in-depth deposition. The remaining surface will be at the melt
temperature (1,900K for titanium). This process is the same for X-ray or
e-beam deposition so the surface temperature is simulated with good
fidelity. Since the 1,900K surface temperature is above the 1,600K
ignition point for titanium, oxygen diffusing through the boundary layer
will cause the surface to combust. The combustion reaction supplies
energy to the surface at 2 rate directly proportional to the oxygen
diffusion rate. TiOx reaction rate kinetics were not included in this
analysis since the surface reaction was not kinetically linited and the
burning titanium at 1,900K could absorb several orders of magnitude more
oxvgen than was available.

Energy is transported away from the burning titanium surface by two
primary mechanisms: radiation and conduction into the bulk of the
material. Radiation loss is dependent on surface temperature and is

governed by:

= eaT4

Qrad

where Qrad is the radiated energy in N/mz, ¢ is the surface
emissivity, o is the Stefan-Botzmann constant which equals

18
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5.67 x 10-8 WIm2K4. and T is the curface temperature in K.

Conduction into the bulk of the material is governed by the titanium's
thermal diffusivity and the surface temperature gradient. To illustrate
the conduction loss mechanism, Figure 5 shows a comparison of several
X-ray and e-beam deposition profiles. Because the X-ray deposition
profiles have a much steeper gradient at the surface than the e-beam
profil:s, the conduction energy losses from the surface are an order of
magnitude larger for X-ray deposition than for the e-beam. Radiative
losses are the same for both cases since the surface temperature is the
same for either e-beam or X-ray deposition. Convective heat transport
losses are so small in comparison to conduction and radiation that they
will not be considered here.

Figure 6 illustrates the heat sources and sinks fcllowing energy
deposition as a function of oxygen availability, surface temperature, and
surface temperature gradient. If the T1‘0x reaction energy exceeds the
sum of the conductive ancd radiative losses, the surface temperature will

be rising and sustained combustion is probable. If the losses are greater

than the reaction energy, the surface temperature will decrease and the
combusticn process will cease.

Table 2 lists the analysis parameters for both the nuclear
encounter and the e-beam simulation experiment under Phase I. Using the
energy balance model described above, it is obvious that sustained
combustion is unlikely for either case. The prediction was confirmed by
actual Phase I experimental resulis which showed no sample combustion
failure under all test conditions, which included a good overtest of the
nuclear encounter case. Phase Tl experimental efforts encompass an
attempt to induce sustained combustion of titanium using the simulation
system and, if achieved, explain such behavior by the combustion model.
Results of these efforts are presented in the following section.
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Energy deposition (cal/gm)

400
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:} X-ray ~
Ccmplete melt O 1.5 kev é;
™
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Figure 5. Comparison of e-beam and X-ray deposition profiles.
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Table 2.

Nuclear environment versus simulation parameters,

Nuclear Threat

E-Beam Simulation

Bulk temperature
Surface temperature
02 diffusion
Qconduction
Qradiation

Qreaction

900K
1,900K
<4.80 x 10-2 kg/mé sec
3.2 - 6.8 x 108 J/m2 sec
4.0 x 105 J/m2 sec
<1.4 x 106 J/m? sec

900K
1,900k
7.8 x 10-2 kg/mé sec
5.0 - 6.1 x 107 J/m2 sec
4.0 x 175 J/mZ sec
2.2 x 106 J/m2 sec
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SECTION 3
RESULTS AND CONCLUSIONS

3-1 TEST MATRIX AND DATA SUMMARY

Operation and calibration of the experimental facility were
described in the Phase I report and will not be repeated here except for
modifications. Table 3 shows a summary of the test matrix under the
Phase II efforts. The rationale for this matrix is as follows: the
simulation system is to be operated under the most severe conditions in an
attempt to cause sustained combustion of the titanium, and if successful
the parameters will be modified to define minimum condiiions for sustained
combustion.

Wind tunnel performance was morniitored with a static pressure
transducer located on the tunnel wzil downstream from the trailing edge of
the sample. Since the wind tunnel is operated in the choked flow mode,
this single pressure was sufficient to record the tunnel performance (a
constant ratio of 0.528 always exists between the static and upstream
plenum nressures). Titanium surfece temperature was recorded by a fast
response optical pyrometer which had been previously calibrated for
titanium using the quartz lamps as heat source and chromel-alumel
thermocouple as reference. Pressure and temperature data were recorded on
oscillbscopes. Preliminary e-beaw shots were used to characterize the
beam in terms of electrcn energy spectrum, fluence, and uniformity.
Fluence for each test was calculated from measured e-beam voltage and
current and was provided by PI.

The oxygen diffusion rate to the sample surface was estimated from
cooling curves of the sample surface under various operating conditions.
The technigue is based on heat transfer principles and involves
simplifying assumptions. A typical experimental procedure for such a
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calibration is as follows: the sample is heated to a steady-state
temperature by the quartz lamps with no flow; the wind tunnel is turned on
and the surface temperature history is recorded.

Under steady-state conditions with no flow, the lamp heat flux
absorbed by the sample would equal the radiation and conduction losses
(natural convection loss is relatively small and is not considered here).
With the airflow on, steady-state conditions no longer exist and the
surface temperature will decrease due to convective cooling. For a thin
sample, i.e., assuming no temperature gradient existed in the material,
the convective heat transfer coefficient, h, can be calculated from the

following equation:

90ss = 9conv
or
tocp g% “R(T-T) (3-1)
where
dT .
e surface cooling rate
t, oy Cp = sample thickness, density and specific heat, respectively
T, = ambient temperature

Assuming that the Stanton numbers for heat and mass transfers are equal
and recalling Equation (2-6), the oxygen diffusion rate onto the sample

surface is given by:

m, =opuC (K - K
bl ee m( 0558 02,a)

h
= —[K - -
cp(°?.'e K°2*a) (3-2)

For air, assuming all oxygen at the titanium surface has either reacted or

been absorbed, i.e., K02,a = 0, then:
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= 0.232 (3-3)

p

The oxygen diffusion rate values listed in Table 3 represent an
‘ average of several calibration runs for each of the two flow conditions.
} These values were also used in the modeling efforts.
g The first run in the test matrix was carried out to observe whether
| spontaneous combustion would occur for a samole bulk temperature in excess
of the published ignition point of 1,600K. The temperature decreased
steadily as the flow was turned on and no combustion was observed as
; expected. Even though the bulk temperature was higher than ignition, very

little oxygen was available at the Ti/Ti02 interface due to oxide scale
buildup. No scale removal mechanism was provided as in the case for a

nuclear or e-beam encounter.

Tests 2267 and 2268 were run under aimost identical conditions:
maximum oxygen diffusion to the surface, preheat temperatures of about
1,540K, and a fluence of 43 cal/cm2 (no data for fluence was available

for Test 2268 but the e-beam was operated under the same conditions as
Test 2267). Samples in both tests failed with complete burnthrough over :
the irradiated areas. Postrun photos of selected tested samples are shown F
in Figure 7, Temperature and pressure traces for Test 2268 are shown in
Figure 8 in comparison with those for Test 2272 where no sample failure
occurred. Sudden noise observed on the signal traces for Test 2268 was a
typical indication of an impending sample failure.

Test 2270 was conducted under conditions similar to the previous

two runs except with reduced flow (approximately one-third in oxygen
diffusion rate). The sanple failed as in the previous tests.

For Test 2271, the sample bulk temperature was decreased by 150 to é
1,375K, while other operating conditions were held constant. Also, the 4
sample thickness was increased from 1.55 mm to 2.02 mm due to an exhausted g

supply of the thinner sanples. The e-beamn malfunctioned producing a
donut-shaped beam with a low fluence. No burnthrough of the sample
occurred; a ring-shaped pattern was etched on the sample surface as shown
in Figure 7.
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Everything functioned as planned for Test 2272. No sustained
combustion or catastrophic failure of the sample was observed with reduced
bulk temperature in contrast to Test 2270; the sample was etched uniformly
over the irradiated area.

Tests 2273 and 2274 were unsuccessful attempts to duplicate
Test 2272; the e-beam performance was erratic. No sample failures
occurred as would be expected under the reduced fluence conditions.

Efforts to stavilize the e-beam output were undertaken prior to
Test 2278. Again, no sustained combustion of the sample was noted under
somewhat reduced bulk temperature (the quartz lamps were deteriorating)
and higher fluence conditions. Postrun surface conditions were similar
for Tests 2271 through 2278 except for crater depth, probably iadicating
no change in burn or wear mechanisms.

Inconel-600 samples were used in Tests 2279 and 228C at bulk
temperatures of 1,235 and 1,350K. No sample burnthrough was observed in
either test under relatively high fluence of 52 cal/em. The Incone!
samples were tested primarily to observe their behavior under simulated
nuclear encountor environment. No analysis or prediction of response was
performed under the present work scope.

A complete mapiing of the parameters fur sustained titanium
combustion was not undc-rtaken as part of the test matrix for this
project. The matrix demonstrated that sustained combustion could occur
under certain conditions. The test matrix also demonstrated that the
sample preheat temperature is an important parameter in inducing sample
failure under the tested flows and fluence conditions. The twe tested
flowrates indicate that failure will occur if the bulk temperature is high
enough to cause the e-beam fluence to raise the postdeposition bulk
temperature above the titanium ignition temperature of 1,600K.

3-2 COMPARISON OF ANALYTIC AND EXPERIMENTAL RESULTS

Analytical efforts concentrated on predicting the experimental
results of the two distinct cases of either sample failure or survival.
Test 2268 typifies the case of sample burnthrough, whereas Test 2272
represents sample survival. Sample temperature is the key criterion for

sample behavior in the computer mocal. After e-beam deposition and the
accompanying surface layer burnoff and/or meltdown, the bulk temperature
will either increase or decrease, depending on the energy balance between
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chemical heat generation and radiative and convective losses. A sustained

temperature increase toward the melting point indicates sample failure,
whereas a gradual decay is expected for sample survival. While no surface
temperature data were available for cases of burnthrough, good surface
temperalure data existed for the nonburn cases enabling the analytical
predictions to be checked for reliability and usefulness.

[n addition to the usual material properties and flow
specifications, ‘nput requirements for a modified CMA run include a
postdeposition sample temperature profile. This temperature profile was
calculated using the e-beam absorption profile supplied by PI for each
test and the specific heat curve of titanium. Oue to the variations of
¢-beam energy, there were slight dissimilarities. Consequently, the
temperature profile was computed separately for each test.

Computer runs of Tests 2268 and 2272 were conducted. Initial
results showed that while the response of Test 2272 was predicted quite
satisfactorily, no sample failure was noted for Test 2268. In fact, no
sustained temperature risc of the sample was predicted for all cases of
the test matrix. Reexamination of the combustion model as incorporated in
CMA revealed no significant errors except that CMA does not provide for
scale or oxide removal once it is formed on the surface., The gradual

scale buildup in this case formed an oxygen diffusion barrier that
essentially quenched any further heat producing oxidation.

This scale buildup in the model is in contrast to the experimental

ohservation of the posttest samples which showed little evidence of a
permanent scale Tayer even in cases of very low e-beam energy. A scale
thickness limitation was incorporated into the combustion model, and the
two test cases were rerun with various arbitrary scale thicknesses.
Analysis of the computer output showed that with 4 scale thickness
l1imit of 5.08 x 107> cm (2.0 x 10-5 in.), model predictions agreed
very well with the experimental results. Figure 9 shows the
postdeposition temperature history of Test 2272. The agreement between
the prediction and experimental values is excellent, indicating that the
temperature decays steadily with no sustained combustion. The scale
thickness limitation had little effect on the predicted temperature;
maximum scale thickness was barely above the 1imit in this case. The
value of 5.08 x 1072 cm was chosen as one of the scale thickness 1imits
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for investigation to avoid significantly altering the model prediction for
this case which compared favorably with experimental measurement in the
initial computer runs.

Figure 10 shows the predicted temperature history for Test 2268.
After an initial decline, the front surface temperature rises to the
titanium melting temperature in approximately 300 ms at which point
catastrophic failure of the sample begins. This is again in excellent
agreement with the experimental result which shows that the pressure
fluctuates approximately 0.3 sec after the e-beam deposition as shown in
Figure 8. The sample temperature was not calculated beyond 300 ms since
the combustion model is not applicable when the surface begins to melt.

Finally, the combustion model was utilized to analyze the surface
temperature response under a nuclear encounter at 90 kft. As expected, no
sample failure occurs and the sample essentially remains at the
preencounter bulk temperature after an initial surge near the front
surface. Figure 11 shows the results of such an encounter.
3-3 CONCLUSIONS AND RECOMMENDAT IONS

This program has achieved its objective: to develop a methodology
for predicting the response of the titanium surface and confirm the
accuracy of the model through an analysis of the experimental data. The
combustion model considers all pertinent reaction phenomena and utilizes
the most up-to-date material constants. It was then fully incorporated
into an existing computer program and case studies were made that
corresponded to experimental conditions. Excellent agreement between the
model prediction and experimental result was obtained. Model analysis of
a 90 kft nuclear encounter showed that such environmental conditions would
not cause a failure of the titanium shroud.

The experimental simulation system was able to demonstrate
conditions under which the titanium sample failed catastrophicaily. These
conditions, however, are not expected to exist for the present advanced
missile system launch trajectories. No sample failure was observed under
simulated environment for a 90 kft nuclear encounter. The test matrix did
not fully map out environmental conditions under which sample failure may
occur,

Based on the apparent success of the combustion model in predicting
the experimental results, a full-scale parametric study of the titanium
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Figure 11. Predicted temperature history of a 90 kft nuclear encounter.
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oxidation is recommended. An experimental test matrix should be performed

for verification of the model predictions. The ultimate goal is to

develop a high confidence model in which titanium response under any given
conditions can be predicted.
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