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ABSTRACT

The three-dimensional problem of wave-trapping above a submerged round

sill was first analyzed by Longuet-Higgins (1967) on the basis of a linear

shallow-water theory. The large responses predicted by the theory were,

however, not well borne out by the experiments of Barnard, Pritchard and

Provis (1981) and this has motivated a more detailed study of the problem. A

full, linear theory for both inviscid and weakly viscous fluid, without any

shallow-water assumptions, is presented here. It reveals important

limitations on the use of shallow-water theory and the reasons for them. In

particular, while the qualitative features of wave-trapping are similar to

those of shallow-water theory, the nearly-resonant frequencies differ

significantly, and since the resonances are narrow, the observed amplitudes at

a given frequency differ greatly. The geometry is strongly indicative of long

waves and the dispersion relation appears quite consistent with that, but the

part of the motion at wave numbers that are not small has, despite the small

amplitude, a substantial effect on the response to excitation.
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SIGNIFICANCE AND EXPLANATION

Observations of wave records at Macquarie Island, in the ocean south of

Australia, have shown augmented response at certain frequencies. It has been

established that these observations can be explained as due to the resonant

excitation, of trapped modes, by the surrounding wave field. This phenomenon

has prompted considerable interest in the possibility of wave trapping.

Theories, based on the approximation of shallow water, lead to predictions of

very sharp resonances but these have not been observed in the laboratory.

This paper develops a full linear theory, including damping, for a special

geometry, and thus serves to define the limitations in the results obtained by

using shallow-water theory.

The responsibility for the worainq and views expressed in this descriptive
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TRAPPING OF WATER WAVES ABOVE A ROUND SILL

Yuriko Yamamuro

§1. Introduction

A theoretical study of the trapping that results when a train of small-

amplitude, plane waves of a fixed frequency is incident on a submerged, steep-

sided, round sill (Figure 1) was made by Lonquet-Higgins (henceforth referred

to as LH) in 1967. His investigation was motivated by wave records taken at

Macquarie Island showing the occurrence of regular oscillations of unusually

large amplitudes. In view of these observations, LH considered a simplified

geometry in which the island shelf was represented by a round sill, with a

circumference of 80 km, submerged to a depth of 100 mr. He based his

calculation on linear, inviscid, shallow-water theory and used separation of

variables in cylindrical coordinates to determined the expressions for the

surface displacements for each f the two reqions of constant depths. gecause

of the denth-independence of the velocity field in shallow-water theory, the

velocity components could not be made continuous at the sill edge, and two

approximate matching conditions were used: the continuity of surface

elevation and the continuity of the horizontal component of the mass flux.

LH's (1967) analysis showed the existence of eigenfreauencies with very small

imaginary parts. A train of plane waves with a frequency near such an

eigenfrequency could theoretically excite "nearly-trapped" modes over the

sill, and the response at such modes was determined. The largest responses

were found to occur at the higher angular modes and at smaller ratios of the

Sponsored hv the TUnited States Army under Contract "To. DAAC20 -80-C-0041. This
material is basel upon work supported by the National Science Foundation under
nrant No. MCS-7q27062.
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Figure 1

depths. These calculations have been confirmed and extended by Summerfield

(1969), who applied shallow-water theory to a "shelf-island" model consisting

of a steep sided round island rising from the top of a round sill of larger

radius. He showed the eigenfrequencies for his system to be closely related

to those of LH's sill geometry. However, laboratory observations by Pite

(1977) and by Barnard, Pritchard and Provis (1981) (henceforth denoted by BPP)

did not reveal the large responses predicted by the shallow-water model. The

purpose of this paper is to examine a complete linear theory in an endeavor to

explain these discrepancies.

In §2, the equations governing the full linear inviscid theory are

presented. In §3, the velocity potential is calculatd. This is achieved by

representing it separately in the regions above the sill and outside the sill;

the solutions in the two zones are then made to satisfy the necessary

conditions of analytic continuation at the sill-edge. This leads to an
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infinite set of linear equations, for which a collocation method of solution

is described. In addition, an iterative method is presented as a check on the

extensive calculations.

In §4, the theory is applied to laboratory conditions relatiig to the

experiments of BPP. The results show that the modes that decay away from the

sill-edge and are not included in shallow-water theory, make appreciable

contributions to the wave amplitudes above the sill. To obtain a comparison

on oceanographic scales between the full theory and the shallow-water theory,

the theoretical predictions for the special case of LH's sill geometry are

examined in §5. The differences are particularly striking near the

frequencies where the full theory predicts large amplitudes, and the reasons

for these differences &re discussed. A theory allowing for weakly viscous

effects is given in §6. Numerical computations were carried out at a

frequency pertaining to the conditions considered by BPP. At that frequency,

viscous effects were foand to have negligible influence on the amplitudes.

For the entire range of frequencies investigated by BPP, moreover, viscous

effects are estimated to make less than 1% difference in the amplitudes, even

at the frequencies where peak amplitudes are predicted. On oceanographic

scales, however, where an eddy viscosity may be more appropriate than the

kinematic viscosity, damping may be more pronounced.

-3-



§2. General equations

The motion is assumed inviscid, simple-harmonic in time, and of

sufficiently small amplitude for the use of linear theory. It is referred to

cylindrical coordinates r, 0, z with the origin at the undisturbed water

surface (see Figure 1), r measured outward in units of the sill radius a,

and z measured vertically upward in units of the undisturbed water depth

d above the sill; the depth outside the sill is denoted by D = d/6. Let

x denote the horizontal coordinate in the direction 0 = 0. A train of plane

waves, of frequency a and amplitude In I , is incident on the sill from

the positive x-axis. The surface displacement, measured in units of d, is

denoted by n and the velocity potential (r,O,z,t) is measured in units of

d 2a and satisfies Laplace's equation namely

2 2 +22+ = 0 + (2.1)
2 r r 2 2 2 2r 36 d az

together with the following boundary conditions: at the free surface, z = 0,

nt z

and tt + q/d z = 0, r > 0, 0 < 0 4 27r ; (2.2a)

on the horizontal portion of the seaberi, z = -1 and 0 4 r < 1, and

z = -1/5, r > 1,

tz = 0 ; (2.2b)

-4-



and on the vertical wall of the sill at r 1, -1/6 < z < 1,

S= 0 (2.2c)
r

At large distances from the sill, the wave-field is assumed to consist of the

incident wave, whose surface elevation is the real part of

-i (Kx+ at)= I

together with waves that either decay or radiate outwards. Here, K is the

positive real root of the dispersion relation

(KD/a) tanh (KD/a) = D 2 /g . (2.3)

Different representations of the solution will be used in the domain above the

sill, r< 1, and in that outside the sill, r > 1. These functions must be

analytic continuations of each other, for which a necessary and sufficient

condition is the continuity of 4 and 34/3r.
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§3. Form of solutions

Let the velocity potentials for r < 1 and r > 1 be denoted by s

and 0 respectively, and be simple harmonic in time with radian frequency

a. Make the decomposition = + R where 0. represents the incident

plane wave train and R represents waves generated by the sill. is

calculated by separation of variables in Cartesian coordinates:

1 -i(aX 0 x/D+at) cosh X0(Sz+1)I= I e + *in(3.1
20 sinh 

X0

Here, and throughout the paper, the notation + * will be used to denote the

addition of the complex conjugate of all preceding terms. The free-surface

boundary conditions require X0 to be the real and positive root of the

dispersion relation (e.g. see Davis & Hood 1976)

tanh X = Do 2/q . (3.2)

For convenience, the expression for I is converted to cylindrical

coordinates (Bateman Manuscript Project 1953, Vol. 2, §7.2.4, p. 7, Eqn. 27):

cosh X 0(z+1) -

S= t E: mi  M(aX r/D)cos m9 + * (3.3)I e 2X 0 sinh X m= 0

0 0 m'=0

1 if m= 0
where e = . For the purpose of computations for the

m 2 if m 4 0

linearized problem, Ir I is normalized to unity.I

The (4enerated field in the rerion outside the sill, r > 1, may be

represented as the sum (Havelock 192q)
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=R e t cos 6(BoH(1(aX r/D)cosh X (6z+1)m=0

(3.4)

+ B K (aX r/D)cos X (z+1)/IK (aX /D)} + *
mnm n n m n

Here, elements of {±iX : m = 1,2,... } are the purely imaginary roots of the
m

dispersion relation (3.2). Note that the model expansion is complete (Davis &

Hood 1976) and that Am = mt for m sufficiently large or for Da 2/q

sufficiently small. The notations for the Bessel functions are those of

Abramowitz and Stegun (1972, §9). Each term in (3.4) satisfies the

appropriate conditions at infinity as well as the free-surface conditions and

boundary conditions on the seabed. The, as yet undetermined, coefficients

Bm0 and B mn(n# 0) are, respectively, coefficients of each radiating mode

and each non-radiatinq mode, which is confined near the sill-edge. From now

on, the subscript on A0 and the superscript on the Hankel function will be

dropped.

The solution in the sill-reqion, r < 1, may be represented as the sum

of solutions obtained by separation of variables, namely

=-it s mos A moJ (akr/d)cosh k(z+1)
m= 0

(3.5)

+ 7 A I (.< r/d)cos k (z+1)/I (ak /d)} + *
mn m n n m n

n= 1

Here, elements of {k 0, ik n = 1,2,... } are the roots of0n

k tanh k = da /q (3.6)

of which each of the k are positive. 7ach term satisfies the appropriaten

condiitions at the edge of the qiII, it the free-surface and on the seabed.
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The, as yet undetermined, coefficients Am0 and Amn (n30) are, respectively,

coefficients of each wavelike mode and each spatially decaying mode. In what

follows, the subscript on k0 will be dropped.

The continuity of a3/ar at r = 1, -1 < z < 0, 0 4 e < 2ff, yields one

of the two conditions at the sill-edge:

"as

---- for -1 < z < 0
=r 3 (3.6 )

-r k0 for -1/5 < z < -1

By virtue of the orthogonality property of the set (cosh XC6z+1),

cos X (6z+1) : n = 1,2,...}, this condition yields, for m = 0,1,...n

(B H'(aX/D) + F* ]aA h(X) = r1cosh X(6z+1)dz . (3.7)
mO m n D ~ -13 r=ic

-i0t *
Here % denotes the coefficient of cos mO e in s and F and

m s m

h(X) are defined in the appendix. For n = 1,2,...,

K'(aX /D) aX a
m n n i r0 m n

Bn X (aX /0) D n 3- r 1r=1 n
m n

The second condition at r = 1, -1 < z < 0, 0 < 9 < 2r, is the

continuity of . This yields a second relation between Bmn and Amn , from

which the Bmn are eliminated by means of equations (3.7). The resulting

equations for the Amn are:

A Mcosh k(z+1)J m(ak/d) - £ (z)} + A smp(cos k (z+1) - Z (Z)}

(3.8)
H (aX/D)

(F - F cosh X(6z+1) for -1 < z < 0, m 0,1....m m H'(a\/D)

-8-



The notation is defined in the appen,9 ix. When no spatially decaying modes are

included, equation (3.8) is first multiplied by cosh k(z+1) and then

integrated over z. With the inclusion of the decaying modes, a collocation

method is used to solve the resulting infinite number of equations: that is,

an N by N matrix equation is constructed by the application of equation

(3.8) at N values of z in the range -1 < z < 0 and by neglecting the

higher-order decaying modes {A : p > N}.
mp

Justification for the matrix truncation, which is performed in the

calculations of the following sections, is as follows. For the investigation

on the laboratory scales described in §4, the N values of z were chosen to

be {z : z = -i/(N+1), i = 1,...,N} for N = 2,6,11,16,21,41. It is shown in

§4 that the differences in the resulting amplitudes for N > 6 was of

negligible importance. Hence, it is apparent that the above choice for the

values of z, with N 6, was adequate for computations involving similar

sill geometries. The computations i.n 5 cpn'ern , for which the

parameter a/d was much greater than in §4, i t the local modes decayed

faster away from the sill-edue 1hvn t, , .. j- ox*ermental results

by Pite (1977) and, independently, !, 1! rresence of

exponontial decay in the wave-f,7< '.,ar . i-! , ; e1xpoctei that

the faster the local modes lecay, t, sc W4 hr rwpnonse. Therefore,

N = , which was sufficientlv, accuratp for $,4, wic; iso oxoocted to give

suitable accuracy for §5, and has 4150 been used fr th e computations

,iescribk i in §s.

Ti cmputations are made lifficult by the presence, ir ition (3.9),

of the infinite series in the terms 9, (z) for n ,,..., m = nf , ....
m p

which aro ;lowl'; cmnvereent. Because nf this, a numerical check on the

comp!'ato cmp\ta -ions was requiredl, and an iterative method is now

rer senpted fnr t' , i7 nurr)o- .

.. .. -



The decomposition of s in the radial variable yields (as shown by

equation (3.5)) a principal part Jm(akr/d), which is wavelike, and an

infinite number of modes Im(aknr/d) that decay away from the sill-edge. If

the value of the principal radial eigenfunction at the sill-edge is not too

small, then an iterative procedure may be adopted. From now on, the

-ict
coefficient of cos mO e in ts and 0 will be denoted by %."

A preliminary outer flow is determined from the radiation condition and

the boundary condition m /3r = 0 at r = 1, -1 < z < 0. This outer flow

then determines the boundary conditon at r = 1, -1 < z < 0, for a sill flow,

through the continuity of . This sill flow then yields m /ar at r = 1,

-1 < z < 0, from which a second outer flow is calculated, and so forth.

Equations (A) and (B) of the appendix arise from this scheme and are to

be used as follows. When the Amn in 4s are known, the coefficient Bmn of

0 are calculated from the equations (A). Note that here, H'(a\/D),

Im(akn/d) and K'(aX /D) do not vanish. When the B are known, the
m p

coefficients in C are calculated from the equations (B). This iteration

diverges near the zeros of Jm(ak/d), which lie near the peak periods. This

scheme therefore fails for the parameters of most interest, hut it was felt

important to use the method to provide a check on the computations made with

(3.8).
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44. Application to laboratory scales

This section concerns some calculations made to correspond to the

laboratory scales used by BPP. For their experiments, a = 50 cm,

d = 1.75 cm, D = 15.4 cm and the forcing periods ranged between 0.75 and 1.20

seconds.

The full linear theory with no spatially decaying modes was used to

compute the response curve for each model number and were compared with the

linear shallow-water theory. Figures 4.1(a) and 4.1(b) display the results

for the 0th mode and figure 4.2 those of the 6th mode. The curves show that

the peaks in the lower frequency range occurred near those of linear shallow-

water theory. At small modal numbers, however, the response was significantly

diminished and at large modal numbers, the bandwidths were small so that the

LH theory was not useful in calculations of the amplitudes. In the higher

frequency range, there was no evidence of the peaked response predicted by the

LH theory. In this connection, note that there are a large number of zeros in

the radial eigenfunction J m(akr/d) in the sill-region. Thus, the horizontal

scale of the motion is so much smaller than the radius that the motion is not

a long wave, and this is the most probable source of the substantial error in

that theory.

Computations, accounting also for the decaying modes, were carried out at

the forcing period of 1.181 seconds where the measurements by BPP yielded the

largest amplitude above the sill. The difference between the empirical values

(Ijr(r i, 0 ) : r, = 1/14 + (i-1)/7, i = 1,...,7, 0 = (i-1)/1R,
l ~ 1 I

i = 1,...,,g) and the theorotical valnt-s (IjrI) -f tlhv wave amplitudes was

measured by

-11-
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1 i

7 1w. i[lrE(ri,,O)I - In (rite)I)2r.I

I' in Tre

1 !. I E r .i r

S Ijj (4.2)

E2  71

max In (ri., )I

i j

The coefficients wij and w'. represent the weights determined by Simpson's

rule for integration over e (0 4 e 4 r) and r(r, r r 4 r 7), together with

additional terms from the integration over 0 4 r < r, and r7 4 r 4 1. For

example, the square of the numerator of E2  is

{S(r 1 )r 1 + S(r 7 )r7 + 4(S(r 2 )r2 + S(r 4 )r4 + S(r 6 )r6) (4.3)

+ 2(S(r 3)r 3 + S(r 5 )r 5 )}/21 + (S(r 1 )r 1 + S(r 7 )r 7 )/14

where, for i = 1,...,7,

S(r. 7 r/54f4 (in E(vr,6.)H - In T(rie1 8)1)2
S1r )= 54{4j=2n,n=l .... E ' 3 Ti)

* 2 (In E(ri,0 )I - In T(ri.' ). ) 2

j=2n+I,n=l, .. .8
(4.4)

+ (In E(ril)I - InT(r 01 )1)2W

'i'
+ (in,(r, 1.9 )1In T (ri''1 )1)2)

A consistency check of E2 w s made hy usinc the w md w'. accoriinq to

the midpoint rule.
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When only the travelling modes Am0 (m = 0,...,8) were included in the

computations, the improvement in E2 over the LH theory was 8%. When the

first decaying mode Am1 (m = 0,...,8) was included, together with a large

number of "outer" decaying modes, E2 was further improved by 13%. With the

inclusion of from 5 to 40 "sill" decaying modes, E2 decreased by

negligible amounts. These results document the importance of the decaying

modes, which had previously been though negligible (Pite 1977).

The above computational results are explained as follows. The

experimental conditions may be modeled by the full equation (3.8) when 6 and

Do 2/g are both small. Under these conditions, the response equation becomes

approximately:

H (aA/D)
Am{Jm(ak/d) - k J'(ak/d) ( + X + Y))momm H(aX/D) + X+ )

(4.5)
H (aA/D)

mFm Fm H;(a X/D)

.2
-2 sin nw(1-6)

where X = 3
Si362 n=1 n

t 2 2[ p sin vT(1-6)

p=1 n=1 n(n 6 -p

X is -(1/6 2) and originates from the "outer" decaying modes, of which a

large number must be included in the computations. Y is 0(1) and

oriqinates from the "sill" iecaying modes. Equation (4.5) indicates that the

irchiqion of the "outer" deravinq moles is crucial to the satisfaction of the

sill-edge conditons, but that the inclusion of the "sill" decaying modes is

not. This accounts for thp differences in E2  lecribed in the last

paragraph.
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The maximum amplitudes above the sill and the amount of mechanical energy

over the sill were computed using the full linear theory with 5 "sill"-

decaying modes. The results, for the experimental range of forcing

frequencies, are shown in figures 4.3 and 4.4 together with those of the LH

theory. Compared with the peaks given by the LH theory for this range of

frequencies, those of the full linear theory were shifted significantly to

higher periods, with increased magnitude in the case of the 'energy' graph.

The peaks of the full linear theory occur near the complex zeros of the

coefficient of Am0  in equation (4.5). The LH theory peaks near the zeros,

k J' (ak/d)H (aX/D)
k, of J (ak/d) - 0 where 1-. do = 2  This

m X H'(aX/D)m

indicates that the shifts arise through the terms X + Y which is 0(1/5 )

2
for small 6. The LH theory is therefore useful here only when k/S << 1.

If ak/d is too small, however, there is no resonance in the system. This

indicates that the linear shallow-water theory is useful if Do 2/q and k/52

are both small and ak/d is not small.

It apnears, therefore, that a shallow-water theory is not necessarily a

qood approximation to the full linear theory even thouqh the boundary

conditions seem to indicate it. The reason lies in the extreme sensitivity of

the matrix equation arisinq from (3.8) (and hence the response) to what might

he presumed to be small perturbations. Por examnle, the terms arisinq from

the decaying modes might at first guess be though to he unimqortant, indee,1,

their relative excitations Amp/A0 for p = 1,2,... m = 0,1,... can be

shown to he small. Also, the wave numbers k and k, when Pvaluatedl by the

full linoar lispersion relations, diffored only sliTh+lv Fro(m their shallow-

water valiep. -hoir -mall differences, however, caused noticeable effects on

-1 7-
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(3.8) through the Bessel functions, especially at forcing frequencies at which

the resulting matrix equation was nearly singular, and these are just the

frequencies of peak response. The standard, diagnostic checks on dispersion

relation and modal amplitudes do turn out to mislead.

An implication of this result is that shallow-water theory should be used

only with great care in interpreting experimental results concerning motions

that in theory exhibit sharp changes in the response for small changes in tie

forcing. Another, is that great care may need to be taken with the numerical

work at such frequencies.

-20-
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§5. Application to oceanographic scales

LH (1967) has calculated the response IAn1, where

e = e Otp AnJ (k r ), k I = o/(gd) /2 , for a selection of frequencies.

The corresponding response using the full linear theory is IC h01/ , where
mo m

0 M I (ak r/d)
c-i Cos merC Jm(akr/d) + C m n + *= mm mn I (ak /d) M =Om=0 n=1 m n

A m(ida2/g) cosh k, m = 0,1,... and C = A (ida 2/g)cos k , m = 0,,...,mo "'" Cn mn "n

n = 1,2,.... The results for the frequencies and depth-ratios, 5,

considered by LH are listed in Table 5. For 6 = 9/16, there were not very

large differences between the predictions of the two theories. At 6 = 1/16,

however, the LH theory predicted very large responses, especially at larger

values of m. The matrix equation was then sensitive to approximations

inherent in shallow-water theory, mentioned toward the end of §4, and the two

theories produced very different results.

It is of interest to delineate the parameter ranges for which the

shallow-water theory may be nseful. This theory is based on the smallness of

the parameter Da2 /g and the practical range for which the theory appears to

be useful is limited to values of this narameter rather less than 0.1 (Table

4.1, Silvester 1974). On the other hand, the dimensionless frequencies

au /(gd)2 at which resonance occurs lie close to the zeros of Jm(z); the

smallest zeros of Jm(Z) increase as m increases and for m greater than

6, the first zeros are greater tKan 10. Since the shallow-water parameter

is related to ac/{od) 2 by f lo/g = (a/(gd)12 )2 (d/a) 2/, the LH theory is

likely to be useful for an appropriate combination of (i) d/a small, (ii)

5 not too small, and (iii) m not too large. The larqe, narrow, 'resonant'

-21-



Co ,parisof o[ full linear thjci;,' with LcOCUCt-Tiisgills' kjc lsC

IA 1 (19&7) in the surface clcvation

Mode no. DimcnEsionless frequency Longme t - I i g g ill s  Full lincar theory's

ac III coeff. of travelling

mode

166

2 4.921 16.23 11.88

8.219 8.057 7.267

4 7.447 91.37 2.145

10.798 18.90 5.756

14.027 8.593 6.233

( 9.821 581.1 0.2798

J 13.408 85.81 1.176

6 16.723 24.21 2.840

19.922 10.42 4.331

23.235 7.122 4.196

12.121 3895 0.0757

15.890 437.8 0.2235

19.352 98.12 0.7472

6 22.662 31.76 1.714

25.869 13.55 2.797

29.083 7.954 3.269

32.480 6.512 2.769

4

2 4.796 2.871 2.775

3 5.632 3.269 2.921

4 6.799 3.546 3.526

5 8.021 4.447 4.482

9.240 
5.841 5.644

12.832 3.738 2.516

11.630 10.83 5.351

8 15.025 3.018 3.026

9

16

5 6.8903 0.978 1.357

6 9. 124 1.158 1.447

7 9.30S 1.296 1.531
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peaks predicted by the LH theory, however, occurred for parameter ranges not

satisfying these restrictions. For instance, Table 5 (d/a 7 0.008) shows

that the most spectacular peaks occurred for the larger m and smaller 6

and that these peaks were not predicted by the more accurate linear theory.
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§6. Weakly viscous effects

Consider a periodic flow above the sill at a frequency a. At the solid

boundary, there will be a Stokes boundary layer of thickness (v/c)1/2 where

v is the kinematic viscosity of the fluid. For laboratory scales, V is

assumed to be 0.01 cm2 sec - 1 (for water) and for the field scales, v may

be the eddy viscosity, perhaps of the order of 10 cm2 sec -1 . In the sill

geometry of BPP, (v/a) 1/d = 0.05 and for the case considered by LH, this

parameter was an order of magnitude smaller. The effect of viscous

dissipation at the bottom boundary outside the sill-region is expected to be

small compared with that inside. In order to estimate the effect of viscosity

on the total flow, it is therefore plausible to take the boundary layer into

account for r < 1, and to neglect it for r > 1. Following the work of

Mahony and Pritchard (1980) the boundary condition to be posed at z = -1,

r < 1, 0 4 0 1 27, is found to be

3z 2 z2

where el = (v/c) I/d and e = (d/a)2

Computations for the sill geometry studied by BPP showed approximately a

1% difference in E2  (as defined by 4.1) from the inviscid case, over the

entire frequency range. Thus it would appear that the effect of viscosity is

not important under their conditions. The suggestion by Dite (1q77), who used

a iuasi-emnirical theory which involves a fluctuating body-force, that viscous

ffects were significant on his laboratory scales, des not appear to be

justifiable since his values of c and c2 were similar to those of BPP.
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APPENDIX

m(1 if m 0=

2if m 0

f~k _ -1 cosh k(z+1)dz

m 2), sinh X

F - M

m 2A sinh A

q(X,k) - O cosh X(z+l) cosh k(z+1)dz

hMA 1 cosh 2 (6z+1)dz

__ _ (1)raX)

H ) -
m D) m D

Ht a H(1)' aX)
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k J F
k d lcash )X(6z+l) "(2-D)

6 L XhMA (Ak

')Cos A (tdz+1)(i
+ M Dn iA) k

for p 0

ak F
_2 m d cosh X(6z+1) Hm( D g(X,ik
6 ak Xh(A ,I(A4) p

aX
K D n) Cos X (6z+,)

+ in D n (iX ,ik
ax x (ix) n pf

n=l K;n) n nj

Sfor p ~'0
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Equations (A)

For M =01..

Bm= ,i (kA g(X,k)J'(ak/d)

o H ~aXD, 3Xh(X'i mo
*m

co I ,(ak /d)

+ k An g(X,ik )l - Fl
n=1 m n

and for p =1,2,...,

K (a)X /D)
B p [kA g(iA ,k)j;(ak/d)

'MP K'(aX /D) 6X h(i)~p) mO p m
m p p

OD I'(ak /d)
+ I k nA mnIm (a d) g(iX ik)n
n=l m n
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Equations (B)

For m = 0,1,...

%0n J m(ak/d)f(k) ((B (am D +

+ YB nmg(iX nk)l
n1l

Here f(k), F. and g(X,k) are defined in the appendix.

For p =1,2,...,

1IM {[B H (aX/D) + F lg(X,ik
mp f(ik) mO m m p

+ B mn g(iX n ik )1
n=l
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