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ABSTRACT

The three-dimensional problem of wave-trapping above a submerged round
sill was first analyzed by Lonquet-Higgins (1967) on the basis of a linear
shallow-water theory. The large responses predicted by the theory were,
however, not well borne out by the experiments of Barnard, Pritchard and
Provis (1981) and this has motivated a more detailed study of the problem. A
full, linear theory for both inviscid and weakly viscous fluid, without any
shallow-water agsumptions, is presented here. It reveals important
limitations on the use of shallow-water theory and the reasons for them. 1In
particular, while the qualitative features of wave-~trapping are similar to
those of shallow-water theory, the nearly-resonant frequencies differ
significantly, and since the resonances are narrow, the observed amplitudes at
a given frequency differ greatly. The geometry is strongly indicative of long
waves and the dispersion relation appears quite consistent with that, but the
part of the motion at wave numbers that are not small has, despite the small

amplitude, a substantial effect on the response to excitation.
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SIGNIFICANCE AND EXPLANATION

Observations of wave records at Macquarie Island, in the ocean south of
Australia, have shown augmented response at certain frequencies. It has been
established that these observations can be explained as due to the resonant
excitation, of trapned modes, by the surrounding wave field. This phenomenon
has prompted considerable interest in the possibility of wave trapping.
Theories, based on the approximation of shallow water, lead to predictions of
very sharp resonances but these have not been observed in the laboratory.

This paper develops a full linear theory, including damping, for a special
geometry, and thus serves to define the limitations in the results obtained by

using shallow-water theory.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this renort.




TRAPPING OF WATER WAVES ABOVE A ROUND SILL

Yuriko Yamamuro

Introduction

A theoretical study of the trapping that results when a train of small-

amplitude, plane waves of a fixed frequency is incident on a submerged, steep-
sided, round sill (Figure 1) was made by Lonquet-Higgins (henceforth referred
to as LH) in 1967. His investigation was motivated by wave records taken at
Macquarie Island showing the occurrence of reqular oscillations of unusually
large amplitudes. In view of these observations, Ld considered a simplified
geometry in which the island shelf was represented by a round sill, with a
circumference of 80 km, submerged to a depth of 100 m. He based his
calculation on linear, inviscid, shallow-water theory and used separation of
variables in cylindrical coordinates to determined the expressions for the
surface displacements for each f the two regions of constant Aemths. Because
of the deonth-independence of the velocity field in shallow-water theory, the
velocity components could not be made continuous at the sill edge, and two
approximate matching conditions were used: the continuity of surface
elevation and the continuity of the horizontal component of the mass flux.
LH's (1967) analysis showed the existence of eigenfreauencies with very small
imaginary parts. A train of plane waves with a freauency near such an
eigenfrequency could theoretically excite "nearly-trapped" modes over the
s5i1l, and the response at such modes was determined. The largest responses

were found to occur at the higher angular modes and at smaliler ratios of the

Sponsored bv the Tnited States Army under Contract No. DAAG29-80-C-0041., This
material is based upon wnrk supported by the National Science Foundation unaaer
Grant Nn. MCS=7927062,
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Figure 1

depths. These calculations have been confirmed and extended by Summerfield
(1969), who applied shallow-water theory to a "shelf-island" model consisting
of a steep sided round island rising from the top of a round sill of larger
radius. He showed the eigenfrequencies for his system to be closely related
to those of LH's sill geometry. However, laboratory observations by Pite
(1977) and by Barnard, Pritchard and Provis (1981) (henceforth denoted by BPP)
did not reveal the large responses predicted by the shallow-water model. The
purpose of this paper is to examine a complete linear theory in an endeavor to
explain these discrepancies.

In §2, the equations governing the full linear inviscid theory are
presented. In §3, the velocity potential is calculatd. This is achieved by
representing it separately in the regions above the sill and outside the sill;
the solutions in the two zones are then made to satisfy the necessary

conditions of analytic continuation at the sill-edge. This leads to an




infinite set of linear equations, for which a collocation method of solution
is described. 1In addition, an iterative method is presented as a check on the
extensive calculations.

In §4, the theory is applied to laboratory conditions relatiag to the
experiments of BPP. The results show that the modes that decay away from the
sill-edge and are not included in shallow-water theory, make appreciable
contributions to the wave amplitudes above the sill. To cbtain a comparison
on oceanographic scales between the full theory and the shallow-water theory,
the theoretical predictions for the special case of LH's sill geometry are
examined in §5. The differences are particularly striking near the
frequencies where the full theory predicts large amplitudes, and the reasons
for these differences are discussed. A theory allowing for weakly viscous
effects is given in §6. Numerical computations were carried out at a
frequency pertaining to the conditions considered by BPP. At that frequency,
vigcous effects were found to have negligible influence on the amplitudes.
For the entire range of frequencies investigated by BPP, moreover, viscous
effects are estimated to make less than 1% difference in the amplitudes, even
at the frequencies where peak amplitudes are predicted. On oceanographic

scales, however, where an eddy viscosity may be more appropriate than the

kinematic viscosity, damping may be more pronounced.




§2. General equations

The motion 1s assumed inviscid, simple~harmonic in time, and of
sufficiently small amplitude for the use of linear theory. It is referred to
cylindrical coordinates r, 6, z with the origin at the undisturbed water
surface (see Figure 1), r measured outward in units of the sill radius a,
and z measured vertically upward in units of the undisturbed water depth
d above the sill; the depth outside the sill is denoted by D = 4/8. Let
x denote the horizontal coordinate in the direction 6 = 0. A train of plane

*

waves, of frequency ¢ and amplitude |n | is incident on the sill from

II
the positive x-axis. The surface displacement, measured in units of 4, is

denoted by n and the velocity potential ¢(r,8,z,t) 1is measured in units of

2
d "0 and satisfies Laplace's equation namely

2 2 2 .2

36,136, 1 3¢, ,2a 39_, (2.1)
2 r Jr 2 2 2 2 !

r r’ 36 a“ oz

together with the following boundary conditions: at the free surface, 2z = 0,

nt = U¢z
and ¢tt + g/4d ¢z =0, r 0, 0 <8< 2nm ; (2.2a)
on the horizontal portion of the seahed, z = -1 and 0 < r < 1, and
z=-1/8§ r > 1,
= 0 H «2b
¢z (2 )




and on the vertical wall of the sill at r = 1, -1/8§ < z < 1,

4 =0 . (2.2¢)

At large distances from the sill, the wave-field is assumed to consist of the
incident wave, whose surface elevation is the real part of
n = l l e'i(Kx+0t)
I e
together with waves that either decay or radiate outwards. Here, K is the

positive real root of the dispersion relation

(KD/a) tanh (KD/a) = Doz/g . (2.3)

Different representations of the solution will be used in the domain above the
sill, r< 1, and in that outside the sill, r > 1. These functions must be
analytic continuations of each other, for which a necessary and sufficient

condition is the continuity of ¢ and 3¢/9r.




§3. Form of solutions

Let the velocity potentials for r ¢ 1 and r > 1 be denoted by ¢s
and ¢0 respectively, and be simple harmonic in time with radian frequency
o. Make the decomposition %J = ¢I + ¢R where ¢I represents the incident
plane wave train and ¢R represents waves generated by the sill. ¢I is
calculated by separation of variables in Cartesian coordinates:
-i(akox/D+ot) cosh k0(62+1)

o, = % Inl_ e + * (3.1)

Ao sinh AO

Here, and throughout the paper, the notation + * will be used to denote the
addition of the complex conjugate of all preceding terms. The free~surface
boundary conditions require XO to be the real and positive root of the

dispersion relation (e.g. see Davis & Hood 1976)
2
A tanh X = Do /g . (3.2)
For convenience, the expression for ¢I is converted to cylindrical

coordinates (Bateman Manuscript Project 1953, Vol. 2, §7.2.4, p. 7, Eqgn. 27):

—iot cosh X0(52+1) oo

5 = Ve ™ N .
bI e T sinh X ) gLt Tm(akor/D)cos mg + ’ (3.3)
0 0 m=0

=0
5 if m#£O0 ° For the purpose of computations for the

where e =
m
linearized problem, InlI is normalized to unity.
The generated field in the reginn outside the sill, ¥ > 1, may be

represented as the sum (Havelock 1929)




(1)

. )
et ¥
= m

¢R = cos me{BmOH (aAOr/D)cosh Xo(éz+1)

m=0
(3.4)
oo
+ Y B K (aX r/D)cos A (8z+1)/K (ax /D)} + * .
mn m n n m n
n=1
Here, elements of {tilm :m=1,2,...} are the purely imaginary roots of the
dispersion relation (3.2). Note that the model expansion is complete (Davis &
Hood 1976) and that Xm = mll for m sufficiently large or for qu/q
sufficiently small. The notations for the Bessel functions are those of
Abramowitz and Stequn (1972, §9). Each term in (3.4) satisfies the
appropriate conditions at infinity as well as the free-surface conditions and
boundary conditions on the seabed. The, as yet undetermined, coefficients
Bno and B_.(n# 0) are, respectively, coefficients of each radiating mode
and each non-radiating mode, which is confined near the sill-edge. From now
on, the subscript on XO and the superscript on the Hankel function will be
dropped.

The solution in the sill-region, r < 1, may be represented as the sum

of solutions obtained by separation of variables, namely

oo
é = e-lot Y cos mg{A__J (akr/d)cosh k{z+1)
s m0 m
m=0
(3.5)
o0
+ S A 1 (vx r/A)cos k (z+1)/I (ak /d)} + * .
: mnm  n n m n
n=1
Here, elements of {ko, ikn :n=1,2,-+.} are the roots of
2
. tanh k = Ag" /na (3.6)

of which each of the kq are positive. Tach term satisfies the appropriate

conditions at the edqe of the sill, at the free-surface and on the seabed.




The, as yvet undetermined, coefficients Amo and Amn(n#O) are, respectively,

coefficients of each wavelike mode and each spatially decaying mode. In what
follows, the subscript on k0 will be dropped.

The continuity of 3¢/38r at r =1, -1 < z < 0, 0 € 8 < 27, yields one
of the two conditions at the sill-edge:

3¢s
3¢0 ) e for -1<z <0 (.6)

o 0 for =1/8< z < -1 .

By virtue of the orthogonality property of the set {cosh A{8z+1),

cos Xn(62+1) :n=12,...}, this condition yields, for m = 0,1,...

*.al 0 a¢m
' + 24 = — . .7
(B oHn(aMD) + F ] == () = [ == _, cosh A(8z+1)dz (3.7)
- -ict *
Here ¢m denotes the coefficient of cos mf e in ¢s and Fm and

h{)) are defined in the appendix. For n = 1,2,...,

K'
m(a)‘n/D) ali 0 aq“

n . - . m
IR -1 3¢ |r=1

an W 5 cos )\n(52+1)dz.

The second condition at r =1, -1 <z <0, 0 < 9 < 27, is the

continuity of 5. This yields a second relation between Ban and Amn' from

which the Bun are eliminated by means of equations (3.7). The resulting

equations for the Ann are:

A__{cosh k(z+1)J (ak/d) - £ (z)} + 5 A _ {cos k (z+1) = ¢ (2)}
m0 m m0 o mp P mp
p=1
(3.8)
. H_(a)/D)
= (F } cosh A(8z+1) for =1 < z <0, m=0,1,c00

m o Fm H'(a)/D)
m




The notation is defined in the appendix. When no spatially decaying modes are
included, equation (3.8) is first multiplied by cosh k(z+1) and then
integrated over 2z. With the inclusion of the decaying modes, a collocation
method is used to solve the resulting infinite number of equations: that is,
an N by N matrix equation 1is constructed by the application of eguation
(3.8) at N wvalues of =z 1in the range =1 < 2z < 0 and by neglecting the
higher-order decaying modes {Amp : p » N}.

Justification for the matrix truncation, which is performed in the
calculations of the following sections, is as follows. For the investigation
on the laboratory scales described in §4, the N values of 2z were chosen to
be {z :z = ~-i/(N+1), i =1,,..,N} for N= 2,6,11,16,21,41. It is shcwn in
§4 that the differences in the resulting amplitudes for N » 6 was of
negligible importance. Hence, it is apparent that the above choice for the
values of 2z, with N = 6, was adequate for computations involving similar
sill geometries. The computaticns i1n §% concern scales, for which the

parameter a/d was much qgreater than 1n §4, s~ “=at the local modes decayed

faster away from the sill-edue rhan troee -5 &5, 1~e exnperimental results
by Pite (1977) and, independently, tv 210D 1nmii - galnost no oresence of
expona2ntial decay in the wave-finl 1 <car @ 2111 -ed9e, 1+ 13 expected that
the faster the local modes decay, the (oss will he thoar raaponse. Therefore,
N = A, which was sufficiently accnrate for §4, was also eoxnected to give

suitable accuracy for §5, and has ulso been uscd for the computations
described in §5,

The computations are made difficult by the presence, in ~ation (3,99,
of the infinite series in the terms Qmp(z) for o =0,1,..., m=20,1,...,
which are 5lowly convercent. Because of this, a numerical check on the

complicated computations was required, and an iterative method is now

nregsentoed for this purpose,




The decomposition of ¢S in the radial variable yields (as shown by
equation (3.5)) a principal part Jm(akr/d), which is wavelike, and an
infinite number of modes Im(aknr/d) that decay away from the sill-edge. If
the value of the principal radial eigenfunction at the sill-edge is not too
small, then an iterative procedure may be adopted. From now on, the
coefficient of cos mb e—ict in ¢s and ¢0 will be denoted by ¢m.

A preliminary outer flow is determined from the radiation condition and
the boundary condition 3¢m/8r =0 at r =1, -1 < z < 0., This outer flow
then determines the boundary conditon at r =1, -1 < 2 < 0, for a sill flow,
through the continuity of ¢. This sill flow then vyields 8¢m/8r at r = 1,
-1 ¢ z ¢ 0, from which a second outer flow is calculated, and so forth.

Equatiors (A) and (B} of the appendix arise from this scheme and are to
be used as follows. When the Apn in ¢s are known, the coefficient an of

9, are calculated from the equations (A). Note that here, H&(aX/D),

Im(akn/d) and Ké(akp/o) do not vanish. When the B are known, the

mn
coefficients in ¢s are calculated from the equations (B). This iteration
Aiverges near the zeros of Jm(ak/d), which lie near the peak periods. This
scheme therefore fails for the parameters of most interest, bhut it was felt

important to use the method to provide a check on the computations made with

(3.8).

-10-
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§4. Application to laboratory scales

This section concerns some calculations made to correspond to the
laboratory scales used by BPP. For their experiments, a = 50 cm,
d=1.75 cm, D = 15.4 cm and the forcing periods ranged between 0.75 and 1.20
seconds.

The full linear theory with no spatially decaying modes was used to
compute the response curve for each model number and were compared with the
linear shallow-water theory. Figures 4.1(a) and 4.1(b) display the results
for the 0th mode and fiqure 4.2 those of the 6th mode. The curves show that
the peaks in the lower frequency range occurred near those of linear shallow-
water theory. At small modal numbers, however, the response was significantly
diminished and at large modal numbers, the bandwidths were small so that the
LH theory was not useful in calculations of the amplitudes. 1In the higher
frequency range, there was no evidence of the peaked response predicted by the
LH theory. In this connection, note that there are a large number of zeros in
the radial eigenfunction Jm(akr/d) in the sill-region. Thus, the horizontal
scale of the motion is so much smaller than the radius that the motion is not
a long wave, and this is the most probable source of the substantial error in
that theory.

Computations, accounting also for the decaying modes, were carried out at
the forcing period of 1.181 seconds where the measurements by BPP yielded the

largest amplitude above the sill. The difference between the empirical values

(Ir\F(r., 0 +r, =1/14 + (i=-1)/7, i = 1,...,7, 0, = (i-1)/18,
TN | 3 i i
i =1,...,19) and the thenretical values (|qr|) nf the wave amplitudes was

measured by

-11-
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7 19 2 1/2
Vo5 w  [in(r ,0] - Ini(r .80 x,
i=1 j=1 ii nE i° 73 T 1" 7] i
By © 7 19 ) (4.1
Yooy owioIn (x0T,
i=1 3=1 i3 E 1 ) i
and
?ag IlnE(ri'ej)' - lnT(ri'ej)[
E = . (4.2)
m ?ag lnE(ri.Oj)l

The coefficients Wi and w;j represent the weights determined by Simpson's
rule for integration over 6 (0 < 6 < m) and r(ry <r < r7), together with
additional terms from the integration over 0 <r < r1 and r7 <r < 1. For

example, the square of the numerator of E, is

{s(r1)r1 + s(r7)r7 + 4(S(r2)r2 + S(r4)r4 + S(re)rs)

(4.3)
+ 2(S(r3)r3 + S(rs)rs)}/21 + (S(r1)r1 + S(r7)r7)/14 ’
where, for i = %1,.e.,7,
2
S(r.) = n/54{4 Y (In(r.,8)1 = Infr. .81
1 jean,n=1,..0 © 17 T
+ 2 ) (lnE(ri,O‘)| - |nT(ri,9.)I)2
j=2n+1,n=1,...8 ] ]
(4.4)

2
+ (InE(ri,91)| - |nT(ri,61)|)

-
<

+ (InE(ri,O o= |nT(ri,w‘g)|) Y.

19

A consistency check of E, wAas made by usina the W and w;j according to

the midpoint rule.

_15_




When only the travelling modes Amo(m = 0,+0.,8) were included in the
computations, the improvement in E2 over the LH theory was 8%. When the
first decaying mode Am1(m = 0,¢..,8) was included, together with a large
number of "outer" decaying modes, E, was further improved by 133. With the
inclusion of from 5 to 40 "sill" decaying modes, Ez decreased by
negligible amounts. These results document the importance of the decaying
modes, which had previously been though negligible (Pite 1977).

The above computational results are explained as follows. The
experimental conditions may be modeled by the full equation (3.8) when § and

Doz/g are both small. Under these conditions, the response equation becomes

approximately:
Hm(aA/D)
- ] ——
Ao Up(ak/d) = k J;(ak/a) (xﬂé(aX/D) rxen)
(4.5)
. H (a)/D)
=F -f - _
m m Hm(ax/D)
2 2 sin‘nn(1-8
where X = — y sin nn(1-9)
32 - 3
n § n=1 n
8 o ? sinsz(1-5) 2
i DR S s I N
n p=1 n=1 n{n § -p )

X is '(1/62) and originates from the "outer" decaying modes, of which a
large number must be included in the computations. Y is O(1) and
nriaginates from the "sill" decaying modes. Equation (4.5) indicates that the
incIngsion of the "outer" decavinag modes is crucial to the satisfaction of the
sill-edge conditons, but that the inclusion of the "sill" decayving modes is

not. This accounts for the differences in E decribed in the last

2

paraqgqraph.
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The maximum amplitudes above the sill and the amount of mechanical energy
over the sill were computed using the full linear theory with 5 "sill"-
decaying modes. The results, for the experimental range of forcing
frequercies, are shown in figures 4.3 and 4.4 together with those of the LH
theory. Compared with the peaks given by the LH theory for this range of
frequencies, those of the full linear theory were shifted significantly to
higher periods, with increased magnitude in the case of the 'energy' graph.
The peaks of the full linear theory occur near the complex zeros of the

coefficient of Ano in equation (4.5). The LH theory peaks near the zeros,

k J' (ak/d)Hm(aA/D)

m 2 2
- = 1K = = . 1
k, of J_(ak/d) N H' (an/D) 0 where do /g SX This

indicates that the shifts arise through the terms X + Y which is 0(1/52)
for small §&. The LH theory is therefore useful here only when k/62 << 1.
If ak/d 1is too small, however, there is no resonance in the system. This
indicates that the linear shallow-water theorv is useful if Doz/q and k/é2
are both small and ak/d 1is not small.

It aprears, therefore, that a shallow-water theorv is not necessarily a
good approximation to the full linear theory even thouagh the boundary
conditions seem to indicate it. The reason lies in the extreme sensitivity of
the matrix equation arising from (3.8) (and hence the response) to what might
he presumed to be small perturbations. For examnle, the terms arisinag from
the Adecaying modes might at first quess be though to be unimportant, indeed,
tieir relative excitations Amp/AmO for p=1,2,... m=20,1,... can bhe
shown to be small. Also, the wave numbers k and A, when evalunated hy the

full linear Adispersion relations, diffared only sliahtly from their shallow-

water values. Their amall differences, however, caused noticeable effects on
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(3.8) through the Bessel functions, especially at forcing frequencies at which
the resulting matrix equation was nearly singular, and these are just the
frequencies of peak response. The standard, diagnostic checks on dispersion
relation and modal amplitudes do turn out to mislead.

An implication of this result is that shallow-water theory should be used
only with great care in interpreting experimental results concerning motions
that in theory exhibit sharp changes in the response for small changes in the
forcing. Another, is that great care may need to be taken with the numerical

work at such frequencies.

-20~




§5. Application to oceanographic scales

LH (1967) has calculated the response lAnl, where

i _ " 1
el(n9 Ot)Aan(k1r ), k1 = c/(o:gd)/2 , for a selection of frequencies.

=
i
I o018

o0

The corresponding response using the full linear theory is ICmOI/sm, where

iot ® o Im(aknr/d)

= e S ¥ ———— *

n=e ., cos mofC I (akr/d) + ) Con T (ak 7Q) 1 +*, cC
m=0 n=1 m n

L}

m0

i

Amo(idoz/g) cosh k, m = 0,1,... and Con = Amn(idoz/g)cos kn, m 0,1, 000,
n=12,... .+ The results for the frequencies and depth-ratios, £,
considered by LH are listed in Table 5. For § = 9/16, there were not very
large differences between the predictions of the two theories. At 3§ = 1/16,
however, the LH theory predicted very large responses, especially at larger
values of m. The matrix equation was then sensitive to approximations
inherent in shallow-water theory, mentioned toward the end of §4, and the two
theories produced very different results.

It is of interest to delineate the parameter ranges for which the
shallow-water theory may be useful. This theory is based on the smallness of
the parameter Dcz/q and the practical range for which the theory appears to
be useful is limited to values of this pmarameter rather less than 0.1 (Table
4.1, Silvester 1974). On the other hand, the dimensionless frequencies

1/ . .
aog/(gd) at which resonance occurs lie close to the zeros of Jm(z); the
smallest zeros of Jm(z) increase as m increases and for m greater than
6, the first zeros are qreater than 10. Since the shallow-water parameter

%)

1. 2 1, 2 2
is related to an/{ad)’? by Dn /g = (ag/(gd)’ <)Y " (A/a)" /8, the LH theorv is

likely to be useful for an appropriate combination of (i) 4/a small, (ii)

8§ not too small, and (iii) m not too large. The large, narrow, 'resonant’
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Cowparison of full lincar theory with Longuet-liiggins’ response

lAnl (1967) in the swrface clevation

Modc no. pimcneicnless freguency Longuot-itiggins Full lincar theory's
ag A | coeff. of travelling
n
%;; mode
_ 3
¢ = 1¢
2 4.921 16.23 11.88
8.219 8.057 7.267
4 7.447 91,37 2.145
10.798 18.90 5.756
14.027 8.593 6.233
9.821 58l.1 0.2798
6 13.408 g85.81 1.17¢
16.723 24.21 2.840
19.922 10.42 4.331
23.235 7.122 4.196
12.121 3895 0.0757
15.890 437.8 0.2235
19.352 98.12 0.7472
& 22.662 31.76 1.714
25.869 13.55 2.797
29.083 7.954 3.269
32.480 6.512 2.769
1
§ = =
4
2 4.796 2.871 2.775
3 5.632 3.269 2.921
4 6.799 3.546 3.526
5 8.021 4.447 4.482
6 { 9.240 5.841 5.644
12.832 3.738 2.516
8 { 11.630 10.83 5.351
15.025 3.018 3.026
A 9
§ = —~—
16
5 6.8903 0.978 1.3%7
6 §.124 1.158 1.447
7 9.308 ' 1.296 1.531
~22-

- aulie. % .




peaks predicted by the LH theory, however, occurred for parameter ranges not
satisfying these restrictions. For instance, Table 5 (d/a £ 0.008) shows

that the most spectacular peaks occurred for the larger m and smaller §

and that these peaks were not predicted by the more accurate linear theory.
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§6. Weakly viscous effects

Consider a periodic flow above the sill at a frequency ¢. At the solid
1
boundary, there will be a Stokes boundary layer of thickness (v/c)é% where
v 1is the kinematic viscosity of the fluid. For laboratory scales, Vv is

assumed to be 0.01 cm2 sec_1 (for water) and for the field scales, v may

be the eddy viscosity, perhaps of the order of 10 cm? sec™'.  In the sill
geometry of BPP, (v/agé?d = 0.05 and for the case considered by LH, this
parameter was an order of magnitude smaller. The effect of viscous
dissipation at the bottom boundary outside the sill-region is expected to bhe
small compared with that inside. In order to estimate the effect of viscosity
on the total flow, it is therefore plausible to take the boundary layer into
account for r < 1, and to neglect it for r > 1. Following the work of

Mahony and Pritchard (1980) the boundary condition to be posed at z = -1,

r<11, D < 86 < 27, is found to be

, 2
39 = -¢ e117/4 3¢ + 0(2364)
3z 1 822 172

where . = (v/c;é?d and €y = (d/a)z-

Computations for the sill geometry studied by BPP showed approximately a
1% difference in Ez (as defined by 4.1) from the inviscid case, over the
entire frequency range. Thus it would appear that the effect of viscosity is
not 1mportant under their conditions. The suggestion by Pite (1977), who used
A quasi-empirical theory which involves a fluctuating body-force, that viscous
~ffects were significant on his laboratory scales, dnes not appear to be

justifiable since his values of €4 and 52 were similar to those of BPP.

-24-




Acknowledgement

The author is indebted to Professor J. J. Mahony (University of Western
Australia) for suggesting this topic and for many helpful discussions. Thanks
are also due to Dr. W. G. Pritchard (University of Essex) for suggestins
involving §4 and for help in drafting this paper, and to Professor R. E. Meyer
{University of Wisconsin-~Madison) for advice on the presentation. The work
for this paper was supported in part, by a Commonwealth Postgraduate Research
Award, the National Science Foundation Grant No. MCS-7927062 and the U. S.

Army Contract No. DAAG29-80-C-0041.




APPENDIX
1 if m=0
€ =
2 if m# 0
f(k) = f?1 cosh’k(z+1)dz
_em o a)
. ) t_ml Jm(D )
m 2) sinh A
.-mo_cal
F* _ Eml Jm(-D_)
m 2X sinh A
gl A, k) = ,r?_1 cosh A(z+1) cosh k(z+1)dz
0 2
h{ X)) = f 1 cosh A( 8z+1)dz
s
rAA _ (1) al
m'D ] Hm (D )
ali (1)'aX
H'(Z2) = =2
m(D ) Hm (D )
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+ 1 ax a9k
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mp
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Equations (A)

For m=0,1,---:

1 1

Bmo " H'(ar/D) Gy

[kAmog(k,k)Jé(ak/d) f

Im(akn/d)

*® *
* 1 %A T ek @ 9] - )
n=1 m n

and for p = 1,2,...,

Km(ak /D)
Bmp = KiaX /D) 63 h(irp) {kApg 90X k)T (ak/d)

I'(ak /4d)
m

(.4
* L %P Tax gy etk
n=1 m n
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Equations (B)

For m=20,1,..,.

1

Ao = T TaR7ATECRY Brolin(AM0) ¥ FlalAk)

+ Z B g(ixn,k)} .

Here f(k), F, and g(X,k) are defined in the appendix.

For p = 1,2,...,

9

o

+ nz1 B, 9UiA . 1kp)} .
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