TECHNICAL LIBRARY ADA 100437

Report 2319

ROTATING BIOLOGICAL CONTACTORS FOR MUNITIONS WASTEWATER TREATMENT

> by P. Gail Chesler and Gerald R. Eskelund

> > February 1981

Approved for public release; distribution unlimited

DTIC QUALITY INSPECTED 3

U.S. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMMAND FORT BELVOIR, VIRGINIA

10-1100 437

5 0712 01017247 5

NEADAC TECHNICAL LIBRARY

Destroy this report when it is no longer needed. Do not return it to the originator.

.

1

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

UNICI	ACCI		IED
UNCL	ASSI	1	16.17

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION	1 PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2319	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Sublitio) ROTATING BIOLOGICAL CONTACTOF MUNITIONS WASTEWATER TREATME	RS FOR	 S. TYPE OF REPORT & PERIOD COVERED Final Technical Report May 1979 — January 1980 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR() P. Gail Chesler Gerald R. Eskelund		8. CONTRACT OR GRANT NUMBER(*)
9. PERFORMING ORGANIZATION NAME AND ADDRES Petroleum & Environmental Tech Div; En Resources Lab; US Army Mobility Equipr Development Command; Fort Belvoir, VA	ss ergy & Water nent Research & 22060	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS AMCMS 49110525281
11. CONTROLLING OFFICE NAME AND AODRESS US Army Mobility Equipment Research & Command; Fort Belvoir, VA 22060	2 Development	12. REPORT OATE February 1981 13. NUMBER OF PAGES 48
14. MONITORING AGENCY NAME & ADDRESS(If dilfor Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010	ent from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified 15. OECLASSIFICATION/OOWNGRADING
Approved for public release; distribution u 17. OISTRIBUTION STATEMENT (of the obstract untere	unlimited. od in Block 20, 11 different fro	m Report)
A paper based on this report was presented at the First Annual Rotating Biological Contactor Technology Conference, Seven Springs, PA., 5 February 1980.		
19. KEY WORDS (Continue on reverse aide il necessary and identify by block number) Pollution Abatement TNT Rotating Biological Contactors Formaldehyde Explosives RDX HMX		
20. ABSTRACT (Continue on reverse stde if necessary and identify by block number) The report documents investigation of the applicability of aerobic rotating biological contactor (RBC) technology for secondary treatment of the wastestream of a facility manufacturing the explosives RDX and HMX. The synthesized wastestream contained high levels of formaldehyde and formic acid as well as the explosives RDX, HMX, and TNT. Several other organic contaminants were also present in lesser concentrations. It was found that the RBC was capable of removing 82% of the Chemical Oxygen Demand (COD) from the wastestream at loading rates of 2.3 lb of COD per 1000 ft ² of disc surface area per day.		
DD FORM 1473 EDITION OF I NOV 65 IS OBS	OLETE	UNCLASSIFIED

j SECURITY CLASSIFICATION OF THIS PAGE (When Dote Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSIFIED

ii

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

SUMMARY

This study investigated the treatability of a synthesized waste stream simulating a munitions plant wastewater effluent using rotating biological contactor (RBC) technology. Synthesis of the waste stream was based on anticipated compositions and flows from a munitions plant, designated as RDX/HMX Site X Facility. The study was conducted using a bench-scale aerobic biodisc unit.

Seventeen constituents were used in the formulation of the wastewaters, including formaldehyde, formic and acetic acids, solvents, RDX, HMX, TNT, and other contaminants in lesser amounts. Three influent compositions were used in the testing. Two of them contained the same contaminants, but one was made more dilute by inclusion of condensate from a heat exhanger. The third composition represented a plant effluent which would result if pretreatment of the ammonia-still-bottoms was bypassed.

Based on the results of the investigation, the following conclusions can be drawn:

a. At an average loading of 2.3 lb COD/1000 ft² day, removal of 82% of COD was attained in treatment of the more dilute wastestream in the testing performed in October through December.

b. In the testing which was performed in June through August, a higher loading of $3.6 \text{ lb COD}/1000 \text{ ft}^2$ day gave the same COD removal.

c. In the treatment of the more concentrated wastestream, removals of 62% of COD were attained at a loading of 2.3 lb COD/1000 ft² day.

d. pH values near 3 of the influent hinder biological treatment. The influent must be neutralized prior to treatment.

e. Phosphorus and nitrogen supplements were necessary to allow growth of microorganisms. Calculations indicate that requirements for nitrogen and phosphorus at the plant level would be quite high.

f. Formaldehyde and formic acid in the high concentrations used were not toxic to the microorganisms.

g. Several different microorganisms populated the aerobic biodisc unit. Many were typical of sewage treatment plant microorganisms.

iii

h. The microorganisms which populated the system were extremely hardy, indicating that the possibility of a total kill-off was remote.

i. Filtering was a problem with this culture on both sand and carbon filter columns due to the spore-forming nature of the microorganisms.

j. High levels of COD reduction will occur in the equalization pond used in the proposed X-Facility treatment system if pH neutralization is provided.

PREFACE

The investigation covered by this report was requested by the US Army Munitions Production Base Modernization Agency and funded by the Corps of Engineers, Huntsville, under Procurement Work Directive APO3SQ5 from Commander, ARRADCOM to Commander, MERADCOM. Work was accomplished under the direction of Chief, Environmental Technology Branch, Petroleum and Environmental Technology Division, Energy and Water Resources Laboratory, MERADCOM and the Task Director, Dr. John Thomas, X-Facility Wastewater Treatability Study, Chemical Systems Laboratory, US Army ARRADCOM.

The investigation was conducted by the following personnel of the Petroleum and Environmental Technology Division:

Gerald R. Eskelund, Branch Chief. P. Gail Chesler, Physical Scientist. Elizabeth Radoski, Chemist. Janet O. Hall, Chemist. Donald Miller, Technician.

Microbiological work conducted at Natick Laboratory by Neil G. McCormick and Bonnie J. Wiley, as well as assistance received from the Atlantic Research Corporation team, is acknowledged.

v

CONTENTS

Section	Title	Page
	SUMMARY	iii
	PREFACE	v
	ILLUSTRATIONS	viii
	TABLES	ix
	METRIC CONVERSION FACTORS	x
Ι	INTRODUCTION	1
II	PROGRAM OBJECTIVES	3
III	EXPERIMENTAL PROCEDURES	
	1. Test Waters	1
	2. Equipment	6
	3. Systems Startup	10
	4. Sampling and Analysis	10
IV	RESULTS OF BENCH-SCALE TESTING	11
V	RESULTS OF ATLANTIC RESEARCH	
	CORPORATION ANALYSIS	
	5. Toxicity of RBC Influents and Effluents to the	
	Bluegill Sunfish	11
	6. Mutagenicity Testing on the RBC Effluent	20
VI	DISCUSSION	
	7. Startup Problems	21
	8. Wastewater Characteristics	21
	9. Possible Influent Toxicity	22
	10. Microorganism Identification	22
	11. System Alternations	22
	12. Flow Rate and Controls	23
	13. Rotation Rate	23

CONTENTS (CONT'D)

Section	Title	Page
	14. Biomass Solids	24
	15. Seed	24
	16. Scale-up	24
	17. Startup Time Requirements	25
	18. TNT/RDX/HMX Removal	25
	19. Operation on B-Stream Wastewater	25
	20. Operation on Ammonia-Still-Bypass Wastewater	26
	21. Data Interpretation	26
VII	CONCLUSIONS	
	22. Conclusions	26
	APPENDICES	
	A. RAW DATA FROM A-STREAM OPERATION	28
	B. RAW DATA FROM B-STREAM OPERATION	30
	C. RAW DATA FROM AMMONIA-STILL-BYPASS	5
	WATER	31

ILLUSTRATIONS

Figure	Title	Page
1	RDX/HMX Waste Treatment Process Flow Diagram (US Army Engineers, Huntsville, 1977)	2
2	Original Bench-Scale Testing Setup	7
3	Bench-Scale Testing Setup as Revised	8
4	Aerobic Biodisc Unit	9
5	A-Stream Test Results, 1 June – 10 August 1979	13
6	A-Stream Test Results, 20 July – 10 August 1979	14
7	B-Stream Test Results, 27 August – 21 September 1979	15
8	A-Stream Test Results, 17 October – 28 December 1979	16
9	Ammonia-Still-Bypass Water Test Results, 7 January – 8 February 1980	17

TABLES

Table	Title	Page
1	Predicted Quality of Influent to Wastewater Treatment Plant X Facility	4
2	Chemical Composition and Characteristics of Wastestreams	5
3	Parameters Measured and Analytic Methods Used	12
4	Comparison Between Predicted and Actual A-Stream Characteristics	12
5	Toxicity of RBC Influent and Effluents to the Bluegill Sunfish (Lepomis Macrochirus)	18
6	Stream Parameters for Aquatic Toxicity Tests	19

METRIC CONVERSION FACTORS

Approximate Conversions to Metric Measures

Symbol	When You Know	Multiply by	To Find	Symbol
	100	LENGTH		
·_	5 .	1 0 E		
10 4	inches	2.5	centimeters	cm
n vd	reet	30	centimeters	Cm
mi	miles	1.6	kilometers	, m km
		AREA		
in ²	envero inches	6.5		-m ²
fr ²	square inclies	0.09	square centimeters	_2
vd ²	square varde	0.8	square meters	"²
mi ²	square miles	2.6	square kilometers	km ²
	acres	0.4	hectares	ha
		MASS (weight)		
oz	ounces	28	grams	g
lb	pounds	0.45	kilograms	kg
	short tons (2000 lb)	0.9	metric tons	t
		VOLUME		
tSD	teaspoons	5	milliliters	ml
Tbsp	tablespoons	15	milliliters	ml
fl oz	fluid ounces	30	milliliters	ml
С	cups	0.24	liters	L
pt	pints	0.47	liters	L
qt	quarts	0.95	liters	L
gal	gallons	3.8	liters	L
ft ³	cubic feet	0.03	cubic meters	m
۸q	cubic yards	0.76	cubic meters	m ³
	TEMP	PERATURE (exact)		
°F	Fahrenheit temperature	5/9 (after subtracting 32)	Celsius temperature	с

• 1 in = 2.54 cm (exactly).

Approximate	Conversions	from	Metric	Measures
-------------	-------------	------	--------	----------

Symbol	When You Know	Multiply by	To Find	Symbol
		LENGTH	-	
mm	millimeters	0.04	inches	in
cm	centimeters	0.4	inches	in
m	meters	3.3	feet	ft
m	meters	1.1	yards	yď
km	kilometers	0.6	miles	mi
		AREA	 .	
cm ²	square centimeters	0.16	square inches	ín ²
m ²	square meters	1.2	square yards	vd ²
km ²	square kilometers	0.4	square miles	mi ²
ha	hectares (10 000 m ²)	2.5	acres	
	M	ASS (weight)	_	
g	grems	0.035	ounces	oz
kg	kilograms	2.2	pounds	lb
t	metric tons (1000 kg)	1.1	short tons	
		VOLUME		
mi	milliliters	0.03	fluid ounces	fl oz
L	liters	2.1	pints	pt
L	liters	1.06	quarts	qt
L_	liters	0.26	gallons	gal
m ³	cubic meters	35	cubic feet	ft ³
m ³	cubic meters	1.3	cubic yards	۸d ع
	TEMP	ERATURE (exa	ct)	
0 <u>-</u>	Calsius	9/5 (then	Fahrenheit	°F
-C	0013103			

.

ROTATING BIOLOGICAL CONTACTORS FOR

MUNITIONS WASTEWATER TREATMENT

I. INTRODUCTION

In 1977, the Army began the concept design for a new facility which will manufacture the explosives RDX and HMX. The facility, designated as RDX/HMX Site X, will incorporate not only the explosives production, but all of the other processes necessary to manufacture and blend the explosives. These ancillary processes will include nitric acid production, acetic acid dehydration, acetic ahydride production, explosives formulation and blending, and wastewater treatment. It is anticipated that the X Facility will discharge between 1.0 and 1.5 million gallons per day with two production lines initially in full operation. Two additional lines may eventually be built at this facility.

Three sites have been chosen as potential locations for the facility, and negotiations with regional offices of the Environmental Protection Agency have begun to determine the National Pollution Discharge Elimination System (NPDES) permit requirements for each site. The specified effluent standards will determine the level of wastewater treatment required.

Studies conducted at Holston Army Ammunition Plant (HAAP) and Radford Army Ammunition Plant (RAAP) indicated that treatment of munitions wastewaters by a biological system was feasible. At HAAP, an activated sludge plant was used on wastes somewhat similar to those expected at the X Facility; while at RAAP, an RBC was tested on wastes markedly different from those expected. The current investigation was to determine whether RBC's could be used on X-Facility effluent.

In the preparation of a Project Development Brochure (PDB-1) by the US Army Engineers, a concept for a three-level treatment process employing RBC's was developed. This concept is illustrated in Figure 1.

Primary treatment was to consist of oil/solids separation, equalization, and pH adjustment. In the secondary treatment, RBC's were to be used to reduce the Biochemical Oxygen Demand (BOD_5) of the effluent to acceptable levels. After the biological treatment, the sludge was to be removed and prepared for disposal. The tertiary treatment consisted of dual-media filtration and carbon adsorption.

Since the design generated was based on calculations rather than experimental data, bench- and pilot-scale testing were appropriate. Bench-scale testing took

Figure 1. RDX/HMX Waste treatment process flow diagram (U.S. Army Engineers, Huntsville, 1977).

place at MERADCOM and pilot-scale testing took place at Atlantic Research Corporation (ARC) beginning in April 1979.

II. PROGRAM OBJECTIVES

Investigation was designed to provide answers to the following questions:

Can RBC technology be used to remove organic material from wastewater synthesized to simulate X-Facility effluent?

Is 95% reduction in Biochemical Oxygen Demand possible using the RBC process?

What initial hydraulic loading should be recommended for the pilot-scale unit? Are there conditions of which they should be forewarned?

ls scale-up from bench-scale to pilot-scale possible; i.e., will the same loading in pounds of BOD_5 per 1000 ft² of disc area result in the same removal efficiency?

Can wastewater from the ammonia still be used as a nitrogen source for the microorganisms? This would eliminate the necessity for separate pretreatment of this wastewater.

III. EXPERIMENTAL PROCEDURES

1. Test Waters. Three compositions were specified for the test waters to be used in this study. They are designated A stream, B stream, and ammonia-still-bypass water. The predicted chemical compositions of the A and B streams are shown in Table 1. These wastewater compositions were predicted by ARRADCOM. Table 2 gives the compositions of wastewater used in this investigation.

Adjustment of pH for A and B streams was made using ammonium hydroxide on a batch basis in amounts sufficient to raise the pH to approximately 7.4. Approximately 250 ml of 15N NH₄OH was added for neutralization in the 1100-litre mix initially prepared which represented an addition of 54 grams of nitrogen. The 1N NH₄OH which was used in the continuous adjustment system also added nitrogen. Less than 3 litres of 1N NH₄OH was used with each 1100-litre batch; the exact amount was not recorded. Fine tuning for leanest nitrogen feed was not done at the benchscale level, although the pilot-scale unit did fine tune this addition.

	Stream	n A	Strea	ım B
	Total Flow (gallons/day)			
	1,539	1,539,800		,600
Contaminants	lb/day	mg/l	lb/day	mg/1
NO ₃ -NO ₂	230	18	225	27
Ammonia	19-46	2-4	19-46	2-6
RDX	60-147	5-11	60-147	7-18
НМХ	20	2	20	2
TNT	64-155	5-12	64-155	8-19
Acetic Acid	420-1052	33-82 ·	420-1052	51-127
Hexamine	464-576	36-45	464-576	56-70
Cyclohexanone	518-648	40-51	518-648	63-78
Propyl Alcohol	653-816	51-64	653-816	80-99
Methyl Acetate	250-312	20-24	250-312	30-38
Propyl Acetate	77-96	6-7	77-96	9-12
Formic Acid	2246-2808	175-219	2246-2808	272-339
Nitromethane	250-312	20-24	250-312	30-38
Formaldehyde	6912-8640	539-674	6912-8640	836-1045
Phosphate	66	5	66	7
Sulfate	1102	86	829	100
Acetic Anhydride	400	37	400	48
Amine	60	5	60	7
Organic Nitrogen	69	5	69	8
Toluene	38-48	3-4	38-48	5-6
Stearic Acid	12-24	1-2	12-24	1-3
Acetone	566-696	43-54	566-696	67-84

Table 1. Predicted Composition of Influent to Wastewater Treatment Plant X Facility

Stream A: Total wastewater includes heat-exchanger condensate.

. .-

· · • •

Stream B: Total wastewater without heat-exchanger condensate.

.

	Stream A	Stream B	Ammonia-
	(mg/l)	(mg/l)	Still-Bypass
	Includes heat-	Excludes heat-	Water
Chemical	exchanger condensate	exchanger condensate	(mg/l)
Formaldehyde	674	1045	1045
Formic Acid	219	339	339
Sulfate	86	100	100
Acetic Acid	, 85	184	184
1-Propanol	64	99	99
Acetone	54	84	84
Cyclohexanone	51	78	78
Hexamine	44 ·	70	355
Methyl Acetate	24	38	38
Nitromethane	24	38	38
n-Propyl Acetate	7	12	12
Phosphate	5	7	7
Toluene	4	6	6
Amines	5	7	344
Stearic Acid	2	3	3
TNT	12	19	19
RDX and HMX	13	20	20
COD	1650	2300	2300
BOD	1390	1660	1660
pН	3	3	3
Sodium Bicarbonate	0	0	114
Ammonia	0	0	1009

Table 2. Chemical Composition and Characteristics of the Test Waters

۰.

During the initial startup of the system, it became apparent that nitrogen and phosphorus concentrations were inadequate for support of bacterial growth. As a result, additions of ammonium hydroxide, as mentioned, and sodium phosphate were made to the test waters.

The amount of phosphorus to be added was calculated as a molar ratio of carbon to phosphorus of 106 to 1. Microorganisms are thought to use carbon, nitrogen, and phosphorus for synthesis in a molar ratio of 106 to 16 to 1.

One modification was made to the feed itself. At startup, the explosives were not used in the feed mixture. However, once RDX, HMX, and TNT were included, it was important that they be completely dissolved to be sure they were included in the feed stream to the biodisc. In order to facilitate complete mixing, it was necessary to enhance the solubility of the RDX and HMX by addition to the wastestream of more cyclohexanone than the formula specified. Sufficient acetone was present in the formula to insure the solubility of the TNT. For reasons to be discussed later, RDX, HMX, TNT, and the supplemental cyclohexanone, were deleted from the feed stream for the last two phases of the testing.

2. Equipment. Two physical setups were used in the bench-scale testing. Figure 2 illustrates the complete treatment scheme as employed to simulate the plant. Because of operational difficulties, several pieces of equipment were removed after the first month of testing, leaving the system as shown in Figure 3 for use in the remaining testing.

In the initial phase of the testing, a covered 1100-litre tank was used to hold the synthesized wastestream. The waste was pumped into a smaller 120-litre feed tank. Flow from this tank into the aerobic biodisc was controlled by a Masterflex pump. Uniform mixing in both tanks was accomplished by use of submerged pumps.

The aerobic unit is shown in Figure 4. This four-chamber unit was constructed in-house of 0.6-cm ($\frac{1}{4}$ -in.) Plexiglas. Each chamber contained six Plexiglas discs of 26.04-cm (10 $\frac{1}{4}$ -in.) diameter mounted on a shaft of 1.3-cm ($\frac{1}{2}$ -in.) diameter. One hundred ninety-five holes of 0.6 cm ($\frac{1}{4}$ in.) diameter were bored into each disc to aid in microorganism attachment. The total disc area was 2.5 m² (27.5 ft²). The liquid capacity of the aerobic biodisc unit was 9 litres. The discs rotated at 17.5 rpm. This speed is equivalent to an edge velocity of 0.24 m/s (0.78 ft/s). Effluent from the aerobic biodisc flowed into the anaerobic biodisc unit which was covered and airtight. The capacity of the anaerobic unit was 60 litres.

.

PUMP

FLOW Î

Figure 3. Bench-scale test setup as revised.

Figure 4. The aerobic biodisc unit.

The wastewater was pumped from the anaerobic unit into an aeration chamber through which air was bubbled. The clarifier followed in the flow pattern and the effluent was pumped into a sand filter column and on through a carbon column containing Filtersorb 400. The two columns were of Plexiglas construction with 0.6-cm ($\frac{1}{4}$ -in.) walls, inner diameter 7.3 cm (2-7/8 in.), and height 122 cm (4 ft). The effluent from the carbon column was then discharged into a sewer drain.

After one month the experimental apparatus was modified for reasons given in Section VI, DISCUSSION. The following pieces of equipment were removed: sand and carbon filter columns, anaerobic biodisc unit, 1100-litre feed tank, and clarifier.

3. System Startup. The bench-scale biodisc study began in early May 1979. Seeding of the biodisc units was accomplished with primary effluent from the Fort Belvoir wastewater treatment plant. When no growth appeared on the discs after 2 weeks, pH adjustments and nitrogen and phosphorus additions were found to be necessary. After roughly 1 month, during which time four 1100-litre batches of synthesized wastewater had been mixed and processed by the system, COD removal of a measurable degree began to occur and growth appeared in all four chambers of the biodisc unit. Heaviest growth appeared in chambers 1 and 2. No growth was found on the anaerobic biodisc unit, nor was any gas produced by this unit.

After A-stream and B-stream testing had been completed, some repairs were necessary, and the discs were cleaned of all growth. In restarting, inoculum was taken from the pilot plant at Atlantic Research Corporation which was testing with A-stream test water. Good growth and COD removal took place within 2 weeks.

4. Sampling and Analysis. Parameters which were measured and analytical methods which were used are shown in Table 3.

The influent feed tank was continuously monitored for pH and pH was tested on all samples taken for COD determination. COD tests were run on influent and effluent, roughly on a daily basis. For one period of the study, COD levels in all four chambers were determined. Five-day Biochemical Oxygen Demand and Total Organic Carbon (TOC) were determined periodically in an attempt to establish a correlation with COD values.

Analysis of the microbiological growth was done at the US Army Natick Research and Development Command, using culture techniques and visible identification. The Ames test was run by Atlantic Research Corporation with the five tester strains of Salmonella typhimurium.

IV. RESULTS

Table 4 shows a comparison between predicted and actual A-stream characteristics.

Figure 5 shows percent COD removal and BOD_5 removal vs. days of testing on A-stream 1 June – 10 August 1979.

The following figures show percent COD removal vs. pounds of COD loading per thousand square feet of disc surface area per day:

Figure 6: A-stream test results 20 July – 10 August 1979.

Figure 7: B-stream test results 27 August – 21 September 1979.

Figure 8: A-stream test results 17 October – 28 Décember 1979.

Figure 9 shows percent COD removal vs. days of testing on ammonia-still-bypass water 7 January – 8 February 1980.

Toxicity and mutagenicity test results from Atlantic Research Corporation appear in Section V.

V. RESULTS OF ATLANTIC RESEARCH ANALYSIS FOR TOXICITY AND MUTAGENICITY

In order to provide a complete picture of the analysis done on the effluent from the bench-scale biodisc unit, selected information has been drawn from the final report by Atlantic Research Corporation.*

5. Toxicity of RBC Influents and Effluents to the Bluegill Sunfish. In toxicity studies done by Atlantic Research, the LC_{50} for 24-, 48-, and 96-hour exposure of bluegill sunfish (Lepomis macrochirus) to the RBC influent, effluent, and granulated carbon filtrate are presented in Table 5. The water parameters for the test solution are given in Table 6. The influent B-stream was found to be highly toxic to the bluegill sunfish with LC_{50} values between 1 and 1.5 percent volume/volume (% v/v), depending on the length of exposure. The toxicity of the B-stream effluent was much

^{*} Judith F. Kitchens et al, "Pilot-Scale Evaluation of the Treatability of RDX/HMX Site 'X' Facility Wastewaters." Atlantic Research Corporation, Final Report ARCSL-CR-80028 for Contract DAE 18-69-A-0223 (Apr 80).

Parameter	Method
Biochemical Oxygen Demand	Standard Methods,* p. 555.
Chemical Oxygen Demand	Standard Methods, * dichromate reflux method, p. 550.
Total Organic Carbon	Standard Methods, * Dohrmann TOC Analyzer, p. 532.
pH	Beckman pH meter
Temperature	Thermometer
Nitrogen: Ammonia, Nitrate, Nitrite	Hach Chemical Company, Water Analysis Handbook (1977).
TNT, RDX, HMX	Waters Liquid Chromatograph, Radial Com- pression Separation System, using a C18 Microbonded Column, 75% Acetonitrile, 25% Water solvent.

Table 3. Parameters Measured and Analytic Methods Used

*American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 14th edition, APHA, Washington, D.C. (1975).

Table 4. Comparison Between Predicted and Actual A-Stream Characteristics

Characteristic	Predicted	Actual	
pH	5.5-7.3	3	
$BOD_{5} (mg/l)$	198	1390	
COD (mg/l)	286	1650	

Figure 6. A-Stream test results, 20 July-10 August 1979.

Figure 8. A-Stream test results, 17 October-28 December 1979.

. i

Ø

		LC ₅₀ Mixture	95% Confidence Range
Sample	Hours	in % v/v	in % v/v
Influent, B-Stream 4 Oct 79	24	1.5	1.0-2.1
	48	1.3	0.8-1.9
	96	1.0	0.6-1.8
Effluent, B-Stream 4 Oct and 12 Oct 79	24	46.5	39-56
Effluent, B-Stream (No TNT) 11 Dec 79	24	37.0	29-47
Effluent, B-Stream 14 Dec 79	24	45% death at 85%	-
	48	74.0	51-100
Carbon Filtrate, 2 ft 1 Nov 79	24	55.0	43-70
Carbon Filtrate, 6 ft	24	30% death at 60%	
	48	30% death at 60%	

Table 5. Toxicity of RBC Influent and Effluents to the Bluegill Sunfish(Lepomis macrochirus)

į

B-Stream Effluent Table 6. Stream Parameters for Aquatic Toxicity Tests

.

					D-OUCAIL FILMALL	
	B-Stream Influent	B-Stream Effluent	B-Stream Effluent	B-Stream Carbon Filtrate	(No TNT)	A-Stream Effluent
Parameter	4 Oct 79	4 Oct 79	12 Oct 79	1 Nov 79	11 Dec 79	14 Dec 79
Hq	8.35	8.75	8.5	8.0	8.65	8.1
D.O.*	8.8 ppm	13	10.0	9.2	8.0	> 8.0 ppm
Alkalinity	108 ppm	588 ppm	422	310 ppm	1162 ppm	1
Nitrate-N	I	1 ppm	2 ppm	I	1.2 ppm	1.0 ppm
COD	1868 ppm	529 ppm	266 ppm	18 ppm	229 ppm	374 ppm
BOD	1274 ppm*	305 ppm	143 ppm	1	41 ppm	20 ppm
Formaldehyde	1340 ppm	33 ppm	40 ppm	I	33 ppm	1
RDX	> 10	> 10	6.5 ppm	1	ł	1
XMH	0.6 ppm	0.6 ppm	0.3 ppm	1	Ι	1
TNT	1.6 ppm	BDL	0.6 ppm	1	0	i
* Walnes lower +	in actual due to inconci	tivity of the discolved o	vvaen nrohe			

Values lower than actual due to insensitivity of the dissolved oxygen probe.
 BDL – below detection limit of approximately 0.1 ppm
 not measured

. . .

:

;

lower than the influent, with a 24-hour LC_{50} of 46.5% v/v. The LC_{50} of the B-stream effluent was 37% v/v when no TNT was included. In Atlantic Research's opinion these tests indicate that TNT and its transformation products are not the primary cause of the acute toxicity of the wastewater to the bluegill sunfish. The toxicity of the B-stream effluent appeared to be independent of the COD reduction and could, therefore, be due to one of several factors: high salt levels, residual toxic materials not removed by the RBC microorganisms, or biotransformation of an influent constituent into a toxic material.

The toxicity of the A-stream RBC effluent was less than that observed for the B stream. The A stream had a concentration of approximately 0.65 that of the B stream in terms of organic pollutants. However, the 24-hour aquatic toxicity of the A stream was less than 0.55 times that observed with the B stream. Further research could be done into effluent components of the B stream and their identification to determine why the B stream is more toxic than would be predicted from the A-stream results.

Treatment of the munition wastewater stream by the RBC substantially reduced the toxicity of the stream. The carbon filtration of the RBC effluent also reduced this toxicity, although a large amount of activated carbon was required. The removal of TNT from the wastewater stream did not substantially change the toxicity of the effluent.

6. Mutagenicity Testing on the RBC Effluent. Atlantic Research Corporation ran the Ames mutagenicity test on four water samples; i.e., their B-stream effluent, their carbon column effluent, the MERADCOM A-stream effluent without explosives, and pink water from the Iowa Army Ammunition Plant.

Mutagenicity was clearly indicated for all B-stream samples on all tester strains without use of biological activation. The inference drawn here was that multiple mutagens were present and were using different mechanisms. The carbon column effluent samples were not clearly mutagenic in this test. The MERADCOM A-stream sample without explosives as well as the Iowa pink water, which contained significant amounts of TNT, were tested. No clear indication of mutagenicity was found for these samples.

Subsequent testing of the MERADCOM B-stream influent without TNT gave no clear evidence of mutagenicity.

VI. DISCUSSION

7. Startup Problems. After startup of the system in early May, no growth appeared on either the anaerobic or aerobic biodisc units in spite of the seeding which had taken place. It was discovered that the lack of growth was due to highly acidic pH levels of around 3 and the absence of sufficient nitrogen and phosphorus as nutrients required to support respiration of the microorganisms. Ammonium hydroxide was used daily on a batch basis to adjust the pH to a level around 7.0 for 2 weeks from 21 May through 1 June 1979. In spite of this batch leveling of pH, large drops in the pH level continued to occur each night. At the same time, biomass was beginning to grow on the discs, though frequent sloughing of this biomass took place. Adjustment of pH on an automatically monitored basis was implemented on 4 June 1979 and continued through the end of the testing. The sloughing problem abated once the pH was maintained in the neutral range.

In the parallel pilot-scale experiment being conducted at Atlantic Research Corporation, sodium hydroxidc and ammonium hydroxide were used to adjust pH. Their experimental apparatus was slightly different in that they used a small tank with a pH controller between the feed tank and biodisc unit. This allowed the feed tank contents to drop to low pH levels yet assured a neutral pH in the influent to the biodisc.

The influent as described in Table 1 was deficient in nitrogen and phosphorus as noted above. Microorganisms use carbon, nitrogen, and phosphorus in an approximate molar ratio of 106 to 16 to 1. The ammonium hydroxide used to neutralize the influent provided sufficient nitrogen, but supplemental phosphorus, in the form of sodium phosphatc, was required. Sixty-six mg/l of Na₂ HPO₄ was added to the feed water in the A-stream testing.

Once these two nutrients were added, substantial growth appeared within a week. COD removal efficiency increased dramatically as well.

8. Wastewater Characteristics. Characteristics of the wastewater formulated for testing purposes as predicted by ARRADCOM were found to be markedly different from the characteristics actually determined by analysis of the A stream and B stream. Predicted pH values between 5.5 and 7.3 were found to be closer to pH 3.

Based on information from ARRADCOM, BOD_5 and COD expected values for A stream wcre 198 mg/l and 286 mg/l, respectively. Analysis showed these values to be 1390 mg/l and 1650 mg/l, respectively.

. I s

The microorganisms were able to deal with the heavy loadings at A stream, and BOD₅ removal rates of 95% were obtained. The problem which arises, however, is that the 5% which remains at those heavy loadings amounts to around 140 mg/l of BOD₅. It is unlikely that a NPDES permit would allow such a high value of BOD₅ in the effluent.

1

9. Possible Influent Toxicity. Without pH adjustment, the A stream adversely affected biological growth. Following pH adjustment and addition of nutrients, results indicated that the system could become acclimated to the feed stream.

By the end of the testing program, it was apparent that neither the explosives nor the high levels of formaldehyde and formic acids inhibited the biological growth to any noticeable degree.

10. Microorganism Identification. In the course of the investigation, it appeared that the number of different organisms was not as large as is normally found in sewage treatment plants using RBCs. Evidence was sought that the microorganism growth was not a pure culture which would be susceptible to total kill should some parameter change.

Samples were drawn from each of the four chambers of the biodisc and sent by overnight mail to the US Army Natick Research and Development Command in Natick, Massachusetts. Their test results showed that the growth was not a pure culture. In fact, it was found to consist of two strains of fungi and seven different colonial morphologies. The two fungi identified were *Fusarium* sp. and *Geotrichum* sp. Three pseudomonads were isolated; one from the pseudomonas genus and two pseudomonad organisms. Two common bacillus organisms of a ubiquitous nature rounded out the types of microbes found.

No further analysis was done to classify the organisms once it was apparent that they were typical of normal sewage system organisms. Obtaining seed material would not be difficult should a massive kill take place.

11. System Alterations. A number of alterations in the physical setup took place over the course of the experiment. The first was removal of the sand and carbon columns due to plugging from growth of microorganisms which appeared similar to those present on the discs. These columns are described in Section III, paragraph 2 of this report. Backwashing the columns was not effective in unplugging the columns as the microorganisms formed flake-like clumps, too heavy to remove by backwashing. Both sand and carbon provide good growth media. Plugging of these filters by biological growth would be a problem at plant level.

No growth occurred on the discs rotating in the anaerobic biodisc unit. No gas evolved from this unit either. The second alteration to the system was removal of the anaerobic unit. Possible explanations for the lack of growth include the relative sensitivity of methane formers and the wide fluctuations in pH and flow rate to which the system was subjected at startup.

The third alteration was in feed tank size. Extensive biological growth had taken place in the 1100-litre tank and reduction of COD was taking place before the influent got to the RBCs for processing. To improve the experimental design by reducing feed tank retention time, the 1100-litre tank was eliminated. Mixing was done in the 120-litre tank in the hope that this shorter retention time would prevent growth. For the major portion of testing, the system was pared down to the function-ing units shown previously in Figure '4. At the end of the testing program, growth in even the smaller feed tank had become a problem, and further testing would have called for additional modification of the feed flow system.

12. Flow Rate and Control. Control of the flow rate of the wastestream by Masterflex pump was equivalent to control of loading of BOD per unit of disc area since there was no recycling in the system. Initial difficulty was experienced in achieving a fine level of control of this flow rate due to lack of calibration of the pump and pump head being used. In addition, as time passed the tubing changed shape and it was necessary to recheck the flow rate on a daily basis. Control of feed flow was critical, particularly in such a small system, since minor variations in millilitres of flow per minute were equivalent to major variations in BOD loading on the disc area per day.

13. Rotation Rate. The amount of dissolved oxygen (DO) present in the wastewater, and therefore available to the microorganisms, was controlled by the rotation rate of the discs. In order for the microorganisms to accomplish synthesis and respiration, sufficient DO must be present. Throughout the testing, disc revolutions were set a 17.5 r/min which, for this diameter disc, is equivalent to an edge velocity of 0.24 m/s (0.78 ft/s).

Direct measurement of the DO levels in the disc chambers was not possible for this test program because available DO probes would not fit into the necessarily small clearance between discs and chamber walls. The Winkler method was not used because it was not possible to withdraw a sample of sufficient volume without upsetting the system.

ı.

In addition to providing for dissolved oxygen to the biomass, a second function of disc revolution was the shearing force exerted on the biomass attached to the discs. When the discs rotated with sufficient velocity, the biomass layer remained thin. This allowed DO transfer through the layer and avoided the formation of an anaerobic layer adjacent to the disc.

The fact that high levels of COD reduction were attained and growth appeared on discs of all four chambers was taken as an indication that sufficient dissolved oxygen was present.

14. Biomass Solids. During startup, sloughed biomass often plugged the normal flow pathway overnight. This caused overflow of chambers 1 and 2 (Figure 4) and radically changed retention times. Minor plumbing alterations alleviated this situation. However, the biomass which grew in the RBC chambers caused other problems.

Because the sloughed biomass was occasionally removed manually, it did not accumulate to the point where the flow was stopped. If allowed to accumulate, the bulk of it would have scraped the discs clean of growth and eventually the biomass would have become septic.

The effluent solids did not settle well. This tendency not to settle could cause difficulty in a full-scale plant. Due to total suspended solids limitations which will be contained in the NPDES permit, clarification of the biodisc effluent will be necessary. In addition, the tendency of this biomass to cause plugging of filters and flow lines will require special removal techniques.

15. Seed. As mentioned earlier, initial seed consisted of effluent taken from a local sewage treatment plant. Inoculum from the Atlantic Research Corporation's pilot plant was used twice in reseeding. It is noteworthy, however, that total kill did not take place even under very adverse conditions. It was visually apparent that some microorganisms always remained. The microbial growth reestablished itself quickly each time and was virtually self-seeding.

It would be necessary, of course, to seed at initial startup and at any time the discs were completely free of growth.

16. Scale-up. There was a question at the beginning of this study as to whether the results of bench-scale testing could be scaled up to give pilot level parameters.

From the data obtained, it can be concluded that scale-up is possible. This conclusion is fortified by the fact that similar removal efficiencies were attained with both bench- (MERADCOM) and pilot-scale (ARC) systems when comparisons were made using loading rates per unit of disc surface area with A-stream testing.

17. Startup Time Requirements. Figure 5 shows COD and BOD₅ removal efficiencies from startup through attainment of optimum BOD₅ removal (97%) during initial startup. Ten weeks passed before this optimum level of removal was attained. In the course of those 10 weeks, numerous mechanical and chemical feed problems were encountered. Several of these problems have been mentioned, including biomass sloughing, pH adjustment, and flow regulation. In contrast, once those problems had been dealt with, a later clean disc startup took only 2 weeks to achieve the same removal level.

A clean disc startup requirement is not a likely occurrence because of the hardiness of the microbial population in the face of adversity. An exception would be initial startup.

18. TNT/RDX/HMX Removal. From analyses conducted on the liquid chromatograph at MERADCOM, it was apparent that TNT, RDX, and HMX were not being removed by the system. RDX and HMX concentrations were unchanged from influent to effluent. The TNT, while in the feed tank, underwent some structural changes. The products were not characterized because of time limitations, but it should be noted that although the TNT was transformed, it is not reasonable to conclude that the contamination problem has been dealt with. It is known that TNT is readily transformed into toxic compounds, such as dinitrotoluene.

Because of the inability of RBCs to remove the explosives, these contaminants will have to be removed before the process stream is fed to the biodisc unit. For this reason, experiments following the initial tests were done with a feed water synthesized without explosive contaminants.

19. Operation on B-stream Wastewater. Changeover to B-stream was followed by a sizeable drop in COD removal efficiencies. The ratio of carbon contained in the B-stream formula to carbon contained in the A-stream formula is approximately 1.6 to 1. The initial B stream fed to the biodisc contained 70% of the concentration of constituents indicated in Table 2. Therefore, the composition of this initial B-stream flow was only slightly more concentrated than the A-stream flow, although the contaminants in each stream were the same and differed only in concentrations. As indicated in Figure 7, erratic results were obtained at 70% B stream. In further tests with 100% B stream, removals varied from 73% down to 17% for undetermined reasons.

In contrast to this performance, the pilot plant at Atlantic Research switched to 100% B stream and achieved 90% removal within the first week after the changeover.

20. Operation on Ammonia-Still-Bypass Wastewater. The microorganisms had a great deal of trouble responding to the shock of the ammonia-still-bypass wastewater loading. Although raw data in Appendix C show a few days of removal rates in the 70 percent range, no consistency was achieved during the month of testing on this stream as indicated in Figure 9.

At this point in the testing, close supervision of the unit was not possible because of personnel limitations. For this reason, some doubt exists as to whether the poor level of COD reduction was due to operation or to constituents in the new formula. Further investigation would be required to determine if it would be feasible to treat the ammonia-still-bypass wastewater with a biodisc system.

21. Data Interpretation. In Figures 6 through 9, single data points are shown with no connecting curve. No curves were drawn because of the variability in data points. The authors' intent is to avoid leading the reader to erroneous conclusions as to the stability of the removal rate.

VII. CONCLUSIONS

22. Conclusions. Based on the data obtained in this study, the following conclusions are drawn:

a. At an average loading of 2.3 lb COD/1000 ft² day, removal of 82% of COD was attained in treatment of the more dilute wastestream in the testing performed in October through December.

b. In the testing which was performed in June through August, a higher loading of 3.6 lb COD/1000 ft² day gave the same COD removal.

c. In the treatment of the more concentrated wastestream, removals of 62% of COD were attained at a loading of 2.3 lb COD/1000 ft² day.

d. pH values near 3 of the influent hinder biological treatment. The influent must be neutralized prior to treatment.

e. Phosphorus and nitrogen supplements were necessary to allow growth of microorganisms. Calculations indicate that requirements for nitrogen and phosphorus at the plant level would be quite high.

f. Formaldehyde and formic acid in the high concentrations used were not toxic to the microorganisms.

g. Several different microorganisms populated the aerobic biodisc unit. Many were typical of sewage treatment plant microorganisms.

h. The microorganisms which populated the system were extremely hardy, indicating that the possibility of a total kill-off was remote.

i. Filtering was a problem with this culture on both sand and carbon filter columns due to the spore-forming nature of the microorganisms.

j. High levels of COD reduction will occur in the equalization pond used in the proposed X-Facility treatment system if pH neutralization is provided. APPENDIX A

A-STREAM OPERATION DATA

Date	1 June	18 June	19 June	20 June	21 June	22 June	25 June	28 June	29 June	2 July	3 July	6 July	6 July	9 July
Infl	1480	1481	1488	1606	1464	1630	1574	1500	1423	1246	1290	1589	1547	735
_														
=														
≡														
2														
Effi	1240	955	1169	1204	1162	1200	1300	068	640	792	525	979	820	300
Removal (%)	18	36	22	25	21	26	17	41	55	98	69	64	47	69
Flow Rate														
(ml/min)		135	13565	65	66	65	65	65	65	80	8	6 5	65	8
							phosphate				sloughing			
							nutrient				scrubbed			
800							addad		pH=3		discs			
InI													1100	
Effi													486	
Removel (%)													3	

ı

\sim
0
Ĥ
Ż.
2
Ξ
×
X
<u>0</u>
_
4
E

Date	10 July	11 July	12 July	17 July	18 July	20 Juiy	23 July	24 July	25 July	28 July	27 July	30 July	31 July	1 Aug
Infl	508	1280	1208	910	755	1820	1584	1731	1779	1547	1369	1384	1666	1646
-										827	469	593	717	732
=						731	1018	422	362	408	433	335	528	633
Ξ						55	1010		354	345	395	220	238	270
2								343		455	236	177	166	268
Effl	203	486	435	135	118	311	979	462	338	392	343	101	143	215
Removal (%)	57	52	3	85	84	83	36	73	81	78	83	6 3	91	87
Flow Rate														
(ml/min)	3	09	60	40	40	20	20	18	18	15	19	25	27	26
					switch									
					from 300-	gal								
					to 120-1									
					feed tank									
									ļ					

Date	3 Aug	7 Aug	8 Aug	9 Aug	10 Aug	17 Oct	19 Oct	24 Oct	2 Nov	6 Nov	13 Nov	14 Nov	20 Nov	23 Nov
	new feed			3						a a				8
Infl	2169	2015	1420	1834	1810	2192	2718	1740	1735	1837	1571	1203	1729	1085
_	324	333	515	750	686									
=	801	390	312	662	413									
≡	1212	358	214	455	278									
≥	407	325	241	418	255									
Effl	264	284	199	383	263	696	1756	1249	277	224	401	411	1264	386
Removal (%)	88	98	86	64	85	56	36	28	84	98	75	99	27	65
Flow Rate														
(ml/min) 80De	23	Ξ	30	25	19	13	თ		5	2	80			
o ljul	1600													
Erri	70													
Removal (%)	96													
				I										
	28 Nou	JO Nou	30 Nov	202	5 Dec	13 Der	17 Der	20 Der	27 Dec	28 Der				

28 Dec	1541	202	87	13
27 Dec	1892	478	75	14
20 Dec	1230	155	87	
17 Dec	1569	477	20	
13 Dec	1460	601	69	
5 Dec	1701	327	18	Ξ
3 Dec	1029	327	89	15
30 Nov	1584	329	80	5 5
29 Nov	1496	205	8 6	12
28 Nov	1120	271	82	15
Data	En1	Effi	Removal (%) Flow Rate	(ml/min)

APPENDIX B

B-STREAM OPERATION DATA

Date	13 Aug	14 Aug	15 Aug	16 Aug	17 Aug	20 Aug	21 Aug	22 Aug	23 Aug	24 Aug	27 Aug	28 Aug	29 Aug	30 Aug
lni	2216	2218	2034	2192	2709		2218	2224	2112	1842	2520	2013	2123	1661
_	648	723	569	832	1106	1217	1128	1239	9011	1217	1368	1059	743	928
=	670	653	586	832	1043	941	1116	866	168	764	1019	959	899	606
Ξ	534	457	407	704	1007	751	797	788	792	117	984	1037	836	944
1<	459	430	400	632	826	936	685	798	760	137	1056	731	922	941
ECO	496	438	428	653	930	972	717	740	171	769	1024	1070	116	1043
Removal (%)	78	80	61	70	66		68	67	63	58	59	47	54	48
Strength (%) Flow Rate	70	70	70	70	75	75	80	80	80	001	100	100	100	100
(millimin)	01	31		-	01					:				-
BOD ₅	2	2	9	2	10	91	0	2	81	2	01	2	2	10
, Infl	1655													
EM	100													
Removal (%)	94													
	8													
Date	31 Aug	4 Sept	5 Sept	6 Sept	10 Sept	11 Sept	12 Sept	13 Sept	17 Sept	2() Sept	21 Sept	24 Sept	25 Feb	5 Mar
Lin D	2685	2105	1891	1786	2595	2405	2222	2130	2210	2346	2651	2310	2075	789
-	1033	644	683	710	1065	1010	1000	666			1023	1504		
=	641	605	641	675	116	929	936	930			915			
H	821	617	602	663	880	881	931	949			161			
2	176	621	614	675	849	854	905	942			217		000	
EM	866	578	641	671	880	118	519	919 	608	19/	08/	1480	300	020
Removal (%)	68	73	99	62	99	19	59	57	64	89	01	ę i	80	1
Strenght (%) Flow Rate	100	001	100	100	100	100	100	100	100	100	100	100		
		9	9	91	•	91	9	•	10	01	13	2	17	-
(11111)	2	2	2	2	•	2	2	•	2	2	mechanica	:	:	;
Infl BOD ₅	1955									1380				
EU	97									210				
Removal (%)	95									85				
	R D													
Date	7 Mar	10 Mar	11 Mar	14 Mar	18 Mar	25 Mar	31 Mar	2 Apr	4 Apr	11 Apr				
luñ	2031	1440	1051	2484	2286	2290	1594	604	2805	2868				
EM	625	211	627	727	448	502 20	375	415	2130	815				
Removal (%) Flow Rate	69	46	40	11	.08	8/	16	11	24					
(ml/min)	10	11	10			12	8	15		14				

APPENDIX C

AMMONIA-STILL-BYPASS WATER DATA

															ł
Date	7 Jan	8 Jan	9 Jan	10 Jan	11 Jan	14 Jan	15 Jan	16 Jan	17 Jan	18 Jan	21 Jan	22 Jan	28 Jan	7 Feb	8 Fcb
lin	1117	2740	2660	2150	1929	2352	3020	3873	2872	2617	2662	2449	2228	2380	2820
Efn	321	740	600	567	506	1623	1710	1961	1977	1929	1769	1819	1305	1910	1780
Removal (%)	11	73	11	74	74	31	43	31	31	26	34	26	41	20	37
Flow Rate															
(ml/min)	13.5				12	11	13	Ξ	15						

DISTRIBUTION FOR MERADCOM REPORT 2319

.

Department of Defense1Director US Army Materiel Systems Analysis Agency ATTN: DRXSY-CM Aberdeen Proving Ground, MD 210051Director, Technical Information Projects Agency 1400 Wilson Blwd Arlington, VA 22209ATTN: DRXSY-CM Aberdeen Proving Ground, MD 2100512Defense Technical Info Ctr Cameron Station Alexandria, VA 22314Director US Army Materiel Systems Analysis Agency ATTN: DRXSY-PP Aberdeen Proving Ground, MD 2100512Defense Technical Info Ctr Cameron Station Alexandria, VA 22314Director US Army Materiel Systems Analysis Agency ATTN: DRXSY-PP Aberdeen Proving Ground, MD 210051Commander, HQ TRADOC ATTN: ATEN-ME Fort Monroe, VA 236511Director US Army Engineer Waterways Experiment Station ATTN: Chief, Library Branch Tech Info Ctr Vicksburg, MS 391801HQDA (DALO-TSM) Washington, DC 203141Commander US Army Armament Research and Dev Command ATTN: DRDAR-TSS No. 59 Dover, NJ 078011HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative USA Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground Attrn: TSAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 210051Plastics Tech Eval Ctr ARRADCOM, Big 3401 ATTN: A.M. Anzalone	No. Copies	Addressee	No. Copies	Addressee
1Director, Technical Information Defense Advanced Research Projects Agency 1400 Wilson Bivd Arlington, VA 22209Analysis Agency Aberdeen Proving Ground, MD 2100512Defense Technical Info Ctr Cameron Station Alexandria, VA 22314Director US Army Materiel Systems Analysis Agency ATTN: DRXSY-MP Aberdeen Proving Ground, MD 2100512Defense Technical Info Ctr Cameron Station Alexandria, VA 22314Director US Army Materiel Systems Analysis Agency ATTN: DRXSY-MP Aberdeen Proving Ground, MD 210051Commander, HQ TRADOC ATTN: ATEN-ME Fort Monroe, VA 236511Director US Army Engineer Waterways Experiment Station ATTN: Chief, Library Branch Tech Info Ctr Vicksburg, MS 391801HQDA (DALO-TSM) Washington, DC 203101Commander US Army Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 203141Commander US Army Armament Research and Dev Command1HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative US Army Aberdeen Proving Ground, MD 210101HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative US Army Aberdeen Proving Ground ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 210051Commander Rock Island Arsenal ATTN: SARRI-LPL Rock Island, IL 612011Commander Rock Island, IL 612011Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: X. A. Anzalone		Department of Defense	1	Director US Army Materiel Systems
Defense. Advanced Research Projects Agency 1400 Wilson Blvd Arlington, VA 22209ATTN: DRXSY-CM 	1	Director, Technical Information		Analysis Agency
Projects Agency 1400 Wilson Blvd Arlington, VA 22209Aberdeen Proving Ground, MD 2100512Defense Technical Info Ctr Cameron Station Alexandria, VA 22314Director US Army Materiel Systems Analysis Agency ATN: DRXSY-MP Aberdeen Proving Ground, MD 210051Commander, HQ TRADOC ATTN: ATEN-ME Fort Monroe, VA 236511Director US Army Engineer Waterways Experiment Station ATTN: Catter Vicksburg, MS 391801HQDA (DALO-TSM) Washington, DC 203101Commander US Army Armament Research and Dev Commanda1HQDA (DALO-TSM) Washington, DC 203141Commander US Army Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 203141Commander US Army Armament Research and Dev Command1HQDA (DAEN-MPE-T) Vicksburg, Aberdeen Proving Ground, MD 21010221Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 210101Commander Rock Island Arsenal1Commander US Army Aberdeen Proving Ground ATTN: STEAP-MT-U (CE Branch) Aberdeen Proving Ground, MD 210051Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A Mazalone		Defense Advanced Research		ATTN: DRXSY-CM
1400 Wilson Blvd Arlington, VA 222092100512Defense Technical Info Ctr Cameron Station Alexandria, VA 223141Department of the Army11Commander, HQ TRADOC ATTN: ATEN-ME Fort Monroe, VA 2365111Commander, HQ TRADOC ATTN: ATEN-ME Fort Monroe, VA 2365111HQDA (DAMA-AOA-M) Washington, DC 2031011HQDA (DALO-TSM) Washington, DC 2031011HQDA (DAEN-RDL) Washington, DC 2031411HQDA (DAEN-RDL) Washington, DC 2031411HQDA (DAEN-RDL) Washington, DC 2031421Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 2101021Commander Washington, DC 2031421Commander US Army Aberdeen Proving Ground ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 2100512Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone		Projects Agency		Aberdeen Proving Ground, MD
Arlington, VA 222091Director12Defense Technical Info Ctr Cameron Station Alexandria, VA 223141Director13Commander, VA 22314XTTN: DRXSY-MP Aberdeen Proving Ground, MD 21005114Commander, HQ TRADOC ATTN: ATEN-ME Fort Monroe, VA 236511Director15Commander, VA 236511Director16HQDA (DAMA-AOA-M) Washington, DC 203101Director US Army Engineer Waterways Experiment Station ATTN: Chief, Library Branch Tech Info Ctr Vicksburg, MS 3918016HQDA (DALO-TSM) Washington, DC 203101Commander US Army Armament Research and Dev Command ATTN: DRDAR-TSS No. 59 Dover, NJ 0780116HQDA (DAEN-RDL) Washington, DC 203142Engineer Representative US A Research and Standardization Group (Europe)17Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 210102Engineer Representative US ARRI-LPL Rock Island Arsenal ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 210051Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone		1400 Wilson Blvd		21005
1Director12Defense Technical Info Ctr Cameron Station Alexandria, VA 22314US Army Materiel Systems Analysis Agency Atribulation Department of the Army 210051Commander, HQ TRADOC ATTN: ATEN-ME Fort Monroe, VA 236511Director US Army Engineer Waterways Experiment Station ATTN: Chief, Library Branch Tech Info Ctr Vicksburg, MS 391801HQDA (DALO-TSM) Washington, DC 203101Commander US Army Armament Research and Dev Command US Army Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 203141Commander US Army Armament Research and Dev Command ATTN: DRDAR-TSS No. 59 Dover, NJ 078011HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative US Army Armament Research and Dev Command ATTN: DRDAR-TSS No. 59 Dover, NJ 078011HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative US Army Aberdeen Proving Ground, MD 210101Commander Rock Island ArsenalCommander Rock Island ArsenalATTN: SARRI-LPL Rock Island, IL 612011Commander Rock Island, IL 612011Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A.M. Anzalone		Arlington, VA 22209		
12Defense Technical Info Ctr Cameron Station Alexandria, VA 22314US Army Materiel Systems Analysis Agency ATTN: DRXSY-MP Aberdeen Proving Ground, MD 210051Commander, HQ TRADOC ATTN: ATEN-ME Fort Monroe, VA 236511Director US Army Engineer Waterways Experiment Station ATTN: Chief, Library Branch Tech Info Ctr1HQDA (DAMA-AOA-M) Washington, DC 203101Commander US Army Engineer Waterways Experiment Station ATTN: Chief, Library Branch Tech Info Ctr1HQDA (DALO-TSM) Washington, DC 203101Commander US Army Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 203141Commander US Army Armament Research and Dev Command1HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative US A Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 210102Engineer Representative Rock Island Arsenal ATTN: SARRI-LPL Rock Island, IL 612011Commander US Army Aberdeen Proving Ground ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 210051Plastics Tech Eval Ctr ARRADCOM, Bidg 3401 ATTN: A. M. Anzalone			1	Director
Cameron StationAnalysis AgencyAlexandria, VA 22314ArTN: DRXSY-MPAberdeen Proving Ground, MD210051Commander, HQ TRADOC11Commander, HQ TRADOC1ATTN: ATEN-MEUS Army Engineer WaterwaysFort Monroe, VA 23651Experiment Station1HQDA (DAMA-AOA-M)Tech Info CtrWashington, DC 203101Commander1HQDA (DALO-TSM)1Commander1HQDA (DAEN-RDL)ATTN: DRDAR-TSS No. 59Washington, DC 203141Commander1HQDA (DAEN-MPE-T)2Engineer Representative1HQDA (DAEN-MPE-T)2Engineer Representative1Technical LibraryBox 65Chemical Systems LaboratoryFPO 095101CommanderATTN: SARRI-LPLUS Army Aberdeen Proving Ground, MD1Commander210101Commander1CommanderATTN: SARRI-LPL1CommanderATTN: SARRI-LPL2Army Aberdeen Proving Ground, MD12Plastics Tech Eval Ctr2Armander1CommanderArttn: SARADCOM, Bldg 34011CommanderArttn: A, M. Anzaloone	12	Defense Technical Info Ctr		US Army Materiel Systems
Alexandria, VA 22314ATTN: DRXSY-MP Aberdeen Proving Ground, MD 210051Commander, HQ TRADOC ATTN: ATEN-ME Fort Monroe, VA 236511Director US Army Engineer Waterways Experiment Station ATTN: Chief, Library Branch Tech Info Ctr Vicksburg, MS 391801HQDA (DAMA-AOA-M) Washington, DC 203101Commander US Army Amament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 203141Commander US Army Amament Research and Dev Command1HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative US A Research and Standardization Group (Europe)1HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative US A Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 210101Commander Rock Island Arsenal ATTN: SARRI-LPL Rock Island Arsenal1Commander US Army Aberdeen Proving Ground AttrN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 210051Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A.M. Anzaloon		Cameron Station		Analysis Agency
Department of the ArmyAberdeen Proving Ground, MD 210051Commander, HQ TRADOC ATTN: ATEN-ME Fort Monroe, VA 236511Director US Army Engineer Waterways Experiment Station ATTN: Chief, Library Branch Tech Info Ctr Vicksburg, MS 391801HQDA (DAMA-AOA-M) Washington, DC 203101Commander US Army Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 203141Commander US Army Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 203142Engineer Representative US Aresearch and Standardization Group (Europe)1HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative US A Research and Standardization Group (Europe)1Technical Library Aberdeen Proving Ground, MD 210101Commander Rock Island Arsenal ATTN: SARRI-LPL Rock Island, IL 612011Commander US Army Aberdeen Proving Ground Aberdeen Proving Ground, MD 210051Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone		Alexandria, VA 22314		ATTN: DRXSY-MP
1Commander, HQ TRADOC ATTN: ATEN.ME Fort Monroe, VA 236511Director US Army Engineer Waterways Experiment Station ATTN: Chief, Library Branch Tech Info Ctr Vicksburg, MS 391801HQDA (DALO-TSM) Washington, DC 203101Commander US Army Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 203141Commander US Army Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 203141Commander US Army Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 203142Engineer Representative USA Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 210102Engineer Representative USA Research and Standardization Group (Europe)1Commander US Army Aberdeen Proving Ground Aberdeen Proving Ground, MD 210051Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone		Department of the Army		Aberdeen Proving Ground, MD 21005
1Commander, HQ TRADOC1DirectorATTN: ATEN-MEUS Army Engineer WaterwaysFort Monroe, VA 23651Experiment Station1HQDA (DAMA-AOA-M)ATTN: Chief, Library Branch1HQDA (DALO-TSM)11HQDA (DALO-TSM)12Commander3Washington, DC 20310Sarmy Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 20314Commander US Army Armament Research and Dev Command1HQDA (DAEN-MPE-T) Washington, DC 2031421HQDA (DAEN-MPE-T) Washington, DC 2031421Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 2101021Commander US Army Aberdeen Proving Ground AtTTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 2100511Commander Rock Island, IL 612011Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone				
 ATTN: ATEN.ME Fort Monroe, VA 23651 HQDA (DAMA-AOA-M) Washington, DC 20310 HQDA (DALO-TSM) HQDA (DALO-TSM) HQDA (DAEN-RDL) Washington, DC 20314 HQDA (DAEN-RDL) Washington, DC 20314 HQDA (DAEN-MPE-T) Washington, DC 20314 HQDA (DAEN-MPE-T) Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD Commander Commander Commander Commander Research and Standardization Group (Europe) Group (Europe) Commander Commander<td>1</td><td>Commander, HQ TRADOC</td><td>1</td><td>Director</td>	1	Commander, HQ TRADOC	1	Director
 Fort Monroe, VA 23651 HQDA (DAMA-AOA-M) Washington, DC 20310 HQDA (DALO-TSM) Washington, DC 20310 HQDA (DAEN-RDL) Washington, DC 20314 HQDA (DAEN-RDL) Washington, DC 20314 HQDA (DAEN-RDL) Washington, DC 20314 HQDA (DAEN-MPE-T) Washington, DC 20314 HQDA (DAEN-MPE-T) Washington, DC 20314 Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010 Commander US Army Armament Research and Dev Command ATTN: DRDAR-TSS No. 59 Dover, NJ 07801 Engineer Representative USA Research and Standardization Group (Europe) Box 65 FPO 09510 Commander Rock Island Arsenal ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 21005 Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A, M, Anzalone 		ATIN: ATEN-ME		US Army Engineer waterways
1HQDA (DAMA-AOA-M) Washington, DC 20310Tech Info Ctr Vicksburg, MS 391801HQDA (DALO-TSM) Washington, DC 203101Commander US Army Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 203141Commander US Army Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 203142Engineer Representative USA Research and Standardization Group (Europe)1HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative USA Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 210101Commander Rock Island Arsenal ATTN: SARRI-LPL Rock Island Arsenal1Commander US Army Aberdeen Proving Ground Aberdeen Proving Ground, MD 210051Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A.M. Anzalone		Fort Monroe, VA 23651		ATTM: Chief Library Branch
1 HQDA (DAMA-AOA-M) Tech Info Cfi Washington, DC 20310 Vicksburg, MS 39180 1 HQDA (DALO-TSM) 1 Washington, DC 20310 US Army Armament Research and Dev Command 1 HQDA (DAEN-RDL) ATTN: DRDAR-TSS No. 59 Washington, DC 20314 Dover, NJ 07801 1 HQDA (DAEN-MPE-T) 2 Washington, DC 20314 US A Research and Standardization Group (Europe) 1 Technical Library Box 65 Chemical Systems Laboratory FPO 09510 Aberdeen Proving Ground, MD 1 21010 1 Commander US Army Aberdeen Proving Ground ATTN: SARRI-LPL US Army Aberdeen Proving Ground ATTN: SARRI-LPL Nerdeen Proving Ground, MD 1 Plastics Tech Eval Ctr Aberdeen Proving Ground, MD 1 Plastics Tech Eval Ctr ADD 21005 1 Plastics Tech Eval Ctr	1			Tash Info Car
 HQDA (DALO-TSM) Washington, DC 20310 HQDA (DAEN-RDL) Washington, DC 20314 HQDA (DAEN-RDL) Washington, DC 20314 HQDA (DAEN-MPE-T) Washington, DC 20314 HQDA (DAEN-MPE-T) Washington, DC 20314 Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010 Commander US Army Aberdeen Proving Ground ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD Commander US Army Aberdeen Proving Ground, MD Commander US Army Aberdeen Proving Ground ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A.M. Anzalone 	1	HQDA (DAMA-AOA-M) Washington DC 20210		Vicksburg MS 39180
1HQDA (DALO-TSM) Washington, DC 203101Commander US Army Armament Research and Dev Command1HQDA (DAEN-RDL) Washington, DC 20314ATTN: DRDAR-TSS No. 59 Dover, NJ 078011HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative USA Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 210102Engineer Representative USA Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010Box 65 FPO 095101Commander Rock Island Arsenal ATTN: SARRI-LPL Rock Island, IL 612011Commander Rock Island, IL 612011Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone		washington, DC 20310		vicksburg, MS 59160
 Washington, DC 20310 HQDA (DAEN-RDL) Washington, DC 20314 HQDA (DAEN-MPE.T) Washington, DC 20314 HQDA (DAEN-MPE.T) Washington, DC 20314 HQDA (DAEN-MPE.T) Washington, DC 20314 HQDA (DAEN-MPE.T) Washington, DC 20314 Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010 Commander US Army Aberdeen Proving Ground ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD Commander Proving Ground, MD Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A.M. Anzalone 	1	HODA (DALO-TSM)	1	Commander
1HQDA (DAEN-RDL) Washington, DC 20314and Dev Command ATTN: DRDAR-TSS No. 59 Dover, NJ 078011HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative USA Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 210102Engineer Representative USA Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 210101Commander Rock Island Arsenal ATTN: SARRI-LPL Rock Island, IL 612011Commander US Army Aberdeen Proving Ground AtTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 210051Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone	-	Washington, DC 20310		US Army Armament Research
1HQDA (DAEN-RDL) Washington, DC 20314ATTN: DRDAR-TSS No. 59 Dover, NJ 078011HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative USA Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 210102Engineer Representative USA Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010Box 65 FPO 095101Commander Rock Island Arsenal ATTN: SARRI-LPL US Army Aberdeen Proving Ground Aberdeen Proving Ground, MD 2100511Commander Rock Island, IL 612011Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A.M. Anzalone		3 () (()		and Dev Command
 Washington, DC 20314 1 HQDA (DAEN-MPE-T) Washington, DC 20314 1 HQDA (DAEN-MPE-T) Washington, DC 20314 1 Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010 1 Commander US Army Aberdeen Proving Ground ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 1 Commander Proving Ground, MD 1 Commander Rock Island Arsenal ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 1 Plastics Tech Eval Ctr 21005 1 Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A, M. Anzalone 	1	HQDA (DAEN-RDL)		ATTN: DRDAR-TSS No. 59
1HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative USA Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010Box 65FPO 095101Commander Rock Island Arsenal AtTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD1Commander Rock Island, IL 612011Commander Rock Island, IL 612011Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone		Washington, DC 20314		Dover, NJ 07801
1HQDA (DAEN-MPE-T) Washington, DC 203142Engineer Representative USA Research and Standardization Group (Europe)1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010Box 65FPO 095101Commander 				
 Washington, DC 20314 USA Research and Standardization Group (Europe) 1 Technical Library 2000 Box 65 Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010 1 Commander Rock Island Arsenal 1 Commander Matrix STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 21005 Varrey Aberdeen Proving Ground, MD Plastics Tech Eval Ctr ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone 	1	HQDA (DAEN-MPE-T)	2	Engineer Representative
1Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010Box 65 		Washington, DC 20314		USA Research and Standardization
1 Technical Library Box 65 1 Chemical Systems Laboratory FPO 09510 Aberdeen Proving Ground, MD 1 Commander 21010 1 Commander 1 Commander Rock Island Arsenal 1 Commander ATTN: SARRI-LPL US Army Aberdeen Proving Ground Rock Island, IL 61201 ATTN: STEAP-MT-U (GE Branch) 1 Aberdeen Proving Ground, MD 1 21005 ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone ATTN: A. M. Anzalone				Group (Europe)
Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010 1 Commander Rock Island Arsenal 1 Commander US Army Aberdeen Proving Ground ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 1 Plastics Tech Eval Ctr 21005 ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone	1	Technical Library		Box 65
Aberdeen Proving Ground, MD 1 Commander 21010 1 Commander 1 Commander ATTN: SARRI-LPL US Army Aberdeen Proving Ground Rock Island, IL 61201 ATTN: STEAP-MT-U (GE Branch) 1 Aberdeen Proving Ground, MD 1 21005 ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone		Chemical Systems Laboratory		FPO 09510
21010 1 Commander 1 Commander Rock Island Arsenal 1 Commander ATTN: SARRI-LPL US Army Aberdeen Proving Ground Rock Island, IL 61201 ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD Aberdeen Proving Ground, MD 1 21005 ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone		Aberdeen Proving Ground, MD		
1 Commander ATTN: SARRI-LPL US Army Aberdeen Proving Ground Rock Island, IL 61201 ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD Aberdeen Proving Ground, MD 1 Plastics Tech Eval Ctr . 21005 ARRADCOM, Bldg 3401 ATTN: A.M. Anzalone .		21010	1	Commander Bask Island Arganal
1 Commander ATTN: SARKI-EFE US Army Aberdeen Proving Ground Rock Island, IL 61201 ATTN: STEAP-MT-U (GE Branch) 1 Aberdeen Proving Ground, MD 1 21005 ARRADCOM, Bldg 3401 ATTN: A.M. Anzalone	1	Commenter		ATTN, SADDI DI
ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 1 Plastics Tech Eval Ctr 21005 ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone	1	US A may Abardeen Browing Crownd		ATTN. SARNI-LEL Rock Island II 61201
Aberdeen Proving Ground, MD 1 Plastics Tech Eval Ctr 21005 ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone		ATTN, STEAD MT LL (CE Branch)		ROCK Island, IL 01201
21005 ARRADCOM, Bldg 3401 ATTN: A. M. Anzalone		ATTN, STEAF-WIT-U (GE DIdNCII) Aberdeen Proving Ground MD	1	Plastics Tech Eval Ctr
ATTN: A. M. Anzalone		21005	I	ARRADCOM, Bldg 3401
		21005		ATTN: A. M. Anzalone

.

Dover, NJ · 07801

No. Copies	Addressee	No. Copies	Addresse
1	Commander	1	Comman
	Frankford Arsenal		US Army
	ATTN: Library, K2400, B151-2		Researc
	Philadelphia, PA 19137		ATTN:
	-		Ft Detric
1	US Army Engineer School		Frederic
	Learning Resources Center		
	Bldg 270		MERAD
	Fort Belvoir, VA 22060		
		1	Comman
1	Commander and Director		Technica
	USA FESA		Assoc Te
	ATTN: FESA-TS		Assoc Te
	Fort Belvoir, VA 22060		DRDMI
			Spec Ass
1	Commander		Spec Ass
	US Army Natick Research & Development Command		CIRCUL
	Natick, MA 01760	1	Chief, Ct
			Chief, Er
1	Commander		DRDMI
	US Army Materiel Dev &		Chief, El
	Readiness Com		Chief, Ca
	ATTN: Don Enig, Environmental		DRDMI
	Officer		Chief, Ma
	5001 Eisenhower Ave		Chief, Me
	Alexandria, VA 22333		DRDMI
			Chief, Ct
1	Commander		Chief, Ma
	ATTN: DRCPM-DR		Director,
	US Army Toxic &		DRDMI
	Hazardous Materials Agency		CIRCUL
	Chemical System Lab		
	Aberdeen Proving Ground, MD	1	Engy & V
	21010	12	Petrol &
			DRDMI
1	Commander	3	Tech Rpf
	Munitions Production Base	3	Security
	Modernization Agency	2	Tech Lib
	ARRCOM	1	Programs
	ATTN: SARPM-PBM-E	1	Pub Affa
	Dover, NJ 07801	1	Ofc of C

ee

nder y Medical Bioengineering ch & Development Lab SGRD-UBG ck k, MD 21701

СОМ

- der, DRDME-Z l Director, DRDME-ZT ch Dir/R&D, DRDME-ZN ch Dir/Engrg & Acq, E-ZE st/Matl Asmt, DRDME-ZG st/Scs & Tech, DRDME-ZK ATE
- rmine Lab, DRDME-N ngy & Wtr Res Lab, E-G lec Pwr Lab, DRDME-E amo & Topo Lab, E-R ar & Br Lab, DRDME-M ech & Constr Eqpt Lab, E-H tr Intrus Lab, DRDME-X atl Tech Lab, DRDME-V Product A&T Dir, E-T ATE
- Wtr Res Lab, DRDME-G
- Environ Tech Div, E-GS
- ts Ofc, DRDME-WP
- Ofc, DRDME-S
- rary, DRDME-WC
- s & Anal Dir, DRDME-U
- irs, Ofc, DRDME-I
- hief Counsel, DRDME-L

No. Copies Addressee

Department of the Navy

2 Commander, Naval Facilities Engineering Command Department of the Navy ATTN: Code 032-B 062 200 Stovall St Alexandria, VA 22332

1 Library (Code L08A) Civil Engineering Laboratory Naval Construction Battalion Center Port Hueneme, CA 93043

DEPARTMENT OF THE ARMY

U. S. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMMAND FORT BELVOIR, VIRGINIA 22060

> OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

POSTAGE AND FEES PAID U. S. DEPARTMENT OF THE ARMY DOD-314

THIRD CLASS MAIL

CDR, ROCK ISLAND ARSENAL ATTN: SARRI-LPL ROCK ISLAND, IL 61201