
AD-AlDO 404 OFFICE OF THE UNDER SECRETARY OF DEFENSE FOR RESEARCH-ETC F/6 9/2
DEPARTMENT OF DEFENSE REQUIREMENTS FOR ADA PROORAMMNING SUPPORT --ETC(U)

UNCLASSIFIED NL.IiIIIIIIIIIII

. "

DEPARTMENT OF DEFENSE

REQUIREMENTS
FOR

Ada PROGRAMMING
SUPPORT

ENVIRONMENTS,

"STONEMAN"

February 1980

I- /' R~~ 1 () 19,) o.,

OFFICE OF THE UNDER SECRETARY OF DEFENSE

WASHINGTON, D.C. 20301

HESE ARCH AN)
EN GINEERING

Dear Friend of Ada:

Thank you for your interest in Ada.

Your name has been added to the Ada mailing list, and
occasionally you will receive information from the Ada Joint
Program Office concerning the status of the Ada program.

Under the Freedom of Information Act, the Ada Joint Program
Office (AJPO) mailing list is being made available on the
LUC-ECLB computer. If you object to inclision of your name on
this public list, please inform the AJPO in writing. To help
keep the list up-to-date, please notify the AJPO of address
changes.

Sincerely,

#?" Larry E. Druffel, Lt. Col., USAF
Director, Ada Joint Program Office

....,, I Ii~il j:I 1

STONEMAN

February 1980

PREFACE

ACKNOWLEDGEMENTS

INTRODUCTION

2 PERSPECTIVE

2.A Current Practice
2.B APSE Overview
2.C Strategy for Advancement

3 PRINCIPLES

4 REQUIREMENTS FOR APSEs

4.A. APSE Database Requirements
4.B APSE Database Notes
4.C APSE Control Requirements
4.D APSE Control Notes

4.E APSE Toolset Requirements
4.F APSE Toolset Notes

5 REQUIREMENTS FOR KAPSEs

5.A KAPSE Database Requirements

5.B KAPSE Database Notes
5.C KAPSE Function Requirements
5.D KAPSE Function Notes
5.E KAPSE Interface Requirements
5.F KAPSE Interface Notes

6 REQUIREMENTS FOR MAPSEs

6.A MAPSE Toolset Requirements
6.3 MAPSE Toolset Notes
6.C MAPSE Library Requirements

6.D MAPSE Library notes

7 APSE COMPONENTS

7.A APSE Tools
7.B APSE Libraries

-4

OFFICE OF THE UNDER SECRETARY OF DEFENSE
WASHINGTON, D.C. 20301

RESEARCH AND
ENGINEERING Pentagon

18 February 1980

PREFACE

The U.S. Department of Defense Common High Order Language

program was initiated in 1975 with the goal of establishing a single high

order language for new DoD embedded computer systems. We are now approaching

that goal. A significant reduction in the number of languages approved

for new systems was achieved through the issuance of DoD Instruction 5000.31

in November 1976, the technical requirements for the common language were

finalized in the Steelman report of June 1978, the preliminary language

design was completed and named Ada in June 1979, and extensive test and

evaluation of the design has just been completed. The effort thus far

has been coordinated through the High Order Language Working Group (HOLWG)

of the DoD Management Steering Committee for Embedded Computer Resources.

In the next few months Ada will be added to the DoD list of

approved languages, the HOLWG will be replaced by a permanent Ada Language

Control Board (ALCB), and national and international standards are planned.

The final phase of refinement of the language design will be completed and

issued in July 1980. Development of an Ada Compiler Validation Capability

(ACVC) was begun in September 1979, and multiply targeted production compilers

are planned by the Army and Air Force with work to begin in March and July

1980 respectively.

It was recognized from the beginning that the major benefits

to DoD from a common language would be economic and would derive from Ada's

appropriateness to military applications, from the portability that comes

with a machine independent language, from the availability of software

resulting from acceptance of the language for nonmilitary applications, and

most importantly from the use of Ada as a mechanism for introducing and

distributing effective software development and support environments to

those developing and evolving military systems.

The Ada effort is now at a major transition point as the emphasis

shifts from the language design to its introduction and use. The Stoneman

is the first major accomplishment of this new phase. The Stoneman paints

a broad picture of the needs and identifies the relationships of the parts

of an integrated Ada Program Support Environment (APSE). It develops a

model which reflects an understanding of both the realities of current

practice and a realistic appraisal of the possibilities for more effective

software development and support environments. It calls for the integration of

conventional software tools into a framework that is sufficiently open

ended to accommodate a wide variety of programming methodologies and automated

software tools currently unavailable or unused in military systems.

The Air Force will act as the lead Service in the development

of an integrated software environment for Ada. Their draf: RFP has been

issued and the responses reviewed. The final RFP will be issued in April

1980 and will call for several parallel efforts for detailed designs of

APSEs in compliance with the Stoneman. Widespread review is planned

at major milestones in the designs. After a six month initial design

effort one or more of the designs will be continued into implementation.

The Stoneman will not be superseded until evaluation of the initial designs

has been completed. Products are planned for two years from the start

of the designs.

At the same time, the Army will be developing a few critical

software tools to enable more effective use of Ada in the context of

existing software environments. Bids on the Army efforts have been reviewed

and the contractor will be announced in February 1980. The Army also

will take the lead in Ada related education and training efforts. The latter

activities are coordinated through the Ada Education and Training Committee

chaired by DARPA.

The Stoneman will also play a major role in the Ada Joint froject

Office (AJPO) now being established. This will be a funded office with

full time personnel and will be the principal DoD agent for development,

support and distribution of generic tools, common libraries, and environments

- ~ -- A

for Ada. The AJPO will continue the coordination of all generic Ada efforts

within DoD, including ongoing efforts in the Army, Air Force, DCA,

and DARPA, to ensure their compatibility with other Service and DoD

Agency requirements, to avoid duplicative efforts and to maximize sharing

of resources. The HOLWG will remain the point of contact for Ada activities

until the ALCt and AJPO are established.

We are extremely grateful for the laudatory effort of John Buxton

in developing, the Stoneman. It represents the state-of-the-art in programming

environments in the context of Ada and has been developed in as much

depth as can be expected without more intensive detailed studies. Initial

reviews by some 50 people have been very positive. We are also indebted

to Vic Stenning for his able assistance, to the many individuals who

have contributed to the various iterations in the Pebbleman/Stoneman

process, and to DARPA and the British Ministry of Defense for sponsoring

John and Vic's work.

Although this brings the Stoneman series to an end, it is anly

a beginning for the extensive work that lies ahead. The Ada language

provides a mechanism for considerable cost savings and for introducing

modern software technology into operational use in military systems.

That potential, however, can be achieved only through continual effort

and dedication to the task. The Stoneman provides guidance for an important

facet of that effort.

)avid A. Fisher

Staff Specialist for Computers, Communi-

cations, and Command and Control

$

HARVARD UNIVERSITY

CENTER FOR RESEARCH IN COMPUTING TECHNOLOGY

18 February 1980

ACKNOWLEDGEMENTS

It is with great pleasure that I acknowledge the very significant

part Vic Stenning has played in the preparation of this document by

working with me as co-author during the major redraftings.

The work embodied in the Stoneman would not have been possible

without the generous cooperation and enthusiastic help of the very many

people who have provided substantial criticisms and/or alternative versions

for sections of the text at various stages in the project. Particularly

substantial contributions have been made by R.F. Brender, T.E. Cheatham.

R.A. Converse, L.E. Druffel, R. Firth, H. Fischer, D.A. Fisher, R.L. Glass,

H. Hart, D.S. Johnson, M.M. Lehman, L. MacLaren, D. Notk-n, I.C. Pyle,

D.F. Roberts, P. Santoni, E. Satterthwaite, T.A. Standish, S.L. Squires,

J.A. Townley and P. Wegner.

Professor John N. Buxton

AIKEN COMPUTATION LABORATORY

Cambridge, Mass. 02138

1 INTRODUCTION

I. AThis document specifies the requirements for an Ada Programming

Support Environment (APSE). It provides criteria for assessment and evaluation

of APSE designs, and offers guidance for APSE designers and implementers.

I.B 'The purpose of an APSE is to support the development and maintenance

of Ada applications software throughout its life cycle, with particular

emphasis on software for embedded computer applications.

I.C The three principal features of an APSE are the data base, the (user

and system) interface and the toolset. The data base acts as the central

repository for information associated with each project throughout the

project life cycle. The- interface includes the control language which

presents an interface to the user as well as system interfaces to the data

base and toolset. The toolset includes tools for program development,

maintenance and configuration control supported by an APSE.

1.D A further goal of great importance in some areas of Ada usage, such

as within the DoD, is that of portability both of user programs and of the

software tools within the APSE. The Stoneman,therefore, goes on to indicate

an approach to portability by i ing requirements for two lower levels within

the APSE; the Kernel (KAPSE) anthe minimal toolset (MAPSE)

I.E It is convenient to represent an APSE which addresses these problems

as a structure with a number of layers or levels:

level 0: Hardware and host software as appropriate

level I: Kernel Ada Program Support Environment (KAPSE),
which provides database, communication and run-time
support functions to enable the execution of an
Ada program (including a MAPSE tool) and which presents
a machine-independent portability interface.

level 2: Minimal Ada Program Support Environment (MAPSE) which
provides a minimal set of tools, written in Ada and
supported by the KAPSE, which are both necessary and
sufficient for the development and continuing support
of Ada programs.

level 3: Ada Program Support Environments (APSEs) which are
constructed by extensions of the MAPSE to provide

-1-

fuller support of particular applications or method-
ologies.

I.F This structure is illustrated in the diagram below.

APSE

RAPSE

/ editor compile

func tions

JCL dbge

inter-

preter f m ne t

interface sp ad m. t inkert

cofg.
mgr.

1.G Section 2 of this document provides some perspective concerning current

practice and the mechanism for making the transition from current systemis

to the Ada environment. Section 3 presents general principles for the

overall design of an APSE svstem. Section 4 presents requirements for-

tile main individual components of an APSE. Sections 5 and () respect iwel\'

present the requirements for a kernel interface (KAPISI-) aind minimal toolset

(NAPSE). Section 7 presents proposals for further components which are

candidates for inclusion in an APSE.

I.H Where appropriate, requirements are supplemented by notes which

motivate and explain the requirements. In particular, sections 4, 5

and 6 include sections of notes which respectively supplement the require-

ments on APSEs, KAPSEs and MAPSEs.

l.J It is possible to take a broader and more general view of programming

environments as embodying and supporting tie complete integrated process

of program design and evolution. This generality is regarded as beyond

the present scope of the Stoneman; however, the aim is that the present

document should not exclude a more general view being developed and so

it is intended to be "upwards compatible" in all critical areas.

- 3-

2. PERSPECTIVE

2.A CURRENT PRACTICE

2.A.1 According to Department of Defense studies more than half of

DOD software costs arc associated with embedded computer systems (Fisher,

D.A., DOD's common programming language effort, Computer (March 1978), 25-33).

As Fisher notes:

"Embedded computer software often exhibits characteristics

that are strikingly different from those of other computer appli-

cations Many embedded computer applications require software

that will continue to operate in the presence of faults.... The

applications may require the monitoring of sensors, control of

equipment displays or oper-itor input processing. They

must interface to special peripheral equipment Software must

sometimes be able to respond at periodic (real time) intervals,

to service interrupts within limited times, and to predict

computation times In many applications.,it is necessary to

access, manipulate and display large quantities of data. Much of

this data is symbolic or textual rather than numeric and must be
organized in an orderly and accessible fashion."

Typically, hardware costs now account for only some 15% of project costs,

with 70Z to 90, of software costs arising in the long term life cycle

maintenance and support phase of the system.

2.A.2 In order to establish the background, we give here a brief

summary of typical current practice in many establishments engaged in

developing embedded computer systems for military and industrial purposes.

2.A.3 REQUIREMENTS: Particularly in the military field there are formal

steps and documentation required at each stage in the system development.

However, especially with advanced svstems, the initial requirements

specification may be imprecise and generalized.

-4-

2.A.4 DESIGN: The design stage often involves considerable interaction

with the customer and may also be dependent on experimental results from

simulation and prototype studies. This can lead to experimental or iterative

design techniques.

2.A.5 IMPLEMENTATION: In many cases this is carried out on a host

computer, of reasonable size, batch or interactive about equally probable,

with mainframe vendor's software support. Much of the programming is done

in a high level language, but some is done directly in assembly code. The

compiler is viewed primarily as a means to generate and document assembly

code and is therefore expected to produce efficient but understandable

assembly code. The link-edit phase generates target configuration load

tapes.

For some projects there is no host computer and implementation

is directly on the target machine with minimal support facilities.

2.A.6 TESTING:

(a) Syntactic and static semantic errors are resolved simply at

source code level by the compiler;

(b) The next stage of module testing may be done in the host if

an instruction level simulator for the target exists; this is mor(likely

if some simplified environment simulator is available on the host to

provide test data input;

(c) The real testing takes place in the "software test lab."

This consists of a target configuration, either free-standing or wired up to:

i) A Simulator providing simulated real time inputs; this is

programmed on another computer, using random data generation

or real mission records.

ii) A hardware operations console, proferablv enhanced by a

monitor computer to trace data bus traffic and execution of

the test runs.

At least 50Z of the debugging takes place here, where size and time problems

finallv have to be resolved. The technique used is that of patching and

retesting with later manual updating of the corresponding source texts.

(d) The testing phase of a project is often more expensive than

development.

2.A.7 DATA HANDLING: Typically about half the embedded computer memory

may contain data, partially fixed and partially mission-dependent, e.g.,

flight performance details and maps respectively. Although code is rarely

classified, data is often classified and can only be loaded in a secure

environment.

Data preparation and checking may itself be a substantial task.

2.A.8 ERROR REPORTS: A necessary and continuing task is administering

error reports and fixes, together with configuration, version and release

control throughout the lifetime of the released system. This is regarded

as a data processing task and may be carried out manually or, with larger

applications, by a computer data processing system.

2.A.9 CYCLE TIME: A full -recompile cycle, with optimising,reconfiguring,

etc., can vary in length from 2 days to 2 weeks, depending on size of

project, quality of software tools, etc.

2.A.10 MAINTENANCE: This is normally performed by personnel who were

not associated with the original software development, often at the customer

site. The practice is developing whereby the hardware/software system

used during development is contracted as a deliverable and shipped with

the product, enabling fault correcting and system upgrading to continue

much as described under TESTING above. The system typically continues

to undergo change throughout the lifecycle and the annual extent of changes

may well be of the same order of magnitude as that of the original s)stem.

2.A.11 CONCLUSIONS: The main features which have a major influence

on the activity of developing real time embedded computing systems would seem

to be:

a) The evolving nature of the requirements. where an initial
general specification is made more precise as the project proceeds.
rhis produces rapid iterations between design and experiment.
Typically, in many cases less time is spent in coding than in
interacting with the system designers and other component
designers such as hardware engineers.

-6-

b) The overriding concern with size and time constraints on the
target machine. This results in the need for highly optimised
code, densely packed data, sophisticated overlay and back-up
schemes (and therefore leads to very long complete system
recompile times) and on-line debugging.

2.A.12 Current practice is to use few general purpose tools, often limited

to a vendor-supplied compiler and linker plus maybe an editor. Various

special purpose tools are built in a somewhat project specific way, either

by building from scratch or by modifying other tools; these may include

overlay optimisers for discs or drums, load tape builders, patch override

consolidators, etc.

2.A.13 An environment simulator is of particular importance as a project-

specific tool which is always required and may well require as much effort

to design and build as a major component of the system.

2.A.14 In past and in much of current practice, the concept of a support

system is not much in evidence. The tools available are not well integrated,

nor do they form a complete set.

2.A.15 In particular, the crucial problem of long term configuration

control is normally addressed by a combination of ad-hoc manual and

data processing techniques, and successful configuration control is there-

fore critically dependent upon management skills.

-7-

2.B APSE OVERVIEW

2.B.1 The overall objective of an APSE is to offer cost-effective

support to all functions in a project team engaged in the development, main-

tenance and management of a software project, particularly in the embedded

computer system field, throughout the lifetime of the project.

2.B.2 An APSE adopts a host/target approach to software construction.

That is, a program which will execute in an embedded target computer is

developed on a host computer which offers extensive support facilities.

Except where explicitly stated otherwise, this document refers to an

APSE system running on a host machine and supporting development of a

program for an embedded target machine.

2.B.3 An APSE offers a coordinated and complete set of tools which is

applicable at all stages of the system life cycle, from initial requirements

specification to long-term maintenance and adaptation to changing requirements.

2.B.4 The tools communicate mainly via the database,which stores all

relevant information concerning a project throughout its life cycle.

The database is structured so that relationships between objects in the

database can be maintained, in order that configuration control problems

can be resolved.

2.B.5 Individual functions supported by the tools in an APSE include:

(1) Creation

It is possible to create database objects which contain specific-
ations, design documentation, program source text, program
documentation,test data, and so on.

(2) Modification

A database object can be modified to produce a new object (or
a new version of the same object), for example, by editing.

(3) Analysis

The entities in a database object can be analyzed, producing
a new object which records the results of this analysis.
Examples of such analysis are set/use and cross reference
listings.

-8-

(4) Transformation

The representation of a database object may be changed by
transformation tools. These may include optimisers which
optimise a program object with respect to some constraint,
parsers and code generators.

(5) Display

Objects can be displayed on terminals, printers, and so on.

(6) Linking

A collection of compiled code objects can be consolidated,
resulting in a new object ready for loading and execution.

(7) Execution

Once a program has been compiled and linked, it can be loaded
and executed, possibly with an appropriate environment being
used to supply test information and to monitor execution.

(8) Maintenance

The APSE must enable configuration control to be maintained.
For any configuration of software, it is necessary to be able
to determine the origin and purpose of each component of the
configuration and to control the process of further development
and maintenance of the configuration.

2.B.6 The user interface offered by an APSE is independent of the host

machine.

2.B.7 At all stages of the development of a program--design, coding,

testing, maintenance--an APSE encourages the programmer to work in Ada

source terms, rather than in terms of the assembly language of the particular

host or target machine.

2.B.8 Extension of an APSE toolset requires knowledge only of the

particular APSE and of the Ada language. A new tool--for example, an

environment simulator--is written within the APSE. This tool can then

be installed as part of the APSE and subsequently invoked.

-9-

2.B.9 An APSE supports the use of libraries of standard routines for

incorporation in programs written for both host and target machines.

2.B.lO The above paragraphs outline the facilities offered by an APSE

to its users in support of Ada programming. However, a further requirement

is for portability both of APSE tools betweenfor example, APSEs hosted

on different machines and of complete APSE toolsets. To address this aim

and to indicate a means of implementation of an APSE designed to provide

portability, this document gives requirements for a low level portability

interface and support function set (the KAPSE) together with a minimal

toolset (the MAPSE).

2.B.11 The purpose of the KAPSE is to allow portable tools to be produced

and to support a basic machine-independent user interface to an APSE.

Essentially, t:'e KAPSE is a virtual support environment (or a "virtual

machine") for Ada programs, including tools written in Ada.

2.B.12 The declarations which are made visible by the KAPSE are given

in one or more Ada package specifications. These specifications will include

declarations of the primitive operations that are available to any tool

in an APSE. They~dll also include declarations of abstract data types

which will be common to all APSEs, including the data types which

feature in the interface specifications for the various stages of compilation

and execution of a program.

2.B.13 While the external specifications for the KAPSE will be fixed,

the associated bodies may vary from one implementation to another.

In general all software above the level of the KAPSE will be written

in Ada, but the KAPSE itself will be implemented in Ada or by other

techniques, making use of local operating systems, filing system or data-

base systems as appropriate.

2.B.14 The minimal APSE (NAPSE) is one which provides a minimal but

useful Ada programming environment and supports its own extension with new

tools written in Ada. Hence, the MAPSE is an APSE and must meet the

general requirements set down for APSEs.

-Jo-

2.B.15 For many important activities during a project life cycle

as listed below, the only support offered by the MAPSE consists of general

text manipulation facilities. A more comprehensive APSE will offer

specialized tools to support a wide range of these activities, possibly

including:

1) Requirements Specification

2) Overall System Design

3) Program Design

4) Program Verification

5) Project Management

2.B.16 Clearly, the MAPSE does not emphasize any particular development

methodology at the expense of any other. However a comprehensive APSE

may encourage, or even enforce, one specific system development

methodology.

-INS,
-11

2.C STRATEGY FOR ADVANCEMENT

2.C.1 It is to be expected that many systems which offer the use of

Ada as a programming language will come into existence without full, or

indeed any, regard to the requirements of Stoneman. Translators will be

implemented, for example, within existing support environments hosted

on existing operating systems, together with existing software tools and

techniques and possibly with the implementation of some further

Ada-related tools.

2.C.2 In cases where there is a large current investment in software

projects, .4ritten originally in other languages and for which long term

maintenance must be continued and improved, a viable policy may be to

implant APSE-built tools into the existing environment or toolset with a

view to improving the existing environment for maintenance. This could

provide valuable technology transfer at the environment level rather than

the language level.

2.C.3 Il other cases, Ada support environments will be constructed

offering the use of the language together with a range of facilities which

differ markedly in content and/or structure from those proposed here. For

example, highly-integrated top-down development systems may be produced in

some programming research establishments , meeting the APSE requirements but

not reflecting the KAPSE/MAPSE structure.

2.C.4 All such systems,of course,represent entirely valid approaches

to use of the Ada language. A further intent of the Stoneman, however,

is to propose a way forward towards the goal of portability. APSEs will

address this requirement where relevant by making explicit a KAPSE

portability level.

2.C.5 In order to achieve the long-term goal of portability of software

tools and application systems dependent on them, it is intended that

conventions and, eventually, standards be developed at the KAPSE interface

level. This level will then serve as specifying a portability interface

and separate tools or integrated sets of tools which meet the KAPSE

interface requirements will be readlly portable between hosts.

-12-

2.C.6 At this time, no attempt is made to specify iA the Stoneman a

long-term standard set of KAPSE interfaces, on the grounds that such

standardization would be premature. The document gives requirements for

APSEs in general and for KAPSEs and MAPSEs in particular. In later

Appendices, provisional examples will be given of specifications for some

KAPSE interfaces in the form of Ada package definitions. It is intended

that such Appendices be separately distributed as available.

2.C.7 Progress towards the long-term goal of a wide measure of

portability is expected to be achieved by a process of competitive design

and evaluation of APSEs and their associated KAPSEs.

2.C.8 It is expected that in response to Stoneman and other

initiatives designs for MAPSEs will be put forward in the immediate

future for consideration by DOD components and others. These alternative

designs will be considered and evaluated and may lead to iterative changes

in the requirements.

2.C.9 Furthermore, it is expected that one such MAPSE, and more

particularly its basic kernel or KAPSE, will achieve a sufficiently wide

measure of acceptance for it to become a de facto convention and,

eventually, for the KAPSE specifications to be considered for standard-

ization within the DOD.

2.C.10 Individual tools or sets of mutually dependent tools implemented

on the DOD-KAPSE would then become fully portable within the DOD and other

applications areas with DOD-compatible systems.

-13-

3. GENERAL GUIDELINES

The principles listed here apply in general to all aspects of

the support system and so they are presented in a relatively unstructured

way. They serve as design guidelines and provide criteria of choice for

design decisions.

3.A SCOPE: An APSE shall provide a program development and maint-

enance environment for embedded computer system projects involving Ada

programs, with the intent of improving long-term cost effective software

reliability.

3.B QUALITY: An APSE shall reflect the priorities for software

quality in military embedded computer applications; that is, reliability,

performance, evolution, maintenance and responsiveness to changing require-

ments.

3.C SIMPLICITY: The structure of an APSE shall be based on simple

overall concepts which are straightforward to understand and use and few

in number. Wherever possible, the concepts of the Ada language will be used

in the APSE.

3.D LIFE CYCLE SUPPORT- Support shall be provided to projects

throughout the software life cycle from requirements and design through

implementation to long term maintenance and modifications.

3.E PROJECT TEAM SUPPORT: An APSE shall support all functions

required by a project team. These functions include project mangement control,

documentation and recording, and long-term configuration and release

control.

3.F USER HELPFULNESS: High priority will be given to human engineering

requirements in the design. The system shall provide a helpful user

interface that is easy to learn and use, with adequate response times for

interactive users and turn-round times for batch users.

-14-

3., UNIFORMITY OF PROTOCOL: Communications between users and tools

shall be according to uniform protocol conventions.

3.H SYSTEM PORTABILITY: An APSE shall be portable so far as

practicable. Thig will normally be achieved by writing the system in

Ada, and by following the KAPSE design model as required in this document.

3.1 PROJECT. PORTABILITY: An APSE shall be designed to facilitate

the easy movement of project support from one host machine to another.

3.K HARDWARE: an APSE will be designed to exploit, but not demand,

modern high capacity and high performance host system hardware.

3.L ROBUSTNESS: An APSE will be a highly robust system that can

protect itself from user and system errors, that can recover from unforseen

situations and'that can provide meaningful diagnostic information to its

users.

3.M INTEGRATED: An APSE shall provide a well-coordinated set of

useful tools, with uniform inter-tool interfaces and with communication

through a common database which acts as the information source and product

repository for all tools.

3.N GRANULARITY: Tools will be designed where appropriate to have

separable limited function components that are composable, user selectable

and communicate through the common data base.

3.P OPEN-ENDED: An APSE shall facilitate the development and integration

of new tools. It shall permit improvements, updates and replacement of tools.

4. REQUIREMENTS FOR APSEs

4.A APSE DATABASE REQUIREMENTS

4.A.I The database is the central feature of an APSE system. It will

act as the repository for all information associated with each project

throughout the project life cycle.

4.A.2 The database shall offer flexible storage facilities to all

APSE tools.

4.A.3 A separately identifiable collection of information in the database

in known in this document as an "object". Every object stored in the

database is accessed by the use of its distinct name. The database shall

permit relationships to be maintained between objects.

4.A.4 The database shall permit the user to designate several

distinct database objects as forming a "version group". The user shall

be permitted to designate one object within the group as being the preferred

(or default) version. A method of access shall be offered in which an

incomplete object name is provided, sufficient to identify explicitly

a version group but not one object within that group; with such access,

the preferred version is selected. Every object within a version group shall

always be accessible by providing the complete object name.

4.A.5 The database shall support the generation and control of

configuration objects; that is, objects which are themselves groupings

of other objects in the database. The configuration control facilities

shall allow access to the objects in a version group by the use of an

incomplete name.

4.A.6 Mechanisms shall be provided in the database whereby all databaise

objects needed to recreate a specified object will continue to be maintained

in the database as long as the specified object itself remains in the database.

-16-

4.A.7 It shall be possible to establish partitions of the information

in the database such that, for example, all objects connected with a

specific project area can be grouped in a partition. It shall be possible

to associate general access controls with partitions.

4.A.8 The database shall support the storage of Ada libraries in

source form, and may also support a form where the library object has

been pre-compiled for the host or a particular target machine. Facilities

for determining the availability and functional specification of library

objects shall be provided.

4.A.9 It shall be possible to associate access controls with any

object in the database, Such access controls shall be appropriate for

the environment in which the particular APSE system is deployed, and shall

be commensurate with the requirement that an APSE supports all roles in

a project team throughout the lifetime of a project.

4.A.10 The database shall store information which allows management

reports to be generated, as required at the particular APSE system.

4.A.11 The capabilities of the APSE database system shall be such that

the users may work within the APSE to achieve reliable storage of objects,

including long-term storage of archived objects.

4.A.12 The database shall preserve the consistency of the information

and relationships it contains.

-17-

4.B APSE DATABASE NOTES

4.B.1 OBJECTS: A separately identifiable collection of information in

the database is known as an object in this document. An object has a

name by which it may be uniquely identified in the database, it has attribuces

and it contains information. Typically, an object may contain a separately

compilable Ada program unit, a fragment of Ada text, a separable definition,

a file of test data, a project requirements specification, an aggregation

of other object-names (i.e., a configuration; see below), a documentation

file, etc.

4.B.2 VERSIONS: All objects in the database are uniquely identifiable;

however, a group of objects may exist as related versions which all may

meet the same or closely related external specifications and may therefore

be regarded as different versions of the same "abstract object". Within

such a group, the user may specify that one object is the normal, default

or preferred version which is to be used whenever the user does not

indicate a specific one. Typically, in many current systems the concept

of the most recent version of a "module" plays an important role and it

may be that this methodological choice will be made in many APSEs;

however, the requirements do not prescribe this approach.

4.B.3 CONFIGURATIONS: Different collections of objects in a project

may be brought together to form different groupings or "software configur-

ations." The differences arise in response to, for example, differing

categories of user requirement or differences between peripheral devices

on various target systems. Some configurations are long-lived, such as

major system releases, and others may be temporary test-beds for development

purposes. The relationships between objects in different configurations
are in general complex, partiallv overlapping and not well-structured.

Some configurations are related in time, such as consecutive "releases;"

others co-exist in time as separate "models". Note that configurations

are themselves objects and may che,-.ftore exist in version groups.

The system must contail too',; to enable the generation, release

and subsequent control of a project which exists in multiple configurations.

-18-

It is generally necessary to be able to determine for any configuration

exactly what are the components of that configuration and to be able to

reconstruct in detail the history and antecedents of each component.

The automatic rederivation of configurations as a result of

constituent object changes may be a mt. thodological choice in some APSEs.

4.B.4 HISTORY PRESERVATION: It is a requirement of an APSE that

configuration control be provided. In general this necessitates recording

and preserving sufficient information to establish, for any extant

configuration, its precise constituents and all relevant information

to support their repair or modification.

It is therefore a requirement at the KAPSE level that history

attributes be maintained for all objects (see 5.A.5 below) as a basis

for a configuration control system. At the MAPSE level a configuration

control system is required but not specified in detail.

The detailed requirements on configu-.tion control systems

are left to some extent open to design choice. One position to take is

that no object whatever can be deleted from the database if it is referenced

in the history attribute of any other object. Th-is maximises reliability

and maintainability and in many application areas, if combined with an

effective archiving system, would be the preferable approach.

However, in other areas the requirements may differ and may

indicate that indefinite preservation should be the privileoge of specified

objects only (see 4.A.6) and objects not so specified,under managerial

control, may be purged from the database.

4.B.5 PARTITIONS: The partition ie,' i, tu 1,.i)chest level grouping

in the database. It exists primarily i or inigurial purposes as a means

of applying broad access and bugetary co:,tiol to large collections of

information associated with projects. It can i1,o play a part in implementation

strategies designed to improve access to sptcifically important pirt itions

in large data bases.

-19-

4.B.6 ACCESS CONTROLS: The access control requirements on APSEs are

expected to be highly specific to the applications area and methodology

of each APSE. Some areas will require very detailed controls whereas

others will require only a few broad classes of protection.

The key requirement for a KAPSE is therefore that the primitive

protection facilities it offers shall be sufficiently general purpose so

that it can provide the basis for any required access control system in

the APSEs built on that KAPSE.

In order to meet these requirements, the KAPSE must have knowledge

of individual user identifications. These may well be handled by the

local underlying operating system.

4.B.7 MANAGEMENT REPORTS: The style and content of project management

reporting is specific to the project environment and methodology. In

general , howeVer, the database should contain information enabling

at least two classes of reports to be produced:

(a) Progress reporting--budgets, schedules, review and imple-

mentation dates, responsibilitio-, error report tracing, etc.

(b) Statistical reporting--usage frequencies, system loading, etc.

4.B.8 RELIABILITY: The degree of reliability required in the database

is specific to the individual application area as it depends on the

economically justifiable level of back-up required on the equipment for

the project.

4.C APSE CONTROL REQUIREMENTS

4.C.I A virtual interface which is independent of any host machine

shall be provided for APSE communication.

4.C.2 The virtual interface shall be based on simple overall concepts

which are straightforward to understand and use and which are few in number.

4.C.3 The virtual interface shall permit the invocation of individual

tools from the APSE toolset.

4.C.4 The user may access the virtual interface from a variety of

physical terminal devices.

4.C.5 The virtual interface shall permit the user to interact with the

invoked tool and to exercise control over the tool.

4.C.6 APSE tools may access the virtual interface; e.g., to invoke other

tools.

4.C.7 An APSE must prevent access from the user which might affect

the integrity of the KAPSE and its facilities.

4.C.8 It shall be possible for all necessary communication between

the APSE and the user to be expressed in the standard Ada character set.

4.C.9 Initial user connection to the APSE may require use of the host

operating system. A mechanism for returning to the underlying operating

system shall be provided in the APSE.

-21-

4.D APSE CONTROL NOTES

4.D.1 VARIETY OF CONTROL DEVICES: The virtual interface will in

practicebe accessible to the user in so far as practicable from the

terminal devices available with a particular system. In general these

may be from three categories:

(a) batch terminals

(b) keyboard interactive terminals

(c) high band-width graphics interactive terminals

Where meaningful, the same control signals will be accepted by

the terminal interface routines from all devices of these types.

4.D.2 USER INTERACTION WITH TOOLS: The degree of interaction possible

between a user and a tool depends on the "granularity" of that style of

device; for example, interaction from a batch terminal is limited to

initiation of a job, provision of data and parameters and notification of

the completion of the job together with its results.

4.D.3 ACHIEVABILITY OF COMMAND FUNCTIONS FROM WITHIN PROGRAMS:

The requirement of 4.C.6 is fundamental to the composition of tools.

4.D.4 COMMAND LANGUAGES: The requirements of 4.C.3 and 4.C.4 may

well be implemented by a command language (or job control language).

Regardless of the choice of command language, the environment

must provide a primitive operation which enables the initiation of

a program to be carried out. More precisely, this operation permits

a data structure (such as a compiler output) to be executed as a program

on the host.

Given this primitive, one possible approach to the implementation

of a command language is to use a basic Ada-like language whose facilities,

offered by a simple interpreter tool, provide little more !1ian the ability

to perform simple editing of command lines and to initiat- programs.

-22-

The requirement in 4.C.6 indicates that the primitive initiation

facility used by the command language will be made available as a library

procedure to Ada programs. This will enable the user to construct job

control sequences as Ada program texts which initiate other programs. This

use may well be subject to some restrictions; for example, to prevent

recursive initiation in unsuitable cases.

A more j.- -,ral approach is to regard the user interaction as being

expressed entirely within Ada program segments which are executed or interpreted

as necessary in the context of relevant points in the APSE database, thus

providing a total Ada environment similar, for example, to an Interlisp

environment.

In view of this range of possibilities, the detailed choice of

command language is left as a design decision for specific APSEs.

-23-

4-

4.E APSE TOOLSET REQUIREMENTS

4.E.1 The tools in an APSE shall support the development of programs

in the Ada language as defined by the Ada reference manual. In particular

an APSE shall support the separate compilation features of the language.

4.E.2 Tools in an APSE shall be designed to meet clear functional needs

and shall be composable with other tools in order to carry out more complex

functions where appropriate.

4.E.3 Tools shall be written in Ada and where possible shall conform

to standard interface specifications.

4.E.4 The set of tools in an APSE shall remain open-ended; it shall

always be possible to add new tools.

4.E.5 The communications between tools shall be simple and uniform

throughout an APSE toolset. Inter-tool communication shall be via the

virtual interface.

4.E.6 The principles for communication between tools and the user

shall be simple and uniform throughout an APSE toolset. The uniform

principles shall apply to error handling as well as to normal operation of

a tool.

4.E.7 An APSE toolset shall offer comprehensive "help" facilities

to APSE users.

4.E.8 An APSE toolset shall support its own extension with new tools

written in Ada.

4.E.9 An APSE toolset shall permit testing and debugging of any Ada

program which does not use machine-dependent features of the language.

-24-

It shall be possible to perform such testing and debugging purely in terms

of the Ada source text and Ada language concepts (i.e., without reference

to the instruction set or architecture of any machine).

4.E.10 An APSE shall permit testing and debugging of an Ada program

executing in any target machine supported by the APSE. It shall be

permitted for such a program to use the machine-dependent features of

the language. The facilities for testing and debugging of target-resident

programs should be based upon the equivalent facilities for host-resident

programs.

4.E.11 APSE tools shall provide appropriate summary data for management

reports and control. Such summary data shall be stored in the APSE database

and will be project-dependent in nature.

-25-

L '

4.F APSE TOOLSET NOTES

4.F.1 INTER-TOOL COMMUNICATION. Note that where necessary, tools

will store information in the database for later use by other tools.

4.F.2 TARGET ENVIRONMENTS. As stated in various sections above, the model

of program development expressed in the APSE approach is that of a host-target

system where the host offers the vast majority of the support facilities.

The whole purpose of the APSE, however, is to develop and support target

machine prbgrams and, in embedded computer systems in particularfinl

testing on the target machine is normally essential. The intention is

for that testing to be carried out in Ada terms so far as practicable.

Four general styles of target resident testing are envisaged:

(a) Down-line testing via a host-target machine link with a target
test supervisor resident in the target. The APSE is regarded as
distributed between the machines, and the target test supervisor is
part of the APSE.

(b) Remote testing where the target machine is not directly linked
to the host but where the target configuration can support APSE-
compatible tools to provide a target-resident test environment.
The target-resident part of the APSE may be regarded as linked to the
rest of the APSE by batch-style communication.

(c) Isolated testing on the target machine in cases where target configuration
limitations or the application environment preclude the availability
of APSE-compatible facilities on the target. In these cases, testing
methods will continue as at present to be specific to the target
and the application.

(d) Direct testing in situations where the target machine is
the same as the host machine.

In describing an APSE, it is therefore necessary to specify

three parameters:

(a) On what host machine does it reside? (e.g., the CDC6600)

(b) What targets does it support in the sense of (a) or (b) above?
(e.g., PDP/11)

(c) For which further targets does it generate code? (e.g., Intel 8080)

It is also necessary to specify which tools art ;ippropriate for

use on a target in full or ponsiblv in degraded form.

-2 f -

-5 REQUIREMENTS FOR KAPSEs

5.A KAPSE DATABASE REIIREMENTS

5.A. I Each object in the database shall have ;i unique nm;cIrt (mklntru tcd

from a sequence of identifiers. Each component of tih name sI 1 1 on f ,r m

to the Ada syntax for identifier;s. Whe-re an object is ;i mltr w a vtr, ioiu

grouJ) , a version qualifier may be appended to the name'.

5.A. 2 The database shall not impose restrict ions on tht' form;it oi

information stored in an object.

5.A.3 The database shall permit relationships between obe<cts to he

recorded.

5.A.4 Objects in the database shall have attributes.

5.A.5 Every object shall have a history attribute. The history

attribute records the manner in which the object was produced and all

information which was relevant in the production of the object. '[he hi storv

attributes shall contain sufficient information to provide a basis for

comprehensive configuration control. Any necessary constraints shall

be imposed on database operations so that the validity and consistency

of history attributes is ensured.

5 A.6 Every object shall have a categorization attribute which indicates

the category of information contained in the object. It shall be possible

for the categorization attribute to be used in such a way that APSE tools are

offered protection against accessing an object in a wav that is not meaning-

fill (i.e., incompatible with the format and/or content of the object)

but are not prevented from accessing an object in any wav that is

meaningful.

5.A. 7 Every o1) e t sha I I lave an attr bute wi icli 1 nd i cates acce.s

ri:hts to the objcct.

-2-

5.A.8 The database interface shall permit provision of an archiving

facility whereby files may be relegated to backing storage media while

nevertheless retaining the integrity, consistency, and eventual availability

of all information in the database.

5.A.9 The database shall allow APSE tools to access both the infor-

mation content of objects and the attributes of objects, and to traverse

the networks formed by relationships between objects. Access protection

shall be applied to attributes so that attribute consistency is maintained.

5.A.10 It shall be possible for the actual reading and writing of

database objects to be performed from within an Ada tool using the stand-

ard input/output facilities of the language, as defined in package INPUT

OUTPUT.

4 --

5.B KAPSE DATABASE NO"ES

5.B.1 ATTRIBUTES: An object in the database consists essentially

of:

(a) its content; that is the raw information it contains, and

(b) its attributes; that is, meta-information describing the nature of
the object, its history,categorization and so on.

In many systems a complete object is represented by associating

the attribute information with the directory entry for the object and L

storing the object itself as an unstructured file.

The attributes which record nistory, categorization and access

rights are mandatory. The list of possible attributes is open-ended and

some APSEs may provide further attributes.

5.B.2 CATEGORIZATIONS: Every object has a category attribute. In

general, a tool will only access objects of an appropriate category.

Other tools, however, may need to access objects regardless of their

category; one such tool is a general copying tool. The requirement

on the KAPSE encompasses both of these styles of access. However, the

requirement does not dictate the manner in which protection is offered,

nor that the protection mechanism must actually be implemented within the

KAPSE.

C)}

-- • -, p . -

5.C KAPSE FUNCTION REQUIREMENTS

5.C.1 The KAPSE shall offer the basic run-time support facilities that

are required by Ada programs that execute within the APSE.

5.C.2 The KAPSE shall offer the input/output support facilitiL that

are required by Ada programs within the APSE which use the standard input/

output facilities of the language, as defined by package INPUTOUTPUT.

5.C.3 The KAPSE shall provide the database access functions that are

requried by Ada programs within the APSE. This shall include the provision

of the primitive functions necessary to permit the implementation of access

control and security mechanisms as appropriate.

5.C.4 The KAPSE shall provide a mechanism whereby it shall be possible

for one APSE tool to invoke another APSE tool and supply the invoked

tool with parameters.

5.C.5 Input/Output support offered by the KAPSE shall be such that

package INPUT OUTPUT can be used by an Ada tool for communication with the

control device from which the tool was invoked.

5.C.6 The KAPSE shall provide mechanisms where pppropriate whereby

asynchronous commands issued by a user at an interactive terminal can

be applied to the executing tool.

- 3 (_

5.D KAPSE FUNCTION NOTES

5.D.1 INTERACTIVE TERMINAL CONTROL: During execution of a program

in an interactive system the requirement exists for the user to be able to

have various levels of asynchronous interaction with the program,

ranging from requests to terminate irrelevant output to commands to terminate

the entire session. A provisional list of functions required is given, below.

5.D.2 CONTROL FUNCTION LIST

The KAPSE shall define a fixed set of terminal interface control

functions. The list should be short, functionally adequate and humar

engineered to fit the needs of the terminal user. The following list

is proposed:

(a) Issue a request to terminate the current function

(b) Issue a request to terminate the current program

(c) Suspend the current program and establish a new invocatiou of the

command language interpreter

(d) Terminate the current command language interpreter invocation and
resume the program suspended when the current CLI was invoked.

(e) Abort the current program and return to its invoker

(f) Abort the current program and return to the nearest command language

interpreter level.

5.D.3 CONTROL KEYS: The list of standard control keys used to initiate

these interactions is a convention and is parameterised within the KAPSE.

The list may be changed if this is necessary to avoid conflict with other

local conventions.

5.D.4 PROVISION OF FUNCTIONS: In general, the KAPSE will be specified

as a series of Ada package definitions making extensive use of the

concept of abstract data types. This technique can be used both to

provide KAPSE functions as listed in 5.C. above and to provide data structure

descriptions of interfaces as in 5.E. below.

-31-

5.E KAPSE INTERFACE REQUIREMENTS

5.E.1 The KAPSE shall implement interface definitions which shall he

available to APSE tools. Such interface definitions shall be given in

the form of package specifications in the Ada language.

5.E.2 Interface definitions provided by the KAPSE shall encompass

(i) the primitive operations that the KAPSE makes available to APSE
tools; these include any operations that may be necessary to supplement
the facilities of package INPUT OUTPUT (see 5.A.1O) in order to allow
an APSE tool access to all the functional capabilities of the database,

(ii) the abstract data types (type declarations plus operations) thar
are required to interface the various stages of compilation; these include
the data types that are produced by a compilation stage for later use
by analysis, testing, or debugging tools.

Certain of the abstract data types of (ii) are considered

individually in the following paragraphs.

5.E.3 The source representation of a compilation unit shall be as

defined in the Ada reference manual.

5.E.4 An abstract syntax definition of a compilation unit shall be

specified.

5.E.5 A post syntactic/semantic analysis intermediate language definition

of a compilation unit shall be specified.

5.E.6 An abstract data type definition of an executing Ada program

shall be specified. The abstract data type shall offer read/write

access to both the code segments and the data spaces of the executing

program. When used in conjunction with the full symbol tables (see

5.E.7 below), this abstract data type shall allow the production of source-

level debugging tools.

5.E.71 An abstract data type definition of a comprehensive symbol

table for a compilation unit shall be specified. In addition to the basic symbol

-32-

declaration entries, the abstract data type shall encompass source line

locations,symbol usage, program topology, and any other information

required by basic analysis, testing, or debugging tools.

5.E.8 An abstract data type definition of a "library file"

(Ada Reference Manual, section 10.4) shall be specified. This abstract

data type shall allow new compilation units to be added to the library

file, and shall allow the relationship between compilation units in the

library file to be determined.

5.E. 9 When used incombination, the symbol table and library file abstract

data types shall permit construction of comprehensive symbol table(s) for

the (possibly incomplete) program(s) represented by the contents of the library

file.

-

-33-

5.F KAPSE INTERFACE NOTES

5.F.1 INTERIEDIATE REPRESENTATIONS

In some translation systems there is a clearly defined intrmediate

language representation level between the syntactic and

semantic analvsis phases and the code generation phase. This separation

is the basis of the retargetable compiler approach whereby several code

generators are provided for different targets. It is expected that

retargetable Ada translators will be produced and therefore there is

a requirement for agreement on this level of representation.

Currently one candidate for an Ada-oriented intermediate represent-

ation is available for comment. This is TCOL-Ada and it is described in

"TCOL-Ada: Revised Report on an Intermediate Representation for

the DOD Standard Programming Language." This report is produced
by the Department of Computer Science, Carnegie-Mellon University.

An alternative approach to this problem might be based on

consideration of other well established machine-independent low level

coding schemes such as 0-code, (BCPL); P-code, (Pascal); JOCIT, J73/I, J73

JOCIT, (JOVIAL); etc.

The existence of retargetable and separable-phase translator systems

does not of course preclude the existence of more traditional compiler

designs in which an intermediate code level may well not be distinguishable.

5.F.2 LIBRARY FILES

A library file as defined in Ada groups together all those

compilation units (represented as objects in the database) which are

inter-related and which eventually will be linked into one or more complete

programs.

The technique of implementation of the library file, and hence

of separatO translation as defined in Ada, is of course a design decision.

An example of such a design, funded by the U.K. Ministry of Defense is

given in; "Ada Support System Study: Phase 2 and Phase 3 Reports."

-34-

5. F. 3 APPEN1) ICES

In addition to tile examples referenced in 5.F.1 and 5.F.2

work is proceeding on preparing initial examples of Ada package specifications

in response to requirements 5.E.6, 5.E..7, and 5.E.8. It is intended

that the examples be circulated when available as Appendices to this

document.

A candidate for the abstract syntax specification required in

5.1..4 is expected to emerge from current work in the Ada design group.

-35-

6. REQUIREMENTS FOR NAPSES

6. A MAPSE TOOLSET REQUIREMENTS

6.A.I TEXT EDITOR: A standard text editor shall be provided with

facilities suitable for editing general text, including specifications,

design and other documents,and source programs. The location of text

may be by line number, by context or equivalent. The editor shall provide

the following functions: find, alter, insert, delete, format, input, output,

move,copy and substitute.

6.A.2 PRETTYPRINTER: A display tool is required to format and output

textual material ranging from documentation to source programs.

More specifically, it shall print database objects in legible formats

which d,nend on the object categorization.

6.A,3 TRANSLATOR: A MAPSE will include at least one Ada translator,

which translates source Ada programs into target code for the host and

at least one target. The detailed requirements on the translator are

that it should interface to the KAPSE as specified in section 5E above

and thereby be cooperative with the other tools.

6.A.4 LINKERS: Linkers -ire required in a MAPSE for both the host

and target machines. The facilities needed are:

Partial linking of program units in conformance with language specifications

Creation of an executable program from program units (perhaps

partially linked) with the following options:

Logical to physical mapping

Overlay management

Omission of unused compilation units

Creation of a single load file

Linkage map including variable types and unit cross reference

Elimination of redundant generic code bodies.

6.A.5 LOADERS: Off-line and/or down-line loading shall be supported.

-36-

6.A.6 SET-USE STATIC ANALYSER: . tool is required to provide a cross-

reference map indicating where each data item is changed in value and

where it is merely referenced.

6.A.7 CONTROL FLOW STATIC ANALYZER: This tool produces a chart of the program

control topology. This will indicate which routines are called from where

in the program and may indicate exception scopes and inter-task communication

calls.

6.A.8 DYNAMIC ANALYSIS TOOL: On systems with an interactive capability

this tool shall provide the following functions:

(a) Snap shot;

(b) Break (with facilities to alter values of variables for

interactive use);

(c) Trace;

(d) Interface simulator (for dummy program units);

(e) Statement execution monitor.

(f) Timing analysis.

Where appropriate some or all of these functions shall be available

for batch and/or target environment testing.

6.A.9 TERMINAL INTERFACE ROUTINES: Corresponding device handlers

shall be provided for each varietv of terminal device available on a

specific configuration. These interface between the terminal and the

relevant functions and data structures in the KAPSE.

6.A.1O FILE ADMINISTRATOR: A file transfer and compare facility shall

be provided. A standard transfer format shall be adopted and the

following facilities provided:

File Comparison

Error Control

File Transmission

Title Transmission

History Attribute Transmission.

-37-

4

6.A.11 COMMAND INTERPRETER: A cunmand interpreter capable of invoking

all APSE tools (potentially with parameters) must be provided by a MAPSE.

Users communicating with the command interpreter through an interactive

device must be provided with:

1) Facilities for editing and inspecting command lines prior to

carrying out the command.

2) Positive responses to all interactive operations.

The command language accepted by the intepreter must enable

the storage of sequences of commands in the database for later execution.

6.A.12 CONFIGURATION MANAGER: A tool is required to assist in long

term configuration control of projects. As minimal functions this tool

will enable interrogation of history attributes and will offer managerial

control over the persistence of objects in the database.

-38-

b

6.B HAPSE TOOLSET NOTES

6.B.1 The most common action in a programming environment is the manipulation

of objects. In a complex APSE, much of this manipulation is done automatic-

ally by many of its advanced tools. In a MAPSE, however, these advanced

tools are missing and much of the manipulation must be done manually.

The easiest way to ensure that general objects --an be manually manipulated

is to provide a general text editor that can manipulate objects at a low

level.

6.a.2 Many of the objects stored in the latabase are not structured

in ways that are immediately legible. The information in these objects

(as well as their attributes), however, must often be studied by users;

hence the need for a prettyprinting tool (or set of tools) that transforms

database objects into legible and understandable formats. The prettyprintel

may perform transformations that include:

i) Binary to ASCII conversion

2) Indentation of Ada programs

3) Formatting of objects that contain linked lists

4) Formatting of history attributes

6.B.3 In order to execute Ada progiams (including the MAPSE tools

themselves), it is necessary to translate the programs from (high-level)

Ada to a (lower-level) executable representation. It is of little

importance from the development standpoint (although it may be important from

other standpoints) whether the translator that is provided is a compiler,

an interpreter, or any other type of translator.

6.B.4 Debugging and testing Ada programs at a low level representation

(machine or assembly language level, for instance) defeats moah of the

purpose of programming in Ada in the first place. Therefore, these

facilities must be provided at the Ada source level in a MAPSE. This

may require KAPSE level support.

-39-

6.C MAPSE LIBRARY REQUIREMENTS

6.C.1 One or more high level I/0 packages are required for the host,

to extend or to provide alternatives for the package specified in the

language manual. Such packages will provide calling conventions and

implementations for standard device handling routines. Both host and target

resident packages are required as appropriate.

6.C.2 A high-level I/O package is required for each target machine.

6.C.3 A physical file handling package is required for each target,

if appropriate.

6.C.4 A file directory system is required for eacn target.

-40-

6.D MAPSE LIBRARY NOTES

6.D.1 The requirements in 6.C.3 and 4 are not very specific as the

nature of the target environment is project-dependent. However, some file

handling package is required in the target to implement the access of target

files by the host and the exchange of files with the host. These requirements

are expressed separately; it may be on a specific target that either the

local operating system file directory structure, or physical file handlers,

or both will be utilized to meet the requirements

6.D.2 Clearly these proposals for MAPSE libraries represent a minimal

subset only.

-41-

7 APSE COMPONENTS

7.A APSE TOOLS

7.A.1 This section describes tools that fit the APSE requirement

but go beyond the MAPSE.

7.A.2 ADA PROGRAM EDITOR: An APSE may provide an editor specifically

for Ada source programs. This will assist in the preparation of syntactically

correct programs by providing templates for language constructs and by

checking input for consistency as appropriate.

7.A.3 DOCUMENTATION SYSTEM: A substantial part of the effort of

developing a system is devoted to its associated documentation; for example

in specifications, design documents, user manuals and educational

material, and so on. An APSE may provide a tool to support the production

and control of documentation for a project. This may interface with the

editor and with a word processing system, if one is available, together

with display tools (such as the prettyprinter required in a MAPSE). It

may control graphic displays, figures and text in a unified system. It

may be necessary for this tool to be sensitive to the security classification

of materials and to implement military documentation standards where

required.

7.A.4 PROJECT CONTROL SYSTEM: An APSE may provide a tool for keeping

track of progress of a project against review dates and budgets. This

may include productivity measurements and programmer usage logging.

7.A.5 CONFIGURATION CONTROL SYSTEM: The history attributes provided

at the KAPSE level record a variety of software configuration relationships.

Tools to help structure these relationships, modify them, indicate the

ramifications of (potential) modifications, etc., are appropriate in

an APSE. In many systems the facility will be provided, subject to suitable

controls, to archive or delete superceded material in the database or

to rederive material subsequent to and affected by changes.

-42-

7.A.6 MEASUREMENT: Instrumentation and performance measurement tools

may be provided by an APSE. These are for use both in determining the

efficiency of other tools and in the study of user programs.

7.A.7 FAULT REPORT SYSTEM: As part of the continuing responsibility

during maintenance, an APSE may provide a tool to handle error and change

reports, to progress them and to relate them to source code documentation

and configuration changes. This tool may offer further support for the testing

process, for example in automatic retesting after changes.

7.A.8 REQUIREMENT SPECIFICATIONS: An APSE may provide tools for mani-

pulating requirement specifications and for tracing requirement specifications

through to design and coding stages.

7.A.9 DESIGN: Tools to aid both system and program design may be

part of an APSE.

7.A.10 VERIFICATION: As automatic program verification systems become

available, they may be provided in an APSE.

7.A.11 TRANSLATORS: Complex translators may be appropriate in an APSE.

These complex tools may consist of several discrete components that may

be interchanged and used by other tools in the APSE. These components

may include:

a) recognizer-parser

b) symbol table builder-processor

c) semantic analyzer

d) various analysis and transformation tools for program

optimization

e) code generators for various target machines including the

host

f) debugging interpreter capable of working with programs in
intermediate and mixed host-target object representations.

7.A.12 COMMAND INTERPRETERS: Comnlex command interpreters may be

provided in an APSE. A general command language processor (processing

an Ada-based command language, for example) and powerful command editing

*(from interactive devices) are examples of facilities available in such

an APSE tool. -3

7.B APSE LIBRARIES

7.B.1 It is expected that the standard libraries provided with APSEs

will be oriented towards different application areas and/or methodologies as

addressed by each APSE.

7.B.2 As one initial example, there will be a requirement for a numeric

applications library.

-44-

