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does not vary with pressure gradient, an explicit expression for the shear stress profile In
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NOTATION

a Constant in expression for free stream velocity variation with distance

A Universal constant in the logarithmic law of the wall

B Schofield and Perry's Integral Layer Thickness

b Constant in expression for velocity scale variation with distance

C Fresnel's cosine integral

c Boundary layer growth rate

Ct Skin friction coefficient (= To/JPU2)

f Schofield and Perry's defect law function

g Turbulent shear stress function

G Clauser's mean velocity shape parameter

1, 12 Non-dimensional functions of i?

/,, Constant whose value is dependent on I (= 0.01925 for p = 0-02)

L Distance from wall of maximum shear stress

/o General length scale for self-preserving flow

m Exponent of free stream velocity variation

p Pressure

UM Velocity scale based on maximum shear stress

Sus Velocity scale in Schofield and Perry's defect law

Ui Free stream velocity

u Mean velocity in x direction

Uo General velocity scale for self-preserving flow

U, Fluctuating velocity component in x direction

-11Y Kinematic Reynolds stress

Up Mellor and Gibson's pressure gradient velocity scale

u, Wall friction velocity (= v'To/p)

v Mean velocity in y direction

v Fluctuating velocity component in y direction

X X-Xo

x Distance in direction of main flow

x0 Distance of effective origin of equilibrium flow

y Distance normal to the wall

Ye Distance from wall of the junction between the logarithmic and half-power laws

Kinematic pressure gradient (Il/pXdpldx)]



Clauser's pressure gradient parameter (-8*u'XUjdUi/dx)
fl Adverse pressure gradient parameter (-8*/U .XUdUjldx)

y, Entrainment parameter

8 Total boundary layer thickness

8* Displacement boundary layer thickness

A Clauser's integral thickness ( - 0 38* Ullu,)

Distance from wall at which the Schofield and Perry defect law describes the mean
velocity data points within an accuracy band of 3%

17 ylB, y/lo

1Tm Value of ,7 at 7m

K Universal constant in the logarithmic law of the wall

eIB: value of v7 at which the Schofield and Perry defect law describes the mean
velocity data points within an accuracy band of 3% (taken as constant in this
report at 0"02)

Kinematic viscosity of the fluid

p Density of the fluid

7- Shear stress

Tm Maximum shear stress

7-0 Wall shear stress

Function in the zero pressure gradient defect law



1. INTRODUCTION

The numerous papers that have been published on turbulent boundary layers developing
in adverse pressure gradients attest to both the engineering significance of the problem and its
intractability. A review of this literature does not inspire hope that a general analysis of the flows
will be available in the near future. A central reason making analysis difficult is that the outer
region of a turbulent boundary layer possesses a complex non-linear memory of events upstream
and hence velocity distributions at any position depend on both upstream conditions as well
as local conditions. To reduce the complexity of the problem Clauser (1954) set out to study a
sub-set of adverse pressure gradient boundary layers that had a constant force history and could
thus be described by local parameters alone. As the external forces acting on a boundary layer
arise from the pressure gradient dp/dx and the wall shear TO, a layer with a constant force history
was conceived by Clauser as a layer in which the non-dimensional force ratio,

Pc = (S*dp/dx) (I/To),

was held constant along the layer's development. Clauser called these layers equilibrium layers
and expected them to be dynamically similar at all stations in both the mean and fluctuating
velocity field.t Clauser did not, however, use this force ratio to set up his experimental flows.
He worked instead by analogy from the only equilibrium layer that was then known, the zero
pressure gradient case (where fc = 0 as dp/dx = 0) where it was well established that the
velocity defect law

(Ui-u)/u, = #(y/S) (1)

accurately described the mean velocity through the layer from the free stream down almost to
the wall. Clauser reasoned that defect laws of the same general form should apply to equilibrium
layers in pressure gradient flows. Therefore to set up an equilibrium boundary layer Clauser
adjusted the adverse pressure gradients acting on a two-dimensional boundary layer until mean
flow profiles along the layer agreed with an equation in the form of Equation (I). Two such
layers were produced in which the functional form, 0(y18), was different for the two flows and
in turn different from the zero pressure gradient form. By defining equilibrium layers in terms of
equation (I) Clauser tacitly assumed that the length and velocity scales for zero pressure gradient
flow (u,. 8) were the relevant scales for equilibrium layers in adverse pressure gradient flow.
Later work shows that this assumption causes analytical and conceptual difficulties for equi-
librium layers near separation where u, --> 0.

The values of Pc for Clauser's two experimental layers did vary somewhat along the flow.
Clauser's data have also been criticized on the grounds that the layers were slightly three-
dimensional (Coles and Hirst 1969) and that no turbulence measurements were taken to test
the similarity of the fluctuating components. Nevertheless over 25 years Clauser's paper has
remained relevant and the starting point for many useful studies of adverse pressure gradient
boundary layers.

Townsend analysed Clauser's flows in the first of a series of theoretically important papers
(Townsend 1956, 1960, 1961 a,b, 1965a,b) through which his self-preservingt flow analysis emerged.
Self-preserving flow is defined as a flow in which "the conditions at the initiation of flow are

t The small eddy end of the turbulence spectrum was to be excluded from this dynamic

similarity.

: Townsend reserves the term "equilibrium" to describe a different property of turbulent
flow. In To~vnsend's papers an equilibrium layer is one in which the turbulent energy production
and dissipation are equal and considerably greater than the other turbulent energy processes,
advection and diffusion.
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largely irrelevant, and so the flow depends on one or two simple parameters and is geometrically
similar in all stations". Townsend has developed the following procedure to determine whether
a self-preserving flow is possible and if it is, what form the variation of velocity and length scales
must take (see Townsend 1976). Firstly, self-preserving forms for the mean and fluctuating com-
ponents are assumed,

u = U-+uof(y/lo) (2a)

-u V uo2g(y/o) (2b)

U'2 
= uo2h(y/lo) (2c)

(. .)

etc. for all flow variables

where uo and lo are (as yet) undefined velocity and length scales of the flow. These relations are
substituted into the equation of motiont and for self-preserving flow to be possible, the resulting
equation must be identical in meaning for all x and 7). For this condition to be fulfilled coefficients
in the equation must be either zero or proportional to each other. This stipulation$ produces
relationships between uo, lo and x, U1 which are the conditions for self-preserving flow. This
analytical procedure has been applied to boundary layer flow in adverse pressure gradient by
Townsend (1956a,b, 1961) and also by Rotta (1962). The length and velocity scales were taken
as 8*Ul/u, and u, and the conditions for self-preserving flow were found to be

u,/UI constant (3a)

(d/dx)[8*(Uj/u,)] constant (3b)

with the corollary

Pc = constant (3c).

Equation (3c) implies that these self-preserving layers are the equilibrium layers originally con-
ceived by Clauser. Rotta (1962) lists six combinations of pressure gradient and wall roughness
distribution that will satisfy Equation (3) and these are often termed "precise equilibrium layers"
in the literature. It is certain that Clauser's layers were not precise equilibrium layers because
Clauser's layers developed on smooth walls in adverse pressure gradients and Rotta's listing
shows that precise equilibrium layers in zero or adverse pressure gradients require a wall
roughened with a roughness geometry whose effective height increases linearly from the effective
origin of the flow. Clauser's layers are therefore sometimes termed approximate equilibrium
layers. The analysis shows that equilibrium layers in adverse pressure gradients require a free
stream velocity variation of the form

U1 = a(x-xo)m  where m < 0 (4).

Subsequent workers (e.g. Bradshaw 1966, 1967; Bradshaw and Ferriss 1965) set up adverse
pressure gradient equilibrium layers by producing a flow with a free stream variation given by
equation (4). As these later flows were on smooth walls they also were approximate equilibrium
boundary layers. To the author's knowledge only one case of a precise self-preserving layer has
been observed. Perry, Schofield and Joubert (1969) reported measurements of a boundary layer in
zero pressure gradient developing over a "d-type" rough wall. This unusual roughness geometry
produced an effective roughness length scale that was proportional to flow development distance
and thus conditions for precise equilibrium flow were fulfilled. The mean flow field showed good
agreement with several predicted consequences of the layer's self-preservation.

An important piece of work was reported by Stratford (1959) who took measurements in
near separating layers. Stratford aimed to produce layers in which the wall shear stress was held

it is usually assumed that viscous and normal stress terms may be omitted. This makes
the analysis easier (or possible) but restricts the analysis to flow outside the viscous sublayer and
to flows not very near to separation.

t Which is the condition for the equations of motion to reduce to an ordinary differential
equation.

2



at zero over an extended length. Unfortunately the data are not of high quality and the wall
shear stress was probably not zero throughout. However, the flows are of enormous theoretical
interest because if u, = 0 then Pc = oo which is the limiting case for equilibrium boundary
layers. Stratford claimed that these near separating layers did not display the usual logarithmic
distributions of mean velocity near the wallt but correlated instead with a half-power law of the
form

U4 xC(y)1'2 +constant(aaw)I ;35)

Stratford presented both a mixing length and a dimensional analysis to support equation (5).
Townsend (1960, 1961b) and Mellor and Gibson (1966) have both theoretically analysed

the limiting case of fle = o. Mellor and Gibson calculated the family of defect profiles for the
complete range of equilibrium layers which they gave as -0-5 _< Pc < 00. This was done by
solving the equations of motion (using Equation (1)) and closing the equations with a plausible
eddy viscosity assumption. They presented theoretical curves showing good agreement with
both Clauser's data (f- it 1 8 and 8-0) and Stratford's data (ftc = 0). By basing their analysis
on equation (1) Mellor and Gibson assumed that the velocity scale for the layers was u,,. This
assumption presented them (and subsequent authors) with conceptual problems for the case
Pc --* o. Firstly as Pc --> oo the logarithmic law of the wall, which gives the inner boundary
condition of the flow, disappears. Secondly the question of what a defect law based on u,. means
for the case u, -* 0 arises. This difficulty was overcome by Mellor and Gibson by abandoning
u, as the velocity scale for flow near separation and adopting instead a scale based on cc. The
choice of a as the relevant variable was prompted by the experimental evidence of Stratford
that for Pc --* oo the inner boundary condition of the flow appears to change from a logarithmic
law based on u, to a half-power law based on oe. Thus using a velocity scale

Up (Or8*)1i2 (6)

and suitably transforming the equations of motion, Mellor and Gibson were able to calculate
Stratford's profiles.

Mellor and Gibson's (1966) work includes a unique relation between Clauser's mean
profile shape parameter, G, and the exponent m which defines the pressure gradient (equation
(4)).: That is they propose a relation implying a unique equilibrium layer for a given free stream
velocity variation with a limit at m = -0-23 (after which no equilibrium layer can exist). This
conclusion is at variance with Townsend's (1961) approximate calculations that show for large
negative m two alternative equilibrium layers can exist. Head (1976) applying the integral
calculation method of Head and Patel (1970) to the flows of Bradshaw (1966) presents results
supporting:

(i) the existence of a wide range of possible equilibrium boundary layers for m =-0 -255.
These different equilibrium layers are generated by different initial momentum thick-
nesses;

(ii) only one equilibrium boundary layer for m > -0-255;

(iii) no equilibrium layers possible for m = -0-35. Bradshaw (1966), however, concluded
that probably only one equilibrium layer is possible at any value of m. The resolution
of these differences is an important aim of the work presented here.

Another consequence of Stratford's work was that his reported half-power law, Equation (5),
inspired a scries of papers (Townsend 1961 ; Perry, Bell and Joubert 1966; Perry 1966; McDonald
1969; Schofield and Perry 1972; Perry and Schofield 1973; Kader and Yaglom 1978) devoted to
half-power distributions of mean velocity in non-equilibrium adverse pressure gradient boundary
layers not necessarily near separation. There is disagreement in this literature but a conservative
summary of conclusions would include-

t Coles and Hirst's (1968) detailed analysis shows that most of the profiles have in fact very
small logarithmic regions.

tThe relationship does involve a weak dependence on Reynolds number, but the relation-
ship between G and m is effectively single valued.
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(i) Half-power distributions exist in all turbulent boundary layers developing in moderate
to strong adverse pressure gradients.

(ii) The half-power distribution lies outside the logarithmic region and joins it tangentially
or with a very small blending region.

(iii) Half-power laws based on a, cannot give accurate descriptions of a large proportion of
the half-power distributions observed (see for instance, Schofield and Perry 1972; Perry and
Schofield 1973; Kader and Yaglom 1978; Yaglom 1979). As Stratford's half-power law based
on a does not appear to be universal it is instructive to examine the type of arguments presented
in support of a as the dominant variable within the half-power regime. Kader and Yaglom (1978)
have recently presented the argument in detail. They start by noting that near the wall where
inertia forces are small the equation of motion can be approximated by

T(y) !- ro+pay (7)

(see Townsend 1976, Section 5.2) where the accuracy of the approximation depends on the
relative magnitude of the mean flow inertia forces. If a is large and ro small then 7(y) outside
the logarithmic region is largely determined by a and thus a is seen as more important than rO
in determining mean flow distribution. This is, however, unsatisfying, as a and ro are different
types of boundary layer parameters; a is an externally set input variable to the flow while "o
is a flow response variable. If 7o determines the flow near the wall (in the logarithmic region) it
seems plausible that in an adjacent region where its relative magnitude is reduced it should be
replaced by a variable of the same type, i.e. another shear stress. The Schofield and Perry (1972)
(see also Perry and Schofield 1973) half-power law was therefore based on the maximum shear
stress in the layer (,m) and uses the velocity scale Umn defined as

Um = o/- (8)
This half-power law, discussed in detail in the next section, was found to accurately describe
145 half-power distributions analysed by Schofield and Perry (1972). They showed that this half-
power law was the analytical expression of the inner part of a mean velocity defect law based
on Um that applied from the free stream almost to the wall for all adverse pressure gradient
layers provided only that rm > 370/2. The validity of this defect law has been extensively demon-
strated in Schofield and Perry (1972), Perry and Schofield (1973) and Perry and Fairlie (1975)
and is' further demonstrated in this report. Unlike previous defect laws based on u, that have
been used to describe (equilibrium) adverse pressure gradient boundary layers the Schofield
and Perry defect law has an invariant analytical form for all pressure gradients. It is applied
here to the analysis of equilibrium boundary layers in adverse pressure gradient flows resulting in:

(i) a particularly economical description of the mean profile;

(ii) prediction of the shear stress profile of any equilibrium boundary layer;

(iii) a set of conditions for the existence of equilibrium boundary layers in adverse pressure
gradients.

The results represent a significant improvement on recent work by Kader and Yaglom
(1978) who retain as a variable in their defect law. By retaining a, their analytical description
of the mean profile requires a set of complicated equations separated by complex blending
functions. Also the Kader and Yaglom defect law does not describe the data as accurately as
the Schofield and Perry defect law. This is shown in Figure 1. In addition Kader and Yaglom's
half-power relation is complex and conceptually unsatisfying in that they initially argue that
u, is not important in the half-power region but later are forced to reintroduce u, into their half
power relation in order to describe all the half-power distributions reported in the literature. It
is noted that if in the dimensional analysis, on which the Kader and Yaglom work is based,
, 8 had been replaced by Um2, the Schofield and Perry relations could have been derived.

2. SIMILARITY LAWS IN ZERO AND ADVERSE PRESSURE GRADIENT
BOUNDARY LAYERS

The accepted model for zero pressure gradient boundary 'ayers is a laminar sublayer

4



immediately adjacent to the wall blending into the logarithmic law of the wall
u/u, = (I/-) loge (yu,/v) + A4()

This logarithmic law forms the innermost part of a velocity defect law which describes the mean
profile from the sublayer to the free stream. This defect law is accurately described by

(Ui-u)/u, = 9"6(I -y/A) 2  (10),

where A is Clauser's integral thickness (z 0.38*U1/u,).
The model proposed by Schofield and Perry (1972) is similar in form but applies to attached

boundary layers in moderate to strong adverse pressure gradients (specifically layers in which
rm > 3m0/ 2). The model consists of the same laminar sublayer and (a smaller) logarithmic law
that tangentially joins a half-power law of the form

u/Ui = O"80(yUJLU2)I22+ 1 -(Us/UO (I la)

= 0"47(U/U1)s/ 2 0(,/8*)1' 2+ I -(Us/U) (I I b)

This half-power law forms the innermost part of the defect law which describes the mean profile
from the sublayer to the free stream. This defect law is accurately described by

(Ul-u)/Us = I -0"4(y/B)"/ 2 -0"6 sin [(Q/2)(y/B)] '2

= f(y/B)

where B is an integral layer thickness [- 2.868*(UI/Us)].
The velocity scale Us is a slip velocity determined by extrapolating the half-power relations,

equation (1I), to y = 0. It has been shown by Schofield and Perry (1972) that it is related to
Um by

Us = 8"0(BIL)I12Um (13)
which is a notable equation in as much as it relates mean flow parameters to a turbulent flow
parameter. It is discussed further in the following section.

Perry and Schofield (1973) have also shown that the height (ye) of the tangential junction
between the logarithmic layer and the half-power layer is given by

ye/B = 37. l(u2 U82) (14)
from which it easily follows that

y, e 18'6cf'(U/Us)2 B (15).
For a boundary layer held at incipient separation where cr' = 0, Equation (15) shows that
Ye - 0 which implies that in this case the half-power law extends to the wall and there is no
logarithmic layer.t This disappearance of the logarithmic region as separation is approached
is consistent with Stratford's results and with the well known observation that the vertical
extent of the logarithmic region decreases as the strength of an adverse pressure gradient increases.
The boundary layers considered in this report all developed in moderate to strong adverse pressure
gradients and hence have small logarithmic regions with half-power regions extending down nearly
to the wall. Consequently the Schofield and Perry model gives an accurate description of mean
velocity data from the free stream down to about y = 0.028 (see Figures 2b, 6 and 8, also
Schofield and Perry 1972). This description of the mean flow is the basis for the analysis presented
in Section 3.

U. can be determined by idapting Clauser's methodology to the half-power law. The
Clauser (1954) method determines the velocity ratio u,/Ui from the logarithmic law, equation (9).
This is done by rewriting equation (9) as

uIUJ = (u,/KUi) log, (yUiY) i (u,/,KU,) log, (u,/Ui)+(u,/U)A (16)
t Obviously this can only be an approximation as no account of the laminar sublayer has

been made.
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then plotting the mean profile on co-ordinates u/Ui, log. AUi/v) and comparing it with the
family of straight lines given by equation (16) for different values of u,/U (see Fig. 2a). In a
similar manner the velocity ratio U.1/U can be determined from equation (II b). The mean
profile is plotted on co-ordinates u/Ui, (y/ 8 *)l/ 2 and is compared with the family of straight
lines given by equation (I Ib) for different values of U91U, as shown in Figure 2b. Note that in
this example the Schofield and Perry model accurately describes the data down to a distance of
only 0.0048 from the wall.

2.1 Defect Law and Large Turbulent Structure

The central equation to the theory of Schofield and Perry is equation (13) which was arrived
at from a consideration of models for the shear stress distribution (see Perry and Schofield 1973).
The equation is, however, consistent with current ideas on large turbulence structures in turbulent
flows. Although the presence of large coherent structures in turbulent flows has long been
discussed (Townsend 1956b; Grant 1958), the recent work of Brown and Roshko (1974) has
strikingly demonstrated their existence. Brown and Roshko showed that a mixing layer con-
sisted of a train of large roller eddies that did not change with Reynolds number. This large
eddy pattern was shown to control the mean velocity distribution and the entrainment rate of
the layer. Work by Bradshaw (1966) and Townsend (1979) implies that similar large coherent
structures dominate boundary layer flow and that as the adverse pressure gradient of a layer is
increased the proportion of the turbulence field occupied by large structures increases. Bradshaw
(1966) showed that these large structures in adverse pressure gradient layers scaled on Um2IU.
Thus it seems probable that in a boundary layer that is developing in a strong adverse pressure
gradient there are large turbulent structures that:

(i) determine the entrainment of the layer and hence its overall thickness;

(ii) determine the mean velocity distribution;

(iii) have a velocity scale related to Urn.

It would seem reasonable therefore that for these types of layers a mean velocity scale should
be described by the boundary layer thickness and Um. This is what equation (13) does, viz.

U2 = 64U(B/L).

Perry and Schofield show that equation (13) only applies to layers in which Tm > (3/2)o.
This limit is consistent with Bradshaw's (1966) finding that large turbulence structures become
increasingly more important as the pressure gradient (and hence -m/T0) of boundary layers
increase.

3. ANALYSIS

Consider a two-dimensional turbulent boundary layer in an adverse pressure gradient
sufficiently strong for Trm to-be at all times > (3/2)o. For such a layer the Schofield and Perry
defect law will give an accurate description of the mean velocity profile from the free stream
down to a small distance from the wall. Following Townsend, self-preserving forms for the mean
and fluctuating flow are assumed. However, in this case the Schofield and Perry scales were used,
viz.

u = U-U.f(y/B) (12)

- ulvl = - U.2g(y'/B) (1 7)

These relations are substituted into the equation of motion

u(Ou/Ox) - V(au/Oy)- (a/y)(u'v') Ul(dUI/dx) (IS)

where the viscous and quadratic turbulence terms have been omitted. The continuity equation

OulCx+tv/ay = 0 (19)

is used to eliminate the mean vertical velocity (v) leading to (see Appendix I),

6



d Us d dUs Us d )fq 8
U(-UdUs) + (UB)f '+UBs f 2  -f-(UsB) fd= -g' (20)dx Bd dx B dx J

wheref=f(y/B), g = g(y/B), "= y/B and the primes denote differentiation with respect to 'I.
Integration gives

(UlU.)ifd) + -- (UIB) I f'di7 + Usd I 2d'7dx f Bd A j dxJ

S (U88) f fd, d-, g'd, (21)

B dx' f o I Bf#

where 1 EIB and is the limiting non-dimensional distance at which f(77) describes the mean
velocity within some prescribed accuracy band.t Introducing the following notations and sub-
stitutions:

fd? = I,(,?), f2dq = 12(77), f( ? )d= 1,-,

,J # ,~~f ?t f'd7 =rf - (*) tfl ,

f'f fd-q? ) = f 11() -12(7) -f(IA)Ii(17)

modifies equation (21) to

-(UIU)1( 17) - U2-s d ,(,1? 1'(0?) - u U, 2
-dx( UB()-Udx (d ) d

+ U (U-8d U f1(B) - 2 (1? )+ f-( p4f(, ) = { (g(?)-s()) (22).
B dx B

For self-preserving flow equation (22) must be identical in meaning for all x, that is co-
efficients of functions of 17 must be zero or in constant ratio. It is simply demonstrated
(Appendix 1) that the relations:

Ul = aX m = a(x-xo)m (23a)

U, = bX- = b(x-xo)m (23b)

B = cX = c(x-xo) (23c)

satisfy the condition, as substituting them into equation (22) leads to

2mablifi7)-mb212(,7-ab(m+ I) (77f-W-f(P)-1(7?)) +

+b 2(m + 1) (77)-12(17)+ (f-f(L)) .) = 2(g(,)-g(M)) (24)

which is independent of x. Equations (23) are thus the conditions for self-preserving or precise
equilibrium flow.

3.1 Shear Stress Distribution

The shear stress distribution in these self-preserving layers may be obtained from equation
(24). Rearranging equation (24) gives

f Set here at 3%.
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g -? g(p) + -" (3m + I )Ii(I) - c(2m + l)I(,?) -ac(m I

+ c(m + I f 110) +fI1. A)1' (25).

Now as

_"( - __2(u ,') 2U 2  2b2 -

lpUi12  -U 12 Ua1
2

g(.9) a2 ( (,j) (26).

Similarly

g() = _2- i ,)

The unknown r(p) can be eliminated by evaluating equation (7) at y = JB to give

-(P) Cr' + 2AI

which will be an accurate approximation as it is small.t Substitution gives

g(JA) a2 ( + b
_a2  ' -- 2 (27).

2b2~

Finally Ba/U 2 is evaluated using the expression for the free stream velocity variation, equations
(23). This gives

B= I dUl B= - ma2X'm-lcX = -c.
u2 2X2m  

=-cI2  U 1 d xa m

For 1A = 0-02 (an average value used throughout this reportt) equation (27) becomes

a
2

g(p) = - (004mc-cf').
2b2

Substituting this and equation (26) into equation (25) gives

707) = cf'-0-04mc - 2cb2 (a (3ma )(1)-(2m l)12(1) - a (m+ l) (.f-f(A))' +PU2 a2 (bb
lp+ (+ ) If(,?)+ (1 )--

It is convenient to introduce the entrainment parameter (see Townsend 1976) defined as

UL +l uo dlo
lu0l dx

which for the velocity and length scales used here becomes

U, I ) dB (a!
-U8 \u 1d b 21

t See Figure 3 which gives typical results for p. Also shown are values of y,. the height of
the tangential junction between the logarithmic and half-power laws, which correlates with the
theoretical relation, equation (15).

t The actual value adopted for 1, so long as it is small, has a very minor influence on sub-
sequent calculations.

8



The equation for shear stress through the layer is then given by
0 04ry 2y

T(17 ~=cf' _ aa
2 a2 ta I - (3m +l)II(I) -(2m +1)I2(,) - (m11

IP\b - b b
( b 21 b2 b 2) ( f-- f ) + (m +I)(f t ,) +f t, -fO )lt)} (28).

3.2 Free Stream Velocity Variation

Equation (28) can be used to give an explicit equation for the free stream velocity variation
exponent (m). Rearranging equation (26) gives

[l(,), ) a I( ()) fl(,i)+f a \ , _ -(.) 1 "

dfii1 2yb2kb 2,4 fp( 2 9 )

[O'-02a--+ 3b_ 1(n)-212(,) - b('f f(t))+f()±f -

For the case , = I,.f(l) = 0 and r(l) = 0, this equation becomes

mn = (

O02 - + a(311(l) +ff(p))_212(l )-f(.1, ) (

For practical values of cf'/y, the influence of cr'/y in this equation is weak and thus m is essentially
a function of Ui/U. Equations similar to (30) can be found in the literature based on the velocity
ratio u,/UI (Townsend 1976). The difference and advantage of equation (30) is that it is based
on the defect law given by Equation (12) which contains no empirical parameters and is invariant
with pressure gradient. Thus the function f, the integrals I, 12 and their products are functions
of -9 alone. The functions are derived in Appendix 2, tabulated in Appendix 4, and are plotted
in Figure 4.

Equations (28), (29) and (30) apply to all equilibrium layers in adverse pressure gradients of
sufficient strength for 7M/70 > 3/2, which is the condition for equation (12) to be valid. Inspection
of equation (39) shows that, for any equilibrium layer where m, a/b, c (and hence y) are all
constant, ct' must also be constant. The appearance of cf' in Equation (30) arises from the inner
boundary condition of the half-power law (at approximately 0.028). Unlike previous analyses
the condition of constant ct' is here a corollary to the analysis and not a central feature of it.

3.3 Pressure Gradient Parameter

Clauser's non-dimensional force ratio may be written

S* dp 8* Ui dUi
-ro dx u! dx

This is the relevant parameter for flows in pressure gradients near zero where ro and the
logarithmic region is large. For flows in moderate to strong pressure gradients where the influence
of To is small and the logarithmic region is thin it is argued here that U, replaces u, as the appro-
priate velocity scale of the mean flow. In this case the appropriate force ratio is

8" dUi (31).
Su2 dx

By using the definition for #(=2.866*(U/U)) and the equations for self-preserving flow
(equations (23)) equation (31) may be written

cXmaXm -  inca (32)

2"86bX m  2"86b

which is obviously constant for an equilibrium layer.

9



3.4 Existence Limits for Equilibrium Layers in Adverse Pressure Gradients

There are three existence conditions for the equilibrium layers analysed here. They are:

(i) m < 0, the condition for adverse pressure gradient flow;

(ii) ct' > 0, the condition for attached flow;

(iii) rm/7o > 3/2, the condition for moderate to strong adverse pressure gradient flow to
which the Schofield and Perry defect law applies.

Condition (ii) can be made explicit in terms of the flow parameters m, a/b by substituting
c=' = 0 in Equation (30) which gives

m -) (33).

0-02- + ! 31(l)+f(jl,)--212(I)-f(l,)l
b2  b\ Y

Condition (iii) can also be made explicit. At i7 71m and 7(1m) = 7m. Equation (29) becomes

a2
/a V ,Cf 7'

m2 -2 fO.02 _f 2 mb2  m) (34).

m f0 2 + 3!11(,Q) 2 2(,7.) - 1(7.f( ) fGf)+f(1 i(lm) +

Now for the limiting condition of

Tm = (3/2),o or Urn 2  (3/2)u2  (35)

equation (34) becomes

a--_(36).
0-0?- + a 3

Ji&?m)-,212f(m)+f)ll)If(lA)

The value of 17m is given by equation (13), as

_LIB 64(Urn/U.)

so that by using equation (35) this becomes

?m = 48ct'(a 21b2) (37).

Equations (33) and (36) define a space with co-ordinates m, a/b within which all equilibrium
layers based on scales Us and B exist. The limit defined by equation (36) depends (fairly weakly)
on cf'/y. Most of the "equilibrium layer" space is shown in Figure 5.

4. COMPARISON OF THEORY AND DATA

4.1 Mean Flow

The above analysis applies to attached flows with a free stream velocity variation of the form

U1 = aX m  (23a)
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where m is sufficiently negative for

7m (3/2)7o.

Consequently the literature was searched for flows with a free stream velocity distribution
described by equation (23a). Nine such flows were found, analysed and compared with the
theory.

Firstly the mean profiles were analysed to ensure they displayed half-power distributions
of velocity near the wall. All 46 profiles exhibited extensively half-power regions. By comparing
the data points with the family of tines given by equation (I lb) the velocity ratio UJIU. was
determined for each profile. Figure 7 shows that (l1/U. (= a/b) was closely constant for each
layer and this is one of the requirements for the existence of an equilibrium layer (equations
(23a,b)). Figure 6 confirms that the data is accurately described by the Schofield and Perry (1972)
half-power law for values of y down to about 0- 02B from the wall. The only data where this
limit is significantly exceeded is from a layer very close to separation (Stratford flow 6, layer IX)
where the profiles show poor agreement with the half-power law close to the wall. Theoretical
predictions for this layer must be less accurate than for other layers. Results for this layer are
further discussed at the end of the Section.

Using values of U. determined from the half-power distribution, the profiles were tested
against the full defect law of Schofield and Perry (Equation (12)) as shown in Figure 8. The
agreement was good and typical of previous results for non-equilibrium layers (see Perry and
Schofield 1973; Simpson, Strickland and Barr 1977; Perry and Fairlie 1975).

As values for U1/U , had been determined the layer thicknesses (B) could be calculated and
these are plotted against distance in Figure 9. The layer growth rate (c) was constant in all
layers. Thus Equation (23c) was satisfied and with it all conditions for self-preserving flow for
all nine layers. This result supports Townsend's contention (Townsend 1961) that if self-preserving
flow is possible it usually occurs. Figure 9 was used to determined both c and the effective origin
x,) of each layer. Layer growth rates did not show the constancy for different layers assumed by
Kader and Yaglom (1978), in fact they showed considerable variationt (0 -03 to 0 A 0) around
the value of 0O-063 used by Kader and Yaglom. The values of c were used to calculate the entrain-
ment and pressure gradient parameters -y, P*; these and values of cf' determined using Clauser's

* method (equation (16)) are shown in Figure 7. They are substantially constant for each layer
as required by the analysis.

Free stream velocity variations with distance are shown for all layers in Figure 10.
Logarithmic co-ordinates are used to show the linear variation required by equation (23a).
Values of xo determined from Figure 9 were used to calculate the abscissae (x -xo). The figure
shows that all velocity variations have good linearity on these co-ordinates.t The lines joining
the points on the figure have slopes predicted theoretically by equation (30) and the excellent
agreement displayed in each case gives good support to the theory.

Values determined in this analysis of data, enable the layers to be positioned on the m, a/b
co-ordinates and compared with the theoretical limits for existence of equilibrium layers. This
is done in Figure 5 where it is shown that all nine layers fall within the limits set theoretically
by Equations (33) and (37). It is seen that a wide range of equilibrium boundary layers has been
observed and they all fall within the limits given by the analysis. It is obvious that different
equilibrium layers can exist in the same pressure gradient; for instance layers 11 and IX have
similar free stream velocity variations (m = -0 -223 and -0 -219) and yet have very different
Ul/U. velocity ratios. The equilibrium boundary layer that develops in a given pressure gradient
will depend on the initial conditions of the layer on entry into the equilibrium pressure gradient,
i.e. its initial velocity ratio and thickness.

Figure 5 shows that equilibrium layers can exist for values of m from above -0. 10 to about
-0-30 for practical flows. Thus Head's (1976) conclusion that no equilibrium layer was pos-
sible for m = -0-35 is correct but the limiting value is too low. However, his conclusion that
a wide range of equilibrium layers was possible for m = -0-255 accords with Figure 5. It also

t All derived data is tabulated in Appendix 3.
t This fact is not very significant as plotting data on log-log co-ordinates is an undiscerning

way to present data. Thus xo was not determined from these plots, as for each layer a wide range
* of values for xo gave results that showed good linearity on these co-ordinates.



follows from Figure 5 that two central conclusions of Mellor and Gibson (1966) are not sup-
ported by the present work. They are the conclusions that there is only one equilibrium layer
for a given value of m and that this single sequence of equilibrium layers terminates at
m =-0-23.

Mellor and Gibson (1966) and Townsend (see Townsend 1960, 1976) have both made
(approximate) calculations of the idealized Stratford flow ('8c = co, ct' = 0) which give

m =-0-255, uo/L'it 0-81.

This result is in fair agreement with Figure 5 where the point m =-0-225 on the C!' =0 curve
corresponds to a U1/U 8 velocity ratio of 0.96. The actual Stratford flow nearest the condition

c'= 0 (layer IX) is very close to this point at m =-0-22, (li/U8 = 0-96, cf' =O054X 10-3.
Conclusions regarding measurements in this layer must, bhcvwever, be somewhat guarded as the
profiles show the poorest agreement with the Schofield and Perry defect law, particularly near
the wall (see Figs. 3, 6 and 8). Because this layer was so close to separation it was an extremely
difficult experimental situation in which to get reliable data near the wall. Any analysis of the
wall flow is made additionally difficult by the sparsity of data points that were recorded near the
wall by Stratford. In addition the dropping of the viscous and quadratic turbulence terms from
the equation of motion means that the analysis will be at its most inaccurate for incipiently
separating layers.

4.2 Shear Stress

Because the analysis presented here employs an invariant analytical expression for the mean
flow profile, it is possible using equation (28) to obtain the (invariant) shear stress profile for any
equilibrium layer from a knowledge of m, C!', U1/Us and c. As the experimentally derived values
of Cf' and U1 U. showed some (small) variation the following calculations are based on average
values of ce', U1/U8 . Values of m were those predicted by equation (30).

Theoretically predicted shear stress profiles for all nine layers are shown in Figure 11. The
profiles are of course forced to agree with the boundary conditions at the wall where

_(O)JpU2 =Ct'. However, in all cases the calculated value of the shear stress at the free stream,
where no agreement with the data is forced, was zero to a very high order of accuracy. Figure I I
shows that 7., the position of maximum shear stress, moves away from the wall as the shear
stress ratio Tm/To increases. It varies from 0-3 for the limiting case of tm./to = I *5, to 0-45 for
trm/tro = 30, the largest shear stress ratio considered.

Fortunately shear stress profiles in four of the layers were measured allowing comparisons
with measurements. Figure 12 compares predicted and measured profiles for moderate
(Bradshaw 1966), medium (Samuel 1973) and strong (Bradshaw and Ferris 1967) adverse pressure
gradient layers. In all cases agreement is good.t The agreement could be marginally improved
in all three cases if the actual value for C!' at the shear stress measuring station was used rather
than the average layer value.

The remaining shear stress measurements are by Bradshaw (1967) (layer VI) for a flow that
developed initially in zero pressure gradient before entering a strong equilibrium adverse pressure
gradient. The approach of the shear stress profiles towards their new equilibrium form is strikingly
shown in Figure 13 where successive experimental shear stress profiles are compared with the
distribution the layer had in zero pressure gradient flow and its theoretical distribution for
the equilibrium adverse pressure gradient. As with all turbulent boundary layers responding
to a change in boundary conditions, the layer adjusts rapidly near the wall where the time scale
of the turbulence is small. Further modification of the profile (through the large turbulence
structure) is slower working outwards from the wall. In this case the process is all but complete
at the last recorded profile.

t The assumed analytical form for the incipient separating mean velocity profiles was
significantly different from equation (12). Thus uO though a similar type of velocity scale to U.
was not identical to it.

IThe author is indebted to Professor Bradshaw for providing the original data points for
two of these profiles.
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S. CONCLUSIONS

(1) Self-preserving or precise equilibrium boundary layers based on the length and velocity
scales proposed by Schofield and Perry exist in moderate to strong adverse pressure gradient
flows. These scales are based on the maximum shear stress in the layer which is the dominant
shear stress for flow approaching separation. These scales are the counterpart to u, and A for
equilibrium boundary layers in pressure gradients near zero where the wall shear stress and the
maximum shear stress in the layer are of similar magnitudes.

(2) The equilibrium layers are produced by moderate to strong adverse pressure gradient
flows that have free stream velocity variations of the form

Ui = aX"'.

Equilibrium boundary layers exist for values of m in the range -0O-3 > -m > -0.O~
This result does not agree with the Mellor and Gibson (1966) result that no equilibrium layers
are possible in flows where m < -0 -23.

(3) For any equilibrium flow a range of equilibrium boundary layers can develop depending
on the initial conditions of the layer entering the equilibrium pressure gradient. This result
agrees with the calculations of Head(1976) but is contrary to those of Mellor and Gibson (1966)
that predict a unique equilibrium layer for any particular pressure gradient.

(4) The flow parameters for all experimentally observed equilibrium boundary layers fall
within limits theoretically derived using the Schofield and Perry defect law and the equations of
motion. Approximate calculations of flow parameters by Townsend (1960), for an idealized
flow in which the wall shear is held at zero throughout, agree with these results.

(5) As the Schofield and Perry defect law is invariant for any layer in which it is valid (i.e.
for any layer in which -rm/,o >, 3/2) the shear stress profile for any equilibrium boundary layer
can be calculated from a knowledge of the initial conditions of the flow entering the equilibrium
pressure gradient. Predicted shear stress profiles show good agreement with experimental data.

(6) The shear stress profile of a boundary layer moving from a zero to an adverse equilibrium
* pressure gradient adjusts outwards from the wall. The initial adjustment near the wall is rapid

but is much slower in the outer layer.
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APPENDIX 1

Derivatio of Equilibrium Relatim

The equation of motion without viscous and quadratic turbulence terms is

u(aulx)+-- ( &/y)+(/ 8yXu'v') = Ul(dUi/dx) (18)
The continuity equation is

(au/ax)+(Ov/ay) = 0 (AI.1)
and Equation (12) gives

U = U1-Uaf(O) (12)
whence

(au/ax) = (dUi/dx)-(aUs/x)f-Usf'( /ax) (A1.2)
where f = f(n) and primes denote differentiation with respect to 7. Substitution of Equation
(A 1.2) into (Al. 1) gives after integration

Bf"Us f' + f - 000)- = V7) (AI.3)

as v(O) the vertical velocity at the wall is zero. This last equation is inaccurate for the range
0 < 71 < 1z because Equation (12) is inaccurate in this range. However (A1.3) becomes very
accurate for moderate to large values of i.

From Equation (12) we may also write

au/ay = -(Us/B)f' (A 1.4)
Substitution of equations (12), (17), (Al.2), (Al.3) and (A1.4) into (18) gives

dx Fy\ ]
dU, udU1  fdfU l .. -.SYf+.J U.2fft V _ CU1ff

d. d-- x d , ax a J A

-' i -- J s!' O ' O

jOax Jodx dx B

as Us, U are not functions of y (nor, therefore, of 7)
fa[u~uJ+UdU +U '2 -V 0'

ax dx dx dx fox

-UsHt ' fd,1+gf(20)
ax Jo x

This equation may be simplified as follows. Integration by parts gives

[01 e ofa

Thus two terms in Equation (20) may be combined thus

ax n U.2ax fJa (0,a
u'ff'qx - U f ' f d-a -Ooa(



* -- 
-•.

As 0/x = -(y/B 2XdB/dx) = -(IBXdB/dx) two more terms may be combined thus
_--Us Ulf'x + Usf fs[UI, B + '+dU] =U d

+ I U f ' . - J-BU)
Ox L Bd x j B dx

Hence equation (20) becomes

fd -[UU dU.]Us d dq a--0[Bu +U2f 4fa ?(a
x x B1 d ax Jo'o\x

- df, d - (A 1.5).ax f. -B

Now, using the expression for cb/Ox above, two more terms can be combined thus
,,,dB I- -_ .dr,., C-

U sf dBI dU
= - L' J fd . fd,

B d xo dxo

Us d r
B-f' (BV6 )ffd,?.
B dx J0

Using this identity equation (A 1.5) becomes

d dUs Us d Usf' d[ ]'f
-f;-[UU8 ]+U- f+7if' - (UB) -_ [BU.] 0 fdo - - g

dx dx B x( B dx J B

and integration with respect to 7 over the range of validity of equation (12) (1 to '9)t gives

-d C!If UU~f .U ,-0 + C!6 d (UBCf',?
dx JP. dx J,. B dx Jf'

U- U .] Iu8 if'ffd,d,1  - f'g'dq (21).
B dx JJ 0 BJ)

To simplify equation (21) we introduce the definitions

f fd7) = Ii(,)) and I f 2 d = 12(,)

and perform integration by parts on two terms, viz.

ddJ0

j fd'd 1  fll-2v)I f)'o '
= fl(I) -12(27) + [f-f(p)]l4.

Also
dg d = )-(0).

Substitution of these relations into equation (21) gives

d( - (UiB)11f-li(1 )-f(1)-us dUI7)
dx Bdx \ / dx

+ dx ( f11-() f-f)t) g() ) (22).

t Integration over the range 0 to '7 (as in equation (A 1.3)) gives inaccurate values of r in
in the range 0 to IA and these inaccuracies affect values of r at large il. For this reason the inte-
gration here is limited to 71 > 1L and an (accurate) estimate of r{L) is used; see main text.
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The conditions for self-preserving flow (equation (23)) when substituted into equation (22) give

2mabX=-Ii(,) bac(m+l)xImi(, W(P),f( ))bI-mb -'X"'W,) +b'c(m+ 1X

/ C

which simplifies to

2mabI(7)-ab(m+l 1 (2 () -f&))-mb2I(,i)+b(m+ I)(f I,(,)zI )+

A-= 0(g( -g0)) (24).
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APPENDIX 2

Derivation of Functiom

We have

f(TI)= 1 -O'47'1-O'6 sin ()
hence

,1f(71) - 704-0 -o"1? (271).

By definition
117r Sfd=!l--471112-6 sin -21)d7

=,-O-267,s"+0.382 cos( --- +O'267,.s 2-0-382 cos

Also by definition

12(,,) = =f:( 4,112 -06 sin d7

I-0.87112+o. 16-, .2 sin (7)+0"48s7"2 sin (-7)+0"36 sin" -))d

- [,_]"o8[371',j, o. iJ7,_ 1.2f'sin ( 7 )di+0.48f'71 1/2 sin 727 dr7+LJ L3  (2Ll

+0-36f Si2 (71) d71.

Consider the integral

sin 7)q d sin d -Cos ,] J ( ( )- cos
2 2

Consider the integral

sin 2  d)? sin2 tdt sin 2t + -2 2sin (7rm) = t+ sin &w).

2 21'
Consider the integral

11/2 sin G + j7

by using the substitution t2 = (r/2)n we get
Q'7)112

4,%)12
2 sin t2dt.

•( )1,2

As
d(t COS 2) = COS t -2 t0 sin 12
di

then

t2 sin t2 = I cos t2 - .d ( cos t2).tzsinti



Substituting this relation into J1 gives

G )1/2 /2

()-1/2

2V2f 2V'2 C d
J1 ---- cs ~dt v;J d (t cos t2)d:

2. l/2 211/2 V ±1I/
cos t2 dt - cos + COS

Consider the integral
(! )1/2

J2 =f cos 12
dt

By using the substitution t 2 
- (7r/2)S2

2 22

_ 1/
112

hence

J= co (s2ds . ..rcos -,/+ --rcos-./

771/2

2 2 r 2 2
= C(1 7 1/2

) - 27112 COS 77 - 2CGL"2
) - / 2 

cos 7r
7r 7 2 7r7 2

where C( 7) is Fresnel's cosine integral which is tabulated in Abramowitz and Stegun (1965).

'2(71) -- I. 187-0.533,?3/2+O.O812-0.0573 sin (,r)

+0 7639 cos (712)-- 3056/2 cos ( 7 ) +0" 3056C(,/'2)

-- 1t8 4+0- 5 33 3M3 / 2- 0 -081A2 + 0.0573 sin (P-r)

-0 - 7639 cos ( )+O"3056tI"1 cos (2A) -0 - 3056C(,t" 2,.

Finally

flj(,1) = l -0 A41
3 '2-0-6 1 sin ( 17) +0 1067na-0.152873 2 cos -17

o(0 2

-0 -167773/2L3/2 + 0. 521773 2 COS7t ( 0)-612sin ( 7)

+0.169/52 sin (-i7)-0O22927 sin (7%)O cos ( 1 ) +O06 7,, sin r,

-0" 16A3 /21sin ( 17) +0 2292?7sin (2 ) cos (2 ).



APPENDIX 3

Equilibrium Layer Data

Profile U, U1/US B cx C X
(xm.) (m/s.) (a/b) (M.) (x 103) ((x1 () (m.)

I. Ludwieg and Tillman (1949) Mild Adverse Presure Gradient Flow
3.332 25.75 1.818 0-1112 1.60 88.59 10.69 1.600
3"532 24.85 1.7241 0.1208 1.53 82.28 10.14 1.800
3"732 24"50 1-6667 0"1304 1"52 78"42 9"80 2"000
3-932 24-05 1 "6129 0"1448 1"34 74"80 9.48 2"200
4"132 23-60 1"5873 0"1625 126 73'08 9"33 2"400
4"332 23-10 1"5152 0"1772 117 58"24 8.91 2"600
Average - 1-6540 - 1403 77.568 9.73 0.018 -

c = 67.21 x 10-3 ; xo = 1.732 m; m = -0-259873

Ii. Clauser (1954) Flow 1
2"1092 9.906 1.7857 0.0679 2-10 42"75 4.46 1-9728
3"3528 8.870 1-6949 O-1056 2"14 39"73 4-23 3"1264
3"8867 8-534 1"7241 0-1243 2"08 40"70 431 37498
5"6632 7.681 1"8518 0-1792 193 44.95 4"62 5-5268
7"2634 7"193 1-9608 0-2418 175 48-57 4"90 7-1270
8"2052 6"858 1-8868 0-2683 1"83 46"11 4-71 8"0688
9"0678 6"645 2.0000 0.2963 1.73 49-87 5"00 8"9314
9"8298 6"462 l.9608 0.3220 1"76 48.57 4.94 9.6934
Average 1- 8581 - 1.915 45.156 4-65 0.042 -

c = 33.25 x 10-3; xo 0. 1364 m; m = -0.223708

Ill. Clauser (1954) Flow 2
2.2860 7.955 1-3514 0.1041 1 130 67.23 8.65 1.0444
2.7432 7.559 l-2821 0.1311 1.20 61.18 8-20 1.5016
3-3528 7.163 l.2987 0 1571 1.15 63.07 8.31 I21112
3.8618 6.950 1.2987 0.1910 1-04 63.07 8.31 2
4.9286 6.492 1.3333 0"2800 1 05 65.80 8.53 36870
5.8430 6.157 1-3333 0.3459 1.05 65.80 8.53 4.6014
7.2908 5.761 1.3333 0.4712 0.95 65.80 8.53 6.0492
8.1290 5.516 1.3333 0.5700 0-85 65.80 8.53 6.8874
Average - 1.3205 - 1.074 64-719 8.45 0.017 -

c = 78.96 x 10-3 ; xo -- 2416 m; m = -0-252664

IV. Bradshaw (1966) a = 015
0"610 43.71 2.0000 i0.02702 1 2.24 46.88 4-50 0.8740
1.2192 39.35 2.0833 0.0468091 2.11 49.48 4.68 1.4832
1.6764 37.64 2.0833 0.060717 2.03 49.484 4.68 1.9404
2.1336 36.27 2.0833 0.07470 1.88 49.484 4.68 2.3976
Average - 206251 - 2.065 48.832 4.64 0.042 -

c = 31 2538x 10-3; Xo -0.26397 m; m = -0.212891



APPENDIX 3--continued

Profile U, U1/Us B cy cr'y X
(xm.) (m/s.) (a/b) (m.) (x 103) ( x 103) (x 103) (m.)

V. Bradshaw and Ferris (1965) a = 0-255
0-5843 41-61 1-4706 0-0349 1-45 58-14 7-77 0-5993
1-1939 34-66 1-5626 0-0750 1-32 63.64 8-44 1-2089
1-6511 31-97 1-6129 0-0979 1-25 66.66 8-81 !6661
2-1083 29-96 1-6129 0-1275 1-23 66-66 8-82 2-1233
Average - 1-5647 - 1-313 63-775 8-46 0-02! -

c = 59-90x 10-3; xO = -0-015 m; m = -0-256245

VI. Bradshaw (1967) a = 0 --> -0-255
1.0668 33-76 1-9231 0-04593 1-87 55-00 5-99 1-1928
1-2192 32-65 1-8868 0-05118 1-80 53-60 5-88 1-3452
1-5240 30-91 1-7857 0-06554 1-66 49-69 5-56 1-6500
1-8288 29-51 1-7241 0.07485 1-53 47-31 5-37 1-9548
2-1336 28-33 1-7241 0-08715 1-47 47-31 5-37 2-2596
Average J - 1-8088 - 1.666 50-58 5-63 1 0-033

c =38-65x 10- 3 ; xo :-0126rm; m = -0-239261

VII. Stratford (1959) Flow 5
0-9260 15-19 1-2195 0-01750 1-42 45-24 5-97 0-3099
1-0763 13-43 1-2048 0.03205 1-19 44-32 5-90 0-4601
1-2506 12-81 1-3158 0-04121 1-45 51-30 6-44 0-6344
1-6221 11-295 1-3333 0-05976 1-36 52-40 6-52 1-0059
1-9007 10-387 1-2987 0-08236 1-21 1 50-22 6-36 1-2845

Average - 1-2744 - 1-326 48-696 6-24 0-027 -

c = 62-883 x 10-3; xo = 0-6162 m; m = -0-243127

VIII. Samuel (1973) Flow 2
2-90 22-1 1-92 0-1022 1-85 57-69 6-70 3-284
3-38 21-0 1-82 0-1217 1-66 53-63 6-35 3-764
AverageI - 1-87 m 1.755 55-66 6-53 0-032 -

c = 40-625 x 10-3; xo = -0-3843; m = -0-239586

IX. Stratford (1959) Flow 6
0-926 15-00 1-064 0-01686 0-99 59-74 8-65 0-1647
1-0763 13-00 0-9804 0-03493 0-55 50-85 8-67 0-3150
1.2506 11.98 0-9709 0-05002 0-53 49-84 8.59 0-4893
1-6221 10-28 0-9091 0-09277 0-33 43-30 8-04 0-8608
1-9007 9-45 0-8772 0-1199 0-31 39-93 7-76 1-1394
Average - 0-9603 - 0-54 48-73 8-34 0.0111 -

c = 105-921 x 10-3; xo = 0.76133; m = -0-219426



APPENDIX 4

Tabulation of Functions

f( ( )h(12(1?) f(7)11(17)

0-02 0-924585 0-018492 0-000000 0-000000 0-000000
0-03 0-902454 0-027074 0-009133 0-008342 0-008242
0-04 0-882326 0-035293 0-018056 0-016303 0-015931
0-05 0-863482 0-043174 0.026784 0-023922 0-023127
0-06 0-845555 0-050733 0-035328 0-031223 0-029872
0-07 0-828329 0-057983 0-043697 0-038227 0-036196
0"08 0-811663 0-064933 0-051897 0-044950 0-042123
0.09 0-795459 0-071591 0-059932 0.051407 0-047673
0-10 0-779648 0-077965 0-067807 0-057609 0-052866
0-11 0-764178 0-084060 0-075526 0-063568 0-057715
0-12 0-749007 0-089881 0-083092 0.069292 0-062236
0-13 0-734106 0-095434 0-090507 0-074791 0.066442
0"14 0-719448 0-100723 0-097775 0-080073 0-070344
0-15 0-705013 0-105752 0-104897 0-085145 0-073954
0-16 0-690786 0-110526 0-111876 0-090016 0"077282
0-17 0-676752 0-115048 0-118713 0-094691 0-080339
0-18 0-662900 0-119322 0-125411 0-099178 0-083135
0-19 0-649220 0-123352 0-131972 0-103482 0-085679
0-20 0-635704 0-127141 0-138396 0.107609 0-087979
0-21 0-622347 0-130693 0-144686 0-111566 0-090045
0-22 0-609141 0-134011 0-150844 0-115358 0-091885
0-23 0-596082 0-137099 0-156870 0-118989 0-093507
0-24 0-583166 0-139960 0-162766 0-122466 0-094919
0-25 0-570390 0-142597 0-168533 0-125792 0-096130
0-26 0-557750 0-145015 0-174174 0-128974 0-097146
0-27 0-545245 0-147216 0-179689 0-132016 0-097975
0-28 0-532872 0-149204 0-185079 0-134921 0-098624
0-29 0-520630 0-150983 0-190347 0"137696 0-099100
0-30 0-508517 0-152555 0-195492 0-140344 0"099411
0-31 0-496532 0-153925 0-200518 0-142869 0-099563
0-32 0-484674 0-155096 0-205423 0-145276 0-099563
0-33 0-472942 0-156071 0-210211 0.147569 0.099418
0-34 0-461337 0-156855 0-214883 0.149751 0"099133
0-35 0-499858 0-157450 0-219439 0-151827 0-098716
0-36 0-438504 0-157861 0-223880 0-153800 0-098172
0-37 0-427276 0-158092 0-228209 0-155674 0-097508
0-38 0-416173 0-158146 0-232426 0.157452 0-096730
0-39 0-405197 0-158027 0-236533 0-159139 0.095842
0-40 0-394347 0-157739 0-240531 0-160737 0-094852
0-41 0-383623 0-157285 0-244420 0-162250 0-093765
0-42 0-373026 0-156671 0-248203 0-163681 0-092586
0-43 i 0-362557 0-155899 0-251881 0-165034 0-091321
0-44 0-352216 0-154975 0-255455 0-166311 0-089975
0-45 0-342003 0-153901 0-258926 0-167516 0088553
0-46 0-331920 0-152683 0-262295 0-168652 0-087061
0-47 i 0-321966 0-151324 0-265565 0-169721 0-085503
0-48 0-312144 0-149829 0-268735 0-170726 0-083884
0-49 0-302452 0-148202 0-271808 0.171670 0-082209
0-50 0.292893 0-146447 0-274785 0-172556 0-080483



APPENDIX 4--oniued

7f ()f(,)7 11(7)) 12()7)

0.51 0-283467" 0-144568 0-277666 0-173387 0-078709
0.52 0.274175 0-142571 0-280454 0-174164 0-076894
0.53 0-265017 0.140459 0-283150 0-174891 0-075040
0-54 0-255995 0-138237 0-285755 0-175570 0-073152
0-55 0.247108 0-135910 0-288271 0-176202 0-071234
0-56 0-238359 0-133481 0-290698 0-176792 0-069291
0-57 0-229748 0-130957 0-293038 0-177339 0-067325
0-58 0-221276 0.128340 0-295293 0-177848 0-065341
0-59 0-212943 0-125637 0-297464 0-178319 0-063343
0-60 0-204751 0-122851 0-299553 0-178756 0-061334
0-61 0-196700 0.119987 0-301560 0-179158 0-059317
0-62 0.188791 0-117051 0-303487 0-179530 0-057296
0-63 0-181025 0-114046 0.305336 0-179872 0-055274
0-64 0-173403 0-110978 0-307108 0-180186 0-053254
0-65 0-165926 0.107852 0.308805 0-180474 0-051239
0-66 0-158593 0.104672 0-310427 0-180737 0-049232
0-67 0-151407 0.101443 0-311977 0-180977 0-047235
0-68 0.144368 0-098170 0-313456 0-181196 0-045253
0-69 0-137476 0.094858 0-314865 0-181395 0-043286
0-70 0.130732 0-091512 0-316206 0-181574 0-041338
0-71 0-124137 0.088138 0-317480 0-181737 0-039411
0-72 0-117693 0-084739 0-318689 0-181883 0-037507
0-73 0.111398 0-081320 0-319834 0-182014 0-03562r)
0-74 0-105254 0-077888 0-320917 0-182132 0-033778
0-75 0-099262 0-074447 0-321940 0-182236 0-031956
0-76 0.093422 0-071001 0-322903 0- 182329 0-030166
0-77 0-087735 0-067556 0-323809 0-182411 0-028409
0-78 0-082201 0.064117 0.324658 0-182483 0-026687
0-79 0.076821 0.060689 0.325453 0-182546 0-025002
0-80 0-071595 0-057276 0.326195 0-182602 0-023354
0-81 0-066524 0-053885 0-326886 0-182649 0-021746
0-82 0.061608 0-050519 0-327526 0-182690 0-020178
0-83 0-056848 0-047184 0-328118 0-182725 0-018653
0-84 0-052244 0-043885 0-328864 0-182755 0-017171
0-85 0-047796 0.040627 0-329164 0-182780 0-015733
0-86 0-043505 0-037414 0-329620 0-182801 0-014340
0-87 0-039371 0-034253 0-330034 0-182818 0-012994
0-88 0-035394 0-031147 0-330408 0-182832 0-011695
0-89 0-031575 0-028102 0-330743 0-182843 0-010443
0.90 0-027914 0.025122 0-331040 0-182852 0-009241
0.91 0-024410 0-022213 0-331302 0-182859 0-008087
0-92 0.021065 0-019379 0-331529 0-182864 0-006984
0-93 0"017877 0-016626 0-331723 0-182868 1 0-005930
0-94 0-014848 0-013958 0-331887 0-182871 0-004928
0-95 0-011978 0-011379 0-322021 0-182872 0-003977
0-96 0.009266 0-008895 0-332127 0-182874 0-003077
0-97 0.006712 0.006510 0-332207 0-182874 0-002230
0.98 0-004316 0-004230 0-332262 0-182875 0-001434
0-99 0-002079 0-002058 0-332293 0-182875 0-000691
1-00 O-OOO00 OOO0 0-332304 0-182875 0-000000

A
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