
AD-AO99 4U7 ARMY INST FOR RESEARCH IN MANAGENENT INFORMATION AND -- ETC IG Q/2
ADA - A SUITAB4.E REPLACEMENT FOR COftO?(Iu
FEB 81 J S DAVISUNCLASSIFIED vs.

'III"."'IMENllNONEIon
MENlllllll
0000

I11 -" 12.8 112.

11111111.0

1111IL25 32""2

NANIN I AUAU 0i -IANJ Akt) 1% AA

q'

A' " _ta

DISTRIBUTION STATEMENT

Approved for public release. Distribution unlimited.

The views, opinions, and findings contained in this report are those
of the author and should not be construed as official Department of the
Army position.

This technical report has been reviewed and approved.

Clarence Giese, Director Joh R. Mitchell
U.S. Army Institute for Research Chief, Computer Science

In Management Information Division, U.S. Army
and Computer Science, U.S. Institute for Research
Army Computer Systems Command and Computer Science, U.S.

Army Computer Systems
Command

UnclassiLied
SECURITY CLASSIFICATION OF THIS PAGE (Muen Date EtrerO

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I.~R UMBER 2.-GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4.TIL (iSubtitle) .>YPE jF-L6*T &* PIOO COVERED

Ada -A Suitable Replacement For COBOL? F ..-
S. PERFORMING ORG. REPORT NUMBER

7. THOR(a) S. CONTRACT OR GRANT NUMBER(e)

John S. JDavis

S. PEROWUr ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

US Army Institute for Research in Management AREA & WORK UNIT NUMBERS

Information and Computer Science (ACSC-AT)
115 O'Keefe Bldg, G.I.T., Atlanta, GA 30332

11. CONTROLLING OFFICE NAME AND ADDRESS - BQR-4kV

i 24 Feb iso81
C113. NUMBER OF PAGES

9814. MONITORING AGENCY NAME & AOORESS(1I dilfeeet tram Controlling0fflece) IS. SECURITY CLASS. (of this 9eP8rt)

(Same as 9) rUnclassified
7iime -. 1.IaS.. DECLASSIFICATION DOWNGRADING

SCHEDULE

II. DISTRIBUTION STATEMENT (ol

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract nterod in Bock 20, If different lIce Report)

1. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree side It necesary md Identify by block number)

Programming language, High Order Language, Standardization.

20 ABSTRACT ("Cmontae m everse eb N ncesewtm and Identify by block nmber)

"The new Department of Defense standard programming language for embedded
computer systems, Ada, is evaluated as a replacement for COBOL. Ada appears
superior to COBOL in facilftating good software development and maintenance
practices. Yet Ada is more difficult to learn and does not provide as many
convenient built in features for data formatting and input/output. Adopting
Ada may reduce total life cycle cost, but converting from COBOL to Ada is not

recommended for the near future.T T,:=../r r I
DODT W3 ON OF I NOVA65 IO OAOLETI Unclassifid

SICIT LSIIAINCP H$PG WfP08trd

24 February 1981

Ada -- A Suitable Replacement for COBOL?

Acession 'ForNTIS GOA&I
DTIC TAB

justification___

Distrib lt.Ofn/
Av-e!13bility Codes ..._

!- 1Avl andlor
Dist "pecial

Major John S. Davis
Army Institute for Research in
Management Information and Computer Science
Grargia Institute of Technology
AIlanta, Georgia 30332

Table of Contents

DoD Standard Language and Hardware Projects

Rationale for Ada 1

Military Computer Family 5

Management Information Systems

MIS Defined 8

The COBOL Realm 10

Decision Factors and Research Approach 11

Ada vs COBOL

Ada/COBOL Design Goals 13

Overview of COBOL 18

Features Ada Provides Directly

Arithmetic .. 20

Records .. 24

Features Ada Emulates

MOVE ... 35

SORT41

Database Affiliation 44

Ada Advan' ges

Strong Typing 45

Abstraction 48

Reusable Code 65

Portability 71

Exception Handling 74

4~. ~ --- L

Syntax and Structure 78

Support Environment 81

Things Ada Does Not do Well

Numeric Edit 82

Input/Output 84"

Conclusions ... 90

References 92

eooooo ooe o eooo e eoo eoo oeeo e o oe oof

V

4i

Research Objective

The objective of this project is to determine the technical

feasibility of replacing COBOL with Ada within the Department of

Defense (DoD), and thus establishing Ada as the standard programming

language for management information systems (MIS). Motivation for

this study is the growing support of Ada, both in government and

the private sector, for a wide variety of applications, not just the

originally intended embedded computer software. There is a need

to rationally evaluate Ada for MIS. This will provide some basis for

MIS developers to welcome or reject future proposals to extend the

scope of the DoD Ada standardization decrees.

Rationale for Ada

Let us go down, and there confound their language,

that they may not understand one another's speech.

(the book of Genesis)

The Army, Navy and Air Force have independently developed or used an

assortment of programming languages, many of which are used by only

one service CGLAS793. This proliferation hinders sharing of products

and services. Also a problem is the widespread use of assembler

language [MART793. Assembler code is difficult (and therefore costly)

to understand, debug or modify. The difficulty to change assembler

software is significe-t because military requirements and environments

are particularly suuject to change, and necessary alterations to

-1- t

software can consume more resources than did the original development.

Assembler code is difficult to test, since algorithms are usually

obscured in a maze of microscopic detail. Therefore the testing

process is costly, and critical errors may survive and plague the

delivered system. Since assembler languages are usually unique for

each different machine, software is not portable. It is restricted in

application. Thus use of assembler contributes to software

proliferation, and the military is vulnerable to support problems

which could occur if the sole source of a machine goes out of business

or discontinues a product line. The manufacturer may be the only

source of assembler language support.

About half of Department of Defense software costs are attributed

to embedded computers, that is, computers which are themselves com-

ponents of a weapons system gBUXT803. This software often has

distinctive characteristics: the ability to continue to operate after

hardware or software faults, connection with unusual peripheral equip-

ment, monitoring of sensors, control of special displays, and the need

to respond to real time events &BUXT80. Assembler seems appropriate

In many applications where needed features do not exist in high order

languages (HOL), and therefore compiler generated code is inefficient.

In recent years hardware costs have been decreasing as software

costs have risen, and the run time inefficiencies of HOL have become

more tolerable. Particularly attractive to Department of Defense is

the potential increase in programmer productivity. Assuming it takes

about the same effort to produce one line of assembler code as one

line of HOL code, and if one line of HOL code produces 10 lines of

-2-!
r !

assembler code, great savings are possible during development and dur-

ing implementation of system changes 04ART79].

Department of Defense has taken a number of strong measures to

combat software proliferation. Realizing the increasing benefits of

HOL programming, to achieve a short term impact they issued Directive

5000.29, which required use of HOL unless it could be "demonstrated

that none of the approved high order languages are cost effective or

technically practical over the system life cycle" [GLAS79]. Shortly

afterward, Directive 5000.31 specified seven existing high order

languages as the only ones permitted for Department of Defense

systems: FORTRAN and COBOL (widely used); TACPOL (Army); CMS-2 and

SSPL (Navy); JOVIAL, J3 and J-73 (Air Force) CMART79g. In 1975 a High

Order Language Working Group (HOLWG) was commissioned to develop a

common HOL for Department of Defense [WHIT791.

The HOLWG was not christened impulsively. A 1977 study by MITRE

Corporation, based on extremely conservative assumptions, estimated

that a common language would save $110 million to $900 million during

1983 - 1999 [MART79]. Studies by the Defense Advanced Research

Projects Agency and by Decisions and Designs, Inc., based on more

realistic assumptions, predicted savings of $12 to $24 billion

[MAR79]. The initial HOLWG objective was to determine requirements

for a common language. A series of draft requirements documents were

developed and circulated among military departments, government

agencies, industry and academic institutions. As reactions to each

draft were evaluated, the product became more solid. The names of the

papers reflect this solidarity: STRAWMAN (1975), WOODENMAN, TINMAN,

-3- i

IRONMAN , STEELMAN (1978) JGLAS79]. The proposed new language was

named Ada, after Ada Augusta -- the world's first programmer CICHB793.

She worked for Charles Babbage during his development of the

Difference Engine and Analytical Engine circa 1829 (GLAS791.

After evaluating existing languages, the HOLWG found none

adequate to handle the requirements, but three were selected as can-

didate base languages: Pascal, PL/i and ALGOL 68. They did conclude

that it would be practical and entirely satisfactory to develop a

derivative of an existing language rather than an entirely new one.

In 1977 four contractors were selected to design the Ada language

using any one of the base languages. All chose Pascal. In April

1979, the design of Cii - Honeywell Bull was declared the winner

GLAS791. The Department of Defense has since sponsored Ada training

sessions for interested industry representatives, and the HOLWG has

considered their feedback in further refining Ada.

Certain to add momentum to the Ada program is the Army's award of

a contract in 1980 for development of an Ada compiler for the VAX

11/780. The compiler should be completed in 1982, tested and

certified by 1983 [LE18OB3. The HOLWG plans development of an Ada

Programning Support Environment, a set of integrated software tools

for Ada software development. When completed, the Amy will install

this environment on a VAX to establish a software development facility

[11. The target date for the complete facility is 1983 [LEI8OB].

Certain Ada features are directly related to the typical military

requirements described earlier:

- Facility for parallel tasks (initiation, termination, rendez-

vous) for real time systems CICH79B3.

-4-

- Exception handling, for establishing capability to survive har-

dware or software errors CICH79BI.

Other features facilitate system development and portability [ICHB79g:

- Separately compilable program units.

- User defined abstractions whose implementation details may

be "hidden".

Military Computer Family

Ada is oriented towards embedded computers. Yet DoD may in the

future pursue even greater standardization by establishing Ada as the

common HOL for all applications, including MIS. A related Army

project, Military Computer Family (MCF) may give added impetus to this

idea. The MCF proposes to attack hardware proliferation by fielding

an instruction-set-compatible family of battlefield computers,

designed to be efficient target machines for Ada compilers. An in

depth study of future Army requirements shows conclusively that two

computer models, a micro and a mini, will satisfy virtually all batt-

lefield applications in the 1980's (COMP80. Accepting the study

results, the MCF project proposes development of a micro and a "super

mini" model using 1984 technology for 1986 delivery CLEI8OB]. Hard-

ware specifications are based on forecasts of the 1984 state of the

art in order to postpone the technoloy lock-in as long as possible.

The microcomputer, dubbed the AN/UYK-41V1, is to satisfy the fol-

lowing constraints:

- Size: ContaUled on a 6" by 9" card (not including power sup-

ply).

-5-
p.

- Weight: Less than 12 ounces.

- Speed: 500,000 instructions per second.

- Store: 128K bytes.

- Cost: $5,000 in 1980 dollars.

- Reliability: 100,000 hours mean time between failures.

- Power: Less than 5 watts.

Though not required, it is quite possible that this micro might be

able to perform as a component of its big brother, the "super-mini"

AN/UYK-41V2.

The V2 specifications are listed below:

- Size: Contained in an air transport rack, 7" tall, 10" wide

and 13.5" deep (.5 cubic feet).

- Speed: 3,000,000 instructions per second.

- Store: 2 Megabytes.

- Cost: $75,000 in 1980 dollars.

- Reliability: 10,000 hours mean time between failures.

- Power: 100 watts.
4

The size of the V1 and V2 computers allows a wide range of

application among battlefield systems. The larger V2 is about the

same size as the ubiquitous Army FM radio (VRC-12, VRC-46) commonly

installed in jeeps, armored personnel carriers and tanks. The V1 is

even smaller than the standard Army manpack radio (PRC-77).

The Army will select up to four contractors to completely design

the MCF models by 1983. Recall that the inner workings of the com-

puter box are largely at the discretion of the manufacturer, so each

-6-

contractor may develop an independent design. Producers of the two

best designs will be given the go-ahead to develop prototypes by 1985.

After extensive testing, the winner will be selected for full scale

production beginning in 1985. First production models should appear

in 1986.

In order to transicion smoothly to the MCF, the Army will develop

a "software MCF" by 1983: an Ada compiler, MCF simulator and tactical

operating system on a commercial host computer. Therefore software

targeted for MCF models can be developed and tested as the computers

are being built CLEIB80]. Further information on the MCF project and

architecture of the MCF machines is contained in an earlier report

[DAVI80].

Implications of Ada/MCF for MIS

The characteristics of the MCF computers make them front runner

candidates for battlefield and other management information system

hardware. For example the MCF mini will be smaller and more powerful

than the van mounted DAS3 minicomputer being fielded in 1980 to sup-

port logistical MIS for maintenance units. MCF computers are logical

replacements for the DAS3 and for the aging IBM 360/30 machines serv-

ing Army divisions. Many Army activities are formulating plans for

increased automation of the battlefield, including new applications of

MIS using portable or mobile computers.

A recent Arm, policy memorandum requires that all future

automated battlefield systems use MCF hardware and Ada software

[ARMYB03. At this time it is not clear whether the policy applies to

-7-

management information systems which operate in whole or in part in

the battlefield environment. I see the handwriting on the wall. I

expect Ada to be used for future battlefield MIS.

Since embedded computers (and hence MCF) will be purchased in

record numbers during the next ten years, the inevitably rich, Ada-

oriented base of software development tools and application programs

will increase the attractiveness of using Ada for MIS. Future tac-

tical MIS will interface with other major components of a battlefield

automated system. A common language and support environment will

contribute to an integrated logistics concept with the potential for

considerable cost reduction.

What is a Management Information System?

Management information Systems (MIS) are designed to "aid

management in organizational planning, operation and development"

[ENCY761. There appears to be no widely accepted definition beyond

this general description.

Managers are, the name MIS implies, an important class of users

of the system. The information system helps them plan, make decisions

and control their organization. Features often found in MIS are

CENCY76]:

- a database representing the organization and its environment

- simulation capability, based on the database or a "corporate

model" derived from It

- decision support tools

- information summaries and analyses

- an information retrieval system.

The term MIS in this paper refers to the broadest possible

-8-

arN 0 m(am i a ~ um~--m n i -I

context; emphasis is on "information system" rather than on

"management." I believe this describes a meaningful class of systems

which have evolved from the original "ADP" systems.

When computers were first introduced, organizations employed them

as labor saving devices. Clerical functions were automated to reduce

administrative labor and cost. Routine, recurring functions were the

principal targets for automation (inventory, payroll, etc.). Usually

the automated system was a mirror image of the corresponding manual

system. Data was stored in master files, usually magnetic tape, and

processing consisted of having transactions update the master files.

Many MIS currently in use resemble the old fashioned ADP systems:

they are based on sequential files and periodic processes which

operate on them. Summary reports do help managers make decisions, but

such MIS support the activities of personnel throughout the

organization. A stock control system may interface with salesmen,

stock clerks, finance clerks and others -- it is not necessarily just

a management tool.

The trend in modern MIS, made possible by more prevalent random

access devices, is toward integrated database management systems.

This trend reflects the need to correlate information on all aspects

of an organization. Formerly data was fragmented among the master

files of the various MIS. It could not conveniently be accessed or

processed other than through the indiv'Jual MIS. Also reflected in

this trend is the requirement to respond to changes in managers'

needs. The summary reports of the old style MIS are frozen in content

and format. Revising Them requires a time consuming and expensive

reprogrammi ng effort.

-9-

Perhaps MIS, as used here, can be most concisely defined as

"systems which aid management and others in organizational planning

and operation."

Characteristics of MIS include:

- large volume of data (input, master files and output)

- relatively simple transactions on the data

- many routine manual processes are emulated or supported

- large, complex systems having numerous processes and interfaces

with many different users or other MIS.

The COBOL Realm

In this report COBOL refers to the language defined in "American

National Standard Programming Language COBOL," ANSI X3.23 0 1974

JANSI741. Though a new version may be released in 1980, the analysis

in this paper remains valid. Initially defined in 1959, COBOL is a

full twenty years older than Ada.

COBOL is designed to facilitate handling large volumes of data,

such that input/output is one of the most important aspects of a

typical program. Use of large files on external mass storage devices

is endemic. This is "business data processing," an application realm

where perhaps the most characteristic function is to process a

sequence of records, performing rudimentary computations on each and

putting the results into another set of records. Management Informa-

tion Systems (MIS) have this same flavor, sometimes with the addition

of statistical or decision making packages.

-10-

COBOL's age and popularity give it an enormous headstart over the

newcomer Ada. There are more programs written in COBOL than any other

language CSHAW78].

Application Environment

The COBOL application environment chosen for this analysis is

that of the U.S. Army Computer Systems Command, which develops stan-

dard Army management information systems for Army units and instal-

lations worldwide. Systems developed include personnel, logistics and

financial management systems bearing strong resemblance to their

counterparts in the business community. Thus, there is some

justification in the assumption that a representative environment

exists for COBOL programming in general.

Decision Factors

The decision whether to adopt a new standard language for a class

of applications is impacted by many considerations, which I group into

two categories:

- "steady state" factors (how suitable is the language for coding

new programs?)

-transition factors (how costly is the conversion to a new

language?)

The latter category includes reti dining of programmers and con-

version of existing software, unless it is to be maintained in the

original language for '.he duration of the life cycle. I suspect that

though they are significant and may be paramount, transition costs are

-11- .

similar for adoption of any new language. Retraining of programers

will of course be less if the new language does not require a major

reorientation of the programmer's approach.

Since the transition is the first issue to be conquered, the Com-

puter Systems Command commander is justifiably concerned about the

difficulty of a conversion to Ada. An analysis of this problem

including alternative approaches, estimation of dollar costs and

estimation of impact on service to the user community, is essential to

the making of an intelligent decision on the adoption of a new

language. Yet in the long run, steady state costs (or savings) will

overshadow start-up costs.

I concentrate here on examining the steady state, technical

issues, and defer until later a study of the transition problem. I do

take somewhat of a transition oriented approach in that I attempt to

view Ada through the eyes of a "COBOL-minded" programmer. Niklaus

Wirth CWIRT74] might object to this approach, since it seems to be

concerned with giving the COBOL programmer what he thinks he wants

rather than what he needs. Wirth would support Ada for MIS if it

proved to be a language with a sound (though initially foreign) set of

tools for solving the problems confronting today's COBOL programmer.

Research Approach

I select what I believe to be some of the key features of COBOL

and compare what Ada has to offer on a feature by feature basis. In

the discussion of each feature I explain why the feature is or is not

important. The Ada solutions to COBOL features are in many cases an

-12-

emulation of COBOL constructs, intended to be rather easy for a newly

converted COBOL programmer to grasp. There is no requirement for a

new language to provide parallel capabilities or to mimic constructs

of the language it is to replace. Probably most COBOL programmers,

after mastering Ada, would employ a new programming style in the

spirit of the new language. Criticism may be levelled at the idea of

considering COBOL at all; perhaps the characteristics of business data

processing should be the prime criterea, not the COBOL language. I

proceed without resolving that question, but make the assumption that

there is some merit in comparing against the time proven standard

bearer.

A word of caution is in order: the Ada code in the examples has

not been checked by a compiler, since there was none available at

press time. There is no claim to correctness. The examples merely

represent my best effort at interpreting the Ada reference manual [ADA

80].

Design Goals

In the introduction of the Ada manual [Ada 802, design goals are

grouped in three categories:

Reliability

Programming as a human activity

Efficiency.

The following subgoal, are spawned by program reliability:

Readability

English-like constructs

-13-

Avoidance of error-prone notation

Separate compilation of program units.

The COBOL 1974 standard [ANSI74] does not include design goals,

and I therefore assume that the 1968 goals are still valid. The first

two Ada reliability subgoals coincide with well known advantages of

COBOL [KREK79]. Readable, English-like notation has remained a

principal design goal since the 1968 COBOL standard. COBOL added

separate compilation in 1974.

Other goals in the 1968 COBOL standard are:

Expandability

Problem orientation (to data processing)

Machine independence.

The following chart facilitates a comparison:

Goal Ada COBOL

Reliability X

Readability X X

English-like X X

Error resistant notation X

Separate compilation X (provided)

Programing as a human

activity X

Efficiency X X

Expandability X

Problem Orientation X

Machine Independence X X

(Implicit)

Hoare disputes the goal of facilitating future expansion

[HOAR73]. Yet COBOL explicitly provides for expansion by its eleven

module structure and provision for implementation in 2 or 3 stages.

Thus COBOL is actually a family of languages under a common name

[KREK79). This situation is at odds with the goal of portability.

Ada, in contrast, discourages modifications. Revised Ironman

CIRON74] decrees, "There shall be no subsc* ow superset

implementations." To a large extent the success of ;''1 concept will

depend on the degree of enforcem-nt by DoD. The road may be bumpy,

because many other HOL's have over a period cf time developed into a

class of languages sharing the same name. Krekel cannot resist noting

the analogy of a single disease which encompasses a collection of sym-

ptoms (KREK79J.

The Ada Reference Manual (ADA 80] cites several subgoals based on

consideration of programming as a human activity:

- to develop as few concepts as necessary.

- to avoid excessive involutions of the few concepts.

- to develop language constructs which correspond to the

intuitive expectations of the programmer.

The first two subgoals resemble the ALGOL63 major objective of

"orthogonality", but the last may be unique to Ada. There is no

indication, though, of just how the programmer's intuitive expec-

tations will be met EKREK79].

The goals of sarl .y and ease of training are not claimed by Ada

but are worthy of mention. Safety refers to the ability to discover

syntax and other errors before they result in more serious problems.

-15-

Ada strong typing allows the compiler to determine data type com-

patibility, precluding serious and confusing run time errors. The

idea of "type" is an imposition of structure on data. A type

describes the set of values that objects of the type may take on, and

the set of operations that can be performed on them. "Strong typing"

is a characteristic of languages which rigidly enforce type rules. An

example of enforcement is precluding the assignment of a floating

point value to an integer variable, unless the floating point value is

first explicitly converted to a value of integer type.

Pascal, of which Ada is a derivative, embraced training as a

principal design goal. The idea was to produce a language "suitable

to teaching programming as a systematic discipline" CWIRT781. Pascal

appears to have accomplished this goal, since it is now commonplace in

the undergraduate curriculum. The jury for Ada is still in session,

but some of the pioneers have had some difficulty teaching Ada. The

most common complaints are:

- it's tough teaching a programming language which has no com-

piler

- Ada has so many features that it takes a long time to cover

them

- Many Ada concepts are foreign to COBOL/FORTRAN programmers,

e.g. packages, tasks, generics, information hiding, user defined

types and strong typing.

On the brighter side, most educators I have contacted report that

students are enthusiastic about Ada when they become aware of its

advantages as a design tool. Accordingly, the most successful

-16-
_______________*- - ~~---.- - - .

instructors have used a "give the big picture first" approach. For

example, LeBlanc at Georgia Institute of Technology introduces Ada via

a series of topics related to overall system design methodology:

program structure (packages), information hiding, abstract data types,

separate compilation, management of program development.

Both COBOL and Ada claim efficiency as a design goal, but without

elaboration on how to achieve it. The Ada concept was to examine

every proposed construct with regard to present implementation tech-

niques. Any construct with an unclear implementation or which

required "excessive" machine resources was rejected VKREK79].

Krekel criticizes Ada design goals on these issues CKREK79g:

1. The problem domain is unclear. Reading samples from the

Rationale for Ada [ICH79B] is the only way to understand the intended

application.

2. Tradeoffs between design goals are not noted in Ada reports,

e.g.

- conciseness of language definition vs. completeness and

understandability

- redundancy vs. providing only one construct for each

concept

- user convenience vs. efficiency.

3. No measures are provided to judge accomplishment of the

design goal.

DeMarco [DEMA802 using the term, "language purity" as a design

issue, criticizes Ada for extensions to Pascal which, though

reasonable, are not essential. For example:

-17-

- Ada built in type STRING (in Pascal you can define your own

such type)

- ASSERT verb (in Pascal, this feature could be user defined)

- ELSEIF (No big deal; the ELSE IF in Pascal does as well)

- The RAISE statement (a kind of Pascal alias for GO TO)

The conceptual language used by a programmer consists of the

formally defined programming language plus a collection of user

defined tools (extensions) expressed in that formal language. Ada

anticipates certain programmer needs and provides a number of tools

which are left to the programmer by Pascal. According to DeMarco,

anticipating programmer needs is almost impossible, so the spareness

of Pascal is a better approach. A lean language eases implementation,

training, and programming CDEMA8O.

Dijkstra in (DIJK78] issues a scathing, rhetorical indictment of

Ada design goals, claiming that the Department of Defense didn't know

"what it was asking for, and why." He sees Ada as a misguided attempt

to "improve a compromise"(Pascal) by insisting that Ada better accom-

plish conflicting design goals. He also criticizes the apparent

blurring of the distinction between the language and its

implementation. He fears that Pascal may turn out to be an

improvement over its successor -- Ada.

Overview of COBOL

At the highest level, a COBOL program consists of four divisions:

IDENTIFICATION, ENVIRONMENT, DATA and PROCEDURE. The IDENTIFICATION

Division identifies the program and its author. The ENVIRONMENT

-18-

• c . q m~m.- -
,

Division prescribes machine dependent characteristics. It must be

revised if the program is transferred to a new machine.

The DATA Division allows (and requires) the programmer to define

the format and logical structure of his files, records and variables.

These declarations are machine independent unless special machine

dependent data representations are needed for efficiency. For exam-

ple, COMPUTATIONAL representation for numeric items can take several

different forms, depending on the internal machine representation

desired by the programmer. Most data are defined as numeric or

character (text) format:

77 EMPLOYEENUMBER PICTURE 9999. Numeric format

77 EMPLOYEENAME PICTURE XXXX. Character format

Such data objects are considered by the programmer and the COBOL

language to be in numeric/character format wherever they appear. This

form of data object declaration helps establish easy to read formats

for record input/output. Thus the DATA Division contains declaration

of data objects and their types, but it does not allow type

declarations apart from data objects.

The PROCEDURE Division contains the executable statements which

are to be performed at execution time. This section resembles "the

program" in a language like FORTRAN or BASIC.

COBOL was designed to automate ri- al procedures characterized by

a series of small, well defined operations on data items. This is

probably the rationalp for the emphasis on COBOL readability at the

sentence level -- L.'_ step in a COBOL program can be described in a

near-English sentence, e. g.

-19-

ADD OVERTIME TO NORMALEARNINGS GIVING TOTALEARNINGS.

This does achieve a measure of readability, but many modern day

language experts would call it verbose. Today the emphasis in

language design is on simplicity and generality ("orthogonality").

COBOL English-like syntax has been accomplished largely through

liberal selection of reserved words, about 300 in all CANSI74]. The

"programming by selection from a menu" philosophy is resoundingly

underscored by the approved addition of 93 new reserved words to the

next revision of COBOL [COB080. Each is used in certain contexts to

produce a quite clear result. The problem with this is that elegance

and orthogonality are sacrificed -- t;1 is, there are numerous

special cases or exceptions to the rule. What works in one context

does not in another. There are also more rules to learn. Modern

theory extolls the importance of having the fewest possible features

so as to make the language easier to master.

Features Ada Implements Directly: Arithmetic
4,

The comparison of Ada and COBOL is organized in four categories:

COBOL features Ada provides directly, features Ada emulates, Ada

advantages, and things Ada does not do well. In the first category is

arithmetic.

Ada syntax does not provide a structure to compete with certain

COBOL English-like arithmetic statements, such as:

ADD OVERTIME TO REGULAREARNINGS GIVING TOTALEARNINGS.

-20-

L -- o

The Ada equivalent is simply the assignment statement:

TOTALEARNINGS := OVERTIME + REGULAR EARNINGS

I nave found no significant evidence to support or detract from the

importance of the COBOL approach. Since many programming languages

seem to satisfy users with the assignment statement, I conclude that

the Ada approach is satisfactory.

COBOL arithmetic may be accomplished most succinctly by the COM-

PUTE statement, e.g.

COMPUTE OVERTIMEEARNINGS = ((HOURS - 40.0) * 1.5) * PAYRATE.

The COMPUTE statement allows assignment of the value of an arbitrarily

complex expression to the variable on the left of the equals. Ada

provides the same capability with the assignment statement, e.g.

OVERTIMEEARNINGS := ((HOURS - 40.0) * 1.5) * PAYRATE;

I take note here of the clearer distinction in Ada notation between

assignment (:=) and boolean operator (=). COBOL uses "=" for both

purposes.

COBOL provides a ROUNDING option (an alternative to truncation)

and an ON SIZE ERROR option which provides a limited programmer

defined exception handling capability. For example:

COMPUTE AMOUNT ROUNDED = QUANTITY * PRICE ON SIZE ERROR PERFORM

OFERROR.

Ada can emulate this feature with user defined functions which allow

the following equivalrnt statement:

COMPUTE(AMOUNT,QUANTITY*PRICEROUNDED);

-21-

..-- o.

This is rather awkward and is not recommended. A more convenient Ada

solution is:

COMPUTEROUNDED(AMOUNT,QUANTITY * PRICE);

Ptter yet, perhaps is a two step approach:

AMOUNT := QUANTITY * PRICE;

ROUND(AMOUNT);

Or, one final variant:

AMOUNT := ROUND(QUANTITY *PRICE);

This last option is most in the spirit of Ada.

The implementation of Ada fixed point arithmetic through

assignment statements or programmer defined functions, as in the above

examples, requires a solution to a problem of types. Multiplication

and division of fixed point values produce a result of greater, but

undefined, accuracy. Thus the result has a different type than the .
operands. Explicit conversion to a user-defined fixed point type is

necessary. Two solutions are obvious. One approach is to use built

in type conversion functions associated with user defined types:

AMOUNT := AMOUNTTYPE(QUANTITY * PRICE);

Another idea (which is impractical in large programs) is to overload

the '*' and /' operators by programmer defined implementations which

would produce a result having the same type as the operands:

function *' (X,Y : AMOUNTTYPE) return AMOUNT-TYPE;

-22-

This provides the illusion of implicit type conversion, but functions

for '*' and '/' would have to be defined for every fixed point type in

the program. Alternatively, the problem could be solved by a generic

program unit (see the section on abstraction for an explanation of the

Ada package):

generic

type FIXED is delta 0;

package FIXEDPOINTOPN is

function *' (U,V : FIXED) return FIXED;

function '/ (U,V : FIXED) return FIXED;

end FIXEDPOINTOPN;

Given one declaration of '*' and '/' functfons for generic fixed

point types, the programmer must instantiate the functions for the

particular fixed point types used in the program:

PAYTYPEOPN is new FIXEDPOINTOPN(PAYTYPE);

TOTALCOSTTYPEOPN is new FIXED POINTOPN(TOTALCOSTTYPE);

Even now there are user defined operations only for operands of the

same type. Mixing different types in a multiplication or division

operation still requires an explicit type conversion, e.g.:

P : PAY TYPE;

T : TAXRATETYPF;

TAX :- PAYTYPE(T)*P;

-23-

The formerly presented method of explicit conversion would be

preferred by most programmers, since it contributes to readability and

simplicity.

The COBOL exception handling option ON SIZE ERROR is associated

with the statement generating the exception. Ada exception handling

facilities are more extensive and are discussed elsewhere. Since

exception handlers in Ada are associated with a program unit, there

can be one set of arithmetic exception handlers at the highest level.

Alternatively the programmer can include a handler in any program unit

which contains arithmetic statements.

Records

One of the most important, extensively used COBOL features is the

record and its associated operations, particularly the MOVE, READ and

WRITE. Records associated with files (and hence the READ and WRITE

operations) will be discussed later as part of the I/O features, but

for the moment the focus is on "working storage" records. Scalar

variables and records may be declared in the working storage section,

in analogous fashion to the declaration of variables and records in

Ada. COBOL has a fixed menu of data types which may not be extended

by the user. These are not types in the modern sense; they merely

allow a hierarchial structuring (of elementary items) which

corresponds to a character string. User defined types are not

allowed. Available COBOL types may be described by the following

diagram:

-24-

COBOL Types

Numeric Non-Numeric Index Recor Tableric

Alphanume I Alphabeti c

There is another important distinction from modern types: the

compiler does not prevent type violations. Run time checking is

necessary, and many checks are generated by the compiler. Yet COBOL

lacks features which would assist the programmer in doing the job.

Some type violations may escape both compile-tie and run-time checks.

For example, the declaration

77 EMPLOYEENUMBER PICTURE 9999.

does not prevent transferring 'DUMB', a non-numeric character string,

to EMPLOYEENUMBER al. run time. The programmer could insert his own

type checking statement to determine whether the transfer is legal,

-25-
4.

e.g.

IF EMPLOYEENUMBER IS NOT NUMERIC PERFORM TYPEERRROUTINE.

This paper is not intended to indict COBOL, so let us observe the

brighter side, that for the supported data types COBOL provides a con-

venient syntax for data definition.

In COBOL, records may be defined in hierarchial fashion, with

"group names" referring to a collection of subordinate elements. The

Ada record is quite similar. Examples:

COBOL

01 TIMECARD.

03 EMPLOYEEDATA.

05 EMPLOYEENO PICTURE 9(4).

05 EMPLOYEENAME PICTURE X(20).

03 NORMALEARNINGS PICTURE 999V99.

03 OVERTIME PICTURE 999V99.

"6

'

-26-t

Ada (using type definition and anonymous types)

type TIMECARDTYPE is

record

EMPLOYEE DATA : record

EMPLOYEENO : INTEGER range 0 .. 9999;

EMPLOYEENAME : STRING(1 .. 20);

end record;

NORMALEARNINGS : delta .01 range 0.0 .. 999.99;

OVERTIME : delta .01 range 0.0 999.99;

end record;

TIME-CARD : TIMECARDTYPE;

The above definition is remarkably similar to that of COBOL, but the

following declaration is more in the spirit of Ada, and it avoids

redundant anonymous type declarations.

I

-27-

Ada (using type definition - all types named)

type EMPLOYEENOTYPE is INTEGER range 0 .. 9999;

type EMPLOYEENAMETYPE is STRING(1 .. 20);

type EMPLOYEEDATATYPE is

record

EMPLOYEENO : EMPLOYEENOTYPE;

EMPLOYEENAME : EMPLOYEENAMETYPE;

end record;

type NORMALEARNINGSTYPE is delta .01 range 0.0 .. 999.99;

type TIMECARDTYPE is

record

EMPLOYEEDATA : EMPLOYEEDATATYPE;

NORMALEARNINGS : NORMALEARNINGSTYPE;

OVERTIME : NORMALEARNINGSTYPE;

end record;

TIMECARD : TIMECARDTYPE;

Use of named constants further enhances the Ada declaration by

increasing readability and expediting later changes to type

definitions. Example: $

-28-

- - - - - -.-- ~ -~ -- I-,

EMPLOYEENOMAXIMUM : constant INTEGER := 9999;

EMPLOYEENAME MAXLENGTH : constant INTEGER := 20;

NORMALEARNINGSMAXIMUM : constant :- 999.99;

type EMPLOYEENOTYPE is INTEGER range 0 .. EMPLOYEENOMAXIMUM;

type EMPLOYEENAME TYPE is STRING (1 .. EMPLOYEENAMEMAXIMUM);

type NORMALEARNINGSTYPE is delta .01 range 0.0 .. NORMALEARNINGSMAXIMUM;

The remainder of the declaration is the same as the previous example.

Notice the progressive approach available in Ada for type

declarations. More complicated types can be defined in terms of

constants and other previously defined types. The programmer may

easily change a type definition even if it has impact throughout the

program. For example, redeclaring EMPLOYEENAMEMAXLENGTH achieves

the desired change, even though numerous types and variables depend on

this item.

The Ada package may also be used to declare a data object.

Ada (using package)

package TIME-CARD is

EMPLOYEE DATA : record

EMPLOYEENO : INTEGER range 0 .. 9999;

EMPLOYEENAME : STRING (1 .. 20);

end record;

NORMALEARNINGS : delta .01 range 0.0 .. 999.99;

OVER TIME : delta .u1 range 0.0 .. 999.99;

end TIMECARD:

-29-
,, r i

Reference to COBOL and Ada record/package elements is similar as the

examples below point out. The Ada references are correct for all the

above example declarations.

COBOL Reference to Record Element

EMPLOYEENO of EMPLOYEEDATA of TIMECARD

(Note: If element names are unique the above may be abbreviated to:

EMPLOYEENO)

Ada Reference to Record/Package Element

TIMECARD.EMPLOYEEDATA.EMPLOYEENO

Note: The clause "use TIMECARD" allows a reduction in qualification:

EMPLOYEEDATA.EMPLOYEENO.

Further reduction is possible with "use TIMECARD.EMPLOYEEDATA"

which allows the same abbreviation as the COBOL example:

EMPLOYEENO

One disadvantage of the package as a data structure is that there is

no built in way to access or manipulate the data structure as a whole,

and there is no way to define more than one object of the same type.

Unlike the Ada package example and the COBOL record, the Ada type

definition does not establish a data object. Therefore it is not

meaningful (and is illegal in Ada) to use a type name in the role of a

variable. Instead, a type declaration creates the format of a data

object, allowing subsequent creation of objects of that particular

type (format).

-30-

Illegal use of type name

type EMPLOYEENOTYPE is INTEGER range 0 .. 9999;

EMPLOYEENOTYPE := 56; -- illegal --

An advantage of the type name is the ability to declare any number of

different data objects of each type. In a COBOL application requiring

numerous record definitions, this ability could be used as a valuable

shorthand, readability and error prevention feature. Record elements

intended to have the same type can be so declared by referring to the

appropriate type name. Consider the following example, where the

EMPLOYEENORMALEARNINGSTYPE is needed in several different record

types:

EMPLOYEENORMALEARNINGSTYPE is delta .01 range 0.0 .. 999.99;

type SPECIALEARNINGSTYPE is

record

EMPLOYEEBONUS : EMPLOYEENORMALEARNINGSTYPE;

end record;

type MONTHLYSTATISTICSTYPE is

record

EMPLOYEE-AVGSALARY : EMPLOYEENORMALEARNINGSTYPE;

end record;

This Ada feature greatly simplifies changes of record format,

-31- (t

particularly when one needs to alter a single record element type

which appears in numerous different records (this is a common situa-

tion in COBOL programs).

COBOL allows initialization of working storage records, a feature

often used to establish titles and labels:

COBOL Record With Initial Values

01 TIMECARDLISTTITLE.

03 FILLER PICTURE X(20) VALUE SPACES.

03 FILLER PICTURE X(15) VALUE 'EMPLOYEE NUMBER'.

03 FILLER PICTURE X(5) VALUE SPACES.

03 FILLER PICTURE X(13) VALUE 'EMPLOYEE NAME'.

03 FILLER PICTURE X(7) VALUE SPACES.

03 FILLER PICTURE X(15) VALUE 'NORMAL EARNINGS'.

03 FILLER PICTURE X(5) VALUE SPACES.

03 FILLER PICTURE X(17) VALUE 'OV"RTIME EARNINGS'.

Ada has a corresponding means of initializing package data objects and

establishing default initialization of data types:

-32-

Ada Data Type With Initial Values

Function SPACES(HOWMANY : INTEGER) return STRING;

type TIMECARD_LISTTITLETYPE is

record

FILLERI : STRING(1 .. 20) SPACES(20);

FILLER2 : STRING(1 .. 15) 'EMPLOYEE NUMBER';

FILLER3 : STRING(I .. 5) := SPACES(5);

FILLER4 : STRING(1 .. 13) 'EMPLOYEE NAME';

FILLER5 : STRING(1 .. 7) SPACES(7);

FILLER6 : STRING(1 .. 15) 'NORMAL EARNINGS';

FILLER7 : STRING(1 .. 5) SPACES(5);

FILLER8 : STRING(1 .. 17) := 'OVERTIME EARNINGS';

end record;

TIMECARDLISTTITLE : TIMECARDLISTTITLETYPE;

Notice the use in the above example of a programmer defined func-

tion to handle the built in COBOL literal SPACES. My convention in

this paper is not to define the inner workings of functions and

procedures so as not to distract the reader with details. COBOL has

several built in literals to simplify the programmer's coding job and

contribute to readability. The COBOL VALUE clause also allows I
initialization of variables in the data declaration to any constant

value. The Ada function is a much more powerful technique since it

allows similar benefits for any string of characters desired -- not V

just spaces. The only difference from COBOL literals appears to be

the need to specify the length of the string of characters required.

-33-

This is not significant, for the necessary number has already been

specified earlier in the statement. Use of the SPACES function

elsewhere in the Ada program, as in an assignment statement, requires

the programmer to be aware of the size of the string to which charac-

ters are being transferred.

Ada Package With Initial Values

package TIMECARDLISTTITLE is

FILLER1 : STRING (1 .. 20) := SPACES(20);

FILLER8 : STRING(1 .. 17) := 'OVERTIME EARNINGS';

end TIMECARDLISTTITLE;

The FILLER name is used in COBOL to designate an anonymous

variable, one which the programmer has no need to reference. It is

commonly used in the definition of record elements. Ada has no

corresponding reserved word, but its visibility rules provide a

similar convenience. COBOL needs the FILLER feature to avoid

unintentional naming conflicts, since with few exceptions all

variables are global. In Ada a record element name will not

accidently "hide" or conflict with another as it would in COBOL.

Example:

-34-

COBOL Naming Conflict

01 TIMECARDDETAILLINE.

03 EMPLOYEENAMEPICTURE X(20).

03 EMPLOYEE TOTAL EARNINGS PICTURE 999.99.

77 EMPLOYEE TOTAL EARNINGS PICTURE 99.99.

MOVE 25.00 TO EMPLOYEETOTALEARNINGS.

(Note: At this point in the program we have conflicting names

visible).

Ada programs consist of one or more modules. Identifiers declared

in a module are local to that module. The programmer is free to ignore

identifiers declared externally unless he needs to use them. When he

wishes to use "imported" names he can consciously avoid hiding them

with local redeclarations. This is a simplistic explanation of Ada

visibility (scope) rules (see [ADA 80]).

Features Ada Emulates: The COBOL MOVE

A 1980 AIRMICS Software Science project [GABR80 includes the

analysis of production COBOL programs using an automated COBOL

analyzer developed at Purdue University. One of the (not surprising)

findings is that the MOVE statement is ,ie of the most used. The MOVE

in COBOL does much of the job of the assignment statement in other

languages. MOVE is perhaps most frequently used to transfer contents

of records (either in their entirety or by components) to other

records. COBOL associates with MOVE an elaborate automatic type con-

version facility as indicated in the following table CANSI74]:

4.

m~m m--35-

Category of Receiving Data Item

Category of
Sending Data Alphabetic Edited Numeric Non-Integer
Item Alphabetic or Alphanumeric Numeric Edited

Alphabetic yes yes no

Alphanumeric

Alphanumeric yes yes no
Edited

Nfumeric no yes yes
Integer

Numeric no no yes
Non-Integer

Numeric no yes no
Edited

Ada is perhaps at the other extreme with regard to automatic type

conversion. This is no accident, because the technical requirements

for Ada specified CIRON79]: "There shall be no implicit conversions

between types." Differences in range, precision and scale are not

construed as differences in type, yet there is no implicit truncation

or rounding in integer and fixed point computations. Thus explicit

conversion is necessary to constrain the result of a fixed point mul-

tiply or divide to the same type as the operands.

A number of language design experts support the Ada approach, but

seasoned FORTRAN and COBOL programmers may cry in anguish over the

tedium of worrying about what they perceive are unimportant details

about data types. Though it seems rather autocratic, Wirth 1WIRT74]

advocates giving programers what they need to solve their problems,

-36-

not what they say they want, because many programmers would insist on

(perish the thought) typeless operands. Hoare [HOAR731 reinforces

Wirth's emphasis on the value of strong typing by advocating, "the

complete avoidance of any form of automatic type transfer, coercion,

or default convention."

Gannon and Horning [GANN75] preach the virtue of redundancy as In

type declarations. They demonstrate the great contribution to

readability, error detection and program reliability. The context of

each use of a data item can be checked by a compiler for agreement

with its declared type. Ability to declare restrictions of variables

to subranges of a parent type (as in Ada) allows the compiler to

optimize storage allocation and, more important, permits easy detec-

tion of violations at run time' which could otherwise be difficult

logic bugs.

Suppose a "COBOL to Ada convert" does not care what the language

design experts think. Suppose he insists on the next best thing to

automatic type conversion that Ada can offer. He should then consider
I

(extensively) overloading a programmer defined MOVE procedure. MOVE

could take the general form:

MOVE(SOURCENAME,DESTINATIONNAME);

Generic packages can be used to advantage iere, but a separate

instantiation will be necessary for each combination of operand types

(source and destination) which may occur in the program. A rather

tedious chore, this method will nonetheless make our COBOL diehard

happy. Let us consider an example implementation of a MOVE using

fixed point source and destination. Assume the following

declarations:

-37-

type NORMALEARNINGSTYPE is delta .01 range 0.0 .. 999.99;

type HIGHPRECISIONTYPE is delta .0001 range 0.0 .. 999.999;

NORMALEARNINGS : NORMALJARNINGSTYPE;

YEARTODATE-AVERAGE : HIGHPRECISIONTYPE;

Implementation of the move could take this form:

generic

type SOURCETYPE is delta);

type DESTINATION_TYPE is delta 0;

package FIXEDPOINTMOVE is

procedure MOVE(S : in SOURCETYPE, D : out DESTINATIONTYPE);

end;

package body FIXEDPOINTMOVE is

D := DESTINATIONTYPE(S);

end;

To instantiate, we use declarations like:

package MOVE1

is new FIXEDPOINTMOVE(SOURCETYPE = NORMALEARNINGSTYPE,

DESTINATION TYPE -) HIGH PRECISION TYPE);

package MOVE2

is new FIXEDPOINTMOVE(SOURCETYPE -) HIGH-PRECISIONTYPE,

DESTINATION-TYPE a) NORMALEARNINGSTYPE);

Now, finally, the programmer may use the MOVE procedure in either

direction and achieve the desired type conversion:

-38-

MOVE(NORMALEARNINGS , YEARTODATEAVERAGE);

MOVE(YEARTODATEAVERAGE , NORMALEARNINGS);

Even though multiple definitions of MOVE will exist, the compiler will

select the proper one by examining the types of the operands.

Consider the impracticality of this approach. To provide for all

possible moves to/from each type, the number of MOVE procedure in-

stantiations will be proportional to the square of the number of

data types. (100 data types =) about 10,000 MOVE instantiations!)

One could develop a utility program to scan an Ada program and

automatically generate appropriate MOVE instantiations to handle all

possibilities. A more reasonable alternative is programmer instan-

tiation of MOVE procedures on an "as necessary" basis.

An even better idea is to remain aware of operand types used in

the program and employ Ada built in type conversion functions. For

example the previous moves could be accomplished using just the fol-

lowing statements:

YEARTODATE AVERAGE := HIGHPRECISIONTYPE(NORMALEARNINGS);

NORMALEARNINGS := NORMALEARNINGSTYPE(YEARTODATEAVERAGE);

The COBOL "alphanumeric MOVE" can be handled in Ada in similar

Ifashion to the "fixed point MOVE" previously described. An instantia-

tion of an overloaded MOVE procedure would be necessary for each com-

bination of strings of various lengths. Built in type conversion

functions could also be used.

4

COBOL also allows MOVE of a numeric item to an alphanumeric item.

In Ada this corresponds to a move of an integer, fixed point or float-

ing point type to a string type. Built in type conversion will not

suffice. The best way to accomplish this MOVE seems to be the generic

package with multiple instantiations. Example:

type NORMALEARNINGSTYPE is delta .01 range 0.0 .. 999.gg;

type NORMALEARNINGSDISPLAY TYPE is STRING(1 .. 20);

NORMALEARNINGS : NORMALEARNINGS TYPE;

NORMALEARNINGSDISPLAY : NORMAL EARNINGS_DISPLAYTYPE;

We want to implement MOVE such that

MOVE(NORMALEARNINGS,NORMALEARNINGSDISPLAY)

will accomplish the fixed point to string conversion. The following

generic package could do the Job:

generic

type FIXTYPE is delta 0;

type STRINGOBJECTTYPE is STRING(NATURAL range 0); j.
procedure MOVEIT(FIXSOURCE: in FIXTYPE;

STRINGDESTINATION: in out STRING OBJECTTYPE) is

begin

STRING-DESTINATION :- FIXTYPE'IMAGE(FIX.SOURCE);

end MOVE-IT;

An appropriate instantiation In this case is procedure MOVE is

new MOVE IT(FIXTYPE -) NORMALEARNINGS TYPE,

STRINGOBJECTTYPE n) NORMALEARNINGS TYPE);

-40-

This is an appropriate time to observe what may already be obvious

-- that Ada packages and other constructs provide an explicitly coded

solution to built in COBOL features which are implicitly implemented

by the COBOL compiler. This Ada scheme introduces an extra degree of

source code complexity. The unfavorable impact can be minimized,

though, by the provision of a generous set of predefined, pretested,

precompiled Ada packages in the Ada library at an installation. Ada's

facilities for modular programming make this a reasonable approach.

The programmer need only be aware of the external interface of a pac-

kage. Details of the implementation are of no concern.

Sort Capability

Next to the record, the sort capability must be the most useful

feature for business data processing. Few programs indeed can do

without it. In COBOL the programmer may define one or more sort files

in the DATA Division. Example:

SD SORT-FILE.

01 SORT REC 1.

03 EMPLOYEE DATA S.

05 EMPLOYELNOS PICTURE 9(4).

05 EMPLOYEE NAMES PICTURE X(20).

03 NORMAL EARNINGS S PICTURE 999V99.

03 OVERTIMES PICTURE 999V99.

-41

-41-

01 SORT REC 2.

05 ACCOUNTNUMBERS PICTURE 9(6).

05 NAMES PICTURE X(20).

05 LOANAMOUNTS PICTURE 9(5)V99.

The above record layouts bear suspicious resemblance to those

presented later in the discussion of records. In fact they are the

same except for the "S" suffix on each identifier for readability,

This allows us to easily sort the files consisting of TIMECARD or

LOANRECORD records on any of the elements of the records. Example:

SORT SORT FILE ON ASCENDING KEY ACCOUNTNUMBERS NAMES

USING LOANMASTERFILE

GIVING NEWMASTERFILE.

This simple command does a big Job, including opening the source and

target files, reading the source file, performing the specified sort,

and storing the result in the target file.

How shall Ada compete with the powerful SORT verb? The package

comes to the rescue. Let us heed modern language design theory which

recommends encapsulating data structures and the operations defined on

those structures. We shall resurrect the previously defined package

which included a definition of the LOAN RECORD TYPE and add to it a

procedure to sort files containing records of that type.

-42-

package LOANMASTERFILEPACKAGE is

type LOAN RECORDTYPE is

record

ACCOUNTNUMBER- range 0 .. 999999;

NAME : STRING(1 .. 20);

LOANAMOUNT : delta .01 range 0.0 .. 99999.99;

end record;

type UPDOWNTYPE is (ASCENDING, DESCENDING);

LOANRECORD : LOANRECORDTYPE;

procedure WRITE (RECORD : in LOANRECORDTYPE);

procedure READ(RECORD : out LOANRECORDTYPE);

procedure SORT(INPUTFILE : in FILENAMETYPE;

OUTPUTFILE : out FILENAMETYPE;

UPDOWN : in UPDOWNTYPE;

ACCOUNTNUMBERSORT PRI : SORTORDER : 1;

NAMESORTPRI : SORTORDER := 2;

LOANAMOUNT.SORTPRI : SORTORDER =3);

end LOAN MASTER FILE PACKAGE;

Below is a sample use of the package:

SORT(INPUT FILE =) LOANTEMPFILE,

OUTPUTFILE -)LOANSORTFILE,

UPDOWN a) ASCENDING,

ACCOUNTNUMBERSORTPRI -) 2,

NAME SORTPRI a) 1);

Notice that in Ada not all procedure parameters have to be provided in

-43-

the call; default values will be used for those omitted. The above

accomplishes a sort of the LOANTEMPFILE using the ACCOUNTNUMBER

element as the key. This is not a particularly elegant solution --

there must be something much better -- but it does come close to the

power of the COBOL SORT. Except for the package body (which includes

details of the SORT procedure) the programmer does not have much more

work to do than in COBOL to "set up" the SORT procedure for use. The

SORT procedure call is almost as convenient to use as the COBOL ver-

sion and is nearly as readable. The most awkward part of the solution

presented here is the need to assign "priority numbers" to the record

elements instead of merely listing the sort key and defining ascending

or descending priority. But surely a clever Ada programmer can

improve on this solution.

Database Considerations

All major existing standard Army MIS are based on sequential

files, based on the magnetic tape storage medium, but USACSC is

committed to incorporating DBMS technology in new systems and major

rewrites. New systems will take better advantage of random access

storage devices. An ongoing large scale redesign of the Standard

Army Financial System will be the first USACSC attempt at incor-

porating a DBMS in a large MIS.

An attractive benefit of COBOL is the existence of a generous

collection of COBOL oriented DBMS and database development tools. The

Data Base Task Group of the Conference on Data Systems Languages has

developed a data definition language (DDL) and a data manipulation

language (DML) which are compatible with COBOL. Popular existing

COBOL-oriented DBMS include IMS, TOTAL, SVS200, IDMS, ADABAS and

-44-

. - -

OMS-1100. There are a number of automated tools which help develop

schemas and sub schemas. Many produce COBOL Data Division code.

In time there will be DBMS for Ada. One ongoing effort to

develop an Ada oriented DBMS is that of Computer Corporation of

America, sponsored by DoD and the Navy CPOTT80]. Called ADAPLEX, it

provides a set of database commands to be embedded in Ada. The

database facilities will be designed as Ada packages. ADAPLEX should

be available in the mid 1980's. Existing COBOL-oriented DBMS and

tools can be adapted to Ada in a straightforward manner.

Ada Advantages: Strong Typing

According to Gannon CGANN76] the aim of reliable programming is

to reduce the number of errors in delivered software. This goal may

be achieved by preventing programmer errors or by increasing the per-

centage of errors which are detected and corrected before the final

product is complete. Strong typing, an Ada design goal, can help in

both departments.

A data type determines what operations are permitted on operands A
of that type. The two biggest advantages of data types are abstrac-

tion and authentication CMORR73]. A data type hides the implementa-

tion details for objects of that type, so a programmer can (and must)

deal with an abstraction which facilitates solving the problem at

hand. The programmer can deal with objects like "stack", "matrix", or

"color" rather than collections of machine memory words or bit pat-

terns within words. Authentication, often called type checking,

insures that invalid operations cannot be performed CGANN76].

For example, authentication will prevent arithmetic on boolean

-45-

or string values. Authentication may be approached several ways in a

programming language: static type checking, dynamic type checking, or

no type checking.

Ada emphasizes static checking, which means that a data type is

permanently associated with a variable when it is declared, and that

operations are checked for validity at compile time. Dynamically

typed languages allow the type of a variable to vary during program

execution. Generally the variable type is defined as the type of the

last value assigned to the variable. Typeless languages consider each

operand as a bit pattern which is assumed to represent a value of the

type that the operator requires. Assembler languages are usually

typeless.

COBOL provides for declarations of variables but allows their

types to vary, in many cases, through assignment or automatic type

conversion. COBOL seems to be a cross between dynamically typed and

typeless, but is probably best characterized as dynamic, since the few

type checks that are made are deferred until run time.

Programmers who favor dynamically typed languages maintain that

they are flexible to use and easy to implement, but they overlook a

serious problem. Type violations (operators having operands of the

wrong type) may be checked only at run time. Run time checks tend to

slow execution. Worse, a run time check only detects errors in code

actually executed, so a type violation in a piece of code not exer-

cised during testing will survive to later plague the final product

[GANN781.

-46-

Advocates of typeless languages often hail their allowing the

programmer to take maximum advantage of the characteristics of the

underlying machine CWIRT741. Wirth says that the most prevalent

programming trick is to pack several different kinds of data into a

single machine word. He points out that this objective can more

elegantly be accomplished in a statically typed language (such as Ada]

using a record structure.

The system language for Project SUE [CLAR73] is a good example of

the value of type checking in operating system design: type checking

was the most valuable logic error prevention aid in the project.

Static typing is effective in error prevention. The declaration

of data types is redundant, since the implied type of an operand may

be determined from the context. This redundancy is advantageous,

though, because it allows a compiler to check each use of an operand

to insure that the operation is defined for the declared operand type.

Gannon conducted experiments and reached the conclusion that

statically typed languages with explicit conversion provide early and

reliable detection of errors CGANN76). He observed 25 experienced

programers each solving several small but complex programs. The two

programming languages used in the experiment provided static typing

for some data types and dynamic typing for others. This was clearly

documented in the language manuals. Occurrences of errors were logged

for each run. Persistence of errors of a certain type was calculated

as the number of occurrences divided by the number of errors of that

type. During 815 program runs, 3937 occurrences of 1248 errors were

recorded. 405 occurrences of 116 errors were caused by operands with

-47-

incorrect data types. 329 occurrences (of 104 errors) could have been

precluded by compile time (static) checking.

Even in typed languages there remains the alternative of explicit

or implicit type conversion, COBOL embellishes the latter. and this

does make programing faster, since little attention need be given to

type compatibility. But Hoare cites several disadvantages of implicit

conversion:

- Errors are often masked by "nearly" correct results

- Run time overhead is a significant penalty

- Conversion rules complicate the language definition.

Certainly COBOL is guilty of the third disadvantage. For proof, take

a look at the large table of con-ersion rules presented earlier.

Data Abstraction

Classical linguistic theory has established that the kind of

language we use affects the way we think about solving problems

[DILL77]. For example, a FORTRAN programmer probably seldom thinks of

using a recursive procedure or a linked list, but these are everyday

tools of the LISP programmer IWULF803.

Whether during development of a large programming project or dur-

ing the maintenance phase, the most important factor affecting the

difficulty of getting the job done is readability of the code. Ease

of writing is not so important CWULF8OI. To understand a piece of a

program one must first understand what the program is to do, and most

programming languages tend to emphasize how a problem was solved

rather than what the program was supposed to do. Thus it is easier to

-48-

understand a queuing operation when it is defined as a separate,

abstract operation than to determine that a sequence of statements

modifying arrays happens to implement a queuing operation CWULF8O].

A programming language serves three purposes [WULF8OI: a design

tool, a vehicle for human communication, and a means of instructing a

computer. The first two purposes are the most significant, since they

relate most strongly to possible reduction of costs in the maintenance

phase. Over half the total cost of software development is often

attributable to maintenance. As we shall see, data abstraction

facilities are very helpful in improving design procedures and human

communication.

The structured programing approach was adopted by USACSC in the

1970's in an effort to increase reliability of systems and reduce

development and (particularly) maintenance costs CMITC8O2. The struc-

tured programing concept includes a disciplined approach to system

design, a management scheme and a methodology for programming

[CARR78]. "Top down development" is a core philosophy. Systems are

to be conceived of and described initially as a set of high level V
control modules and functional modules. As the design phase

continues, one procedes to the detailed design of lower level func-

tions. There appears to be no conceptual difference between this and

Wirth's "stepwlse refinement" concept CWIRT74]. The goal is to

emphasize overall design by postponing concern over details of

implementation. Structured programming, then, should take advantage

of programming language features related to Wulf's first two purposes:

a design tool and vehicle for human communication.

-49-

USACSC has a heavy investment in the structured programming

approach (CARR783:

- defining the theory and concept (1974-75)

- determining how to apply the technology in USACSC (1975-76)

- actual conversion to the approach (1976-77).

The Division Logistics System was the first major application of

structured programming, and the use of this technology was deemed a

success by most managers and programmers CCARR781.

In the Procedure Division COBOL provides facilities for structure

of text and of control. Text may be structured by concatenation of

sentences into paragraphs or paragraphs into sections. Control struc-

tures include CJACK761:

- PERFORM can execute a paragraph or section which is not "in

line"

- PERFORM can provide iteration (While/Do/For)

- GO TO provides transfer to the start of a paragraph or section

- GO TO DEPENDING ON gives a multiway branch.

The above features are collectively inadequate. Designers of

COBOL, like those of most older programming languages, did not

consider what design methodology would be used to write programs. As

a result COBOL provides few aids and some hindrances to designing

large systems (JACK76]. For example, all variable names are global;

there is no way to restrict the use of a variable to a particular

procedure [JACK76]. No variable is safe from access or alteration by

instructions in any part of a program. In a large program this can

create the same sort of mystery that often confronts users of FORTRAN

COMMON. The situation is particularly troublesome to those attempting

to use library procedures.

-50-

... . .-..... .

Certainly programming language data abstraction facilities (such

as Ada provides) make the top down approach easier to implement.

Indeed they provide significant advantages in the most important

aspects of program development: decomposition, documentation and

modification CLEBL80I. LeBlanc uses the term "data abstraction" in a

broad sense which includes procedural abstraction as well. The most

important step in program development is dividing the problem into

smaller problems which are easy to understand and program. There are

many ways to slice a pie, but an effective decomposition of a program

requires:

- a natural, "meaningful" partitioning

- well defined interfaces between units

- hiding the details of the units from one another.

The natural partitioning depends on the skill of an experienced

analyst, but languages which require formal definition of abstractions

help fulfill the other two requirements.

The Ada package is the primary building block of Ada programs.

It encapsulates data with the subprograms which operate on that data,

thus specifying a collection of logically related computational

resources. A package is normally stated in two parts: a package

specification and a package body. The specification is the descrip-

tion of what the package is supposed to do. It may be considered a

window through which the package is to be viewed. The Ada specifica-

tion has all the information needed to use the facilities of the

abstraction, and since it is the only way to access the abstraction

-51-

.

the details are hidden. Consider the following example from CBARN80:

package STACK Is --specification

procedure PUSH(X:REAL);

function POP return REAL;

end;

package body STACK is --body

MAX:constant := 100;

S:array(1..MAX of REAL;

PTR:INTEGER range O..MAX;

procedure PUSH(X:REAL) is

begin

PTR PTR + 1;

S(PTR) := X;

end PUSH;

function POP return REAL is

begin

PTR := PTR - 1;

return S(PTR + 1);

end POP;

Though stacks are not often used in MIS programs, the example

illustrates many key features of the Ada package. Notice the separa-

tion of the specification and body. If this package body is precom-

piled and only the source code for the specification is available,

then users of the package may employ the procedures PUSH and POP but

they need not know about, and cannot access, details of the stack

implementation.

-52-

In many cases it is useful to provide limited access to a data

structure. The Ada private type declaration establishes a type such

that objects of this type have only the following operations defined

on them outside the package in which the objects are declared:

assignment, "=1, and "/=". The most restrictive access is provided by

a declaration of an object of a limited private type. In this case,

only the operations explicitly provided by the programmer may be

applied to the object outside the package in which it is declared.

The following adaptation of an example from the Ada Reference Manual

is a good illustration:

package 10 PACKAGE is

type FILENAME is limited private;

procedure OPEN(F: in out FILENAME);

procedure CLOSE(F:in out FILENAME);

procedure READ(F: in FILENAME; ITEM: out INTEGER);

procedure WRITE(F: in FILENAME; ITEM: in INTEGER);

private

type FILENAME is INTEGER := 0;

end I_0_PACKAGE;

package body 1_PACKAGE is

LIMIT : constant :- 200;

type FILEDESCRIPTOR is record ...end record;

DIRECTORY : array(1..LIMIT) of FILEDESCRIPTOR;

procedure OPEN(F : in out FILENAME) is ... end;

-53-

procedure CLOSE(F : in out FILENAME) is ... end;

procedure READ(F : in FILENAME;ITEM: out INTEGER) is ... end;

procedure WRITE(F : in FILE.NAME;ITEM: in INTEGER) is ... end;

begin

end 1_0PACKAGE;

Given the above package, the programmer can declare objects of

type FILENAME and can get a value for an object of this type by using

the operation OPEN. The operations CLOSE, READ and WRITE are also

available.

AFILE : FILENAME; --establishes data object

X : INTEGER;

OPEN(AFILE); --gives A FILE a value and opens the

--file having this value

The programmer cannot access, or take advantage of knowing, the

details of the implementation of FILENAME. Therefore the package

body is safe from tampering or abuse. Suppose a programmer found out

that FILENAME was implemented as an integer. He or she then might

attempt the following statements, all of which are illegal and would

be flagged by the Ada compiler:

A FILE : FILENAME :- 0; --assignment of an initial value
--is not an operation defined
--for type FILE NAME

A FILE :- 3; --assignment nof available

A FILE :- A FILE + 1; --assignment, addition not available

IF BFILE) AFILE then ... --boolean operations not available

The above examples show how package implementation details are

-54-

hidden from the outside world and are safe from intentional or

accidental tampering, particularly clever programming tricks, which

lead to insidious errors and portability problems. Perhaps "hiding"

Is a poor choice to describe this phenomena, since some software

project managers believe some of their biggest problems spring from

information hidden from them by their subordinates. To them,

"information protection" would have a better connotation.

The package body implements the package specification. The two

parts may be separately compiled and text of the package specification

and body need not be contiguous.

Documentation should be a continuous process during development

and not a separate phase or afterthought. Leblanc notes the important

contribution of language abstraction facilities to the "development of

well structured (self documenting) programs using stepwise refinement"

CLEBL8OI. This is the top down approach, which calls for initially

defining high level abstractions for major functions. The process of
4

implementing these abstractions results in the conception of more

lower level abstractions, and the process continues until it is

reasonable to implement the abstractions using built in language

features or to take advantage of existing library abstractions

CLEBL80.

Using Ada, a programmer can think and write initially in terms of

package specifications in order to sketch a solution to a problem.

The details of implementation (that is, the package bodies) may be

deferred.

Names cdn be chosen freely in each packaqe. For example there

need be no programmer concern for using INSERT as a procedure name,

p.-

even if it has been used before as a procedure name. Even if two

procedures with the same name are active (visible) at some point in a

program there is no conflict as long as the procedure parameter types

are distinct, as in the following case [ICHB80]:

procedure INSERT(E:ELEMENT);

procedure INSERT(E:ITEM);

In the rare event that parameter types are identical, then qualifica-

tion or the RENAMES option can resolve naming conflicts:

procedure INSERTQUEUE(E:ITEM) renames QUEUE.INSERT;

procedure INSERTSTACK(E:ITEM) renames STACK.INSERT;

There is no aliasing problem here as there is with the COBOL RENAMES,

for the original (conflicting) names are considered invalid and

illegal. In COBOL both the original and the new name can refer to the

same data.

All software maintenance actions (fixes, enhancements) require a

program to be changed. The ease of modification is directly related

to the ability to localize the effects of the change !LEBL8O3. The
I

encapsulization of an abstraction such as the Ada package greatly

assists in this localization. The formal definition of the abstrac-

tion (the Ada package specification) logically separates the abstrac-

tion implementation from other program units which use it. If the

implementation is wrong, and must be changed to comply with its

specification, the programmer may amend it while basking in the con-

fidence that he is causing no unexpected side effects outside the

abstraction. If the specification must be changed, then so must its

-56-

t -

implementation, and all units which use this abstraction may need

alteration. But there will be fewer changes required than there would

if other units accessed the inner workings of the abstraction

(LEBL80].

Most programmers are well aware of the advantages of procedures

with parameters. They allow the same section of code to be used to

process more than one set of data. Parameterizing abstractions

extends the application in like manner. One well understood, debug-

ged, general purpose abstraction can be established as several

different instances by varying its parameters [LEBL80]. This requires

less code and less mental effort than creation of numerous special

case abstractions. Ada generic packages provide translation time

parameterization using a general package definition. Consider the

following generic package, which is a generalized version of the stack

package presented earlier CBARN80:

i

-57- I

.w

57&

generic

MAX:INTEGER;

type ELEM is private;

package STACK is

procedure PUSH(X:ELEM);

function POP return ELEM;

end;

package body STACK is

S:array(1..MAX) of ELEM;

end STACK;

A particular instance of a stack is declared by a "generic

instantiation" which provides actual parameters. Example:

decl are

package REALSTACK is new STACK(100,REAL);

use REAL-STACK; --allows shorthand reference

--to PUSH instead of REALSTACK.PUSH
begin

PUSH(X);

X :- POP(;

end;

Both the size of the stack and the type of elements contained in the

stack are parameters, so this piece of code may be instantiated to

satisfy the need for stacks of various sizes and elements. The fol-

lowing code takes advantage of the same generic package STACK to

create a stack of 50 records:

-58-

i.

___- .-- ---..-- ----.--- ---- ---

type EMPLOYEERECTYPE is

record

end record;

EMPLOYEE : EMPLOYEERECTYPE;

package EMPLOYEESTACK is new STACK(50,EMPLOYEE.RECTYPE);

Any number of instantiations of the generic package may be active at

the same time. That is, we can use REALSTACK.PUSH(X) to insert a

real value into the REALSTACK and EMPLOYEESTACK.PUSH(EMPLOYEE) to

insert a record in the EMPLOYEE stack.

Separate Compilation

The ability to separately compile modules further increases the

benefit of data abstraction. In particular it can reduce costs of

program modification (LEBL8O2. LeBlanc points out three relevant

aspects of compilation cost saving. First, recompiling only affected

modules instead of the entire program saves programmer time and com-

puter time. Second, separate compilation facilitates providing a

library of reusable code. Third, perhaps the most important cost of

"non-separate" compilation is indirect. Using a language which does

not facilitate separate compilation conditions the programmer to think

of a program as one big chunk rather than a collection of separate

units which work in harmony during execution. This tends to foster

the bad habit, during modification and new design, of writing a single

program to solve the whole problem.

The CALL statement was added to COBOL in 1974 to provide separate

-59-

L

compilation of modules and to achieve the effect of a subroutine with

parameters. Each separately compiled module must be a complete

program with all 4 divisions. Data items which are to be transferred

between two compilation units are listed in a USING clause in each

unit. Parameters are passed by reference; that Is, any reference to a

parameter name in the called module actually accesses the correspond-

ing parameter name in the calling module. Recursive calls to a module

are not permitted. Here is a typical example, from [TRIA75]:

Calling Module Called Module

IDENTIFICATION DIVISION. IDENTIFICATION DIVISION
PROGRAM ID. CUST. PROGRAM ID. CHECKDIG.

DATA DIVISION. DATA DIVISION.

WORKING STORAGE SECTION. WORKINGSTORAGE SECTION.
77 CUSf-NO PIC X(1O).
77 CHAR? PIC 99.

LINKAGE SECTION.
77 CHARS PIC 99.
77 CODE NO PIC 9(10).

PROCEDURE DIVISION. PROCEDUAE DIVISION.

CALL "CHECKDIG" USING CODE NO CHARS.

USING CUSTNO CHARS....

In the above example, whenever the data item CODENO is used in the

called module, the variable CUST NO in the calling module is accessed.

Ada provides more flexibility. A compilation unit can consist of

a subprogram declaration or body, a package specification or body, or

a generic declaration. Parameters are passed by value, and they may

be specified in procedures as "in" or "out" to indicate the direction

of data transfer. Recursive calls to a compilation unit are permit-

ted. Ada separate compilation provides the same degree of type check-

ing across compilation units as within units. Relationships between

-60-

units are easily established using WITH clauses. Version control will

check obsolescence and facilitate top down development [ICHB80.

The Ada package specification and package body are maintained

separately by the library facility, and a program which uses a package

depends only on the specification. The body can be revised and recom-

piled, provided it continues to implement the specification, without

changing the specification.

Top down design depends on extensive use of modules and sub-

modules. In Ada one can easily specify the existence of submodules

while delaying the details of implementation and the compilation of

the submodule until later. Revisiting the stack provides a simple

example. A good top down programmer might initially define the

overall structure of STACK with the following package body CBARN80]

which declares separate subunits for the operations PUSH and POP:

package body STACK is

MAX:constant := 100;

S:array(l..MAX) of REAL;

PTR:INTEGER range O..MAX;

procedure PUSH(X:REAL) is separate;

function POP return REAL is separate;

begin
PTR := 0;

end STACK;

The separately compiled procedure for PUSH would look something like

this:

-61-,

-.

separate(STACK)

procedure PUSH(X:REAL) is

begin

PTR := PTR + 1;

S(PTR) := X;

end PUSH;

Program Design Language

Ada abstraction capabilities may make it a good choice for a

program design language (PDL), even if the ultimate program is coded

in another language. When Ada compilers are available it will seldom

be necessary to code in another language. There seems to be growing

support for the use of Ada as a PDL. The Air Force has selected Ada

as the best "redesign language" to convert a large MIS to run on new

hardware (FILIBO]. IBM Federal Systems Division intends to use an

annotated Ada for a PDL for all new software development, and to

eventually use Ada for the programming as well [WAR 801. IBM likes

Ada support for design by stepwlse refinement and for separating

specification from design. TRW believes Ada will help make software

usable in more than one project (the reusable code idea) [HART803.

They are investigating use of Ada as a PDL. The Army Center for Tac-

tical Computer Systems has two ongoing software projects for which Ada

will be the PDL and coding language CKERN80].

User Defined Types

A splendid example of the utility of a user defined enumeration

type in handling control flow is presented in [ATKI78]. The situation

-62-

is a common one. You wish to search an array for a certain item, but

you are not certain whether or not the item is in the array. Let me

first suggest a COBOL solution:

01 TABLE.

05 TABLEA OCCURS 100 TIMES,

PICTURE ...

77 END OF TABLE PIC 999 VALUE 100.

77 TO END OF TABLE PIC 999.

77 INDEX PIC 999.

MOVE 1 TO INDEX.

PERFORM SEARCHLOOP UNTIL INDEX) ENDOFTABLE

OR TABLEA (INDEX) = ITEM

SEARCHLOOP.

ADD 1 TO INDEX.

CHECKSTATE.

IF INDEX) ENDOFTABLE THEN ... ITEM ABSENT

ELSE ... ITEM FOUND.

In this search there are three states of interest:

- I have not yet located the item, but I am still searching.

- I found it.

- I have searched the whole array and the item is not in it.

This observation causes us to think of using an enumeration variable

-63-

which can take as values the three states. Notice the declaration and

use of the variable SEARCHSTATE in the following Ada solution, a

modification of the Pascal program in [ATKI78):

ENDOFTABLE : constant :- 100; -- size of array

type INDEXRANGE is range 1 .. ENDOFTABLE;

type SEARCHSTATE is (SEARCHING, ITEMFOUND, ITEMABSENT);

TABLE array(INDEXRANGE) of ITEM;

HERE INDEXRANGE;

OUTCOME : SEARCHSTATE;

HERE := 1;

OUTCOME := SEARCHING;

loop

if TABLE[HERE] = ITEMWANTED then OUTCOME := ITEMFOUND;

elsif HERE ENDOFTABLE then OUTCOME : ITEMABSENT;

else HERE INDEXRANGE'succ(HERE);

exit when OUTCOME * SEARCHING;

end loop;

case OUTCOME is

when ITEMFOUND 4

when ITEMABSENT 4 ...

end case;

As Atkinson points out, the Ada program is better for several

reasons CATK1781:

- the purpose of the program is more evident

-64-

- the program can easily be extended to handle other than the

three simple cases

- after exit from the loop it is easy to determine "what state

you're in".

A similar approach can be used in COBOL, because one can use a string

variable to simulate an enumeration variable, but user defined

enumeration types are a more natural and more efficiently implemented

solution.

Reusable Code

Winograd maintains that programming languages are not really

adequate to resolve the ongoing software crisis [WIN079]. Evidence of

the crisis is software which fails to satisfy user needs and is too

costly to develop, maintain, modify and reuse (FISH781. For though

programing languages are logically adequate, programmers still are

overcome by the complexity of large systems and are perplexed by the

difficulty of maintaining code written by someone else (WIN079).

Winograd believes the basic problem is an outmoded idea of the

programmer's job: that one conceives of an algorithm for accomplish-

ing a task and then codes it in the precise statements of a program-

ming language. The purpose of a high level language, in this old

fashioned view, is to provide tools for stating control instructions

and expressing data structure at a higher level than the underlying

machine. This purpose of a HOL is still valid, but it should no more

be in the forefront of programmer concern than binary arithmetic.

-65-

Today's large scale systems demand a different approach to program-

ming. Winograd cites three changes in the basic natur- of program-

ming:

- The primary use of computers has shifted from solution of well

defined, mathematical or data processing functions to service in a

larger, complex system. The system may be a weapons system or a large

military organization with a complicated structure and mission.

- The "building blocks" used to construct systems are more broad

than programming language features. They are subsystems, "an

integrated collection of data structures, programs and protocols"

[WIN079 which represent the solution to a part of a real world

problem. [Perhaps Winograd meant to use the word "should" to refer

to the practice of engineering new software by linking together exist-

ing modules, for though this is widely recognized as desirable it is

on the fringe of the state of the art]

- Programmers spend most of their time not in generating new

programs, but in integrating, modifying and documenting existing ones.

Winograd points out that this last trend results from the first two.

The ability to field more complex systems leads to systems that keep

growing to suit the demands of the environment [WIN079].

This has certainly been the case at Computer Systems Command in

recent years. More than half of the command resources are devoted to

system maintenance (including correction of errors and modifications).

Even "new" system developments are usually rewrites or extensions of a

previously existing system. In such an environment there are many

common sub functions among the active systems. Recognizing the great

-66-

potential conservation of resources, top level managers have been urg-

ing and at times directing an increase in the use of reusable code.

This is a recognition of the recurring functions in new systems or

system enhancements which, if precautions are not taken, are designed

and coded from scratch every time. A great leap forward in programmer

productivity is theoretically possible by taking advantage of existing

code whenever possible.

Defining what "reusable code" is and attempting to quantify the

extent of its use is a knotty problem for system developers. No clear

definition exists, but a recent survey uncovered some common practices

and attitudes [SMAR8O2. Reusable code is variously interpreted to

include standard data divisions, common subroutines (often for read,

write or edit functions), utilities provided by system library, and

program skeletons. Most system developers recognize the potential

cost savings and they support increased use of reusable code. Yet no

one believes that USACSC has sufficiently exploited this technique. f

There are limitations on taking advantage of the reusable code

concept. USACSC develops systems to comply with the functional

specifications of the customers. If specifications are not common,

then code cannot be common either CSMAR8O2. Reusable code, then,

depends on "reusable specifications". There is some truth in this

assertion, but beneath the surface of customer functional

specifications, down in the successive levels of abstractions of an

implementation, there is great potential for employing reusable code

-67-

which does not necessarily resemble a customer specification. Perhaps

this concept can be labelled, "reusable abstractions." The idea is

poorly supported by COBOL but nicely done in Ada.

Mechanisms available in USACSC to support reuse of code are the

source library system and the COBOL INCLUDE, COPY and CALL features.

The COBOL COPY command allows a programmer to easily retrieve and

insert previously defined DATA Division code, or any other code, intQ

his program. This feature somewhat supports the reusable code concept

but restricts one to reusing code "as is." This is much less flexible

than a macro facility or the Ada package. Problems which reduce the

utility of the COPY scheme include:

1. All declarations and data structures are global. If a

programer wants to borrow an existing DATA Division, all or part, and

write a new procedure division there is no problem -- assuming he

carefully uses the predefined data objects in accordance with their

declarations. But in the genieral case he may want to take advantage

of several procedures from different programs. These procedures may

have data declarations conflicting with one another or with those in

the new program being developed. So a piece of code cannot con-

veniently be "plugged in" to another program. Hidden side effects may

necessitate a mammoth debugging phase.

2. There is no interface specification for procedures. Such a

specification, describing the data types of the parameters and all

other external aspects of the procedure, is needed by both the com-

piler and the programmer. The compiler needs it to link up the

program segments and to perform type checking. Of course COBOL does

-68-

Mtr

little type checking and the link up is simply in line substitution.

The programmer must examine the specification of candidate procedures

in order to intelligently shop for code that meets his needs and to

determine what he requires to interface with it. Comments in English

text could aid in this regard but they lack the necessary formality;

too much is open to interpretation.

Though the COBOL COPY command is the most prevalent means in

USACSC of invoking reusable code, the CALL facility is potentially

more useful, since it does permit parameterization and separate com-

pilation. This feature is not selected very often because COBOL does

not provide a convenient library or catalogue, there is no provision

for formal description of module specifications, and there is little

type checking between separately compiled modules. Ada offers an

improvement in this regard.

Though Winograd's aforementioned observations are sound, I

believe programming languages will play an important role in system

development until the state of the art advances appreciably "beyond

programming languages." Ada was designed to be more suitable than A

previous languages in dealing with the software crisis. Ada abstrac-

tion features previously described should help make reusable code a

reality.

This is the belief of Ichbiah, principal Ada language designer,

who forecasted that one of Ada's most important contributions to

software engineering will be its support for reusable software com-

ponents [ICHB8O2. The most significant Ada features in this regard

are packages, visibility (naming) rules, separate compilation and

-69- -

__ __t.

provisions for a library of program units CICHB8OJ. Ichbiah hopes

that the package specification will come to be regarded as a contract

with the package user, and the package body will be the fulfillment of

the contract. Barnes believes Ada abstraction facilities will

encourage creation of reusable software libraries for all types of

applications, not just numerical analysis CBARN80. Ichbiah even

sees the formation of a "package industry" of software components, and

believes the time is approaching when software modules will be

guaranteed.

The guarantee will be like that of a watchmaker: valid as long

as case remains intact and no one has tampered with the contents. If

Ada packages (or the equivalent) were not available, on receiving a

complaint on a routine the "watchmaker" would have to check the rest

of the program and all programs which use it to insure there had been

no tampering with variables of the routine. There is no danger that

routines external to the Ada package can cause any mischief with its

inner workings. But it is quite possible for a customer to look

inside the watchcase at the package body and to make assumptions about

it which may later be invalid if the body is revised for better

efficiency. The best course of action, according to Ichbiah, is not

to show the implementation to the user. This is feasible in Ada since

the package body may be compiled separate from the specification.

Ada provides the same degree of type checking across compilation

units as within a unit, so there is no penalty to pay in this regard.

Separately compiled units are easily related logically by WITH

clauses. The library facility makes precoded modules conveniently

-70-

available and checks on obsolescence during program development as new

packages evolve.

Portability

In this discussion, portability refers to the relative ease with

which software can be moved from one hardware environment to another.

There are two approaches to portability: corrective and predictive

(HAGU76]. Corrective methods are necessary to convert an existing

program originally written for a particular computer with no

portability precautions taken. Predictive methods plan ahead. They

generally cost more during development but work best over the life

cycle.

A survey of the U. S. Army Computer Systems Command portability

problem [BROW761 confirmed that the organization must employ both

methods. There exist about 4 million lines of COBOL developed for IBM

machines. IBM hardware has monopolized the army MIS market until

recent years. Competitive procurements for replacement hardware are

causing a proliferation of target machines for centrally developed

software. Existing code must be converted to run on multiple

architectures, and newly developed systems must be constructed to

minimize portability problems.

Even though COBOL is a HOL, barriers to portability introduced by

varying machine architectures (word length, instruction set, addres-

sing structure, data representation, compiler implementations, and

language extensions) can cause problems when software is moved. Com-

piler vendors provide COBOL extensions which are handy to programmers

-71-

I

but adversely impact software portability.

The USACSC approach in 1980 is to achievb a predictive strategy

by adopting a standard subset of COBOL, selected to facilitate

portability. Existing code will be converted on a one time basis to

the subset, and all new work will employ the subset. Automated con.-

version tools will be used both to convert old programs to the subset

and to amend subset programs to run on particular target machines.

The strategy is sound, but COBOL shortcomings make the job more

difficult than it has to be.

COBOL pretends to group all machine dependent characteristics in

the Environment Division, a noble attempt to identify changes required

to transport a program to a new machine. In reality this information

is rather arbitrarily spread among the Environment Division and the

File Section of the Data Division tJACK761. Notice the various places

you will find the following machine dependent information CJACK76]:

-Multiple records in each tape block (FD)

- Each tape block is prefixed by a length indicator inaccessible

to the user program (FD)

- A file is to be accessed only sequentially (SELECT)

- Designation of the name of the record key item for a file

accessed by key (SELECT).

Beyond the sound DISPLAY and COMPUTATIONAL formats for elementary

data itemt, COBOL allows compiler designers to establish special

formats for efficient implementation on a particular machine. For

example, many IBM compilers implement COMP, COMP-1, -2,-3 and -4.

This allows a programmer to take advantage of his knowledge of the

-72-

-~...---

actual machine representation of data. For example, the following

trick may be used to save space in a file record by getting an

unsigned packed decimal item (JACK76]:

03 FIELD-A PICTURE S9(5) COMPUTATIONAL-3.

03 FILLER REDEFINES FIELD-A.

05 FIELD-B PICTURE XX.

05 FILLER PICTURE X.

FIELD-B will contain the four most significant digits of FIELD-A. Now

the programmer can add 1 to FIELD-B by adding 10 to FIELD-A.

Machine dependencies are much more evident in Ada and are acces-

sible in the source language. Every implementation of Ada must

include a package SYSTEM which makes available to the source program-

mer certain attributes of the underlying hardware (ADA 80]:

package SYSTEM is

type SYSTEMNAME is -- Implementation defined enumeration type

NAME : constant SYSTEMNAME -- the name of the system I
STORAGEUNIT: constant := --the number of bits per storage unit

MEMORYSIZE : constant := --number of storage units in memory

MIN INT : constant := --smallest integer supported

MAXINT : constant := --largest integer supported

end SYSTEM;

A generous number of other predefined attributes are available , such

as:

- SIZE : the number of bits used to implement a type

-73-

- MACHINEROUNDS : value is true if rounding occurs for arith-

metic on a particular type

- MANTISSA : number of machine radix places in the mantissa

- OVERFLOWS : true if the exception NUN1ERICERROR is raised for

computations which exceed the range of real arithmetic.

There are other features which help identify and isolate machine

dependencies. Explicit declaration of ranges of numeric variables is

helpful, and machine dependent portions of a program can be isolated

from the rest of the program in a separate package.

A 1980 software conversion effort of the U. S. Air Force Man-

poer Personnel Center (AFNPC) is a relevant case study in Ada

portability. The AFMPC problem is to convert a large ALGOL based

information retrieval system, ATLAS, to run on new hardware. They

have decided to convert existing software to a more portable form even

before the new hardware is selected, because the time between hardware

selection and the due date for the software conversion will be too

short to achieve an automatic conversion. Even though no Ada compiler

exists in 1980, AFMPC decided that Ada had so many portability

advantages over COBOL and FORTRAN that they should translate ATLAS

into Ada as a preliminary step in the conversion to new hardware.

This is their plan, even though they had to construct an Ada

translator for use in the recoding of ATLAS. Further details of this

effort can be found in [FILl802.

Exception Handling

Ada was designed for real time systems which must be able to

recover from errors and continue operation. Therefore, Ada provides

-74-

an exception handling capability. What constitutes an exception is

open to interpretation. There are two approaches (ADA 79]. The first

is a general view which considers exception handling an ordinary

programming solution for dealing with any unusual events -- not just

errors. Ada implements the second, more narrow approach: exceptions

are synonymous with errors and they mandate a termination of the

program unit in which they occur. Exception conditions automatically

cause a transfer of control to the user defined exception handler for

that condition. The handler achieves whatever recovery actions the

programmer has provided. Actions may include restarting the procedure

in which the exception occurred, but this would be a new invocation.

Exception handling in COBOL is limited to an ability for certain

statements to transfer control to a user defined routine upon

occurrence of one of a fixed, restricted set of errors. Usually there

is just one error condition which may be handled for each type

statement. For example:

READ INPUTFILE AT END GO TO EDITROUTINE.

WRITE MASTER REC INVALID KEY PERFORM WRITE ERROR.

COMPUTE PAY = HOURS * RATE ON SIZE ERROR PERFORM

OVERFLOW ROUTINE.

Ada exception conditions are not limited to a predefined set.

The programmer can define as many exceptions as are appropriate, and

choosing descriptive exception names contributes greatly to program

readability and facilitates debugging. Consider the following outline

of a procedure used to determine the stockage level of parts having a

given part number:

-75-

procedure GETPARTSTOCKAGE(PART NO:PART NO TYPE,

NUMBER : out INTEGER);

begin

GETNEXTPARTRECORD(REC : PARTRECORD);

--above procedure raises exception END OF FILE ERROR when end
-- of file is reached before a matching part number is found.

exception

when ENDOFFILEERROR 4 raise INVALIDjPARTNO;

--the ENDOF FILE ERROR exception is handled here by

--raising a descrTptive exception which will be handled
--by the routines calling GETPARTSTOCKAGE.

A programmer can also handle the five predefined Ada exceptions.

These include the too familiar NUMERICERROR (otherwise known as

"overflow", "divide check", etc. in other languages) and

CONSTRAINT ERROR, which has the same purpose but pertains to program-

mer defined range and index constraints rather than underlying hard-

ware limitations.

Is this capability useful in MIS applications? I think so.

Permit a digression and consider one sample situation: batch oriented

MIS in an Army division in Europe. Like many army sites, the division :1
computer center operates at or near saturation, and abnormal termina-

tion of any run may cause serious problems to customers. Most

application software is configured such that ther3 are restart points,

but several hours processing time can still be lost by a failure

between restart points. Lost time usually translates directly to

delay in producing output for the customer.

-76-

The automated repair part resupply system is one of the most

critical to the maintenance of combat readiness. Requisitions from

customer organizations are collected, consolidated, and keypunched

daily. Typically the daily batch of requisitions is submitted to the

..computer center at 11:00 P.M. fir a reserved block of processing time

that begins soon after the input arrives. If the computer and

software run smoothly through the night, the output is ready for

customer pick up at 7:00 A.M. The most critical part of the output is

a punched and interpreted card deck of repair parts release orders

used to direct parts to customers. If the output is delayed, then

repair parts warehouse workers encounter a work stoppage, and while

they are wasting time so are mechanics in customer units who are wait-

ing for parts to repair equipment. This situation illustrates the

high cost of a program "abort" in a MIS environment -- real time

systems do not have a monopoly on this problem.

The most costly (lengthy to fix) aborts result from exceptions

which are not handled by the application software; rather, they are

trapped by the operating system or the hardware. Such terminations

usually provide few useful clues about what went wrong. Often a cryp-

tic code is the only signal, and when one looks up the description of

the code in a system manual one finds it also has no clear relevance

to the original problem in the application program.

While local analysts try to troubleshoot, with few clues, the

computer center manager receives calls from anxious cus~umers who

demand to know when they will get their output. Perhaps enough detail

-77-

of the scenario has been presented to establish this point: applica-

tion programs should handle their own "dirty laundry." As many excep-

tions as possible should be handled by the program so that the program

can continue operation. If it must terminate, the program should at

least provide meaningful diagnostic messages.

I believe Ada exception handling provides a convenient, natural

system that encourages programers to fulfill their responsibilities

toward exceptions.

Syntax and Structure

Richard Wexelbat CWEXL761, while teaching a course on "The Design

of computer Languages and Systems for Human Use," included a whimsical

question on his final exams. Students were asked to consider their

eyerience and the insight gained from the course to cite ways that

malevolent programming language designers could intentionally make

programming difficult and erroneous. Resulting is a catalogue of

things which should be avoided in programming language design but are

evident in COBOL:

- "Make unnatural restrictions on the use of delimiters" e.g.

blanks must be used arouid arithmetic operators in COBOL. X+Y does

not work; X + Y must be used.

- "Do not provide function subprograms "Like most languages, Ada

permits a program segment to return a value in the fashion of a

mathematical function such as:

IF AVG(POORSTUDENTGRADES)) (5 + AVG(RICHSTUDENTGRADES))

THEN

-78-

In COBOL, in such a case one must use two arguments, one to pass a

table of values and one to receive the resulting computation:

CALL "AVERAGE" USING POORSTUDENTGRADES, POORAVG.

CALL "AVERAGE" USING RICHSTUDENTGRADES, RICHAVG.

ADD 5 TO RICHAVG.

IF POORAVG IS GREATER THAN RICH AVG

- "Place excessive restrictions on arrays and subscripting."

Programmers are aggravated by arbitrary restrictions on array bounds.

COBOL restricts the lower bound to 1. In Ada, any value may be

chosen.

Gannon calls the COBOL IF statement error prone, and the allega-

tion i:n serious since this is the only selection statement available

EGANN781. Gannon overlooks the GO TO DEPENDING ON, a construct not

recommended here but one which indeed provides a multiway branch which

can be used for selection. Suppose, for example, that one wanted to

add the statement S3 to the ELSE clause of the following IF statement,

but the programer forgot to move the period from after S2 to after

S3:

IF ...
THEN
S1

ELSE
S2.
S3

Now S3 will be executed unconditionally, but this fact is not obvious

to the programmer. We have here an excellent candidate for a

difficult logic error. Even when the position of the period is not

mistaken, its meaning can be confusing. The period terminates an

-79-

r

entire statement; it cannot be used to delimit IF's in a nested IF

statement.

Ada provides a safer construct with an "end if" to more

explicitly terminate an IF statement. Example:

if ...
then
S1

else
S2

end if;
S3

Notice how much easier it is to see that S3 is not part of the else

clause.

The structured programming approach encourages using nested IF

statements to avoid GO TO's, but psychologists report that the

difficulty to understand a sentence increases with the level of "self

embedding" CMILL641. Sime, Green and Guest CSIME731 verified this

problem using subjects employing IF statements in simple programs.

One commonly occurring situation is the need to select from a number

of alternatives based on the value of a variable. A nested IF may be

used for this purpose in COBOL. Example: t

IF TODAY = 'MON'

THEN PERFORM UPDATEINITIALBALANCE r
ELSE IF TODAY = 'FRI'

THEN PERFORM UPDATECLOSINGBALANCE

ELSE IF TODAY = 'TUE' OR TODAY - 'WED' OR TODAY - 'THU'

THEN PERFORM PRINTREPORTTODAY.

The above example uses "a nested if that really isn't nested". The

statement is rather easy to understand, and Its complexity does not

-80-

grow with the number of alternatives. Nevertheless, Weinberg, Geller

and Plum [WEIN75] advocate use of a more linear construct. The Ada

CASE statement seems to provide a more desirable structure, for even

though nesting is allowed, it will seldom be necessary because the

CASE provides a choice between multiple alternatives. Example:

case TODAY is

when MON =) UPDATEINITIALBALANCE;

when FRI 0 UPDATECLOSINGBALANCE;

when TUE..THU 4 PRINTREPORT(TODAY);

when SAT..SUN 4 null;

end case;

Ada Programming Support Environment

DoD plans to develop a common support environment for Ada. This

is a recognition that the environment and support tools for most

existing HOL's have been vendor defined and often leave much to be

desired. The Ada Programming Support Environment (APSE) will be an

integrated collection of tools "to support development and maintenance

of Ada application software throughout its life cycle" (STON80. a

Minimum features of the APSE include a text editor, pretty printer,

Ada translator, linker, loader, set-use static analyzer, control flow

static analyzer, dynamic analyze., and others. The APSE will be

extendable to support life cycle management activities: requirements

specification, overall system design, programming design, program

verification and project management.

Serious efforts already underway give credibility to the APSE

vision. Fairley has formulated design considerations for interactive

-81- .

debugging and testing support environments CFAIR80. There are

several proposed methods for Ada program verification, all worthy can-

didates for inclusion in APSE. For example, a recently developed

formal annotation language, ANNA, could be the basis for a verifica-

tion tool CKRIE80.

To be fair to COBOL I must acknowledge that a fancy support

environment could be designed for COBOL as well. But it appears that

Ada is destined, with DoD support, to have a rather powerful,

standardized support environment, and it may be too late to try to

establish a standard environment for COBOL.

Things Ada Does Not Do Well:

Numeric Editing

COBOL programmers often use a record to format and label numeric

data:

01 TIMECARDDETAILLINE.

03 EMPLOYEENAME PICTURE X(20).

03 EMPLOYEE TOTAL EARNINGS PICTURE $$$$.99.

If the value 12.34' were stored in EMPLOYEETOTAL EARNINGS the result

would be represented as 'b$12.34', where the quotes are added here

only as delimiters and the 'b' represents a blank. COBOL has an

extensive set of built in features for editing numeric data via record

'templates', and it is not yet clear how Ada can provide a reasonable

facsimile. If there is no natural solution that does not mean the

-82-

editing cannot be done; it just will not be as easy as it is in COBOL.

Many language design experts object to automatic type conversion, but

the utility of COBOL numeric editing must not be overlooked. Format-

ting of MIS output is very important to users and is susceptible to

frequent changes. Lack of a convenient Ada solution constitutes a

significant shortcoming.

For the time being, an Ada solution is presented for a simple

case: fixed point numbers without special editing.

COBOL

01 TIMECARDDETAILLINE.

03 EMPLOYEENAMEPICTURE X(20).

03 EMPLOYEETOTALEARNINGS PICTURE 999.99.

Ada

type TIMECARDDETAILLINETYPE is

record

EMPLOYEE NAME : STRING(1 .. 20);

EMPLOYEETOTALEARNINGS : delta .01 range 0.0 .. 999.99;

end record;

TIMECARDDETAIL_LINE : TIMECARDDETAILLINETYPE;

Notice the ability to constrain the range of numeric types. This

provides the benefit of automatic run time checking for violation of

the range -- a potential bug prevention medicine.

-83- 1

Record Input/Output

COBOL records are associated with (bound to) "ordinary" files for

input and output and with "sort" files.

The following COBOL example includes an "FD" (File Description)

which precedes the record(s) declared to be associated with the file:

FD LOANMASTERFILE

RECORD CONTAINS 33 CHARACTERS

LABEL RECORDS ARE STANDARD

DATA RECORD IS LOAN RECORD.

01 LOANRECORD.

05 ACCOUNTNUMBER PICTURE 9(6).

05 NAME PICTURE X(20).

05 LOAN AMOUNT PICTURE 9(5)V99.

The Ada package provides a natural way to associate one or more

records with a file. One may declare a record type, record objects of

that type, plus READ/WRITE operations on records of that type, all in

the same package.

-84-

package LOANMASTERFILEPACKAGE is

type LOANRECORDTYPE is

record

ACCOUNTNUMBER : range 0 ., 999999;

NAME : STRING(1 .. 20);

LOANAMOUNT : delta .01 range 0.0 .. 99999.99;

end record;

LOAN-RECORD : LOANRECORDTYPE;

procedure WRITE (RECORD LOANRECORDTYPE);

procedure READ (RECORD LOANRECORD TYPE);

end LOANMASTERFILEPACKAGE;

The READ and WRITE procedures contain necessary instructions to read

and write records of the specified type to the associated file. The

programmer may then use a simple instruction like

WRITE(LOANRECORD); 'I

to write a record to its associated file. Notice that this scheme

overloads the WRITE procedure, but there need be no confusion to the

programmer or compiler. The compiler will pruperly distinguish which

WRITE procedure is intended by examining the number and type of

parameters. Since I assume the programmer will make a separate type

declaration for the records associated with each file, the overloading

should work as desired and allow the programmer to express his I/O

instructions simply and logically. The programmer may define several

records, each of which represents a format (data template) for data in

the file. This Is convenient when various views of the data in the

-85-

...........

record are necessary. The programmer has the illusion that all the

various records associated with an input file are appropriately filled

for each READ of the file. For output the programmer need fill only

one of the defined output file records with data. The chosen record

is then written to the associated file. The scheme is summarized by

the rule "read a file -- write a record".

Called "allasing", this ability to define multiple record tem-

plates for the same data object is a source of confusion to the reader

of a program. Many language design experts frown on allowing more

than one name for the same data object. Several other COBOL options

lso result in aliasing: REDEFINES, RENAMES and SAME AREA. RENAMES

is to be deleted in the next edition (an improvement) (COBOL 80).

Consider the convenience of COBOL automatic type conversion which

makes it easy to print records of any format. Usually programmers

associate a "string type" record with the output file such as:

01 PRINTREC.

03 FILLER PIC X(1).

03 PRINTLINE PIC X(132).

The first character is reserved for printer control and is often

initialized to SPACE for single spacing. A line of output is first

transferred to PRINT LINE with a statement like MOVE SUMMARY LINE TO

PRINTLINE, and then the line is printed by the statement WRITE

PRINTREC. Notice that there is no type checking involved; a record

of any format may be moved to PRINTLINE and then printed.

The Ada programmer must be aware of type compatibility. An Ada

file is constrained to consist of elements all of the same type. The

COBOL ability to intermix varying record types in the same file is

-86-

nnnu m• • ellmemll• .mm

conceptually a free or undiscriminated union of types. In order to

conveniently associate various record formats with a particular Ada

file, the programmer will probably choose the variant record

construct. Paying the penalty of declaring a tag field (which

designates the variant) one may achieve much the same capability as

COBOL: varied record formats under the same umbrella (record name).

The major difference is that the tag must be properly set when a

record is created and must be checked each time a record is read. The

compiler can save space in allocating storage. Normally space is

necessary only for the largest variant; all variants can be overlaid

in the same area. The tag field reveals which variant is applicable.

It is a matter of taste whether this explicit control is better than

automatic type conversion, but the modern trend is toward explicit

control.

Ada can mimic the "read a file" scheme of COBOL, since after each

record is read the tag can be examined to determine which variant

exists. Then the appropriate view of the record is known and

available. Example:

I

-87-

.

type LINEFMT is (HEADING,DETAIL,SUMMARY);

type MASTERRECTYPE(TAG:LINEFMT) is

record

case TAG is

when HEADING 4

TITLE: constant STRING "MONTHLY STATEMENT";

DATE: DATETYPE;

when DETAIL =)

CHECKDATE: DATETYPE;

CHECK_AMT: AMTTYPE;

when SUMMARY 4

BALLABEL: constant STRING := "BALANCE";

BALANCE : AMTTYPE;

end case;

end record;

READ(MASTERFILE); -- file of MASTERRECTYPE

case TAG is

when HEADING 4 .. ;

when DETAIL 4 ...;

when SUMMARY 4 ...;

end case;

The simulation of the COBOL scheme may be carried further by defining

a READ procedure that reads a variant record, checks the tag, and

stores the contents in the appropriate record -- one of a collection

of records, one for each variant. This approach is wasteful of

storage.

-88-

Variant records can be difficult because Ada strong typing is

rather unforgiving. An attempt to intermix records on an Ada print

file causes a tag problem reminiscent of the famous line from

Shakespeare, "Out damned spot" (substitute "tag" for "spot"). Ada

strong typing prevents disassociating components of the variant record

from the tag. For example, suppose that we define a print file of the

same type records as MASTERFILE:

package PRINTOUT

is new INPUTOUTPUT(ELEMENTTYPE = MASTERRECTYPE);

There seems to be no way to print the records of this file without

also printing the value of TAG! Since the tag usually serves only to

discriminate between variants, it makes no sense to print it along

with the rest of the record.

One possible solution is to employ unchecked type conversion to

get a handle on the record minus its tag.

COBOL provides a report writer tool which simplifies formatting

printed output. Ada provides only a basic set of I/O primitives, but

a similar facility could be established as a user defined Ada package.

LeBlanc has developed a text formatter package with many of the com-

monly desired features [LEB8Oa]. The main issue is run time

efficiency. It remains to be seen whether an Ada package can compete

with COBOL's built-in report writer in run time efficiency.

-89-

L

Conclusions

The Ada and MCF programs constitute a revolution in Department of

Defense embedded computer technology. As Ada oriented embedded com-

puters begin to dominate the battlefield, military MIS developers

will find it increasingly attractive to take advantage of the

technology advances associated with "strength in numbers". Adoption

of Ada for MIS would reap significant advantages in the "higher level"

aspects of software development: management of software develop-

ment, program design, overall readability and maintainability.

The ability to describe module specifications apart from their imple-

mentation encourages top down design. Since the package specifica-

tion can serve as a contract for the programmer of a module, a soft-

ware development manager can allocate programming work via the

specifications. Interfacing the work of a team of programmers

is relatively straightforward. Ada strong typing, separate com-

pilation and information hiding help preclude inadvertent damage

of the inner workings of one package by another. There should

be few surprises when modules are linked together for system testing.

Opportunities for reusing code are increased by the Ada facilities for

data abstraction.

Since most software development costs are now attributed to the

maintenance phase, the use of Ada may be a net improvement over

COBOL. Ada programs will tend to be much easier to understand and

modify. This should outweigh any additional cost that might be

incurred in initial coding, resulting in lower total life cycle cost.

-90-

ii

F!!A... '.. ARMY INST FOR RESEARCH IN MNAMENN INFORMATION AND -- ETC Pf o/?
ADA - A SUITABLE REPL.ACEMENT FOR C0604?(u)
FEB al J3 S DAVIS

UNCLASSIFIED ML

,2

I R

aff -1111 ~ 32 1*2
.~136

mIII111 1111 111111.IIIIN III1 IIII 8

MICROCOPY RESOLUION IESI CHART
NATIONAL BUREAU OF STANDARDS 19153 A

Yes, Ada has many advantages, but serious problems must be over-

come before Ada is a sound candidate for MIS applications. The Primary

challenge confronting prospective users of Ada is the difficulty of

retraining COBOL programmers. Ada seems more difficult to learn. At

the statement level, Ada is probably less readable than COBOL,

Many of its concepts are foreign to even the most accomplished COBOL

programmers. At the detailed coding level, after program specifica-

tions are completed, COBOL appears to facilitate a faster, more natural

solution to problems frequently encountered by programmers of MIS.

Convenient COBOL provided features such as numeric editing and record

input/output will have to be self constructed Ada tools, at least

until a substantial library of reusable "MIS tool kit" packages is

developed.

Ada and MCF are not a threat to the COBOL community. Rather they

present an opportunity for long term improvement in MIS development.

There is no need for haste in deciding what to do. After all, as of

1980 Ada is Just a design, but COBOL is a reality with almost two dec-

ades of experience. The best tack is a "wait and see" approach, with

emphasis on the "see".

...

-gl-It

References

ADA 803 Reference Manual for the Ada Programming Language, Depart-

ment of Defense, 1980.ANSI1743 ANSI X3.23, "American National Standard COBOL," 1974.
[ARMY80] Memorandum for Army Deputy Chief of Staff for Research,

Development and Acquisition, subject: "Standardization of
Embedded Computer Resources," 1 July 1980.

[ATK1783
L.V. Atkinson, "Know the State You Are In," Pascal News
#13, December 1978.

[BARN803
J.G.P. Barnes, "An Overview of Ada," Software Practices
and Experiences, Vol. 10, 1980.

tBROW763
P.J. Brown, "Research on Software Portability," AIRMICS

report, 1976.
tBUXT803

John N. Buxton, "Requirements for Ada Programming
Environments -- STONEMAN," February 1980.

tCARR783
J.C. Carrow, "Structured Programming: From Theory to
Practice, "U.S. Army Computer Systems Comand paper,
1978.[COMP803 Computer Sciences Corporation, "Market Study on U.S. Army

Defense Systems," Embedded Computer Systems Market Survey
(1979 - 1990)," prepared under contract DAAK 80-79-C-0752,
March 1980.

[CLAR733
B.L. Clark and J.J. Horning, "Reflections on a Language
Designed to Write an Operating System," SIGPLAN Notices 8,
No. 9, September 1973.

[DAVI8O3
J.S. Davis, "MCF: Solution to Computer Proliferation,"
AIRMICS Report ADA090727, September 1980.(DEMA803
Tom DeMarco, "The Ada-Pascal Schism," The Yourdon Report,
Vol. 5, No. 4, Aug-Sep 1980.

ID1JK783
Edsger W. Dijkstra, "DoD-l: The Summing Up," SIGPLAN
Notices, Vol. 13, No.7, July 1978.

IDILL773
George L. Dillon, "Introduction to Contemporary
Linguistic Semantics," Prentice-Hall, 1977.(ENCY763
Anthony Ralston, Ed., "Encyclopedia of Computer Science,"
Van Nostrand Reinhold Company, 1976.

-92-

[FAIR80
F.E. Fairley, "Ada Debugging and Testing Support
Environments," ACM SIGPLAN Symposium on the Ada Program-
ming Language, Vol. 15, No. 11, November 1980.
Gary L. Filipski, Donald R. Moore and John E. Newton,

"Ada as a Software Transition Tool," ACM SIGPLAN Notices
Vol. 15, No. 11, November 1980.

[FISH78]
D.A. Fisher,, "DoD's Common Programming Language Effort,"
Computer, March 1978.

[GABR80]
Gary Gabriele, Software Science Project Interim Results
(AIRMICS), 1980.

CGANN75I

J.D. Gannon and J.J. Horning, "The Impact of Language
Design on the Production of Reliable Software,", SIGPLAN
Notices, Vol. 10 No. 6.

[GANN76]
J.D. Gannon, "Data Types and Programming Reliability:
Some Preliminary Evidence," Proceedings, Symposium on Com-
puter Software EngineerinC, Polytechnic Institute of New
York, April 1976.

[GANN78]
J.D. Gannon, "Characteristic Errors in Programming
Languages," ACM 78, Proceedings of the ANnual Conference,
1978.

[GLAS79]
Robert L. Glass, "From Pascal to Pebbleman ... and
Beyond," Datamation, July 1979.

[HAGU762

S.J. Hague and B. Ford, "Portability - Prediction and
Correction," Software - Practice and Experience, 6, 1976.

[HART80]
H. Hart of TRW at Redondo Beach, Presentation at ACM SIG-
PLAN Ada Symposium, Boston, MA, November 1980.

[HOAR73]
C.A.R. Hoare, "Hints on Programming Language Design,"
Address at SIGACT/SIGPLAN Symposium on Principles of
Programming Languages, Boston, October 1973.[ICHBlg]

Jean D. Ichbiah, et. al., "Preliminary Ada Reference
Manual," ACM SIGPLAN Notices, Vol. 14, No. 6, June 1979,
Part A.

IICH79B] Jean D. Ichbiah, et. al., "Rationale for the Design of
the Ada Programming Language," ACM SIGPLAN Notices, Vol.
14, No. 6, June 1979, Part B.

[ICHB8O2
Jean D. Ichbiah, "Introduction to Ada," Presentation at
ACM SIGPLAN Symposium, Boston, MA, 9 December 1980.

-93- p

[1RoN741
Department of Defense High-Order Language Working Group,
"Department of Defense Requirements for High-Order Com-
puter Programming Languages: IRONMAN," Department of
Defense, January 1977.

[JACK761
M.A. Jackson, "COBOL," Software Engineering, Academic
Press, June 1976.

[KERN803
J. Kernan of Center for Tactical Computer Systems,
Presentation at ACM SIGPLAN Ada Symposium, Boston, MA,
November 1980.

[KI(RE80] B. Krieg-Bruckner and David C. Luckham, "ANNA: Towards

a Language for Annotating Ada Programs," ACM SIGPLAN Sym-
posium on the Ada Programming Language, Vol. 15, No. 11,
November 1980.

(TRIA75]
J.M. Triance, "The Significance of the 1974 COBOL Stan-
dard," The Computer Journal, Vol. 19 No. 4, 1975.AAR 80)
D. War of IBM Federal Systems Division, Presentation at
ACM SIGPLAN Ada Symposium, Boston, MA, November 1980.[KREK79)

D. Krekel, "The Design Goals of Ada in Comparison with
the Goals of Other Programming Languages," Angewandte
Informatik 10, 1979, pp. 425-428.

(LEBI80]
Richard J. Leblanc and Arthur B. Mccabe, "An Introduc-
tion to Data Abstraction," School of Information and Com-
puter Science, Georgia Institute of Technology, 1980.

tLEB8Oa3
Richard J. Leblanc, Ada examples in GIT Ada Course notes,
Georgia Institute of Technology, 1980.[LEI BSO3

Edward Leiblein, "Background and Status of MCF,' Briefing
to Industry, March 25, 1980.LE 80 83 E w r L i l i
Edward Leiblein, et. al., "Development and Procurement
Plan for the Military Computer Family," (draft), March
1980.

[MART793
Edith W. Martin and Edward Leiblein, "MCF Part V,
Software for Embedded Computers," Military Electronics,
November 1979.

CITC80
J.R. Mitchell, "Observations on the Use of Seven
Structured Programming Techniques," presented at COMPSAC
1980.

IILL643
G.A. Miller and S. Isard, "Free Recall of Self-embedded
Sentences," Information and Control 7, 1964.

-94-

-;.1 .L __________

/

PM0R73]
J.H. Morris, "Types Are Not Sets," ACM Symposium on the
Principles of Programming Languages, October 1973.

[POTT801
S. Potts of Computer Corporation of America, Presentation
at ACM SIGPLAN Ada Symposium, Boston, MA, November 1980.[SHAW783
Mary Shaw, et. al., "A Comparison of Progrwmming
Languages for Software Engineering," AD AO 53562, April
1978.

(SMAR80]
R. Smart, "Reducing Maintenance Costs by Reusing Code,"
USACSC paper, 14 November 1979.

[SIME73]
M.E. Sime, T.R.G. Green and D.J. Guest, "Psychological
Evaluation of Two Conditional Constructs Used in Computer
Languages," International Journal of Man-Machine Studies,
1973.

CWEI1N753 G.M. Weinberg, D.P. Geller, T.W-S Plum, "IF-THEN-ELSE
Considered Harmful," SIGPLAN Notices 10, August 1975.

[WEXL76]
R.L. Wexelblat, "Maxims for Malfeasant Designers , or How
to Design Languages to Make Programming as Difficult as
Possible," Proceedings of the 2d International IEEE Con-
ference on Software Engineering.

[WHIT79]
William A. Whitaker, "Department of Defense Requirements
for the Programming Environment for the Common High Order
Language - PEBBLEMAN Revised," January 1979.

[WIN0793
T. Winograd, "Beyond Programming Languages," Com-
munications of the ACM, Vol. 22, No. 7, July 1979.gWI1RT743
Niklaus Wirth, "On the Design of Programming Languages,"
Information Processing 74, North-Holland Publishing Com-
pany, 1974.

tWULF80]
William A. Wulf, "Trends in the Design and Implementation
of Programming Languages," Computer, January 1980.

95

/ -95-

i~xI~ -~- - . -
4" I

