
I AD-A99 370 WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER F/S 20/4
STEADY FLOWS DRAWN FROM A STABLY STRATIFIED RESERVOIR.(U)
MAR 1 T 8 BENJAMIN DAAG29-80-C-041I

UNCLASSIFIED MRC-TSR-2182 NL-mhl//llllll
EIIIIIIIIIIIII
llhllllllllll



0K
MRC Technical Sumary Report #2182V

STEADY PLOWS DRAWN FROI

A STABLY STRATIFIED RESERVOIR

T. Brooke Benjamin

-.1
Mathematics Research Center
University of Wisconsin- Madison
610 Walnut Street
Madison, Wisconsin 53106

March 1981 MAy 2 7 1981 5

(Received g3anuary 28, 1981)A

Approved for public release
Distribution unlimited

sponsored by

US.Army Research Office

ReserchTriaglePark,
NrhCarolina 27709 81 5 27 024

VIPON-



Accei~n FOr

UNIVERSITY OF WISCONSIN - MADISON DTIC TB

MATHEMATICS RESEARCH CENTER U tannounced
justification------

STEADY FLOWS DRAWN FROM A STABLY STRATIFIED RESE
By

T. Brooke Benjamin' Distrbuti on/---
Availability Codes-

Technical Summary Report #2182 . .Avail and/or

March 1981 Dist Special

/ ABSTRACT

Perfect-fluid theory is applied to the description of steady motions that

can be generated as the outflow into a horizontal channel from a large reservoir

of incompressible heavy fluid whose density is an arbitrary decreasing function

of height. A particular aim is to pinpoint the significance of an already known

class of flows, called self similar, which satisfy the approximate (shallow-water)

equations applicable when the horizontal scale of the motion greatly exceeds its

vertical scale, but which have not until now been shown to match the downstream

conditions that primarily determine the motion in practice. \

New variational principles are introduced characterizing the class of self-

similar flows: in §2 there is a characterization in terms of flow force among

parallel flows realized asymptotically in a uniform channel, in §3 among a wider

range of possibilities including periodic flows, and in §6 among supercritical

flows realized in a convergent-divergent channel. Aspects of general flows in

channels of gradually varying breadth are treated in §§4 and 5, including the

remarkable fact, proven in §5, that every steady flow outside but close to the

self-similar class must somewhere undergo a local crisis unaccountable by the

shallow-water approximation. Practical interpretations afforded by the theoreti-

cal results are noted in §7.
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STEADY FLOWS DRAWN FROM A STABLY STRATIFIED RESERVOIR

T. Brooke Benjamin

1. INTRODUCTION

It has been known for some time that the equations

describing the steady, gradually converging flow of a stably

stratified perfect fluid from a large reservoir into a

horizontal channel have a simple solution, according to which

the stream-surfaces duplicate those in a corresponding open-

channel flow of a homogeneous fluid. Wood (1968) appears to

have been the first to put this fact on record, although

evidently it was then already known to others. For the special

flows in question he introduced the term self similar, emphasizing

their property that the heights of stream-surfaces are everywhere

in the same ratio, and this useful term will be readopted here.

These flows were also demonstrated by Yih (1969), whose

theoretical description went a little further than Woods' and

included an appraisal of the shallow-water approximations that

underlie the mathematical model. Yih's account was properly

cautious, moreover, about the physical significance attributable

to the special class of flows. Other steady flows were

recognized to be possible from any given reservoir that either

has multiple discrete layers or is continuously stratified,

and it was noted that without evidence of the special flows

satisfying terminal conditions that can be imposed downstream,

there is no a priori reason for their ever being realizable.

1 tMathematical Institute, 24/29 St. Giles, Oxford OX1 3LB, England

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Various outstanding questions concerning the class of

self-similar flows will be answered here, most notably the

question of their realizability in practically significant

situations. In the case of drainage from a layer in the

reservoir bounded by a discontinuity in density, a self-similar

flow will be shown to arise as the extreme state before hitherto

stagnant fluid is drawn into motion; and in the case of selective

withdrawal from a continuously stratified reservoir, self-

similar flows will be shown always to have priority. The

theoretical models studied are idealized, taking no account of

effects due to viscosity or diffusion, but the conclusions

therefrom should have bearing on certain natural flows on a

large scale (cf. Wood 1968, SI).

Items of theory are developed in SS2-6, and finally the

powerful interpretations that they provide are assembled in

S. A simple but very informative variational principle in

terms of flow force (horizontal pressure force plus momentum

flux) is established in S2 for horizontal flows drawn from a

reservoir into a straight channel, and the principle is extended

in S3 to include wavy flows. In S4 the theory of steady flows

in a channel of gradually varying breadth is reviewed, the

self-similar solution of the approximate hydrodynamic problem

is noted, and some difficult questions posed by flows other
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than the self-similar one are defined. In S5 it is proved

that no steady flow neighbouring on the self-similar flow

exists corresponding to a smooth solution of the shallow-water

equations, and in S6 a second, much less transparent variational

principle is given relating to supercritical flows in the

divergent part of a channel with a throat.

The concluding discussion in 57 relies on arguments

that generalize the following elementary idea from open-channel

hydraulics. Suppose a stream of water having asymptotic depth

h and velocity u is drawn from a large reservoir into a horizontal

open channel of rectangular cross-section. The flow force of

the stream is given by S - p(u2h + 4 gh2), where p is the (uniform)
2

density; and the Bernoulli law gives u - 2g(H - h), where H

is the height of the free surface in the reservoir above the

bottom of the channel. Thus one has S = pg(2Hh - h 2), which
22 2 2 an

achieves a unique maximum value S - pgH2 when h - - H and
m 3 3

2consequently u = gh. If the reservoir is connected through

a contraction, the flow can, of course, be controlled from

the downstream end of the channel, say by lowering a weir or

* by operating a pump which takes up the water. In every case

an adjustment increasing the steady outflow can be reckoned

to induce an increase in the flow force of the oncoming stream,

which has to match the greater rate of extraction of momentum

-3-



from the system; but the preceding simple result shows that

upon S being raised to the value Sm , no further increase can

in any way be induced. It is impossible to realize a stream

with S > S by outflow from the given reservoir. Thism

interpretation of the critical condition at which downstream

control is lost may be appreciated to provide better physical

insights, and to admit wider generalization, than the more

usual one whith focuses on the maximum of flow rate uh for a

given H. An immediate advantage of it, generalized in 53, is

that the maximum principle for S easily extends to wavy flows,

every one of which is known to realize a smaller flow-force

value than a uniform flow with the same H (Benjamin & Lighthill

1954).

2. STEADY FLOWS INTO A UNIFORM CHANNEL

As indicated in figure 1, a stably stratified fluid

lying on a rigid horizontal plane is considered to flow from

an infinitely wide reservoir into a straight channel, whose

cross-section following a smooth entry region is rectangular and

uniform. The motion is assumed to be steady, and the fluid

to be inviscid, incompressible and non-diffusive, so that its

density has a constant value on each stream-surface, varying

only among these surfaces. Thus, if z denotes their original

-4-
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heights above the bottom in the reservoir where the fluid is

at rest, the density is representable everywhere by p = p(z).

All pressures will be expressed relative to the pressure

at the level z - H in the reservoir, below which level the

fluid is drawn into the channel and above which none flows when

the steady motion is established. According to the hydrostatic

law, the pressure at lower levels in the reservoir is given by

zp W 9 JZ p(C dg

and hence the total head of the fluid above the bottom by

H
R(z) - gzp + p - g(zp + J p() d }

- gp 8H- ,rHCp'() dt}, (2.1)

where p5 = p(H-). We also need the notation p+ = p(H+),

supposing for now that p+ < p5 (see figure 1), but the case

P+ = PS will be covered. In (2.1), p* denotes dp/dz, being

a non-positive function by the assumption of stability, and

henceforth accents will be used only to denote derivatives of

z-dependent functions.

If the flow approached asymptotically along the channel

is horizontal (i.e. free from waves), the height y of the

stream-surfaces in it is a function of z alone, and we write

y(H-) - h. Since the fluid is at rest at heights above h,

.- 6-



I
the layer between heights h and H must be filled with stagnant

fluid of density p+- Hence the pressure in the horizontally

moving fluid is given, according to the hydrostatic law, by

h H
p -g( 9 +(H - h) + f p dyj) g{p+(H - h) + f p(y )dy}

y z

H
g(p+(H - h) + psh - py - f z ypI d. (2.2)zI

If q is the magnitude of the velocity in the fluid, the

Bernoulli law tells us that

R a gyp + p + lp q2  (2.3)

is constant on any stream-surface, specified by the value of

z; and in the asymptotic flow q 2 u , the square of the

single, horizontal component u(z) of velocity. Hence, using

the expressions (2.1) for R(z) and (2.2) for p, we obtain
2 A H

pu - 2g{p(H - h) - f (E - y)pl dE}, (2.4)
z

in which P Ps " P+"

The key to subsequent physical interpretations is to

consider the flow force S defined as the sum of horizontal

pressure force and momentum flux, per unit span, in the whole

layer of fluid affected by the steady flow (cf. Benjamin 1966, S2).

Thus S is the integral of p + pu2 with respect to height, from

the bottom to the height H. The contribution to S from the

pressure in the stationary fluid above the uppermost stream-

-7-

.. ... ..... ... . . .,1S4,,...fok.. , .... ... .. .. .. .. -', . .):

I *



2
surface y - h is plainly gp+(H-h) , and hence

S hgp+ (H - h) 2 + f (p + pu 2 )dy
0

1hgp+ (H - h) 2 + f (p + u 2 )y' dz. (2.5)
0

For substitution in this integral, p can be expressed by (2.2)
2 2 2

and the momentum flux density pu by (2.4) with q = U2.

We thus obtain at once

S/g =p+ (H -h) 2 + P+(H - h)h + Psh 2 + 2p(H - h)h

- J(py - (2t - y(§)]p'(g)dg}y'dZ,
0Z

and after an integration by parts

S/g =pH 2 + A(2Hh h 2 ) + J (-p') (2zy - g y2)dz. (2.6)
0

With regard to the terms of (2.6), note the identity

32 2 2 1 22zy - 2 . - (2z - 3y)

including its instance with z = H, y = h. Note also, from the

assumption of stable stratification in the reservoir, that

A
p > 0 and - pl is a non-negative function on [0,H). It

therefore follows from (2.6) that S is an absolute maximum

when

y M 2 z, (2.7)

which case is the self-similar flow that is critical in a

sense to be recalled presently.

-8-
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The maximum value of S is
H

S .g{ ,H 2  2 2 2

P gpH + P (- p')z dz

3 .j - , a )
0

2 H 2

W So + I1 g(hpsH2 + r ( P,)z 2 dz}, (2.8)i

wbere S g{hpsH 2 + h p')z 2 dz}
0 s j

0

-g pz dz

is the value of S for the fluid in a state of rest. This

result generalizes the well-known principle recalled in Si

concerning open-channel flows of a homogeneous fluid, a case

that is recovered by putting p+ = 0 and p' n 0 in (OH).

For the self-similar flow described by (2.7), we have

from (2.4) that

2 2 A " H 2

Pu = z = g{R(z) - R(H+) (2.9)
z

A h
Wg~ph go idy dyl. (.1

y

where P = '(y) - '(2z) is written in place of P(z). From

the definition u = dt/dy, *(O) = 0, (2.9') can be used to find

the stream-function *(y) for this flow.

-9-
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A convenient exampDle

The example now introduced will be used later to

illustrate other aspects of the problem. Let

H - 1, p(z) - p( - Pz) (0 < p < 1),

(2.10)
A

Spo ( 1 - P) = (i.e. p = 0),

where Po and p are constants. In this case, (2.9) gives

j (i;~) (1%*) (4 -9y
3 (1 9p 2 6 -3

The velocity is thus a maximum at y =i + 0 (i.e. just

above the bottom of the channel if 8 is small) and falls

2
continuously to zero as y 

2

3. GENERALIZATION OF THE VARIATIONAL PRINCIPLE

It has been shown that among all horizontal steady flows

realizable by withdrawing fluid from a bottom layer of a

reservoir with any given density stratification, the self-

similar flow described by (2.7) uniquely achieves the maximum

possible flow force S. This principle will now be extended

to two-dimensional wavy flows, which plainly may be realized

in certain circumstances, as when the flow passes into a uniform

stretch of channel downstream of an obstacle.

-i0-



For any two-dimensional flow of a stratified but

incompressible fluid, in which the velocity components are

u and v respective to x and y, there is a stream-function

by virtue of the fact that div(u,v) - 0. Moreover, when the

flow is steady, the streamlines * - const. coincide with

the lines p - const. and so also, in the present description,

with the lines z - const. We may accordingly take y - y(xz)

as the dependent variable and use the fact that #, p and R

are functions of z alone. The velocity components are then

given by

u - = ,Wz

y z

and it is helpful to write

F(z) - p(z)(,'(z) 2

In general this function is not prescribable a priori, but

for all self-similar flows (see S4) it is proportional to

the function of z expressed on the right-hand side of (2.9).

On the assumption that yz > 0, the partial differential

equation satisfied by y(xz) may be found easily enough from

the Euler equations of steady motion, or even more readily

by transforming the equation introduced by Long (1953) for

#(xy), as simplified by Yih (1960) as an equation for p

-iijl! ISO ~



It is

- F(Z)[y/y]l + h[F(z)Ci 2 2

+ gp'(z)y - R'(z) - 0. (3.1)

Except that the coefficient function F is undetermined, this

equation resembles one that has been used previously for

somewhat simpler problems of internal waves assumed to arise

from a base flow with uniform horizontal velocity (cf. Benjamin

1967, eqn. (3.3), also Turner 1960 where an exacting mathematical

treatment is given). The boundary conditions to be satisfied

by the solution y of (3.1) are the kinematical condition at

the bottom of the moving fluid,

y(x,O) = 0 V x. (3.2)

and the dynamical condition ensuring that at the top z = H-,

with y(xH-) = h(x), say, the pressure is p+(H - h). When

this pressure is alternatively expressed by (2.3) with

R(H-) = gp sH, the condition is seen to take the form

I +h 2

F ( HJ_ gp(H - h) V x.(3)F x,H-)

A

In the case that p = 0 and consequently F 4 0 as z t H (see

example in 55), the upper boundary condition becomes simply

that yz remain bounded in the limit.

-12-



For present purposes it is sufficient to know that any

steady wavy flow must'be represented by a solution of (3.1)

.satisfying these boundary conditions, and our inability to

prescribe the function F is in fact immaterial. The flow

force S is again given by (2.5), from which p can be eliminated
2 2 2

by means of (2.3) with q - u 2 + v 2.

The result is

S w-h O+ (H - 5h) + I Fhp(z) ')+R - gyz z

vhich an integration by parts with use of (2.1) and (2.3)

reduces to
S - gp+ H2 + g2(h - 2

2

J{ )F(z)(-. -Z 9P )( y )I2 dz. (3.4)

4By differentiation of this expression and by appeal to the

fact that y satisfies (3.1) and the boundary conditions (3.2)

and (3.3), it is easy to confirm that S is independent of x,

as is plainly required by momentum conservation. Equation (3.1)

and the boundary conditions can be used further to reduce the

terms in (3.4) dependent on F(z). Integrations by parts lead

directly to

-13-
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S/g -p H 2 +A 3(2h 2 h2)

P 2
H H f~2  yY

+ j 2 dz - Ho z y- + Y;Exldz, (3.5)+ 
0 (-Z,5),zy-y ) o Z . z

which recovers (2.6) in the case of x-independent flows.

Furthermore, since S is independent of x and since the average

of the second integral in (3.5) is zero over a wavelength

of a flow periodic in x (or, more generally, is zero between

any two stations where y is the same or where Yx - 0 V z C [O,H)),

we can conclude from (3.5) that for a wavy flow

S - average of S (Y), (3.6)

where S0(y) denotes the expression (2.6) with x-dependence

0

of y now allowed.

In the light of the discussion following (2.6), it follows

immediately from (3.6) that for every wavy flow S is less

than the value S realized uniquely by the special flow that
m

(2.7) describes. The promised generalization of the variational

principle is thus established.

Note also that whatever the average y(z) of y(x,z)

with respect to x in a wavy flow, (3.6) implies that S < S ().0

This conclusion accords with a property well known from studies

of other formulations of internal-wave problems, namely that

when periodic waves can be superposed without energy loss on

an originally horizontal flow, the process entails a reduction

in flow force (cf. Benjamin 1966, 52).

-14-



4. GRADUALLY VARYING FLOWS

Let us extend the ideas of S2 to the case of steady

flow from a reservoir into a channel with planform as

illustrated in figure 2. The breadth b of the channel varies

continuously with horizontal distance x, having a minimum

value b as indicated in the figure, and its variation isc

assumed to be so gradual that the velocity u of the fluid in

the x-direction is the only component significantly entering

the Bernoulli law (2.3). Moreover, u is taken to be uniform

across the span of the flow, although of course its value

depends on height above the bottom. The theory to be developed

is thus a counterpart of the shallow-water approximation for

gradually varying open-channel flows of a homogeneous fluid.

Conservation of mass in the incompressible fluid can

be expressed by considering an elementary stratum of vertical

thickness 6z in the reservoir, from which the fluid flows

into a sheet whose local thickness in the channel is 6y.

If G is locally the mean horizontal velocity in the sheet, then

Bb6y -0

is the element of volume flux which must be independent of

x when the flow is steady. Dividing by 6z and taking the

limit as 6z 4 0, we have

-15-
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uby' - Off (4.1)

where the z-derivative Q@ is evidently a function of z alone.

The expression (2.4) for pu2 is applicable as an approximation

everywhere according to the present assumptions (cf. Yih 1969),

and the elimination of u between it and (4.1) gives

2)y 2(H( - h) - ( - y)p'( :)d } - f(z), (4.2)

i3 222

in which X - b ib , h - y(H) and

CC
2 2

f(z) - p(z)[Q'(z)J /gbc

This equation for y(z) on [0,H) is complemented by the

boundary condition y(O) - 0, and the dependence of the flow

on its position along the channel enters through the parameter

X which varies from I to u.

The problem may alternatively be expressed as a second-

order differential equation with a pair of boundary conditions.

Dividing (4.2) by y,2 and differentiating with respect to z,

we obtain

(f/y2 )I + 2)(y - z) p' 0 , (4.3)

and the boundary conditions are

y(O,x) 0, 2X(H - y(H,x)}[y'(H,X] 2 - f(H-). (4.4)

This form of the problem corresponds, of course, to the

x-independent version of (3.1) - (3.3) with F(z) = gf(z)/A.

As noted earlier, in the case that p - 0 and consequently

I' ~ ~~~ ~ ~~~~-7- , "-, .. -- , "



f(H-) - 0, the second condition in (4.4) is replaced by a

condition of regularity as z 4 H, i.e. Iy'(H-,X)l < *.

The non-linear parametrized problem (4.3) and (4.4)

is not amenable to comprehensive treatment that allows arbitrary

specification of the coefficient function f. A somewhat

perplexing situation is presented, moreover, in that f may

not be a prescribable feature of the physical problem. It

will generally depend on conditions imposed at the downstream

termination of the flow, and there appears to be no simple

argument delimiting the complete class of functions f that

are physically relevant. However, by analogy with the

corresponding problem for open-channel flows of a homogeneous

fluid, we may reasonably look to the possibility of solutions

with the following properties:

(i) y(z,X) varies continuously with X > I (hence

continuously with distance x along the channel).

(ii) The solution in I < X < - has two branches which

are confluent at X m I (i.e. the flow can be different at

channel sections with the same breadth upstream and downstream

of the minimum section).

(iii) On one branch, y(z,X) 4 z as X * - (i.e. the flow

connects smoothly with the reservoir).

-18-



Self-similar flows

As was appreciated in Si, these special flows have

previously been noticed to be solutions of the above problem.

If we take

y - K(x)z, (4.5)

which satisfies the boundary condition on the channel bottom,

then equation (4.1) becomes

2X(%- 2 { - J go'(C) dg) a f(z).

Hence (4.5) is a solution with the required properties if

3 4
X (n 2 -31 ( 4.6)

and

f~) -{GA H go() ; -BR(z) - R(H+)). 47f€- - - g- (4.7)

2

The cubic (4.6) for n has a double root xc - - for
. c 3

X- 1 and it has two distinct positive roots for 1. > 1 one

of which tends to I and the other to zero as . -. -. Thus

the properties (i), (ii) and (iii) are all provided. In fact,

h - x(X)H is precisely the local depth of a 'choked' flow

of homogeneous heavy fluid along an open channel of the same

planform X - x(x) [i.e. the flow through a Venturi flume,

2which is subcritical (u < gh) upstream and supercritical

downstream from the minimum sectioni.

-19"
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It remains, of course, to demonstrate the significance

of this simple result. Since other flows are generally

possible frox stratified reservoirs, there is a need to

explain how and why self-similar flows might be generated.

Regularity of solutions

Let us examine conditions for a solution y[zA(x)]

of (4.3) and (4.4) to vary smoothly with distance x along

the channel. Assuming X(x) to be continuously differentiable,

differentiating (4.3) with respect to x and writing

P (X, %) d X=
ax dx a.

-we obtain

3) = (y - z)" (4
y

Similarly, the boundary conditions for p are seen from (4.4)

to be

['H) (-h) -(9((O) = 0, y'(H)cp(H) - 2(H-h) p' (H) = dx (4.9)

(Here the dependence of 0 and y on X is left implicit.) For

a smooth solution of the parametric problem (4.3) and (4.4),

the linear problem (4.8) and (4.9) for T must also have a

solution for each relevant value of the parameter X.

Accordingly, although the issue is trivial in the case of

Lself-similar flows, something about the general case may be

-20-



learned by means of the Fredholm alternative principle.

Inquiries on this basis have so far made limited

progress. Some comparatively easy conclusions will be noted

below, but the main proposition in view can only be stated as

a conjecture, made plausible by the outcome of the linearized

perturbation theory to be presented in 55. It is that except

for the self-similar flow described by (4.5) - (4.7), the

system (4.3) and (4.4) has no continuous solution extending

to the minimum section where X - 1, dX/dx - 0, and being

such that , 0 0 there.

At the minimum section, a possibility according to

(4.8) and (4.9) is that 3 v 0, in which case the solution

y(z,X) on the downstream side returns along the same branch

as it approaches X - I on the upstream side. For reasons that

will be noted in S7, this possibility has comparatively little

interest, and it will not be considered further here. Thus,

at X = 1, r is required to be a non-trivial solution of the

homogeneous version of the linear boundary-value problem (4.8)

and (4.9).

The meaning of this requirement is made clearer by

transforming the left-hand sides of (4.8) and (4.9) so that

the local height y of the stream surfaces is the independent

variable. Thus, writing = r(y) and using (4.2) together

with (2.4), one derives

-21-



22
(u y gPn = 0, '

2 j (4 .10)

n(0) = 0, Pu ny = gpn at y = h.

The existence of a non-trivial solution of (4.10) is

recognizable as being just the condition for an infinitesimal

wave of extreme length to be superposable without energy loss

on a horizontal flow that has the given velocity u = u(y)

and density distribution p = p(y) (cf. Benjamin 1966, §3.3].

So the flow at A = 1 is critical in the usual sense of the

term. This result is to be expected, of course, because

under the present shallow-water assumptions the condition

that the flow have a smooth non-zero variation through the

throat of the channel is evidently equivalent to a horizontal

flow at A = 1 admitting a long-wave perturbation.

It may straightforwardly be shown that, in all cases,

the accelerating flow in the divergent part of the channel

is supercritical in the sense that a free infinitesimal long

wave propagating against it would be swept downstream. This

property corresponds to A < yI, where y1 is the lowest

eigenvalue of the homogeneous Sturm-Liouville problem related

to (4.8) and (4.9) [i.e. with y in place of X and dX/dx = 0].

The existence of 'p everywhere downstream of the throat is

hence ensured according to the Fredholm principle.

-22-
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5. FLOWS CLOSE TO THE SELF-SIMILAR

Again with regard to a channel of gradually varying

breadth, we consider steady flows that are small perturbations

from the self-similar flow defined by (4.5) - (4.7). The

solution is now expressed in the form

y = Xz + £C(Z,K), (5.1)

where the parameter , varies from 0+ to 1, being related

to )L by (4.6), and e is an infinitesimal number. For

simplicity of illustration the discussion refers particularly

to the example specified in (2.10), but the means will be

indicated whereby the conclusions can readily be extended

to all other examples.

In the chosen example, equation (4.3) becomes

(y,2), - 2X(y - z) 0 0 (5.2)

on 0 < z < 1, with a a f(z)/poS, a(1) = 0; and the boundary
0

conditions are

y(0,,) = 0, Iy'(1, ) < - . (5.3)

In keeping with (5.1), the coefficient function a(z) is

represented as an infinitesimal perturbation from its form

given by (4.5) for the self-similar flow, thus

G(z) =4 (1 z 2 ) + er(z). (5.4)
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The perturbed flow is assumed to originate from the same

bottom layer in the reservoir, and so it is implied that

r(1) = 0.

After substitution of (5.1) and (5.4) into (5.2),

linearization in e gives

{(1 - 2 + i= a', (5.5)
3

in which U = (27/4)k3 = X/(1-X)

and -W (27/8)x

have, like x, two positive values for each X > 1. The

number .L equals 2 at the critical section (n = 2) and
3

increases smoothly with X on the upstream side, with p -.
2

--as X .4 C, K 1 1. On the downstream side, x < Z and therefore
3

p < 2. The required solution C of (5.5) must, of course,

satisfy the boundary conditions (5.3).

Now, the homogeneous equation corresponding to (5.5)

is Legendre's equation, which has a non-trivial solution

bounded on (-1,11, the respective Legendre polynomial P (z),m

when P takes the succession of values m(m+1) (m = 1,2, ... ).

In view of the first boundary condition, only the odd-order

polynomials which vanish at z = 0 are relevant here, but

they comprise a basis in L 2(0,1). Thus it is merely enough
L2

that r' e L for there to exist a representation
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. 1i

r- a P 2  (z)" a = (4n-.1) r' P2n(z) dz, (5.6)n-1 n 2nIn 0 o -

2in which the sequence of coefficients (anl a C . Accordingly,

the formal solution of (5.5) satisfying the boundary

conditions is

a

Sa P(5.7)
n - 2n(2n-i) nP 2n-I(Z)

which, since is a bounded positive number, is meaningful

except where the denominator - 2n(2n - 1) vanishes for any

coefficient with a is 0. [Note incidentally that, with these
n L2

exceptions, the attribution r' e L implies the existence

of at least a weak solution C m H (0,1), and further regularity

of C follows from that or r. For example, if r e C1 ,

c2
then C e C2 and the ordinary differential equation (5.5)

is satisfied pointwise.]

The first conclusion to be drawn from (5.7) is that if

the perturbed flow is to exist at a throat in the channel,

where U =2, then a= 0 in the expansion (5.6). On the

downstream side, we have that p - 2n(2n-1) < 0 for all

n = 1,2,..., and thus the solution (5.7) remains meaningful

everywhere in the supercritical region. On the upstream side,

however, every one of the numbers 2n(2n-l) > 12 is crossed

by p, and so (5.7) is valid everywhere only if a = 0 forn

all n. The completeness of the basis (P 2nI} hence establishes

the significant conclusion that no smooth solution of the

shallow-water eauations exists neiqhbooring on the self-slTar
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flow from the given reservoir. Every perturbed steady flow

suffers at least one lbcal crisis where the shallow-water

approximatio, ceases to be valid, however gradual the variation

in breadth along the channel.

This conclusion readily extends to all other examples

of stable density stratification in the reservoir. For each,

in place of (5.5), an equation with another Sturm-Liouville

Aoperator on the left-hand side will be posed, and if p > 0

the upper boundary condition will be given by linearizing

the second of (4.4). By the Riesz-Fischer theorem, the set

of eigensolutions for each respective Sturm-Liouville problem

is complete as a basis in L 2(0,H), and accordingly the

argument proceeds as above.

It deserves emphasis that a failure of the shallow-

water approximation in some part of the flow does not necessarily

invalidate the approximate solution (5.7) elsewhere. The

nature of the local crises that all flows neighbouring the

self-similar have been shown to suffer will not be explored

in any detail here, although it is an interesting matter that

should be worth further study. The phenomena indicated are

presumably continuous processes according to a more accurate

perfect-fiuid model, but to describe them one needs to abandon

the hydrostatic approximation for pressure and use explicitly

x-dependent differential equations such as (3.1). A particular

component with n > i in the Sturm-Liouville expansion of
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clzK) will be better modelled in the vicinity of its crisis

point, say x - 0, by a function of the form w (x7 (z), wheren n
n(x) is the eigenfunction in question (e.g. P (z) above)
n 2n-1

and where, to a first approximation, a suitably normalized

w n(x) will satisfy the equation

k-2 (d2 2/dx2  x nk(dW/dn -n wnI -2in which k ia a positive parameter proportional to

di/dx > 0 at x = 0. The specification k-  = 0 recovers

the unacceptable local singularity given by the shallow-water

approximation. But with k-2 > 0 this equation has a solution

that is bounded on - m < x < w. Expressible in terms of

Airy functions, the needed solution is - r Gi(kx) in the

notation used by Abramowitz & Stegun (1965, p.448). For large

-1
kx > 0, the solution is quickly asymptotic to - x ; and for

large kx < 0,

- 2 3/2 1 -1 -7/4n n (-kx) 4 cos (T-kx)342 +i] - x + O[(-kx) 1n34

The slowly diminishing but increasingly rapid oscillations

may roughly simulate what in fact happens upstream of a crisis

point.
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6. THE EXTREMAL PROPERTY OF SUPERCRITICAL SELF-SIMILAR FLOWS

We return to the flow-force principle demonstrated in

S2, now considering it subject to the constraint that the

flows competing for the maximum of S have passed through the

throat into the divergent part of the channel and so have

become supercritical. Let subscript I refer to any particular
2

station downstream (i.e. X > 1, K < Z), and let S denote

the value of S given by substitution of y - z in (2.6).

Taking the expression (5.1) for y but no longer assuming e

to be infinitesimal, we obtain from (2.6)

A H
S /g = S /g + e(2-3K 1)(pH 1 (H) + ,o(-p ) dz)

0

32A 2 H
'. Cp2(H) + j (-p 2C dz. (6.1)

0

Here the coefficient of c is to be treated as the first

variation S1/g of S1/g among flows differing from the self-

similar flow.

On the other hand, when (5.1) is substituted and (4.6)

is used, (4.2) leads to

r f z) dz = (4/27){pH - f p'z 2 dz}

0 0
H

+ ckx(2- 3n){pHC(H, n) - f p'z dz}
z

2 H H
+ C x( - )f p'{pH - f p'(t)C dE}

0 zH ¢
2( 2 (H,,.) - H dz] + O(c3  (6.2)
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which by the definition of f(z) must be the same for all K

such that y(zx) exists. Note that whereas local failures

of the shallow-water approximation may occur upstream of the

throat, (6.2) still holds everywhere downstream. Writing

(6.2) as r - r° + cr + h 2F + .,., we have that t -.0 at
2

the throat where x - Z and therefore, in the limit e 4 0,
3 2

also 1 = 0 everywhere downstream where 0 < x < . Since

)l XI§ 1  g 1 according to (6.1) and (6.2), it follows that

0. (6.3)

Thus Slm is a stationary value for variations in the class

of flows that are smooth at and downstream of the throat.

The study of second and higher variations is more

complicated and will merely be outlined here. One proceeds

by using (6.2), in the form of the identity

ei(K) 2{--(2) 3
= u r _ + o(,/i

to reduce the c-term in (6.1). The results of the linearized

theory summarized in S5 are then used to evaluate S1  It

is thus shown without much difficulty that " 1< 0. Further

estimates of S - Slm finally confirm that S is a maximum.
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7. PHYSICAL CONCLUSIONS

Even within the context of perfect-fluid theory, the

general problem of selective withdrawal from a stratified

reservoir is largely intractable because of the freedom

evidently available in posing the downstream conditions that

determine the flow. While falling far short of a general

solution, the preceding results nevertheless illuminate

various apparently central aspects of the problem, and on

the basis of them a number of plausible interpretations can

be made as follows about practical possibilities.

1. First take the case of stratified fluid drawn steadily

into a straight channel, as illustrated in figure 1, and

suppose that the flow is caused by the extraction of fluid

through a slot near the bottom at the end of the channel. If

Athere is a discontinuity of density at z = H (i.e. p > 0),

it is intuitively clear that the fluid above the interface

will not be drawn into the slot when the excraction rate is

sufficiently small, and so a definite question arises about

the limiting condition beyond which the fluid originally above

z - H in the reservoir begins to be extracted. In other words,

what is the 'drawdown condition' corresponding to given

AH,P and the function 0(z) on [O,H)?

According to the basic notion recalled at the end of

Si, a progressively larger flow force S must be manifested

in the channel as the process of extraction causing the flow

is intensified. But the results of SS2 and 3 show that the
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maximum possible S achievable without the entrainment of

fluid originally above z - H is realized by the critical self-

2
similar flow with y - iz. This flow therefore comprises an

upper limit for the possible drawdown condition. If drawdown

does not occur until increased extraction raises S to Sm"

then this flow is necessarily realized at the limit, and no

further increase of S is possible without drawdown.

2. The principle of maximum flow force was demonstrated

in SS2 and 3 without regard to the grading of the contraction

through which the flow approaches the channel, but this factor

evidently will determine whether the limiting flow is realizable.

It is plausible that this flow does precede drawdown when

the contraction is extremely gradual. Otherwise, as the known

behaviour of open-channel flows suggests, an approach to the

critical condition is liable to be interrupted by wave

formation. [Note that in practice it is found difficult to

produce a smooth open-channel flow in a slightly subcritical

condition, say with 0.6 < F < 1, where F = u/(gh)

(cf. Binnie et al. 1955).]

A wavy flow in the channel itself is a possible precursor

of drawdown when the contraction is no# gradual enough, but

other possibilities are indicated by the findings of S5.

Suppose that the contraction is very gradual but the sink of

fluid at the end of the channel is so arranged that development

of a self-similar flow is hindered (e.g. there are two slots

extracting fluid). Then as S is raised towards the value at
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which drawdown begins, the flow may still differ appreciably

from the self-similar flow, and consequently a local crisis

giving rise to waves may occur some way upstream.

3. It must be acknowledged that the present estimate

of the drawdown condition disagrees radically with the view

of the matter proposed by Huber (1960), who calculated a

critical condition at which the flow of a stratum of homogeneous

perfect fluid towards a line sink first entrains a superposed

layer of fluid with smaller density. The present interpretation

also conflicts in principle, but is in its outcome more

easily reconciled, with a calculation by Craya (1949) on a

quite different, approximate basis. The two estimates were

discussed by Yih (1965, p.128), who cited unpublished

experimental results showing a large discrepancy with Huber's

theoretical prediction. In terms of the Froude number F for

*the flow in the lower stratum (with the density difference

incorporated into F in the usual way), the drawdown condition

*was calculated to be F = 1.66, whereas according to present

ideas it is just F = 1. The former value can at once be

rejected as a practical threshold for flows originating from

a large reservoir, because such flows with F > I and stagnant

fluid above are impossible in the absence of a throat upstream -

a feature not recognized in Huber's model. The experimental

drawdown condition reported by Yih is roughly F - 0.7, which
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is quite consistent with the present interpretation when

allowance is made as suggested for the possibility of wave

formation forestalling the idealized critical condition F - 1.

4. Cases where p is continuous at z - H provide a

different interpretation. Note that whatever the flow force

determined by the process of extraction at the end of the

channel, there is a least value of H for which the required S

can be realized. Then S - S (H), where S is the maximum

of S for a given H, as given by (2.8). In other words, for

a given flow force, either a flow is developed having
2y -= z in [O,H] for the respective minimum H, or a deeper

layer of fluid is drawn into motion. At least in a straight

channel fcllowing a gradual contraction, it may therefore be

expected that self-similar flows will tend to be realized

whenever fluid is withdrawn from a continuously stratified

reservoir.

5. As is known for open-channel flows of a homogeneous

fluid, steady stratified-fluid flows along a convergent-

divergent channel are likely to be in better accord with

diallow-water theory than near-critical flows in a straight

channel. An everywhere subcritical flow with y/ax - 0 at

the minimum section is a theoretical possibility; but, as

the open-channel analogy shows, it is liable to be swept away
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in the divergent part of the channel unless the final outflow

is specially restricted. The raising of downstream flow force

concomitantly with increasing the extraction rate will

generally produce a flow that is critical at the throat and

supercritical downstream. The principle demonstrated in S6

accordingly indicates that a self-similar flow will tend to

be established in this situation, since it gives rise, at

the downstream end of the channel, to a flow force that is

the maximum possible without additional fluid being extracted.

This conclusion must be regarded with caution, however, in

view of the artificial feature that a layer of stagnant fluid

deeper than -H lies above the fast, supercritical flow. The
3

possibility that instabilities of the Kelvin-Helmholtz type

may precipitate a dissipative transition (hydraulic jump)

back to subcritical flow, also the possibility of a super-

critical drawdown condition such as found by Huber (1960),

suggests that the flows in question may not be realizable in

a far supercritical condition.

It is noteworthy that Wood (1968), considering a two-

layer model, derived a self-similar flow in a convergent-

divergent channel on the basis of the hypothesis that the

shallow-water equations should have a smooth solution everywhere.

His result agrees, of course, with the observations made in

554 and 5, but the present flow-force principle, rather than
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an arbitrary hypothesis of smoothness, is much more telling

as a reason why the self-similar flow should be generated.

Wood also presented some experimental results approximately

confirming his prediction.

6. The present investigation has focussed on the

case of flow in layers lying on a horizontal plane, but all

aspects of the theory extend more or less immediately to the

case of withdrawal from internal layers. The first boundary

condition in (4.4) has to be replaced by another, akin to

the second of (4.4), applying at the lower interface with

stagnant fluid, and the self-similar solution corresponding

to (4.5) - (4.7), but now defined on (-H,H], say, is

appropriately modified. The example considered in S2, for

instance, extends precisely to a solution like (5.1) on

[-1,1), and the even as well as odd Legendre polynomials are

then required to express an arbitrary perturbation in the

manner of (5.6) and (5.7).
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