AD=A099 362 WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER F/6 12/1
A OECOMPOSITION METHOD AND ITS APPLICATION TO BLOCK ANGULAR LIN-=ETC(L)
JAN 81 C D HA DAAGZ‘?—BO-C-OO‘H,
UNCLASSIFIED MRC-TSR=-2174

EENEENENEEEE

e

5

T
N MRC Technical Summary Report #2174
i A DECOMPOSITION METHOD AND ITS
! w APPLICATION TO BLOCK ANGULAR LINEAR
) Q% PROGRANS
i
m Cu Duong Ha
(@) |
() \
<! \
Q) " i
.
Mathematics Research Center .
University of Wisconsin—Madison ﬁ-
610 Walnut Street DTlc
Madison, Wisconsin 53706 ELECTE
MAY 2 7 1981~
January 1981
Received November 7, 1980 -
!
¥ Approved for public relesse
i.\: Distribution unlimited
w Sponlore.d

pd 4. S, Army Research Office
P.0. Box 12211
fesearch Triangle Park

E gorth Carolina 27709

815’2

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

A DECOMPOSITION METHOD AND ITS APPLICATION
TO BLOCK ANGULAR LINEAR PROGRAMS

+

re A g

Cu Duong Ha

Technical Summary Report #2174
January 1981

\ ABSTRACT

‘In this paper we propose and develop techniques for solving structured,

e TR ORI R 4 SR o et T 8 3

large-scale convex programming problems. The procedure is a combination of a

decomposition techniqué of Dantzig-Wolfe type and the proximal point method.

The proximal point method is used to overcome the drawbacks of the

decomposition technique.

The procedure is then used to solve block angular linear programming

problems. By exploiting the linearity of the problem we have several variants

of the procedure. |,

AMS(MOS) Subject Classifications: 90C06, 90C25
Lﬂpceggion.ror
Key Words: Decomposition method, convex programming, NTIS CRA&L !
large scale systems, linear programming PTIC TAB O
Unannounced O '

Justification_ '

Work Unit Number 5 - Operations Research

By
NP}S};}bugion/_h_ﬂ“_

. Availability Codes

E Avail and/or

Disg Special

4
Current address: th tical Sciencep Depar nt
92:9 nia Commonweaftﬂ Unggnrszty

Richmond, VA 23284

Sponsored by the United States Army under Contract No. DAAG29-80-C~0041.

s

1 SIGNIFICANCE AND EXPLANATION

Optimization problems which arise from real-world situations are usually
complex and large. It is almost impossible to use general methods to solve
these problems. Fortunately, these problems always have certain special "
features, and by exploiting these special features we can obtain an optimal ‘
solution for the pxdblem. The decomposition method is one of the solution

techniques that make use of the special structure of the problem. The idea of

the decomposition method is to break up a problem into a sequence of simpler

subproblems, and then obtain the optimal solution for the problem from the

O ey e NI Y

optimal solutions of the subproblems.

: In this paper we discuss a decomposition technigue and its disadvantages,
and ‘then propose to use the proximal point method to overcome these
disadvantages. %We also apply the proposed procedure to solve block angular
linear programming problems. An important application of block angular linear
programming is the problem of a multidivisional organization: The divisions
of the organization operate almost independently of each other; they are only
coupled by the fact that they share a few scarce resources. The decomposition

4 £ method seems to be an appropriate approach for solving this type of problem.

I The responsibility for the wording and views expressed in this descriptive
} susmary lies with MRC, and not with the author of this report.

s T el PO T

A DECOMPOSITION METHOD AND ITS APPLICATION

TO BLOCK ANGULAR LINEAR PROGRAMS

cu puonc HAt

R T

NP i i

1. Introduction.

Gt TET e

A general mathematical programming problem with more than a few hundred

variables is not easy to solve, especially in nonlinear cases. Fortunately,

large problems, which arise from practical applicationsa, nearly always have

some special features; for example, sparseness of the matrix of constraints or

Feriy T

block angular structure of the problem. In general, it is only by exploiting

T

g . these special structures that we can solve large-scale problems.
The idea of decomposing a problem into a collection of simpler problems

is not new in mathematics. However, only in recent years have decomposition

techniques been extensively developed for mathematical programming, primarily

to take advantage of powerful computer systems. Decomposition approaches are

eggentially suitable for systems composed of several smaller subsystems which
are independent of each other except for a féw weak connections between

them. It seems natural, then, to break up these weak interconnections and
handle each subsystem independently, obtaining the solution for the overall

system from the solutions of the subsystem.

’Curtent address: Mathematical Sciences Department
Virginia Commonwealth University

Richmond, VA 23284

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

In Section 2 we discuss the underlying idea of a decomposition

technique of Dantzig-Wolfe type applied to problems of the form
' . om n
inf {izlfi(xi)lizlAixi =3} ,

where, for fixed 1i , x; is a vector, Ai is a matrix, and fi is
a convex function having values in the extended real line (-=,+=] .
This decomposition technique is very interesting but it has several
drawbacks in some important cases. To overcome these drawbacks we
combine the proximal point method with the'decomposition technique
and propose a new decomposition procedure to solve convex, structured
large-scale problems.

Section 3 deals with the application of the general procedure
in Section 2 to block angular linear programming problems. An example
of this type of problem is the problem of a multidivisional organiza-
tion. Each division is operated independently from the others; the
only linkage between them is that they all share a few scarce re-
sources. By exploiting the linearity of the comstraints we can
modify the general algorithm and have specific algorithms for block
angular linear programming problems. Computational aspects of the
algorithms are repurted; they show that, for large problems, our .

procedure is better than some other methods.

e S IS NC SR 8

Wi ¢ e et

2. Decomposition method

In this section we shall present a new approach to solved
structured convex programming prob]:ems.. This approach is a combina-
tion of a decomposition technique of .Dam':zig-Wolfe type and the proximal
point method.

2.1 The decomposition technique of Dantzig-Wolfe type.

We consider the problem

]]
inf {.z fi(xi)l.i Aixi-a} (2.1)
i=1 i=1
n. n'.
where x. € R? s fi is a closed proper convex function from R 1

m
te (-o,+], Ai is ¢ x n, matrix, and a € R". Let n = Zni
i=1

and x: = (xl,xz,...,xm).

Note that we allow fi to have the value +». In that way we
can incorporate constraints into the objective function.

First we need several definitions. Let f be a convex func-
tion defined on a subset S of R° and having values on [-®,+®],
The set

{(x,n) |xes, uer, w2i(x)}

is called the epigraph of f and is denoted by epi £. The effective

domain of £, denoted by dom f, is defined by

dom £: = {x|3u, (x,u) ¢ epi £} ;

we can easily see that
dom £ = {x|f(x) < &} ,
The conjugate function f* of £ is defined by

£x(p): = sup {(p,x) - £(x)}

-3~

BRI R

ionsn By i, ¥ _- < S e e p : . Rty 7- Pl *\,‘:‘,'#*w’i‘-.“. e TR T e

vhere (p,x) is the inner product of vectors p € R® and x e B".
A convex function is said to be closed if its epigraph is a

closed set in Rnﬂ.

r - Y

A convex function f is said to be proper if f(x) < » for

|
{
at least one x and f(x) > - for every x . j
It is easy to show that the conjugate function f* of any '
convex function f is a closed convex function and f* is proper
! if and only if f 1is proper. Now we return to our problem (2.1).

The linear constraints

3 Alxl + A2x2+...+Ahxm = a
are called coupling constraints. They interconnect m subproblems;

each has its own set of variables and constraints. Without the

E

coupling constraints, the problem (2.1) could be solved easily by
solving separately m small subproblems inf fi(xi) .

g The decomposition techniques for (2.1) are methods used to

. break up the coupling constraints, so that the resulting problem

i can be separated into smaller subproblems. Ome way to achieve that %

g purpose is to use the following well-known results of convex analysis.

Theorem 2.1

imA'{nri dom £3#¢ i=1,2,...,m (2.2) '

? 1 Under the conditions .

G dudtas te R e i gy,

po e

Vg faeee

S) SWLrpger A

where im Af is the image of IRL under AI and ri dom f; is the

interior of the effective domain of f; v

the infimum in (2.1) is equal to

m
sup {a,y) - I f;(Aiy)} . (2.3)
y i=1

It is attained for some X = (;1"'°’;m) if the problem (2.1)
is feasible and is +» if (2.1) is infeasible.

(For a proof see [Rockafellar,.1970, page 142].)

Define
T T
gly): = (a,y) -] £¥(Acy) . (2.4)
je1 * 1 '
Then (2.3) can be rewritten as
sup g(y) .. (2.5)

y

Note that the dimension £ of y is usually much smaller than n ,
the number of variables of (2.1). Given a value of y , we have to

compute

f;u{y) - sup {<A§y.xi> - £,(x,)} (2.6)
X.

for i =1,2,...,m; which are m small subproblems. The scheme to
solve (2.1) using the above resuits is: choose a value of y and
solve m subproblems (2.6) corresponding to that fixed y . If y
is an optimal solution for (2.5), stop. Otherwise ﬁpdate y and
solve (2.6) again. Repeat until an optimal solution of (2.5) is

obtained.

-5

!
3
?
1
:

Using this scheme, we have successfully decomposed the problem

m
(2.1) with n (=] ni) variables into a sequence of small sub-

i=]
problems having ni(i=1,...,m) and % wvariables. Because of the

following interpretations, the dual problem (2.5) is usually called
the master program and the decomposition technique above, the price-
directive approach. Set prices (values of y) on the common resources
(coupling constraints) and add the costs of these resources to the
objective function of each subproblem (terms (Azy,xi) in (2.6)). By
appropriately varying.these prices, one can cause the subproblems

to produce solutions whicﬁ yield an optimal solution for the original

problem. A diagram for the scheme is shown below.

Master Program

n

c

ol |2

& 3] o

. cf o 2

fod 8 o

S @

9

subproblem subproblem (°***{ subproblem

Figure 2.1 A decomposition scheme for large-scale systems.

Now, let us examine the conditions (2.2) to see if they are
reasonable. First, if fI are polyhedral (i.e. the epigraphs of
EI are polyhedral convex sets), then the conditions (2.2) can be

weakened to

(im A}:) N (dom £) # 6 i=1,2,....m.

e RV - a— v e

B SR R R

o

|
!
%‘

......

Second, consider the general linear programming problem

min (c,x)
s.t. Ax = a
x>0,
Its dual problem is
max (a,y)
s.t. ATy_gc .
The function £ in this case is defined by
(c,x) if x20

f(x): =
+o othervise,

then the conjugate function f* of £ is

f*(ATy) = gup {(ATy,x) - £(x)}
0 if ATy Lc

+® otherwise .

Thus the condition (2.2) in the case of linear programming is the
requirement that the feasible region of the dual problem is nonempty.
Finally, if f;(pi) is finite for every p; in Rni (it holds in
our applications), then (2.2) are satisfied trivially because the
effective domain of f‘i" is the entire space Rni .

The decomposition technique described above is very elegant, but

in applications there are several drawbacks:

wregeam——

T e

JE

i Yheane den

S G

T [N NSV

s AN i Y N ST

foxatc o

o

a ‘-u—l’ ’ S B '»: R b - m*_ - L . ek e " . .

(iii)

»» ,~‘ i o —‘.- R
(i) The function g(y) defined by (2.4) may not be finite for

some y . The set Y: = {y|-*<g(y)} may be considered as
the feasible region for the problem (2.5). But Y does not
have an explicit form because it is defined by m maximiza-
tion problems (2.6). (yeY if and only if (f'i"(Azy)<°° for
all i)).

g(y) may not be differentiable everywhere in the set Y .
Shapiro has a paper [1978] discussing this point in more
detail.

Given a y, the corresponding subproblems (2.6) may not have
unique optimal solutions. Consequently, arbitrary optimal
solutions xi(y*) of (2.6) corresponding to the optimal solu-
tion y* of (2.5) may not aggregate to form an optimal solu-
tion for the original problem (2.1) (although some such solu-
tion will do so).

We illustrate those points by a simple example:

min x1 + 2x2

subject .to xl L2
x, £ 3
X + x, = 4

x, unrestricted, X, 20 .

In this example %, and x, are real numbers

r : <
. xlex_z

1
fl(xl) = A

|+® otherwise

(2x, if 02x 23

f2(x2) = 9

|[+® otherwise

A =1, A, =1

f{'(pl) = gup {¢ pl,xl) - fl(xl)} = sup (p].--l)x1

xl x1_§2

+ if py <1

2(p1-1) if P 2 1

f‘g(pz) = s:p « pz,xz) - fz(xz)} = o<s;p<3(p2-2)x2
2 xS
' 0 if p, <2

3(p2-2) if P, 22

The images of A'{ and A'g are R, so the conditions (2.2) are
satisfied trivially. It is easy to compute g in this case:

- 0D ’y<1

gly) ={2y +2 . 1% 2

ﬁ

We can see that (i) if y <1 then g(y) is infinite; (ii) g is
not differentiable at the point y = 2; (iii) the optimal solution

of the problem (2.5) is y* = 2, the corresponding subproblem

sup (y*-l)xl

xr;Z

has a unique optimal solution xl(y*) = 2 but the subproblem

sup (y*-2)x2
Q§32;3
has an infinite number of optimal solutions. If we use the simplex
method to solve it, we have xz(y*) =0 or 3. Neither (2,0) nor
(2,3) is the optimal solution of the original problem, which is (2,2).
All of the drawbacks above will disappear if the functions fi

are strongly convex.

Definition. A function f defined on a convex S c lf‘ is said to

be strongly convex with modulus o > 0 if

F((1-Mx#hy) < (1-D)E(x) + Af(y) = BaA(1-2) || x-y]|
for all x,y € S and 0 < A< 1.
We have the following nice properties in the case that fi are

strongly convex.

Theorem 2.2
If the fi are strongly convex then the fz are finite every-
where and are Lipschitz continuously differentiable. Hence g is

also finite everywhere and is Lipschitz continuously differentiable.

-10~

RIS = et £ oA oot e T AP A 4 e

IR b Ty T BN T3 - 1y

SRR

LY SN

DML e it

The derivative g' of g at the point y is given by

KBS R o e vt

m
g'(y) =a- i.Z].A:i_(xi(y))

where xi(y) is the optimal solution of (2.6) for i = 1,2,...m.

If y* is the optimal solution of (2.5) then xi(y*) are optimal

solutions for the original problem (2.1).

5
g

: Remark. In this case, the conditions (2.2) are satisfied trivially

(For a proof see Robinson [1978]).

because the f{ are finite everywhere.

Strong convexity is a very attractive property, but unfortu-
nately, in applications there are several important cases, in which
the objective functions are convex but not stronglj convex. For ex-

ample, a linear functional is convex but not strongly convex; so is

a positive semidefinite quadratic functional. A question arises:

given a convex function can we somehow "strongly convexify" it, so
that we can apply the decomposition technique in a straightforward

manner? The answer is yes. It can be done by using the proximal
point method, but at the expense that we have to solve a sequence

of problems instead of just ome.

2.2 The Proximal Point Method

The notion of the proximal point was introduced by Moreau [1965].
A convergence proof of the proximal point method was given by Martinet

(1970, 1972], Rockafellar (1976 a, b) and Brézis and Lions [1978] gen-

=11~

eralized the results and gave the rate of convergence in two slightly

different versions. Rockafellar applied it to various types of math-

ematical programming problems. (The proximal point is also called the

resolvent method.)

We consider a general convex programming problem

min £(x) (2.7)

xe C

where f is a convex function defined on FP, having values in R
and C is a nonempty closed convex set in R”. Let wc be the in-

dicator function of the set C, 1i.e.,

0 if xe C o
lbc(x) = . i
+o otherwise .

Define F(x): = £f(x) + wc(x); then F is a proper closed convex

function and (2.7) can be rewritten as

min F(x) |
x€R i

t

The subdifferential O3F(x) of F at x is defined by
IF(x): = {teR"|F(z) 2 F(x) +(t,z-x) vzeR"} .

It is easy to see from the definition of OF that x* is an optimal
solution of (2.7) iff 0 € 9F(x*). Therefore, the minimization
problem (2.7) can be solved by finding a solution of a generalized
equation 0 ¢ dF(x). We now study the problem of finding a solution

for the generalized equation

0 ¢ T(x)
where T is a set-valued mapping. Let D(T) be the domain of T,
i.e. D(T) is the set of x such that T(x) #¢ . T is said to

be a monotone operator if
(x=x',y-y') >0 ¥y e T(x), ¥y' € T(x'), ¥x,x' e XT) .

T is said to be a maximal monotone operator if it is monotone and
its graph

6(T): = {(x,y)]|yeT(x)}

is not properly contained in the graph of any other monotone operator.
If F is a proper closed convex function, then the subdiffer-
ential OF is a maximal monotone operator (see [Brezis 1973]). Given

a positive number A, the resolvent Iy of T is defined by

3,(y): = (ram "y .

JX is a single-valued function and it is a contractiom, i.e.,
"Jk(yl)-JX(yz)" < "yl-y2" for all y, and y, .
(see also [Brezis 1973]). We have an important relation

0 € T(x) if and only if x = Jx(x) . (2.8)

The minimization problem (2.7) has thus been transformed to the prob-
lem of finding a fixed point of the resolvent JA of the subdiffer-

ential OF = 8(£+¢c) .

The proximal point algorithm generates for any starting point

xo a sequence {xk} obtained by the relation

k1 Ly) (2.9)

. M
where {Xk} is a sequence of positive numbers with Ak 2A>0vk.

In the case T = 3P, xk*l is the optimal solution of

win F(x) + ii: "x-xkuz ,

x
which is equivalent to

min f(x) + i%: “x-xknz . (2.10)

xeC

In practice, it is impossible to obrain the true optimal solution of
(2.10), so we would like to be able to choose xk*l as a point near

the optimal solution. We shall use the following approximation

criterion
([t -J)‘k(xk)ll <€ (2.11)
[_J
wvhere {Ek} is a sequence of positive numbers such that I <= .
k=1)

Theorem 23 ([Rockafellar, 1976a]) ‘

Let {xk} be any sequence generated by the proximal point al-

gorithm under the criterion (2.11). Suppose {xk} is bounded. Then

{x*} converges to a point x* satisfying O € T(x*) and

lim "xk’l - xk” =0. { 4
koo

Remark
(1)

(14)

The necessary and sufficient condition for the boundedness of
{z*} is the existence of a solution for 0 ¢ T(x) ([Rocka-
fellar, 1976a) (i.e. {x*} is bounded if and only if (2.7) has
optimal solutions).
Under the condition that 1'-1 is Lipschitz continuous at O,
the sequence {xX} converges to x* linearly. In additionm,
it Xk 4 = , the convergence is superlinear.

If there exists x such that 0 ¢ int T(x), then, with the

kel

exact form x = J)txk, the convergence is finite. This is

also true in the case of linear programming problems.

Application of the proximal point algorithm to linear programming problem

Consider a linear programming problem

ain (c,x)
subject to Ax = b

x20.

Suppose the probleam has an optimal solution. Let A be a positive

aumber. We have

Ce,m) & gy lla=a"l1? o Fx lx-t*ae)l1? - 3 lleli? o Ceua® .

Thus the problem

nin (e,x) 0-2-1x ||xz--:k||z

subject to Ax = b

x20

is equivalent to

min ||x - (xk-Ac)|l2

subject to Ax = b
x>0,
k+l . s s k . .
80 X is the projection of x =~ Ac onto the feasible region.

The proximal point algorithm in this case is the same as the gradient
projection method of Levitin and Polyak [1966] or as one of the
methods of feasible directions of Zoutendijk [1976] (but not as the
gradient projection method of Rosen [1960], since xk and xk+1 do
not need to be on the same face of the feasible polyhedron, as in

Rosen's method).

The figure below shows the sequence {xk} in an example.

objective
function increases

&

Feasible region

Figure 2.2 An example of the proximal point algorithm.

~16~

e e o

:

e S A T POy e

R TR AT o
- it " Ad - -G

s "

2.3 General algorithm

The decomposition technique and the proximal point method will
be combined to give a new algorithm for problems having the form

(2.1). For convenience, we rewrite (2.1) here.

min) £ (x.) (2.1)

T

i=1

m

subject to) Ajx; = a .
i=1
let D.: = dom £., f£(x): Z £ (x.), and
i i
i=1 *

C: = {x=(x TyseonsXy)IAlx AX, b tAX = al .

1’
Suppose (2.1) is feasible, i.e. Cn H D ¥ ¢ . We apply the

i=1 *
proximal point algorithm to solve (2.1). First we choose a sequence

of positive numbers {Ak}, which is bounded away from zero; and a

0 0)

starting point xo = (xg, XyseoosX), uhich is not necessarily

feasible. Suppose we have generated k points xl,xz,...,xk; then
xk+1 will be the unique solution of the following problem:
ain] (f,(x)+ —}: llx;=x511% (2.12)
i=l
subject to Z Ax. =a.
je1 * 1
1t |**1-x¥|| <c, then x**! is an optimal solution for the
original problem (2.1). Otherwise, replace <~ by &1 a (2.12)

and repeat the procedure.

17~
P . o ———— . _4..........._.__.41‘

The problem (2.12) above has a strongly convex objective func-
tion, so we can apply the decomposition technique in a straightforward

manner to solve it. That means transforming it to the dual problem

(2.5) which is

sup g(y)
y

defined by (2.4), in this case is

wvhere the function g,

g(y) = (a,y) + 2 min (£, (x,)+—§ ||x - k||2 - (A:y,xi)) . (2.13)

i=]l x

The derivative g'(y) is given by

g'(y) = a- Z A1x1 (2.14)

i=]

where ;i is the optimal solution of

. 1 k2 T
min (fi(xi)4~§x; “xi- i" - (Ay.x.)) (2.15)

X.
1

for i=1,2,...,m .

so that the dual problem

Note that (i) g(y) is finite for every 1y,

(ii) Once we com-

(2.5) is an unconstrained maximization problem.

pute m subproblems (2.15) to obtain the value of g(y), we have

the derivative g'(y) almost for free. Hence we can use any gra-
dient-type algorithm for uncunstrained maximization problems to

solve (2.5). In a schematic way, we have

Algorithm

0 0)

Choose a starting point xo = (xg,xz,...,xlll , set k=0,

1.0 Choose a point Yoi set j=0.

‘1.1 Corresponding to yj solve m minimization prob-
lems (2.15). Let ;i be the optimal solutions.

1.2 Compute g(yj) and g'(yj) as in (2.13) and (2.14).

1.3 1If "g'(yj)“ <€, go to step 2; otherwise, use some

set

gradient-type algorithm to find a new point yj+1,

j=j+1, go back to step 1.1.

If ";-xk” <€, x is an optimal solution; otherwise,

set xk+1 =x and k =k + 1, then go back to step 1.

Comments

(i) The fact that the starting point xo need not be feasible

is very useful. 1In applications, usually by investigating

the real situation from which the problem arises, we may have
a guess which is infeasible but close to the optimal solution.
Even if xo is infeasible, the points xl,xz,... are feasible
and f(xl) 2 f(xz) > Hence, we have upper bounds which
get better and better at each iteration.

We assumed that the problem (2.1) is feasible, so that

F(x) = £(x) + §.(x)

is a proper closed convex function and OF is a maximal
monotone operator. Consequentl&, the proximal point method
goes through. Suppose we do not know whether the problem is
feasible or not; can we apply the algorithm to solve the
problem? If the problem turns out to be infeasible, what will
" tell us that?

The algorithm can be used without knowing the feasibility
of the problem in advance. 1If the problem is infeasible then
the problem (2.5) is unbounded. This is to say that if the
primal problem is infeasible then the feasible dual is unbounded.

Tne ygeneral algyorithm will be used to solve block-angular
linear programming problems in the following section. We also
use the general algorithm to solve nonlinear, convex structural
engineering problems. The results are reported in [Kaneko and

Ha, 1980] .

3.1 The Problem

A block angular linear programming problem is a linear programming

prdblen having the form

min (cl,xl) +(c2,xz)+...+(cm,xm)

subject to

Dlxl = dl
D,x, =d, (3.1)
) Dx =4d
mm m

Alxl + A2x2 Fooot Amxm

x, 2 O,...,x“l >0

. n m Illo

whére xien", cieni, ‘dieRi,- aeR Ai is an

L x o, matrix, and Di is an m, X n, matrix for i =1,2,...,m .
An example of a real world problem that has the special form

(3.1) is the problem of a multidivisional organization. Each division

operates with considerable. autonomy; it has its own internal resources

for production, e.g., labor and machines. That accounts for the con-

straints Dixi = g, i=1,...,m . The divisions are coupled by the

1

fact that there are shared resources which all of the divisions use,

-

for example a raw material of limited availability. That gives rise

N
=
#
g

-21~

to the coupling constraints

Approaches to solving (3.1) can be roughly divided into two

categories: improvements of the simplex method and decomposition

In the simplex method the main computational difficulties

techniques.

are the updating of the inverse of the basis. Because the problem (3.1)

has a special structure, there are several ways to reduce the computa-

tional effort and/or the storage requirements of each simplex itera-

j tion. The principal improvements are generalized upper bounding tech-

niques ([Dantzig and Van Slyke, 1967]), basis factorization ([Winkler,

1974]), and LU decomposition ({Bartels and Golub, 1969] and [Forrest

and Tomlin, 1972]). The well-known paper of Dantzig and Wolfe [1960]

was the first paper to use a decomposition technique to solve (3.1).
The idea of the Dantzig-Wolfe decomposition is appealing but computa-
tional experiences are erratic ([Lasdon, 1978] and [Adler and Ulkucu,

1973]). Recently there have been several attempts to improve the com-

putational aspects of the Dantzig-Wolfe decomposition, such as the

-work of Ten Kate [1972], or the boxstep algorithm of Marsten et al.

[1975]. there are no reports on how those algo-

Up to the present,

rithms compare with each other.

3.2 The Algorithm

We are going to apply the general algorithm of Section 2 to solve

(3.1). First we need to rewrite (3.1) in the form (2.1).

_22-

- ¥

n.
Define D.: = {x,eR *|p.x,=d, x,20} for i=1,2,...,m.
i i iti i
Suppose Di # ¢ for all i (if there exists an i such that

Di = ¢, then the problem (3.1) is infeasible). Let

fi(xi): = <ci,xi) + ¢vi(xi) for i =1,2,...m then £, are

proper closed convex functions. The problem (3.1) now has the form

3 m
1K min Z fk(xi)
i=1

m
subject to) Ax. = a,
i=1

which is the same form as (2.1). Therefore, we can apply the general

R VDRI CHCEPER DY P Lo T o

algorithms to solve it. The subproblems (2.15), in this case, are
quadratic programming problems

i : 1 %2 aTe o)

; min (fi(xi)+2)\k ||xi xill (ALy,x.))

X,
1

L 1oy, _kp2_(,T
u;x.n « ciox,) Hbvi(xi) + T llxi X, l (Aiy,xi))
i

= min (7%- lei-xli(“2+(ci-A§y,xi))
X, k

(3.2),
subject to D.x, = d, 1
i"i i

The function g, defined by (2.4), can be proved to be a piecewise
quadratic function. We shall prove and use that fact later. For the

moment, we use a general nonlinear algorithm to solve the dual prob-

lem (2.5) which is

-23=-

- . - - P - P — _ e ‘:‘
H :
!

sup g(y)

yémz
with
T k(2 T 7
gly) =(a,y) -] min G ||x -xill +(ci—Aiy,x.>).
i=1 x.€D, 1
i1 .
The overall procedure can be summarized as follows: g
* Algorithm I

Step 0 Choose a starting point x0 . Set k=0,

Step 1

1.0 Choose a point Jo - Set j = 0.

a5 PSS

1.1 For given j and Y; solve (3.2)j for j =1,2,...,m.
Let ;i be the optimal solution and ;i be the optimal
objective value.

m
1.2 Compute g(y.) = (a,y.) -)z,

i
g (y) =a- Z A x,
i=1

1.3 1If yj is a maximizer of g, go to Step 2; otherwise,

use some gradient-type algorithm to find a new point

yj+1, set j = j + 1 and go back to Step 1.1.

Step 2 If ”;-xk” < €, accept X as (nearly) an optimal solution
for (3.1); otherwise, set 1 23 and k=k+1 , then go

back to Step 1.

vy -24-

Notes
(i) The iteration on xk will be called the outer loop and

that on yj will be called che inner loop.

o st

(ii) As mentioned in Section 2, if the problem (3.1) has optimal

solutions then the outer loop is a finite process, i.e.

—— e s

== is an optimal solution for some k . i

! . (iii) The fact that the starting point xo can be any point is ;

clearly an advantage of our algorithm over algorithms based

el A i s VARG Hadaia

on the simplex method. For the simplex-type methods, the

starting point needs to be not only a feasible point but

B Sareis Lomed

also an extreme point of the feasible region, and we also

need to know the inverse of the corresponding basis.

For a linear programming problem, the dual variables play an
important role. They have economic interpretations and they are use-]
ful in sensifivity analysis. If we solve a linear programming problem
bybour algorithm, can we obtain the optimal dual variables?. The]

answer is yes. We have the following proposition.

Proposition 3.1

Consider a linear programming problem

min (c,w) %
subject to Aw = b (3.3)

v 20.

-25-

fe e cor AR AL G

il s, TN s AN M 5t i
I

v . . Ve - . S e . -

Suppose it has an optimal solution ¥ . Then the quadratic program-

ming problem
. =-n2
min (c,w) + Tlx "w-w"

subject to Aw =D

w>0

has the Karush-Kuhn-Tucker point ([Mangasarian, 1969]) (w*,v¥),

where w* = w and v* is an optimal dual variable for (3.3).

Proof
The proof of the identity w* = v is given by relation (2.8) i

of Section 2. (3.4) is equivalent to

min (c-%;,w) + 2%(w,w)
subject to Aw =D

w>0.

Hence (w*,v*) has to satisfy the following relations b

c-rustwr-alvrzo0

wk>0 Avt=bD

(w*,(c-%;-r%w*-ATv*)) =0

Since w* = ;, those relations recv.c to

c - ATV*|= 0

w20 Aw=b

(3, c-ATy*) = 0

-26-

vhich are the complementary slackness conditions for (3.3). Thus v*

is an optimal dual variable for (3.3). 0O

3.3 Implementation and Computational Results

We now consider the details of how we solved the dual problem
(2.5) aund the quadratic programming problems (3'2)i' Recall that g(y)
is a Lipschitz continuously differentiable function, so to solve (2.5)
we can use any gradient-type unconstrained minimization algorithm. We
think that the best current algorithm is that of Broyden-Fletcher-
Golfard-Shanno (BFGS). We used the BFGS package of the Harwell Sub-
routine Library available at the Madison Academic Computing Center
and known as VA13A ([MACC, 19761]).

The core of our algorithm is the solution of small quadratic pro-
gramming problems (3.2)1; the number of quadratic programming problems
solved in a problem may be several hundreds. For that reason, we need
an efficient quadratic programming algorithm which can take the optimal
solutions of the problems of the previous iteration as the starting
point for the problems of the current iteration. Furthermore, we want
to exploit the fact that the matrices in the objective functions are
the identity matrices times a constant. First, we transform problems
(3.2)i into quadratic programming problems having only nonnegativity
constraints. Problems (3.2)i have the following form, except for con-

stant terms

. - 1
_min (c,u) + EX(“'“)
subject to Du =d {3.5)
u>0

where, for a fixed i, D = D,, d = di’ u=x, and

Using the orthogonal projector P onto the null space of D
and the ordinary dual of a quadratic programming problem, we can show that
(3.5) is equivalent to

max --2— (v,Pv) + (APC - u ,v)

v20
where u is an arbitrary solution for Du=4d.

The orthogonal projector P and the solution u can be computed
easily by using the Moore-Penrose generalized inverse and the QR
decomposition of D (for more detail see [Ha, 1980]). Note that, for

a fixed i , D and d do not change at all, so we need to compute

P and u only once.

There are several quadratic programming algorithms that can be
used to solve (3.6). There are two packages available at the Madison
Academic Computing Center of the University of Wisconsin-Madison,
namely QUADPR and LCPL, but with these packages we cannot use the op-
timal solutions of the previous iteration as the starting points for
the current iteration. The Best-Ritter algorithm ([Best and Ritter,

1976]) allows us to do that, so we use it to solve (3.6).

We wrote a computer program to test the algorithm, using Fortran V
on the UNIVAC 1110 of the Madison Academic Computing Center of the
University of Wisconsin-Madison. In the program we set the stopping

criteria as follows.

(i) Outer loop (Step 2). We set €, = 10-6 . If

1

H xk-#]._xk" <e

ksl K k
or [E e (I B

then xk+1 is considered to be an optimal solution for the prob-

lem.

(ii) Ioner loop (Step 1.3). We set €, - 1073 . The stopping cri-

terion in this case is that of VAI3A. That means a solutior is

accepted if a relative change of size €, in the components of

y does not reduce the objective value.

H‘ generated test problems by predetermining the size of the
problem, the size of blocks and the number of coupling constraints,
and then generating randomly data of the problem.- The matrices Ai
and Di are 90Z dense. Each entry of those matrices is a pseudo-
random number in the range [-50, 50] (obtained by the random number
routines of the Madison Academic Computing Center [MACC, 1978]). The
cost coefficients are pseudo-random numbers in the fange {-10, 101.
To be sure that the problem is feasible we randomly generated a se-
quence of integers ia between 0 and 5 (considered as a feasible
point) and then multiplied them with D. and A; to get the co-
efficients of the right hand side. The numbers of variables of test

problems and other information are shown in Table 3.1.

Problem Size Number of Number of Coupling
Problem Blocks Constraints
1 50 x 100 10 5
11 70 x 95 3 10
111 100 x 200 20 5
v 500 x 700 20 10

Table 3.1 Test Problems Statistics

We compared our algorithm with two linear programming

packages available at the Madison Academic Computing Center of the

University of Wisconsin-Madison, namely SIMPLX and FMPS-LP ([MACC,

1977 and 1978b]). SIMPLX uses the two-phase, revised simplex method

with the inverse of the basismatrix stored explicitly. FMPS-LP is a

: part of the UNIVAC Functional Mathematical Progr@ing System. It uses
variants of the revised simplex method with only nonzero elements of
the constraint matrix stored explicitly, and the inverse stored in the

. product form. In all cases, our algorithm gave the same optimal solu-
tions (up to five significant figures) as the linear programming pack-
ages. We kept A unchanged from one iteration to the next of the outer
loop, but we ran the problems with different A . Computational results
Are shown in the following tables. CPU time includes time to collect

all relocatable etements and to produce an executable absolute element,

and time for input/output. It is measured in seconds. The starting

¢t R e S

point xo and the point Yo were taken to be the origin,

i
i
!
i
i
i
H
{

é‘:’

Problen

1 11 111

1 | 104.0 48.5 219.2

10| 23.7] 68.8® | 3.5

20 19.2 99.5 34.1
30 15.1 80.0 27.4
40 13.2 | 100.0 24.9
50 12.6 | 117.5 47.7
60 10.5 } 101.5 23.8
70 13.3 | 126.0 24.5
80 10.5 | 105.5 20.5
90 | 10.2] 170.8 43.5
100 9.7 | 102.5 28.6

Table 3.2 CPU Time (secs) of Test Problems

Compare to CPU time of the linear programming packages.

11

Table 3.3 CPU Time (secs) of Linear Programming Packages

Because of the size of the problem and of the limitation of our
budget, we decided to run only one rum with A = 10.

There is noise for A > 10, i.e. it came near the optimal solu-
tion and then moved around that point erratically.

SIMPLX cannot handle a problem of that size (500 x 700).

The problem needed 5 runs to reach the optimal solution, so the
CPU time included time for putting data and current tableaus on

a file, and retrieving them. The actual time of solving the prob-
lem should be less than 3617.0 seconds, but certainly it is much

longer than 724.5 seconds, the time that our algorithm took to

solve the problem.

these tables we have several observations.

Comparing to FMPS-LP, our algorithm gets better when the size of
the problem increases. For Problems I and II, none of the runs

of our algorithm is faster than FMPS-LP; for Problem III (size

100 x 200), there are several A with which our algorithm is

faster than FMPS-LP; for Problem IV our algorithm is clearly

far superior to FMPS-LP. Certainly the regular SIMPLX is not
comparable to our algorithm.

Our algorithm is not very good in the:case of Problem II, which
has 3 big blocks (the sizes of blocks are 15x 25, 20x 30, and

25%40). That is expected. The core of our algorithm is solving

quadratic programming problems (3.2) again and again. If we have,

say 10 smaller subproblems instead of 3 subproblems of the above
sizes, we would have a much better time, since the computational
time tends to grow polynomially with respect to the size of the
problem.

The values of XA , which give the best computational times, vary
with problems: they are 100, 1 and 80 for problems I, II and III
respectively. In theory, the number of iterations of the outer
loop decreases as A increases (in fact we can prove that if we
use a8) sufficiently big, we could reach an optimal solution in
one iteration of the outer loop). But by taking A too large,
we may have numerical difficulties and may not be able to solve
the problem at all. Fewer iterations of the outer loop does not
mean less computational time as it can be seen on Table 3.2. The
other drawback of a large A is the loss of accuracy caused by
numerical errors. A natural alternative seems to be: taking A
initially large then reducing it gradually. But that idea did
not work well. We have run our test problems with different

schemes of changing A from one iteration to the next and we

&

found that the computational results are very erratic. That is

understandable: since we have not been able to choose A opti-

mally for a given problem, we should not expect to know how to
change) iteratively to get a better computational time. We
feel that the question of choosing and/or changing A itera-
tively can only be answered after an extensive use of our algo-
rithm. For the moment we suggest to use A fixed with a value
in the range from 10 to 50; if numerical difficulties are en-

countered reduce X .

As mentioned earlier one of the advantages of our algorithm is
that the starting point x0 can be anywhere. Suppose we know approx-
imately where the optimal solution should be; then the computation
time should be better. We ran our test problems with the starting
points taken to be the known optimal solutions, rounded to the nearest
integer. The results, which are better as would be expected, are

shown in the following table.

I I1 III

starting point x° = 0] 23.7 | 68.8 | 34.5 | (A=10)

starting point xo
near optimal solution 8.4 | 58.7 | 24,2

Table 3.4 CPU Time of Test Problems with Different Starting Points

-34~

s e s AT 57 i i mimerc

RRP RSN

e o AP e B 3

Lo o b al s e L T .
o g TV T . .. -3 .
.‘ S camope-- - m—— N o — . .

3.4 A Variant of Algorithm I (Method of feasible directions)

We know that, if the problem (3.1) has optimal solutions, then
the proximal point algorithm (outer loop) will generate a finite
sequence of feasible points {xl,xz,...,xk} such that f(xjﬂ') < f(xj)
for j=1,2,...,k-1, and xk is an optimal solution for (3.1). But
if the problem is un'bounded, then the sequence "{x*} is infinite and
||xk|| +® as k+ o, For practical purposes that is undesirable;
we want to have a simpler criterion for the case of unboundedness. By
exploiting the linearity of the problem we can modify the proximal
point method so that it either obtains the optimal solutiom or detects
the unboundedness in a finite number of iterations. We set A fixed

and replace Step 2 of Algorithm I by

Step 2' 1If ll;-xk|| < €, accept x as an optimal solution for (3.1);

otherwise, for k=1 set a=1, for k > 1 compute
k
(x)i

a = min for indices i such that (xk-x)i>0 .(3.7)

(x -;)i

1f£ (xk-;)ilg 0 for all i , the problem is unbounded.
Otherwise, set L a(;-xk) and k= k + 1 , then

go back to Step 1

Proposition 3.2

The modified algorithm with Step 2' above either detects the un-
boundedness of the problem or finds an optimal solution in a finite

number of iterations of the outer loop.

-35=-

Proof

For k21 x* is feasible. By the interpretation of the prox-
imal point method given in Chapter 2, x is the projection of xk-lc
onto the feasible region. If we consider Ac as the cost coeffi-

cients instead of c , then x is the projection of the negative of

the gradient at xk onto the feasible region. o given by (3.7) is

the maximum stepsize. Therefore, the outer loop procedure (Step 2')
is a method of feasible directions applied to linear programming prob-
lems. The finiteness of the method is proved by Zoutendijk [19761].

We used the modified algorithm to solve our test Problems I and

we had the following results.

A I II1
35.8(1)

81.4
25.9 45.9
20 | 20.0 30.5
30 | 16.5 33.8
40 | 12.3 29.9
50 | 14.2 104.3¢2)
60 | 16.4 46.3
70 | 18.1 18.6
80 | 10.1 19.9
90 | 12.8 39.4

100 | 12.9 45.1

Table 3.5 CPU Time of Test Problems Using the Modified Algorithms

-36-~

T AR S D A

(1) For all A, except A = 80, it came near the optimal solution
then moved around that point erratically.
(2) It came near the optimal solution in 22 seconds then went away
again.
We also used the modified algorithm to solve an unbounded prob-
lem. The problem is of size 50 X 90, with 7 b.ocks and 10 coupling
constraints.

Modified Algorithm With A=

SIMPLX | FMPS-LP
10 20 30 40 50 60 70

47.6 | 41.8 | 33.6 | 36.2 | 35.2 | 29.6 | (1) 44.7 11.0

Table 3.6 CPU Time for An Unbounded Problem

(1) Numerical errors.

The modified algorithm has the advantage of detecting the un-—
boundedness, but it is not very stable when getting near the optimal
solution. The reason is that near optimum xk and x are very close
together, so numerical errors in xk may give much bigger errors for

("k)i K+l _ K -k
the quotient —e—— ; consequently x =x +a(x-x) may be
(x - x),
i
a point farther from the optimal solution than xk . Hence we rec-
ommend using Algorithm I for problems for which the existence of opti-~
mal solutions is known beforehand. Otherwise, we suggest using the

modified algorithm, but switching back to Algorithm I when the dis-

- k .
tance between x and x is small.

-37-

o

3.5 A Specific Algorithm for the Dual Problem

Algorithm I is a straightforward application of the general algo-
rithm in Section 2 to the block angular linear programming problem
(3.1). We have not taken advantage of the linearity of the problem;
in particular the algorithm used to solve tﬁe dual problem sup g(y)
is suitable for general nonlinear optimization problems. Geoffrion
(1970b] observes that the dual of a quadratic programming problem taken
with respect to a subset of the constraints is a piecewise quadratic
function. That is exactly our case and we are going to give a proof

of the above observation. We consider the problem

min {c,x) + %(x,Cx)
subject to Dx =d
Ax = a

x>0.

Suppose C 1is symmetric and positive definite and at every point of
the set {x;OIDx=d} , the gradients of the active constraints are
linearly independent. As before, for a given y we define g(y)

to be the objective value of the problem

min (c,x) + %(x,Cx) + (y,a~-Ax)

subject to Dx = d

x2>20.

s L A et

Proposition 3.3

-gly) 1is a piecewise quadratic function.

Proof

For a fixed y,, let x(yo) be the optimal solution of (3.9)

corresponding to Yo and define the set of indices M by
M:= {1|x(y0)i =0} .
Consider the problem

min {c,x) + %(x,Cx) + (y,a-aAx)
subject to Dx = d (3.10)
x; = 0 for ieM.
The problem above is feasible since x(yo) satisfies the constraints
Let x(M,y) be the optimal solution and v(M,y) be the multipliers.
Let J be the index set of v(M,y) corresponding to the constraints

x. =0 for ieM.
i

Let K be the matrix representing these constraints; that is K is
a matrix of |M| rows, with the k-th row having an entry of 1 in
the column corresponding to the k-th element of M and zero in all

other entries. Define

then the constraints of (3.10) can be rewritten as

Dx = d

-39-

s b BT T PR TR L s s acmamem e

ipag S - . PRI - » -
| - — -)
and the Karush-Kuhn-Tucker conditions for (3.10) are

; c +Cx ~ A?y - 6Tv =0 ?
Bx - d]

? or 2

C -ﬁT X ATy -c

1B R = |, . (3.11)

3 D 0 v d

]

Under our assumptions the matrix above is invertible; consequently

x(M,y) and v(M,y) are affine functions of y .

5 At w53 It R i

x(M,y) and v(M,y), being the optimal solution and the Lagrange
multipliers of (3.10), need not be the optimal solution and the La- |

grange multipliers of (3.9). But if
x(M,y) > 0 and vj(M,y) 20 for jeJ,

then, by setting all of the Lagrange multipliers corresponding to the
constraints X, 2 0 i éM equal to zero, we can verify easily that
x(M,y) and v(M,y) satisfy the Karush-Kuhn-Tucker conditions for

(3.9). Hence =x(M,y) in this case is the optimal solution for (3.9).

Conversely, if x(M,y) and v(M,y) are the optimal solution and the
Lagrange multipliers of (3.9), then certainly we have x(M,y) > 0 and

vj(l‘l,y) >0 for jeJ . The set

G AT

Q= {y|x(M,y)20 and vj(M,y)z() for jeJ} (3.12)

-40-

S-LIPNPR PSR

is a polyhedron. On each such polyhedron g(y) is a quadratic func-
tion. Hence g(y) 1is piecewise quadratic.

Using the above proposition we have another algorithm to solve

UL s - S r b T e re R

(3.1).

]

Algorithm II

£ e i Bt e vt D AR I L A M A A A ki

Step 0 Choose any point x0 as the starting point, set k = 0 .

Step 1

1.0 For given k and xk , choose Yo and set j =0 .

1.1 Solve
1 k 2 H
min Wllxi-x" +{c, -A.y.,x,)]
s.t. D;x. =d, (3.13)

i
for i=1,2,...,m.

oD inae astia:

Let ;i be the optimal solution and A be the corres~

ponding multipliers. Let x = (;1’;2""’;m) . !
1.2 Determine the index set M ='{h/(;)h==0} and the corres-

ponding polyhedron Q defined by (3.12). Solve the

quadratic programming problem

sup g(y) . (3.14)
Y€QM {

If it is unbounded, then the original problem (3.1) is in-

feasible. Otherwise, let y be the optimal solution.

e it Soiaif T e a1 3 e o b Sl

1f |lg'(y)]| < € go to Step 2. Otherwise compute

where o is a real number such that g(yj+1) > g(y) .

Set j = j+1 and go back to Step 1.1.

Step 2 Compute x(M,y) by (3.11). If JIx(,5) -x*|]] <€, x(M,7)
is an optimal solution for (3.1). Otherwise set =1 . x(M,y)

and k =k + 1, then go back to Step 1.

Remark

The partition of the space éf y 1into polyhedra is finite and in
the process of finding the optimal solution of the dual problem a poly-
hedron is never repeated. This is true because in Step 1.3 we require
g(yj+1) > g(y) and y is the maximizer of g(y) on the polyhedron
containing yj, so that polyhedron is never repeated. Thefefore, the
inner loop is a finite procedure.

We now explain in detail how to determine the polyhedron QH in

Step 1.2. Recall that QM is given by
QM'{ylx(M,y)?_O and vj(M,y)go jeJ}

where x(M,y) and v(M,y) solve the system of linear equations (3.11).

We have

A -1 - -]lA A =]lA -=la - g P A =1l -
-DT c 1-c IDT(DC 1DT) 1Dc 1 C IDT(DC 1DT) 1

-
0 -(bc” 18Ty 1L o

In our case C = A-II 80 we can simplify the above expression to
obtain

I/A - DT Az - BE(5pT) 1) pT¢ppT) !
5 o -(56T) 715 T 88Ty

-1

x /A - BT A?y -c

v ﬁ 0 3 A
x(,y) = A(L-D(DBY) B (ATy - ¢) + DT(HBT)1d
v(4,y) = -G8 ATy -) + T (BB

Let P be the orthogonal projector onto the null space of D and

-

AP ~
D be the generalized inverse of D . We know that

T -ID

P =1-D(DD")

5 - BTN,

x(M,y) = ATy -¢) + B*3

(3.15)

vid,y) = -0H T ATy ~c) + %(BBT)‘IS)

Because x(M,y) is the solution of (3.11), xi(H,y) =0 for

all i ¢ & . Hence QM can be expressed explicitly as

Q - {yl(lsr(ATy-c) +ﬁ*3)i 20, i¢M and

-1a

BTy -+ BN D, 20, jea

Using the expression (3.15) of x(M,y) we have an explicit expression

for gly), y e Qy -

T O F T e L T g

g(y) = 2(x(M,7), x(M,30+ (e, x(M,3)) + (y,a=-ax(i,y))
AdA

d . = - 23Ty, 84Ty + (y,04 MaBe - AB'D)

+ (c,ﬁ+a-kf’c) + 2%(5*34&,6“34%)_

After deleting constants in the objective function, we see that the

problem (3.14) is equivalent to

sup -3(BaTy,BA"y) + (5,04 MaPe - A5*D)
) 5, T ada i

subject to (AP(A'y-c)+D d)i 20 ieM

(-0HTaTy - c) + %(BST)‘IE)J. >0 jed.

In our original problem (3.1), the matrix - D has the block angular

form

The matrix K representing constraints x; = 0 also has the same

It is easy to see that

pe
ATAA

-1
DI(DIDI)

i
1

i

!

H

5

% Hence the block diagonal structure is preserved vhen we compute D

|

i and P .

g In updating y from yj to yj+1, we go from one polyhedron

: to another and we have to update ﬁ* and P . Usually the set of

% active constraints changes by just a few indices; consequently, we

? ' have to update only a few small matrices. By using the QR composition
f . of Dl’Dz""Dn that we already have, the updating of D* and P is

much more efficient ([Gill et al., 1974]).
We wrote a computer program to test the Algorithm II; again we

used our test Problems I and III. We had the following results

A I II1

10 | 9.0 | 19.0
20 | 5.8] 17.3
30| 5.0] 17.4
40 | 4.9 | 16.7
50 | 4.2 | 16.3
60 | 4.3 | 15.1
70 | 4.2 | 15.8
80| 4.3]| 15.0
90 | 3.9 | 14.4

100 | 4.0 | (1)

Table 3.7 CPU Time Using the Algorithm II

=46~

(1) Numerical errors.

We used the new system at MACC, the UNIVAC 1100/80, so these
numbers are not comparable to the numbers of the Tables 3.2 and 3.3
vhich we obtained by using the old system, the UNIVAC 1110. The new
system is approximately 2.5 times faster than the old one, so to com-
pare the algorithms we need to multiply the numbers of Table 3.7 by
a factor of 2.5. Then we can see that, for the Problem I, the Algo-
rithm II is a little bit better then the Algorithm I, but, for the
Problem II1I, the Algorithm Il is not as good as the Algorithm I.

We think that the Algorithm II can be improved computationally.
For the moment, in finding the maximizer for the piecewise quadratic
function g(y) we have not been able to use the optimal solution for
gly) in one piece (polyhedron (3.12)) as a starting point for the
problem in the next piece (problem 3.14)) (because, by choosing y. 1

J+
as in Step 1.3, we are not sure that the polyhedron containing yj+1
is adjacent to that of yj). Each time we solved the problem (3.14)
we had to start from scratch, i.e., we had to use the simplex algorithm

to find the starting point. That really slowed down the whole process.

R e Ay e o A e R - g vgtte

-

ACKNOWLEDGEMENTS

This research is a part of the author's doctoral thesis submitted to

the Department of Industrial Engineering at the University of Wisconsin-

Madison under the supervision of Professor Stephen M. Robinson. I would

like to express my sincere gratitude to Professor Stephen M. Robinson

for his advice and support.

References

Adler, I. and Ulkucu (1973), :0n the number of iteration in Dantzig-Wolfe

decomposition algorithm,” in Decomposition of Large-Scale Problems,

Himmelblau (ed.), North Holland.

Bartels, R. H. and Golub, G. H. (1969), "The simplex method of linear
programming using LU decomposition,," Communications ACM, Vol. 12,
pp. 266-268 and 275-278.

Best, M. J. and Ritter, K. (1976), "An effective algorithm for quadratic
minimization problems,"” Math. Res. Center, University of Wisconsin-
Madison, Tech. Rep. #1691,

Brézis, H. (1973), Opérateurs Maximaux Monotones, North-Holland.

Brézis, H. and Lions, P. L. (1978), "Produits infini de Résolvantes,"”
Israel J. Math., Vol. 12, pp. 329-345.

Dantzig, G. B. and Van Slyke, R. M. (1967), "Generalized upper bounded
techniques for linear programming," J. Comp. System Sci., Vol. 1, pp.
213-226.

Dantzig, G. B. and Wolfe, P. (1960), "Decomposition principle for linear
programs,” Oper. Res., Vol. 8, No. 1, pp. 101-111,

Forrest, J. J. H. and Tomlin, J. A. (1972), “Updated triangular factors of
the basis to maintain sparsity in the product form of simplex method,"
Math. Prog., VOl. 2, pp. 263-278.

Geoffrion, A. M. (1970), "Primal resource-directive approaches for
optimizing nonlinear decomposable systems,” Oper. Res., Vol. 18, No. 3,
pp. 375-403.

Gill, P. E. et. al. (1974), "Methods for modifying matrix factorizations,"

Math. Cclllp., Vol. 28, PP 505-5135,

-4 9=

Ha, C. D. (1980), Decomposition methods for structured convex programming,

Industrial Engineering Dept., Univ. Wisconsin-

Ph. D. Disgsertation,

Madison.

Kaneko, I. and Ha, C. D. (1980), "A Decomposition procedure for large scale

optimal plastic design problems,” Math. Research Center, Univ.

Wisconsin-~' .dison, Tech. Rep. #2075.

Lasdon, L. S. {1978), "Large—scaie programming,” in Handbook of Operations

Regearch, Moder and Elmaghraby (eds), Van~Nostrand.

Levitin, E. S. and Polyak, Bs. T. (1966), "Constrained minimization

-

methods," U.S.S.R. Comp. Math. and Math. Physics, Vol. 6, No. 5,

PP 1-50.

1976), Nonlinear programming

Madison Academic Computing Center

routines, reference manual.

1977), Linear programming routines,

Madison Academic Computing Center

reference manual.

Madison Academic Computing Center (MACC, 1978a), Random number routines,

reference manual.

1978b), FMPS-LP, reference manual.

Madison Academic Computing Center (MACC,

McGraw-Hill.

(1969), Nonlinear Programming,

Mangasarian, O. L.

(1975), "The box-step

Marsten, R. E., Hogan W. W. and Blankenship, J. W.

method for large-scale optimization," Oper. Res., VOl. 23, No. 3.

Martinet, B. (1970), "Regularisation d'inéquations variationnelles par

approximations successives,” Rev. Fr. Inf. Rech. Oper., R. 3,

PPe 154-159.

Martinet, B. (1972), "Détermination approchée d'un point fixe d'une

application pseudo-contractante,” C. R. Acad. Sci. Paris, Tome 274,

serie A-163.

Morreau, J. J. (1965), "Proximité et dualité dans un espace Hilbertien,"
Bull. Soc. Math. Fr., vol. 93, PP 273-299,
Robinson, S. M. (1978), Private communication.

» ckafellar, R. T. (1970), Convex Analysis, Princeton University Press.

Rockafellar, R. T. (1976a), "Monotone operators and the proximal point
algorithm," SIAM J. Control Opt., VOl. 14, No. 5.

Rockafellar, R« T. (1976b), "Augmented Lagrangians and applications of the
proximal point algorithm in convex programming," Math. 0. R., Vol. 1,
No. 2.

Rosen, J. B. (1960), "The gradient projection method for nonlinear
programming, part I: linear constraints," J. SIAM, Vol. 8,
pp. 181-217.

Shapiro, J. F. (1978), "Nondifferentiable optimization and large scale
linear programming," in Int. Symp. on Syst. Optim. Anal., Bensoussan and
Lions (eds), Rocquencourt, France.

Ten Kate, A. (1972), "Decomposition of linear programs by direct
distribution," Econometrica, Vol. 40, No. 5, pp. 353-363.

Winkler, C. (1974), "Basis factorization for block angular linear programs:
unified theory of partitioning and decomposition using the simplex
method," Tech. Rep. SOL 74019, Systems Optim. Lab., Stanford

University.

Zoutendijk, G. (1976), Mathematical Programming Methods, North Holland.

SECURITY CLASSIFICATION OF THIS PAGE (ithen Data ¥ntered)

REPORT DOCUMENTATION PAGE DR R ORI BN e

1. REPORT NUMBER 2. GOVT ACCESSION NO| 3. RECIFIENT'S CATALOG NUMBE

214 |4 MRT-TSRALMAD- 40191304

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

_B DECOMPOSITION METHOD AND ITS APPLICATION TO Summary Report - no specific
"BLOCK ANGULAR LINEAR PROGRAMS 2 reporting period
;j <. P - 6. PERFORMING ORG. REPORT NUMBER

SIS

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

| "cu Duong Ha |5 DAAG29-80-C-0041 *

9. PERFOR‘MWGMLEAHON NAME AND ADDKESS 10. PROGRAM ELEMENT. PROJECT, TASK
. . AREA & WORK UNIT NUMBERS

Mathematics Research Center, University of

610 Walnut Street Wisconsin 5~ Operations Research

Madison, Wisconsin 53706

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office “ , January 1981

P.O. Box 12211 13. NUMBER ©F PAGES / N,
j,)/ ~ o~

Research Triangle Park, North Carolina 27709 51
14, MONITORING GENCY NAME & ADDRESS(if dilferent from Controlling Oflice) 15. SECURITY CLASS. (of thie repost) -

V' Tezhki)za/) <opm s UNCLASSIFIED

/f/;t_)

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on *everse side il necessary and identily by block nuaber)

Decomposition method, convex programming, large scale systems, linear
pProgramming

20, ABSTRACT _(Con(lnuo on rerversy side If necessary and identify by block fuxzbor) .
In this paper we propose and develop techniques for solving structured,

large-scale convex programming problems. The procedure is a combination of a
decomposition technique of Dantzig-Wolfe type and the proximal point method.
The proximal point method is used to overcome the drawbacks of the decomposition
technique,

The procedure is then used to solve block angular linear programming problemsd
By exploiting the linearity of the problem we have several variants of the
procedure,

DD , 5%, 1473 EDITION OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED =~ 7 J P j))'/,

SECURITY CLASSIFICATION OF THIS PAGE (When Data l:!o:od)

