
r A-AO" 362 WISCONSIN UN V-MADISON MATHEMATICS RESEARCH CENTER F/6 12/1
A ECOWPOSITION METHOD AND ITS APPLICATION TO BLOCK ANGULAR LIN--ETC(U)

IJAN 81 C D HA 0AA629-8O-C-0041

UNCLASSIFIED MRC-TR2174 N

F ND"EDhhh

MAC Technical Suimary Report #2174

A DECOMPOSITIONI METHOD AND ITS
APPLICATION TO BLOCK ANGULAR LINEAR

~ PROGRAMS

CU Duong Ha

0A

IMathematics Research Center
University of Wisconsin- Madison
610 Walnut Street DTIC
Madison, Wisconsin 53706 E E T

MAY 2 7 1981D

January 1981

Received November 7, 1980

Approved for public reses
Distribution unlimited

g~jsponsored by
mJU. S. -Army Research Off ice

p.0 Bo 12211K ksearch Triangle Park
X w hCarolina 277098

1525815 j2a2

I

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

A DECOMPOSITION METHOD AND ITS APPLICATION
TO BLOCK ANGULAR LINEAR PROGRAMS

Cu Duong Hat

Technical Summary Report #2174
January 1981

ABSTRACT

In this paper we propose and develop techniques for solving structured,

large-scale convex programing problems. The procedure is a combination of a

decomposition technique of Dantzig-wolfe type and the proximal point method.

The proximal point method is used to overcome the drawbacks of the

decomposition technique.

The procedure is then used to solve block angular linear programming

problems. By exploiting the linearity of the problem we have several variants

of the procedure. 1

AMS(MOS) Subject Classifications: 90C06, 90C25 Accession For

Key Words: Decomposition method, convex programing, NTTS CRA&I

large scale systems, linear programming rTIC TAB 0
U:'nnounced 0

Work Unit Number 5 - Operations Research justiricatin-

By-
Distr.batian/

Availability Codes

Avail and/or
Di SpecIial

t Current address: Mthtmatical Scienj Do Dart""pnt
Virginia Comonwealth University
Richmond, VA 23284

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

SIGNIFICA1CS AND MXPLANATION

Optimization problems which arise from real-world situations are usually

complex and large. It is almost impossible to use general methods to solve

these problems. Fortunately, these problems always have certain special

features, and by exploiting these special features we can obtain an optimal

jsolution for the problem. The decomposition method is one of the solution

techniques that make use of the special structure of the problem. The idea of

the decomposition method is to break up a problem into a sequence of simpler

subproblems, and then obtain the optimal solution for the problem from the

optimal solutions of the subproblems.

In this paper we discuss a decomposition technique and its disadvantages,

and then propose to use the proximal point method to overcome these

disadvantages. We also apply the proposed procedure to solve block angular

linear programming problems. An important application of block angular linear

programing is the problem of a multidivisional organization: The divisions

of the organization operate almost independently of each other, they are only

coupled by the fact that they share a few scarce resources. The decomposition

method sems to be an appropriate approach for solving this type of problem.

The responsibility for the wording and views expressed in this descriptive
sumary lies with NWC, and not with the author of this report.

A DECOMPOSITION METHOD AND ITS APPLICATION

TO BLOCK ANGULAR LINEAR PROGRAMS

CU DUONG HAt

1. Introduction.

A general mathematical programming problem with more than a few hundred

variables is not easy to solve, especially in nonlinear cases. Fortunately,

large problems, which arise from practical applications, nearly always have

some special features; for example, sparseness of the matrix of constraints or

block angular structure of the problem. In general, it is only by exploiting

these special structures that we can solve large-scale problems.

The idea of decomposing a problem into a collection of simpler problems

is not new in mathematics. However, only in recent years have decomposition

techniques been extensively developed for mathematical programming, primarily

to take advantage of powerful computer systems. Decomposition approaches are

essentially suitable for systems composed of several smaller subsystems which

are independeflt of each other except for a few weak connections between

them. It seems natural, then, to break up these weak interconnections and

handle each subsystem independently, obtaining the solution for the overall

system from the solutions of the subsystem.

tCurrent address: Mathematical Sciences Department

Virginia Commonwealth University
Richmond, VA 23284

Sponsored by the United States Amy under Contract No. DAAG29-80-C-0041.

In Section 2 we discuss the underlying idea of a decomposition

technique of Dantzig-Wolfe type applied to problems of the form

m minf{ I f, i x>i IA i x i.a)
i-i i-i

where, for fixed i , x. is a vector, A. is a matrix, and f. is

a convex function having values in the extended real line (--,+]•

This decomposition technique is very interesting but it has several

drawbacks in some important cases. To overcome these drawbacks we

combine the proximal point method with the decomposition technique

and propose a new decomposition procedure to solve convex, structured

large-scale problems.

Section 3 deals with the application of the general procedure

in Section 2 to block angular linear programming problems. An example

of this type of problem is the problem of a multidivisional organiza-

tion. Each division is operated independently from the others; the

only linkage between them is that they all share a few scarce re-

sources. By exploiting the linearity of the constraints we can

modify the general algorithm and have specific algorithms for block

angular linear programming problems. Computational aspects of the

algorithms are reported; they show that, for large problems, our

procedure is better than some other methods.

-2-

2. Decomposition method

In this section we shall present a new approach to solved

structured convex programming problems. This approach is a combina-

tion of a decomposition technique of Dantzig-Wolfe type and the proximal

point method.

2.1 The decomposition technique of Dantzig-Wolfe type.

We consider the problem

* m U
inf I f(xi) (A.x.-a) (2.1)

n. n..

where xi e I 2 f. is a closed proper convex function from it

Sto (,mA. is I x n. matrix. and. a e Let n = n.

~~and x: ((,2..,xm)

Note that we allow f. to have the value 4 . n that way we

can incorporate constraints into the objective function.

First we need several definitions. Let f be a convex func-

tion defined on a subset S of R n and having values on

The set

((x,P) Ixes, P-EI, PZA&(x))

is called the epigraph of f and is denoted by epi f. The effective

domain of f, denoted by dom f, is defined by

do f: - {xI[p, (x,p) c epi f}

we can easily see that

dow f - (xlf(x) < 0)

The conjugate function f* of f is defined by

f*(p): - sup {(px) - f(x)}
x

-3-

where (px) is the inner product of vectors p c and x c Rn

A convex function is said to be closed if its epigraph is a

closed set 4n in + l .

A convex function f is said to be proper if f(x) < w for

at least one x and f(x) > for every x

It is easy to show that the conjugate function f* of any

convex function f is a closed convex function and f* is proper

if and only if f is proper. Now we return to our problem (2.1).

The linear constraints

A,+ Ax+-.A x - a
22 m m

are called coupling constraints. They interconnect m subproblems;

each has its own set of variables and constraints. Without the

coupling constraints, the problem (2.1) could be solved easily by

solving separately m small subproblems inf f (x.

The decomposition techniques for (2.1) are methods used to

break up the coupling constraints, so that the resulting problem

can be separated into smaller subproblems. One way to achieve that

purpose is to use the following well-known results of convex analysis.

Theorem 2.1

Under the conditions

im A. r i ,2..., (2.2)

-4-

T £ T
where im A. is the image of m under A and ri dom f* is the

interior of the effective domain of f* ,

the infimum in (2.1) is equal to
m

sup {(a,y) _ I fCAy)) . (2.3)
i-i

It is attained for some x = (l'.., if the problem (2.1)

is feasible and is +- if (2.1) is infeasible.

(For a proof see [Rockafellar,.1970, page 142).)

Define

m

g(y): (a,y) - I f.(Aiy) • (2.4)

Then (2.3) can be rewritten as

sup g(y) • (2.5)
~Y

Note that the dimension t of y is usually much smaller than n

the number of variables of (2.1). Given a value of y , we have to

compute

f(A~y)- sup {(Aiy,xi) - fi(xi)} (2.6)
X.

for i - 1,2 ,...,m; which are m small subproblems. The scheme to

solve (2.1) using the above results is: choose a value of y and

solve m subproblems (2.6) corresponding to that fixed y . If y

is an optimal solution for (2.5), stop. Otherwise update y and

solve (2.6) again. Repeat until an optimal solution of (2.5) is

obtained.

-5-

Using this scheme, we have successfully decomposed the problemm

(2.1) with n (= n.) variables into a sequence of small sub-

problems having n.(i1,...,m) and L variables. Because of the

following interpretations, the dual problem (2.5) is usually called

the master program and the decomposition technique above, the price-

directive approach. Set prices (values of y) on the common resources

(coupling constraints) and add the costs of these resources to the
T

objective function of each subproblem (terms (A T.) in (2.6)). By

appropriately varying these prices, one can cause the subproblems

to produce solutions which yield an optimal solution for the original

problem. A diagram for the scheme is shown below.

Master Program

0 0

0
0

0

subproblem subproblem subproblem

Figure 2.1 A decomposition scheme for large-scale systems.

Now, let us examine the conditions (2.2) to see if they are

reasonable. First, if ft are polyhedral (i.e. the epigraphs of

f. are polyhedral convex sets), then the conditions (2.2) can be

weakened to

(im AT) n (dom ff) l * i " 1,2,...,m

-6-

Second, consider the general linear programming problem

min (cx)

s.t. Ax - a

Its dual problem is

max (a,y)

s.t. ATy c

The function f in this case is defined by

(.cx) if > o

+W otherwise,

then the conjugate function f* of f is

f*(ATy) sup {(ATy x) - f(x))

0{o if A y c

+ m otherwise

Thus the condition (2.2) in the case of linear programming is the

requirement that the feasible region of the dual problem is nonempty.
n.

Finally, if f*.(p.) is finite for every Pi in I" (it holds in

our applications), then (2.2) are satisfied trivially because the
n.

effective domain of f.* is the entire space M

The decomposition technique described above is very elegant, but

in applications there are several drawbacks:

-7-

* - .. M_

(i) The function g(y) defined by (2.4) may not be finite for

some y . The set Y: = {yl-a< g(y)} may be considered as

the feasible region for the problem (2.5). But Y does not

have an explicit form because it is defined by m maximiza-

Ttion problems (2.6). (y e Y if and only if (f (Aiy)< - for

all i)).

(ii) g(y) may not be differentiable everywhere in the set Y

Shapiro has a paper [1978] discussing this point in more

detail.

(iii) Given a y, the corresponding subproblems (2.6) may not have

unique optimal solutions. Consequently, arbitrary optimal

solutions xi(y*) of (2.6) corresponding to the optimal solu-

tion y* of (2.5) may not aggregate to form an optimal solu-

tion for the original problem (2.1) (although some such solu-

tion will do so).

We illustrate those points by a simple example:

min x1 + 2x2

subject..to xI < 2

x2 3

X 1 + x2 =4

x unrestricted, x2 0

2

iZ -8-

jC

In~ this example x 1 and x12 are real numbersI:1 if X, 2
f 1(X)

- otherwise

p2x. if 0 3

f (X) 1
2 2

1 + otherwise-

A.A 2 1 I 2

f*A(P 1) -sup [i p1,x1) - f (X1 sup (p1-1)x1
X I <2

+W if p <lII (p -1) if P

f*(p) su{p2 x - f2 (X21 sup (p -2)X2

0 ~if p

{3(p-2)

The images of ATand AT are R , so the conditions (2.2) are

satisfied trivially. It is easy to compute & in this case:

-9-

We can see that (i) if y < 1 then g(y) is infinite; (ii) g is

not differentiable at the point y = 2; (iii) the optimal solution

of the problem (2.5) is y* = 2, the corresponding subproblem

sup (y*-l)xI
x 12<2

has a unique optimal solution x1 (Y*) = 2 but the subproblem

sup (y*-2)x2
O<x~

has an infinite number of optimal solutions. If we use the simplex

method to solve it, we have x2 (y*) = 0 or 3 . Neither (2,0) nor

(2,3) is the optimal solution of the original problem, which is (2,2).

All of the drawbacks above will disappear if the functions f.
2.

are strongly convex.

Definition. A function f defined on a convex S c Rn is said to

be strongly convex with modulus a > 0 if

f((l-X)x+y) < (l-A)f(x) + Xf(y) - 112(l-X)Ix-y12

for all x,y E S and 0 < X < I

We have the following nice properties in the case that f. are
1

strongly convex.

Theorem 2.2

If the f. are strongly convex then the ft are finite every-1 2.

where and are Lipschitz continuously differentiable. Hence g is

also finite everywhere and is Lipschitz continuously differentiable.

-10-

."

The derivative g' of g at the point y is given by

9 (y) - a- A.(x.(y))

where xI(y) is the optimal solution of (2.6) for i 1 l,2,...m.

If y* is the optimal solution of (2.5) then xi(y*) are optimal

solutions fbr the original problem (2.1).

(For a proof see Robinson [19781).

Remark. In this case, the conditions (2.2) are satisfied trivially

because the fi are finite everywhere.

Strong convexity is a very attractive property, but unfortu-

nately, in applications there are several important cases, in which

the objective functions are convex but not strongly convex. For ex-

ample, a linear functional is convex but not strongly convex; so is

a positive semidefinite quadratic functional. A question arises:

given a convex function can we somehow "strongly convexify" it, so

that we can apply the decomposition technique in a straightforward

manner? The answer is yes. It can be done by using the proximal

point method, but at the expense that we have to solve a sequence

of problems instead of just one.

2.2 The Proximal Point Method

The notion of the proximal point was introduced by Moreau (1965J.

A convergence proof of the proximal point method was given by Martinet

[1970, 1972),Rockafellar £1976 a, b] and Brezis and Lions [1978) gen-

-11-

eralized the results and gave the rate of convergence in two slightly

different versions. Rockafellar applied it to various types of math-

ematical programming problems. (The proximal point is also called the

resolvent method.)

We consider a general convex programming problem

mn f(x) (2.7)

xE C

where f is a convex function defined on R1 , having values in R

and C is a nonempty closed convex set in Mn. Let *C be the in-

dicator function of the set C, i.e.,

0 if xe C
c(x) =(S+- otherwise

Define F(x): = f(x) + I c(x); then F is a proper closed convex

function and (2.7) can be rewritten as

min F(x)x~n

The subdifferential 3F(x) of F at x is defined by

~x): - {tEcnIF(z),jF(x) +(t,z-x) Vzcen

It is easy to see from the definition of BF that x* is an optimal

solution of (2.7) iff 0 c ZF(x*). Therefore, the minimization

problem (2.7) can be solved by finding a solution of a generalized

equation 0 e F(x). We now study the problem of finding a solution

for the generalized equation

-12-

0 e T(x)

where T is a set-valued mapping. Let D(T) be the domain of T,

i.e. D(T) is the set of x such that T(x) . T is said to

be a monotone operator if

(x-x',y-y') > 0 Vy e T(x), Vy' C T(x'), Vx,x' e D(T)

T is said to be a maximal monotone operator if it is monotone and

its graph

GT): - ((x,y)jyeT(x))

is not properly contained in the graph of any other monotone operator.

If F is a proper closed convex function, then the subdiffer-

ential BF is a maximal monotone operator (see (Brezis 1973]). Given

a positive number X, the resolvent J of T is defined by

Jx (y): = (I+XT)-1 (y)

i).is a single-valued function and it is a contraction, i.e.,

iiJX(yl)-JX(y2)1I I fyI-Y2i for all y, and Y2 "

(see also Bre'*zis 1973]). We have an important relation

0 £ T(x) if and only if x a J (x) . (2.8)

The minimization problem (2.7) has thus been transformed to the prob-

lem of finding a fixed point of the resolvent J of the subdiffer-

ential aF - 3(f+*C) •

The proximal point algorithm generates for any starting point

-13-

x a sequence (xk) obtained by the relation

xk l - ((k) (2.9)

where (kJ is a sequence of positive numbers with Xk A > 0 V k

In the case T - 3F, x is the optimal solution of

min F(x) + X xII 2

which is equivalent to

min f(x) 2-+ II-•kll2 . (2.10)

In practice, it is impossible to obtain the true optimal solution of

(2.10), so we would like to be able to choose xk l as a point near

the optimal solution. We shall use the following approximation

criterion

11 k+l _ -k (k (2.11)

where {Ck I is a sequence of positive numbers such that X-Ck <
Theorem 23 ([Rockefeller, 1976e])

Let {x k be any sequence generated by the proximal point al-

gorithm under the criterion (2.11). Suppose (x k is bounded. Then

{x k converges to a point x* satisfying 0 tT(x*) and

lim Illxk~l _ k- 1- 0

-14-

i ll iii " .--

Remark

Mi) The necessary and sufficient condition for the boundedness of

(z k is the existence of a solution for 0 c T(x) ([Rocks-

feller, 1976a) (i.e. {xk } is bounded if and only if (2.7) has

optimal solutions).

(ii) Under the condition that T- is Lipschitz continuous at 0,

the sequence xkI converges to x* linearly. In addition,

if Xk + 4 , the convergence is superlinear.

If there exists ; such that 0 a int T(;), then, with the

exact form xk'l a J 'k X k, the convergence is finite. This is

also true in the case of linear programing problem.

Application of the proximal point algorithm to linear progranming problem

Consider a linear programing problem

min (cx)

subject to Ax - b

x_ 0

Suppose the problem has an optimal solution. Let A be a positive

maser. We have

(,,) I I1-x112 _ II-(xk-Xc)ll- A 11cl2 + (cuk)

Thus the problem

min (c,) + I - 4I 2

subject to Ax * b

x.0

-15-

is equivalent to

min X1 (- AC

subject to Ax - b

so a is the projection of x - Xc onto the feasible region.

The proximal point algorithm in this case is the same as the gradient

projection method of Levitin and Polyak [1966) or as one of the

methods of feasible directions of Zoutendijk [1976] (but not as the
k k+l

gradient projection method of Rosen [1960], since x and x do

not need to be on the same face of the feasible polyhedron, as in

Rosen's method).

The figure below shows the sequence {x k in an example.

objective
function increases

Sa4 optimal
/ "-. solution

" x 3_Ac

2- x-Ac
0

Figure 2.2 An example of the proximal point algorithm.

-16-

* .2_

III

2.3 General algorithm

The decomposition technique and the proximal point method will

be combined to give a new algorithm for problems having the form

(2.1). For convenience, we rewrite (2.1) here.

m
nin =Xf.(x.) (2.1)

ii

3

subject to X Ai x. - a

m

Let P.: = dom f., f(x): I f.(x.), and2.z i-I

C: (X n (xl ,2...,x)JA x2+Ax + +A.. AM x n a)

Suppose (2.1) is feasible, i.e. C n 1 V. V . We apply the
i-I 2

proximal point algorithm to solve (2.1). First we choose a sequence

of positive numbers {Yk), which is bounded away from zero; and a

starting point xO . (x- 0 x0....x 0), which is not necessarily

feasible. Suppose we have generated k points xlx 2 k then
k~l
x will be the unique solution of the following problem:

I I -._k12

sini (f i(x L) + jx I L~ct' (2.12)
i-i

subject to i A. - a

if ii -xk+ l - l , then x is an optimal solution for the

kc k~loriginal problem (2.1). Otherwise, replace x by x in (2.12)

and repeat the procedure.

-17-

The problem (2.12) above has a strongly convex objective func-

tion, so we can apply the decomposition technique in a straightforward

manner to solve it. That means transforming it to the dual problem

(2.5) which is

sup g(y)
y

where the function g, defined by (2.4), in this case is

g~)- (,y) + Imin (f.Cx.) .xi-xi. 2 CAiysx.) . (2.13)
X. I

The derivative g'(y) is given by

a
g'(y) a - A.i. (2.14)i=nl1 1

where x. is the optimal solution of

min (fi(x) + ..xi-. 2
- (A+y xi)) (2.15)

for i 1,2,...,=

Note that (M) g(y) is finite for every y, so that the dual problem

(2.5) is an unconstrained maximization problem. (ii) Once we cor-

pute a subproblems (2.15) to obtain the value of g(y), we have

the derivative g'(y) almost for free. Hence we can use any gr•-

dient-type algorithm for unc.nstrained maximization problems to

solve (2.5). In a schematic way, we have

' -18-

Algorithm

Step 0 Choose a starting point x 0 (x0..,,K)0 set k 0

Step 1 1.0 Choose a point yo; set j - 0

1.1 Corresponding to y, solve m minimization prob-

lems (2.15). Let x. be the optimal solutions.

1.2 Compute g(yj) and g'(yj) as in (2.13) and (2.14).

1.3 If fg'(yj)I < E , go to step 2; otherwise, use some

gradient-type algorithm to find a new point yj.1, set

j - j + 1, go back to step 1.1.

Step If II-k < c , x is an optimal solution; otherwise,
k+l -

set x x and k -k + 1, then go back to step 1.

Comments
0

(i) The fact that the starting point x need not be feasible

is very useful. In applications, usually by investigating

the real situation from which the problem arises, we may have

a guess which is infeasible but close to the optimal solution.

(ii) Even if x0 is infeasible, the points x are feasible

and f(x 1) Z f(x 2) Hence, we have upper bounds which

get better and better at each iteration.

(iii) We assumed that the problem (2.1) is feasible, so that

F(x) - f(x) +

-19-

is a proper closed convex function and 3F is a maximal

monotone operator. Consequently, the proximal point method

goes through. Suppose we do not know whether the problem is

feasible or not; can we apply the algorithm to solve the

problem? If the problem turns out to be infeasible, what will

tell us that?

The algorithm can be used without knowing the feasibility

of the problem in advance. If the problem is infeasible then

the problem (2.5) is unbounded. This is to say that if the

primal problem is infeasible then the feasible dual is unbounded.

The gemeral algorith will be used to solve block-angular

linear programming problems in the following section. We also

use the general algorithm to solve nonlinear, convex structural

engineering problems. The results are reported in [Kaneko and

Ha, 1980]

-20-

3.1 The Problem

A block angular linear programming problem is a linear programing

problem having the form

in (cl,X 1) + (c2 ,x2)+...+(c,x,)

subject to

DX1 x d1

D2x2 d 2 (3.1)

Dx -d
mu m

Aix, + A2 A x - a

x ZO'.xm > 0"I -> I,., _ 0

where x C]R c.i e d. i ae Ai1 ' A.ja is an

D x n. matrix, and D. is an m. x n. matrix for i = 1,2,...,a

An example of a real world problem that has the special form

(3.1) is the problem of a multidivisional organization. Each division

operates with considerable autonomy; it has its own internal resources

for production, e.g., labor and machines. That accounts for the con-

straints D.x. a d. i - l,...,m . The divisions are coupled by the

fact that there are shared resources which all of the divisions use,

for example a raw material of limited availability. That gives rise

-21-

to the coupling constraints

iiAixi a

Approaches to solving (3.1) can be roughly divided into two

categories: improvements of the simplex method and decomposition

techniques. In the simplex method the main computational difficulties

are the updating of the inverse of the basis. Because the problem (3.1)

has a special structure, there are several ways to reduce the computa-

tional effort and/or the storage requirements of each simplex itera-

tion. The principal improvements are generalized upper bounding tech-

niques ([Dantzig and Van Slyke, 1967]), basis factorization ([Winkler,

1974)), and LU decomposition ([Bartels and Golub, 1969] and [Forrest

and Tomlin, 1972]). The well-known paper of Dantzig and Wolfe [1960]

was the first paper to use a decomposition technique to solve (3.1).

The idea of the Dantzig-Wolfe decomposition is appealing but computa-

tional experiences are erratic ([Lasdon, 1978] and [Adler and Ulkucu,

1973)). Recently there have been several attempts to improve the com-

putational aspects of the Dantzig-Wolfe decomposition, such as the

work of Ten Kate [1972], or the boxstep algorithm of Marsten et al.

[1975]. Up to the present, there are no reports on how those algo-

rithms compare with each other.

3.2 The Algorithm

We are going to apply the general algorithm of Section 2 to solve

(3.1). First we need to rewrite (3.1) in the form (2.1).

-22-

n .
•

Define P.: = {x. CR IDixiad, x.> }O for i 1,2,...,m

Suppose D f for all i (if there exists an i such thatii
P. = *, then the problem (3.1) is infeasible). Let

f.(x.): < i) + D. (xi) for i - 1,2,...m then fi are

proper closed convex functions. The problem (3.1) now has the form

mmin f fk(X)

irni

subject to } A x. - a

which is the same form as (2.1). Therefore, we can apply the general

algorithms to solve it. The subproblems (2.15), in this case, are

quadratic programing problems

min~~~ ~ Q (+2kIxi i -AiY,Xi))

x.

ramn ((cix i) +*.(x.)+ i xk 2 T

x. 1 k1

X. k

subject to D.x. = d. 2.11. 1.

xi_>

The function g, defined by (2.4), can be proved to be a piecewise

quadratic function. We shall prove and use that fact later. For the

moment, we use a general nonlinear algorithm to solve the dual prob-

lem (2.5) which is

-23-

sup 8(y)

with

g(y) -(a~y) - mi.i(Ixv~I + c~ ATyx
i-1lx.eV. 2Xk 1. 1

11

The overall procedure can be summarized as follows:

* Algorithm I

Step 0 Choose a starting point x 0. Set k =0

Step 1

1.0 Choose apoint y. . Set j -0

1.1 For given j and y. solve (3.2). for j 1,2 ,...,m.

Let x.be the optimal solution and z be the optimal

objective value.
m

1.2 Compute g(y.) -(a,y.) - X~

g'(Y.) - a - A.
ial 11

1.3 If y. is a maximizer of g , go to Step 2; otherwise,

use some gradient-type algorithm to find a new point

y+,set j - j + 1 and go back to Step 1.1.

Step 2 If 1 1k <£,accept ; as (nearly) an optimal solution

k+1for (3.1); otherwise, set x x and k -k + 1 ,then go

back to Step 1.

-24-

Notes

(i) The iteration on x will be called the outer loop and

that on y. will be called the inner loop.

(ii) As mentioned in section 2, if the problem (3.1) has optimal

solutions then the outer loop is a finite process, i.e.

k
z is an optimal solution for some k.

(iii) The fact that the starting point x0 can be any point is

clearly an advantage of our algorithm over algorithms based

on the simplex method. For the simplex-type methods, the

starting point needs to be not only a feasible point but

also an extreme point of the feasible region, and we also

need to know the inverse of the corresponding basis.

For a linear programming problem, the dual variables play an

important role. They have economic interpretations and they are use-

ful in sensitivity analysis. If we solve a linear programming problem

by our algorithm, can we obtain the optimal dual variables?. The

answer is yes. We have the following proposition.

Proposition 3.1

Consider a linear programming problem

min (c,w)

subject to Aw - b (3.3)

v >0.

-25-

Suppose it has an optimal solution v Then the quadratic progras-

ming problem

mi (c,) 1 I1v-,-,II2

subject to Aw = b

w>O

has the Karush-Kuhn-Tucker point ([mangasarian, 1969)) (w*,v*),

where w* = v and v* is an optimal dual variable for (3.3).

Proof

The proof of the identity w* = w is given by relation (2.8)

of Section 2. (3.4) is equivalent to

mn (c- ,) + (vv)

A ' 2T

subject to Aw - b

V Z0.

Hence (w*,v*) has to satisfy the following relations

c - 1;+IW ATv>0

w*>O Awv-b

l- I ,A~v.) 0(w*, (c -';-A *) 0 ,,

Since w* - v, those relations reo, to

T
c - A v* > 0

w>0 A - b

1v, c-A Tv*) - 0

-26-

&

which are the complementary slackness conditions for (3.3). Thus v*

is an optimal dual variable for (3.3). 0

3.3 Implementation and Computational Results

We now consider the details of how we solved the dual problem

(2.5) and the quadratic programming problems (3.2).. Recall that g(y)

is a Lipschitz continuously differentiable function, so to solve (2.5)

we can use any gradient-type unconstrained minimization algorithm. We

think that the best current algorithm is that of Broyden-Fletcher-

Golfard-Shanno (BFGS). We used the BFGS package of the Harwell Sub-

routine Library available at the Madison Academic Computing Center

and known as VA13A ([MACC, 1976]).

The core of our algorithm is the solution of small quadratic pro-

gra1ming problems (3.2).; the number of quadratic programing problems

solved in a problem may be several hundreds. For that reason, we need

an efficient quadratic programming algorithm which can take the optimal

solutions of the problems of the previous iteration as the starting

point for the problems of the current iteration. Furthermore, we want

to exploit the fact that the matrices in the objective functions are

the identity matrices times a constant. First, we transform problems

(3.2). into quadratic programming problems having only nonnegativity

22.constraints. Problems (3.2). have the following form, except for con-

stant terms

min (;,u) +- L(uu)

subject to Du - d (3.5)

u>0

where, for a fixed i, D Di, d - d., u xi , and

. T y 1 xk

-27-

Using the orthogonal projector P onto the null space of

and the ordinary dual of a quadratic programing problem, we can show that

(3.5) is equivalent to

max (VPV) + (Pc - u ,v) (3.6)
v>0

where u is an arbitrary solution for Du = d

The orthogonal projector P and the solution u can be computed

easily by using the Moore-Penrose generalized inverse and the QR

decomposition of D (for more detail see [Ha, 1980]). Note that, for

a fixed i , D and d do not change at all, so we need to compute

P and u only once.

There are several quadratic programming algorithms that can be

used to solve (3.6). There are two packages available at the Madison

Academic Computing Center of the University of Wisconsin-Madison,

namely QUADPR and LCPL, but with these packages we cannot use the op-

timal solutions of the previous iteration as the starting points for

the current iteration. The Best-Ritter algorithm ([Best and Ritter,

1976)) allows us to do that, so we use it to solve (3.6).

We wrote a computer program to test the algorithm, using Fortran V

on the UNIVAC 1110 of the Madison Academic Computing Center of tite

University of Wisconsin-Madison. In the program we set the stopping

criteria as follows.

(i) Outer loop (Step 2). We set e1
= 10 -

. If

lk+l-xkl

or ,Ixk+lxk £ I xk1I

k+1
then x is considered to be an optimal solution for the prob-

lem.

-28-

(ii) Inner loop (Step 1.3). We set £2 - 10- 5 . The stopping cri-

terion in this case is that of VA13A. That means a solutiot is

accepted if a relative change of size £2 in the components of

y does not reduce the objective value.

We generated test problems by predetermining the size of the

problem, the size of blocks and the number of coupling constraints,

and then generating randomly data of the problem. The matrices A.2

and D. are 90Z dense. Each entry of those matrices is a pseudo-2

random number in the range [-50, 50] (obtained by the random number

routines of the Madison Academic Computing Center [MACC, 1978)). The

cost coefficients are pseudo-random numbers in the range [-10, 10).

To be sure that the problem is feasible we randomly generated a se-

quence of integers in between 0 and 5 (considered as a feasible

point) and then multiplied them with Di and Ai to get the co-

efficients of the right hand side. The numbers of variables of test

problems and other information are shown in Table 3.1.

Problem Size Number of Number of Coupling
Problem Blocks Constraints

I 50 x 100 10 5

II 70 x 95 3 10

III 100 x 200 20 5

IV 500 x 700 20 10

Table 3.1 Test Problems Statistics

-29-

7o

We compared our algorithm with two linear programming

packages available at the Madison Academic Computing Center of the

University of Wisconsin-Madison, namely SIMPLX and FMPS-LP ((MACC,

1977 and 1978b]). SIMPLX uses the two-phase, revised simplex method

with the inverse of the basismatrix stored explicitly. FMPS-LP is a

part of the UNIVAC Functional Mathematical Programming System. It uses

variants of the revised simplex method with only nonzero elements of

the constraint matrix stored explicitly, and the inverse stored in the

product form. In all cases, our algorithm gave the same optimal solu-

tions (up to five significant figures) as the linear programming pack-

ages. We kept X unchanged from one iteration to the next of the outer

loop, but we ran the problems with different X . Computational results

are shown in the following tables. CPU time includes time to collect

all relocatable elements and to produce an executable absolute element,

and time for input/output. It is measured in seconds. The starting

0
point x and the point 0were taken to be the rigin.

2 -30-

Problem

1 104.0 48.5 219.2

10 23.7 68.8 (2) 34.5 724.5

20 19.2 99.5 34.1

30 15.1 80.0 27.4

40 13.2 100.0 24.9

50 12.6 117.5 47.7

60 10.5 101.5 23.8

70 13.3 126.0 24.5

80 10.5 105.5 20.5

90 10.2 170.8 43.5

100 9.7 102.5 28.6

Table 3.2 CPU Time (secs) of Test Problems

Compare to CPU time of the linear programming packages.

I II III IV

SDPLI 32.5 82.3 257.8 (3)

FHPS-LP 6.5 14.7 24.8 3617.0 (4)

Table 3.3 CPU Time (secs) of Linear Programming Packages

(1) Because of the size of the problem and of the limitation of our

budget, we decided to run only one run with X - 10.

(2) There is noise for A > 10, i.e. it came near the optimal solu-

tion and then moved around that point erratically.

(3) SIMPLX cannot handle a problem of that size (500 x 700).

(4) The problem needed 5 runs to reach the optimal solution, so the

CPU time included time for putting data and current tableaus on

a file, and retrieving them. The actual time of solving the prob-

lem should be less than 3617.0 seconds, but certainly it is much

longer than 724.5 seconds, the time that our algorithm took to

solve the problem.

From these tables we have several observations.

(1) Comparing to FMPS-LP, our algorithm gets better when the size of

the problem increases. For Problems I and II, none of the runs

of our algorithm is faster than FMPS-LP; for Problem III (size

100x 200), there are several A with which our algorithm is

faster than FMPS-LP; for Problem IV our algorithm is clearly

-32-

- -

far superior to F14PS-LP. Certainly the regular SI14PLX is not

comparable to our algorithm.

(2) Our algorithm is not very good in the case of Problem II, which

has 3 big blocks (the sizes of blocks are 15 x 25, 20 x 30, and

25x 40). That is expected. The core of our algorithm is solving

quadratic programming problems (3.2) again and again. If we have,

say 10 smaller subproblems instead of 3 subproblems of the above

sizes, we would have a much better time, since the computational

time tends to grow polynomially with respect to the size of the

problem.

(3) The values of X , which give the best computational times, vary

with problems: they are 100, 1 and 80 for problems I, II and III

respectively. In theory, the number of iterations of the outer

loop decreases as X increases (in fact we can prove that if we

use a X sufficiently big, we could reach an optimal solution in

one iteration of the outer loop). But by taking X too large,

we may have numerical difficulties and may not be able to solve

the problem at all. Fewer iterations of the outer loop does not

mean less computational time as it can be seen on Table 3.2. The

other drawback of a large X is the loss of accuracy caused by

numerical errors. A natural alternative seems to be: taking X

initially large then reducing it gradually. But that idea did

not work well. We have run our test problems with different

schemes of changing X from one iteration to the next and we

-33-

found that the computational results are very erratic. That is

understandable: since we have not been able to choose A opti-

mally for a given problem, we should not expect to know how to

change X iteratively to get a better computational time. We

feel that the question of choosing and/or changing A itera-

tively can only be answered after an extensive use of our algo-

rithm. For the moment we suggest to use A fixed with a value

in the range from 10 to 50; if numerical difficulties are en-

countered reduce X .

As mentioned earlier one of the advantages of our algorithm is
0

that the starting point x can be anywhere. Suppose we know approx-

imately where the optimal solution should be; then the computation

time should be better. We ran our test problems with the starting

points taken to be the known optimal solutions, rounded to the nearest

integer. The results, which are better as would be expected, are

shown in the following table.

I II III

0
starting point x 0 0 23.7 68.8 34.5 (1 10)

starting point
x

near optimal solution 8.4 58.7 24.2

Table 3.4 CPU Time of Test Problems with Different Starting Points

-34-

& _

3.4 A Variant of Algorithm I (Method of feasible directions)

We know that, if the problem (3.1) has optimal solutions, then

the proximal point algorithm (outer loop) will generate a finite

sequence of feasible points {x1lx2...
.SXkI such that f(xj+ l) < f(x3)

for j - 1,2,...,k-1, and xk in an optimal solution for (3.1). But

if the problem is unbounded, then the sequence "(x k is infinite and

IIxkll - as k -". For practical purposes that is undesirable;

we want to have a simpler criterion for the case of unboundedness. By

exploiting the linearity of the problem we can modify the proximal

point method so that it either obtains the optimal solution or detects

the unboundedness in a finite number of iterations. We set X fixed

and replace Step 2 of Algorithm I by

Step 2' If 11z-xkI < €, accept x as an optimal solution for (3.1);

otherwise, for k 1 set a - 1, for k > 1 compute

CL minj for indices i such that (x k)i>0-07

If (-x . 0 for all i , the problem is unbounded.

k+1 a k + (_kOtherwise, set x x +cl(-x) and k - k + 1 , then

go back to Step 1

Proposition 3.2

The modified algorithm with Step 2' above either detects the un-

boundedness of the problem or finds an optimal solution in a finite

number of iterations of the outer loop.

-35-

Proof

k
For k 1 x is feasible. By the interpretation of the prox-

imal point method given in Chapter 2, x is the projection of xk _Xc

onto the feasible region. If we consider Xc as the cost coeffi-

cients instead of c , then x is the projection of the negative of

k
the gradient at x onto the feasible region. a given by (3.7) is

the maximum stepsize. Therefore, the outer loop procedure (Step 2')

is a method of feasible directions applied to linear programming prob-

lems. The finiteness of the method is proved by Zoutendijk [1976].

We used the modified algorithm to solve our test Problems I and

III; we had the following results.

AI III

1 35.8 (1) 81.4

10 25.9 45.9

20 20.0 30.5

30 16.5 33.8

40 12.3 29.9

50 14.2 104.3(2)

60 16.4 46.3

70 18.1 38.6

80 10.1 19.9

90 12.8 39.4

100 12.9 45.1

Table 3.5 CPU Time of Test Problems Using the Modified Algorithms

-36-

I

(1) For all X , except X 80, it came near the optimal solution

then moved around that point erratically.

(2) It came near the optimal solution in 22 seconds then went away

again.

We also used the modified algorithm to solve an unbounded prob-

lem. The problem is of size 50 x 90, with 7 b-ocks and 10 coupling

constraints.

Modified Algorithm With X=

SfIPLX FMPS-LP
10 20 30 40 50 60 70

47.6 _41.8 33.6 36.2 35.2_ 29.6 (1) 44.7 11.0

Table 3.6 CPU Time for An Unbounded Problem

(1) Numerical errors.

The modified algorithm has the advantage of detecting the un-

boundedness, but it is not very stable when getting near the optimal

ksolution. The reason is that near optimum x and x are very close

k
together, so numerical errors in x may give much bigger errors for

(x).
(x _) k+l k - k

the quotient k consequently x - x + CI(x-x) may be
(x -

k
a point farther from the optimal solution than x . Hence we rec-

ommend using Algorithm I for problems for which the existence of opti-

mal solutions is known beforehand. Otherwise, we suggest using the

modified algorithm, but switching back to Algorithm I when the dis-

- k
tance between x and x is small.

-37-

3.5 A Specific Algorithm for the Dual Problem

Algorithm I is a straightforward application of the general algo-

rithm in Section 2 to the block angular linear programming problem

(3.1). We have not taken advantage of the linearity of the problem;

in particular the algorithm used to solve the dual problem sup g(y)

is suitable for general nonlinear optimization problems. Geoffrion

E1970b] observes that the dual of a quadratic programming problem taken

with respect to a subset of the constraints is a piecewise quadratic

function. That is exactly our case and we are going to give a proof

of the above observation. We consider the problem

min (c,x) + X Cx)

subject to Dx - d (3.8)

Ax - a

x>0.

Suppose C is symmetric and positive definite and at every point of

the set {x>OIDx=d} , the gradients of the active constraints are

linearly independent. As before, for a given y we define g(y)

to be the objective value of the problem

min (c,x) + 1 (xCx) + (ya-Ax)
2

subject to Dx - d (3.9)

x>0.

-38-

I

Proposition 3.3

g(y) is a piecewise quadratic function.

Proof

For a fixed y0 , let x(y0) be the optimal solution of (3.9)

corresponding to yo and define the set of indices M by

M:- {iIX(Yo)i = O

Consider the problem

min (c,x) + I(xCx) + (ya-Ax)2

subject to Dx - d (3.10)

x. = 0 for i c M

The problem above is feasible since x(yO) satisfies the constraints

Let x(M,y) be the optimal solution and v(M,y) be the multipliers.

Let J be the index set of v(M,y) corresponding to the constraints

x. - 0 for i c M.i

Let K be the matrix representing these constraints; that is K is

a matrix of IMI rows, with the k-th row having an entry of 1 in

the column corresponding to the k-th element of M and zero in all

other entries. Define

A FD]
dD : [L d :

then the constraints of (3.10) can be rewritten as

Dx -d

-39-

and the Karush-Kuhn-Tucker conditions for (3.10) are

c + Cx - y - D v - 0

or

[-D1 [x[T - (3.11)

Under our assumptions the matrix above is invertible; consequently

x(My) and v(My) are affine functions of y

x(My) and v(y), being the optimal solution and the Lagrange

multipliers of (3.10), need not be the optimal solution and the La-

grange multipliers of (3.9). But if

x(M,y) > 0 and v.(M,y) > 0 for j e J

then, by setting all of the Lagrange multipliers corresponding to the

constraints x. > 0 i 4 M equal to zero, we can verify easily that

x(Hy) and v(M,y) satisfy the Karush-Kuhn-Tucker conditions for

(3.9). Hence x(M,y) in this case is the optimal solution for (3.9).

Conversely, if x(M,y) and v(M,y) are the optimal solution and the

Lagrange multipliers of (3.9), then certainly we have x(M,y) 0 and

v.(H,y) 0 for j e J . The set

QH: {yjx(H,y)40 and v(M,y)a0 for jeJI (3.12)

-40-

is a polyhedron. On each such polyhedron g(y) is a quadratic func-

tion. Hence g(y) is piecewise quadratic.

Using the above proposition we have another algorithm to solve

(3.1).

Algorithm II

Step 0 Choose any point x0 as the starting point, set k - 0

Step 1 k

1.0 For given k and x , choose yO and set j = 0 .

1.1 Solve

min y'Ij i-Xil 2 + (ci-A iyx(

a.t. D.x. - d. (3.13)

X. > 0

for i 1,2,...,m

Let x. be the optimal solution and v. be the corres-1 1.

ponding multipliers. Let x 2 (x, ...)

1.2 Determine the index set M = {h/(x)h= 01 and the corres-

ponding polyhedron QM defined by (3.12). Solve the

quadratic programming problem

sup g(y) . (3.14)
YeQ

M

If it is unbounded, then the original problem (3.1) is in-

feasible. Otherwise, let y be the optimal solution.

-41-

1.3 If jjg'<()j < e go to Step 2. Otherwise compute

yj+l y + 3lg'(Y)

where a is a real number such that g(yj+l) > g(y)

Set j - j + 1 and go back to Step 1.1.

Step 2 Compute x(M,y) by (3.11). If 'Ijx(My) kI < C , x(My)

is an optimal solution for (3.1). Otherwise set xk+l x(My)

and k - k + 1 , then go back to Step 1.

Remark

The partition of the space of y into polyhedra is finite and in

the process of finding the optimal solution of the dual problem a poly-

hedron is never repeated. This is true because in Step 1.3 we require

g(yj+l) > g(y) and y is the maximizer of g(y) on the polyhedron

containing yj , so that polyhedron is never repeated. Therefore, the

inner loop is a finite procedure.

We now explain in detail how to determine the polyhedron QH in

Step 1.2. Recall that QM is given by

QM - {yjx(M,y)>O and v.(M,y)>O jeJ}

a

where x(M,y) and v(M,y) solve the system of linear equations (3.11).

We have

) F: -:T1 f C- 1 - - (- I - - C-IBT(Bc-IBT)-l]

L 0j LIc-JAT -lJA (-1-IT) -1]

-42-

In our case C - so ye can simplify the above expression to

obtain

Air

F (- y -fj (-(DD) D(~y) D (AT)-
T ^T -1^ T T ^T -1 .4D(~y - (I- D (DD) D)Ayc D (DD)d

AAT -1"T l + T ^^TA 1v(M,y) -A-D D) Dyc) Xy-) D(DD) d

Let P be the orthogonal projector onto the null space of D and

P be the generalized inverse of D We know that

P - I iD(DT) D

and

A. AT ^AT -1
D n(DD)

so

AT A+^
x(M,y) - XP(Ay-c) + D d

and (3.15)
A, T T I AAT -1^

v(My) = -(D) (A y- c) + - (DD d

Because x(M,y) is the solution of (3.11), x (M,y) = 0 for

all i C K . Hence QM can be expressed explicitly as

-43-

QM (yIDP (A Ty-c)+D d)iZ 0, iJM and

A4.+T(T 1 -T -1^~>o

Using the expression (3.15) of x(M,y) we have an explicit expression

for g(y), y eQM

g(y) - (x(M,y), x(MHy))+ (cx(Hy)) + (y,a-Ax(M,y))

= -A(AT,pATy) + (F+A~-Aid)
2A

After deleting constants in the objective function, we see that the

problem (3.14) is equivalent to

X - T - T +
sup -(PA y,PA y) + (y,a+XK~c-AD d)

subject to (Xp(ATy -c) + D+d)i > 0 i C MAT -

-(+T(T 1 --T -1'
((D) (A_ y +c) X () d) 0

In our original problem (3.1), the matrix D has the block angular

form

D 1 0

D 2D

S0 D

The matrix K representing constraints x 0 also has the same

-44-

form. Rearranging the rows of D, D has the form

K1 D2

" K2

©D
K

Let Di - [; then g - DD0 0
m

A D
Dm 2

0 ''S3

It is easy to see that

T ^T -1

^+ ^T A AT -1
D 2(D2 2 D 2)0 fiTD -D'

and

2 0

0 A

A AT A 1
where P. " I - D.(D.D.) D.

-45-

.I. m ill

-]~

777

Hence the block diagonal structure is preserved when we compute D

and P

In updating y from yj to Y*J, we go from one polyhedron

to another and we have to update D+ and P. Usually the set of

active constraints changes by just a few indices; consequently, we

have to update only a few small matrices. By using the QR composition

of DD .D that we already have, the updating of D and P is1'2'"m

much more efficient (Gill et al., 1974)).

We wrote a computer program to test the Algorithm II; again we

used our test Problems I and III. We had the following results

I II

10 9.0 19.0

20 5.8 17.3

30 5.0 17.4

40 4.9 16.7

50 4.2 16.3

60 4.3 15.1

70 4.2 15.8

80 4.3 15.0

90 3.9 14.4

100 4.0 (1)

Table 3.7 CPU Time Using the Algorithm II

j-46-

(1) Numerical errors.

We used the new system at MACC, the UNIVAC 1100/80, so these

numbers are not comparable to the numbers of the Tables 3.2 and 3.3

which we obtained by using the old system, the UNIVAC 1110. The new

system is approximately 2.5 times faster than the old one, so to com-

pare the algorithms we need to multiply the numbers of Table 3.7 by

a factor of 2.5. Then we can see that, for the Problem I, the Algo-

rithm II is a little bit better then the Algorithm I, but, for the

Problem III, the Algorithm II is not as good as the Algorithm I.

We think that the Algorithm II can be improved computationally.

For the moment, in finding the maximizer for the piecewise quadratic

function g(y) we have not been able to use the optimal solution for

g(y) in one piece (polyhedron (3.12)) as a starting point for the

problem in the next piece (problem 3.14)) (because, by choosing Yj+,

as in Step 1.3, we are not sure that the polyhedron containing yj+I

is adjacent to that of yj). Each time we solved the problem (3.14)

we had to start from scratch, i.e., we had to use the simplex algorithm

to find the starting point. That really slowed down the whole process.

-47-

ACKNOWLEDGEMENTS

This research is a part of the author' a doctoral thesis submitted to

the Department of Industrial Engineering at the University of Wisconsin-

Madison under the supervision of Professor Stephen M. Robinson. I would

like to express my sincere gratitude to Professor Stephen M. Robinson

for his advice and support.

-48-

References

Adler, I. and Ulkucu (1973), :On the number of iteration in Dantzig-Wolfe

decomposition algorithm," in Decomposition of Large-Scale Problems,

Himmelblau (ed.), North Holland.

Bartels, R. H. and Golub, G. H. (1969), "The simplex method of linear

programming using LU decomposition,," Communications ACM, Vol. 12,

pp. 266-268 and 275-278.

Best, M. J. and Ritter, K. (1976), "An effective algorithm for quadratic

minimization problems," Math. Res. Center, University of Wisconsin-

Madison, Tech. Rep. #1691.

Br4zis, H. (1973), Operateurs Maximaux Monotones, North-Holland.

Br6zis, H. and Lions, P. L. (1978), "Produits infini de Rdsolvantes,"

Israel J. Math., Vol. 12, pp. 329-345.

Dantzig, G. B. and Van Slyke, R. M. (1967), "Generalized upper bounded

techniques for linear programming," J. Comp. System Sci., Vol. 1, pp.

213-226.

Dantzig, G. B. and Wolfe, P. (1960), "Decomposition principle for linear

programs," Oper. Res., Vol. 8, No. 1, pp. 101-111.

Forrest, J. J. H. and Tomlin, J. A. (1972), "Updated triangular factors of

the basis to maintain sparsity in the product form of simplex method,"

Math. Prog., VOI. 2, pp. 263-278.

Geoffrion, A. M. (1970), "Primal resource-directive approaches for

optimizing nonlinear decomposable systems," Oper. Res., Vol. 18, No. 3,

pp. 375-403.

Gill, P. E. et. al. (1974), "Methods for modifying matrix factorizations,"

Math. Comp., Vol. 28, pp. 505-535.

-49-

Ha, C. D. (1980), Decomposition methods for structured convex programming,

Ph. D. Dissertation, Industrial Engineering Dept., Univ. Wisconsin-

Madison.

Kaneko, I. and Ha, C. D. (1980), "A Decomposition procedure for large scale

optimal plastic design problems," Math. Research Center, Univ.

Wisconsin- dison, Tech. Rep. #2075.

Lasdon, L. S. (1978), "Large-scale programming," in Handbook of Operations

Research, Moder and Elmaghraby (eds), Van-Nostrand.

Levitin, E. S. and Polyak, B. T. (1966), "Constrained minimization

methods," U.S.S.R. Comp. Math. and Math. Physics, Vol. 6, No. 5,

pp. 1-50.

Madison Academic Computing Center (MACC, 1976), Nonlinear programming

routines, reference manual.

Madison Academic Computing Center (MACC, 1977), Linear programming routines,

reference manual.

Madison Academic Computing Center (MACC, 1978a), Random number routines,

reference manual.

Madison Academic Computing Center (MACC, 1978b), FMPS-LP, reference manual.

Mangasarian, 0. L. (1969), Nonlinear Programming, McGraw-Hill.

Marsten, R. E., Hogan W. W. and Blankenship, J. W. (1975), "The box-step

method for large-scale optimization," Oper. Res., Vo. 23, No. 3.

Martinet, B. (1970), "Regularisation d'inequations variationnelles par

approximations successives," Rev. Fr. Inf. Rech. Oper., R. 3,

pp. 154-159.

Martinet, B. (1972), "Determination approch6e d'un point fixe d'une

application pseudo-contractante," C. R. Acad. Sci. Paris, Tome 274,

serie A-163.

-50-

Morreau, J. J. (1965), "Proximitg et dualitd dans un espace Hilbertien,"

Bull. Soc. Math. Fr., Vol. 93, pp. 273-299.

Robinson, S. M. (1978), Private communication.

ckafellar, R. T. (1970), Convex Analysis, Princeton University Press.

Rockafellar, R. T. (1976a), "Monotone operators and the proximal point

algorithm," SIAM J. Control Opt., VOl. 14, No. 5.

Rockafellar, R. T. (1976b), "Augmented Lagrangians and applications of the

proximal point algorithm in convex programming," Math. 0. R., Vol. 1,

No. 2.

Rosen, J. B. (1960), "The gradient projection method for nonlinear

programming, part I: linear constraints," J. SIAM, Vol. 8,

pp. 181-217.

Shapiro, J. F. (1978), "Nondifferentiable optimization and large scale

linear programming," in Int. Symp. on Syst. Optim. Anal., Bensoussan and

Lions (eds), Rocquencourt, France.

Ten Kate, A. (1972), "Decomposition of linear programs by direct

distribution," Econometrica, Vol. 40, No. 5, pp. 353-363.

Winkler, C. (1974), "Basis factorization for block angular linear programs:

unified theory of partitioning and decomposition using the simplex

method," Tech. Rep. SOL 74019, Systems Optim. Lab., Stanford

University.

Zoutendijk, G. (1976), Mathematical Programming Methods, North Holland.

-51-

SECURITY CLASSIFICATION OF THIS PAGE (;I7en !"ntercd)

REPORT DOCUMENTATION PAGE BALAD 1ONI^,SThUCTI,.F(S

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIFI-NT'S CATALOG NUMUE ,

2174 /+I-~ 4/[hA T fl_
4. TITLE (and SubfUlUl) 5. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific
-/ _ECOMPOSITION kI-THOD AND ITS.,PLICATION TO reporting period
L6K ANGULAR LNi AR PROGRAIIS r

'/ - 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)

/: Cu uong a I ~DAAG29-80-c-0041 -
Cu Duong tla,

9. PERF8ARM1VGN"-RGANIATION NAME AND ADDkESS 10. PROGRAM ELEMENT. PrOJECT, TASK

Mathematics Research Center, University of AREA & WORK UNIT NUMBERS

610 Walnut Street Wisconsin 5- Operations Research
Madison, Wisconsin 53706

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office January 1981
P.O. Box 1Z211 13. NUME6--F AGES I_
Research Triangle Park, North Carolina 27709 51
14. MONITORING .GENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this oe&Hj

-7 E /.$/ / / UNCLASSIFIED4 *7~ A!'d, _____. _____-_. ; '
|S5a. DECL ASSI FIC ATION/DOWN GRADING

/ , SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

1I. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on -overse side if necessary and Identify by block nw.aber)

Decomposition method, convex programming, large scale systems, linear

programming

20. ^BSTRACT (Continue on r -verso aide If necessary and identify by block rurxber)
In this paper we propose and develop techniques for solving structured,

large-scale convex programming problems. The procedure is a combination of a
decomposition technique of Dantzig-Wolfe type and the proximal point method.

The proximal point method is used to overcome the drawbacks of the decomposition
technique.

The procedure is then used to solve block angular linear programming problems
By exploiting the linearity of the problem we have several variants of the

procedure.
DDFM JA7 3 1473 EDITION OF I NOV65 IS OBSOLETE UNCLASS ED - .

SECURITY CLASSIFICATION OF THIS PAGE (Ihen Date I ntered)

