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/ ABSTRACT

We derive new upwind type finite difference approximations to systems of

nonlinear hyperbolic conservation laws. The general technique is exemplified

by the potential flow equations written as a first order system. The scheme

has desirable properties for shock calculations. For the potential flow

approximation, we show that the entropy condition is valid for limit solutions

and that there exist discrete steady shocks which are unique and sharp.

Numerica. examples are given.
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SIGNIFICAN4CE AND EXPLANATION

Hyperbolic systems of conservation laws are often used to describe

compressible fluid flow. These hyperbolic partial differential equations can

be approximated by finite difference schemes which in turn can be coded f or

computer calculations of practical problems. Aerodynamics is a typical field

of application.

Standard difference Aschemes often run into difficulties when the solution

to be approximated contains discontinuities in the form of shocks and contact

discontinuities. The computed solution will typically either be smeared

i.e. too smooth or will contain unphysical overshoots and wiggles.

For a large class of scalar problems it has been possible to design

difference schemes of upwind type which produce approximations of solutions

with shocks which are very sharp and without overshoots. In an upwind scheme

all differences are one aided and the structure usually depends on the

solution itself.

This paper describes a systematic way of deriving difference schemes of

upwind type for a class of hyperbolic systems of conservation laws. many of

the desirable properties which upwind schemes have for scalar problems can

thus be extended to the physically much more important case of systems.

This technique is used to produce a scheme for the potential flow

equations. It is proved that only physically permitted shoc!,:s will be

approximated in the limit and that steady shocks are very sharp. other cases

are investigated in computational examples which also display the efficiency

of the scheme.

The responsibility for the wording and views expressed in this descriptive
summuary lies with MRC and not with the authors of this report.



Acc on For

NTTS -

PTIC TAR
U'"-Inounced

t iftatio

Distribution/

UPWIND DIFFERENCE SCHEMES FOR SYSTEMS OF CONSERVATION LAWS - I Avail and/0 -

POTENTIAL FLOW EQUATIONS

Bjorn Engquist
t and Stanley Osher

t  iI
1. INTRODUCTION

Many upwind difference schemes have very attractive properties when approximating

scalar nonl~near hyperbolic conservation laws. They have, in particular, become the

standard technique for many calculations of transonic flow [1], [3], [7], [10], [12],

[16]. There are, for example, several versions of upwind schemes for the approximation of

the small disturbance equation of transonic flow (1.1). A number of these schemes have

solutions with sharp shock profiles [1], [5], [7], [16]. The small disturbance equation is

(1.1) 2 t = (C x - 1/2(+1)P2 )x + Pw

The velocity potential is denoted by kx,y,t) and K and y are positive constants.

The extension of these techniques to systems is immediate when all the eigenvalues of

the Jacobian matrix of the flux functions have the same sign. It is the purpose of this

paper to present a systematic technique for producing upwind difference schemes for the

more interesting case of systems where the eigenvalues of the Jacobian may have different

signs. We shall, as an example, apply this technique to the potential flow equations (1.2)

for compressible, inviscid, isentropic and irrotational flow [3]. The equation is

(1.2) Pt 
+ 

(P-x)x + (P y)y = 0 •

The density function p is given in terms of a velocity potential t through Bernoulli's

law

This paper was written while the author was visiting the Mathematics Research
Center at the University of Wisconsin.

tltt Address of the authors: Department of Mathematics, University of

California, Los Angeles, Ca. 90024.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by
NASA-Ames University Consortium, Interchange No. NCA2-OR390-002.
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The equation of state for the pressure p is

(1.4) p - APY

with A abd y positive constants (1 < y 4 3 in our theorems). We can transform (1.2),

(1.3) into a first order hyperbolic system by letting Ox a u , py - v and then

differentiating (1.3) with respect to x and y resepectively [2]. The equality of the

mixed partials is assumed to be valid throughout the flow. the system of equations is

P Pu PV
1.5) u + 1/2 Cu2 + v2 ) + Y- Y1 + 0 -0

Y-1

v 0 1/2 (u 2 + v 2 ) + W- ,Y 1

t 9 Y-1

Analogous to a standard procedure for scalar problems one might use dimensional splitting

for the solution of equations with more than one space variable. In this paper we shall

consider the reduced one dimensional system

p Pu

1.6) + 0

U t Y/u -10I x

Let us recall the first order scalar upwind scheme which we developed in [5], [7].

Consider a nonlinear scalar conservation law C1.7) in one space dimension

(1.7) ut + f(u) x - 0 , t > 0, - x <

(1.8) u(x,0) - u(x).

nnThe solution u(x,t) is approximated by a mesh function u on the mesh {(xitn)},

x- jAx, t - nAt, (u; A u(xjpt n)). The difference scheme in its explicit form is

n+1 n Atla+f (ul + An n(1.9) u +u -- (Af- ) _f+Cu))j j Ax 4-j -

0

1.10) u 0 ulxjO).

-2-
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The difference operators A+ and A- denote the forward and backward differencing

respectively (A uj - *(aj*1 " u])). The auxiliary function f_ and f+ contains the

increasing and decreasing parts of f respectively,

(1.11) f + (u) = fu x(s)f'(s)d@
0

(1.12) f_(u) - fu(1-X(s))f-(s)
0

f I f+ f-

When f is convex the definitions (1.11) and (1.12) simplifies to

(1.13) f +(u) f(max(u,u))

(1.14) f_(u) - f(min(u,u))

where u is the stagnation point fl(;) - 0 * If f' has a fixed sign say V > 0 the

scheme reduces to the classical upwind scheme

(1.15) un+1 u n at

When it is used as the basic ingredient in the approximation of the small disturbance

equation (.1) the resulting scheme will be identical to the Cole-Murman scheme [16] away

from sonic and shock points. These are the points where f' changes sign and a switch

from L f to A+ f is needed. The formulation (1.9) gives a recipe for such a switch.- +.

The approximation (1.9) has several attractive properties in connection with shock

calculations. Proofs and numerical examples are given in (5] , [6].

Those properties are:

(a) The scheme is monotone, see (4], [9], for Atjf't ( Ax

(b) It is in conservation form and hence produces shocks with the correct location [14).

These properties imply the following properLies (c), (d) and (e) for Cauchy

problems. (We thank P. Lax and M. Crandall for some helpful discussions on this matter.)

In our earlier work we proved the results below for quadratic f e*en for the mixed

initial boundary value problem, and for general scalar f for the Cauchy problem.

(c) An entropy condition is valid for limit solutions, which rules out nonphysical

shocks.

-3-
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(d) The seheme in stable in L1 , L2 and L.
n

(e) The approximate solution u converges to u in L,

(f) The approximation uses the same number of boundary conditions as the differential

equation, i.e. no extra numerical boundary conditions need to be imposed.

(g) Shock solutions Iave stable sharp shock profiles, [5], (6]. We essentially mean

that the approximation of a steady Riemann problem is exact two points away from the

shock.

We now try to preserve some of these properties in the approximation of systems. We

shall consider a hyperbolic system of nonlinear conservation laws in one space dimension

(1.16) u t + f(u)x - 0 , u 3a
2 R d .

Systems in more than one space qariable can be reduced to the one dimensional case by

dimensional splitting or ADZ, see (1], (5] •

The linear stability requirement implies that there only exists strictly upwind

difference schemes if all the eigenvalues of the Jacobian matrix 3f have the same sign.

These sigenvalues are all real since the system (1.16) is hyperbolic. This stability

requirement follows directly from the domain of dependence and the CFL-condition. The

upwind difference scheme may, for example, be of the simple form (1.15) if all eigenvalues

of 3f are positive.

We have to clarify what we mean by upwind or one sided difference schemes when af

has eigenvalues of different signs in some region of a solution space. Difference methods

for which the approximation of the spatial derivatives are non symmetric and may change

when the signs of the eigenvalues of 3f changes are often said to be of upwind type. We

shall consider here a special class of such schemes for which it is possible to prove that

the properties (b), (c) and (g) are valid when approximating the system of equations

(1.6). The property (f) is valid in a slightly weaker form. Other upwind schemes for

systems are presented in [2], [18], [19].

-4-



The sharp shock profile property (g) is of computational importance and forces the

scheme to be of a special structure. It is otherwise easy to produce a linearly stable

scheme of type (1.9) which approximates (1.16) and is in conservation form. Choose

f+ - 1/2 (f + cu) and f_ - 1 2 (f - cu) where c is a constant such that c > p(0f). The

scheme is linearly stable for At/Ax small enough. However, not even for scalar problems,

(d - 1), with steady shocks will the numerical solution have a sharp profile. This follows

n+1 . n n' nfrom [11] since this scheme is strictly monotone. (If u. 1  G(+ u u ) then

aG
au > 0 for k = j+l,j,j+l).

The strictly upwind scalar scheme (1.9), (1.11), (1.12) is monotone but not strictly

monotone since at most one of fV and fV is non zero for each u . The natural

generalization to systems is

(1.17) N(af+(u)) + N(af (u)) ( d

where N is the counting function for the number of nonzero eigenvalues. This property is

also basic for (f) to be valid. We also need f = f+ + f- (modulo a constant) and the

matrices af+ and -3f_ must have nonnegative eigenvalues for linear stability.

When the definition (1.11) and (1.12) of f+ and f respectively are used in (1.9)

the scheme can be written

n n

n+1 - n -t Uj+1 uj(1.18) u = 
( n (l-Xls)f'(s)ds + fn x(sf'(s)ds

ju. uUj-1

This is the form of the algorithm that will be used for systems. In Section 2 we shall

present the algorithm for choosing the matrix X(s) and the path of integration between
n n
u. and un+ 1 . The choice of the path of integration is based on the Riemann invariant

curves and it is crucial for the success of this scheme.

In Section 3 we shall derive the explicit form of the difference approximation for the

one dimensional full potential equation (1.6). We shall also remark about boundary

conditions (f) and show that (1.17) is true for constant states.

i I II I I I I I I-II-



We shall prove that the entropy condition is valid for limit solutions of the

approximation in Section 4. The global existence and uniqueness of discrete, steady one

and two shocks is also proved. These shocks are equal to the analytic shocks two mesh

points away from the discontinuity.

In Section 5 we shall present results from numerical calculation with the scheme

derived in Section 3.

-6-



2. THE GENERAL ALGORITHM

In this section we shall present the derivation of the upwind algorithm for systems n

some generality. See also [17] for a related discussion of this general technique.

Consider a strictly hyperbolic system of nonlinear conservation laws in one space

dimension

2 d
(2.1) ut + f(u)x = 0 , u:R + R , t > 0 , - < x <

(2.2) u(x,0) = u(x).

The flux vector f is assumed to have continuous derivatives. The difference

approximation is defined as follows

n nuj. u.

n+l n At j+1 :3

n n(2.3 u Uj_( I)3fud Xua~~u

0

(2.4) U
0 

= u(X

The matrix X(s) and the paths of integration remain to be specified. Extending the

principles from the scalar appoximation, the matrix X should be the natural projection on

Rd  onto the subspace spanned by the eigenvectors corresponding to the positive

eigenvalues of the Jacobian matrix 9f. These eigenvectors are linearly independent since

the system is strictly hyperbolic.

Let T(u) be the matrix the columns of which are the eigenvectors of af

(2.5) T (u) af(u) T(u) = A(u)

X 1 Cu) 0 0

0 A1(u)

(2.6) A(u) diag{X (u)}
k

0 .... Xd (u)

(2.7) X 1(u) < 2 (u) < ".° < d(u)

(2.8) x(u) = T(u) diag( 1/2+ 1/2sign[k(ul)}T- 1(u)

-7-



(2.9) X(u)3f(u) = T(u)diag{max(Ak(U),0)IT -1(u) (3f(u))
+

(2.10) (I - X(U))af(u) = T(u)diag{min(Ak (u),0)}T- 1(u) - (3f(u))-ke

The choice of path of integration significally affects properties of the scheme. The

path should be specified in order to simplify the computations and to guarantee good

characteristics of the solution. The definition will be connected to classical techniques

for solving Riemann problems, [13], but will be much simpler.

n n InDenote the path connecting u to u by r1  (and of course r connects u.

n
to u j+ ). The n dependence in F is omitted in the notation. The curve rj is

decomposed into d subcurves k k-i

d
(2.11) F - u J

k-i kc
These subcurves are related to rarefaction solutions and are defined through

d(k) (k) 0 < s < or s < S < 0

(2.12) r3
k

u (k)(0) = u(k) k = 1,o'.,d

where rk(u) are the right normalized eigenvectors of af(u) corresponding to the

eigenvalues A k(U). The curves are connected by continuity conditions

(u(d) n= u _1

( 2 1 )( k - ) U u ( k )  ( s kk = d , -° , 2(2.13) k-i () ,

(1) un

njNote that the curve FJ  starts at u with r corresponding to the eigenvector rd-J-1 d

Then 0~ continues with r3 etc.d- 1



-J-. . .........

The existence and uniqueness of a solution to (2.11), (2.12), which is the existence

n nof r! is guaranteed if u. and uj I are not too far apart. This follows from the fact

that the vectors rk(u), k = 1,...,d are linearly independent and that rk depends

continuously on u . In other words r3 , k = 1,-..,d locally acts as a coordinate

system for Rd.

An important property with this choice of path is that the system decouples in the

following sense

53
(2.14) f x(u)f(u)du f X(u(s)l)f(u(s)lrk(u(s))ds f Max(ku (s)),O)r k(u(s))ds

rJ r]k 0
k kk

This follows from (2.9) 4nd (2.12). The scheme (2.3) can hence be rewritten

u n - uj n At f k ma(X (u(s)),Olrk(u(s))ds +
n+ 1 k.10 M (Ask ()(s),D r ku(u(s ))s)d.(2.15) +1

The eigenvectors rk and the curves rk  have in many physically important problems a

simple analytic form. This is e.g. the case for the full potential equation and the Euler

equations.

We shall end this section by showing that the scheme (2.3) is in conservation form and

is first order accurate.

n+1 n = AtU Uj - f (I -- X(U))f(u) u + j X(u)3f(u)du)
Sr3+1 

ri

At

=- (f (Of(u)) du + f (af(u))+ du)Xr J+1  rj

_ (A f(u) + A+ f (af(u))+du)
ri

At (A f(u) - A+ I (af(u))-du)

= 0 t (lO f(u) + 1/2 A+ f laf(u)ldu)
Ax F

r-

.-9]



3. THU POTENTIAL FLOW AIGORITHM AND REMARKS ABOUT BOUNDARY CONDITIONS

We shall now derive the difference approximation for the one dimensional full

potential equation

(3.1) Pt (Yxl " 0

where p is a known function of V defined through Bernoulli's law
2

(3.2) Vt + 1/2 2 + " HM

with H(t) given and

(3.3) 0
2 (P) -

The equation of state for the pressure is given to

(3.4) p - Ap , A > 0 , 1 ( y 4 3

In view of the general procedure outlined in the introduction and Section 2, we shall

first treat the set of equations as a hyperbolic system for the two unknowns P and

U .x * After constructing this approximation, we shall in a future paper obtain a scalar

difference scheme approximating (3.1) and (3.2).

By taking the space derivatives of (3.2) and using equality of the mixed partials

for V (which is assumed to hold even across discontinuities), we construct a first order

strictly hyperbolic system of conservation laws. (See also (1.6) in the introduction.)

(3.5) P )t 2 "u 2 o 0
u + o

7 7- x

The 2 by 2 Jacobian matrix

(3.6) A (-af

has distinct eigenvalues
(3.7) Xt, 2) u i c

and right eigenvectore
-0/c P/c

(3.8) r,-( ), r, - .
1 1

-10-



Along the rarefaction curves defined by

dt P Ip/

(3.9)

r2.d () r2r2 "at- u 1 " 2

the corresponding Riemann invariants are constant:
2c

R, - u + L - constant on F
1 Y-1 I

(3. 10) 2c
R = u --- - constant on F

2 y-1 2

To find the path of integration F , we first find the point of intersection in

the c,u plane of the lines

2c- uj +y-1

(3.11)

2L - 2c2
2 • -1 j-1 r-1

Calling this point (cj -1/2 , u -1/), we find

C + CJ-_I + I- 1 (u u
J- 1/2 2 4 - j-1

(3.12)
1 uj + u j I

U 1/2= -1 (cJ - .1 )  + 2

We need ci -1/ > 0 for the scheme to make sense. Thus our only requirement is
2

uj_ 1 - ui < - (c3 + c ) in order that our scheme exist.

In order to construct the scheme, we need to parametrize F1  and F1 . We shall

always do this using c as the parameter.

Along F we have:
2

dp P
(3.13) p= dc j = cl - r (w)

dc u 2 Y-1 1 Y~-1 2
Yf-1

-11-



. . o• 'J *" -
°  

.

Hence: C (c))

( (af(p(c) u(c))) dc - Y f J i2 x(u(c) + c,o)( c )dc
(3.14) 2 °-

P(C)
.. 2 f 1 a/2 (u 2 +-c, c )dc

Y1cj-1 - I j1 Y1I

Similarly, along i, we have:

(3.15) p- d c 1 -2 c =2 , rl '
dc u -2 11

hence -p(c)

f (a3f(p(c),u(c))) dc = __ f_ -mx(u(c) - c,O) C )dc

Y-11
(3.16) 1

c -0(c)
- j max((u +27 - +1 c) c )d

Y-1 J - , -j -1 ,O)( 1

In order to carry out the integration in (3.14) and (3.16), we first use the

indefinite integral results:

P(C)
2 f (u2_ 1  + Y+1 c)( c )dc

J--1 Y1  c Y -1 1

(3.17) 2p(c) c

2 r2p(c) yY-1
(-1 - -7 c'l)C 2 c + + 2

T-1 (Y.1) 2

and

-0(c)
-2 f(u + 27 i c - t:c)( c )dcY-1 1 7j--1 1

(3.18) -2
2 p(c)] ()-(u~j + - )  +{ *FZ(:)

i( -1 1 2

-12-
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We may use these expressions in order to evaluate the integrals in (3.14) and (3.16),

arriving at:

f (3f(p~c),u~c)))+dc ( u - 2- ' /2 %

0- Y-1 -1/2 2
(3.19) 2 7 -(cJi~ c1 )

2 -1/J-1/ I

Y+1 ( 2

where P p(c) , and

(3.20) (a) if min(uj-i + c r1 , uJ1 /12 + cj'1 > 0 then J-1/2 " J- 1, cJi..., - 1

(b) if u_, + cj_, > 0 > uj_ 1/2 + c2...1/2

1+ 2- -then Z 1  - C 1 - = ( and c C

(c) if uj... + Cj..1 < 0 4 u1 ,+ c1 1,2  then

/- and c - 2u

(d) if max(u1 -1 + C J-, u1..1/2 + cJ1 42  < 0 then zCJ-1/2  C1 1  J /

(and in this case the quantity in (3.19) vanishes).

We have defined I so that on 0 it is true that u. -c i.e. it is a

sonic point.

-13-



We also have.

f (af(p(c),u(c)))* o -(u • C .
rJ c

(3.21)

2 C .

where p - p(s) and

(3.22) (a) it min(u - CJ, O. 1/2"- CJ- 0 then J-1" 'I ;I "

b) if uj - cj 0 3, j. 1/2- c -1

then 2cJ 1 Y-1~ j i) C1- j C
'v-1 1u: 2'€)--l

(C) if uj - Ci < 0 C u.1/i - c 1, then cj - 1/2 ' I J- 1/2. cJ 1/2

(d) if mx(u , u- ci,_% i) 0 then cj- c_,- ;j

(and in this case the quantity in (3.21) vanishes).

We have defined c_, .a that on 0 it istre ha ; ; i.e. it is a

sonic point.

Using divided difference operators we may now write out the explicit one step upwind

difference approximation to (3.8)1

t + u++ j n,:, nr n, n.1(3.23) D+ " -D+ + D*A+ (P, u1 1P 1 u,

j f (af()) +dW f (af(vn))-d.

"-x 2 7- Ax1 J

-14-
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I.

where

n n n n n 2 I

(3.24) A4(0.,uS,pu, -U 2-c n J
J_- i 2 ;n -

(2 .n -n ;n Zn

Y1 ((C, 2 ;n ) 2
2 -) - J2 -1

*n ;n 2 n - ;n

(u + - n) J -1/2 o: : . i- i-i

j i J, 2 nl -n fl ((;n)2 an 2

V1j2 - +1 -ni2 J 
21

We may wish to use an implicit method based on the space differencing used in

(3.23). Various possibilities exist. The most natural are

(3.2S) (Fu~lly implicit )

n

t n +' f 1(wi*i)+ ' I-
u rJ rd+1

(3.26) (Crank-Nicolson)

ntD+I o , )n++1i 1, n 34
2D t( P ) f [(af(wn))+ (af(w rrI ))+]dw f [af(wn))- + (f(W n+1))-Idw

+ n Ax Axu ri  0+1

We may rewrite (3.26) after multiplying the equation by At , as

n+
n ot At n n

(3.27) Q !,) at ,, I + T ' - ,u1 2Ax j n 2Ax

-15-



In order to invert the pair of non-linear equations for in+, ), we suggest using
uj

Newton's method with the initial guess ( ),the solution at the previous time step.

ui

it is suggested by several authors, e.g. 1], [20], that only one iteration suffices in

cases such an this.

7hus the full expression ist

n+i n
(3.28) P1 dr - ) + ' ( )

n+1 2Ax x j),( njA
u j P u I

of course in the regions where the Jacobian matrix has oigenvalues which are both

positive or both negative the matrix dT F is either upper or lower triangular. in

particular, if

-!j+r Ejrr-0t1

then

(3.29) dT (P j Ejuj +U Pj

ED~ (uj 2~u

! J'j+ P
and if

lj+r fJ+r ,r - 0, t 1,

then: 
ji

(3.*30) dT (i)=( -(+ 2

L-ii + Li i

in general, a coplicated, but fairly straightforward calculation gives us the

linearized operator at a state



(3.31) dTP' UU -DX( +c D'mxPji 0

2- - + Cj PE

EJ- 1/2

max (uj 1 1 c.. 1 /) £. 2 ' (- 1  +i~P u -

--J eUE -

+~~ 
i-iJ 

'2

)( +a(*.. + 0j~e) )+A~ + )jlu(*j 1/-L j P

2 1 EJ i J- '/ - 1 /2J
-- i-

(3.32 (c( J- )/ - -J I) -J(p-( j

j i--i j r

and we prove the following:

Lemma (3.1)

(J)

B-1 B 1 (P -1j1 + O(Ipj - 1 I~1  + Iu i - U J 1I

8,(J)(P.U) i'B(p j,u ) + OcIP + - P I + lu + - uj 1)

where

-17-



(a) - and B are both of rank one.

(b) The eigenvalues of are 0 and !J. 1  €1 > 0 , with corresponding

P P

,gov.ctors ( -j ) -i-I
1 1

(c) The sigenvalues of B1  are.2,+1 -. 1 < ( 0 , and 0 and the corresponding

eigenvectore are 2 j , 2j+1e.
1 1

An a conseqsence of this Lama, ve have the followings

Remark (3.1)

At a boundary point near which the flow is smooth , the effect of nonphysical and

purely numerical boundary conditions is small (in fact sore in the supersonic case). This

L true because of the previous Lsma since

x~pu~ (pu)- i (p,_,)

(1 - x(e)) 3f(£,.) - I(p,u)

(See (2.8) for the definition of x(p,u))

Proof of Loem (3.1)

We use (3.31) in this region to write

(3.33) - C) j'l ) " 0J -I P 2. 1/u

--- u- (€-_ -J1"2 - c

u 1/2

J 1 .- CJ.I). )6 -

-18-
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.
'  v ' '  

.... . . . - . ., . - a ,, 4 -, ,... ..

So

(3.34) i_ , 0-[/2 -1 .J.

uJ_1  j- 1 I -I

.-
*,*Uj~ (/ u. +c _jl)

1

and hence, finally:

1 c_

(3.35) 1 ( fuj- " j- + 2- j-1 E-I

EJ-1

A simple calculation shows us that B 1 (1P J 1 , u J-1) has one nontrivial eigenvalue

equal to uI-i + EJ I , and corresponding eigenvectora equal to ( ) The zero

"-j-1 'j-i

eigenvalue has corresponding elgenvector )

An analogous proof works for

-19-



4. THE ENTROPY COIDITION AND STEADY DISCRETE SHOCKS

In this section we shall prove results concerning entropy production and sharp, steady

discrete shocks. These results are very much in the spirit of our earlier work [5], [7],

with one major difference. These new results apply to a hyperbolic system, rather than a

single conservation law. (See also Osher and Solomon [17]).

The entropy function for the hyperbolic system of conservation laws is:

(4.1) V(p,u) - (y-2)Cy-1) 2 = c2  22 (y-2)(y-1) 2 -

In the Hessian matrix H is

(4.2) H ( AY P 0 .
0 1

The additional conservation law is thus:
av a

(4.3) av + ax G - 0 ,

with entropy flux function:
3 Y-1

(4.4) G - + A
3 -y-2 2

In the special case of y - 2 , we replace this by V = q(p) + 2- t
3 2

G - upq'(P) +'- , where q is any function satisfying q" = 2A
P

Equation (4.3) is valid only for continuous solutions of (3.5). Across

discontinuities, and for general weak solutions, we impose the entropy inequality:

(4.5) a- v + L G ( 0

It was shown by Lax [13], in a general setting, that for piecewise continuous

solutions of (3.5), inequality (4.5) is equivalent to the geometric k shock condition for

weak shocks. This was shown to be true also for strong shocks for a class of systems which

includes (3.5). See Mock [15].

Approximations (3.23), (3.25), and (3.26) involve the same space discretization of

(3.5). We may thus consider a semidiscrete approximation to (3.5) of the form:

pj P: uj

(4.6) at u -D+ 2 + + -uj I

2 Y-1

Steady solutions of (3.23), (3.25), (3.26), and (4.6) are all the same.
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Our first theorem of this section is thus:

Theorem (4.1)

P t)

Suppose wj(t} - ( ) solves (4.6) and converges boundedly a.e. as Ax + 0
u Ct)

to w(x,t) with inf p (x,t) ; 61 > 0 . In addition, suppose the quantity

lim sup (IA p.(t)I + mA u (t))) is sufficiently small (but positive). Then w
Ax0 j,t
satisfies the entropy inequality (4.5).

Next, we present analytic evidence that our scheme gives excellent shock resolution in

the steady case. (Numerical computations are presented in the next section both for the

steady and unsteady case.).

pL pR

Let ( L , R ) be the states on the left and right (of x = 0 say) for a
u u

steady shock solution of (3.5). This means that both the jump conditions

LL RR
pu -pu

(4.7)
(uL 2 + (CL)2 (uR)2 (CR}2

2 y-1 2 1

and either the conditions for a one shock:

(4.8) L > c L  and -cR < uR < cR

or two shock:

(4.9) c L < uL < cL and uR < cR

are valid.

Then we seek solutions of (3.23), (3.25) or (3.26) which are time (or n) independent

L RP P
and approach L ) at -- and R ) at ~ These are called steady discrete

L R

shocks.

We have

Theorem (4.2)

Ci) Existence: A class of steady discrete shocks exists globally and each member is of

-21-



the following forms P L
0j pL

E J ( L for j1 j-O I.

(4.10)
pj pR

( )sC ) for j>j 0 +
u R
j u

and p (a) p (cc)

C , C
u (a) u (COuj0 u 0+l1a

are a smooth one parameter family of states for 0 r a 4 a , r - 1,2 withr

(a) one shocks

-PJ0+1 ()uJ0+(Q) + pRu
R 
+pc

U (a)) -j p o(ai)

UJO+1(a - -1 (cR  c CJO+1 (a))

( c(a) pjo+(a)

c 2(a) - u 
2 

(a( 2 JO JO
Jo+ 1  *Y1 " jo(CO

(•denotes - )with

c O(0)

(0) )

J 0  c

-22-



Here the solution of the system of differential equations is to be taken for

0 4 a 4 a1 ' with

c (a
30 C L

jo +aIc:)o ( ai) ci

and c .- L(uR + 2 cR)
Y+1 y-1

(b) 2 shock:

u uL +- (c (a) - c )

Lu L-

-1 p JO +PC*PU2jo 2
U 2 ((a) u P= O

+I (
W )

JO c o +1(a)(o+ (a)) - u 2  ( ))
2 j0 l Jo+

1

Cj(a) (a

• y-1a(.) Uo+ ( )

0jc (a ~ (a

wthc (CO) k L 1() i

wihJ0 L

c 0) )=( J.

j+1 2 c

Cjo~i°

Here the solution of the differential equation is to be taken for 0 ( a ( a. with

c (c

C.0+ (a.) cR

and - Y:1) (uL 2 L
Y+l -723

-23-



(ii) Uniqueness:

We consider only 3teady discrete shocks having a certain weak monotonicity property.

(a) Admissible discrete steady one shocks are such that (i) uj/ 2 + cj/ 2 ; 0 for

all integers j , and (ii) if uj c then uJ+ 1 4 cJ+ I .

(b) Admissibile discrete steady two shocks are such that (i) u J/2- cj/2 4 0 for all

intergers j , and (ii) if uj ( -cj , then u j+1 -cj+1 .

Under these assumptions, all discrete steady shocks are of the form given in (i).

We note that without any of these restrictions, discrete steady shocks must be

eventually constant. This means there exists integers a < b such that wj = wL  of

j 4 a , and wj = wR  of j > b, for some a,b . This is the content of Corollary (4.1)

below.

We also believe that our uniqueness result Ps valid under weaker hypotheses - see the

scalar result in [6], (7]

Proof of Theorem (4.1)

In its broad outline, this proof will follow the entropy inequality proofs in [61,

17). There are various differences due to the vector valued nature of this problem.

Let wj(t) satisfy (4.6) and let P(x,t) > 0 be in c (R+,R) Multiply (4.6)
T 0

by (xit) VT(w,t)AX , sum and integrate, and add I f (xjt)D G(w (t))dt to both

sides. We then have

(4.11) -f dt A Ax[(t x ,t)V(w (t)) + (D ()x),t))G(w(t))]
j ti j -

-f dt I AxOlxjt)[ f' Vw (w)[Caflw))+ + (Bflw))-dw
i r j+1

- £ VT w.)C(af~ wn)dw - f V•Cw )((Df~w))+)dw]
r rj+1 j

As Ax * 0 the left side converges to

(4.12) - ff(Vj(w) + G(w))dxdt

-24-



by the Lebesgue dominated convergence theorem. We must merely prove that the right side of

(4.11) is nonpositive as Ax + 0

We rearrange the terms above, drop the t dependence, and arrive at

(4.13) Right side of (4.11) = fdt J Axo(x.) f [VT(w) - VTvw ](af(w))dw
Jr j+I

+ f dt I AxP(x) f (V (w) - V (w )af(w)) dw

r j+1

+ f dt I AX(D O(x f *.(W )(3f(w))+dw - (I] + [II + [III]

J J

It is clear that:

(4.14) 11111)1 1 K f dt [ Ax IA wjO x

where K depends on 0 . Hence [III] + 0 by the Lebesque dominated convergence theorem.

Next we consider the integral along rj+1 in [I)

(4.15) f (VT(w) - vT (w))af(w) dw
J

+ 1 w j

f (VT(w) - VT.))(af(w))+ d + f (VT(w) - VT(w ))(,f(w))- d

rJ+1  r J+
"2 1

Now

(4.16) f (VT(w) VT(w ))(af(w)) dw 
-r jet

2

2
2 7 ~1  -l 2 c + __~c 1 2 (c 2-- f 2

dc min(uj - c+ -c0 p(c) -+. I-c-- + C - c)

)cj/ + 11cO fI V '(c jdl

f --J 2 dc mi.(.~--- ,)j JV
Y-1 ~~Y-1 Y ~ v
3 3

-25-



Next we haves

(4.17) f (VT(w) - w v1'cw)-d

y-i j+ y-I 0 J+I - Y-C.2~ ;,C) p c
c J+ 1/2

(Cu -u 2c
jo "i Y-1 1+1

2 2 yc1 i~ c2

- ~ J+ f+un~ c,o)[-- -j PI )s
j+J11/ Y-l J+1 Y-1 Y (c) J+ 12 C

2~~~ 2 , pv

c -c 1) ( C + 1/ + 1, ,) d

+ ~ ~ -Lc (c+,(C+, - c 1I+-I 2 ]:±!

(419 f c~ d CVT~v 2 =T Cv ))((f +)1)
4d

Y- w jo +1 c~l YICD V

2 + / + J+ 1 1 2  )+ 1)

+ Kcc~cj~+1,)(c - C 14

21

and
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(4.19) f (VT(w) - VT(Wj ))(3flw),+ w

(._L)2 frc+1 dcMax(u +2 - +1 c,O) fcj+l'(.. P(c) + )dv
-1u J+1 "-1 " "P(v) ccj+ 1/2 c

We add the last four equations and arrive ats

(4.20) f [VT(w - VTCw )]C3f~w) -d + f [VT () T (w )Ja )dv 4
rJ+1 r3+

-,2 C-m~in(uj 1  
+ .0) + max(u 2i + c(2 .0M j+'/ c,)

(y-1)2

a ) _ c .),O)Icj.il/ 2 - cj+l -() (4)

Here a is a universal positive constant and the u (r) c (r) are evaluated

somewhere on the relevant above paths of integration.

We first note a simple fact:

-mnu(1) (1) (2) (2)-min(ul + c to) + max(u 2 + c. 20)

(4.21)

(3) (3) (4) (4)-min(u c 0) + max(u - ci 10) > > 0

for 6 a universal constant.

The right side of (4.20) is obviously nonpositive for 16 w < c , except perhaps in+3

the following cases: either
2 y+l 2 -y1c

(a) inf lu - 2 o + < c < sup ju + c-' '-1 Ic
c1 + ' 7 J+- 1 Jc 1  c3 1/2

r- 
c E

or 2
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(b) i iuj+1 + =. + ci sup - c + JL2 cl ic+ - c I

C g + - J+ '-i c f r J1 j i Y I J+2 J
1 2

However when (a) happens, it is easy to dominate (4.20) for e sufficiently small.

T T - , T _ T +
(4.22) f IV(W) - V(w~ )8fw -dv + j I w)-V,w )I(f(v)) dw

4 bI c13 Ic2+b c1 2 Ic c+1"12
1 J / 2 J+1 - j /' 31 j+ / 2  j J+ 2 ~

+ b.1 J Ic 1/2- cJI cj+1 - c+1Y

for the bj universal positive constants.

It is easy to show that this expression is nonpositive for sufficiently small c

A similar argument follows when (b) occurs. Thus the expressions [1] + (II] is

nonpositive and we are finished.

Proof of Theorem (4.2)

we begin by demonstrating that the functions in (4.10) are indeed steady discrete

shock solutions of (3.23), (3.25), or (3.26). This means that the sequence wj

)solves the following: for each j
u u

(4.23) f (3f(w.)) dw + f (af(w)) dv

This is trivially valid for j 4j 0 -2 , j > j 0 + 3

We must merely verify that
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-AC

(4.24) (a) f.(afC~)) dw 0
r 10

Cb) f o(afCw)) dw + fJo +1 C(af~w)) dw 0

r r 0

(C) fo +1 f(w)) + dw + f (af+ Ofw))-dw -0

(d) fJo+ (af(w)) +dw - 0

riO

We need only verify any three of these, the fourth will then be valid automatically.

This follows by merely summing all four, and using the shock jump relation flul) _ f(uR).

We first consider the discrete one shock case.

in order that C4.24)(a) be satisfied, we need u ;0 -c on the line segment

connecting (cL, UL) to (C .. 2 Ujo -i). (We shall always require that c1  +1/>

for v - -1,0,1,2,3 so that cavitation does not take place.) we also require that u > c

on the line segment connecting (c1  11 u ) to c ,u ). This makes the condition

above redundant. Thus for Ca) we need only u Jo "0C > 0, u J-12O , /2>0

For (d) to,. be valid, we first require that (c Jo +I u Jo 1 ) - (c 1o 3/2 ' U Jo 3/2~

This means that (c Jo+i u J+1) is connected to CcRuR) via a one wave - i.e.

u +1 + -i c +1 . u R+- ___ . Finally, for (d), we require u < c. u
J Y- oY-1 ,o~ +1 0o+1

We now must verify equation Cc). Since (c , 4 u )o+ is connected to (c R, u1) by

a subsonic one wave, we have:
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fJ +1 (f(v))"dv - f(R) - f(ljO 1 1

(4.25) r

P u -PJO+ 1

2 2,. , €)2 "J o)+l c jo +1

2 yf-1 2 y-1

Next ve require that uj0+ / 2 N C j0+1/' > 0 , which implies, among other thinga:

(4.26) f +1( f(v)) + d " f(; - f(,

where ;jO+ 1/2" 0 + ,' JO + 1 2)

S )(u + 2 1,1)

1 
lU R  +  

_ 
) 

1,1

Y+1 -

(see equation (3.21)(b).).

Thus to verify that we indeed have a steady discrete shock, we need to show that

(4.27) f(ly) + f(vj 0+1 /) - f(v 0 ) - f(w0) -0 ,

or$

(4.28) jO+ 1/2 J,,0+ 1/2 - Pj'0U 
+ 
PR R - Pjo

+
1 uj

+ 1  
0

-2 -2 2 2 2 2
C JO+ 1/2  cJ . i/2  Ujo cl+ R2 R 2 uj1 +1 U lo+1

+ iLLx +.L(c . 041 jl0
2 "1-1 2 -1 2 Y-1 2 Y -1

subject to the restrictions that
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(4.29) (a) uJo 1/2  C 3 0 112 > 0

(b) U c > 0

(c) Uj0 + 1 cj0l,2 > 0

(d) -CJ0+1 uj0+1 c 10+1 > 0

(e) uj0 + - c •R

J+1 Y-I O+ U Y-1

Next we notice that the jump conditions (4.7) are equivalent to:

(4.30) (a) (PRuR)2 + (c)2 ay + (CR)2

2(OL)2 Y-1 2 Y-i

with
R R

(b) 
u

L  . R u R

L
p

The derivative of the function on the left in (4.30)(a) with respect to cL is

2 (P LL)-2((PLL)2 _ (PRuR)2). Thus, a single minimum occurs when u L
- -

T-1

_1 2
R Y+1 R Y+1

cu (C) + I  
For this value, the quantity on the left in (4.30) is

Yr+1 R TO R y+1 1 (R2 1 R2
2 (CY-) (C Cu ) < (C ) + 1/2 (u )2

by Holder's inequality. Thus, the jump conditions have one solution ccL,uL) for each

(cR
, 
uR), and for 0 < uR < cR, we have uL > cL > 0 . This solution is characterized by

the root of (4.30)(a) satisfying

2_ y-

0 < C
L < ( cR )y+I (u )Y

+ I

This analysis is needed in what follows.
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Solving the first equation in (4.28) for u gives

0P R + 2 c ) + PRR + C

(4.31) - -

J0 0 - 7- JO0 +

(dropping the JO + 1/2 subscript, both above and in what follows).

The second equation in (4.31) then becomes

(P +,(u R +2 1 (cR _ c:0)) RUR )2

0- 2p2 0

2%

2
2 1 c - 2 (uR+2 (c R ) 2 c2 - 2
- + 2 + 2 0 R + (c - )2

(4.32) 
J+1

- g(c 0,c j0 1 ) 1

thus defining the function (c , c 0+1 ) ;

One solution to this equation is (c 0  c0 ) - (c,c ) , another is CcLc). We

shall show that there exists a one parameter family of solutions (cJ0 (),c 0+1(o)), with

both components increasing monotonically from (;, c 
R
) to (c 

L ,  
).

We shall then demonstrate that (4.29)(a) - (d) is valid for these solutions, ((e) is

imediate from the construction).

A straightforward calculation, using (4.31) and (4.32). gives as:

(4.33) (a) a 1 c(u 02 2
ac (-)c 0  co

(b) 9 2 c ) 1 + 0 P
cio +1 1"jO+I OOOCJO+I

We consider the system of ordinary differential equations

-32-
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dc (a)

(4.34) (a) 0 gC +1 c

dc (a)
10 +1

do " C J0 cj10+)1J0

with initial conditions

c (0)1J0

(b) (
c (0) cR

to be solved for a > 0

Since the initial data solves (4.32), it is clear that the solution of (4.34) will

also solve (4.32). We shall now show that gc > 0, gc + 0 , for
10 10+ I

- L Rc c0(a) 4 c , c 4 c J0(a) + c , with gc - 0 only at the left endpoint

C " 0 . g cJ+1" 0 only at the right endpoint cj0+1 . z .

The statement concerning gc is simple to verify since by (4.32)(e),

- c J+ 1 <--> cJO+1 . - , and gCj(+ ( 0 at a - 0 .

In order to prove the statement concerning g * we shall use p u > p c
JO Jo JO JO JO

for all the relevant values of a except a - 0 .

This is equivalent to showing: for these values of a:

(4.35) p (u - c ) - o RR + - (P0 C + P + ) > 0PJ00~ U o 30 20 %J+1 u]0+1

-33-
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Squality holds for a - 0

Using (4.31) - (4.34), we differentiate the left side of (4.35) and obtain:

d " 2 0 oc + 1
ID ( u1  -C1  L=t1 ) - (U +1 +1~ ~ j

2 2 2 2 P'o+' u0 P o +1

- jo+1 - +1 (Y-I)c (j o- Ujo0c + ( I +jo Oj co+1
10 O 0**i '- 0

Thus we have the inequality:

(4.36) ,A- pJ- (U 0 c 0) + KllQ)Pjl0 (U cj0 -K21a)

with K1, K2 > 0 as long as u < 0+(436 d2 JO + 1 u -~a

This means that u (a) > c j(a) > 0 as long as uJ0+ (a) c j0+11(a)

Thus the solution of (4.34) exists inside c
L 

s c0) , ; ) cJ0+ ) c 
R  

We wish to

show it escapes at (c
, 
;) . When the solution passes through (C1 o(al), C ) , as it

must for mom 1  equations (4.31), (4.32) are valid with uJ0 > c 0

u j0+l " CJO+1

These equations then become the Jump conditions, (4.30), already analyzed, with

L L(P u ) taking th place of (p ,u ) Thus the unique solution must be
1 0 10

c (a ) - cL

We must now merely verify inequalities (4.29)(a) and (c). ((b) and (d) are

Lmdate from the construction 1.

First, we note from (3.12), that

LC C

(4.37) C - U0 + 1 1 U 
L
)

10- '/2 2 4 0
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Thus, using (4.31) - (4.34), we have

dc du dcj u dc pj10+1U o10+o 1 U1o+1
(4 38) d - 1 1 0/2 + '- j i0 -1/ 2

1J0 10 0Oo+1

(c - ) 0+IU p+-_-(U o+1 c jo+) 1 u + P O+1 J+ (c:) + u
c 0 + 1J0 PJ0  + UJ .

(u o JO- UJo )(1 Ci° Cjo+

i1 0+1 0+1 ci p~ c1

This quantity is easily shown to be nonnegative if I < y 4 3 . Hence the minimum of

Co 1/ occurs at u o. c - c

We substitute that into (4.37) and we must show

L + R

(4.39) c +c+ 1 (u R U
L ) 

> 02 4

This means we must verify:

2c
L  

2c 
R  uR uL R 2 2(c2 2(c)

(4.40) -
+  

+ > u. 211(u) +1-1

(using the second jump condition in (4.7)). This is trivially valid if

2
- I , or a 4 3 .'v-1

Next we note, again using (3.12), that uo L

(4.41) u (c L - + u
io- /2 " O c + 2

and dc. du.

d 1
S -1/2+ 1/2_Jo- / da a

(4.42)

2 "0- 1/2

y-I du
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Thus:

(4.43) ( u..i 2  3-uY- C -u M P ~+
d ) jo 0 Cj0

This quantity is (compare with (4.38)) nonnegative for 1 < y 4 3. Hence the minimum

of uj0 1/ cj0_I/ occurs for uj0 - cj0 c . We substitute this value into (4.37), and

must show:

(4.44) (C+1)(uL - . cL (Y- 3 )(uR 
c R )

but we have already shown:

L Rt Y+1 R y1 L Rt Y+1 R Y+1
(4.45) c < (c ) (u )Y+  => u > (c ) (u

and thus, by Holder's inequality and the fact that y 4 3

2 -
L _2 L 3 ~~+1 f'+ R 2 ft

(4.46) (Y+1)(U - cL) > (y+1) R ) (y3)(U + C
T_ _y- )(R)+ CuR)Y~ 3

Next we note that : CJo+ + cJo + = (U o+ 1 u )

C1o+ 1/2 2 4 j j0

(4.47) c
R + Y-1 + -- J-
2 4 2 4 J0

by (4.29)(c).

Thus, using (4.31) - (4.34), and (4.38), we have:
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(4.48) dc C 1/2 do 4 dd a j o 1/2 Jo 4 jo

dcJ (c - u ) c p.
J--oj0+1 - +1 )0 PJo cj0+1

1 2Uj0P0I 0U, C0PJ0 U P

7(u + c + 1)-2 - + 1 -+ +

Y-1 j0+1 0 P J0cj0+1  cjo Pj 0 cj 0 +1 P30c 40+1

(u. + c. ) pj+ c.
1 o o j 0  0 0=- (u - ) (1 + 0

-1 j+l j0+1 c P.Cj0 0jo jo+1

Thus, the minimum value of c,0+  occurs at (c Lu (cL'uL), at which
R L. 0 /i2  Cj UJO)=( ub a hc + c Y-1 RL0C J0+/2 -- U U) , which we showed was positive in (4.40).

Next we note that

U, + + U j(4.49) Uj 1 /  - = + (cj0 1 - c u0 1  0

(cjo +c jo)
2-_1 4 u(uj0 - u.0

3-y R 2_ R 7+1S (u + c)+ - (u -- c.
4 y-1 4 -1 30

by (4.29)(e). Hence by (4.48)

(4.50) (u d c 0
da jO / /J 0  2

Thus the minimum of u - c.0+ /2 occurs at (c.,u.0) = (c,c), where
J+12 jo 2 J0  Jo

(4.51) min(uj +1 /2- c. +  
= 0

We have thus verified that each member of the relevant family of sequences defined iin

the statement of Theorem (4.2) is indeed a discrete one shock.
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An analogous verification works in the discrete two shock case.

We finally turn to the proof of uniqueness - that these are the only steady discrete

shock solutions of (3.23), (3.25), or (3.26).

We begin with

Lemma (4.1)

Suppose

(f(w)) +dw + f (f(w))-dw - 0
ri rJ 1

for j - j0 , J0 + 1 • Moreover, suppose none of the eigenvalues of af(w ) either vanish

or change sign for j - J0-
1, j0 , J0+1, J0+2. Then w W +

Proof

Suppose first the eigenvalues of 3f(w) are both positive. Then f(wo) - f(wjo_1I

and by evaluating (4.52) for j j0 , we have

(4.53) f(w0) - f(w Jo_) I fj J f(w)dw + fj 0f(w)dw
r2° r 2

S u c)r(w) + (u - c )r1 (w jo) 0
-jo-jo -j° 2 j0  *j j J0

for somec intermediate values w I !W , and with y 1w 1- w 1'

ji0  j0  j10  Jo 12 30-1..0

= w- w 1Ic. , with c. , c. bounded above and below by positive constants.
w. w0 i o 23 -0 mo

This follows from the mean value theorem for integrals. The vectors r (w ), r2(w. ) are

of the form ), ( for a,b > 0 , hence they are linearly independent, and it

follows that w = w j0 I/2- wj0 - Thus if all the eigenvalues are positive, then

WjojO -W i WJO+1 j

If all the eigenvalues are negative, then an analogous argument gives

10 wj0+ 1  jw0+2

Next suppose the eigenvalues are of different signs, i.e. -cj < uj < Cj

j - J0 + r-1, r - 0,1,2,3. Then the mean value theorem for integrals allows us to rewrite

(4.52) as
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(4.54) _Yj(u. + cj)r (_w) + lj+1(uj1 - cj+)r1(wj+) - 0
-J -) - 2 -j +-1 -j 1j1

for j J0 , j 0 +1. The linear independence of r, and r2  again tells us that

-9 =1 0 which means w 2 - w ,  - wj i/2 for J J JO 1 Thus

w = wj0+1 /2" w j+1

As a consequence of this we have:

Corollary (4.1)

Any steady discrete shock solution is eventually constant - i.e. there are indices
L R

J,,J2 such that w. w if j 4 Jl0 wS = w if j s J2

Now we consider the one shock case. Let j0  be the largest index so that c 4 u

=Lfor all j j 0 This means that w - w for j ( 0-1 c C u and
0 0 J 0 J

Co+ > uol

This also means thatfJ0 (Bf(w)) dw - 0 . Now if uj0_ 1/2 < cJO- 13 2 , this integral is

a nontrivial linear combination of two linearly independent two vectors (by a now familiar

application of the mean value theorem). Thus u j
• J0- 1/2 10 /2

This implies that equation (4.52) for j - J0  becomes

(4.55) f(w.0) - f(wL) + f (f(w))'dw - 0

r

We wish to show that u cj/ . Suppose that this is false. We use our
jo '/2 > 0 1/, 2

special hypothesis for the first time - uj0+ 1 ) -cj0+l, uj 0+ 3/2 c 3/2 * Then

equation (4.52), for j - J0 + 1 , becomes

(4.56) f J0+1(a f (w )) + dw + fj (f(wJ)-dw - 0
r 2  rIO

Our usual "linear independence" argument, together with the assumption

j 1/2 ) -cj0 1/2 1 tells us that wj 1/2- wj0. This is a contradiction since we assumed

u. 1/2 < c01 and uj0 ; c.
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Thus u10 + 1/2  C io0+ 1 /2 This means that we may write (4.55) as

(4.57) f(w + f(w - f( w10 ) - f(wR) -0

which is exactly (4.27).

Summing equation (4.52) from j to gives us

R-(4.58) f(w ) - f(w) - - J+(af(w))'dw =f (af(w))+dw "

(c0

Let j - J0 +2 in (4.58) and use the hypothesis that u0 3/2 cj+ 3/2

uj+ 2  c 2 uj0 3/2 Cj 3/2 uj+ 3 )-c o We then have:

(4.59) f(wJO 2 ) - f(wR) - - =+Jf(w))-d f j +2(af(w))
S20 r1 I

By our usual "linear independence" argument, all three terms above vanish, which
R f~R ) ,

means w j+2 - w R (since this is the only subsonic root of f(w J+2 f(w 2 ),

w JO0+1 " wj 0 + 3/2 and f J +3 (f(w))-dw - 0 Thu wJ0+1 is connected to wJ0 2 - w

2 R 2 R

via a one wave, which means u + R c - u + R c
j0 +1 Y-1 cJ +1 U -1

Repeating this argument gives us that w wR ,  J +2

We must now merely demonstrate that the only solutions of (4.57) (i.e. (4.27))

subject to (4.29) is the family described in the statement of this theorem:

Let (cj0, cJ0+1 ) - (c,8) be such a solution of (4.57). Then find the solution of

the system of ordinary differential equations, described in (a) of the "existence" part of

the theorem, which passes through cjF cJ0 1 ). The analysis following (4.36) can be

easily extended to show that this family of solutions c j(a), c J (+1c)) leaves the

ngle cL R c j 1  through the (;j0 +,/ cR) andretnl JO+ 1/2 JO CJo , +1 1/ 1/2 0 ,

( Jo+ 1/2 "
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5. ALGORITHMS AND NUMERICAL EXAMPLES

In this section we shall present results from numerical tests with the one dimensional

potential flow scheme developed in Section 3. We shall, however, first briefly discuss

some other related algorithms in one and two space dimensions. A forthcoming computational

paper will contain experiments with some of these algorithms.

The one dimensional algorithm which is presented in this paper can be used as a basic

component in an ADI-scheme for the two dimensional full potential equation. The

appropriate eigenvectors can be derived analytically and the corresponding upwind scheme

for the three components can be constructed. Experiments with this type of upwind schemes

for the Euler equations are given in [17].

All methods in this paper and in (17] are explicit. Implicit methods often have the

advantage of being stable for longer time steps (At). The linearized problem may be

unconditionally stable. This is a definite advantage for calculations to steady state and

also for some transient problems.

An important part of the computational work when using an implicit method lies in the

solution of linear system of equations. We see two ways to reduce the bandwidth of these

systems and hence also reduce the work.

The discrete scheme for the potential flow equations can be rewritten in scalar form,

compare [8]. There is however no simple closed form for the corresponding scalar

difference scheme and approximations are needed. Another possibility is splitting the

differencing and the solution of linear systems into two parts; one corresponding to

forward and one to backward differencing. The linear systems to be solved are then block

bidiagonal and the computational complexity is reduced compared to a straight forward use

of Crank-Nicolson or fully implicity schemes.

Our numerical example will be the potential flow equations in one space variable (1.6)

pu
(5.1) t2 A -1 ) < < >0

2 ut+ /- 1 P+

with initial and boundary conditions

-41-



(5.2) p(x,O) - p(x) , u(x,O) = u(x)

P(Ott) - (t) , u(Ott) - UL(t)

(5.3)
U(1,t) u CR(t)

The boundary conditions (5.3) in our example correspond to supersonic inflow at

x - 0 and subsonic outflow at x - 1. other combinations have also been studied and they

give the same qualitative behavior except for the fully supersonic case. When Jul > c

the scheme derived in Section 3 will reduce to the standard upwind scheme without

switches. Shocks will then not have sharp profiles as was also the case in scalar

approximations (5].

The following values we have chosen agree with those in the examples in [8].

y- 1.4

2
A - 1/(1.4 * 1.2 2 ) "

PL( t) - UL(t) 1

The value of u on the right will be changed between the two examples presented here.

Example 1: This is exactly the problem considered in [8] with UR(t) 0.8. The one shock

solution we will approximate, is characterized by the right state p R(t) - 1.265 and the

shock velocity V. - 0.0447. In the scheme (2.9) the above value of p R (t) was given as

numerical boundary condition. See Section 3 for the influence of numerical boundary

conditions. See Figure 5.1 and 5.2 for computational results and parameters. The shock is

essentially resolved over two mesh points even if the theory of Section 4 does not cover

this case.

Example 2: In this test we modify the outflow values in order to achieve a steady shock

UR(t) - 0.728, P t) - 1.373. Figures 5.3 and 5.4 display the results of the
R

computation. The shock is resolved exactly over two mesh points and the convergence

history does not produce any overshoots.
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(5.2) PIx,0) = p(x) , u(x,O) - u(x)

p(O,t) = PX(t) u(Ot) - U(t)

(5.3)
u(1,t) - u R(t)

The boundary conditions (5-3) in our example correspond to supersonic inflow at

x - 0 and subsonic outflow at x - 1. Other combinations have also been studied and they

give the same qualitative behavior except for the fully supersonic case. When Jul > c

the scheme derived in Section 3 will reduce to the standard upwind scheme without

switches. Shocks will then not have sharp profiles as was also the case in scalar

approximations (].

The following values we have chosen agree with those in the examples in (8].

y - 1.4

A - 1/(1.4 0 1.22) 0.5

PLt) R L(t) 3 1

The value oi u on the right will be changed between the two examples presented here.

Example 1: This is exactly the problem considered in (8] with uR(t) - 0.8. The one shock

solution we will approximate, is choracterized by the right state p R(t) - 1.265 and the

shock velocity Vs - 0.0447. In the scheme (2.9) the above value of pR (t) was given as

numerical boundary condition. See Section 3 for the influence of numerical boundary

conditions. See Figure 5.1 and 5.2 for computational results and parameters. The shock is

essentially resolved over two mesh points even if the theory of iidt on-4 does iot cover

this case.

Example 2: In this test we modify the outflow values in order to achieve a steady shock

uR(t) - 0.728, 0R(t) - 1.373. Figures 5.3 and 5.4 display the results of the

computation. The shock is resolved exactly over two mesh points and the convergence

history does not produce any overshoots.
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Figure 5.1, 5.2: Shock profiles for example 1, section 5.
Results after 50 iterations. Exact initial
values. Courant number 0.75.
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Figure 5.3, 5.4: Shock profiles for example 2, section 5.
Results after 150 iterations. Piecewise
linear initial values. Courant number o.75.
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