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- ;Z We derive new upwind type finite difference approximations to systems of

nonlinear hyperbolic conservation laws. The general technique is exemplified
by the potential flow equations written as a first order system. The scheme
has desirable properties for shock calculations. For the potential flow
approximation, we show that the entropy condition is valid for limit solutions

and that there exist discrete steady shocks which are unique and sharp.

Numerica' examples are given.
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SIGNIFICANCE AND EXPLANATION

Hyperbolic systems of conservation laws are often used to describe
compressible fluid flow. These hyperbolic partial differential equations can
be approximated by finite difference schemes which in turn can be coded for
computer calculations of practical problems. Aerodynamics is a typical field
of application.

Standard difference schemes often run into difficulties when the solution
to be approximated contains discontinuities in the form of shocks and contact
discontinuities. The computed solution will typically either be smeared
i.es too smooth or will contain unphysical overshoots and wiggles.

For a large class of scalar problems it has been possible to design
difference schemes of upwind type which produce approximations of solutions
with shocks which are very sharp and without overshoots. 1In an upwind scheme
all differences are one sided and the structure usually depends on the
solution itself.

This paper describes a systematic way of deriving difference schemes of
upwind type for a class of hyperbolic systems of conservation laws. Many of
the desirable properties which upwind schemes have for scalar problems can
thus be extended to the physically much more important case of systems.

This technique is used to produce a scheme for the potential flow
equations. It is proved that only physically permitted shocts will be
approximated in the limit and that steady shocks are very sharp. Other cases

are investigated in computational examples which also display the efficiency

of the scheme.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC and not with the authors of this report.
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POTENTIAL FLOW EQUATIONS

Bjorn Engquiat' and Stanley osher't

Dist Special

l. INTRODUCTION

Many upwind difference schemes have very attractive properties when approximating
scalar nonlinear hyperbolic conservation laws. They have, in particular, become the
standard technique for many calculations of transonic flow [1], (3]}, (7], [10], [12],

[16]. There are, for example, several versions of upwind schemes for the approximation of
the small disturbance equation of transonic flow (1.1). A number of these schemes have
solutions with sharp shock profiles [1], [5], (7], (16]. The small disturbance equation is
(1.1) 20, = (®e_ -V (ve1)vd) Oy *

The velocity potential is denoted by vix,y,t) and K 'and Y are positive constants.

The extension of these technigques to systems is immediate when all the eigenvalues of
the Jacobian matrix of the flux functions have the same sign. It is the purpose of this
paper to present a systematic technique for producing upwind difference schemes for the
more interesting case of systems where the eigenvalues of the Jacobian may have different
signs. We shall, as an example, apply this technique to the potential flow equations (1.2)
for compressible, inviscid, isentropic and irrotational flow (3]. The equation is
(1.2) . Py + (Dwx)x + (mﬂy)y =0 .

The density function p is given in terms of a velocity potential ¢ through Bernoulli's

law

trhis paper was written while the author was visiting the Mathematics Research
Center at the University of Wisconsin.

""Address of the authors: Department of Mathematics, University of
California, Los Angeles, Ca. 90024.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by
NASA-Ames University Consortium, Interchange No. NCA2-0OR390-002.
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(1.3) ] + 2y (2¢t + Py + gy) = H(t) .
The equation of state for the pressure p is
(1.4) p=ap’

with A abd Y positive constants (1 <y € 3 in our theorems). We can transform (1.2),
(1.3) into a first order hyperbolic system by letting Pe™u, wy = v and then
differentiating (1.,3) with respect to x and y resepectively [2). The squality of the

mixed partials is assumed to be valid throughout the flow. the system of equations is

P pu pv
(1.5) N S IR L I : 0 -0.
v 0 Y (v? + v3) + AL C’Y-’1
Y¥=-1
t X y

Analogous to a standard procedure for scalar problems one might use dimensional splitting
for the solution of equations with more than one space variable. 1In this paper we shall

consider the reduced one dimensional system

[Y pu
(1.6) + =0 .
1 2 AY Y=1
bl u + ¥-1 P x

Let us recall the first order scalar upwind scheme which we developed in [5], (7],
Consider a nonlinear scalar conservation law (1.7) in one space dimension
(1.7) U + f(u), =0 , t> 0, =< x<¢®
(1.8) u(x,0) = u(x).
n

The solution u(x,t) is approximated by a mesh function uy on the mesh {(xj,tn}},

xy = jbx, t? - nlt, (u; ~ u(xj,tn)). The difference scheme in its explicit form is

n+1 n At n n
(1.9) uj uj - Ax(A+f-(“j) + A_f*(uj))
0
. - ,0 .
{1.10) “j u(xj )

-
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The difference operators A+ and A_  denote the forward and backward differencing

respectively (Atuj = *(ujt1 - uj)). The auxiliary function f_ and £, contains the

increasing and decreasing parts of f respectively,

(1.11) £,(0) = [ x(8)£'(s)ds
0
(1.12) £ (u) = [C(1-x(s))£' (8) a8
0
£=f + £

When f is convex the definitions (1.11) and (1.12) simplifies to
(1.13) £ (u) = £(max(u,u))
(1.14) £_(u) = £(min(u,u))

where u is the stagnation point f'(u) =0, If f' has a fixed sign say f£' > 0 the

scheme reduces to the classical upwind scheme

n+1t n At n
(1.15) uj uj = A_f(uj) .

when it is used as the basic ingredient in the approximation of the small disturbance
equation (1.7) the resulting scheme will be identical to the Cole-Murman scheme [16] away
from sonic and shock pgints. These are the points where f£' changes sign and a switch
from & £ to A+f is needed. The formulation (1.9) gives a recipe for such a switch.
The approximation (1.9) has several attractive properties in connection with shock
calculations. Proofs and numerical examples are given in (5] , [6].
Thrse properties are:
(a) The scheme is monotone, see (4], {91, for At|f'] < Ax .
(b) It is in conservation form and hence produces shocks with the correct location [14}.
These properties imply the following properiies (c), (d) and (e) for Cauchy

problems. (We thank P. Lax and M. Crandall for some helpful discussions on this matter.)

In our earlier work we proved the results below for quadratic f even for the mixed

initial boundary value problem, and for general scalar f for the Cauchy problem.

(c) An entropy condition is valid for limit solutions, which rules out nonphysical

shocks.
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The scheme is stable in Ly, Ly and L_ .

The approximate solution o

3
The approximation uses the same number of boundary conditions as the differential

converges to u in Ly o

equation, i.e. no extra numerical boundary conditions need to be imposed.

shock solutions “ave stable sharp shock profiles, [S5], [6]. We essentially mean

that the approximation of a steady Riemann problem is exact two points away from the
shock.

We now try to preserve some of these properties in the approximation of systems. Wwe
shall consider a hyperbolic system of nonlinear conservation laws in one space dimension
(1.16) u + fw, =0, ui R &L
Systems in more than one space variable can be reduced to the one dimensional case by
dimensional splitting or ADI, see [1], [5] .

The linear stability requirement implies that there only exists strictly upwind

difference schemes if all the eigenvalues of the Jacobian matrix 3f have the same sign.

These eigenvalues are all real since the system (1.16) is hyperbolic. This stability

requirement follows directly from the domain of dependence and the CFL-condition. The

upwind difference scheme may, for example, be of the simple form (1.15) if all eigenvalues
of 9Jf are positive.

We have to clarify what we mean by upwind or one sided difference schemes when 3f
has eigenvalues of different signs in some region of a solution space. Difference methods
for which the approximation of the spatial derivatives are non symmetric and may change
when the signs of the eigenvalues of 3Jf changes are often said to be of upwind type. We
shall consider here a special class of such schemes for which it is possible to prove that
the properties (b), (c) and (g) are valid when approximating the system of equations
(1.6). The property (f) is valid in a slightly weaker form. Other upwind schemes for

systems are presented in (2}, (18], ([19].
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The sharp shock profile property (g) is of computational importance and forces the

scheme to be of a special structure. It is otherwise easy to produce a linearly stable

scheme of type (1.9) which approximates (1.16) and is in conservation form. Choose

f* = bﬁ(f + cu) and f_ -1é (f - cu) where c is a constant such that ¢ » p(df). The
scheme is linearly stable for At/Ax small enough. However, not even for scalar problems,

(d = 1), with steady shocks will the numerical solution have a sharp profile. This follows

from {11]) since this scheme is strictly monotone. (If u?+1 = G(u;+1,u?,u§_1) then
g—ﬁk—> 0 for k = 3+1,3,3+1).

The strictly upwind scalar scheme (1.9), (1.11), (1.12) is monotone but not strictly

monotone since at most one of f; and f: is non zero for each u . The natural

generalization to systems is
(1.17) N(3f+(u)) + N(3f_(u)) € 4
where N is the counting function for the number of nonzero eigenvalues. This property is

also basic for (f) to be valid. We also need f = f, + f_ (modulo a constant) and the

matrices af+ and ~3f_ must have nonnegative eigenvalues for linear stability.

When the definition (1.11) and (1.12) of £, and f_ respectively are used in (1.9)

the scheme can be written

un un
(1.18) L L [j”u- (s))f'(8)ds + [ (s)f'(s)ds
. uj 3 ™ “n x(s 8 'n X s .
3 3-1

This is the form of the algorithm that will be used for systems. In Section 2 we shall

present the algorithm for choosing the matrix x(s) and the path of integration between

n n
uj and uj+1 o

curves and it is crucial for the success of this scheme.

The choice of the path of integration is based on the Riemann invariant

In Section 3 we shall derive the explicit form of the difference approximation for the

one dimensional full potential equation (1.6). We shall also remark about boundary

conditions (f) and show that (1.17) is true for constant states.

-5
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We shall prove that the entropy condition is valid for limit solutions of the
approximation in Section 4. The global existence and uniqueness of discrete, steady one
and two shocks is also proved. These shocks are equal to the analytic shocks two mesh
points away from the discontinuity.

In Section 5 we shall present results from numerical calculation with the scheme

derived in Section 3.
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2. THE GENERAL ALGORITHM
In this section we shall present the derivation of the upwind algorithm for systems ‘n
some generality. See also [17] for a related discussion of this general technique.
Consider a strictly hyperbolic system of nonlinear congervation laws in one space
dimension

(2.1) + f(w), =0, u:nz* Rd, t>0, =®x<w

Ye
(2.2) u(x,0) = u(x).
The flux vector f is assumed to have continuous derivatives. The difference

approximation is defined as follows

U.n “n
j+1 j
(2.3) u’j‘*l = o - (77 (- xtaat(wan+ [T x(wif(udu)
u? u?
] j=1
(2.4) ug = u(xj) “

The matrix X(s) and the paths of integration remain to be specified. Extending the
principles from the scalar appoximation, the matrix ¥ should be the natural projection on

Rd onto the subspace spanned by the eigenvectors corresponding to the positive
eigenvalues of the Jacobian matrix 9Jf. These eigenvectors are linearly independentAsince
the system is strictly hyperbolic.

Let T(u) be the matrix the columns of which are the eigenvectors of 3f

(2.5) ™ w) 3f(w T(w = Aw)
r A1(u) 0 ssoee 0 )

0 A, (u) :
(2.6) Au) = diag{xk(u)} = .

0 esesse )\d(“)
(2.7) A () € Ay u) ¢ see <A ()
(2.8) x(u) = T(w) diagl Yo+ Vysign(r, (w)dr” ' (u)

~7-
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(2.9) x(u)df(u) = T(u)aiag{max(xk(u),o)}T"(u) = (ag(un’
(2.10) (1 - x(u))3£(u) = T(u)diaglmin(A, (u),0)}1" () = (3£(un)” .

The choice of path of integration significally affects properties of the scheme. The
path should be specified in order to simplify the computations and to guarantee good
characteristics of the solution. The definition will be connected to classical techniques

for solving Riemann problems, [13], but will be much simpler.

Denote the path connecting “3-1 to u; by Fj (and of course PJ+1 connects u?
to “?+1)' The n dependence in I is omitted in the notation. The curve Pj is
. j,a
decomposed into d subcurves {rk}k-1
j d :
(2.11) : = vor).
k=1
These subcurves are related to rarefaction solutions and are defined through
(k)
du - (k)
T rk(u ) 0<s<skor $, <s<0
3,
(2.12) Pk H
u(k)(O) = u(k) k= 1,°°,d

where rk(u) are the right normalized eigenvectors of Jf{u)} corresponding to the

eigenvalues Ak(u). The curves are connected by continuity conditions

(2.13)

Note that the curve [J starts at o

-1
Then T©7 continues with Fé_1 etc.

with Pg corresponding to the eigenvector r;.

~8-
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(2.12), which is the existence

The existence and uniqueness of a solution to (2.11),

of I is guaranteed if ug and u§_1 are not too far apart. This follows from the fact

that the vectors rlu), k = 1,0°+,4 are linearly independent and that r,, depends

continuously on u « In other words Pi s k= 1,¢°¢,d4 locally acts as a coordinate

system for Rd.

An important property with this choice of path is that the system decouples in the

following sense

3
s
(2.14) f x(u)df{u)du = f x(u(s))af(u(s))rk(u(s))ds = [ kmax(kk(uk(s)),O)rk(U(s))ds
3 3 0
rk I‘k

This follows from (2.9) und (2.12). The scheme (2.3) can hence be rewritten

3
d s
n+1 n At k
u, o= ouy - = {7 (] “max(A_(u(s)),0)x (u(s)ids +
3 R k k
(2.15) .
SJ+1

+ f"min(Ak(uls)>,0)rk(u(s))as)}.
0
The eigenvectors r, and the curves Fk have in many physically important problems a
simple analytic form. This is e.g. the case for the full potential equation and the Euler

equations.

We shall end this section by showing that the scheme (2.3) is in conservation form and

is first order accurate.

u?" - ug = - %ﬁ ( f (1 - x(u))3f({u)du + f x(u)af(u)du)

it .

=-2 (0 GeanTaw+ [ Gean’ aw)
341 .

- - At M
- - (a_f(u) + 8, fj (3€(u)) au)
r

At =
=~ (s, £w -8, [ w7 a)

r3
b At
| = -5 (he, flw + s, fj 13£ () [du)
; T

-9 =




3. THE POTENTIAL FLOW ALGORITHM AND REMARKS ABOUT BOUNDARY CONDITIONS
We shall now derive the difference approximation for the one dimensional full
potential equation
. + (V -
(3.1) Pe ( vx)x 0

where p is a known function of ¢ defined through Bernoulli's law

2
1, .,2 c
(3.2) 9o + Yoy + ST = H(E)

with H(t) given and

(3.3) 2(p) = % .

The equation of state for the pressure is given to
(3.4) p=aY, A>0, 1<y <3.

In view of the general procedure outlined in the introduction and Section 2, we shall
first treat the set of equations as a hyperbolic system for the two unknowns p and
u= ¥ .« RAfter constructing this approximation, we shall in a future paper obtain a scalar
difference scheme approximating (3.1) and (3.2).

By taking the space derivatives of (3.2) and using equality of the mixed partials

for v (which is assumed to hold even across discontinuities), we construct a first order

strictly hyperbolic system of conservation laws. (See also (1.6) in the introduction.)
0
.(0)‘

The 2 by 2 Jacobian matrix

has distinct eigenvalues
(3.7)
and right eigenvectors

(3.8)




|
|

Along the rarefaction curves defined by

g

(3.9)

T

(8-

: = !‘1
4 Py P/ey L
raw ()= () =5

the corresponding Riemann invariants are constant:

R, = u + 2c_ constant on T

1
(3.10)

Y=-1 1

R, = u - 2c_, constant on T

2
To find the path of integration
the c,u plane of the lines
(3.11)

L2

Y=-1 2

Fj , we first find the point of intersection in

2c
2¢c h|

+ = .+
R B B

R N |
¥=-1 -1 =1

Calling this point (cj - yﬁ, uy o DQ’ we find

cj_ 1/2'
(3.12)

1
3= T ¥=1 %5 T Sy

We need c.

2
“j-1 uj < 7-1 (cj + cj_1)

- b§> 0

In order to construct the scheme, we need to parametrize Fz

always do this using ¢

Along rg we have:

(3.13) 2P =

for the scheme to make sense.

c, + ¢
B T Lo R =3
2 4 3 j=1
u, tu
(c. - ¢ ) + _1_3__1__ .

Thus our only requirement is

in order that our scheme exist.

and T2 . We shall

N

as the parameter.

2
Y=-1 "2

-11-
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Hence:
co 1 ple)
/ (af(p(C),u(C)))+dc = :'{%Tf ¥ éMx(u(c) + ¢,0)( : )de
3 . Sy
(3.14) r2 -1
ey plc)
- 2 4 -2 had) ¢
71 £ max(uj_1 y=1 cj_1 + =1 c,O)( 1 )dc .
3=1
Similarly, along Fj + we have:
4 '%g 2 - 2
(P a c - s ) o =t
(3.15) ()= Y ) e ( ;) L
Y¥=-1
hence - (c)

[+
[ ot uemn’e -2 [ maxue - 0 (] Ja

] Ci.1
(3.16) 3 = 7%
2 53 2 +1 2l
== £ max((u, + 55 oy = r=er,0(  y e

In order to carry out the integration in (3.14) and (3.16), we first use the

indefinite integral results:

(3.17)




We may use these expressions in order to evaluate the integrals in (3.14) and (3.16),

arriving at:

-1 Pia
[ @fereruen e = (o, - e ) 2 )
rd ;:T(cj_1é cj_1)
(3.19) 2
2 5. 1,c 5. <
(Y"1 %= V-1t
+
2
Y+1 (e ~2
1, = € - )
-2 ¥+
where p = p(c) , and
(3.20) (a) if m.i.n(v.xj_,1 + Cy-qr Uy 1/2+ 4- 1/2) >0 then cj_ 14- cj- 1/2, cj_1 - cj-1
{b) if uy_y + €51 20> uy_ 1é+ 4= 1/2
then cj_ B& cj_ Bﬁ e (uj_1 ;:ch_1) and cj_1 cj_1.
(c) if uy_q + €4-14 <0< uy 1/2+ 4y 1/2 then
Pt - S == A i ¥ -2
cj_ 1/2 4. 1/2 and C4eq = 4 1 (Y+1)(“j-1 T-1 cj_.')
(d) if mx(uj_1 + Cy-qe Y4- 1/2-0- 5 1/2) < 0 then cj- 1/2- cj-1 = cj_ 1/2,

{(and in this case the quantity in (3.19) vanishes).

so that on I‘g it is true that u, i.e. it is a

We have defined c = ¢
j= 1/2 3= 1/2'

=%

sonic point.

-13~-
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We also have:

Py =Pt
[, Gre@mene = e dienl 0, TR,
rd BRI L

(3.21) 1

- -
vhere p = p(c) and

(3.22) (a) it m.n(n1 - C40 uyo 1/2- 4- 14 > 0 then cj- 1/2- cj- 1/3' cj * cj

(b) it uy = ej >0 “3-‘/3' €4 1/)

(u 0-—24:). ; = c

Y vy b] b

-~ - -y
then c’_ ‘/2- cj_%- {71-

() 4t uy - ey <0 < Uy 15" Gy 1y then cj - cy % 4 ,/2- cj-'/z
(a) if ux(uj < Cy0 Uy 1p = cj_1/2) < 0 then Cy = Sy 1/2- cj_%

(and in this case the quantity in (3.21) vanishes).

We have defined ¢ so that on X'g it is true that u - 1.8, it is a

=% =% %
sonic point.
Using divided difference operators we may now write out the explicit one step upwind

difference approximation to (3.8):

{ . n n n
oy x| °3 Yy
t - - x n.n n n -
(3.23) D, D *DALP g0y gy )
u (u“)2 (<=n’)2
) TS

Ax Ax

-l Gr™iter - [ arv™) aw
r r3*!

-14=

b
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b R o R,

where
~n ~n
p 1,.= P
-4 T

n . nn n n 2 n
(3.24) A (o ,u ,p, ., = (u,_ =~==c, )
A R R o R b j=1 1131—2—(;" S

=13 % " %=1

2 ~n ~n ~n
-1 O % =% P3-1%5-1)

+
Y+1 ~n 2 ~n 2
-, (e, _4,)" = (c . )")
l ”_”2 = A -1
sn - ;n _ 2 (;n ;n - ;n ;n )
n 2 n 177 % -1 T Y-
+ [uj Mkt +
__2 %0 _"=n 1+ =n.2 _  *n 2
Y_1(<:j €4- 1/2) ) 3 ((cj) (cj_1/2) )

We may wish to use an implicit method based on the space differencing used in
(3.23). Various possibilities exist. The most natural are

(3.25) (Fully implicit)

[ o™ e - [ eee™'))aw

rj rj+1
(3.26) (Crank-Nicolson)

p - -
i ) ) .- (o™ s @™ ) lew - =1 [are™)T ¢ ™)) 1aw

rjo!

[ )

u rj

We may rewrite (3.26) after multiplying the equation by 4t , as

Dn#‘ Dn

oy _ At a1l oney 3j A n . n
(3.27) ( aet) T Zaw TRy ouy ) = | A ) + T T(Dj,uj)

3 %y

“1§5-
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‘ a4 - “- *- 3 , . . hd - S . " e . -
n+1
In order to invert the pair of non-linear equations for | jn+1 ), we suggest using

3

oP

Newton's method with the initial guess ( : ) ¢ the solution at the previous time step.
oy
3

It is suggested by several authors, e.g. [1], [20], that only one iteration suffices in
cases such as this.

Thus the full expression is:

nt1 n
P [
3 - -1 3 At n . n
(3.28) n+1 ) = (I 24x ar n n) (( n ) + 2Ax T(pj'uj))
uj P s uj

Of course in the regions where the Jacobian matrix has eigenvalues which are both
positive or both negative the matrix dTp u is either upper or lower triangular. 1In
’

particular, if

Ej#t‘)sj#r'r-o'tl

then u, + u.p
o 84" * 24y
(3.29) dTg'! ( ‘. ) =-a_( 2 )
S
5% T gy P
and if
£j#r<:j+t' r=0, £t1,
then: u, + u.p
oy 3% * ¥4Py
(3.30) dTg,g ( o )= -, ( )

In general, a complicated, but fairly straightforward calculation gives us the

linearized operator at a state 23'21

-16-
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. w - .--——~ - , — .. '- . 4 . P - - . .

“ p.u. + u,p P .
4 P 373 <373 3 i
.é (3.31) aT, 4 ( uj ) = -pX{( 2 ) + D:[mnx(uj - cj,O)( - ) ;
' o . Sy 3 ;
g Ejuj + 2 pj gj 3 1
i -
Si1
] == c c
- - 1, (== 3=t -
i m("‘j- 1/2 cj- 1"2’0)( -1 ) /2( 93 Pyt 2j_1 93‘1 + “j “j-‘l) ]
+
] !
i . . > ) 4
H e P | C. 1 c
s =3 =34 =31, 23 j-1
+ ( s - } )(u + gj pj)-t-mnx(gj_ 1é+ st/z)( 2) lz(ej pj+ " pj-1 ;
© et eyt o)
+ “j - uj_1)
1 84 %" 24-9 E4-1 .
- nx(\_lj-1 + Sj‘1 lo)( ¢ - )93-1 + ( (; - ,E )(uj-1 - gj-‘ Dj_1
=153 157 3-1)

Byt

In the subsonic case when the eigenvalues of the Jacobian matrix Jf are of both

signs, the operator dTp u is a perturbation of a simple form. In particular if - Cyer <
.

Uypr € Eq4pr T = 0, 21, then we define

P 1 P
( “j == B:j)(glg)( uj*r )

(3.32) a7
g.u" uy re-1 j4r

and we prove the following:

Lemma (3.1
8, =8 u, ) +0ollp, =, 1+ lu, = u,_ )
I R e o 37 P31 37 Ygm
8 (o,u) =B (o, ,u., ) + 0o, -0, + lu,, -ul
1 =r- 1'54541°=941 341 3 341 3
where

-17-

v"v
gt X3




(a) 5_‘ and 51 are both of rank one.

(b) The eigenvalues of i_ are 0 and By + €41 > 0 , with corresponding
[} []

24-1 24-1

1

e c
eigenvectors ( '), (7).
1 1

(e) The eigenvalues of B are 3}” -gjﬂ <0, and 0 and the corresponding

Ein Bynr
L)

eigenvectors are (- -

1

1 1

As a consequence of this Lemma, we have the following:

Remark (3.1)

At a boundary point near which the flow is smooth, the effect of nonphysical and

i

pursly numerical boundary conditions is small (in fact gzero in the supersonic case). This

is true because of the previous Lemma since

x(2,w)3f(g,u) = B_,(p,u)

(1 =~ x(g,wtlp,u = B (p,u)
(See (2.8) for the definition of x(p,u)) .

Proof of Lemma (3.1

We use (3.31) in this region to write

2._.- %
Sy 1
(3 ?4=1 % 844
(3.33) -'-1 (g'E)(uj-i ] - 93_1né ( ) Ei:: (Ej‘ y&* Sj‘ bg
1
1 c Ej_ 1/2' Ej-1
Z4-1
-(93-1093-1)(12_ )';1_( )]
o =31 L(c -c )
By-9 =133 % 7 S
21- 1',:
£4-1 3, 8
<34 34 =i
+ uy (-l A P P PN ( e
=1 (83-157 85!
.18

ABD - e A R e b

TR —————

o

e, e g

]
4




So

24
- &3 €31
(3.34) B 1(9 3 )( ) =p [(
-1'=3=1'=3-1 -1
“j-1 b
24-1
-1
+ uj"’1[[
1
and hence, finally:
- 1
(3.35) 13_,_1(5_2:]_,1 .gj_1) /2 (Bj-1 * &40

A simple calculation shows us that §_1(gj_1, Ej—1)

equal to‘gd_1 + Sy ¢ and corresponding eigenvectors equal to

eigenvalue has corresponding eigenvector (

An analogous proof works for 51 .

-Ej-‘l

-19-~
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4. THE ENTROPY CONDITION AND STEADY DISCRETE SHOCKS

In this section we shall prove results concerning entropy production and sharp, steady
discrete shocks. These results are very much in the spirit of our earlier work [5], [7],
with one major difference. These new results apply to a hyperbolic system, rather than a
single conservation law. (See also Osher and Solomon {17]).

The entropy function for the hyperbolic system of conservation laws is:

AY DY-1 u2 c2 u2

-20(v-1 T2 " -2 v-n T2

(4.1) Vipu) = .
In the Hessian matrix H is
Y-3
A 0
(4.2) w= (AP )e
0 1
The additional conservation law is thus:
v . 3
with entropy flux function:
AY gY-1u

u
. = — .
(4.4) G=3 1-2

2

In the special case of Y = 2 , we replace this by V = q(p) + %— R
2

where gq 1is any function satisfying q" = §- = 2A .

3
u_

G = uwq'(p) + 3=,
Equation (4.3) is valid only for continuous solutions of (3.5). Across
discontinuities, and for general weak solutions, we impose the entropy inequality:

3 ]
3t ¥ * 9x G<o.

It was shown by Lax [13], in a general setting, that for piecewise continuous

(4.5)

solutions of (3.5), inequality (4.5) is equivalent to the geometric k shock condition for
weak shocks. This was shown to be true also for strong shocks for a class of systems which
includes (3.5). See Mock [15].

Approximations (3.23), (3.25), and (3.26) involve the same space discretization of

(3.5). We may thus consider a semidiscrete approximation to (3.5) of the form:

[ [ u

3 ( b ) - o ( J b

at uj + “2 c
_1.’.—1_
2 Y-1

, )+ DA

+ B jlujlpj_1'uj_1) .

Steady solutions of (3.23), (3.25), (3.26), and (4.6) are all the same.




Our first theorem of this section is thus:
Theorem (4.1)

Dj(t)
(t) = ( ) solves (4.6) and converges boundedly a.e. as

uj(t)

Suppose W

3

to w(x,t) with inf p, (x,t) ? 61 >0 . In addition, suppose the quantity

3

lim sup (|A+p.(t)| + |A u.(t))) is sufficiently small (but positive). Then
J +3J
Ax+0 3,t
satisfies the entropy inequality (4.5).

Next, we present analytic evidence that our scheme gives excellent shock resolution in
the steady case. (Numerical computations are presented in the next section both for the

steady and unsteady case.).

L
o R

p
Let ( L ) ' [ R ) be the states on the left and right (of x = 0 say) for a
u u

steady shock solution of (3.5). This means that both the jump conditions

L L R R
pu = pu

(uL)Z

(ch? = {u
2 -1

+

and either the conditions for a one shock:

(4.8) ol > &F and -cR ¢ uR ¢ R

or two shock:

(4.9) -cL < ul < cL and uR < -ck

are valid.
Then we seek solutions of (3.23), (3.25) or (3.26) which are time (or n) independent

L R
] P

and approach ( ) at -« and ( )

L R
u u

These are called steady discrete

shocks .
We have
Theorem (4.2)

(1) Existence: A class of steady discrete shocks exists globally and each member is of

-21-




iy . . . . &
_‘ ¢ —— - —— Ll — e Ao -

the following form:

?3 pl‘
( )=( ) for 5¢3,=1.
u L
3 u A
(4.10) 0 R
3 P
( )= ( ) for jo> o * 1
u R
3 u
and ojo(a) pj0+1(a)
1 ( ())'( ())
i u, (a u a
3o 3+

are a smooth one parameter family of states for 0 < a < a . r= 1,2 with

(a) one shock: /t

§ R R = =
1 -ojo+1(u)ujo+1(a) +pu +pc
i uj (a) = o (G)
| 0 jo
3 - R 2 (Ro
_ uy s8) =u 4+ 37 {© °4 +q89))
i 0 0
z‘- : (@) - 2 (@ oo e |
! c, (a) » == {u a) - ¢ {a)) |1 +
3 =1 It 3gH Djo(a)cjo+1(a)
cz(u) - u2 (a)
. 2 J Jo
c (a) @ ==
j°+1 -1 cjo(a)
{ * denotes 4 } with
da
c, (0)
3o ¢
( o ) = ().
c R
| K °




Here the solution of the system of differential equations is to be taken for

0 <atx . with

c, {a,)
j0 ' cL
( J=(2 )
= [+
c, (a,)
)°+1 1
and ¢ e {u + 391 c) .
{(b) 2 shock:
L 2 L
u =u + — (¢ (a) = ¢c)
3o =1,
p.u, +p o+ ptu”
j0 jO
u, (a)
Jo+1 pj LY
Q
2
(cj #(®) = ﬂ(cu))
e, (a) = == 0 g
3o -1 °y sl
0
) , ( ojo(a)uj0+1(a) )
c. (a) = =—— (¢, (a) + u, (a)) -1
I+t =1 Ig 3, °j°(°)°j°+1(°)
with c, (C)
j0 cL
( )= ).
cj0+1(0) z

Here the solution of the differential equation is to be taken for 0 < a < a, with

cjo(az) -
( )= ).
j0+1(02) cR
and ¢ = -( %E% ) (uL - ;%T cL)
-23-
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(ii) Uniqueness:

We consider only steady discrete shocks having a certain weak monotonicity property.

(a) Admissible discrete steady one shocks are such that (i) Yj/2 + 4/2 >0 for
< < .
all integers j , and (ii) 1if uj cj then uj+1 cj+1
(b) Admissibile discrete steady two shocks are such that (i) uj/z- cj/2 < 0 for all
intergers Jj , and (ii) if uj < -cj s then uj+1 < -cj+1 .

Under thege assumptions, all discrete steady shocks are of the form given in (i).

We note that without any of these restrictions, discrete steady shocks must be

T R R PP I T 5 ehi T IY R

eventually constant. This means there exists integers a < b such that wy s W of

j<a, and w, = wR of j ?» b, for some a,b . This is the content of Corollary (4.1)

J
below.

We also believe that our uniqueness result i3 valid under weaker hypotheses - see the
scalar result in (6], (7] .

Proof of Theorem (4.1)

In its broad outline, this proof will follow the entropy inequality proofs in [6],
7). There are various differences due to the vector valued nature of this problem.
Let wj(t) satisfy (4.6) and let ¥ (x,t) » 0 be in c;(R+,R) . Multiply (4.6)

by ¥(xj,t) v:'(w,t)Ax . sum and integrate, and add ] [ ¢(x_,£)D}G(w (t))dt to both

3 3
X sides. We then have J
: (4.11) - at § Axle_(x,,e)v(w (£)) + (0 X oix.,t))6w, (£))) '

L 3 £ 3 - h] 3
- [ ae § dxotxgotrt Vo (I TREWNT + (a5(w)) aw
3 Tie1
- V:(wj)((af(w))_)dw -J V:(wj)((af(w))+)dw] . g
I‘j+1 rj

As Ax * 0 the left side converges to

{4.12) - [Jteviw + gGlw)axa ,

4

-24~
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by the Lebesgue dominated convergence theorem. We must merely prove that the right side of
(4.11) is nonpositive as A4x + Q .

We rearrange the terms above, drop the t dependence, and arrive at
(4.13) Right side of (4.11) = [dt } bx(x) ] [v:(w) - V:(wj)](af(w)-)dw

3 rj+1

T T +
+ [ at § Bxp(x,) { v, 0 - Vw(wj+1)](3f(w)) aw
i+

+ [ ae § axof vixy_ 0 [ v§<wj)(af(w))*dw = (1] + (11] + (1II] .
3 Tj
It is clear that:

(4.14) 11I1I]] < K [ at § Ax 18, w10,
3

where K depends on ¢ . Hence ([III] + 0 by the Lebesque dominated convergence theorem.

Next we consider the integral along Pj*1 in [1)

(4.15) [ vTw = viw,))3E(w) Taw
1.j+1 v w3

T T + T T -
=/ i m - V9 QRE(W)) Taw + J (V (W) =V (w ) (BE(W)) aw .

j+1 J+1
rz T1
Now
(4.16) [ ovTw - VW) (3F(w)) "aw =
w w j
rin
2
2
-2 "% Y% minca, - 2o e+ B o0y (L ( S5 B, 2,
¥-1 IooY=1 73 y=1 T Ny=2 ) ple) p. ¢ Y-1 j
cj J
Syl
= (=232 [ A -2 phdl cr vV ele) ]
[Y-1) £ dc min(uj 727 S5t Yoy <0 el T ot 1)av] .
j b

J

-25-
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Next we have:

(4.17) ] W W - VT wi¥y)) (9w “aw
It
N
2 c 2
-2 Al 2 ad! c - A ela
¥=1 {: Bin(u,,, + 1" y=1 € o7 Y-2'0(c) oy e
#*%
- (u u, + — (¢ =~ ¢))de¢

Cipt
-2 5 R T o) S elel
71 I minluy 4 + 357 Sye1 = Y1 c,O)[ y-1 p(C) Pyet ) c
‘1% “
2 2
+ 2 (c- L S 5 yRS . 2 (e - co]dc
¥=1 ¢ 1/2 = Pie1p 93 N I
j+1 2 +1 € v plc)
- f dc max(u, 4 755 €444 - %—_—’- c,0 | {: SRy et M
j+ 1& j" 1/2
+ Kie,e ey, 1, - c?)
1~ j j"’ 1/ 3+ 1/2 3j

where X and i below are uniformly continuous functions.

Similar analysis gives us

T T +
(4.18) fj+1(v"(w) =V, (DLW Taw
2

2 cj"‘ 2 +1 cj.q.‘
- '(7_1 ) £ A ac mx(uj "7 S + %1- ¢, 0 {: ) (—'—p(v) &Lc__.,, 1)av
3

+ K( c,., 1)¢ )2]
SO 5 15 a1 T T Y

and

-26=
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(4.19) [ it = vitw, ) (3g(w)) Taw

w,
rj'” j+1
1

We add the last four equations and arrive at:

(4.20) [ Vi - viw g Taw + [ [vTw - viw,. )] (3g0w) Yaw <
341 w w3 341 w w3+
r r
2 (1) (1) (2) (2) 2
€ = - ’ ’ . -
(7-1)2 [ m.*.n(uj + cj 0) + m(“j + cj °’“°3+1/2 cj)
(2) (2) 2
+a max(uj *+ oy ,0)|cj+ 1" cj||°j+1 -y 94
o2 (3) | (3) @ _ (4 . 2
(y=1)2 [Fminty Sy #0) + maxluy Gy 10N (Cyyy = Oy 1/&)
(4) 4) 2
- amin(u’ - cy .0)|cj+,/2- cjl ch+1-cj+1él .

(x)
b}

(r)

Here a 1is a universal positive constant and the u < cj are evaluated

somewhere on the relevant above paths of integration.

We first note a simple fact:

(1) (1) 2y c(2) 0
:

-min(uj + cj ,0) + max(uj 3 )

(4.21)

-min(u(3) - c(3)

3 3

for § a universal constant.

4 _ _4)

,0) + max(u; 0026850

The right side of (4.20) is cbviously nonpositive for |A*wj| < € , except perhaps in

the following cases: either

2 bkal 2 haal
- — - — + - -
(a) inf' Iuj 77 S5 * y=1 cl < sup . Iuj+1 To1S5e1 = ¥4 CIlcj+1 I yg
3+1 i+
ce T c €T
or 2 J

-27=-
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(b) inf |u + 2 - cel < sup |u -2

+1
J+1 7 y=1 °j+1 Y1 T °j + %37 cllcj*>y§- cjl .

j+1 j+1
c € F1 c € rz

However when (a) happens, it is easy to dominate (4.20) for € sufficiently small.

(4.22) [ Vi - VT(wj)I(af(w))-dw + [ wiw - VT(wj+1)|(3£(v))+dw
j+1 w w j+‘ w w
T r
3 2 2 2
CPrlog T ol Ralogey T cq gl Balogey €yl legn < oy
+ bdlcji-‘é- cj”°j+1 - °j+ 1/2l

for the bj universal positive constants.
It is easy to show that this expression is nonpositive for sufficiently small ¢ .
A similar argument follows when (b) occurs. Thus the expressions [I] + [(II] is
nonpositive and we are finished.
Proof of Theorem (4.2)
We begin by demonstrating that the functions in (4.10) are indeed steady discrete

shock solutions of (3,23), (3.25), or (3.26). This means that the sequence wy

[4
( ) solves the following: for each 3
u
b
(4.23) [ g av + [ (3f(w)) aw = 0 .

rj rj#1

This is trivially valid for j < j -2, 3> +3 .
0 0

We must merely verify that




—
!
(4.24) (a) [, (3g(w)) aw = 0 ]
rJ°
(b) / tag(w)) taw + [y +y320) 7w = 0
ro ro
. . _
K -
(e) [5 w8 aw &[4 o (3800) v = 0
0 0
r r
(d) f. Lt Taw =0 .
] j°+2
4 T
‘[-
3 We need only verify any three of these, the fourth will then be valid automatically.
é This follows by merely summing all four, and using the shock jump relation f(uL) = f(uR).
: We firat consider the discrete one shock case.
i In order that (4.24)(a) be satisfied, we need u » -c¢ on the line segment
connecting (cP, u¥) to (cjo - ujo "%2. (We shall always require that cjo . U§> 0 1

for vs=-1,0,1,2,3 80 that cavitation does not take place.) we also require that u 2 ¢

1
]
1
1

on the line segment connecting (c 1, @ 3,) to c, ,u, ). This makes the condition
PN 2 3o /2 3, 3,
above redundant. Thus for (a) we need onl u > c >0 u > c >0 .
e e T N A N I

For (d) to be valid, we first require that (¢ ) = (

s u c, B )
Ig*1" Tigh Jg* 372 Ty 3/2

This means that (c s Q ) is connected to (cR,uR) via a one wave - i.e.
jo+1 j0+1
b
u + 2 c = uR + 2 cR . Finally, for (d), we require u < ¢ > u .
J+1 0 y=1 T3 _+1 Y-1 ’ ’ j°+1 3+t

We now must verify equation (c). Since (c u ) 1is connected to (cR,uh) by

a subsonic one wave, we have:

-29=
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)
¥
3
i

- R
f’o"(a!(')) e = £le) - gl L)
(4.28) r
R R
A Wb WS
) “2 02 )

!“RIZ . (P2 i Ig* i 3o+t

z Tyt 2 ¥

Next we require that u > 0 , which implies, among other things:

H
jo+ 1& cj°+ 1/2

+ -
(4.26) Ji g (38(w)) aw = £(w, _q4) = £lw, )
rjo-n jo+ A jo
vhere ] = (¢ c )
Bt T t%’ Tir%
-t 2
(¥ )(“50*‘ +35 c’o*‘)(1'1)

¥ R, 2R
T (4 35 e) (N

(see equation (3.21)(b).).

Thus to verify that we indeed have a steady discrate shock, we need to show that

R -
(4.27) fiw) + f(wjo*1’&) - f(vjo) - ﬂwjo”) =0,
ors
(= = RR )
(4.28) Py 4 9.C4 1" P U, +pu -p u 0
ot % % T3, Ig+1 TIpH
2., R, o & o2 o2
It % . 3t 2 ) Jo L N (w2 . 2 ) 3 M .
\ 2 Y-1 2 =1 2 Y=1 2 -1 J J

subject to the restrictions that

R A s saunIREE 2

I

Ty N

il 0 DG - o aidn




(4.29)

2
3ot Y

Next we notice that the jump conditions (4.7) are equivalent to:

R R

(4.30) () Lo

u )
L.2 T Tyt

with
(b)

The derivative of the function on the left in (4.30)(a) with respect to cl is

2 LL-2,,6LL2 R R, 2 L

=1 (Pe) " ({pc) =(u)d)e Thus, a single minimum occurs when u L

= C

=1 2
(uR)Y+1 (cR)Y+1. For this value, the quantity on the left in (4.30) is

2()

11 RYFT (BT L (RZ L (B2

Z(=1) (c) (u =1
by Holder's inequality. Thus, the jump conditions have one solution (cL,uL) for each

(cR, uR), and for 0 < uR < cR, we have uL > cL > 0 « This solution is characterized by

the root of (4.30)(a) satisfying

2 1
0 < cL < (cR)Y+1(uR Y+1

This analysis is needed in what follows.




Solving the first equation in (4.28) for uj gives
0

R 2 R RR ==
°y sl * T=1 (¢ = <y sl tPU +pc
0 0
(4.31) u, == ’
4

(dropping the 35 + Eﬁ subscript, both above and in what follows).

The second equation in (4.31) then becomes

R 2 R R R == 12
(Dj H(u + =1 (c = cj #‘)) -pu =-pc )
] [1}
0= =
2p
j0
c2 c
b] R.2 R.2 j +1
- 0 Y+1 -2 (u ) (e ) _ 0 R R 2 R _ 2
=t z-n 9 Tt Nn -1 R+ Le °jo+1”
(4.32)
= glec, ,c ) .
jo 30#1
thus defining the function g(c s C ) .
3 ' 3%
One solution to this equation is (cj ' cj ‘1) - (;,cR) . another is (cL,E).
0 0

shall show that there exists a one parameter family of solutions (cj (a),cjo*‘(a)).
both components increasing monotonically from (E, cR) to (cL, ;)-

We shall then demonstrate that (4.29)(a) - (d) is valid for these solutions,
immediate from the construction).

A straightforward calculation, using (4.31) and (4.32), gives as:

(4.33) (a) ___aca 9= 9. = (731)c (“§ - °§ ’
3 3o Jo 070
u, p
(b 9, = Y—i-? (u, 4y =y (1 e piocion
3+ o Y 3"

We consider the system of ordinary differential equations

We

with

((e) is




;
¥
dc, (a)
j0
(4.34) (a) ———n g (c y € )
da cj +1 j0 j0+1
0
dcjo+1(a) ;
==-g  {c, .,c )
da cjo jo jo+1

with initial conditions

(b) ( y=( )

I to be solved for a > 0 .

1 Since the initial data solves (4.32), it is clear that the solution of (4.34) will

0

. aleo solve (4.32). We shall now show that g_ 20, g <o, for
' +1
! %o Jo
! - L R -
c ¢ cj {a) € ¢ , ¢ < cj +1(a) € c, with gc = 0 only at the left endpoint
()} 0 3
0
c -3¢ y 9 = 0 only at the right endpoint c -c.
3 c 3, +1
0 3 +1 0
0
The statement concerning 9. is simple to verify since by (4.32)(e),
j+ 1
0
u = c (=) ¢ - 2 , and g <0 at a =0 .
+
3o+ 3p*? Jo*! °jo+1

in order to prove the statement concerning 9. , we ghall use p u > p c
o
for all the relevant values of a except a =0 .

This is equivalent to showing: for these values of «a:

(4.35) Py (u, =ci ) =pu ¢ pc-(p, c +op u ) >0 .

-3)-




Equality holds for a = 0 .

Using (4.31) - (4.34), we differentiate the left side of (4.35) and obtain:

4 p, (u, =-¢, ) == ( il o c 2 p -32:1 (u c )
4 "3 Jg Y =1 T3 3 Y1 1 3o+ EPAANEES A
[+ u [+
3 3 I+
2 2 2 _ 2,70 hoal 0 ‘o
-,y muy e (F - ) B (10 2 2]
¥=1 j°+1 j°+1 Y 1)cj jo jo cj +1 ¥=-1 jo 3 cj +1
0 0 0 0
Thus we have the inequality:
d
(4.36) — 0o, (u, =c, )+ X (a)p, (u, =-c, ) € =K_(a)
&35 3 3o LA PO P 2
with X,, K, > 0 as long as ujoﬂ < cj°§1 .

> .
This means that “j (a) cj (a) > 0 as long as uj 01(°) < cj *1(a)
0 0 0 0
Thus the solution of (4.34) exists inside cL b cj > ¢ ' ) cj +1 > cR « We wish to
0 0
show it escapes at (cL, c) « When the solution passes through (cj (01), c) , as it
0
must for some 01 , equations (4.31), (4.32) are valid with uj > cj R
0 0
u = c =c .
j°¢1 jo+1

These equations then become the jump conditions, (4.30), already analyzed, with

(pj 3 ) taking th place of (pL,uL) « Thus the unique solution must be
1] 0

c (u,) - cL .

b]
0
We must now merely verify inequalities (4.29)(a) and (c). ((b) and (d4) are

:+ U

immediate from the construction 1.

First, we note from (3.12), that

(4.37) c




Thus, using (4.31) - (4.34), we have

This quantity is easily shown to be nonnegative if 1 ¢ Y € 3 . Hence the minimum of

. _1, occurs at u, =c = C .
Jo= 2 o 3
We substitute that into (4.37) and we must show

c

L R
[

—;—°+x—;-1(up‘-ul‘)>o .

This means we must verify:

L.2

L R R.2
[+ c R L // R, 2 2({c) 2(c)

+» > = —e - ———
e i v u u () + =1 =1

(using the second jump condition in (4.7)). This is trivially valid if

2 1, or a<3.

¥-1
Next we note, again using (3.12), that

2
Y-1

{4.41) °3- % - (c

4 . -
da jo-‘/2




A

¥~ v W T UV

Thus:

) c

) -

30 °

p. €
30 j0+1

+*
I+t

(4.43) 4 c ) = = (u -c ) [

= {u -1 - -1
da jo f jo /2 (Y-1)2 j0+1 jo+1

).

This quantity is (compare with (4.38)) nonnegative for 1 <Yy < 3. Hence the minimum

occurs for u;, = ¢ = ; . We substitute this value into (4.37), and

of wu, _q9,~ € _1
- T PR B
must show:
L 2 L R 2 R
(4.44) (y+1)(u™ = 773 © )2 (y=3)(ut T e

but we have already shown:

2 1=t 2 1
(4.45) & (AR e W (BT R

and thus, by Holder's inequality and the fact that Yy < 3

2 -1
L _ 2 L x=3 y+1 R,Y+1 _ R 2 R
(4.46) (e’ = 255 e 2 (e ((EF Je) T T > (=3t 4 T e
Next we note that:
c + c
o' 30 y-9
1 + (u u, )
3ot 2 2 4 Jo*? 3y
(4.47)
c
Lt m, Jo oy
T R “jo

by (4.29)(c).

Thus, using (4.31) - (4.34), and (4.38), we have:

-36-




i il

d d -1 4
4.48 L =12 - =1 4
(4.48) d %3+ Yy 23 %5 4 @Yy
dc (c - u, ) c [¢]
3o 1 0 o Jg !
a1y 41 T %y ) c (v - 5. < )
0 0 30 Jo 30+1
24, . u . P u .
1 3”35+ Jg 3 3gtt U503t
--——Y_1(uj+1 °j+1)"2‘pc + 1 e * s )
0 0 jo 30+1 30 )0 jo+1 30 3°+1
(u + c, ) p c.
1 a Jo Jp*t 3 )
=== (u, -c ) (1 + <0 .
Y-1 . +1 3.+ c p. c
0 0 3 3o gt

Thus, the minimum value of ¢ 1 occurs at (¢, ,u_ ) = (cL,uL), at which
It A 3,3
cR + cL y=1 R L 0 0 0

c 1, = + ~— (u u’) , which we showed was positive in (4.40).

j0+ /o 2 4

Next we note that

1 "3+ : "3,
(4.49) u, -c = — (c, -c, )+ ——
+1 3 +1 - +
Jgt 2 IS8 T NG PSS B 2
(c + c, )
+
.2 ! %o S Y a. )
2 4 jo+1 ig
3=y R 2 R Y+1 2
- — + - - —
2 (v il )+ (uj -1 5 )
0 0
by (4.29)(e). Hence by (4.48)
d Y+1 4
4!50 — . Ld . B e —e— —— A > 0 -
( ) da (uJO* Y CJO+ 1/2) Y-t da CJO+ Yy
Thus the minimum of u - C, occurs at (c. ,u_, ) = (: c where
s+ 1+ "y rele
0 0 0 0
(4.51) min(u 0 .

- C, ) =
Igt'a T Tigt 1

We have thus verified that each member of the relevant family of sequences defined iu

the statement of Theorem (4.2) is indeed a discrete one shock.
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An analogous verification works in the discrete two shock case.

We finally turn to the proof of uniqueness - that these are the only steady discrete
shock solutions of (3.23), (3.25), or (3.26).

We begin with

Lemma (4.1)

Suppose
+ -
J Qf(w aw + (3f(w)) aw = 0
Pj rj+1
for j = jo ¢ Jg + 1 . Moreover, suppose none of the eigenvalues of 3f(wj) either vanish
or change sign for j = jo-1, Jg ¢ Jo*1. jo+2. Then wjo = wj°+1°
Proof
Suppose first the eigenvalues of 3f(w) are both positive. Then f(wj ) = f(wj _1)
0 0

and by evaluating (4.52) for j = Jg + we have

(4.53) £(w 3f(w)dw + jj 3f(w) aw
0

- f =
j0) (wj0_1) f’o
r r
2 2

-c )r1(wj ) =0,

=y, (u +co)r (w, )+ b (2
39 "3 o 2 3 3o =10 39 ()}
for somc intermediate values !j . gj + and with Yy = le 1, W _1|_f:_~ B
0 0 3o 0" 2 3 b
. = W, - w c. with c. c. bounded above and below b sitive constants.
1, A OV I ST Y po
This follows from the mean value theorem for integrals. The vectors r1(g ), t,(w,. ) are

3 2°-3
b 0 0
) for a,b > 0 , hence they are linearly independent, and it

of the form ( -? ), ( 1

follows that w = w « Thus if all the eigenvalues are positive, then

= w
077 2 3
w = W,
0 Jo
If all the eigenvalues are negative, then an analogous argument gives

= w
j°+1

w

3

-w.
Jo
Next suppose the eigenvalues are of different signs, i.e. -cj < uy < €y v

0 = wjo+1 +2

§ = jo + r-1, r = 0,1,2,3. Then the mean value theorem for integrals allows us to rewrite

(4.52) as
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(4.54) N RENCAIES P YE W, ) =0

2441 7 Sy 441
for j = 35 + Jg*1. The linear independence of r, and r, again tells us that

or 3= g ¢ 30 + 1 . Thus

Yj = 1j+1 = 0 which means wj- 1/2 - wj_’, wj*1 = wj“ 1/2 £

w

= W, 1, =W
Iy Jgt /2 Ig+?

As a consequence of this we have:

Corollary (4.1)

Any steady discrete shock solution is eventually constant - i.e. there are indices

- L - R
J4:35 such that wj =W if j < J1, wj S w if 3 JZ'
Now we consider the one shock case. Let j, be the largest index so that cj < uj fj
for all j € j. . This means that w, = w° for 3 € j -1, c, < u, and : i
0 j I " r
|

cj0+1 > “j0+1 i ¥

This also means that [ (3f(w)) dw = 0 . Now if u 1, <c¢ 1, + this integral is

r

a nontrivial linear combination of two linearly independent two vectors (by a now familiar

application of the mean value theorem). Thus u 1, °¢ 1,
3= V2 T3

This implies that equation (4.52) for J = j, becomes o

0+1 (3f(w)) dw = 0 .

(4.55) £lw, ) - £l + I |
r ,

0

We wish to show that u, -, 2 ¢ .

; ot 4" Tigt VA
B - > - >

special hypothesis for the first time \1:..04',‘I cjo+1, uj0+ 3/2 cjo+ 3/2

equation (4.52), for j = jo + 1, becomes

Suppose that this is false. We use our

« Then

(3f(w)) dw = 0 .

(4.56) (3£ (w)) Taw + I,

2 r1

+1

It
. j°+1 o

Our usual "linear independence" argument, together with the assumption

w, « This is a contradiction since we assumed

tells us that w -
32 Y

u ?» -c ’
3ot % ot Ve

u, 1, ¢<c¢ 1 and u, 2 c. . ]
Jo* 2 Rt 72 %
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Thus ujo*'U§> c3o*'v§' This means that we may write (4.55) as
= R
«57 - - -
(4.57) f(wj°+1) + f(wjo) t(wj°+-bg f(w) o,
which is exactly (4.27).

Summing equation (4.52) from j to ® gives us

) = £y = = [ (af(w))"aw = [ (af(w)) Vaw .
P+t o3

(4.58) f(wj

Let j = j;+2 in (4.58) and use the hypothesis that ujO+ /2 < cjo+ 3/2

<c ? ? =c « We then have:

u v u -C 3 u
Jg*t2 T Tdgt 2 g+ 372 3g* 372 34*3 Ig*3
R - 4+
(4.59) f(wj°+2) - f(w) = = fj LAE(0) Taw = jj 2T &
r.° r,°
2

By our usual "linear independence” argument, all three terms above vanish, which

means wj 2= wR, (since this is the only subsonic root of !(wj +2) = f(wn)),
0 0
- R
Vi 4TV 43y 0 ond fj +3(3F(W))"aw = 0 . Thus ¥y 4y 18 connected to w, _, = w
0 0 r 0 0 0
2 R 2 R
via a one wave, which means “jo*1 + T=1 cjo+‘ u + 71 c .

Repeating this argument gives us that wj Hi wR, j? jo+2 o

We must now merely demonstrate that the only solutions of (4.57) (i.e. (4.27))
subject to (4.29) is the family described in the statement of this theorem:
jo’ cjo+1) = {(a,8) be such a solution of (4.57). Then find the solution of
the system of ordinary differgntial equations, described in (a) of the "existence" part of

Let (c

the theorem, which passes through ¢ The analysis following (4.36) can be

¢+ C Ve
jo j0+1
easily extended to show that this family of solutions cj (a), cj +1(a)) leaves the
0 0

- L R = = R
rectangle c 1,8 ¢ ¢ , ¢ €¢ <c 1 through the (¢ 1, €) and
3ot T3, R B 3ot %

L =
(c ’ Cjo’_ 1/ ) .

=40~
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5. ALGORITHMS AND NUMERICAL EXAMPLES

In this section we shall present results from numerical tests with the one dimensional
potential flow scheme developed in Section 3. We shall, however, first briefly discuss
some other related algorithms in one and two space dimensions. A forthcoming computational
paper will contain experiments with some of these algorithms.

The one dimensional algorithm which is presented in this paper can be used as a basic
component in an ADI-scheme for the two dimensional full potential equation. The
appropriate eigenvectors can be derived analytically and the corresponding upwind scheme
for the three components can be constructed. Experiments with this type of upwind schemes
for the Euler equations are given in [17].

All methods in this paper and in (17] are explicit. Implicit methods often have the
advantage of being stable for longer time steps (At). The linearized problem may be
unconditionally stable. This is a definite advantage for calculations to steady state and
also for some transient problems.

An important part of the computational work when using an implicit method lies in the
solution of linear system of equations. We see two ways to reduce the bandwidth of these
systems and hence also reduce the work.

The discrete scheme for the potential flow equations can be rewritten in scalar form,
compare (8)]. There is however no simple clogsed form for the corresponding scalar
difference scheme and approximations are needed. Another possibility is splitting the
differencing and the solution of linear systems into two parts; one corresponding to
forward and one to backward differencing. The linear systems to be solved are then block
bidiagonal and the computational complexity is reduced compared to a straight forward use
of Crank=Nicolson or fully implicity schemes.

Our numerical example will be the potential flow equations in one space variable (1.6)

pu

+ ( ) =0, 0¢x<1, t>0

(5.1)
t 1 2 A! Y-1 X
/:Zu + ye=1 p

~_
£ ©

with initial and boundary conditions
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(5.2) p(x,0) = p(x) , wu(x,0) = u(x)

P(O,t) = p (t) , wl0,t) = U (t)
(5.3) .

u(1,t) = uR(t)

The boundary conditions (5.3) in our example correspond to supersonic inflow at
x = 0 and subsonic outflow at x = 1, Other combinations have also been studied and they
give the same qualitative behavior except for the fully supersonic case. When |ul > c
the scheme derived in Section 3 will reduce to the standard upwind scheme without
switches. Shocks will then not have sharp profiles as was also the case in scalar
approximations [(5].

The following values we have chosen agree with those in the examples in [8]).

Y= 1l.4
A= 1/(1.4 ¢ 1.25) w0 5
DL(t) z %(t) =1,

The value of 2 on the right will be changed between the two examples presented here.
Example 1: This is exactly the problem considered in [8] with un(f) = 0.8. The one shock
solution we will approximate, is characterized by the right state pR(t) = 1,265 and the
shock velocity Vg = 0.0447. 1In the scheme (2.9) the above value of pR(t) was given as
numerical boundary condition. See Section 3 for the influence of numerical boundary
conditions. See Figure 5.1 and 5.2 for computational results and parameters. The shock is
essentially resolved over two mesh points even if the theory of Section 4 does not cover
this case.

Example 2: In this test we modify the outflow values in order to achieve a steady shock
uR(t) = 0,728, pR(t) = 1,373. Figures 5.3 and 5.4 display the results of the
computation. The shock is resolved exactly over two mesh points and the convergence

history does not produce any overshoots.
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p(x,0) = p(x) , u(x,0) = u(x)
p(0,t) = pL(t) : u(o,t) = UL(:)

u(i,t) = uR(t)

The boundary conditions (5.3) in our example correspond to supersonic inflow at
x = 0 and subsonic outflow at x = 1. Otaer combinations have also been studied and they
give the same qualitative behavior except for the fully supersonic case. When |u| > ¢
the scheme derived in Section 3 will reduce to the standard upwind scheme without
switches. Shocks will then not have sharp profiles as was also the case in scalar
approximations (S].
The following values we have chosen agree with those in the examples in [8].
Y= 1.4
A= 1/01.4 « 1.2%) = 0.5
pn(t) B uL(t) =1 .

The value oi u on the right will be changed between the two examples presented here.

Example 1; This is exactly tne problem considered in (8] with uR(é) = 0,8, The one shock

solution we will approximate, is cheracterized by the right state pR(t) = 1,265 and the
shock velocity Vg = 0.0447. 1In the acheme (2,9) the above value of pa(t) was given as
numerical boundary condition. See Section 3 for the influence of numerical boundary
conditions. See FPigure 5.1 and 5.2 for computational results and parameters. The shock is
essentially resolved over two mesh points even if the theory of Section 4 does hot cover
this case.

Example 2: In this test we modify the outflow values in order to achieve a steady shock
ug(t) = 0.728, pR(t) = 1,373, Figures 5.3 and 5.4 display the results of the

computation. The shock is resolved exactly over two mesh points and the convergence

history does not produce any overshoots.




Figure 5.1, 5.2: Shock profiles for example 1, section 5.
Results after 50 iterations. Exact initial
values. Courant number 0.75.
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Figure 5.3, 5.4: Shock profiles for example 2, section 5.
Results after 150 iterations. Piecewise
linear initial values. Courant number o.75.
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